
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

MPEG-4 物件視訊編碼器在 PACDSP 平台上之軟體

實現

Software Implementation of MPEG-4 Object-based Video

Encoder on PACDSP Platform

研 究 生 : 江政達

指導教授 : 林大衛 博士

中 華 民 國 九 十 六 年 六 月

MPEG-4 物件視訊編碼器在 PACDSP 平台上之軟體

實現

Software Implementation of MPEG-4 Object-based Video

Encoder on PACDSP Platform

研 究 生 : 江政達 Student: Cheng-Ta Chiang
指導教授 : 林大衛 博士 Advisor: Dr. David W. Lin

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electronics Engineering

June 2007

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 六 年 六 月

MPEG-4 物件視訊編碼器在 PACDSP 平台上之軟體實

現

研究生: 江政達 指導教授:林大衛 博士

國立交通大學電子工程學系 電子研究所碩士班

摘要

MPEG-4 為一廣泛應用之多媒體訊號壓縮標準。本篇論文介紹在 PACDSP

v3.0 平台上 MPEG-4 物件視訊編碼器之實現，本平台由一超長指令數位訊號處

理器與一 ARM926EJ-S 處理器所組成。為了最佳化程式流程，我們也完成了許

多的靜態分析，並且利用超長指令處理器架構上之特性來達到即時編碼。我們已

可在 ARM 平台上呈現簡單的展示，並在指令集模擬器上驗證 DSP 部分之正確

性。

在我們的實作當中，我們使用了 MPEG-4 參考軟體，MoMuSys，當作驗證

的比較對象。首先，我們分析了 MPEG-4 物件視訊編碼器之統計特性並且對編

碼流程有了初步的瞭解。接著，我們分析編碼之運算複雜度並且藉此找到有效率

的實現方法。在移動估測編碼中，我們利用螺旋搜尋法中的一項參數來降低運算

複雜度，並且沒有犧牲太多的影像品質。在形狀編碼中，我們使用多重符號之內

容基礎的算術編碼(CAE)來壓縮二元形狀資訊，並在 inter 編碼模式中做調整以降

低運算複雜度。在紋理編碼中，我們根據離散餘弦轉換(DCT)之特性來跳過多餘

的運算。

為了加速執行時間，我們將規律之運算分佈於兩組以增加處理器之效能。我

們也使用單指令多資料(SIMD)指令以及一般指令層級平行化來減少處理器之延

遲。我們討論了離散餘弦轉換(DCT)和離散餘弦反轉換(IDCT)之效能與精確度，

並且我們的離散餘弦反轉換(IDCT)實現能夠符合 IEEE 1180-1190 標準之規範。

在所有的最佳化之後，我們在最好的情況下可分別在 intra 和 inter 編碼模式下達

到每秒 33 和 43 張的 QCIF 畫面即時編碼。而整個程式的大小為 27 Kbytes，也

小於 PACDSP 的程式快取記憶體大小 32 Kbytes。

在本篇論文當中，我們首先介紹了 MPEG-4 標準以及 PADSP 平台之概述。

接著討論靜態分析、最佳化方法、整體實作設計、以及實驗結果。最後簡單介紹

了雙核心實現的系統與機制。

Software Implementation of MPEG-4 Object-based

Video Encoder on PACDSP Platform

Student: Cheng-Ta Chiang Advisor: Dr. David W. Lin

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract

MPEG-4 is a widely-applied multimedia coding standard. This thesis presents an

implementation of MPEG-4 object-based video encoder on the PACDSP v3.0

platform, which consists of a VLIW digital signal processor (DSP) and an

ARM926EJ-S processor. We complete many analysis to optimize the program flow

and utilize the advantage of VLIW processor to achieve real-time encoding. We have

done a simple demonstration on ARM core, and the encoding on DSP part is verified

by instruction set simulator.

In our implementation, the MPEG-4 reference software, MoMuSys, is used as a

golden model to verily our implementation. First, we analyze the statistics of the

MPEG-4 object-based video encoder, and have an initial understand of the encoding

flow. Second, we analyze the computation complexity of the coding, and find efficient

algorithms for the implementation. In the motion coding, we use a parameter of spiral

search to simplify the computation complexity without too much quality loss. In

shape coding, we use multi-symbol CAE to compress the binary shape information

and give some modification for inter mode coding to reduce computation complexity.

In texture coding, we skip some computations according to the mature of discrete

cosine transform (DCT).

Third, to speed up the execution time, we distribute the regular computations to

both clusters to increase the efficiency of the processor. Single instruction multiple

data (SIMD) instructions and general instruction level parallelism also utilized to

reduce the processor stalls. We also discuss the efficiency and accuracy of DCT and

IDCT, and the accuracy of our IDCT implementation can meet the IEEE 1180-1190

standard. After all the optimizations, we can encode the MPEG-4 video data for QCIF

format over 33 and 43 frames per second in the best case for intra and inter encoding.

The code size is 27 Kbytes, which is smaller than the 32-Kbyte instruction cache on

PACDSP.

In this thesis, we first introduce the MPEG-4 standard and give an overview of the

PACDSP platform. Then the static analysis, the optimization methods, the overall

implementation design, and the experiment results are discussed. Finally, we brief the

system and mechanism for the dual-core implementation on the PACDSP platform.

誌謝

本篇論文的完成，誠摯地感謝我的指導老師 林大衛 博士，從踏入交通大學

電子所開始，多虧老師的循循善誘，不但給予我在課業、研究上的幫助，使我學

到了分析問題及解決問題的能力。同時老師樂觀的生活態度也影響了我，讓我更

有勇氣面對各種困難。在此，僅向老師及老師的家人致上最高的感謝之意。

 另外要感謝的，是實驗室的蔡崇諺學長和吳和璋學長。謝謝你們熱心地幫我

解決了許多方面的疑問。

感謝通訊電子與訊號處理實驗室(commlab)，提供了充足的軟硬體資源，讓

我在研究中不虞匱乏。感謝崑健、俊榮、鴻志、家揚、朝雄…等博班學長的指導，

以及 94 級介遠、志岡、柏昇、耀鈞、順成、凱庭、錫祺、浩廷、育成、耀仚等

實驗室成員，平日和我一起唸書，一起討論，也一起打混，讓我的研究生涯充滿

歡樂又有所成長。期待大家畢業之後都能有不錯的發展。

最後，要感謝的是我的家人，他們的支持讓我能夠心無旁騖的從事研究工

作。另外感謝我的女友，牛怡婷，在我的求學過程一路相伴，面對壓力時不斷地

鼓勵。

 謝謝所有幫助過我、陪我走過這一段歲月的師長、同儕與家人。謝謝！

誌於 2007.6 風城交大

 政達

Contents

1 Introduction 1

2 Overview of the MPEG-4 Video Standard 3

2.1 Structure of MPEG-4 Video Data . 3

2.2 MPEG-4 Video Texture Coding . 6

2.2.1 VOP Formation . 7

2.2.2 Shape Coding . 8

2.2.3 Motion Coder . 11

2.2.4 Texture Coder . 17

2.2.5 Other Video Coding Tools [6] 21

2.3 Profiles and Levels [5] . 23

3 Overview of PACDSP 25

3.1 Introduction . 25

3.2 ISA and Pipeline Stages . 27

3.3 Program Sequence Control Unit . 27

3.3.1 Branch Instructions . 29

3.3.2 Loops . 30

3.3.3 Customized Function Units (CFUs) 31

3.3.4 Exception Handling . 31

3.3.5 Interrupt Handling . 32

3.4 Scalar Unit . 32

3.4.1 General Purpose Scalar Register File 32

I

3.4.2 System Register and Predication Register 33

3.5 VLIW Datapath . 33

3.5.1 Ping-Pong Register File . 35

3.5.2 Address/Accumulator Registers 36

3.5.3 Constant Registers . 37

3.5.4 Status and Control Registers . 37

3.5.5 Addressing Modes . 38

3.5.6 Data Communication . 40

3.6 Conditional Execution Control . 41

3.7 Instruction Packet . 42

3.8 DSP Running Modes . 43

3.9 Versions of PACDSP . 43

3.9.1 Pipeline Stages . 43

3.9.2 Program Sequence Control Unit (PSCU) 43

3.9.3 VLIW Data Path . 45

3.9.4 Conditional Execution Control 46

3.9.5 Instruction Set . 46

3.10 Dual-Core Platform and the Tool Chains 46

4 C Code Development and System Design 49

4.1 Initial Code Development . 49

4.1.1 Profile Using the Profiler of ADS 51

4.2 Motion Coder Analysis and Design . 54

4.2.1 Modification of Search Order 55

4.2.2 Use of A Tier Parameter . 55

4.3 Shape Coder Analysis and Design . 59

4.3.1 Multi-Symbol CAE [10] . 59

4.3.2 Modification of Mode Selection Method 63

4.3.3 Reducing Candidates for MVs 65

4.4 Texture Coder Analysis and Design . 67

II

4.5 Implementation Strategy on Dual-Core Platform 68

5 Optimization of Implementation on PACDSP 72

5.1 General Techniques of Code Optimization 72

5.1.1 General Optimization Techniques 73

5.1.2 Features of PACDSP . 75

5.2 Fixed-Point DCT and IDCT . 76

5.3 Fixed-Point Quantization . 83

5.3.1 H.263 Quantization Method . 83

5.3.2 Lossless Fixed-Point Quantization Method 83

5.4 Implementation of SAD Calculation Using SIMD 84

5.5 Simulation Results on PACDSP Instruction Set Simulator (ISS) 87

5.5.1 Statistics of Motion Estimation on ISS 87

5.5.2 Statistics of Shape Coding on ISS 88

5.6 Conclusion . 89

6 Performance Analysis and Implementation Results 92

6.1 Performance Analysis . 92

6.1.1 Code Size . 92

6.1.2 Data Size . 93

6.1.3 Frame Rate Estimation . 95

6.2 Coding Quality and Bit Rates for Different QP 97

7 Conclusion and Future Work 101

7.1 Conclusion . 101

7.2 Future Work . 102

III

List of Figures

2.1 Segmentation of a frame into VOPs (from [6]). 4

2.2 Structure of coded video data (from [7]). 4

2.3 Types of VOP. 6

2.4 Positions of luminance and chrominance samples in 4:2:0 data (from [8]). 6

2.5 Detailed structure of VO encoder (from [6]). 7

2.6 A VOP in bounding box (from [6]). 8

2.7 Pixel templates used for (a) INTRA and (b) INTER context calculation of

BAB. The current pixel to be coded is marked with “?” (from [5]). 11

2.8 Simplified padding process (from [5]). 12

2.9 Priority of boundary MBs surrounding an exterior MB (from [5]). 12

2.10 Interpolation scheme for half sample search (from [5]). 14

2.11 Motion vector prediction (from [8]). 15

2.12 Quantizers in H.263. (a) For intra DC coefficient only. (b) For inter DC

and all AC coefficients. 19

2.13 Prediction of DC coefficients of blocks in an intra MB (from [6]). 20

2.14 Prediction of AC coefficients of blocks in an intra MB (from [6]). 21

2.15 Scans for 8× 8 blocks (from [5]). 21

3.1 Architecture of the PACDSP [2]. 28

3.2 PACDSP instruction set architecture [4]. 28

3.3 Pipeline stages of the PACDSP [4]. 29

3.4 The VLIW datapath register organization [2]. 35

3.5 The four-way VLIW datapath of PACDSP [2]. 36

IV

3.6 Address register file [2]. 39

3.7 Data exchange between two clusters [2]. 41

3.8 Data broadcast among clusters [2]. 42

3.9 Syntax of instruction packet [3]. 44

3.10 Simplified syntax of instruction packet [3]. 44

3.11 Pipeline stages of PACDSP v2.0 [3]. 45

3.12 Dual-Core platform of PAC v3.0 system. 48

4.1 Flow of software development. 51

4.2 Concept of spiral search. 56

4.3 Dataflow of spiral search with tier parameter. 57

4.4 Early termination percentage of SAD calculation with different tier para

values. 58

4.5 PSNR values with different tier para values. 58

4.6 Examples of counting S0(n) in INTRA mode (from [10]). 60

4.7 Distribution of SC(n) and S0(n) (from [10]). 61

4.8 Flowchart of multi-symbol CAE. 62

4.9 Performance improvement by multi-symbol CAE. 64

4.10 Candidates for MVPs. 65

4.11 Skip ratio (SR) with different thresholds. 67

4.12 DC spreading from quantized coefficient to output block. 69

4.13 PACDSP v3.0 system. 70

4.14 Our basic dual-core software encoder design. 71

5.1 Example of vector addition. 73

5.2 Example of static rescheduling technique. 74

5.3 Example of loop unrolling technique. 75

5.4 Example of software pipelining technique. 76

5.5 The IDCT algorithm used in MoMuSys [9]. 79

5.6 The even-odd decomposition IDCT algorithm [13]. 80

5.7 The even-odd decomposition DCT algorithm [13]. 82

V

5.8 An example code for 16×16 SAD calculation in PACDSP. 85

5.9 The syntax and operation of SAA.Q instruction. 86

5.10 Assembly code of masked 16×16 SAD calculation in our implementation. 88

VI

List of Tables

2.1 List of BAB Types (from [5]) . 9

2.2 Shape Coding Modes and Their Main Usages (from [5]) 10

2.3 Default Quantization Matrix (Q) [5] . 19

2.4 Nonlinear Scaler for DC Coefficients (from [5]) 19

2.5 Profiles and Tools in MPEG-4 Video (from [5]) 24

3.1 Pipeline Stages and Their Jobs . 29

3.2 System Register File [2] . 34

3.3 Definitions of AMCR (from [2]) . 38

3.4 Syntax of Address Modes and Supporting Units [3] 39

3.5 Instruction Type in Each Instruction Slot 42

3.6 Running Modes of the PACDSP v3.0 [2] 45

3.7 Modified Load/Store Instructions from PACDSP v2.0 to PACDSP v3.0 . 47

3.8 Comparison Instructions Supported by PACDSP v2.0 and PACDSP v3.0 47

4.1 Functionalities of Our Implementation 50

4.2 Profile of Object-Based MPEG-4 Encoding of QCIF I-VOP on ADS . . . 52

4.3 Profile of Object-Based MPEG-4 Encoding of QCIF P-VOP on ADS . . . 53

4.4 Major Function in Motion Estimation (ME) 54

4.5 Percentage of Early Termination in SAD Calculation Under Different

Scan Orders . 55

4.6 CAE Modes and Associated VOP Types 59

4.7 Simulation Results of Skip Ratio (SR) and Shape Bits per VOP (bpv) . . 66

4.8 Execution Results on ADS of Reduced-Complexity ShapeInterMB Function 67

VII

4.9 Number of Skipped Blocks in 101 Frames (1 I, 100 P) 69

5.1 Comparison of Computational Complexity for 8-point IDCT 77

5.2 Test of Compliance for Modified IEEE Std. 1180-1190 in MPEG-4 80

5.3 Comparison of IDCT on Different Platforms 81

5.4 Comparison of DCT on Different Platforms 82

5.5 Fixed-Point Quantization Table . 85

5.6 Comparison of SAD Implementation on Different Platforms 86

5.7 Execution Time of Motion Estimation for 1 P-VOP of QCIF on ISS . . . 88

5.8 Execution Time of Shape Coding for 1 P-VOP of QCIF on ISS 89

5.9 Execution Time of P-VOP Motion Estimation and Shape Coding after

Algorithm Optimization on ARM926EJ-S 91

5.10 Execution Time of P-VOP Motion Estimation and Shape Coding after

Optimization on PACDSP . 91

6.1 Code Size Profile of Object-Based MPEG-4 Video Encoder on PACDSP . 94

6.2 Data Size Profile of Object-Based MPEG-4 Video Encoder on PACDSP . 95

6.3 Frame Rate Estimation of Single-Core Implementation 96

6.4 Frame Rate Estimation for Intra Encoding of Dual-Core Implementation . 98

6.5 Frame Rate Estimation for Inter Encoding of Dual-Core Implementation . 99

6.6 Effects on Quality and Bit-Rate of Different QP values 100

VIII

Chapter 1

Introduction

In modern industry, compression of audio-visual information becomes more and more im-

portant, especially for applications on mobile devices. Besides, digital signal processors

(DSPs) are also popularly used on these mobile devices. Our goal is the implementation

of MPEG-4 video encoder on a dual-core platform which contains a ARM core and a

PACDSP core .

The MPEG-4 standard for coding of audio-visual information has been widely adopted

in various consumer products. There are several tools in the MPEG-4 standards, and they

are used for different purposes. Since the present work is the first attempt to implement

MPEG-4 video codecs on the dual-core system, we decide to implement the object-based

part (arbitrary binary shape) of the MPEG-4 encoder first, and support the tools in simple

profile without error-resilience. Some video tools of MPEG-4 video standard are left to

the future work.

PACDSP is a high performance, low cost VLIW (Very Long Instruction Word) DSP

for multimedia applications [3]. Optimized architecture for data stream applications gives

a strong reason for system designers to use PACDSP to implement media codecs. The in-

struction set architecture (ISA) of PACDSP is optimized for audio and video applications,

so PACDSP is suitable for products with multi-standard codec requirement. In addition,

the low power design for PACDSP makes it possible to use PACDSP on portable devices.

For the best case in our dual-core implementation, we can encode the MPEG-4 video

data over 33 frames and 43 frames per second in QCIF size for intra and inter encoding,

1

respectively.

This thesis is organized as follows. Chapter 2 is the overview of MPEG-4 standards.

Chapter 3 introduces the architecture and specification of the PACDSP platform. Chapter

4 is the development of our C code and the overall system design for our implementation.

In addition, the algorithm analysis of MPEG-4 video encoder is also discussed in this

chapter. The contents of chapter 5 are about the architecture optimization technologies

and their experiment results. We also compare our implementation with that of other

processors. The performance of dual-core implementation is shown in chapter 6. Finally,

we will give some conclusions in chapter 7, and the future works are listed as well.

2

Chapter 2

Overview of the MPEG-4 Video

Standard

The contents of this chapter have been taken to a large extent from [5]–[8].

MPEG-4 video standard provides core technologies allowing efficient storage, trans-

mission and manipulation of video data in multimedia applications. It provides technolo-

gies to view, access and manipulate objects, with great error robustness at a large range

of bit rates. Video activities in MPEG-4 aimed at providing solutions in the form of tools

and algorithms enabling functionalities such as efficient compression, object scalability,

spatial and temporal scalability, error resilience, and fine granularity scalability.

2.1 Structure of MPEG-4 Video Data

An input video sequence can be defined as a sequence of related frames or pictures, sep-

arated in time. MPEG-4 divides a frame into a number of video object planes (VOPs). A

succession of VOPs is termed a video object (VO). Fig. 2.1 shows the decomposition of a

picture into a number of separate VOPs. Each VO is encoded separately and multiplexed

to form a bitstream that users can access and manipulate. The encoder sends, together

with VOs, information about scene composition to indicate where and when VOPs of a

VO are to be displayed. Figure 2.2 shows the organization of the coded MPEG-4 video

data in a top-down hierarchical structure.

3

Figure 2.1: Segmentation of a frame into VOPs (from [6]).

Figure 2.2: Structure of coded video data (from [7]).

4

• VideoSession (VS): A video session is the highest syntactic structure of the coded

visual bitstream and simply consists of an ordered collection of video objects.

• VideoObject (VO): A video object represents a complete scene or a portion of a

scene with a semantic. In the simplest case this can be a rectangular frame, or it can

be an arbitrarily shaped object corresponding to a physical object or background of

the scene.

• VideoObjectLayer (VOL): Each video object can be encoded in scalable (multi-

layer) or non-scalable (single layer) form, depending on the application, represented

by VOL. The VOL provides support for scalable coding. A video object can be

encoded using spatial or temporal scalability, going from coarse to fine resolution.

• GroupOfVideoObjectPlanes (GOV): Group of video object planes are optional en-

tities. The GOV groups video object planes together. GOVs can provide points in

the bitstream where VOPs are encoded independently from one another, and can

thus provide random access points into the bitstream.

• VideoObjectPlane (VOP): A VOP is a time sample of a video object.

As in MPEG-4 standard, there are four types of VOP, as illustrated in Fig. 2.3. These

are briefly explained below:

1. An intra-coded (I) VOP is coded using information only from itself.

2. A predictive-coded (P) VOP is a VOP which is coded using motion compensated

prediction from a past reference VOP.

3. A bidirectionally predictive-coded (B) VOP is a VOP which is coded using motion

compensated prediction from a past and/or future reference VOP(s).

4. A sprite (S) VOP is a VOP for a sprite object or a VOP that is coded using prediction

based on global motion compensation from a past reference VOP. We omit further

introduction of the S VOP.

5

I−frame I−frameB−frame P−frameP−frame

Figure 2.3: Types of VOP.

Figure 2.4: Positions of luminance and chrominance samples in 4:2:0 data (from [8]).

The macroblock (MB) is a basic coding structure constructing VOP. An MB contains

a section of the luminance component of 16 × 16 pixels in size, and the sub-sampled

chrominance components in 4:2:0 format. The luminance and chrominance samples are

positioned as shown in Fig. 2.4. In this format, an MB is divided into 4 luminance blocks

and 2 chrominance blocks, each 8× 8 pixels in size.

2.2 MPEG-4 Video Texture Coding

The contents of this section have been taken to a large extent from [5]–[8].

6

Figure 2.5: Detailed structure of VO encoder (from [6]).

Fig. 2.5 presrnts the detailed structure of the VO encoder. The encoder is mainly

composed of three parts: shape encoder, motion encoder and texture coder. The recon-

structed VOP is obtained by combining the shape, texture and motion information. The

part of shape coding constitutes the major difference between frame-based and object-

based coding.

2.2.1 VOP Formation

The video object shape information is obtained after segmentation. The shape information

is hereafter referred to as alpha plane, which is used to form a VOP. There are two kinds

of alpha planes in MPEG-4, binary alpha plane and gray scale alpha plane. For the binary

alpha plane, the value 255 is assigned to pixels belonging to the objects and 0 is assigned

to pixels outside the objects. The value of gray scale alpha plane is used for hybrid (of

natural and synthetic) scenes generated by blue screen composition and is represented by

an 8-bit component.

For the binary alpha plane, a rectangular bounding box enclosing the shape to be

coded is formed such that its horizontal and vertical dimensions are extended to multiples

7

Figure 2.6: A VOP in bounding box (from [6]).

of 16 pixels (MB size). For efficient coding, it is important to minimize the number of

macroblocks contained in the bounding box. Fig. 2.6 shows an example of an arbitrary

shape VOP with bounding box and the MB structure.

2.2.2 Shape Coding

After VOP formation, the alpha plane of VOP will be coded prior to coding motion vector

and texture based on the VOP image bounding box. Binary alpha planes are encoded

by modified context-based arithmetic encoding (CAE) while grey scale alpha planes are

encoded by motion compensated DCT similar to texture coding. An alpha plane is also

bounded by an extended rectangular bounding box. The bounded alpha plane is par-

titioned into blocks of 16 × 16 samples called alpha block and the encoding/decoding

process is done per alpha block.

Binary Shape Coding

CAE and motion compensation are the basic tools for encoding binary alpha blocks

(BABs) which are the primary unit in binary shape coding. InterCAE and IntraCAE are

the variants of the CAE algorithm used with and without motion compensation, respec-

tively. The motion vectors which are differentially coded can be computed by searching

for a best match position. Each BAB can be coded in one of the following modes:

8

Table 2.1: List of BAB Types (from [5])

BAB Types Semantic Used in

0 MVDs==0 and No Update P-, B-, and S(GMC)-VOPs

1 MVDs!=0 and No Update P-, B-, and S(GMC)-VOPs

2 Transparent All VOP Types

3 Opaque All VOP Types

4 IntraCAE All VOP Types

5 MVDs==0 and InterCAE P-, B-, and S(GMC)-VOPs

6 MVDs!=0 and InterCAE P-, B-, and S(GMC)-VOPs

Note: GMC = Global Motion Compensation.

1. The block is all transparent. In this case no coding is necessary. Texture information

is not coded for such blocks either.

2. The block is all opaque. Shape coding is not necessary in this case, but texture

information needs to be coded.

3. The block is coded using IntraCAE without use of past information.

4. Motion vector difference (MVD) is zero but the block is not updated.

5. MVD is non-zero, but the block is not updated.

6. MVD is zero and the block is updated. InterCAE is used for coding the block

update.

7. MVD is non-zero, and the block is coded by InterCAE.

Table 2.1 shows the BAB types and VOP types they are.

If the encoder need rate control and rate reduction, the encoder realizes these through

size-conversion of binary alpha information. To be specific, a 4:1 downsampled binary

alpha block is used first and if the shape errors are greater than a designed threshold value,

a 2:1 downsampled binary alpha block is used next, again if it is found unacceptable, an

unsubsampled binary alpha block is used.

9

Table 2.2: Shape Coding Modes and Their Main Usages (from [5])

Mode Main Usage

1 intra I frames, arbitrarily shaped still texture object, error resilience

2 inter, inter MC P frames

3 horizontal/vertical scanning Low-bitrate shape coding

4 Subsampling to a block size 8×8 or 4×4 Low-bitrate lossy shape coding

The MPEG-4 standard allows for 18 coding modes of each BAB: (intra/inter/inter

MC)×(horizontal/vertical scanning)×(subsampling factor 0/1/2). The influence of differ-

ent shape coding modes on the performance of the coder in terms of coding efficiency but

also in terms of computational complexity is of interest. Table 2.2 shows the main usage

for each coding mode.

CAE is used to code each binary pixel of the BAB. Prior to coding the first pixel, the

arithmetic encoder is initialized. Each binary pixel is then encoded in raster order. The

process for encoding a given pixel is as follows:

1. Compute a context number.

2. Index a probability table using the context number.

3. Use the indexed probability to drive an arithmetic encoder.

When the final pixel has been processed, the arithmetic code is terminated. Fig. 2.7 shows

the templates for the context calculation for INTRA and INTER modes.

Gray Scale Shape Coding

The gray scale shape coding has a structure similar to that of binary shape with the dif-

ference that each pixel can take on a range of values (usually 0 to 255) representing the

degree of the transparency of that pixel. The pixel value 0 corresponds to a completely

transparent pixel and 255 to a completely opaque pixel. Intermediate values of the pixel

correspond to intermediate degrees of transparencies of that pixel.

10

Figure 2.7: Pixel templates used for (a) INTRA and (b) INTER context calculation of

BAB. The current pixel to be coded is marked with “?” (from [5]).

2.2.3 Motion Coder

Motion coding is essential for P-VOP and B-VOP to reduce temporal redundancy. The

motion coder consists of a motion estimator, motion compensator, previous/next VOPs

store and motion vector (MV) predictor and coder. Furthermore, in order to perform the

motion prediction for VOP of arbitrary shape, a special padding technique is required for

the reference VOP before motion estimation.

Padding Process

Fig. 2.8 shows a simplified diagram of the padding process. The value of luminance and

chrominance samples outside the VOP are defined by the padding process.

A decoded MB d[y][x] is padded by referring to the corresponding decoded shape

block s[y][x]. An MB that lies on the VOP boundary is padded by replicating the boundary

samples of the VOP towards the exterior. This process is divided into horizontal repetitive

padding and vertical repetitive padding. The remaining MBs that are completely outside

the VOP are filled by extended padding.

• Horizontal repetitive padding: Each sample at the boundary of a VOP is replicated

horizontally to the left and/or right direction in order to fill the transparent region

11

Figure 2.8: Simplified padding process (from [5]).

Figure 2.9: Priority of boundary MBs surrounding an exterior MB (from [5]).

12

outside the VOP of a boundary block. If there are two boundary sample values for

filling, the two sample values are averaged.

• Vertical repetitive padding: The remaining unfilled transparent region from above

procedure are padded by similar process as the horizontal repetitive padding but in

the vertical direction.

• Extended padding: Exterior MBs immediately next to boundary MBs are filled by

replicating the samples at the border of the boundary MBs. If an exterior MBs is

next to more than one boundary MBs, one of the MBs is chosen, according to the

priority shown in Fig. 2.9. The remaining exterior MBs (not located next to any

boundary MBs) are filled with 128.

Motion Estimation

Motion estimation (ME) is a method of prediction between adjacent frames/pkctures. In

general, the ME techniques used in MPEG-4 can be seen as an extension of standard

MPEG-1/2 or H.263 block matching techniques with modified block (polygon) matching

to handle arbitrary-shaped VOPs which is block-based method.

For an arbitrary shape VOP, the bounded VOP is first extended to the right-bottom

side to multiples of MB size. The alpha value of the extended pixels is set to zero. The

SAD is used for error measure, and is computed only for the pixels with nonzero alpha

values.

The basic motion estimation may be performed on 16× 16 luminance MBs. The mo-

tion vector is specified to half-pixel accuracy. In many coding software implementations,

the motion estimation is performed by full search to integer pixel accuracy vector and,

using it as the initial estimate, a half pixel search is performed around it. Interpolation of

MB is necessary because the motion vector may be non-integer. Fig. 2.10 illustrates the

bilinear interpolation method.

In the MPEG-4 standard, besides motion vector for 16 × 16 MB, motion vector can

be sent for individual 8× 8 blocks to reduce prediction errors more.

13

+ +

+ +

+ Integer pixel position

Half pixel position

A B

C D

a b

c d

a = A,
b = (A + B + 1 - rounding_control) / 2
c = (A + C + 1 - rounding_control) / 2,
d = (A + B + C + D + 2 - rounding_control) / 4

Figure 2.10: Interpolation scheme for half sample search (from [5]).

Motion Vector Encoder

The motion vector must be coded when using INTER mode coding. Horizontal and ver-

tical motion vectors are coded differentially by using a spatial neighborhood of three

motion vectors that have already been coded (see Fig. 2.11). These three motion vectors

are candidate predictors for differential coding. The differential coding of motion vectors

is performed with reference to the reconstructed shape. In the special cases at the borders

of the current VOP the following decision rules are applied:

1. If the MB of one and only one candidate predictor is outside the VOP, it is set to

zero.

2. If the MBs of two and only two candidate predictors are outside the VOP, they are

set to the third candidate predictor.

3. If the MBs of all three candidate predictors are outside the VOP, they are set to zero.

For horizontal and vertical components, the median value of the three candidates for

the same component is used as predictor, denoted Px and Py, respectively:

Px = Median(MV 1x,MV 2x,MV 3x),

Py = Median(MV 1y,MV 2y, MV 3y).

Then, the vector differences, MV Dx (= MV x− Px) and MV Dy (= MV y − Py),

are coded by variable-length coding (VLC).

14

MV2 MV3

MV1 MV

MV3MV2 MV2

MV1

MV1 MV

MVMV(0,0)

(0,0)

MV : Current motion vector
MV1: Previous motion vector
MV2: Above motion vector
MV3: Above right motion vector

: VOP border

MV1 MV1

Figure 2.11: Motion vector prediction (from [8]).

Motion Compensation

The motion compensator uses motion vectors to compute motion compensated prediction

block, pred[i][j], from the same reference VOP. In addition to basic motion compensation

processing, three alternatives are supported, namely, unrestricted motion compensation,

four MV motion compensation and overlapped motion compensation.

For unrestricted motion compensation, the motion vectors are allowed to point outside

the decoded area of a reference VOP. The pred[i][j] is defined as follows:

xref = min(max(xcurr + dx, vhmcsr), xdim + vhmcsr − 1),

yref = min(max(ycurr + dy, vvmcsr), ydim + vvmcsr − 1),

where vhmcsr = vop horizontal mc spatial ref, vvmcsr = vop vertical mc spatial ref,

(ycurr, xcurr) is the coordinate of a sample in the current VOP, (yref, xref) is the coor-

dinate of a sample in the reference VOP, (dy, dx) is the motion vector, and (ydim, xdim)

is the dimension of the bounding rectangle of the reference VOP.

One/two/four vectors decision is indicated by the MCBPC codeword and field prediction

flag for each MB. If one motion vector is transmitted for a certain MB, this is considered

four vectors with the same value as the MV. When two field motion vectors are transmit-

ted, each of the four block prediction motion vectors has the value equal to the average of

15

the field motion vectors (rounded such that all fractional pixel offsets become half pixel

offsets). If four vectors are used, each of the motion vectors is used for all pixels in one

of the four luminance blocks in the MB.

Overlapped motion compensation is performed when the flag obmc disable = 0. Each

pixel in an 8× 8 luminance prediction block is a weighted sum of three prediction values,

divided by 8. The creation of each pixel P (i, j), in an 8 × 8 luminance prediction block

is governed by the following equation:

P (i, j) =
(p(i+MV 0

x ,j+MV 0
y)∗H0(i,j)+p(i+MV 1

x ,j+MV 1
y)∗H1(i,j)+p(i+MV 2

x ,j+MV 2
y)∗H2(i,j)+4)

8
,

where (MV 0
x ,MV 0

y) denotes the motion vector for the current block, (MV 1
x ,MV 1

y) the

motion vector of the block above or below, (MV 2
x ,MV 2

y) the motion vector of the block

to the left or to the right, and H0(i, j), H1(i, j), and H2(i, j) are the weighting value of

each pixel in the current block and neighbor blocks.

Since the VOP may be coded in P or B mode, there are three types of motion pre-

diction, namely forward mode, backward mode, and bi-directional mode. The different

modes make different predictions P̄ (i, j) as follows.

1. Forward mode: Only the forward vector (MVFx,MVFy) is applied in this mode.

The prediction blocks P̄y(i, j), P̄u(i, j), P̄v(i, j) are generated from the forward ref-

erence VOP.

2. Backward mode: Only the backward vector (MVBx,MVBy) is applied. The pre-

diction blocks P̄y(i, j), P̄u(i, j), P̄v(i, j) are generated from the backward reference

VOP.

3. Bi-directional mode: Both the forward vector (MVFx,MVFy) and the backward

vector (MVBx,MVBy) are applied. The prediction blocks P̄y(i, j), P̄u(i, j), P̄v(i, j)

are generated from the forward and the backward reference VOPs by doing the

forward and the backward predictions and then averaging both predictions pixel by

pixel.

16

2.2.4 Texture Coder

The texture information of a VOP is present in the luminance Y and two chrominance

components Cb and Cr of the video signal. The texture information is directly in the

luminance and chrominance components for an I-VOP. However, for a P-VOP and a

B-VOP, the texture information represents the residual values remaining after motion-

compensated prediction. The texture coder includes padding process (for object-based

coding, and applied only if needed), 8 × 8 two-dimensional (2D) discrete cosine trans-

form (DCT), quantization, coefficient prediction, coefficient scan and variable length cod-

ing (VLC).

Padding Process

When the shape of the VOP is arbitrary, two types of MB exits, those that lie inside the

VOP and those that lie on the boundary of the VOP. The MBs that lie completely inside

the VOP are coded using a technique identical to the technique used in H.263. The MBs

that lie on the boundary of the shape need to be padded before texture coding. For residual

error blocks after motion compensation, the region outside the VOP within the blocks are

padded with zero. For intra blocks, the padding is performed in a three-step procedure

called low pass extrapolation (LPE). This procedure is as follows:

1. Compute the arithmetic mean value m of the pixels f(i, j) in the blocks that belong

to the VOP as

m = (1/N)
∑

(i,j)∈V OP

f(i, j)

where N is the number of pixels situated with the VOP.

2. Assign m to each block pixel situated outside of the VOP region.

3. Apply the following filtering operation to each block pixel f(i, j) outside of the

VOP region, in raster-scan oeder:

f(i, j) =
f(i, j − 1) + f(i− 1, j) + f(i, j + 1) + f(i + 1, j)

4
.

17

If one or more of the four pixels used for filtering are outside the block, the cor-

responding pixels are not included into the filtering operation and the divisor 4 is

reduced accordingly.

Discrete Cosine Transform (DCT) Coding

Similar to MPEG-1 and MPEG-2, the transform coding in the MPEG-4 standard is based

on 2D 8×8 DCT. Before quantization, the encoder does forward transform. Then the

encoder does inverse transform after inverse quantization for reconstructing the VOP.

Quantization

MPEG-4 video supports two quantization techniques, one referred to as the H.263 quan-

tization method and the other, the MPEG quantization method. The H.263 quantization

method is with dead zone for intra and inter AC coefficients and with no dead zone for in-

tra DC coefficients. The MPEG quantization method is uniform quantizer with the default

matrix as shown in Table 2.3.

Figure 2.12 shows the quantizer characteristics in H.263. It has uniform quantization

for intra DC coefficients and nearly uniform midtread quantization for the inter DC and

all AC coefficients. All coefficients in a MB go through the same quantizer step size Q,

which can be changed in increments of 2 from 2 to 62 as desired.

Furthermore, in order to provide a higher coding efficiency, Table 2.4 shows a nonlin-

ear scaler which is used for the DC coefficient of 8×8 block in MEPG-4 video. Note that

the characteristics of nonlinear scaling are different between the luminance and chromi-

nance blocks and depend on the quantizer used for the block.

Intra Prediction

When coding an intra block, the DC coefficients and many AC coefficients are coded by

intra prediction. Intra prediction is an operation used in MPEG-4 standards to reduce the

spatial redundancy between 8× 8 blocks.

DC prediction is illustrated in Fig. 2.13. The quantized intra coefficients are predicted

with three previous decoded DC coefficients. For example, the DC coefficients of block X

18

1/2Q

−1/2Q Th

Th+1/2Q

−Th
−Th−Q

(b)(a)

3/2Q

−3/2Q

Figure 2.12: Quantizers in H.263. (a) For intra DC coefficient only. (b) For inter DC and

all AC coefficients.

Table 2.3: Default Quantization Matrix (Q) [5]

Intra Inter

8 16 19 22 26 27 29 34 16 16 16 16 16 16 16 16

16 16 22 24 27 29 34 37 16 16 16 16 16 16 16 16

19 22 26 27 29 34 34 38 16 16 16 16 16 16 16 16

22 22 26 27 29 34 37 40 16 16 16 16 16 16 16 16

22 26 27 29 32 35 40 48 16 16 16 16 16 16 16 16

26 27 29 32 35 40 48 58 16 16 16 16 16 16 16 16

26 27 29 34 38 46 56 69 16 16 16 16 16 16 16 16

27 29 35 38 46 56 69 83 16 16 16 16 16 16 16 16

Table 2.4: Nonlinear Scaler for DC Coefficients (from [5])

Component DC Scaler for Q Range

1–4 5–8 9–24 25–31

Luminance 8 2Q Q + 8 2Q− 16

Chrominance 8 (Q + 13)/2 Q− 16

19

���
���
���
���
���
���
���
���

A

B C D

X MacroblockY

��������
��������������������

�����
�����

��
��

or ��������������������

�����
�����
�����

�
�

or

Figure 2.13: Prediction of DC coefficients of blocks in an intra MB (from [6]).

is predicted from the DC coefficients of blocks A, B and C. Unlike MPEG-2, the method

of prediction in MPEG-4 is gradient based. In computing the prediction of block X, if the

absolute value of a horizontal gradient is less than the absolute value of a vertical gradient,

then the quantized DC (QDC) of block C is used as the prediction, else the QDC value of

block A is used.

The AC prediction depends on DC prediction, as shown in Fig. 2.14. The AC coeffi-

cients in the first row or in the first column are predicted with three previous decoded AC

coefficients. The direction of prediction is the same as DC prediction.

Scan and VLC

Figure 2.15 shows three kinds of scan, alternate-horizontal, alternate-vertical and zigzag

(the normal scan used in H.263 and MPEG-1), to scan the DC and AC coefficients and

change the 2D block data to 1D data. The actual scan used depends on the coefficient

prediction method used. If the direction is vertical, alternate-horizontal scan is used for

the current block. If the direction is horizontal, alternate-vertical scan is selected for the

current block. For all other blocks, zigzag scanned is used.

The coefficients after scan usually become data with many zeros at the end. This

kind of data stream is good for run-length coding. In the MPEG-4 standard, differential

DC coefficients in intra blocks are encoded in VLC. However, the AC coefficients are

encoded by the variable length codes for EVENTs, where an EVENT consists of a last

non-zero coefficient indication (LAST), the number of successive zeros preceding the

20

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
������
������
������

������
������
������������
������
������
������

������
������

�����
�����
�����
�����

�����
�����
�����
����������
�����
�����

�����
�����

��� ��

A

B

X

DC

or

Macroblock

��
������
������
������

������
������
������������
������
������
������

������
������

Y

or

Figure 2.14: Prediction of AC coefficients of blocks in an intra MB (from [6]).

Figure 2.15: Scans for 8× 8 blocks (from [5]).

coded coefficient (RUN), and the non-zero value of the coded coefficient (LEVEL). Some

statistically rare events have no VLC words to represent them. For them an escape coding

method is used.

2.2.5 Other Video Coding Tools [6]

In addition to texture video coding, there are some special tools defined in MPEG-4. In

this section, we briefly introduce robust video coding and scalable coding.

21

Robust Video Coding

Error resilience is a particular concern over wireless networks. In the error resilient mode,

the MPEG-4 video offers a number of tools as follows:

1. Object priorities

The object based organization of MPEG-4 video facilitates prioritizing of the se-

mantic objects based on their relevance. Further, the VOP types lend themselves to a

form of automatic prioritization since, B-VOPs are noncausal and do not contribute

to error propagation and thus can be transmitted at a lower priority or discarded in

case of severe errors.

2. Resynchronization

The encoder can enhance error resilience by placing resynchronization (resync)

markers in the bitstream with approximately constant spacing, such as beginning of

each MB.

3. Data partitioning

Data partitioning provides a mechanism to increase error resilience by separating

the normal motion and texture data of all MBs in a video packet and send all of the

motion data followed by a motion marker, followed by all of the texture data.

4. Reversible VLCs

The reversible VLCs offer a mechanism for a decoder to recover additional texture

data in the presence of errors since the special design of reversible VLCs enables

decoding of codewords in both the forward (normal) and the reverse directions.

5. Intra update and scalable coding

To prevent error propagation, intra update is a simple method to reduce the problem.

However, more intra coding will reduce the coding efficiency. Another method is

scalable coding, which can prevent error propagation without more intra coding.

22

Scalable Coding

The scalability tools in MPEG-4 video are designed to support applications beyond that

supported by single layer video, such as internet video, wireless video, multi-quality video

services, video database browsing, etc. In scalable video coding, it is assumed that given

a coded bitstream, decoders of various complexities can decode and display appropriate

reproductions of coded video.

Several different forms of scalability are provided in MPEG-4 video. Temporal and

spatial scalability are the most basic scalability tools among them. The Fine Granularity

Scalability (FGS) which supports continuous scalability of bit rate and video quality is

also defined.

2.3 Profiles and Levels [5]

Although there are many tools in the MPEG-4 standard, not every MPEG-4 decoder will

have to implement all of them. Similar to MPEG-2, profiles and levels are defined as

subsets of the entire bitstreams syntax of all the tools. The purpose of defining confor-

mance points in the form of profiles and levels is to facilitate interchange of bitstreams

among different applications. There are eight profiles defined in MPEG-4: simple, core,

main, simple scalable, animated & mesh, basic animated texture, still scalable texture and

simple face. The details are given in Table 2.5.

Compared with previous standards, the simple profile of MPEG-4 is similar to the

coding method in H.263. The difference is that the simple profile has error resilience but

does not have B-frame coding. The simple scalable profile is the same as simple profile,

but with rectangular scalability added. The core profile is the profile with all tools of the

simple profile, temporal scalability, B-VOP coding and binary shape coding. The main

profile is the profile with all tools in core profile, gray shape coding, interlace and sprite

coding. The other profiles are for particular purposes, such as 2D dynamic mesh coding

and facial animation coding.

23

Table 2.5: Profiles and Tools in MPEG-4 Video (from [5])
Simple Core Main Simple Animated Basic Still Simple

Tools Scalable 2D Mesh Animated Scalable Face

Texture Texture

Basic

1. I VOP

2. P VOP V V V V V

3. AC/DC Prediction

4. 4MV Unrestricted MV

Error resilience

1. Slice Resynchronization V V V V V

2. Data Partitioning

3. Reversible VLC

Short Header V V V V

B-VOP V V V V

Method 1/Method 2 V V V

quantization

P-VOP based

temporal scalability

1. Rectangular V V V

2. Arbitrary Shape

Binary Shape V V V

Gray Shape V

Interlace V

Sprite V

Temporal scalability V

(rectangular)

Spatial scalability V

(rectangular)

Scalable still V V V

texture

2D dynamic mesh V V

with uniform topology

2D dynamic mesh V

with Delaunay topology

Facial animation V

parameters

24

Chapter 3

Overview of PACDSP

The contents of this chapter have been taken to a large extent from [3]–[4].

3.1 Introduction

Programmable embedded solutions are attractive for their lower development efforts, up-

gradeability to support new applications and easier maintenance. These factors reduce

time-to-market and extend time-in-market, and thus make the best profit-sense. Today’s

media processing demands extremely high computations with real-time constraints in au-

dio, image or video applications. Instruction parallelism has been exploited to speed

up the high-performance microprocessors, and VLIW machines have low-cost compiler

scheduling with deterministic execution time and have thus become the trend of high

performance DSP processors.

Conventional VLIW processors are notorious for their poor code density, because

the unused instruction slots must be filled by NOPs. Variable-length VLIW instruction

packet eliminates NOPs by run-time instruction dispatch, compared to the conventional

position-coded VLIW processors where each functional unit (FU) has a corresponding

bit-field in the instruction packet. Indirect VLIW has an internal instruction buffer for

the VLIW instruction packets. With this instruction buffer and the pre-fetch scheme,

the VLIW processor can reduce instruction memory bandwidth requirement and power

consumption of instruction fetches.

25

The complexity of the register file (RF) grows exponentially as more and more FUs are

integrated on a chip and operate concurrently to achieve the performance requirements.

Thus the RF is frequently partitioned into execution clusters with explicit interconnection

networks among the clusters to significantly reduce the complexity at the cost of small

performance penalty.

For high performance, the PACDSP is a VLIW processor with single instruction mul-

tiple data (SIMD) instruction set architecture (ISA). The software supported scheduling

reduces hardware complexity and power consumption. Variable length instruction and

instruction packet solve the poor code density problem of the conventional VLIW archi-

tecture. Another feature of the PACDSP, cluster architecture, reduces not only ports and

entries of the register files but also the power consumption of read/write operations.

Key features of the PACDSP include the following items:

• Scalable VLIW datapath for easy extension of the computing power.

• Variable instruction word/packet length for compensating the drawback of poor

code density in the VLIW architecture.

• Heterogeneous register files for more straightforward operations, less port number

and smaller entries in each RF to improve the performance and reduce power and

area.

• Constant register file in each cluster for the storage of fixed data used in the ap-

plications to reduce the frequency of data movement which may cost significant of

power consumption.

• Inter-cluster communication by memory controller for reusing hardware resource

and reducing the port number of ping-pong RF in order to reduce power and area

and to increase the scalability.

• Optimized interrupt design with fast interrupt response time with hardware sup-

ported context switch to reduce the processing time of interrupt service routine

(ISR).

26

• Hierarchical encoding scheme reducing the dependency between instructions and

packets to reduce area and latency of the dispatch unit.

• Dynamic power management for power saving.

• Customized FU interface that can be used to enhance DSP functionalities.

The architecture of the PACDSP v3.0 is shown in Fig. 3.1. The following sections

will briefly introduce its pipeline stages and its core elements, including the Program

Sequence Control Unit (PSCU), Scalar Unit, Clusters (VLIW datapath), and Customized

Function Unit (CFU). The accelerators that execute in different threads and synchronize

the execution results through the scalar unit can enhance the computation power of the

VLIW datapath.

3.2 ISA and Pipeline Stages

There are three major divisions in the PACDSP instruction set architecture (ISA): Program

Sequence Control, Scalar and VLIW Data Path. In each division, the instructions are

divided into categories by function units. Figure 3.2 depicts the ISA of the PACDSP.

Figure 3.3 shows the pipeline stages of PACDSP. The program sequence control unit

operation can be divided into four stages, which are IF, IMEM, IDP, and ID. Scalar unit

and VLIW datapath operation are both divided into five stages, namely RO, EX1, EX2,

EX3, and WB. The job of each pipeline stage is shown in Table 3.1.

3.3 Program Sequence Control Unit

The program sequence control unit (PSCU) is a main component in the DSP kernel. Ba-

sically, we can regard it as the combination of the control path and the instruction path.

The control path affects the program counter updating, address fetch, pipeline control,

hardware context shadowing, interrupt handling, exception handling, etc., according to

the input control signals from elsewhere in the PACDSP. In addition, the instruction path

is responsible for fetching, dispatching, and decoding of the instruction packets.

27

Figure 3.1: Architecture of the PACDSP [2].

Figure 3.2: PACDSP instruction set architecture [4].

28

Figure 3.3: Pipeline stages of the PACDSP [4].

Table 3.1: Pipeline Stages and Their Jobs

Stage Job

IF Instruction Fetch

IMEM Instruction Memory Access

IDP Instruction Dispatch

ID Instruction Decode

RO Read Operand

EX1 Execution One

EX2 Execution Two

EX3 Execution Three

WB Write Back

3.3.1 Branch Instructions

Branch instructions can be grouped into two categories, conditional branches and uncon-

ditional branches. There are three addressing modes defined in the PACDSP v3.0 for

generating the branch target address:

• PC-relative

Add up to 32-bit signed immediate offset to the address in the PC register, and take

the result as the branch target address, i.e.,

TA = PC + OFFSET

where TA is the target address, PC is the address in Program Counter, and OFFSET

is the immediate value defined in branch instruction.

29

• Register

Take the value in the register as the target address, i.e.,

TA = Rs

where TA is the target address and Rs is the source register defined in branch in-

struction.

• Register-relative

Add up to 32-bit signed immediate offset to the address saved in the register and

take the result as the branch target address, i.e.,

TA = Rs + OFFSET

where TA is the target address, Rs is the source register defined in branch instruc-

tion, and OFFSET is the immediate value defined in branch instruction.

In some circumstances, a branch operation may need to save the return address to en-

sure correct working of the program when it returns. The branch instructions defined in

the PACDSP support saving of the return address into the assigned register. The program-

mer should take care of the return addresses of nested loops. There are five branch delay

slots in the PACDSP, and the programmer could put the branch-independent instructions

in the delay slots.

There are some constraints about instructions in the delay slots. Reference [4] gives

the details of the programming constraints.

3.3.2 Loops

The programmer can use the LBCB or B instruction to describe program loops. LBCB is

similar to branch, but instead of checking a predicate register (P0–P15), LBCB checks a

general purpose register (R0–R15) to decide whether to branch or not. Since there are 16

general purpose registers (R0–R15), up to 16 levels of nested loop can be supported with

the use of the LBCB instruction.

30

There is a constraint in using LBCB to control a nested loop. The outer loop should

fully contain the inner loop. No exception will be generated if the constraint is violated,

but the program behavior may be different from expectation.

However, conditional branches can be used inside the nested loop to implement some

special branch behaviors in higher level languages, for example, “break” and “continue”

in C.

3.3.3 Customized Function Units (CFUs)

The PACDSP provides Customized Function Unit Interface for extension usage. The

user can attach co-processors or customized function units to PACDSP and handle them

through the scalar instructions. If error happens in a customized function unit, it can

inform the PACDSP and the PACDSP can process it based on the particular configuration.

If the given work has finished successfully, the PACDSP can use its results and continue

to work. It is recommended that if a co-processor is used, communication with it be made

through this interface, or the user will have to pay much more effort to handle it.

3.3.4 Exception Handling

Unpredictable exceptions may occur during program execution. The exceptions need to

be handled correctly for correct execution results. Exceptions may be caused by hard-

ware (e.g., overflow), software, internal (e.g., undefined instruction), or external (e.g., co-

processor exception). When an exception happens whether PACDSP is running a program

or not, PACDSP will check for mask information. If the exception is masked, PACDSP

will ignore the exception and return to normal execution. If the exception is unmasked, it

will be taken. PACDSP will freeze its pipeline, finish the instructions before the PC which

introduced the exception, and recover the states for consistence. After the state is recov-

ered, PACDSP will issue exception handling ISR to inform the MPU and the Embedded

ICE, waiting for different commands to resolve the exception.

31

3.3.5 Interrupt Handling

Two types of interrupt are supported by the PACDSP. One is fast interrupt request (FIQ),

which has the higher priority, and the second is interrupt request (IRQ). The difference

between them is that the FIQ has fixed ISR address and IRQ needs ISR to check the IRQ

source to obtain the proper ISR address.

In the PACDSP, the minimum latency from interrupt request to the first ISR instruction

to be executed is 4 cycles for both types of interrupt, and it may be postponed when the

ISR experiences cache miss.

3.4 Scalar Unit

The scalar unit plays an important role in handling control-based task for PACDSP. It

also has a simple capacity for data computing. Thus, the scalar unit is like a RISC ma-

chine. Programmers can exploit computing capacity of the scalar unit to increase overall

instruction-level parallelism (ILP) in compute-based task.

The scalar unit mainly consists of one adder, one down-counter, one comparator, one

shifter and one logical ALU. The scalar unit has four major functions as follows:

• Program flow control function.

• Data processing function.

• Memory access function.

• Data transfer function.

3.4.1 General Purpose Scalar Register File

In the scalar unit of the PACDSP kernel, there are sixteen 32-bit general purpose registers

named R0 to R15. These registers are viewed as the loop boundary counter, the timer and

the address register in the LBCB, WAIT and Branch/Load/Store instructions, respectively.

In other instructions, they are viewed as data registers.

32

3.4.2 System Register and Predication Register

There are 16 system registers named as SR0 to SR15 in PACDSP. Table 3.2 shows the

names, the widths, the meaning of all the system registers in PACDSP. Note that each bit

in SR0 is used as the predication register and are named P0 to P15, where the value of P0

is always true. Most instructions of PACDSP can be executed conditionally according to

the values of predication registers.

3.5 VLIW Datapath

As shown in Fig. 3.4, the VLIW datapath of PACDSP is constructed with distributed reg-

ister file: ping-pong registers, accumulator registers, address registers, constant registers

and some control flags.

If the instruction must write into two consecutive destination registers, for example,

DLW and FMUL.D, the destination register number has to be even because of banked

structure.

The VLIW datapath of PACDSP is constructed in two clusters, and each contains an

arithmetic unit (AU) and a load/store unit (L/S) as shown in Fig. 3.5. Therefore, it can ex-

ecute four instructions simultaneously, and is thus called a four-way VLIW datapath. The

VLIW datapath supports SIMD (Single Instruction Multiple Data) operation. It executes

in three modes: Single (32-bit or 40-bit), Dual (16-bit) and Quad (8-bit). There are also

three types of precision in the datapath of PACDSP: Full, Integer and Fractional.

Arithmetic Unit (AU)

The arithmetic unit comprises 40-bit modules which are divided according to functions.

The function types supported by the AU are shown below:

• Arithmetic and comparison instructions.

• Data transfer instructions.

• Bit manipulation instructions.

33

Table 3.2: System Register File [2]

No Name Size(bits) Note

SR0 PREDN 16 Predication information

SR1 EN INT 1 Interrupt enable flag

SR2 MSK EXC 16 Mask inside exception

SR3 SWI EXC 16 Software exception

SR4 CF0 32 Custom function register 0

SR5 CF1 32 Custom function register 1

SR6 CF2 32 Custom function register 2

SR7 CF3 32 Custom function register 3

SR8 SD Status 8 Mix information 0’s shadow register

SR9 SD CPC 32 CPC’s shadow register (ISR return address)

SR10 SD BCTG 32 Branch target’s shadow register

SR11 SD R0 32 R0’s shadow register

SR12 Mode 4 Power mode register

SR13 CFU Info Sel 4 CFU Info select register

SR14 EXC Cause 16 Exception cause

SR15 Reserved 32 N.A.

• Multiplication and accumulation instructions.

• Special instructions.

All data processing instructions in AU begin at the same stage but not finish at the same

time due to different computing complexity.

Load/Store Unit (L/S)

The load/store unit (L/S) comprises 32-bit modules except for one 16-bit address genera-

tion unit (AGU) which is used to support the different addressing modes. The functional

types supported by L/S are as follows:

• Arithmetic and comparison instructions.

34

Figure 3.4: The VLIW datapath register organization [2].

• Data transfer instructions.

• Bit manipulation instructions.

• Load and store instructions.

• Special instructions.

Like AU, all instructions in L/S begin at the same stage but not finish at the same time

due to different computing complexity.

The L/S unit supports powerful double load/store instructions, which can load or store

two operands in one instruction. It also supports instructions that load and store by bytes

or half-words. These instructions make memory access easier and more convenient.

3.5.1 Ping-Pong Register File

The ping-pong register file contains sixteen 32-bit registers which are divided into two

groups: D0–D7 and D8–D15. The AU and the L/S unit can access the ping-pong register

file at the same time but it has to be in different groups. In other words, both units

35

Figure 3.5: The four-way VLIW datapath of PACDSP [2].

cannot read or write the same group simultaneously. All possible access conditions are as

follows:

• LS reads D0–D7 and writes D0–D7, and AU reads D8–D15 and writes D8–D15.

• LS reads D0–D7 and writes D8–D15, and AU reads D8–D15 and writes D0–D7.

• LS reads D8–D15 and writes D0–D7, and AU reads D0–D7 and writes D8–D15.

• LS reads D8–D15 and writes D8–D15, and AU reads D0–D7 and writes D0–D7.

3.5.2 Address/Accumulator Registers

As shown in Fig. 3.4, the address registers (A0–A7) are all 32-bit and they are dedicated

to the load/store (L/S) unit for memory accesses. PACDSP supports several addressing

modes. In modulo addressing mode, A0 and A2 are treated as pointers. A1 and A3

contain base addresses. A4 and A6 contain the values of end address plus one. A5 and

A7 are treated as displacements. So it can support two groups of modulo addressing:

(A0,A1,A4,A5) and (A2,A3,A6,A7). In other addressing modes, they can be used as

address storage or data processing storage according to the design of the user.

36

The accumulator registers (AC0–AC7) are 40-bit registers which are dedicated to the

arithmetic unit (AU) for data manipulations. The most significant eight bits are guard bits

for accumulation operations.

3.5.3 Constant Registers

To avoid high frequency of data movement in the register file, PACDSP provides a small

constant register file to keep fixed data. The constant register file has eight 32-bit registers

(C0–C7). They can be read as either the first operand or the second operand in instructions

that use them. But one instruction cannot access the constant register file as both of its

source operands simultaneously.

The constant register file can be read by both the AU and the L/S unit but can only

be written by the L/S unit. All accesses to the constant register file must be pointed by

the control flags CF0 and CF1, which are pointers to the constant registers. And they

are calculated from the values contained in CF2 and CF3, which are the contents of the

pointers.

3.5.4 Status and Control Registers

The status register and control register can be used to monitor the DSP kernel status and

handle the operation mode of the DSP kernel.

Program Status Register

The program status register records the operation status in each cluster and the scalar unit.

It includes Overflow, Negative, and Carry bits, and instructions can only read the status

register but not set it.

Addressing Mode Control Register (AMCR)

There are several addressing modes supported by PACDSP. The addressing mode control

register (AMCR) is a 16-bit register. This register is used to set the addressing mode for

each address register. The addressing modes are related to where the operands are to be

37

found and how the address calculations are to be made. The definitions are shown in

Table 3.3.

3.5.5 Addressing Modes

The addressing modes are related to where the operands are to be found and how the

address calculations are to be made. PACDSP supports Linear Addressing Mode, Bit-

Reverse Addressing Mode, and Modulo Addressing Mode for memory access. They can

be altered by setting the AMCR. Table 3.4 shows the syntax of addressing modes that be

used and the associated supporting units.

Fig. 3.6 shows that A0–A7 are the address register file and they are classified into even

and odd banks in linear and bit-reverse addressing modes. Some addressing modes use

2 address registers, RsA and RsB, at the same time. They must be consecutive registers

with RsA in the even bank and RsB in the odd bank.

Linear Addressing Mode

• Offset by immediate (RsA, displacement)

The operand address is the sum of the contents of the address register (RsA) and

the displacement (up to 24-bit signed integer, but the value range depends on the

implementation of data memory).

• Offset by register (RsA, RsB)

The operand address is the sum of the contents of the address register (RsA) and

the contents of the address register (RsB).

Table 3.3: Definitions of AMCR (from [2])
AM[1] AM[0] Addressing Mode

0 0 Linear

0 1 Bit-reversed

1 0 Modulo

1 1 Reversed

38

Table 3.4: Syntax of Address Modes and Supporting Units [3]

Addressing Mode Syntax Support Unit

1. Linear Scalar Cluster

Offset by Immediate RsA, displacement V V

Offset by Register RsA, RsB V V

Post-increment by Immediate RsA, displacement+ V V

Post-increment by Register RsA, RsB+ V V

2. Modulo Scalar Cluster

Post-increment by Register RsA, RsB+ - V

Post-increment by Immediate RsA, displacement+ - V

3. Bit-Reverse Scalar Cluster

Post-increment by Immediate RsA, displacement+ - V

Post-increment by Register RsA, RsB+ - V

Figure 3.6: Address register file [2].

• Post-increment by immediate (RsA, displacement+)

The operand address is in the address register RsA. After the operand address is

used, it is incremented by the displacement (up to 24-bit signed integer, but the

value range depends on the implementation of data memory) and stored in the same

address register.

• Post-increment by register (RsA, RsB+)

The operand address is in the address register RsA. After the operand address is

used, it is incremented by the register (RsB) and stored in the same address register.

39

Bit-Reverse Addressing Mode

Bit-reverse addressing mode is also called reverse-carry addressing mode. It is useful

for 2k-point FFT addressing. This mode is selected by setting the corresponding bits in

AMCR, and address modification is performed in the hardware by propagating the carry

from each pair of added bits in the reverse direction (from the MSB end toward the LSB

end). It only supports the post-increment by immediate and post-increment by register.

This address modification is useful for addressing the twidle factors in 2k point-FFT

addressing as well as to unscramble 2k-point FFT data.

Modulo Addressing Mode

Modulo address modification is useful for creating circular buffers for FIFO queues, delay

lines, and sample buffers. This addressing mode only supports post-increment by imme-

diate and post-increment by register. The definition of modulo addressing, using a base

register (Bn) and a end register (En), enables the programmer to locate the modulo buffer

at any address. The current address register, An, can initially point anywhere (aligned to

its access width) within the defined modulo address range, Bn ≤ An < En.

Modulo addressing can be selected by configuring corresponding bits in AMCR. The

range of modulo registers is from 1 to 216 − 1.

3.5.6 Data Communication

The PACDSP provides fast data communication mechanism among scalar unit and two

clusters. As shown in Fig. 3.7, it provides a data exchange mechanism between any

two of the scalar unit and the two clusters. Figure 3.8 shows that it can also provide

data broadcast to facilitate one of them to broadcast its data to the others. This job is

accomplished by using the ports of the memory interface unit (MIU) because MIU has

connections with all register files of the scalar unit and the two clusters. It only needs one

instruction latency.

40

Data Exchanges

We can use the instruction DEX to exchange 32-bit data between any two units. Or we can

use the instruction DDEX to exchange 64-bit data between the L/S units in two clusters.

Data Broadcast

We can use the instruction pair BDT and BDR to broadcast 32-bit data from one unit to

the others. Or we can use the instruction pair DBDT and DBDR to translate 64-bit data

between two clusters.

3.6 Conditional Execution Control

A DSP processor is focused on the computing power for numerical calculations. To re-

duce control overhead, the PACDSP supports conditional execution of instructions. Pro-

grammers can set predicates by Compare-and-Set instructions and then the instructions

afterward can refer to the predicates to decide whether to execute or not.

All the PACDSP instructions are conditional, except TRAP, ROE, WAIT, TEST and

LBCB. If a instruction is conditionally executed, the predicates referred to will be read in

the RO (read operand) stage.

The compare-and-set instructions, such as SLT, SGT, etc., compare source operands

and save the results to the predicate registers, and the comparison results can be saved

Unit
Load/Store

Unit
Arithmetic

Cluster1

Unit
Load/Store

Unit
Arithmetic

Cluster2

M I U

Scalar
Unit

Figure 3.7: Data exchange between two clusters [2].

41

Unit
Load/Store

Unit
Arithmetic

Cluster1

Unit
Load/Store

Unit
Arithmetic

Cluster2

M I U

Scalar
Unit

Figure 3.8: Data broadcast among clusters [2].

to the general purpose registers at the same time. For compiler friendliness, PACDSP

saves both positive and negative boolean results for the compare-and-set instructions con-

currently. However, P0 is always set to 1, and each predicate bit can be set by only one

instruction at the same time.

3.7 Instruction Packet

PACDSP v3.0 can process at most five instructions concurrently. Instructions issued in the

same cycle are packeted into an instruction packet. The five slots of the instruction packet

and the types of instruction that can be contained in each slot are listed in Table 3.5.

An instruction packet is enclosed in a pair of braces and can be expressed in either

the horizontal or the vertical format. Figure 3.9 shows the syntax of a complete instruc-

Table 3.5: Instruction Type in Each Instruction Slot

Instruction Slot Instruction Types

1 (Scalar Unit) PSCU Instructions / Scalar Instructions

2 (Cluster1) VLIW Load/Store Instructions

3 (Cluster1) VLIW Arithmetic Instructions

4 (Cluster2) VLIW Load/Store Instructions

5 (Cluster2) VLIW Arithmetic Instructions

42

tion packet. However, an instruction packet is allowed to be written in a single line and

separated by a pipe character “|”. The simplified syntax is shown in Fig. 3.10. A NOP

instruction should be placed in the slot where there is no instruction to be executed.

3.8 DSP Running Modes

The PACDSP can work under various running modes. Each mode has different hardware

utilization. We can change the running modes using the assembly instructions. Table 3.6

lists the running modes and the corresponding hardware resource.

3.9 Versions of PACDSP

PACDSP v3.0 is the latest version of PACDSP as of April 2007. The former version is

PACDSP v2.0 whose chip was taped out in August 2006. We briefly introduce the features

added from v2.0 to v3.0 and the differences between them in this section.

3.9.1 Pipeline Stages

Figure 3.11 shows the pipeline stages of PACDSP v2.0. The PSCU of PACDSP v2.0 is

divided into three stages, which are IF, IDP and ID. Compared to Fig. 3.2, we see that

PACDSP v3.0 divides the PSCU into four stages, where the added stage, IMEM, accesses

the instruction memory after the IF stage.

3.9.2 Program Sequence Control Unit (PSCU)

A brief list of the differences between PACDSP v2.0 and v3.0 in PSCU is as follows:

• There are 5 branch delay slots in PACDSP v3.0, while only 3 in PACDSP v2.0.

• PACDSP v3.0 uses general purpose registers (R0–R15) to record the loop counts.

Up to 16 levels of nested loop can be supported with the use of the LBCB instruc-

tion. In PACDSP v2.0, loop boundary registers (RBC0–RBC3) are used to record

43

Figure 3.9: Syntax of instruction packet [3].

Figure 3.10: Simplified syntax of instruction packet [3].

the loop counts, and only up to 4 levels of nested loop can be supported with the

use of the LBCB instruction.

• Compared to PACDSP v2.0, PACDSP v3.0 simplifies the scenarios of interrupt,

debug, and exception.

• FIQ and IRQ are two types of interrupt supported by the PACDSP. In PACDSP

v3.0, the minimum latency from interrupt request to the first ISR instruction to be

executed is 4 cycles for both types of interrupt. The minimum latency is 3 cycles

for PACDSP v2.0.

44

Table 3.6: Running Modes of the PACDSP v3.0 [2]

Running Modes Description Resources Binary Value

High Performance Process performance-oriented All instruction 0x0

programs which need all resource slots are available

for high performance

Medium Performance Process programs which only Scalar and Cluster 1 0x2

need partial resource to achieve instruction slots are

performance constraints available

High power saving Process power-oriented programs Only Scalar instruction 0x3

which care power consumption slot is available

more than performance

IDIDPIF EX1RO EX2 EX3 WB

Program Sequence
Control Unit VLIW Datapath

Scalar Unit

Figure 3.11: Pipeline stages of PACDSP v2.0 [3].

3.9.3 VLIW Data Path

• In PACDSP v3.0, the comparison instructions can be processed in both AU and L/S

unit. But in PACDSP v2.0, only the L/S unit can process the comparison instruc-

tions.

• The inter-cluster communication latency is 2 cycles in PACDSP v2.0. PACDSP

v3.0 decreases the latency to 1 cycle.

• PACDSP v3.0 adds register relative addressing mode for L/S instructions.

• The addressing mode control register (AMCR) is 32-bit in PACDSP v2.0. In PACDSP

v3.0, it is a 16-bit register.

45

• In PACDSP v2.0, the constant register file contains sixteen 32-bit registers (C0–

C15), while in PACDSP v3.0 it only has eight 32-bit registers (C0–C7).

• PACDSP v3.0 supports pointer addressing for the constant register file.

3.9.4 Conditional Execution Control

In PACDSP v2.0, the comparison instructions read the comparing sources in the RO

pipeline stage, and the comparison is performed in the EX1 pipeline stage. The com-

pared result is valid in the EX2 stage. Some program sequence control instructions, such

as the branch instruction, can be conditionally executed. Their referred predicate registers

are read in the ID stage. If a VLIW instruction is conditionally executed, the referred

predicate register will be read in the RO stage.

Comparatively, in PACDSP v3.0, the results of comparison instructions are valid in

the EX1 stage. Both program sequence control instructions and VLIW instructions can

be conditionally executed, where the referred conditional predicates are read in the RO

stage.

3.9.5 Instruction Set

Compared to PACDSP v2.0, PACDSP v3.0 adds some useful instructions and has en-

hanced some commonly used instructions. Table 3.7 shows the modified Load/Store in-

structions from PACDSP v2.0 to PACDSP v3.0 and their supporting units. Table 3.8 lists

the comparison instructions supported by PACDSP v2.0 and PACDSP v3.0.

3.10 Dual-Core Platform and the Tool Chains

We focus on the introduction of PACDSP v3.0 in previous sections. In this section, the

dual-core platform where we will demonstrate our implementation will be simplified in-

troduced.

The dual-core platform is developed by SoC Technology Center (STC) of Industrial

Technology Research Institute (ITRI). The PAC system consists of following items:

46

Table 3.7: Modified Load/Store Instructions from PACDSP v2.0 to PACDSP v3.0

PACDSP v2.0 PACDSP v3.0

Instruction Scalar Unit L/S Unit Instruction Scalar Unit L/S Unit Note

(D)LW V V (D)LW V V LW only in scalar unit

LNW V (D)LNW V

(D)LH(U) V LH(U) V V

LB(U) V LB(U) V V

(D)SW V V (D)SW V V SW only in scalar unit

without this instruction (D)SNW V

(D)SH(U) V SH(U) V V

(D)SB(U) V SB(U) V V

• ARM Integrator-compatible Core Module: ARM926EJ-S

• Multi-ICE of ARM

• PACDSP v3.0 Core Module (Burned in XILINX FPGA now)

• Generic peripherals (LCD translator in VGA size)

The dual-core platform is shown in Fig 3.12. The operation of PACDSP is controlled

by the ARM core, and its internal memory is accessible to the ARM core as well. For a

Table 3.8: Comparison Instructions Supported by PACDSP v2.0 and PACDSP v3.0

Category PACDSP v2.0 PACDSP v3.0

Set Less Than SLT(U) SLT(U)[.L/.H]

SLTI SLTI(U)

Set Greater Than SGT(U) SGT(U)[.L/.H]

SGTI SGTI(U)

Set Equal SEQ SEQ[.L/.H]

SEQI(U)

47

PACDSP execution, we have to inform the DSP with its corresponding machine code of

program and the data in the internal memory. Then we should give some signals to start

the DSP execution.

Figure 3.12: Dual-Core platform of PAC v3.0 system.

48

Chapter 4

C Code Development and System

Design

Figure 4.1 shows the flow of our program development for the video encoder on PACDSP.

In section 1, we introduce the first phase of the flow and present the profile. In sections 2–

4, we analyze the computational complexity of the motion coder, shape coder, and texture

coder, respectively, and discuss our approaches to algorithm optimization. And lastly in

section 5, we give the implementation strategies on PACDSP. The third phase of the work,

namely assembly codes optimization, is discussed in the next chapter.

4.1 Initial Code Development

Our C code development employs the public source MoMySys (Mobile Multimedia Sys-

tems) as the base [9]. The MoMuSys donated its software for MPEG-4 main profile

encoding and decoding to MPEG. However, to implement an MPEG-4 encoder on the

PACDSP platform, the main profile appears too complicated on first attempt. Therefore,

we implement the simple profile plus binary shape coding without error resilience. Ta-

ble 4.1 shows the functionalities that our implementation support.

49

Table 4.1: Functionalities of Our Implementation

Simple Main Our Implementation

Basic

1. I VOP

2. P VOP V V V

3. AC/DC Prediction

4. 4MV Unrestricted MV

Error resilience

1. Slice Resynchronization V V

2. Data Partitioning

3. Reversible VLC

Short header V V

B-VOP V

Method 1/Method 2 quantization V

P-VOP based

temporal scalability

1. Rectangular V

2. Arbitrary shape

Binary Shape V V

Grey shape V

Rate control V

50

Figure 4.1: Flow of software development.

4.1.1 Profile Using the Profiler of ADS

To capture the complexity variation over different video material, we consider several

common test video sequences of different amount of motion that likely represent the type

of material the PACDSP platform will largely address in its video coding applications for

some years. They are the QCIF (176×144) “foreman,” “akiyo,” and “stefan” sequences.

We employ the profile tools of ADS (ARM Developer Suite) to do the first level analy-

sis, where ADS is the development tools for ARM processors. The profiling results, in

Tables 4.2 and 4.3, are obtained from encoding an I-VOP and a P-VOP, respectively. We

employ H.263 quantization with a fixed quantization step (QP), 4. Note that the quanti-

zation step size affects the length of bitstreams, so larger QP results in shorter bitstream

and reduces the required encoding time.

The execution clockticks of the motion coder, the shape coder, and the texture coder

51

Table 4.2: Profile of Object-Based MPEG-4 Encoding of QCIF I-VOP on ADS

foreman qcif akiyo qcif stefan qcif

Function Name Clockticks % Clockticks % Clockticks %

TextureCoding 41,409,898 78.25 42,557,578 74.24 12,047,483 62.22

BlockDCT 17,368,343 32.82 17,867,992 31.17 4,798,081 24.78

BlockIDCT 18,156,851 34.31 18,452,700 32.19 5,212,443 26.92

ShapeCoding 3,958,416 7.48 3,674,489 6.41 2,228,649 11.51

CAE MB 2,799,468 5.29 2,505,073 4.37 1,547,081 7.99

Others 7,551,684 14.27 11,092,257 19.35 5,086,585 26.27

Total 52,919,998 100.00 57,324,324 100.00 19,362,717 100.00

are denoted as “MotionEstimation,” “ShapeCoding,” and “TextureCoding,” respectively,

in Tables 4.2 and 4.3. The execution clockticks of the critical functions belonging to each

are also shown in the tables. Besides the three coders, the remaining execution clockticks

are included in “Others,” which contains VOP formation, writing header bitstream, VOP

padding, etc.

In I-VOP encoding, we can find in Table 4.2 that the most time-critical components

are “BlockDCT” and “BlockIDCT” of “TextureCoding.” The reason why DCT and IDCT

consume so much time is that the DCT and IDCT in the reference code is implemented in

floating-point. Moreover, the function “CAE MB,” which does the context-based arith-

metic coding for binary alpha blocks, is an important part of “ShapeCoding.”

As we can see in Table 4.3, most computation is spent on the functions related to

motion estimation, which occupies about 40% to 50% of the execution time in P-VOP

encoding. Since the mode “inter MC” is added to “ShapeCoding” of P-VOP encoding,

the function “ShapeInterMB,” which finds the best matching of binary alpha block, is

another time-critical function.

In the object-based video encoder, the VOP size is arbitrary in each frame. Among

the three test sequences, “akiyo qcif” has the biggest VOP size, “foreman qcif” the sec-

52

Table 4.3: Profile of Object-Based MPEG-4 Encoding of QCIF P-VOP on ADS

foreman qcif akiyo qcif stefan qcif

Function Name Clockticks % Clockticks % Clockticks %

MotionEstimation 79,675,422 50.20 48,952,190 45.19 24,251,478 41.60

FullPelMotionEstMB 71,951,245 45.34 40,752,077 37.62 22,069,388 37.86

FindSubPel 7,703,016 4.85 8,183,547 7.55 2,174,324 3.73

TextureCoding 37,139,540 23.40 38,101,536 35.17 10,856,089 18.62

BlockDCT 16,004,337 10.08 15,611,662 14.41 4,768,944 8.18

BlockIDCT 16,252,774 10.24 16,749,806 15.46 4,564,249 7.83

ShapeCoding 35,191,526 22.17 12,907,962 11.91 18,419,663 31.60

ShapeInterMB 30,833,225 19.43 10,436,508 9.63 15,631,836 26.82

CAE MB 3,231,739 2.04 1,636,398 1.51 2,351,171 4.03

Others 6,694,822 4.22 8,372,839 7.73 4,764,480 8.17

Total 158,701,310 100.00 108,334,527 100.00 58,291,710 100.00

ond, and “stefan qcif” the smallest. Therefore, we see that the execution times of some

functions for I-VOP encoding, such as DCT and IDCT, are proportional to the VOP size.

For functions which only operate on boundary macroblocks, such as “CAE MB,” the ex-

ecution times are proportioned to the boundary MB counts. However, for the functions

called for P-VOP encoding, not only the VOP size but also the sequence characteristics

may affect the execution time. Take “akiyo qcif” for example, though its VOP size is

the biggest, since the motion of this sequence is little, the execution times of the inter

functions are less than “foreman qcif” and even less than “stefan qcif” sometimes.

53

Table 4.4: Major Function in Motion Estimation (ME)

Execution Time Percentage in Total for ME

Function Name foreman qcif akiyo qcif stefan qcif

Obtain SR 0.40% 0.61% 0.26%

SAD MB 81.65% 71.07% 83.38%

SAD Block 3.16% 3.86% 2.43%

ChooseMode 0.53% 0.85% 0.48%

FindSubPel 9.67% 16.72% 7.78%

Others 4.59% 6.89% 5.67%

4.2 Motion Coder Analysis and Design

The functions related to motion estimation costs the most computation in P-VOP en-

coding. Hence our first target is to reduce the complexity of these functions. Table 4.4

summarizes the major functions in motion estimation and the percentage complexity of

each function in the total for motion estimation.

The search method in the original reference software is full search in raster-scan order

with check for early termination each row. The search range is [−16,16), and the motion

vector is specified to half-pixel accuracy. As we can see in Table 4.4, the most complex

function is “SAD MB,” which is used to calculate the SAD (sum of absolute differences)

in the 16×16 MB at integer pixel displacements. After searching for the MB motion

vector, additional search is made for each 8×8 block. The integer block motion estima-

tion uses the MB motion vector as the search center and the search range is ±2 pixels.

“SAD Block” is the function to calculate the SAD of an 8×8 block.

In this section, we introduce some methods to reduce the complexity of SAD calcula-

tion.

54

4.2.1 Modification of Search Order

In order to increase the probability of early termination, we try to use the spiral full search

order to replace the original order in the reference software. Since, statistically, experience

shows that most motions are within ±5 pixels, spiral search may reduce the complexity

of SAD calculation by more frequent early termination. Figure 4.2 shows the concept of

spiral search.

Table 4.5 shows the percentage of early termination in SAD calculation under two dif-

ferent scan orders: raster-scan order and spiral in order. Three test sequences of different

motion characteristics are used here, and we have run 10 inter frames each.

4.2.2 Use of A Tier Parameter

As illustrated in Figure 4.2, the spiral search algorithm consists of a number of nested

loops from tier0 to tier16. We consider using a tunable parameter, “tier para,” to reduce

the complexity of SAD calculation by terminating the search procedure when we find a

local minimum SAD. A termination test is added at the end of every tier’s motion estima-

tion. The modified flow of spiral search is illustrated in Fig. 4.3, and the parameters used

are as follow:

• curr tier is the tier number where the ME algorithm searches on,

• SAD 0 means the SAD of zero motion vector (the search point of tier 0),

• min SAD records the minimum SAD value during the search procedure, and

Table 4.5: Percentage of Early Termination in SAD Calculation Under Different Scan

Orders
Scan Order foreman qcif akiyo qcif stefan qcif

Raster-scan order 46.62% 55.33% 43.24%

Spiral order 66.00% 80.66% 60.37%

55

Figure 4.2: Concept of spiral search.

• min tier records the tier number of the search point whose SAD value is minimum

during the search procedure.

A “tier para” value of N means that if we find a best match at tier m and the best match

is unchanged between tier m and tier m + N , then we terminate the search procedure and

take the best match as the search result. Note that when “tier para” is equal to 16, the

modified search procedure is equivalent to full spiral search.

The following results are obtained by encoding 10 P-frames for each sequence at a

fixed quantization step size (QP) of 4. Figure 4.4 shows the early termination percentage

of SAD calculation with different tier parameter values. The video quality is measured

by PSNR (peak signal to noise ratio) and Fig. 4.5 shows the average PSNR in two cases:

without residual coding and with residual coding. In the first case, without residual cod-

ing, we measure the PSNR using the motion compensated frames and the original frames.

We see that, even with small “tier para,” the quality is still very close to full search. With

residual coding, the quality loss is compensated by adding reconstructed residual. As

illustrated in Fig. 4.5, the three curves for “with residual coding” are nearly horizontal.

56

Figure 4.3: Dataflow of spiral search with tier parameter.

57

0246810121416
50

55

60

65

70

75

80

85

90

95

100

Tier Parameter

%

Early Termination Percentage of SAD Calculation

foreman
akiyo
stefan

Figure 4.4: Early termination percentage of SAD calculation with different tier para val-

ues.

0246810121416
15

20

25

30

35

40

Tier Parameter

P
S

N
R

(d
B

)

PSNR Comparison

foreman with residual
akiyo with residual
stefan with residual
foreman without residual
akiyo without residual
stefan without residual

Figure 4.5: PSNR values with different tier para values.

58

However, choosing too small a tier parameter may cause an originally inter-coded block

to be coded in intra mode, which makes the related bit-rate rise. The amount of increase

in bitrate is dependent on the QP of texture coding.

4.3 Shape Coder Analysis and Design

For lossless shape coding in our implementation, only four modes are supplied for context-

based arithmetic encoding (CAE). Table 4.6 shows the four CAE modes and their support-

ing VOP. In I-VOP coding, only two modes are available for ShapeCoding, and Table 4.2

shows that most time of ShapeCoding are spend on CAE operation. However, all the four

modes are available in P-VOP coding. As shown in Table 4.3, the function “ShapeIn-

terMB” occupies about 10% to 30% (depending on motion characteristic) of the execution

time in P-VOP encoding.

In this section, we firstly introduce a multi-symbol CAE algorithm to encode the

shape information efficiently. Then, we show some methods to simplify the data flow

of ShapeCoding in P-VOP coding.

4.3.1 Multi-Symbol CAE [10]

Since the CAE algorithm has a complicated coding procedure and strong data dependency,

it is hard to exploit the parallel processing capability of PACDSP. In the reference code,

the arithmetic coder encodes one symbol at a time, and the bottleneck of CAE is its

sequential processing nature. The proposed multi-symbol CAE design is based on the

Table 4.6: CAE Modes and Associated VOP Types

Mode Intra / Inter MC Scanning Supporting VOP

1 Intra Horizontal I-VOPs, and P-VOPs

2 Intra Vertical I-VOPs, and P-VOPs

3 Inter MC Horizontal P-VOPs

4 Inter MC Vertical P-VOPs

59

inherent characteristics of binary alpha blocks as well as the numerical properties of the

probabilities indexed by the contexts, and it is capable of encoding either a singe symbol

or multiple symbols within each coding.

In the multi-symbol CAE algorithm, only the symbols with a particular set of contexts

are chosen to be multi-symbol encoded. We denote ST0 as a symbol whose context has

either all-zero or all-one bits, S0(n) as the occurrence of n successive ST0 with the same

context, and SC(n) as the total symbol count of S0(n), i.e., SC(n) = S0(n)×n. Note

that S0(1) and SC(1) also record the occurrence and the number of symbols that do not

belong to ST0. Figure 4.6 illustrates examples for counting S0(n) in INTRA mode. There

are nine successive symbols whose contexts have all-zero bits, thus S0(9) is increased by

one. In the right-hand side of Fig. 4.6, there are three successive symbols whose context

has all-one bits and therefore S0(3) is increased by one. Because each video object is

usually a connected body, the neighboring pixels around the coded symbol tend to be all

zero or all one, i.e., ST0 should tend to appear in clusters, and this situation tend to happen

to successively coded symbols.

Figure 4.7 shows the distributions of S0(n) and SC(n) for some test sequences. Al-

though S0(1) dominates the occurrence count, SC(1) has a proportion of 27% only . On

the other hand, the total symbol count of the symbols which can be multi-symbol coded

has a proportion of 73%; this implies that ST0 tends to appear in clusters.

We can design our multi-symbol CAE algorithm based on the analysis above. The

flowchart is shown in Fig. 4.8, where the meanings of RU and RN are as follows:

Figure 4.6: Examples of counting S0(n) in INTRA mode (from [10]).

60

Figure 4.7: Distribution of SC(n) and S0(n) (from [10]).

• Range Update (RU): The RU stage updates the range (R) and lower bound (L) of

the interval.

• Renormalization (RN): The RN stage renormalizes R when R is smaller than QUAR-

TER. This stage could also output the encoded bits of the arithmetic coder.

After context generation and probability look-up of the binary pixel to be coded, we

see if the pixel belongs to ST0. If so, then use multi-symbol coder to encode the successive

pixels with the same context, otherwise, use the single-symbol coder to encode it. In the

multi-symbol coder, the first step is to count the number of successive pixels with the same

context, and denote the counts as n. Then, we do a multi-symbol RN test by looking up a

table to check if the range (R) is larger than QUARTER after encoding n symbols. If the

test is passed, it can perform the multi-symbol RU stage. On the other hand, failing of the

multi-symbol RN test means that the range (R) should be renormalized during encoding

n successive symbols. Therefore, the single-symbol coder is used instead of the multi-

symbol coder. From some statistics [10], about 6.18% of coded symbols need to perform

61

Figure 4.8: Flowchart of multi-symbol CAE.

62

renormalizations. When the coded pixel is one of n successive ST0, only 0.76% of the

coded symbols need to perform renormalizations.

In order to see the performance improvement by multi-symbol CAE, we show the

implementation results of single-symbol CAE and multi-symbol CAE on the PACDSP in

Fig. 4.9. The results are obtained by encoding one I-VOP of foreman qcif. Twenty-six

BABs are within the VOP, and each is encoded in both horizontal scanning and vertical

scanning. Compared to single-symbol CAE, about 40% of execution time is reduced by

using multi-symbol CAE.

4.3.2 Modification of Mode Selection Method

All four CAE modes are available for ShapeCoding in P-VOP coding. The one offering

highest compression is usually chosen to be the coding mode. Our analysis shows that it

is possible to skip hte intra mode.

“ShapeInterMB” is an important function for ShapeCoding in P-VOP coding. It is

similar to motion estimation, but perform search in binary alpha plane. A predicted mo-

tion vector, MVPs, is taken as the search center, and then a full search is performed over

the search window [−8, 8). The MVPs is determined by analyzing certain candidate mo-

tion vectors of shape (MVs) and motion vectors of selected texture blocks (MV) around

the MB corresponding to the current BAB. They are located and denoted as shown in

Fig. 4.10 where MV1, MV2 and MV3 are rounded up to integer values. By traversing

MVs1, MVs2, MVs3, MV1, MV2 and MV3 in this order, MVPs is determined by tak-

ing the first encountered MV that is defined. If no candidate motion vectors are defined,

MVPs = (0,0).

After the search, the motion compensated BAB having the least difference with cur-

rent BAB is obtained. Then IntraCAE and InterCAE are done separately, and the mode

selection criterion is as follows:

ShapeBitsINTRA <
> ShapeBitsINTER + offset

where offset consists of coded bits for the shape mode and that for MVDs. However, we

find that under the two conditions below the odds are in favor of choosing the inter mode:

63

Figure 4.9: Performance improvement by multi-symbol CAE.

1. Number of different pels between motion compensated BAB and current BAB are

small.

2. The offset is small.

Both the different pixels and offset are known before CAE operation. Therefore, two

thresholds, “D th” and “offset th,” are introduced to test if the different pixels and offset

are small enough. If the different pixels and offset are smaller than “D th” and “offset th,”

respectively, then coding by inter mode should yield a good compression ratio. Then we

skip the coding by intra mode and take the coding results of inter mode as the output

bitstream. We simulate 100 P-VOPs of stefan qcif and present the results in Table 4.7,

where “SR” is the ratio of skipping intra mode coding and “bpv” is the related shape bits

per VOP. We also collect the results of SR with different thresholds in Fig. 4.11. We find

that, even in the right-bottom region of Table 4.7, more than 50% intra mode coding are

skipped but the amount of increase in shape bits are still less than 1%. It is a good idea to

trade bit-rate with computation complexity, and the ShapeCoding is still lossless.

There is a interesting phenomenon in the simulation results. That is, in some cases

64

Figure 4.10: Candidates for MVPs.

we skip more coding but a smaller bpv is obtained. The reason is that, more Inter mode

coding would increase the candidates for MVPs, and a different MVPs would form a

different search region. It triggers a “chain reaction” in the prediction coding flow.

4.3.3 Reducing Candidates for MVs

An interesting property observed in motion estimation is that there is no big difference in

SAD values between two blocks located 1 pixel away from each other. This is because the

luminance value of a pixel differs only a little from its neighbor’s values. However, there

are only two different pixel values in binary alpha images: 255 for opaque pixel, and 0

for transparent pixel. Thus we can take the different pixels (DP) as the criterion value for

motion estimation in binary alpha plane.

The function “ShapeInterMB” which performs a full search on binary alpha plane

aims to find an optimal match over the search range. Based on the characteristics men-

tioned above, there must be a sub-optimal match at nearby positions of the best match.

Therefore, we use a search step equal to 2 in both the horizontal and the vertical directions

to reduce the number of candidates for MVs. This results in omitting the comparison of

roughly 3/4 of the number of the blocks, thus decreasing the complexity. However, the

cost is that the shape bits are increased when a sub-optimal match is taken. We show

the experiment results on ADS in Table 4.8 where the execution time (cycles) is obtained

by encoding 1 P-VOP on ADS, and the shape bits (bpv) are statistically averages from

65

Table 4.7: Simulation Results of Skip Ratio (SR) and Shape Bits per VOP (bpv)

D th 0 1 2 3 4 5 6 7 8

Offset th SR (%) 0 0.18 0.37 0.46 1.01 1.10 1.19 1.28 1.28

= 0 bpv 315.55 315.55 315.55 315.55 315.50 315.50 315.50 315.50 315.50

Offset th SR (%) 0 1.19 2.38 2.93 4.30 5.22 5.86 6.04 6.41

= 1 bpv 315.55 315.55 315.55 315.55 315.50 315.50 315.50 315.50 315.50

Offset th SR (%) 0 1.19 2.38 2.93 4.30 5.22 5.86 6.04 6.41

= 2 bpv 315.55 315.55 315.55 315.55 315.50 315.50 315.50 315.50 315.50

Offset th SR (%) 0 1.65 3.11 3.75 5.31 6.50 7.51 7.88 8.33

= 3 bpv 315.55 315.55 315.55 315.55 315.50 315.50 315.50 315.50 315.50

Offset th SR (%) 0 2.47 4.58 5.95 8.42 11.26 13.37 14.47 15.11

= 4 bpv 315.55 315.57 315.57 315.57 315.51 315.50 315.44 315.44 315.44

Offset th SR (%) 0 3.85 6.87 9.16 12.82 16.48 19.05 20.42 21.25

= 5 bpv 315.55 315.57 315.55 315.55 315.51 315.51 315.45 315.45 315.50

Offset th SR (%) 0 4.85 8.88 12.09 17.12 21.79 25.18 28.39 30.49

= 6 bpv 315.55 315.71 315.77 315.77 315.83 315.97 315.87 315.77 315.88

Offset th SR (%) 0 5.86 11.26 15.93 22.71 28.02 32.60 36.54 39.47

= 7 bpv 315.55 315.71 315.81 315.87 315.87 316.03 316.00 315.92 316.07

Offset th SR (%) 0 6.32 12.45 18.32 26.28 32.23 38.37 42.86 46.25

= 8 bpv 315.55 315.75 315.81 315.89 315.88 316.07 316.05 316.08 316.29

Offset th SR (%) 0 6.96 13.55 20.51 29.58 36.81 43.41 48.17 51.56

= 9 bpv 315.55 315.69 315.85 315.95 315.98 316.24 316.17 316.21 316.45

Offset th SR (%) 0 6.96 14.29 21.89 31.68 39.38 46.15 52.11 56.32

= 10 bpv 315.55 315.69 315.92 316.04 315.94 316.38 316.28 316.34 316.69

66

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Offset Threshold

S
ki

p
R

at
io

 (
%

)
Skip Ratio with Different Threshold

D_th=0
D_th=1
D_th=2
D_th=3
D_th=4
D_th=5
D_th=6
D_th=7
D_th=8

Figure 4.11: Skip ratio (SR) with different thresholds.

encoding 100 P-VOPs.

4.4 Texture Coder Analysis and Design

The floating-point DCT and IDCT of the texture coder are time-consuming functions.

Implementing the transforms in fixed-point is essential for PACDSP. We will discuss this

Table 4.8: Execution Results on ADS of Reduced-Complexity ShapeInterMB Function

Test Seq. Execution Time (cycles) Shape Bits (bpv)

(QCIF) Original Modified % Original Modified %

foreman 30,833,225 9,251,863 69.99 555.85 610.14 9.77

akiyo 10,436,508 3,319,540 68.19 230.71 225.31 -2.34

stefan 15,631,836 4,502,918 71.19 315.55 338.25 7.19

67

subject in the next chapter. In this section, we do some analysis to eliminate dequantiza-

tion and inverse transform in some situation.

An important property of DCT is that it concentrates signal energy in lower frequency

coefficients [11]. For example, if a block is filled with constant coefficients, there will

be only one coefficient at the DC after the transform. In other words, if we can make

sure that there is only a DC component in the quantized block, the corresponding output

block data can be obtained with copying the DC component to the entire block. This is

illustrated in Fig. 4.12.

Coded block pattern (CBP) is a parameter coded in macroblock header to tell the

decoder which blocks in a MB are variable length coded. “FindCBP” is the function to

set the coded block pattern by scanning the quantized block. The procedure of checking

skipped blocks is similar to the function “FindCBP”. We combine the checking procedure

with the function “FindCBP”. This technique can be applied in both intra-mode coding

and inter-mode coding. The simulation results on PC are listed in Table 4.9. We see

that the skipped rate is highly related to the motion characteristics of the test sequence

and the quantization step size (QP). Thus we can reduce the computation complexity of

reconstructed loop of video encoder in our implementation.

4.5 Implementation Strategy on Dual-Core Platform

Since the data memory and instruction cache on PACDSP is limited to 64kB and 32kB,

respectively, it is hard to implement all the encoder functions on chip. We implement the

encoder on the dual-core system illustrated in Fig 4.13. We now focus on the dual-core

mechanism of MPEG-4 object-based video encoder.

Figure 4.14 shows the basic design of the software implementation. We encode the

shape information on DSP and do the texture padding on the ARM at the same time.

Furthermore, the texture coder is split into two parts: the transformer and the bitstream

coder. After forward transform, we transmit the quantized coefficients to the bitstream

coder on ARM. Then, variable length coding and the inverse transform are performed at

the same time. At last, we pad the reconstructed VOP to be the reference VOP for coding

68

Figure 4.12: DC spreading from quantized coefficient to output block.

Table 4.9: Number of Skipped Blocks in 101 Frames (1 I, 100 P)

Test Seqs. (QCIF) Transformed Block No. Skipped Block No. %

QP=2 8,133 29.68

foreman 27,401 QP=4 13,682 49.93

QP=7 17,865 65.20

QP=2 14,389 53.83

akiyo 26,732 QP=4 19,088 71.41

QP=7 21,657 81.02

QP=2 630 10.73

stefan 5,874 QP=4 1,421 24.19

QP=7 2,321 39.51

69

Figure 4.13: PACDSP v3.0 system.

of the next frame.

Implementation Approach

Since the goal of our implementation is to achieve a real-time MPEG-4 video encoder

on PACDSP v3.0, the execution time and the code size are the most important issues.

Although we can program in a high-level language, experience shows that the current

compiler cannot address these issues to the desired level. Moreover, the development of

compiler was not complete when we began our implementation. Thus our implementation

uses assembly programming.

70

Figure 4.14: Our basic dual-core software encoder design.

71

Chapter 5

Optimization of Implementation on

PACDSP

In this chapter, we discuss the optimization of our implementation of the MPEG-4 object-

based video encoder on PACDSP. First, some general techniques of code optimization

are introduced. Then, we present the fixed-point design of DCT, IDCT, and quantiza-

tion. We also discuss the performance of the optimization. In addition, we compare the

performance with some other reported implementations on other hardware platforms.

5.1 General Techniques of Code Optimization

The utilization of architectural advantages is important in DSP implementation of com-

plicated algorithms such as video encoder. In this section, we introduce some general

software optimization techniques, including static rescheduling, loop unrolling, and soft-

ware pipelining. In addition, the computations are dispatched to different units to utilize

the advantage of the VLIW processor. Some special SIMD instructions of PACDSP are

used to compute or load/store multiple data at the same time. The advantage of SIMD

instructions is to increase the throughput of computations.

72

5.1.1 General Optimization Techniques

In order to get a higher performance, we should try to fill all the slots in an instruction

packet. That is, how to achieve a full-pipeline implementation is very important to a better

performance. Three optimization methods, namely, static rescheduling, loop unrolling,

and software pipelining, are introduced in this section. The purpose of these techniques

is to reduce the stalls resulting from hazards, and the appropriateness for PADCDSP of

these techniques are discussed as well.

In the following discussion, we use an example of summing the coefficients in a 1-D

array, which contains eight 8-bit data. The corresponding C program is shown in Fig. 5.1.

In order to simplify the utilization of different techniques, we use only one instruction slot

in the instruction packet.

Static Rescheduling

In the assembly code programming, dependence of data may cause stalls in proces-

sor, which increase the required computation time.There are three types of data hazard,

namely, read-after-write (RAW), write-after-read (WAR), and write-after-write (WAW).

In the left half of Fig. 5.2, we simply translate the C program in Fig. 5.1 to the

PACDSP assembly code. We can see that two stalls after the “LB” instruction are resulted

from the dependency of the register D0, because data loading from memory requires two

cycles to be valid in PACDSP.

In addition, the conditional branch, whose predicate register is p2, depends on the

comparison instruction “SLTI.” Therefore, there are seven stalls (NOPs) in the direct

translation with five delay slots, and these stalls significantly degrade the execution speed.

We can utilize the independence of instructions to eliminate the stalls as much as

Figure 5.1: Example of vector addition.

73

Figure 5.2: Example of static rescheduling technique.

possible. In the right half of Fig. 5.2, we change the order of the assembly code, which

reduce the stalls from seven to four. However, since the computation is not very complex,

we cannot further reduce the number of stalls simply through rescheduling.

Loop Unrolling

Loop unrolling is a general technique to deal with the implementation of an iterative

computation, especially if there are stalls in a single iteration.

To use the unrolling technique, we have to find the independent computations in con-

secutive iterations. We can use different registers to store data from different iterations,

and the instructions still need to be scheduled well to reduce the stalls. The number of

unrolled loops depends on the stalls and independent computations in a single loop. Fig-

ure 5.3 shows the assembly code before and after loop unrolling.

we see that in Fig. 5.3, all the stalls (NOPs) are eliminated. The loop maintenance code

and branch condition should be changed to adjust the new iterative computations. How-

ever, there is a tradeoff between execution time and corresponding code size. Although

the stalls are all eliminated, the code size increases after loop unrolling. Therefore, we

have to assess that if code size is critical or not. In addition, the number of available

registers is a limitation to the use of loop unrolling.

74

Figure 5.3: Example of loop unrolling technique.

Software Pipelining

The concept of software pipelining is to reorganize the loop and to interleave dependent

instructions from different loop iterations to separate dependent instructions within the

original loop. Different from loop unrolling, we just reschedule the loop, so the stalls may

not be entirely eliminated. An example of software pipelining is illustrated in Fig. 5.4.

It is noted that the start-up code and clean-up code are used to interleave the dependent

code. Compared to loop unrolling, there are still 2 stalls. The advantage of software

pipelining is the smaller code size. However, the loop overhead cannot be reduced through

software pipelining. But we can apply loop unrolling and software pipelining to our

implementation simultaneously and take the advantage of both techniques.

5.1.2 Features of PACDSP

To effect an efficient implementation on PACDSP, we should utilize the parallelism in

the VLIW architecture and SIMD instructions. However, not all the computations can

be distributed to both clusters, so we have to check if the features of the implemented

algorithm can make use of the parallelism in PACDSP.

For example, since the branch instructions affect the program execution sequence of

both clusters, it is better to put two regular and independent parts of the overall algorithm

in different clusters. For this, an iterative computation can be separated into two parts if

75

Figure 5.4: Example of software pipelining technique.

the computations are independent in different iterations. In MPEG-4 object-based video

encoder, the functions for motion estimation, DCT, IDCT, and quantization, and inverse

quantization are very regular computations. We will discuss these functions in the fol-

lowing sections. However, we usually use only one cluster to implement sequential code

sequence. In some complicated functions, such as CAE, we can put some independent

parts of the computation in another cluster and use the broadcast instruction to fetch the

desired results back. That is another way to improve the performance, but we should pay

attention to the stalls caused by data communication so that they would not outweigh the

gain from parallel computation.

SIMD instructions are also very helpful for optimization. The data length in motion

estimation is equal to a byte per pixel. Thus it is useful to use the special SIMD instruc-

tions available on PACDSP to calculate SAD. We will show the SIMD example below.

5.2 Fixed-Point DCT and IDCT

We have seen previously that efficient and accurate fixed-point DCT and IDCT are essen-

tial in our implementation on PACDSP. In this section, we discuss the fixed-point design

which takes into account the PACDSP architecture. Since the optimized techniques are

similar for DCT and IDCT, our discussion only focuses on IDCT only.

76

DCT and IDCT Algorithm

The DCT and IDCT in MPEG-4 are defined as

F (u, v) =
2

N
C(u)C(v)

N−1∑

x=0

N−1∑

y=0

f(x, y) cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2N
, (5.1)

f(x, y) =
2

N

N−1∑

u=0

N−1∑

v=0

C(u)C(v)F (u, v) cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2N
, (5.2)

where u, v, x, y = 0, 1, 2, . . . , N − 1, and

C(u), C(v) =





1√
2
, for u, v = 0,

1, otherwise.

To implement DCT and IDCT on PACDSP, there are two critical issues, namely, effi-

ciency and accuracy, which are discussed below.

Efficiency of IDCT

For the fast computation of 2-D IDCT, the conventional approach is the row-column

method, which requires 16 1-D IDCTs for the computation of an 8×8 IDCT [16]. One fast

method reduces the required 1-D IDCTs from 16 to 8 [16]. However, since the number of

required registers is very big in this algorithm, it is not appropriate for implementation on

PACDSP. Similar to the derivation from discrete Fourier transform (DFT) to fast Fourier

transform (FFT), a fast cosine transform (FCT) is proposed in [17]. A comparison of

computational complexity of different algorithm is listed in Table 5.1.

Note that the computational complexity is estimated for floating-point computation.

Since the transform coefficients used in [17] are reciprocals of cosine values, the error

increases because of limited accuracy in the fixed-point approximation on PACDSP. In

Table 5.1: Comparison of Computational Complexity for 8-point IDCT

Direct Form FCT [17] MoMuSys Even Odd FCT [18]

Multiplications 64 12 16 20

Additions 56 29 26 28

77

addition, the number of multiplications is bigger in the even-odd decomposition algo-

rithm. As a result, we first consider the IDCT algorithm of MoMuSys on PACDSP.

Accuracy of IDCT

Since the PACDSP is not capable of floating-point computations, we have to convert

the IDCT algorithm to fixed-point computation. There are also many approximation al-

gorithms to floating-point IDCT. There are integer reversible algorithms for DCT/IDCT

[19],[20], but they consist of several matrix computations, and the computational com-

plexity should be much higher. Therefore, we do not implement a reversible transform.

Since the native wordlength is 16-bit on PACDSP, we scale the floating-point cosine

coefficients with 215. We then right shift 15 bits after multiplications, which rounds the

products to the nearest integers.

The 1-D IDCT algorithm used in MoMuSys has the signal flow shown in Fig. 5.5.

We need to check if the implementation is accurate enough. The modefied IEEE Std.

1180-1190, which is currently withdrawn, is usually used to test for the compliance of

the implementation of IDCT algorithms. The compliance test requires five statistical

measurements, which are as follows [5]:

• For any pixel location, the peak error (ppe) shall not exceed 2 in magnitude.

• For any pixel location, the mean square error (pmse) shall not exceed 0.06.

• Overall, the mean square error (omse) shall not exceed 0.02.

• For any pixel location, the mean error (pme) shall not exceed 0.015 in magnitude.

• Overall, the mean error (ome) shall not exceed 0.0015 in magnitude.

• For all-zero input, the proposed IDCT shall generate all-zero output.

The testing results of MoMuSys algorithm is shown in Table 5.2. We see that the

simple rounding method introduces significant errors, so this algorithm does not comply

with the IEEE 1180-1190 standard after converting to fixed-point computation. However,

we see that the odd-indexed coefficients are rounded twice in this algorithm, yielding

78

Figure 5.5: The IDCT algorithm used in MoMuSys [9].

serious rounding errors. Therefore, we try to use the even-odd decomposition algorithm

[18] whose signal flow is shown in Fig. 5.6. In this algorithm, each coefficient is rounded

once, which can reduce the rounding error. Moreover, we use the following rounding

rules.

• Keep the shift as late as possible just enough to prevent overflow.

• Minimize the bits shifted just enough to prevent overflow.

• Minimize the number of shifts.

Following the above rules, the rounding operations are postponed to the output stage

and we can reduce the number of roundings. After the calculation of each row IDCT, we

only do right shift of 11 bits for rounding to maximize the accuracy, so we need to do

19 bits of right shift after each column IDCT to keep the correct format. The accuracy

testing result of our algorithm is also shown in Table 5.2. We can see that our fixed-point

IDCT has enough accuracy to pass the test.

79

Table 5.2: Test of Compliance for Modified IEEE Std. 1180-1190 in MPEG-4

Item Modified IEEE 1180–1190 MoMuSys Our Algorithm

ppe ≤2 >2 (X) ≤2 (©)

pmse ≤0.06 137.8279 (X) 0.0081 (©)

omse ≤0.02 5.2222 (X) 0.0056 (©)

pme ≤0.015 10.8429 (X) 0.0019 (©)

ome ≤0.0015 0.5742 (X) 0.0001 (©)

all zero input all zero output © ©

Figure 5.6: The even-odd decomposition IDCT algorithm [13].

80

Table 5.3: Comparison of IDCT on Different Platforms

Equivalent

Designs Processing Units Clock (MHz) 2-D Fast Algo. Cycles Instruction Counts

TI C62x [21] 2 MUL, 6 ALU 200 row-column 230 1840

TI C64x [22] 2 MUL, 6 ALU 600 row-column 154 1232

IDCT Core [21] 1 ALU 33 direct 2-D 1208 1208

PACDSP v3.0 (ours)∗ 2 AU, 2 L/S 200 even-odd 293 1172

∗Note: If considered having 5 processing units, then equivalent instruction counts = 1465.

Optimization of IDCT on PACDSP

There are two clusters in the PACDSP, and we can complete individual computations

simultaneously because the computations of each row or column are independent. There-

fore, we can simply distribute eight 1-D row-wise and column-wise IDCTs to both clus-

ters. As a result, there are four iterations for both row and column computations.

According to the characteristics of the even-odd decomposition algorithm, we can use

double-load, double-store, MAC, and butterfly instructions to facilitate the computation,

where the butterfly instruction can sum and subtract the data in the two source registers at

the same time.

The performance of various IDCT implementation are listed in Table 5.3. We see that

the implementation on PACDSP is competitive, because of less arithmetic units required.

Implementation of DCT on PACDSP

Similar to the optimization of IDCT, we can utilize the same way to implement DCT on

PACDSP. Figure 5.7 shows the signal flow of even-odd decomposition DCT algorithm.

However, the performance of various DCT implementation are listed in Table 5.4.

81

Figure 5.7: The even-odd decomposition DCT algorithm [13].

Table 5.4: Comparison of DCT on Different Platforms

Equivalent

Designs Processing Units Clock (MHz) 2-D Fast Algo. Cycles Instruction Counts

TI C62x [21] 2 MUL, 6 ALU 200 row-column 208 1664

TI C64x [22] 2 MUL, 6 ALU 600 row-column 116 928

PACDSP v3.0 (ours)∗ 2 AU, 2 L/S 200 even-odd 321 1284

∗Note: If considered having 5 processing units, then equivalent instruction counts = 1605.

82

5.3 Fixed-Point Quantization

5.3.1 H.263 Quantization Method

We only consider the H.263 quantization method in our implementation. The quantization

method is defined as follows:

• Intra coded block

QF [v][u] =





F [0][0] +
dc scaler

2
dc scaler

, if v, u=0 (DC component),

|F [v][u]|
2×QP

×SIGN(F[v][u]), otherwise (AC component).

(5.3)

• Inter coded block

QF [v][u] =
|F [v][u]| − QP

2
2×QP

× SIGN(F [v][u]) (5.4)

where dc scaler is a nonlinear scaling factor introduced in chapter 2. The division op-

eration is unavailable in PACDSP. We should find a fixed-point method to replace the

division operation, and the accuracy is an important issue.

5.3.2 Lossless Fixed-Point Quantization Method

If floating-point division were available, the quantizations defined above could be achieved

by floating-point division and rounding or truncation. However, in our case, a more ef-

ficient way is to replace it by fixed-point multiplication. That is, an approximate inverse

of the divisor is multiplied to the dividend following by a right shift of the result. A key

issue is how many bits should be used to represent the divisor’s fixed-point approximate

inverse to achieve a lossless substitution.

Since the quantizer parameter (QP) is in the range from 1 to 31, the divisor, dc scaler

is from 8 to 46 for luminance blocks, and from 8 to 25 for chrominance blocks. That

83

means, among all the possible divisor value, i.e.,{2×QP, dc scaler}, the maximum value

is 62. If the precision of the fixed-point approximation can distinguish the minimum

difference between the non-linear scaling factors 1
61
− 1

62
= 1

3782
, then we can achieve

the lossless substitution is possibly achieved. Therefore, it needs at least 13 bits (Q1.12

representation) to represent the divisor’s inverse in fixed-point approximation. Table 5.5

list all the possible values of the inverse of divisor in Q1.15 format.

The memory space required for the table is 248 bytes. In our implementation of

quantization, we can get the dc scaler and the associated inverse of divisor by looking up

the table. Then the division operation can be achieved by multiplication and right shift

without any precision loss.

5.4 Implementation of SAD Calculation Using SIMD

Calculating the sum of absolute difference (SAD) is the most critical function in motion

estimation. In this section, we optimize the SAD calculation by using SIMD instructions

on PACDSP.

Since the luminance data only contain 8 bits per pixel, we can use 32-bit SIMD in-

structions to handle 4 pixels in a single instruction. In addition, we can carry out the

16×16 or 8×8 SAD calculation into two clusters. The optimization techniques described

in previous sections can be used. Figure 5.8 shows an example code for 16×16 SAD

calculation in PACDSP.

In the example code, we use double-loads to load 8 pixels in one instruction. Then, a

special SIMD instruction, namely “SAA.Q,” is used. Fig. 5.9 shows the syntax and opera-

tion of “SAA.Q.” It subtracts four pairs of 8-bit values, takes the absolute values and accu-

mulates them individually. Finally, we use the instructions “ADDU.D” and “MERGEA”

to sum up the results. It takes 114 cycles to implement a 16×16 SAD calculation and 32

cycles to implement an 8×8 SAD calculation on PACDSP. Table 5.6 shows the perfor-

mance of various SAD implementations. We can see from the last column of Table 5.6

that the implementation on PACDSP is competitive.

In object-based video encoder, the SAD calculation is only applied to the pixels be-

84

Table 5.5: Fixed-Point Quantization Table

QP DC Scaler 1
QP

1
DC Scaler QP DC Scaler 1

QP
1

DC Scaler

Luma Chroma Luma Chroma Luma Chroma Luma Chroma

1 8 8 32768 4096 4096 17 25 15 1928 1311 2185

2 8 8 16384 4096 4096 18 26 15 1820 1260 2158

3 8 8 10923 4096 4096 19 27 16 1725 1214 2048

4 8 8 8192 4096 4096 20 28 16 1638 1170 2048

5 10 9 6554 3277 3641 21 29 17 1560 1130 1928

6 12 9 5461 2731 3641 22 30 17 1489 1092 1928

7 14 10 4681 2341 3277 23 31 18 1425 1057 1820

8 16 10 4096 2048 3277 24 32 18 1365 1024 1820

9 17 11 3641 1928 2979 25 34 19 1311 964 1725

10 18 11 3277 1820 2979 26 36 20 1260 910 1638

11 19 12 2979 1725 2731 27 38 21 1214 862 1560

12 20 12 2731 1638 2731 28 40 22 1170 819 1489

13 21 13 2521 1560 2521 29 42 23 1130 780 1425

14 22 13 2341 1489 2521 30 44 24 1092 745 1365

15 23 14 2185 1425 2341 31 46 25 1057 712 1311

16 24 14 2048 1365 2341

Figure 5.8: An example code for 16×16 SAD calculation in PACDSP.

85

Figure 5.9: The syntax and operation of SAA.Q instruction.

Table 5.6: Comparison of SAD Implementation on Different Platforms

Block Equivalent

Size Designs Processing units Clock (MHz) Cycles Instruction Counts

TI C62x [21] 2 MUL, 6 ALU 200 272 2176

16× 16 TI C64x [22] 2 MUL, 6 ALU 600 67 536

PACDSP v3.0 (ours)∗ (1 Scalar), 2 AU, 2 L/S 200 114 456

TI C62x [21] 2 MUL, 6 ALU 200 80 640

8× 8 TI C64x [22] 2 MUL, 6 ALU 600 31 248

PACDSP v3.0 (ours)∗∗ (1 Scalar), 2 AU, 2 L/S 200 32 128

∗Note: If considered having 5 processing units, then equivalent instruction counts = 570.
∗∗Note: If considered having 5 processing units, then equivalent instruction counts = 160.

86

longing to the object. For this, a conditional operation is used in the reference code. How-

ever, in order to utilize the advantages of SIMD instructions, we use a masking method

in place of conditional operation. That means we use the shape information to mask

the reference data before the subtraction operation. The assembly code for masked SAD

calculation in our implementation is shown in Fig. 5.10.

5.5 Simulation Results on PACDSP Instruction Set Sim-

ulator (ISS)

Before the dual-core implementation of object-based video encoder on the hardware sys-

tem, we test and verify our assembly code for PACDSP on the instruction set simulator

(ISS). The ISS is developed by the SoC Technology Center (STC) of Industrial Tech-

nology Research Institute in Chutung of Taiwan. The input file of the simulator is split

through a parsing tool, “as2tic,” which parses the assembly code into two parts, data and

instructions. We can configure the ISS to decide which kinds of information we want to

print out to files.

5.5.1 Statistics of Motion Estimation on ISS

The “tier para” of motion estimation is set to 5. Table 5.7 shows the execution time ob-

tained by performing the motion estimation for 1 P-VOP on ISS. The information about

object size is listed in the second column, “MB Number,” which means how many mac-

roblocks containing object pixels are there within the VOP. The average cycles for each

MB and breakdown for integer-pixel search and half-pixel search are also shown. The

average cycles for integer-pixel search are related to the motion characteristics of the se-

quences. However, since the search points of half-pixel motion estimation for each MB is

fixed, the average execution times for half-pixel searches are almost the same.

87

Figure 5.10: Assembly code of masked 16×16 SAD calculation in our implementation.

5.5.2 Statistics of Shape Coding on ISS

The execution time statistics of shape coding are shown in Table 5.8, which are obtained

by implementing the shape coding for 1 P-VOP on ISS. The information about object

size and the percentage of boundary MBs over total MBs is given in the second column.

All the MBs call the function “ShapeInterMB” but only the boundary MBs would do

motion search on the alpha plane. That means, the execution time of “ShapeInterMB” is

dependent on the percentage of boundary MBs over total MBs. Another fact affecting the

Table 5.7: Execution Time of Motion Estimation for 1 P-VOP of QCIF on ISS

Test seq. MB Execution Time (cycles) Execution Time/MB (cycles)

(QCIF) Number Total Integer-Pel Half-Pel Total Integer-Pel Half-Pel

foreman 47 2,175,977 1,637,881 512,038 46,297 34,849 10,894

akiyo 48 1,336,459 820,576 491,370 27,843 17,095 10,237

stefan 15 684,103 514,735 156,792 45,607 34,316 10,453

88

execution time is the motion characteristics. Take the almost stationary sequence, akiyo,

for example. About half of the boundary MBs find an identical BAB over its search range.

It can not only terminate the search procedure but also skip the CAE operation. That is

why the execution time of the sequence akiyo is much less than the other two sequences.

In addition, the skip ratio of mode section mentioned in chapter 4 would also affect the

execution time of CAE MB.

5.6 Conclusion

We used several optimization techniques to improve our implementation of the MPEG-4

video encoder on PACDSP. We first discussed some algorithm optimization techniques in

the previous chapter. Then we rescheduled a dual-core implementation on the PAC system

and tried to eliminate all the unnecessary stalls in our assembly code on the DSP. We

further distributed the regular and independent computations into two clusters as much as

possible. If there were any consecutive loads or stores, we replaced the original program

with double-loads or stores. In addition, we also applied the general code optimization

techniques discussed in this chapter. Now we show the speed-ups of these optimization

methods for shape coding and motion coding. Since we only implement the transformer

part of texture coder on DSP, the performance of texture coder in our implementation will

be left to the next chapter.

Table 5.9 shows the performance of algorithm optimization on ARM926EJ-S. We can

find that more than 60% of computation is saved in the motion coder and more than 55%

Table 5.8: Execution Time of Shape Coding for 1 P-VOP of QCIF on ISS

Test seq. Boundary MBs Execution Time (cycles)

(QCIF) /Total MBs Total ShapeInterMB % CAE MB %

foreman 23/47 1,516,959 750,482 49.47 732,613 48.29

akiyo 23/48 570,231 327,368 57.41 207,889 36.46

stefan 15/15 900,265 381,647 42.39 506,918 56.31

89

of computation is saved in the shape coder.

Table 5.10 shows the results from implementing the optimized coder on PACDSP. We

can find that the implementation on PACDSP is much faster than on ARM926EJ-S. The

first reason is that we utilized the DSP architecture to optimize our implementation. In

addition, we have a well-scheduled hand code on PACDSP, while C-level coding is used

on the ARM926EJ-S platform.

We have placed the most computation intensive parts of the MPEG-4 object-based

video encoder on PACDSP. We will discuss the dual-core implementation and perfor-

mance in the next chapter.

90

Table 5.9: Execution Time of P-VOP Motion Estimation and Shape Coding after Algo-

rithm Optimization on ARM926EJ-S

Test Seq. Execution Time (cycles)

Coder (QCIF) Original Algorithm Optimized % of reduction

foreman 79,675,422 28,433,273 64.31

Motion akiyo 48,952,190 17,296,872 64.67

stefan 24,251,478 7,361,425 69.65

foreman 35,191,526 12,984,353 63.10

Shape akiyo 12,907,962 5,342,844 58.61

stefan 18,419,663 6,751,031 63.35

Table 5.10: Execution Time of P-VOP Motion Estimation and Shape Coding after Opti-

mization on PACDSP
Test Seq. Execution Time (cycles)

Coder (QCIF) Original† Architecture Optimized % of reduction

foreman 28,433,273 2,175,977 92.35

Motion akiyo 17,296,872 1,336,459 92.27

stefan 7,361,425 684,103 90.71

foreman 12,984,353 1,516,959 88.32

Shape akiyo 5,342,844 570,231 89.33

stefan 6,751,031 900,265 86.66
†Original means the execution time after algorithm optimization

on ARM926EJ-S.

91

Chapter 6

Performance Analysis and

Implementation Results

In this chapter, we analysis the performance of our implementation of MPEG-4 object-

based video encoder, including the program size, the encoding frame rate, and the coding

quality.

6.1 Performance Analysis

In this section, we discuss the code size and data size of our implementation. In order to

prevent the problem of cache miss, we should ensure that the total size of program and

data are smaller than 32 kB and 64 kB, respectively, which are provided by PACDSP.

Then, we estimate the frame rate for our implementation of MPEG-4 object-based video

encoder.

6.1.1 Code Size

Table 6.1 shows the code size of the three coders and the major functions of each coder in

MPEG-4 object-based video encoder on PACDSP. The program size of “ShapeCodingIn-

traCAE” and “ShapeCodingInterCAE” are the biggest, whose purpose is to encode the bi-

nary shape information. The second are “ShapeInterMB” and “16x16FullPel ME,” which

92

do the motion estimation over alpha plane and luminance plane, respectively. Since the

instruction memory of PACDSP is limited to 32 kB, we need to care the total size of our

program. The total program size is 26,904 bytes in our implementation, and it is smaller

than the instruction cache size. Therefore, no cache miss will happen in our implementa-

tion.

6.1.2 Data Size

The data memory of PACDSP is limited to 64 kB, and Table 6.2 shows the data memory

used of each coder in our implementation. Since the coded unit is one VOP per coding in

our implementation, we should ensure the designed memory space is large enough to load

the VOP of any size. In the worst case, the VOP size is equal to the frame size, 176×144.

We decide to allocate a frame size (176×144 bytes) to put the input image plane, and

Table 6.2 shows the data size profile in the worst case.

In addition, because the number of registers is limited, we may need some memory

space for storing the calculated results in the encoding procedure. And such memory

space is designated “Temporary”.

In ShapeCoder, current alpha plane (176×144) and reference alpha plane (unextended,

176×144) are needed to be the input data. We allocate 3 kB of memory to store the output

bitstream of the coded shape information.

In MotionCoder, current luminance plane (176×144) and reference luminance (ex-

tended, 208×176) are needed to be the input data. The first output data are the motion

vectors and the second is the compensated luminance plane (176×144), which is saved in

the same memory space as current luminance plane.

In Transformer, current luminance and chrominance plane are the input data. Since the

residual data is in the range [-255,255], it need 2 bytes to save one pixel. The memory is

unavailable to load the luminance and chrominance data in frame size (176×144×1.5×2

= 76032 bytes). However, the data of each MB are is independent in the transformer,

and we can only input the non-transparent MB. Therefore, we allocate the memory space

that can hold 80 residual macroblocks (80×6×64×2 = 61440 bytes). The output data

are quantized coefficients and reconstructed data, and they are both saved in the same

93

Table 6.1: Code Size Profile of Object-Based MPEG-4 Video Encoder on PACDSP

Coder Category Function Name Code Size (Bytes) %

ShapeInterMB 2824 10.50

ShapeCoder ShapeCodingIntraCAE 3268 12.15

ShapeCodingInterCAE 3256 12.10

Others 2908 10.81

16x16FullPel ME 2764 10.27

8x8FullPel ME 1700 6.32

InterPolate SubPel 420 1.56

MotionCoder Inter16 SubPelME 1036 3.85

Inter8 SubPelME 1400 5.20

MC Luma 896 3.33

Others 1012 3.76

BlockDCT 772 2.87

BlockQuantH263 492 1.83

Transformer BlockDequantH263 344 1.28

BlockIDCT 672 2.50

Others 1068 3.97

Total 26904 100.00

94

memory space as input data.

6.1.3 Frame Rate Estimation

After our optimization, we now estimate the frame rate of our implementation. First, the

frame rate of single-core implementation (only ARM) is shown in Table 6.3. It is noted

that the cycles are obtained by encoding 1 I-VOP or P-VOP for each test sequence with a

fixed QP, 4.

Before we estimate the frame rate of dual-core implementation on PAC system, we

introduce the operating frequency of two cores and the transmitting frequency of the bus

as follows.

• ARM core: 200 MHz

• PACDSP core: 200 MHz (real chip)

• Bus: 35 MHz (32 bits width)

• Write data: 2 cycles

• Read data: 1 cycle

There are three major parts in Tables 6.4 and 6.5, which are ARM core, PACDSP

core and the data transmitted on bus. The cycles of the ARM and PACDSP means the

Table 6.2: Data Size Profile of Object-Based MPEG-4 Video Encoder on PACDSP

Coder Memory Usage (Bytes) Total Size

Category Input Output Temporary (Bytes)

ShapeCoder 55,728 3,072 2,597 61,397

MotionCoder 62,459 26,235† 1,743 65,093

Transformer 62,162 61,528†† 608 62,858

†It has 25,344 bytes that uses the same memory space as input data.
††It has 61,440 bytes that uses the same memory space as input data.

95

Table 6.3: Frame Rate Estimation of Single-Core Implementation

I or P-VOP Test Seq.(QCIF) foreman akiyo stefan

ARM (cycles) 19,083,255 22,791,904 9,683,303

I-VOP Execution Time (ms) 95.42 113.96 48.42

Frame Time (fps) 10.5 8.8 20.7

ARM (cycles) 54,578,073 38,005,537 21,053,337

P-VOP Execution Time (ms) 272.89 190.03 105.27

Frame Time (fps) 3.7 5.3 9.5

Note: Operating frequency of ARM926EJ-S is 200 MHz.

execution time of each core. We can get the expected execution time (ms) by dividing

them by the operating frequency. Since our implementation is on a dual-core system,

ARM part need to write data to the memory which could accessed by PACDSP. After the

coding is finished by PACDSP, ARM part need to read the output data from the specific

memory. Note that the clock-rate of bus is 35 MHz and the bus width is 32 bits. In

addition, two cycles are taken for writing data to memory, and only one cycle for reading

data from memory.

We separate the execution time into several groups. The first group, “Others,” coded

only by ARM core, includes the functions: reading frame data, VOP formation, output

bitstream to disk, subsampling, VOP padding (only for inter coding). For intra coding,

the texture padding and shape coding are coded in parallel by ARM core and PACDSP

core, respectively. After the shape bitstreams are transmitted from PACDSP to ARM

part and the texture data are updated from ARM to PACDSP, we start forward transform

on PACDSP. Then, another parallel coding of variable length coding (VLC) and inverse

transform follows the quantized coefficients are transmitted from PACDSP to ARM. How-

ever, we can see the total execution time of our implementation for intra encoding on Ta-

ble 6.4, and the percentage of the total execution time for each group is shown as “%” in

the table. Finally, we can estimate the frame rate of each sequence, which is shown as fps

(frame per second) in the table.

Similar to intra encoding, the execution time of our implementation for inter encoding

96

is shown on Table 6.5. Note that, for the group coded in parallel, we only need to consider

the longer part when we compute the total execution. In other words, the percentage of

the shorter part will be zero of the total execution time.

For the sequence of “stefan” with the smallest VOP size, we can get the best frame

rate which are 33.9 and 43.0 frames per second for the intra encoding and inter encoding,

respectively. For the sequence “akiyo” with the biggest VOP size, which takes a lot of

cycles on VOP formation, we can get about 18-fps for both intra and inter encoding.

Compared to single-core implementation, intra encoding has a averaged speed-up ra-

tio about 124.5%, and the averaged speed-up ratio of inter encoding is about 353.6%.

6.2 Coding Quality and Bit Rates for Different QP

In MPEG-4 video encoder, the quantization follows the DCT computation. Therefore,

the value of quantization step affects the quantized coefficients, which is highly related

to bit-rate and reconstructed video quality. To have a further understanding of how QP

affects the two issues of video encoder, we do some analysis of different QP values in this

section.

In our analysis, we encode 1 I-frame and 100 P-frame in different QP, and the av-

eraged texture bits and PSNR are shown in Table 6.6. Since larger QP introduces more

quantization distortion, the quality decreased with the QP value increased. As a result,

more coefficients are quantized to zero, and the texture bit-rate decreased as well. In ad-

dition, the percentage of skipped blocks increased with larger QP value. Therefore, that

makes the execution time of transformer reduced, and the analysis have been shown in

previous chapter.

97

Table 6.4: Frame Rate Estimation for Intra Encoding of Dual-Core Implementation

Test Seq. (QCIF) foreman akiyo stefan

ARM (cycles) 4,049,467 7,250,105 3,360,106

Others % 54.69 66.91 72.17

ARM (cycles) 414,107 410,254 231,431

TexturePadding % 0 0 0

PACDSP (cycles) 565,928 510,028 321,888

ShapeCoding % 7.64 4.71 6.91

PACDSP (cycles) 169,818 170,404 46,190

Forward Transform % 2.29 1.57 0.99

ARM (cycles) 2,578,148 2,867,222 914,104

VLC % 34.82 26.46 19.63

PACDSP (cycles) 167,278 176,434 51,263

Inverse Transform % 0 0 0

Bus (Write) (bytes) 63,620 65,924 25,988

Bus (Read) (bytes) 76,980 76,980 24,756

% 0.49 0.35 0.29

Execution Time (ms) 37.02 54.18 23.28

Frame Rate (fps) 27.0 18.5 43.0

98

Table 6.5: Frame Rate Estimation for Inter Encoding of Dual-Core Implementation

Test Seq. (QCIF) foreman akiyo stefan

ARM (cycles) 4,640,664 7,760,793 3,737,575

Others % 48.44 70.73 63.33

ARM (cycles) 346,208 492,459 291,998

EncodeVOPHeader % 0 0 0

PACDSP (cycles) 2,175,977 1,336,459 684,103

MotionCoding % 22.72 12.18 11.59

ARM (cycles) 589,291 376,944 162,904

MC Chroma & TexturePadding % 0 0 0

PACDSP (cycles) 1,516,959 570,231 900,265

ShapeCoding % 15.83 5.20 15.25

PACDSP (cycles) 174,424 177,074 46,474

Forward Transform % 1.82 1.61 0.79

ARM (cycles) 1,009,160 1,063,955 510,228

VLC % 10.54 9.70 8.64

PACDSP (cycles) 55,185 59,824 43,142

Inverse Transform % 0 0 0

Bus (Write) (bytes) 125,372 135,868 511,32

Bus (Read) (bytes) 92,472 96,312 31,800

% 0.64 0.60 0.40

Execution Time (ms) 47.89 54.86 29.51

Frame Rate (fps) 20.9 18.2 33.9

99

Table 6.6: Effects on Quality and Bit-Rate of Different QP values

Test Seq. Quality and Bit-Rate

(QCIF) QP = 2 QP = 4 QP = 7 QP = 10 QP = 13

Texture Bits (bpv) 12289.70 4833.48 2180.42 1140.04 822.54

foreman PSNR Y (dB) 42.79 37.91 34.35 32.15 30.49

PSNR U (dB) 44.38 40.97 37.01 35.06 32.82

PSNR V (dB) 44.72 40.93 36.82 34.84 32.75

Texture Bits (bpv) 7108.33 2544.56 1309.92 722.47 610.40

akiyo PSNR Y (dB) 42.43 37.21 33.40 31.08 29.46

PSNR U (dB) 45.76 42.03 37.13 34.70 32.62

PSNR V (dB) 45.18 41.69 36.92 34.84 32.64

Texture Bits (bpv) 8246.52 3801.51 1785.19 943.82 589.71

stefan PSNR Y (dB) 40.53 34.45 30.23 27.37 25.80

PSNR U (dB) 40.58 35.86 32.64 30.78 29.06

PSNR V (dB) 40.52 35.69 32.27 30.25 28.60

Note: bpv = bits per VOP.

100

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we considered the real-time implementation of MPEG-4 object-based video

encoder on PAC system which was a dual-core platform.

We first focused on the correct of encoding the bitstream, and the coded bitstream have

been verified with the reference software of MPEG-4, MoMuSys. Then, we analyzed

the statistics of the MPEG-4 object-based video encoder on PC. Therefore, we had an

initial understand of the encoding flow and the critical part of computation. According to

the analysis, we designed our dual-core structure and implemented the DSP part on the

PACDSP simulator.

After the implementation was verified, we further analyzed the encoding algorithm

and coding flow to find if there was any removable computation. Based on our analy-

sis, we optimized the program sequence to reduce the computation complexity without

too much quality loss or bit-rate increased. In addition, we also utilized several gen-

eral software optimization techniques, such as static rescheduling, loop-unrolling, and

software-pipelining to reduce the stalls.

Finally, the optimization results were discussed. For the best case, stefan, which has

the smallest VOP size, we can encode the MPEG-4 video data over 33 frames and 43

frames per second for intra and inter encoding, respectively. And the program size was

about 27KB, which was smaller than the instruction cache size. In addition, the used data

101

size of each coder was also under the limit of memory provided on PACDSP. Therefore, no

cache missing problem happened in our implementation. In conclusion, the performance

and quality of our implementation of MPEG-4 object-based video encoder on PAC system

was competitive.

7.2 Future Work

There are several improvements and extensions can be considered in the future:

• Add some popular fast motion estimation algorithm

Motion estimation is the most computational part in MPEG-4 video encoder. How-

ever, many fast motion estimation algorithm has been proposed, and used popularly.

We consider to add some fast motion estimation algorithm for flexibility.

• Data structure refinement

The data structure is very important to the implementation on DSPs. If we can

design the more efficient data structure, the memory accesses can be significantly

reduced, and the performance also can be improved.

• Dual-core loading balance

We can find the estimated frame rate in previous chapter, and the bottleneck is still

the execution time of ARM part. If we can move more computation to PACDSP

part, the performance will be improved by the advantage of dual-core implementa-

tion.

• Demonstration on PAC system

We have done the single-core demonstration on ARM926EJ-S platform, and the

major coder on DSP part have been verified on instruction set simulator (ISS) of

PACDSP. Since some coding constraints are not included on the ISS, we still need

to do some modification on our coding, and finally demonstrate our dual-core im-

plementation on the PAC system.

102

• Add other MPEG-4 tools

To simplify our implementation, the error-resilience tool in MPEG-4 simple profile

is neglected. However, this tool is very important when the bitstream is transmit-

ted through real channels. In the future, we need to implement the techniques of

error-resilience, such as resynchronization, data partition, and reversible variable

length coding (RVLC). Moreover, the other advanced profiles of MPEG-4 video

compression technique can be implemented to extend the capability of PACDSP.

103

Bibliography

[1] SoC Technology Center, Industrual Technology Research Institute, PACDSP v2.0 —

Instruction Set Menu. Doc. no. PACDSP2S0000, June 2005.

[2] SoC Technology Center, Industrual Technology Research Institute, PACDSP v3.0

— Software Developer’s Bible — Vol. 1 Software Developer’s Guide. Doc. no.

PACDSP3S0001, Feb. 2006.

[3] SoC Technology Center, Industrual Technology Research Institute, PACDSP

v3.0 — Software Developer’s Bible — Vol. 2 Instruction Set Manual. Doc. no.

PACDSP3S0002, May. 2006.

[4] SoC Technology Center, Industrual Technology Research Institute, PACDSP v3.0

— Software Developer’s Bible — Vol. 3 Programming Constraints and Optimized

Guide. Doc. no. PACDSP3S0003, Apr. 2006.

[5] ISO/IEC 14496-2:2001, Information Technology — Coding of Audio-Visual Objects

— Part 2: Visual. July 2001.

[6] A. Puri and A. Eleftheriadis, “MPEG-4: an object-based multimedia coding stan-

dard supporting mobile applications,” Mobile Networks Applic., vol. 3, pp. 5–32,

1998.

[7] A. Ebrahimi and C. Horne, “MPEG-4 natural video coding — an overview,” Signal

Processing Image Commun., vol. 15, pp. 365–385, 2000.

[8] MPEG-4 Video Group, “MPEG-4 video verification model version 18.0,” doc. no.

ISO/IEC JTC1/SC29/WG11 N3908, Pisa, Jan. 2001.

104

[9] http://www.tnt.uni-hannover.de/project/eu/momusys.

[10] Kun-Bin Lee, Jih-Yiing Lin, and Chein-Wei Jen, “A Multisymbol Context-Based

Arithmetic Coding Architecture for MPEG-4 Shape Coding,” IEEE Trans. Circuits

Systems Video Technology., vol. 15, no. 2, Feb. 2005.

[11] Chung-Yen Tsai, “Software implementation of MPEG-4 video decoder on PACDSP

platform,” M.S. thesis, Department of Electronics Engineering, National Chiao Tung

University, Hsinchu, Taiwan, R.O.C., July 2006.

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-

proach, 3rd ed. San Francisco: Morgan Kaufmann Publishers, 2003.

[13] S. Sriram and C. Y. Hung, “MPEG-2 video decoding on the TMS320C6X DSP

architecture,” in IEEE Signal Systems Computer Conf., vol. 2, Nov. 1998, pp. 1735–

1739.

[14] C. E. Fogg, “Survey of software and hardware VLC architectures,” in Proc. SPIE

Image and Video Compression, vol. 2186, May 1994, pp. 29–37.

[15] R. Prasad and R. Korada, “Efficient implementation of MPEG-4 video encoder on

RISC core,” IEEE Trans. Consumer Electronics, vol. 49, pp. 204–209, Feb. 2003.

[16] N. I. Cho and S. U. Lee, “Fast algorithm and implementations of 2-D discrete cosine

transform,” IEEE Trans. Circuit Syst., vol. 38, pp. 297–305, Mar. 1991.

[17] B. G. Lee, “A new algorithm to compute the discrete cosine transform,” IEEE Trans.

Acoust. Speech Signal Processing, vol. 32, no. 6, pp. 1243–1245, Dec. 1984.

[18] C. Y. Hung and P. Landman, “A compact IDCT design for MPEG video decoding,”

in Proc. IEEE Workshop Signal Processing Systems, Nov. 1997.

[19] G. Plonka and M. Tasche, “Reversible integer DCT algorithms,” preprint, Gerhard-

Mercator-Univ. Duisburg, 2002.

[20] Y. Chen and P. Hao, “Integer reversible transformation to make JPEG loseless,” in

Int. Conf. Siganl Processing, Beijing, China, Sept. 2004, pp. 835–838.

105

[21] T.S. Chang, C.S. Kung, and C.W. Jen, “A simple processor core design for

DCT/IDCT transform,” IEEE Trans. Circuits Syst. Video Technology, vol. 10, no.

3 , pp. 439–447, Apr. 2000.

[22] Texas Instuments, TMS320C64x Image/Video Processing Library — Programmers

Reference, Literature no. SPRU023B, Oct. 2003.

[23] N. Ventroux, J. F. Nezan, H. Raulet, and O. Deforges, “Rapid prototyping for an

optimized MPEG-4 decoder implementation over a parallel heterogenous architec-

ture,” in Proc. Int. Conf. Multimedia Expo, vol. 3, July 2003, pp. 417–420.

[24] K. Ramkishor and U. Gunashree, “Real time implementation of MPEG-4 video de-

coder on ARM7TDMI,” in Proc. Int. Symp. Intelligent Multimedia Video Speech

Processing, May 2001, pp. 522–526.

[25] J. H. Kuo, J. L. Wu, J. Shiu, and K. L. Huang, “A low-cost media-processor based

real-time MPEG-4 video decoder,” in IEEE Int. Conf. Consumer Electronics, June

2002, pp. 272–273.

[26] J. T. J. VanEijndhoven et al., ”TriMedia CPU64 architecture,” in IEEE Int. Conf.

Computer Design, 1999

106

自傳

 江政達，男，民國七十一年十月四日出生於台北縣板橋市。高中就

讀於國立台灣師範大學附屬高級中學，民國九十四年六月畢業於交通

大學電信工程學系，並於同年九月進入交通大學電子工程研究所碩士

班就讀，於民國九十六年六月取得碩士學位，論文題目為:『MPEG-4

物件視訊編碼器在 PACDSP 平台上之軟體實現』，研究範圍與興趣為：

軟、硬體和 DSP 平台上之系統整合與開發，主要應用範圍在多媒體訊

號處理與壓縮方面。

	cover_xiaogee.doc
	xiaogee_abstract.doc
	Department of Electronics Engineering

	誌謝.doc
	blank.pdf
	9411662.pdf
	Biography_xiaogee.doc

