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摘要 

 

隨著積體電路設計的複雜度一直在增加，因為導通孔的故障而損失的良率也是越

來越嚴重。比較被大家知道也被高度推薦的方法是在每個導通孔旁邊加入冗餘導通孔

以減少因為導通孔的故障而損失的良率。雙導通孔插入一般都是在後佈局階段執行。

在此論文中，我們提出了一個建立圖表的演算法來處理冗餘導通孔插入，以達到較高

的雙導通孔插入率。首先利用所提出的建立圖表演算法從已知的佈局建立一個有方向

性的圖表以同時考慮所有的導通孔。接著從這個有方向性的圖表中，利用最小花費與

最大流量這個方法去找出最多的雙導通孔。另外，我們提出了一個可以在工程修改命

令之後有效率地更新雙導通孔插入的方法。根據實驗結果可以得知我們所提出的方法

都能產生不錯的結果。
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Abstract 
 
 As the integrated circuits design complexity is continuously increasing, the yield loss 
due to via failure becomes more significant. Adding a redundant via adjacent to each single 
via is a well known and highly recommended method to reduce yield loss due to via failure. 
Generally, redundant via insertion is performed at the post-layout stage. In this thesis, we 
propose a graph construction algorithm for the redundant via insertion problem to reach a 
higher insertion rate for improving the manufacturing yield. First we construct a directed 
conflict graph from the given routing result to consider all the vias of a design 
simultaneously. Then we use minimum cost maximum flow to find the maximum number 
of double-vias from the directed conflict graph. In addition, due to design ECO, we present 
an algorithm to update the solution very efficiently. The experimental results show our 
algorithms perform well. 
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Chapter 1

Introduction

With the advance of integrated circuits technologies, it becomes more and more

difficult to maintain the manufacturability and high chip yield. Hence a new design

methodology, design for manufacturability (DFM) methodology, has been suggested

to improve chip yield and manufacturability of a design [12] [16] [2], among the

important issues we studied the redundant via insertion problem.

In integrated circuits, vias are components to connect wire segments on different

metal layers. Figure 1.1 shows the single via structure. As the design complexity

is continuously increasing, the number of vias becomes larger and larger. However,

vias may fail partially or completely due to various reasons such as electromigration,

cut misalignment, random defects, and/or thermal stress induce voiding effects [11]

[5] [10]. A complete failure will introduce a broken net, and a partial failure will

increase the resistance of the contact and lead to timing problems. Therefore, it

becomes more and more important to consider yield loss due to via failure and

reduce it among DFM problems.

Adding a redundant via adjacent to each single via is a well known method to

improve via yield and reliability. A single via together with redundant vias inserted

next to it without violating any design rule is defined as a double via, and Figure

1.2 shows the top view and 3D structure of double via. If one single via fails, its
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Figure 1.1: Single via structure. (a) Top view. (b) 3D view.

Figure 1.2: Redundant via structure. (a) Top view. (b) 3D view.

redundant one can still work to take the place of the failing one. Both vias failing

simultaneously is less possible than a single via failure and [13] illustrates that double

vias lead to 10X-100X smaller failure rate than single vias. Besides, after adding a

redundant via, the whole via resistance is reduced.

Redundant via insertion has been greatly recommended by major foundries for

their 90nm and 65 nm processes to improve the yield [1]. Many major EDA vendors

such as Cadence and Synopsys have already combined the redundant via insertion

with their latest routers. Among recent researches about redundant via insertion,

the objective is to maximize the number of double vias. For example, Figure 1.3

(a) represents the original design. In Figure 1.3 (b), we can see that only two single

vias can be replaced with double vias. But in Figure 1.3 (c), all the three single vias

can be replaced with double vias, which is better because of higher redundant via

insertion rate.

2



Figure 1.3: Illustration of redundant via insertion.

Therefore, the yield loss due to via failure becomes more important and the re-

lated researches are all about redundant via insertion, but how to find the maximum

number of redundant vias is a challenge. This thesis presents a method to find the

maximum number(almost) of redundant vias to improve yield. Besides, if we have

already found the maximum number of redundant vias as our solution from the

given layout before some ECO changes, how to efficiently update the solution after

ECO-design becomes the second goal of our thesis.
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1.1 Our Contributions

In this thesis, we propose a graph construction algorithm to solve the redundant via

insertion problem to reach a higher rate for improving the manufacturing yield. First

we use our graph construction algorithm to construct the directed conflict graph from

the given routing result to consider all the vias of a design simultaneously. Then

we use minimum cost maximum flow to find the maximum number of redundant

vias from the directed conflict graph. Experimental results show that our algorithm

can get almost optimal solution for improving the redundant via insertion rate. In

addition, after ECO for the whole design, we can efficiently update the solution

by incremental algorithm. The experimental results show it is very efficient for

updating the optimal solution.

1.2 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 gives the preliminaries

of this thesis and problem formulation. Chapter 3 is our complete methodology

to solve the redundant via insertion problem. Chapter 4 presents the incremental

algorithm to update the optimal solution after ECO-design. Chapter 5 shows the

experimental results, then we conclude this thesis in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we will describe what double-cut vias mean, why we insert redundant

via in the post-routing stage, and the problem formulation.

2.1 Double-Cut Vias

A single via together with redundant vias inserted next to it without violating any

design rule is defined as a double via, and it is feasible if replacing the single via

with the double via will not violate any design rule, assuming none of the other

single vias has any redundant via inserted in the design; otherwise the double via is

defined as an infeasible one.

A double-cut via means that a single via together with just only one redundant

via inserted next to it, actually a single via can have at most four redundant vias

inserted next to it if without violating any design rule. Therefore, according to the

position of the redundant via, a double-cut via can be classified into four types as

shown in Figure 2.1; a single via is illustrated in (a) and its position is defined at its

center; (b), (c), (d), and (e) are the four types of double-cut vias, which are named

DVU, DVR, DVD and DVL respectively. So if given a single via i, its double-cut

via of type j (j∈ DVU, DVR, DVD, DVL)is denoted by dv(i,j).
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Figure 2.1: Illustration of double-cut via types [8].

2.2 Previous Works

Several works have proposed different issues about redundant via insertion problem,

such as [3], [9], [8], [7], [4], [14] and [15]. The given methods in these works are

performed either during the routing stage or post-routing stage. The purposes of

these methods are achieving higher redundant via insertion rate to improve reliability

and yield.

2.2.1 Redundant Via Insertion During Routing Stage

[14] and [15] both consider redundant via insertion in the routing stage. During maze

routing, [14] transforms the problem to a multiple constraint shortest path problem,

and solves it by Lagrangian relaxation technique. But the high time complexity

of Lagrangian relaxation limits the problem size. [15] presents an improved multi-

level Full-chip routing system which integrates global routing and detailed routing

algorithms to achieve great enhancement in yield and reliability considering the re-

dundant via insertion. It minimizes the number of vias first and inserts redundant

vias later.

2.2.2 Redundant Via Insertion During Post-Routing Stage

However, considering redundant via insertion during routing stage may degrade

routability and increase the number of vias. Besides, post-routing ECO operations
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may change routing results and introduce extra vias into designs for the purpose of

fixing timing and other problems. Therefore it is usually to perform redundant via

insertion after the routing stage to improve the yield and reliability of vias.

[3] solves the redundant via insertion problem in the post-routing stage but does

not provide further details. [9] considers the single vias individually to perform

redundant via insertion and the solution is locally optimal. [4] formulates the re-

dundant via insertion problem as a bipartite matching problem, which can solve the

problem optimally when the design only involves at most three layers. [7] consid-

ers redundant via insertion, line end extension and via density simultaneously, and

presents a two-stage approach to solve the problem. [8] presents an efficient conflict

graph construction algorithm, each node in the conflict graph represents the feasible

via. Therefore, finding out the maximum number of nodes of the conflict graph also

means that finding out the maximum number of single vias each of which can be

replaced with a double-cut via. Hence a maximum independent set (MIS) of the

conflict graph is a set having the maximum number of double-cut vias that can be

inserted into the design. [8] also presents an MIS heuristic to solve the problem,

but the time complexity is considerably high. The definition of the conflict graph is

given as follows [8] :

Definition 2.1 (Conflict graph)

A conflict graph G(V,E) is a undirected graph constructed from a detail routing

solution. For each single via v on a single net, if its redundant-via candidate is

feasible, there exists a vertex Vi,j in V. An edge (V1,V2)∈ E if and only if V1 and V2

come from the same single via, or they conflict with the other when they both exist

in the design.

Figure 2.2 shows the construction of conflict graph, as we can see.

7



2.3 Problem Formulation

Now we define the post-routing redundant via insertion problem same as [8] as

follows:

Problem 2.1 Given a detailed routing solution without re-routing any signal

net, the problem asks to replace single vias on signal nets with double-cut vias as

many as possible such that no design rule is violated after double-cut via insertion.

Figure 2.2: An example of conflict graph construction [8]. (a)Routing layout.
(b)Resulting conflict graph.
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Chapter 3

Methodology

Here we present a directed conflict graph construction algorithm for the redundant

via insertion problem, then solve it by the minimum cost maximum flow on the

directed conflict graph. In this chapter, we detail the algorithms in each section.

3.1 Directed Conflict Graph

[8] have already presented an undirected conflict graph algorithm to formulate the

redundant via insertion problem as the maximum independent set (MIS) problem,

but the MIS problem is an NP-hard problem, so it is unlikely can get an optimal

solution in polynomial time. However, there are many flow works for different pur-

poses and constraints for directed graph and some of the flow works can be expressed

as linear programs, so we can update the applicable flow works to get the solution we

want without high time complexity. Therefore, we decide to construct the directed

conflict graph.

Before constructing the directed conflict graph, we have to know some features

about the nodes and edges in directed conflict graph. Each node represents the

original via or the feasible via, and each edge has capacity and cost. We break edges

into two sets: solid and dash; solid edges connect single via with its related feasible

via or connect feasible vias which conflict with each other on the same layer, and

9



dash edges connect conflict feasible vias on different via layers. Hence a node will

have two dashed edges at most, one is for upper layer and the other one is for lower

layer, like the example shown in Figure 3.1, r1 conflicts with r2 for upper layer and

r1 conflicts with r3 for lower layer. Hence r1 has two dashed edges in our directed

conflict graph.

The steps of the construction of the directed conflict graph is shown as follows:

Step 1. Dummy node ”s” and dummy node ”t” are added as ”source” and ”sink”.

Step 2. Connect ”s” to original via node with edge assigned capacity 1, zero cost.

Step 3. Connect original via node to its related feasible node with edge assigned

capacity 1 and non-zero(x) cost.

Step 4. Connect feasible nodes each of which conflict with each other on the same

layer with solid edge with capacity 1 and zero cost. Assign the direction arbitrary.

Step 5. Connect feasible nodes each of which conflict with each other on different

layers with dash edge with capacity 1 and non-zero(y) cost.

Step 6. Assign color green(thin) to the dash edge connecting two nodes that these

two nodes without any other dash edge. Assign the direction of this green edge

arbitrary.

Step 7. For each node with two dash edge, assign color green(thin) to the dash edge

of which original via node with minimum out-degree. Assign direction to the green

dash edge arbitrary. Assign red(thick) edge to the other dash edge, this red(thick)

edge represents the potential conflict of the solution.

Step 8. Connect the node with green edge and rest of feasible node to node ”t”

with edge assigned capacity 1, zero cost.

Figure 3.2 shows that the original design and its directed conflict graph. In

Figure 3.2(a), V4 has one feasible via without conflict with others and only V5 has

no feasible vias, so we will not put them into our directed conflict graph. In Figure

10



Figure 3.1: An example of conflict condition. (a)Layout solution. (b)Simple directed
conflict graph.
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3.2(b), V3 has two feasible nodes, r3 and r5, but V2 only has one feasible node

r2. Therefore, out-degree of V2 is lower than out-degree of V3, so we assign (r2,r1)

green(thin) color and assign (r1,r3) red(thick) color. Last, make (r1,r3) thicker than

other green edges.

Considering our directed conflict graph G(V,E), and a maximum set V’ of G is a

maximum vertex set such that, ∀ vi, ri ∈ V’, (vi, ri)∈ E(solid edge). A vertex vi of G

represents the single via and a vertex ri of G represents a feasible double via, hence,

(vi,ri) represents a double-cut via. Therefore, we want to find the maximum number

of the pairs of (vi,ri) for the redundant via insertion problem, so the maximum set of

G is a set having the maximum number of double-cut vias. Hence, we can formulate

our Problem 2.1 as the new Problem 3.1.

Problem 3.1 Given a detailed routing solution, without re-routing any signal

net, constructing this solution to our directed conflict graph. Then find out the

maximum set of the directed conflict graph. Any pair of vertexes in the maximum

set represents the single via each of which can be replaced by feasible double-cut via.

In the next section we will show how we find the maximum set of the directed

conflict graph.

3.2 Minimum Cost Maximum Flow (MCMF)

We use a linear program, Minimum Cost Maximum Flow (MCMF), to solve the

problem 3.1 on our directed conflict graph, and we can find out the optimal solution

in polynomial time in most designs. The details are presented in the following

subsections.

12



Figure 3.2: Construction of directed conflict graph. (a)Routing layout. (b)Resulting
directed conflict graph.
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3.2.1 Maximum Flow

We are given a directed graph G(V,E) in which each edge (u,v)∈ E has a nonnegative

capacity cap(u,v)≥ 0, and two distinguished vertices, a source s and a sink t. A

maximum flow is a flow that not only satisfies three properties, capacity constraints,

skew symmetry and flow conservation, but also maximizes the flow value which is the

total flow coming out of the source. The maximum flow problem can be expressed

as a linear program, and the value of a flow is also a linear function. Assuming that

cap(u,v) = 0 if (u,v)/∈ E, then the maximum flow problem is as follows:

Maximize
∑
v∈ V

f(s, v) (3.1)

Subject to

f(u, v) ≤ cap(u, v) for each u, v ∈ V, (3.2)

f(u, v) = −f(v, u) for each u, v ∈ V (3.3)

∑
v∈ V

f(u, v) = 0 for each u, v ∈ V − {s, t} (3.4)

3.2.2 Minimum Cost Flow

Given a directed graph G(V,E) in which each edge (u,v)∈ E has, in addition to a

capacity cap(u,v), a real valued cost c(u,v). If we send f(u,v) units of flow over edge

(u,v), we incur a cost of c(u,v)f(u,v). We wish to send X units of flow from s to

t in such a way that the total cost incurred by the flow,
∑

(u,v)∈ E c(u, v)f(u, v), is

minimized. This problem is known as the minimum cost flow problem. We also can

express the minimum cost flow problem as a linear program that is similar to the

one for the maximum flow problem with the additional constraint, the value of the

flow be exactly X units. Here is the minimum cost flow problem:

Minimize
∑

(u,v)∈E

c(u, v)f(u, v) (3.5)

14



Subject to

f(u, v) ≤ cap(u, v) for each u, v ∈ V (3.6)

f(u, v) = −f(v, u) for each u, v ∈ V (3.7)

∑
v∈ V

f(u, v) = 0 for each u, v ∈ V − {s, t} (3.8)

∑
v∈ V

f(s, v) = X (3.9)

3.2.3 Solving the Problem

From the our problem 3.1, we want to find the maximum number of the pairs of (vi,ri)

from our directed conflict graph, and if two feasible via nodes are the endpoints of

a edge, only one of them will be chosen because of the conflict. We assign all the

edges in directed conflict graph capacity 1, and all the single vias nodes connect

with source s, if f (s,vi) equal to 1 then their must be a f (vi,ri) also equal to 1.

This condition represents we choose single via vi to be replaced by a double-cut via

(vi,ri). A single via vi has at most four feasible double vias, and have to choose the

less conflict feasible double via because of higher redundant via insertion rate. We

can give lower cost for less conflict and higher cost for high conflict. Therefore, we

only have to select the edge which has lower cost from single via, the other endpoint

of the edge is the feasible via node, to avoid conflict with others.

Hence, we can use the minimum cost flow to select less conflict feasible via nodes

and maximum flow to find the maximum number of double-cut vias simultaneously.

Therefore we solve problem 3.1 by the Minimum Cost Maximum Flow.

Before running MCMF, we should remove red edges first because that the red(thick)

edge is the potential conflict of the solution. If there was a red edge between the

15



selected feasible via nodes, these two nodes are conflict. Hence we should move one

of the nodes to another feasible via node without conflict by breadth-first-search

(BFS), if no other feasible via node without conflict, one conflict feasible via node

would be removed. However, if we assign high cost on the edge into the node that

had red edge, the possibility of conflict would be reduced.

Actually, if the cost of green(thin) edge is y and the cost of the edge from single

via node to feasible via node without red(thick) edge is x, then the cost of the edge

from single via node to feasible via node with red(thick) edge is at least x+y+1.

Therefore, this cost condition can reduce the possibility of conflict.

Figure 3.3(a) shows another design and Figure 3.3(b) shows the related directed

conflict graph. Figure 3.4(a) is a solution after MCMF, but there is a conflict

between node r1 and node r3 because of red edge. We solve the conflict by choosing

r4 instead of r1, then the optimal solution is shown in Figure 3.4(b).
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Figure 3.3: Another example of construction of directed conflict graph. (a)Routing
layout. (b)Resulting directed conflict graph.
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Figure 3.4: Two solutions from problem 3.1 of Figure 3.3. (a)Conflict solution
because r1 conflicts with r3. (b)Best solution.
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Chapter 4

ECO for Changing Routing Layout

An engineering change order (ECO) is a request to make design changes, typically

during the chip implementation cycle. ECO changes are almost always unavoidable

and updating the design with an incremental change not only saves considerable

effort in realizing the design but also reduce the possible of introducing new errors

into the design. The ECO problem involves the ability to specify the incremental

design changes, implement the design changes and update all design databases to

reflect the changes.

If engineers need to change only a small portion of the layout solution, involving

adding a via or removing a via, running the all processes include directed conflict

graph construction and MCMF to find the maximum number of double-cut vias is

very time-consuming. The efficient way is to find the affected set and update the

maximum number of double-cut vias during this set. [6] has already presented an

incremental algorithm for maximum flow, but they do not consider minimum cost

flow. Note that sometimes adding (removing) a single via may not change the the

solution of the redundant via insertion, because the feasible via of this single via

may conflict with another feasible vias of different single via.
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4.1 An Incremental Algorithm for Updating the

Solution

Here we present an incremental algorithm which updating the solution of the redun-

dant via insertion problem after a single via is added or removed. When a single via

is added or removed, its feasible via should be added into the directed conflict graph

or its feasible via should be removed from directed conflict graph. Hence, there

may exist some single vias or feasible vias which are affected after adding(removing)

single vias or feasible vias. We find the affected set in our directed conflict graph

first and then update the maximum number of double-cut vias during this set later.

When a single via Vi is added (removed), we put the single via and its feasible

via into the work set, which is for finding the affected vias. Then finding the affected

single vias and feasible vias from the work set in our directed conflict graph, and

also put the affected single vias and feasible vias into work set and affected set

which contains all the affected vias. If there is no affected single vias and feasible

vias, we chalk up the maximum number S1 of redundant via insertion problem

among these affected single vias. Later, we update the directed conflict graph by

adding(removing) the single via Vi and its related feasible vias, and use MCMF

to get the new solution S2 of redundant via insertion problem among these affected

vias. Therefore, the difference between S1 and S2 is the update solution of redundant

via insertion problem after ECO-design. The incremental algorithm is summarized

in Figure 4.1.

Let us now analyze the complexity of finding the affected vias. The loop in

lines 2-15 of our incremental algorithm performs exactly |AFFECTED| iterations.

The iteration corresponding to vertex x takes O|Find(x)| time in case of our in-

cremental algorithm. Therefore, the running time of finding the affected vias are

O(
∑

x∈AFFECTED | Find(x) |).
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Figure 4.1: Overview of the incremental algorithm for update the redundant via
insertion porblem.
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Chapter 5

Experimental Results

We implemented our approach in the C++ Programming language and the platform

is on Linux based machine with two CPUs and 14GB memory.

The set of test cases we used is from [8]. Table 5.1 shows the detail information

of the set of test cases; for each test case, the first column gives the test circuit name,

”Size(µm)” shows the layout dimension, ”#Nets” gives the number of nets, ”#I/Os”

shows the number of pins, ”#Vias” gives the total number of single vias, ”#D-Vias”

shows the number of single vias each of which has at least one feasible double-cut

via, and ”#Layers” gives the number of metal layers used. Finally, ”#Objects”

gives the total number of layout objects including pins, vias, blockages and wire

segments.

Table 5.1: The information of five test cases [8].

Case Size(µm) #Nets #I/Os #Vias #D-Vias #Layers #Objects
C1 350.000*350.000 4309 20 24594 17522 5 218215
C2 419.433*413.28 5252 211 41157 28591 5 268669
C3 799.124*776.16 18157 85 127059 91727 5 933852
C4 691.272*680.400 17692 415 151912 102347 5 943073
C5 1383.482*1375.92 44720 99 357386 255301 5 2851612

We used conflict graph [8] as our input file for each test case and the static about
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the conflict graph are shown in Table 5.2. ”#Nodes” gives the number of nodes in

the conflict graph (i.e., the number of feasible double-cut vias) and ”#Edges” shows

the number of conflict edges.

Table 5.2: Statistics on conflict graphs.

Case #Nodes #Edges
C1 38829 33990
C2 61369 50430
C3 200051 169407
C4 200311 147353
C5 529039 415765

We break the conflict graph into two sets: double vias set and conflict set. Then

we constructed our directed conflict graph from conflict set of each case. Table

5.3 shows the related results. ”#D-CUT” shows the number of single vias each

of which has at least one redundant via location without any conflict with oth-

ers, ”#D Nodes” gives the number of the nodes in our directed conflict graph,

”#D Edges” shows the number of solid edges and green edges, and ”#Red Edges”

gives the number of red edges in out directed conflict graph. Finally, ”CPU1(s)”

shows the related execution time. We can find that the sizes including nodes and

edges of our directed conflict graphs are very small; therefore, it is very good for the

multi-core/parallel computation.

Table 5.3: Statistics on directed conflict graphs.

Case #D-CUT #D Nodes #D Edges #Red Edges CPU1(s)
C1 17396 256 382 2 0.88
C2 28414 361 541 4 1.61
C3 91152 1177 1775 16 6.10
C4 101108 2515 3787 53 14.36
C5 253440 3806 5747 45 16.92

We compare our directed conflict graph algorithm with H2K algorithm proposed
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in [8]. The results are shown in Table 5.4. In the table, ”CPU2(s)” gives the

execution time for running minimum cost maximum flow, ”#R-Vias” shows the

number of double-cut vias found from directed conflict graph after running minimum

cost maximum flow, ”#D-Total” gives the number of total double-cut vias from

the original design, and ”Rate(O)” is equal to ”#D-Total” divided by ”#D-Vias”

shown in Table 5.1. ”H2K” shows the number of inserted double-cut vias by H2K,

”Rate(H2K)” is equal to ”H2K” divided by ”#D-Vias”.

Table 5.4: The experimental results on test cases: Comparison for post-routing
redundant via insertion with H2K [8]. We insert more redundant vias than H2K on
C4 circuit.

Case CPU2(s) #R-Vias #D-Total Rate(O) H2K Rate(H2K)
C1 0.02 65 17461 99.65% 17461 99.65%
C2 0.03 93 28507 98.13% 28507 98.13%
C3 0.05 309 91461 99.71% 91461 99.71%
C4 0.11 658 101766 99.43% 101765 99.43%
C5 0.42 988 254428 99.66% 254428 99.66%

From Table 5.4, we can see that our algorithm inserts more redundant vias

than H2K on C4 circuit, and inserts the same number of redundant vias on the

other circuits. So our algorithm is a better solution to find the optimal solution.

And From Table 5.5, our algorithm also works very fast. We also list the CPU

time of H2K [8] including the time spent by graph construction for reference. [8]

implemented H2K in C++ language running on a Linux based machine with 2.4G

processor and 2GB memory.

Table 5.6 shows the timing compare between full process and incremental al-

gorithm after ECO-design on C5 circuit. ”#Changes” represents the number of

changes after ECO-design, ”#E-Total” gives the number of total double-cut vias

after ECO-design, ”CPUF(s)” represents the total runtime includes directed graph

construction and MCMF after ECO-design to solve the redundant via insertion prob-
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Table 5.5: CPU time of our algorithm and H2K [8] from different platform. Our
input file is the conflict graph from [8] and their input file is the layout solution.

Case Total Run time: CPU1(s)+CPU2(s) CPU(s) H2K
C1 0.88 32
C2 1.64 43
C3 6.15 192
C4 14.47 203
C5 17.34 710

lem, and ”CPUI(s)” gives the runtime of incremental algorithm includes finding the

affected set and MCMF to update the solution of the redundant via insertion after

ECO-design. On average, our incremental algorithm obtains 24X runtime speedup.

Table 5.6: The timing comparison between full process and incremental algorithm
after ECO-design on C5 circuit. CPUF(s) represents the total runtime includes
directed graph construction and MCMF after ECO-design to solve the redundant
via insertion problem. CPUI(s) gives the runtime of incremental algorithm includes
finding the affected set and MCMF to update the solution of the redundant via
insertion after ECO-design.

#Changes #E-Total CPUF(s) CPUI(s)
10 992 17.11 1.01
15 988 17.28 1.24
15 994 17.28 1.77
20 989 17.30 2.74
20 994 17.30 2.74

Comp. 10.65 1
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Chapter 6

Conclusion

In this thesis, we propose a graph construction algorithm to solve the redundant via

insertion problem to reach a higher rate for improving the manufacturing yield. First

we use our graph construction algorithm to construct the directed conflict graph from

the given routing result to consider all the vias of a design simultaneously. Then

we use minimum cost maximum flow to find the maximum number of redundant

vias from the directed conflict graph. Experimental results show that our algorithm

can get almost optimal solution for improving the redundant via insertion rate in

polynomial time. In addition, after ECO for the whole design, we can efficiently

update the solution by incremental algorithm. The experimental results show it is

very efficient for updating the optimal solution.
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