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Abstract

As the integrated circuits design complexity is continuously increasing, the yield loss
due to via failure becomes more significant. Adding a redundant via adjacent to each single
via is a well known and highly recommended method to reduce yield loss due to via failure.
Generally, redundant via insertion is performed at the post-layout stage. In this thesis, we
propose a graph construction algorithmfor: the redundant via insertion problem to reach a
higher insertion rate for improving the manufacturing yield. First we construct a directed
conflict graph from the given routing result. to- consider all the vias of a design
simultaneously. Then we use minimum cost maximum flow to find the maximum number
of double-vias from the directed-conflict-graph=In addition, due to design ECO, we present
an algorithm to update the solution very efficiently. The experimental results show our
algorithms perform well.
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Chapter 1

Introduction

With the advance of integrated circuits technologies, it becomes more and more
difficult to maintain the manufacturability ‘and.high chip yield. Hence a new design
methodology, design for manufacturability (DFM ) methodology, has been suggested
to improve chip yield and manufacturability of a design [12] [16] [2], among the

important issues we studied the redundantivia-insertion problem.

In integrated circuits, vias are components to connect wire segments on different
metal layers. Figure 1.1 shows the single via structure. As the design complexity
is continuously increasing, the number of vias becomes larger and larger. However,
vias may fail partially or completely due to various reasons such as electromigration,
cut misalignment, random defects, and/or thermal stress induce voiding effects [11]
[5] [10]. A complete failure will introduce a broken net, and a partial failure will
increase the resistance of the contact and lead to timing problems. Therefore, it
becomes more and more important to consider yield loss due to via failure and

reduce it among DFM problems.

Adding a redundant via adjacent to each single via is a well known method to
improve via yield and reliability. A single via together with redundant vias inserted
next to it without violating any design rule is defined as a double via, and Figure

1.2 shows the top view and 3D structure of double via. If one single via fails, its
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redundant one can still work to take jche'place of the failing one. Both vias failing
simultaneously is less possible than a single via failure and [13] illustrates that double
vias lead to 10X-100X smaller failure rate than single vias. Besides, after adding a

redundant via, the whole via resistance is reduced.

Redundant via insertion has been greatly recommended by major foundries for
their 90nm and 65 nm processes to improve the yield [1]. Many major EDA vendors
such as Cadence and Synopsys have already combined the redundant via insertion
with their latest routers. Among recent researches about redundant via insertion,
the objective is to maximize the number of double vias. For example, Figure 1.3
(a) represents the original design. In Figure 1.3 (b), we can see that only two single
vias can be replaced with double vias. But in Figure 1.3 (c), all the three single vias
can be replaced with double vias, which is better because of higher redundant via

insertion rate.
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Figure 1.3: lustration of redundant via insertion.

Therefore, the yield loss due to via failure becomes more important and the re-
lated researches are all about redundant via insertion, but how to find the maximum
number of redundant vias is a challenge. This thesis presents a method to find the
maximum number(almost) of redundant vias to improve yield. Besides, if we have
already found the maximum number of redundant vias as our solution from the
given layout before some ECO changes, how to efficiently update the solution after

ECO-design becomes the second goal of our thesis.



1.1 Owur Contributions

In this thesis, we propose a graph construction algorithm to solve the redundant via
insertion problem to reach a higher rate for improving the manufacturing yield. First
we use our graph construction algorithm to construct the directed conflict graph from
the given routing result to consider all the vias of a design simultaneously. Then
we use minimum cost maximum flow to find the maximum number of redundant
vias from the directed conflict graph. Experimental results show that our algorithm
can get almost optimal solution for improving the redundant via insertion rate. In
addition, after ECO for the whole design, we can efficiently update the solution
by incremental algorithm. The experimental.results show it is very efficient for

updating the optimal solution.

1.2 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 gives the preliminaries
of this thesis and problem formulation. Chapter 3 is our complete methodology
to solve the redundant via insertion problem. Chapter 4 presents the incremental
algorithm to update the optimal solution after ECO-design. Chapter 5 shows the

experimental results, then we conclude this thesis in Chapter 6.



Chapter 2

Preliminaries

In this chapter, we will describe what double-cut vias mean, why we insert redundant

via in the post-routing stage, and the, problém formulation.

2.1 Double-Cut Vias

A single via together with redundant vias inserted next to it without violating any
design rule is defined as a double via, and it is feasible if replacing the single via
with the double via will not violate any design rule, assuming none of the other
single vias has any redundant via inserted in the design; otherwise the double via is

defined as an infeasible one.

A double-cut via means that a single via together with just only one redundant
via inserted next to it, actually a single via can have at most four redundant vias
inserted next to it if without violating any design rule. Therefore, according to the
position of the redundant via, a double-cut via can be classified into four types as
shown in Figure 2.1; a single via is illustrated in (a) and its position is defined at its
center; (b), (c), (d), and (e) are the four types of double-cut vias, which are named
DVU, DVR, DVD and DVL respectively. So if given a single via i, its double-cut
via of type j (j¢ DVU, DVR, DVD, DVL)is denoted by duv(,j).
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Single via DVU DVR DVD DVL

Figure 2.1: Illustration of double-cut via types [8].

2.2 Previous Works

Several works have proposed different issues about redundant via insertion problem,
such as [3], [9], [8], [7], [4], [14] and [15]. The given methods in these works are
performed either during the routing stageror.post-routing stage. The purposes of
these methods are achieving higherredundant via insertion rate to improve reliability

and yield.

2.2.1 Redundant Via Insertion During Routing Stage

[14] and [15] both consider redundant via insertion in the routing stage. During maze
routing, [14] transforms the problem to a multiple constraint shortest path problem,
and solves it by Lagrangian relaxation technique. But the high time complexity
of Lagrangian relaxation limits the problem size. [15] presents an improved multi-
level Full-chip routing system which integrates global routing and detailed routing
algorithms to achieve great enhancement in yield and reliability considering the re-
dundant via insertion. It minimizes the number of vias first and inserts redundant

vias later.

2.2.2 Redundant Via Insertion During Post-Routing Stage

However, considering redundant via insertion during routing stage may degrade

routability and increase the number of vias. Besides, post-routing ECO operations



may change routing results and introduce extra vias into designs for the purpose of
fixing timing and other problems. Therefore it is usually to perform redundant via

insertion after the routing stage to improve the yield and reliability of vias.

[3] solves the redundant via insertion problem in the post-routing stage but does
not provide further details. [9] considers the single vias individually to perform
redundant via insertion and the solution is locally optimal. [4] formulates the re-
dundant via insertion problem as a bipartite matching problem, which can solve the
problem optimally when the design only involves at most three layers. [7] consid-
ers redundant via insertion, line end extension and via density simultaneously, and
presents a two-stage approach to solve the problem. [8] presents an efficient conflict
graph construction algorithm, each,node in the eonflict graph represents the feasible
via. Therefore, finding out the maximum aumber.of nodes of the conflict graph also
means that finding out the maximum number.of single vias each of which can be
replaced with a double-cut via. Hence a maximutim independent set (MIS) of the
conflict graph is a set having the maximum number of double-cut vias that can be
inserted into the design. [8] also presents an MIS heuristic to solve the problem,
but the time complexity is considerably high. The definition of the conflict graph is

given as follows [8] :
Definition 2.1 (Conflict graph)

A conflict graph G(V,E) is a undirected graph constructed from a detail routing
solution. For each single via v on a single net, if its redundant-via candidate is
feasible, there exists a vertex Vi ; in V. An edge (V1,V2)e E if and only if Vi and Vs,
come from the same single via, or they conflict with the other when they both exist

in the design.

Figure 2.2 shows the construction of conflict graph, as we can see.



2.3 Problem Formulation

Now we define the post-routing redundant via insertion problem same as [8] as

follows:

Problem 2.1 Given a detailed routing solution without re-routing any signal
net, the problem asks to replace single vias on signal nets with double-cut vias as

many as possible such that no design rule is violated after double-cut via insertion.

Single via

1/

}_

\Y%| V3

(a)

clelc

(b)

Figure 2.2: An example of conflict graph construction [8]. (a)Routing layout.
(b)Resulting conflict graph.



Chapter 3

Methodology

Here we present a directed conflict graph construction algorithm for the redundant
via insertion problem, then solve it by the minimum cost maximum flow on the

directed conflict graph. In this chapter,we detail the algorithms in each section.

3.1 Directed Conflict:Graph

[8] have already presented an undirected conflict graph algorithm to formulate the
redundant via insertion problem as the maximum independent set (MIS) problem,
but the MIS problem is an NP-hard problem, so it is unlikely can get an optimal
solution in polynomial time. However, there are many flow works for different pur-
poses and constraints for directed graph and some of the flow works can be expressed
as linear programs, so we can update the applicable flow works to get the solution we
want without high time complexity. Therefore, we decide to construct the directed

conflict graph.

Before constructing the directed conflict graph, we have to know some features
about the nodes and edges in directed conflict graph. Each node represents the
original via or the feasible via, and each edge has capacity and cost. We break edges
into two sets: solid and dash; solid edges connect single via with its related feasible

via or connect feasible vias which conflict with each other on the same layer, and



dash edges connect conflict feasible vias on different via layers. Hence a node will
have two dashed edges at most, one is for upper layer and the other one is for lower
layer, like the example shown in Figure 3.1, r1 conflicts with r2 for upper layer and
rl conflicts with r3 for lower layer. Hence r1 has two dashed edges in our directed

conflict graph.

The steps of the construction of the directed conflict graph is shown as follows:
Step 1. Dummy node ”s” and dummy node ”"t” are added as ”"source” and ”sink”.
Step 2. Connect ”s” to original via node with edge assigned capacity 1, zero cost.
Step 3. Connect original via node to its related feasible node with edge assigned
capacity 1 and non-zero(x) cost.

Step 4. Connect feasible nodes each of which conflict with each other on the same
layer with solid edge with capacity 1 and zero.cost.  Assign the direction arbitrary.
Step 5. Connect feasible nodes:each of which conflict with each other on different
layers with dash edge with capacity 1 and non-zere(y) cost.

Step 6. Assign color green(thin) to the dash edge connecting two nodes that these
two nodes without any other dash edge. Assign the direction of this green edge
arbitrary.

Step 7. For each node with two dash edge, assign color green(thin) to the dash edge
of which original via node with minimum out-degree. Assign direction to the green
dash edge arbitrary. Assign red(thick) edge to the other dash edge, this red(thick)
edge represents the potential conflict of the solution.

Step 8. Connect the node with green edge and rest of feasible node to node "t”

with edge assigned capacity 1, zero cost.

Figure 3.2 shows that the original design and its directed conflict graph. In
Figure 3.2(a), V4 has one feasible via without conflict with others and only V5 has

no feasible vias, so we will not put them into our directed conflict graph. In Figure

10
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Figure 3.1: An example of conflict condition. (a)Layout solution. (b)Simple directed
conflict graph.
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3.2(b), V3 has two feasible nodes, r3 and r5, but V2 only has one feasible node
r2. Therefore, out-degree of V2 is lower than out-degree of V3, so we assign (r2,rl)
green(thin) color and assign (r1,r3) red(thick) color. Last, make (r1,r3) thicker than

other green edges.

Considering our directed conflict graph G(V,E), and a maximum set V’ of G is a
maximum vertex set such that, V v;, r; € V', (v;, r;)€ E(solid edge). A vertex v; of G
represents the single via and a vertex r; of G represents a feasible double via, hence,
(v,1;) represents a double-cut via. Therefore, we want to find the maximum number
of the pairs of (v;,r;) for the redundant via insertion problem, so the maximum set of
G is a set having the maximum number of double-cut vias. Hence, we can formulate

our Problem 2.1 as the new Problem 3.1.

Problem 3.1 Given a detatled-routing solution,. without re-routing any signal
net, constructing this solution to: ousx_directed-conflict graph. Then find out the
maximum set of the directed conflict -graph. Amngy pair of vertexes in the mazximum

set represents the single via each of which can be replaced by feasible double-cut via.

In the next section we will show how we find the maximum set of the directed

conflict graph.

3.2 Minimum Cost Maximum Flow (MCMF)

We use a linear program, Minimum Cost Maximum Flow (MCMF), to solve the
problem 3.1 on our directed conflict graph, and we can find out the optimal solution
in polynomial time in most designs. The details are presented in the following

subsections.

12
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Figure 3.2: Construction of directed conflict graph. (a)Routing layout. (b)Resulting
directed conflict graph.
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3.2.1 Maximum Flow

We are given a directed graph G(V,E) in which each edge (u,v)€ E has a nonnegative
capacity cap(u,v)> 0, and two distinguished vertices, a source s and a sink t. A
maximum flow is a flow that not only satisfies three properties, capacity constraints,
skew symmetry and flow conservation, but also maximizes the flow value which is the
total flow coming out of the source. The maximum flow problem can be expressed
as a linear program, and the value of a flow is also a linear function. Assuming that

cap(u,v) = 0 if (u,v)¢ E, then the maximum flow problem is as follows:

Maximize Y _ f(s,v) (3.1)
Subject to Bl
Fu,v) < caplug) for each. i,y €V, (3.2)
Fu,v) = — flasat)s for-éach ;v € V (3.3)
> flu,w)=0 for each u,v €V — {s,t} (3.4)

ve V

3.2.2 Minimum Cost Flow

Given a directed graph G(V,E) in which each edge (u,v)€ E has, in addition to a
capacity cap(u,v), a real valued cost c(u,v). If we send f(u,v) units of flow over edge
(u,v), we incur a cost of c(u,v)f(u,v). We wish to send X units of flow from s to
t in such a way that the total cost incurred by the flow, >, pe(u,v)f(u,v), is
minimized. This problem is known as the minimum cost flow problem. We also can
express the minimum cost flow problem as a linear program that is similar to the
one for the maximum flow problem with the additional constraint, the value of the
flow be exactly X units. Here is the minimum cost flow problem:

Minimize Y c(u,v)f(u,v) (3.5)

(u,w)EE

14



Subject to

f(u,v) < cap(u,v) for each u,v € V (3.6)

flu,v) = —=f(v,u) for each u,v €V (3.7)
Z flu,v) =0 for each u,v €V — {s,t} (3.8)
ve V

Z f(s>v) =X (39)

3.2.3 Solving the Problem

From the our problem 3.1, we wat to find the maximum number of the pairs of (v;,r;)
from our directed conflict graphy and.if two feasible via nodes are the endpoints of
a edge, only one of them will be ¢hosen because'of the conflict. We assign all the
edges in directed conflict graph capacity 1, and all the single vias nodes connect
with source s, if f(s,v;) equal to 1 then their must be a f(v;,r;) also equal to 1.
This condition represents we choose single via v; to be replaced by a double-cut via
(vi,ri). A single via v; has at most four feasible double vias, and have to choose the
less conflict feasible double via because of higher redundant via insertion rate. We
can give lower cost for less conflict and higher cost for high conflict. Therefore, we
only have to select the edge which has lower cost from single via, the other endpoint

of the edge is the feasible via node, to avoid conflict with others.

Hence, we can use the minimum cost flow to select less conflict feasible via nodes
and maximum flow to find the maximum number of double-cut vias simultaneously.

Therefore we solve problem 3.1 by the Minimum Cost Maximum Flow.

Before running MCMF, we should remove red edges first because that the red(thick)

edge is the potential conflict of the solution. If there was a red edge between the

15



selected feasible via nodes, these two nodes are conflict. Hence we should move one
of the nodes to another feasible via node without conflict by breadth-first-search
(BFS), if no other feasible via node without conflict, one conflict feasible via node
would be removed. However, if we assign high cost on the edge into the node that

had red edge, the possibility of conflict would be reduced.

Actually, if the cost of green(thin) edge is y and the cost of the edge from single
via node to feasible via node without red(thick) edge is z, then the cost of the edge
from single via node to feasible via node with red(thick) edge is at least z+y+1.

Therefore, this cost condition can reduce the possibility of conflict.

Figure 3.3(a) shows another design and Figure 3.3(b) shows the related directed
conflict graph. Figure 3.4(a) is & solution after®MCMF, but there is a conflict
between node rl and node r3 because of red edge. -We solve the conflict by choosing

r4 instead of rl, then the optimal solutién is shown'in Figure 3.4(b).

16
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Figure 3.3: Another example of construction of directed conflict graph. (a)Routing

layout. (b)Resulting directed conflict graph.
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Figure 3.4: Two solutions from problem 3.1 of Figure 3.3. (a)Conflict solution
because rl conflicts with r3. (b)Best solution.
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Chapter 4

ECO for Changing Routing Layout

An engineering change order (ECO) is a request to make design changes, typically
during the chip implementation cycle, £C0O ¢hanges are almost always unavoidable
and updating the design with an:ineremental change not only saves considerable
effort in realizing the design but:alse reduce the possible of introducing new errors
into the design. The ECO problem invelves-the ability to specify the incremental
design changes, implement the design changes and update all design databases to

reflect the changes.

If engineers need to change only a small portion of the layout solution, involving
adding a via or removing a via, running the all processes include directed conflict
graph construction and MCMF to find the maximum number of double-cut vias is
very time-consuming. The efficient way is to find the affected set and update the
maximum number of double-cut vias during this set. [6] has already presented an
incremental algorithm for maximum flow, but they do not consider minimum cost
flow. Note that sometimes adding (removing) a single via may not change the the
solution of the redundant via insertion, because the feasible via of this single via

may conflict with another feasible vias of different single via.

19



4.1 An Incremental Algorithm for Updating the
Solution

Here we present an incremental algorithm which updating the solution of the redun-
dant via insertion problem after a single via is added or removed. When a single via
is added or removed, its feasible via should be added into the directed conflict graph
or its feasible via should be removed from directed conflict graph. Hence, there
may exist some single vias or feasible vias which are affected after adding(removing)
single vias or feasible vias. We find the affected set in our directed conflict graph

first and then update the maximum number of double-cut vias during this set later.

When a single via V; is added (remioved), iwe put the single via and its feasible
via into the work set, which is for findingithe affected.vias. Then finding the affected
single vias and feasible vias from the work set in our directed conflict graph, and
also put the affected single viastand: feasible-wvias into work set and affected set
which contains all the affected vias. 1f there is no affected single vias and feasible
vias, we chalk up the maximum number S; of redundant via insertion problem
among these affected single vias. Later, we update the directed conflict graph by
adding(removing) the single via V; and its related feasible vias, and use MCMF
to get the new solution S, of redundant via insertion problem among these affected
vias. Therefore, the difference between S; and S, is the update solution of redundant
via insertion problem after ECO-design. The incremental algorithm is summarized

in Figure 4.1.

Let us now analyze the complexity of finding the affected vias. The loop in
lines 2-15 of our incremental algorithm performs exactly |AFFECTED)] iterations.
The iteration corresponding to vertex x takes O|Find(x)| time in case of our in-

cremental algorithm. Therefore, the running time of finding the affected vias are

O(erAFFECTED | Find(x) |).

20



Adding (removing) a single via V and its feasible via R
Applicability: Update the solution of the redundant via
insertion problem in directed conflict graph G

Action:

[IJWORKSET = {V,R}

[2]while (WORKSET != empty) do

[3]begin

[4] remove an element x from WORKSET

[5] if ( x = source ) or ( x = sink )

[6] break;

[7] for all edges (y—x) or (x—=y) EE(G) do

[8]  begin

[9] if (y & WORKSET)

[10] begin

[11] WORKSET = WORKSET U {y}
[12] AFFECTED = AFFECTED U {y}
[13] end

[14] end

[15]end

[16]Run the MCMF for the directed conflict graph from
the AFFECTED, get the solution S|

[17]Update the directed conflict graph from the
AFFECTED by adding (removing) a single via V
and its feasible via R

[18]Run MCMF for the new directed conflict graph, get
new solution S2

[19]The difference between S2 and S1 is the update
solution of redundant via insertion after ECO-design

Figure 4.1: Overview of the incremental algorithm for update the redundant via
insertion porblem.
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Chapter 5

Experimental Results

We implemented our approach in the C++ Programming language and the platform

is on Linux based machine with two CPUs and. 14GB memory.

The set of test cases we used is from/[8].-Table 5:1 shows the detail information

of the set of test cases; for each test case, the first column gives the test circuit name,

"Size(um)” shows the layout dimension,;»?#Nets” gives the number of nets, ”#1/0s”
g

shows the number of pins, ”#Vias” givesithe total number of single vias, ”#D-Vias”

shows the number of single vias each of which has at least one feasible double-cut

via, and ”#Layers” gives the number of metal layers used. Finally, "#Objects”

gives the total number of layout objects including pins, vias, blockages and wire

segments.
Table 5.1: The information of five test cases [8].

Case Size(um) #Nets | #1/0s | #Vias | #D-Vias | #Layers | #0bjects
C1 | 350.000%350.000 | 4309 20 24594 17522 5 218215
C2 419.433*413.28 5252 211 41157 28591 5) 268669
C3 799.124*776.16 18157 85 127059 91727 5) 933852
C4 691.272*680.400 17692 415 151912 102347 5) 943073
C5 | 1383.482*1375.92 | 44720 99 357386 255301 5) 2851612

We used conflict graph [8] as our input file for each test case and the static about
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the conflict graph are shown in Table 5.2. "#Nodes” gives the number of nodes in
the conflict graph (i.e., the number of feasible double-cut vias) and ” #Edges” shows

the number of conflict edges.

Table 5.2: Statistics on conflict graphs.

Case | ##Nodes | #Edges
C1 38829 33990
C2 61369 50430
C3 200051 169407
C4 200311 147353
Ch 529039 415765

We break the conflict graph into two sets: ‘double vias set and conflict set. Then
we constructed our directed conflict! graph-from conflict set of each case. Table
5.3 shows the related results. "#D-CUT” shows the number of single vias each
of which has at least one redundant-wyialocation without any conflict with oth-
ers, "#D_Nodes” gives the number ‘of the nodes in our directed conflict graph,
"#D_Edges” shows the number of solid edges and green edges, and ”#Red_Edges”
gives the number of red edges in out directed conflict graph. Finally, ?CPU1(s)”
shows the related execution time. We can find that the sizes including nodes and
edges of our directed conflict graphs are very small; therefore, it is very good for the

multi-core/parallel computation.

Table 5.3: Statistics on directed conflict graphs.

Case | #D-CUT | #D _Nodes | #D _Edges | #Red_Edges | CPU1(s)
C1 17396 256 382 2 0.88
C2 28414 361 541 4 1.61
C3 91152 1177 1775 16 6.10
C4 101108 2515 3787 53 14.36
C5 253440 3806 5747 45 16.92

We compare our directed conflict graph algorithm with H2K algorithm proposed

23



in [8]. The results are shown in Table 5.4. In the table, "CPU2(s)” gives the
execution time for running minimum cost maximum flow, ”#R-Vias” shows the
number of double-cut vias found from directed conflict graph after running minimum
cost maximum flow, "#D-Total” gives the number of total double-cut vias from
the original design, and "Rate(O)” is equal to ”#D-Total” divided by ”#D-Vias”
shown in Table 5.1. "H2K” shows the number of inserted double-cut vias by H2K,
"Rate(H2K)” is equal to "H2K” divided by ”#D-Vias”.

Table 5.4: The experimental results on test cases: Comparison for post-routing

redundant via insertion with H2K [8]. We insert more redundant vias than H2K on
C4 circuit.

Case | CPU2(s) | #R-Vias | #D+-Tetal{;Rate(O) | H2K | Rate(H2K)
C1 0.02 65 17461 99.65% 17461 99.65%
C2 0.03 93 285017 98.13% 28507 98.13%
C3 0.05 309 91461 99.711% 91461 99.71%
C4 0.11 658 101766 99.43% | 101765 99.43%
Ch 0.42 988 254428 99.66% | 254428 99.66%

From Table 5.4, we can see that our algorithm inserts more redundant vias
than H2K on C4 circuit, and inserts the same number of redundant vias on the
other circuits. So our algorithm is a better solution to find the optimal solution.
And From Table 5.5, our algorithm also works very fast. We also list the CPU
time of H2K [8] including the time spent by graph construction for reference. [§]
implemented H2K in C++ language running on a Linux based machine with 2.4G

processor and 2GB memory.

Table 5.6 shows the timing compare between full process and incremental al-
gorithm after ECO-design on C5 circuit. ”"#Changes” represents the number of
changes after ECO-design, ”#E-Total” gives the number of total double-cut vias
after ECO-design, "CPUF(s)” represents the total runtime includes directed graph

construction and MCMF after ECO-design to solve the redundant via insertion prob-
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Table 5.5: CPU time of our algorithm and H2K [8] from different platform. Our
input file is the conflict graph from [8] and their input file is the layout solution.

Case | Total Run time: CPU1(s)+CPU2(s) | CPU(s)_.H2K
C1 0.88 32
C2 1.64 43
C3 6.15 192
C4 14.47 203
Ch 17.34 710

lem, and ”CPUI(s)” gives the runtime of incremental algorithm includes finding the
affected set and MCMF to update the solution of the redundant via insertion after

ECO-design. On average, our incremental algorithm obtains 24X runtime speedup.

Table 5.6: The timing comparison between full. process and incremental algorithm
after ECO-design on C5 circuite. CPUF(8) represents the total runtime includes
directed graph construction and MCME after ECO-design to solve the redundant
via insertion problem. CPUI(s) gives theruntime of incremental algorithm includes
finding the affected set and MCME to update the solution of the redundant via
insertion after ECO-design.

#Changes | #E-Total | CPUF(s) | CPUI(s)
10 992 17.11 1.01
15 988 17.28 1.24
15 994 17.28 1.77
20 989 17.30 2.74
20 994 17.30 2.74
Comp. 10.65 1
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Chapter 6

Conclusion

In this thesis, we propose a graph construction algorithm to solve the redundant via
insertion problem to reach a higher rate for ifniproving the manufacturing yield. First
we use our graph construction algorithm-to construct-the directed conflict graph from
the given routing result to consider all the vias of & design simultaneously. Then
we use minimum cost maximumsflow t6 find the fnaximum number of redundant
vias from the directed conflict graph: Experimental results show that our algorithm
can get almost optimal solution for improving the redundant via insertion rate in
polynomial time. In addition, after ECO for the whole design, we can efficiently
update the solution by incremental algorithm. The experimental results show it is

very efficient for updating the optimal solution.
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