
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

IEEE 802.16e OFDMA 同步技術之研究與數位訊號

處理器實現

Research in and DSP Implementation of Synchronization

Techniques for IEEE 802.16e

研 究 生: 劉耀鈞

指導教授: 林大衛 博士

 中 華 民 國 九 十 六 年 六 月

IEEE 802.16e OFDMA 同步技術之研究與數位訊號處理器實現

Research in and DSP Implementation of Synchronization Techniques

for IEEE 802.16e

研 究 生: 劉耀鈞 Student: Yao Chun Liu

指導教授: 林大衛 博士 Advisor: Dr. David W. Lin

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electronics Engineering

June 2007
Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 六 年 六 月

IEEE 802.16e OFDMA 同步技術之研究與數位訊號

處理器實現

研究生：劉耀鈞 指導教授：林大衛 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

本篇論文介紹 IEEE 802.16e 正交分頻多工存取(OFDMA)裡，同步的問題、

演算法、以及實做方面的議題。

當一個行動電話在一開始要進入網路的時候，我們必須做起始的同步。在起

始的同步中，包含了符碼時間偏移、載波偏移和前置符元序號(preamble index)

需要同步。我們使用循環字首(cyclic prefix)的相關性(correlation)及在第一個下行

次訊框(subframe)裡的資訊來估計出較準確的符碼時間偏移和小數部分載波偏

移。之後我們在頻域上用補償之後的同步碼來聯合估計出整數載波偏移和前置符

元序號。我們利用前置符元序列和前置符元的特性來做估計，另外我們也介紹了

一些不同複雜度的方法。

在之後的次訊框中，行動電話只需要做到追蹤符碼時間偏移和小數部分載波

偏移。我們再次使用循環字首的相關性並在每個符元間利用指數平均來求得較準

確的結果。另外，因為我們在非起始的同步中，我們已經知道前置符元序號，因

此我們可利用這個資訊來估計符碼時間偏移。這個方法主要是利用前置符元序列

 i

之間的準正交性的特性來估計。我們首先是用浮點數運算來驗證，並同時在可加

性白色高斯雜訊通道(AWGN)以及多路徑 Rayleigh 衰減通道下做模擬，模擬速度

高達 120 km/h，並觀察其結果。

最後，我們把這些方法修改成定點運算的版本，並在數位訊號處理平台上，

最佳化我們的程式的速度。雖然修改成定點運算會使效能衰減，但其結果依然可

以接受。經過最佳化之後，同步的工作都能達到即時處理(real time)的要求。

 ii

Research in and DSP Implementation of

Synchronization Techniques for IEEE 802.16e

Student: Yao Chun Liu Advisor: Dr. David W. Lin

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

This thesis introduces the synchronization problems, algorithms, and imple-

mentation issues of IEEE 802.16e OFDMA system.

In DL synchronization, the (mobile station) MS receiver needs to perform initial

synchronization upon its initial entrance to the network. There are timing offset,

carrier frequency offset (CFO), and preamble index needed to be estimated during

initial synchronization. We use the information of the first DL subframe to estimate

the more accurate timing and fractional CFO by cyclic prefix (CP) correlation. Then,

we consider the joint detection of integer CFO and preamble index using the

compensated preamble in the frequency domain. The preamble sequences and the

feature of preamble symbol are exploited and a number of detection methods of

different complexity are introduced.

In subsequent subframe, the MS only needs to track the timing offset and

fractional CFO. We use CP correlation with exponential average over the symbols in

the subframe to obtain a more accurate estimation. Besides, we also afford a

data-aided method to estimate the symbol timing since we already know the preamble

index during normal synchronization. This method exploits the quasi-orthogonality

among the preamble sequences. We verify our system in floating-point computation,

 iii

and simulate our system in both AWGN and multipath Rayleigh fading channel,

which the speed is as high as 120 km/h, and see the performance.

In the end, we modified these methods into fixed-point version, and then

optimize the speed of our programs on the digital signal processor (DSP) platform.

Although the performance is degraded because of fixed-point modification, the results

still can be accepted. After DSP optimization, the synchronization tasks can achieve

the real-time requirement.

 iv

誌謝

 這篇論文能夠順利完成，首先要感謝的人是我的指導教授林大衛老師，在兩

年的研究所生涯當中，由於老師的細心指導及在專業領域的博學精深，使得我學

習到不少研究的精神與方法。

此外，感謝通訊電子與訊號處理實驗室所有的成員，包含各位師長、同學、

學長姐與學弟妹們。感謝洪崑健學長、吳俊榮學長和林鴻志學長給予我在研究過

程上的指導與建議，還有柏昇、政達、介遠、依翎、凱庭、志岡、錫祺、怡禎等

同學，因為能和你們共同討論、分享求學的經驗及一路上的相互扶持，讓這兩年

的研究生涯充滿歡樂與回憶。

最後，我要感謝我的家人們，感謝他們一直都在背後支持我，在求學過程中

總是不斷的鼓勵我，是我精神上最大的支柱。

在此，將此篇論文獻給所有幫助過我，陪伴我走過這一段歲月的師長，同學，

朋友與家人。

劉耀鈞

民國九十六年六月 於新竹

 v

Contents

1 Introduction 1

2 Overview of the IEEE 802.16e OFDMA Standard 3

2.1 Introduction to OFDM [3] . 3

2.2 Introduction to OFDMA . 5

2.3 Introduction to IEEE 802.16e . 8

2.3.1 OFDMA Basic Terms . 9

2.3.2 OFDMA Symbol Parameters . 10

2.3.3 Scalable OFDMA [7] . 11

2.4 OFDMA Frame Structure . 12

2.5 OFDMA Subcarrier Allocation . 16

2.5.1 Downlink . 17

2.5.2 Uplink . 20

2.6 Modulation . 23

2.7 Transmit Spectral Mask . 24

2.8 Frequency and Timing Requirements . 25

3 Introduction to the DSP Implementation Platform 27

3.1 The DSP Card [11] . 27

3.2 The DSP Chip [12] . 28

3.2.1 Central Processing Unit . 30

3.2.2 Memory Architecture and Peripherals 32

3.3 TI’s Code Development Environment [14] 33

vi

3.3.1 Code Composer Studio . 33

3.3.2 Code Development Flow [16] 34

3.4 Code Optimization on TI DSP Platform 35

3.4.1 Compiler Optimization Options [16] 35

3.4.2 Software Pipelining [17] . 38

3.4.3 Intrinsics [16] . 38

4 Transmission Environment and Transmission Filtering 40

4.1 System Parameters . 40

4.2 Channel Environments . 41

4.2.1 Gaussian Noise . 41

4.2.2 Slow Fading Channel . 41

4.2.3 Fast Fading Channel . 42

4.2.4 Power-Delay Profile Model . 42

4.3 Transmission Filtering . 43

5 Synchronization Techniques for IEEE 802.16e OFDMA 49

5.1 OFDMA Synchronization Problems and Techniques 49

5.1.1 Initial DL Synchronization . 52

5.1.2 Normal DL Synchronization . 59

5.1.3 UL Synchronization . 61

5.2 Floating-Point Simulation Results . 61

5.2.1 Symbol Timing Estimation . 61

5.2.2 Fractional CFO Estimation . 67

5.2.3 Integer CFO Estimation and Preamble Index Identification 68

6 Fixed-Point DSP Implementation 76

6.1 Fixed-Point Implementation . 76

6.1.1 Modulation and Subcarrier Allocation 77

6.1.2 IFFT, FFT and SRRC Filter . 78

6.1.3 Synchronization . 78

vii

6.2 DSP Optimization . 79

6.2.1 The IFFT and FFT . 79

6.2.2 Synchronization . 79

6.3 Fixed-Point Simulation Results . 83

6.3.1 Symbol Timing Estimation . 83

6.3.2 Fractional CFO Estimation . 83

6.3.3 Integer CFO Estimation and Preamble Index Identification 84

6.4 DSP Optimization Results . 87

7 Conclusion and Future Work 93

7.1 Conclusion . 93

7.2 Future Work . 94

viii

List of Figures

2.1 Bandwidth efficiency comparison of traditional FDM and OFDM systems. 4

2.2 The use of cyclic prefix (from [5]). 5

2.3 Comparison of subcarrier allocatins in OFDM and OFDMA (from [6]). . 6

2.4 Subcarrier allocation in an OFDMA symbol (from [7]). 7

2.5 OFDMA frequency description (3-channel schematic example, from [1]). 9

2.6 Example of the data region which defines the OFDMA allocation (from

[1]). 10

2.7 Example of an OFDMA frame (with only mandatory zone) in TDD mode

(from [2]). 13

2.8 Illustration of OFDMA with multiple zones (from [2]). 14

2.9 FCH subchannel allocation for all 3 segments (from [1]). 15

2.10 Example of DL renumbering the allocated subchannels for segment 1 in

PUSC (from [1]). 16

2.11 DL cluster structure (from[10]). 19

2.12 Description of an UL tile (from [10]). 22

2.13 PRBS generator for pilot modulation (from [2]). 23

2.14 Transmit spectral mask for license-exempt operation (from [1]). 26

3.1 Sundance’s SMT395 module . 28

3.2 Functional block and CPU (DSP core) diagram [13]. 30

3.3 Code development cycle [15]. 33

3.4 Code development flow for C6000 (from [16]). 36

3.5 Software-pipelined loop (from [12]). 39

ix

4.1 Frequency spectrum of the signal after 4 times oversampling and relation

to the power mask. 46

4.2 Impulse response of the SRRC filter (solid) and the convolution of the

impulse responses of two SRRC filters (dashed) [21]. 47

4.3 Magnitude responses of three different SRRC filters. 47

4.4 Magnitude responses of 49-taps SRRC filter with roll-off factor 0.15. . . . 48

4.5 Spectral density of the signal after the interpolation and SRRC filtering,

compared to the spectral mask. 48

5.1 The symbol time offset requirement (from [22]). 51

5.2 Structure of initial DL synchronization. 52

5.3 Structure of J.-C. Lin’s symbol timing and fractional carrier frequency

synchronization method [29]. 53

5.4 Structure of normal DL synchronization. 58

5.5 Structure of UL synchronization. 61

5.6 Distribution of timing offset estimation errors. 63

5.7 Symbol time synchronization error distribution under different SNRs (ini-

tial synchronization). 64

5.8 Symbol time synchronization error distribution under different SNRs (nor-

mal synchronization). 65

5.9 RMSE of symbol timing offset synchronization for Vehicular A channel. . 66

5.10 Error distributions of two algorithms during normal synchronization. . . . 67

5.11 Error distributions at different speeds in Vehicular A channel. 68

5.12 Error distributions of data-aided method and modified data-aided method

during normal synchronization. 69

5.13 RMSE of fractional CFO under AWGN channel. 70

5.14 RMSE of fractional CFO under SUI3 channel. 72

5.15 Fractional CFO synchronization error distribution under different SNRs. . 73

5.16 Error probability in either the identified preamble index or the estimated

integer CFO under Vehicular A channel, where FFT size = 1024. 74

x

5.17 Error probability in either the identified preamble index or the estimated

integer CFO under SUI3 channel, where FFT size = 1024. 74

5.18 Error probability in either the identified preamble index or the estimated

integer CFO under Vehicular A channel, where FFT size = 2048. 75

6.1 Fixed-point data formats used at different points in the transmitter. 77

6.2 Fixed-point data formats used at different points in the receiver. 78

6.3 A part of C code for compensation function. 80

6.4 A part of assembly code for compensation function-I. 81

6.5 A part of assembly code for compensation function-II. 82

6.6 RMSE of symbol timing offset estimation in AWGN with fixed-point and

floating-point implementation. 84

6.7 Symbol time synchronization error distribution under different SNRs (ini-

tial synchronization). 85

6.8 Symbol time synchronization error distribution under different SNRs (nor-

mal synchronization). 86

6.9 RMSE of fractional CFO estimation in AWGN with fixed-point and floating-

point implementation. 87

6.10 RMSE of fractional CFO under SUI3 channel for FFT size 2048 with

bandwidth 20 MHz. 88

6.11 RMSE of fractional CFO under SUI3 channel for FFT size 2048 with

bandwidth 10 MHz. 89

6.12 Fractional CFO synchronization error distribution under different SNRs. . 90

6.13 Error probability in either the identified preamble index or the estimated

integer CFO with fixed-point and floating-point implementation under Ve-

hicular A channel. 91

xi

List of Tables

2.1 OFDM Advantages and Disadvantages 5

2.2 S–OFDMA Parameters Proposed by WiMAX Forum 12

2.3 1024-FFT OFDMA DL Carrier Allocation for PUSC 18

2.4 1024-FFT OFDMA UL Carrier Allocation for PUSC 21

2.5 Transmit Sprctral Mask for License-Exempt Bands 25

3.1 Functional Units and Operations Performed [12] 31

4.1 System Parameters Used in Our Study 41

4.2 Terrain Type vs. SUI Channels . 43

4.3 General characteristics of SUI channels 43

4.4 SUI-1 Channel Model . 44

4.5 SUI-2 Channel Model . 44

4.6 SUI-3 Channel Model . 44

4.7 SUI-4 Channel Model . 45

4.8 SUI-5 Channel Model . 45

4.9 SUI-6 Channel Model . 45

4.10 ETSI “Vehicular A” Channel Model in Different Units [20] 46

5.1 OFDMA Receiver SNR Assumptions [2] 62

5.2 Computational Complexity for Integer CFO Estimation and Preamble In-

dex Identification . 75

6.1 Ranges of Modulated Signal Values . 77

6.2 DSP Optimization Results . 92

xii

Chapter 1

Introduction

The IEEE 802.16e, of which a subset is commonly known as Mobile WiMAX (World-

wide Interoperability of Microwave Access), is a broadband wireless access (BWA) sys-

tem which has drawn much attention these days. IEEE 802.16e is originally suggested

as an enhancement version of IEEE Std. 802.16-2004 to provide mobile station (MS)

with mobility at vehicular speed. Therefore, it specifies BWA systems for both fixed and

mobile MS simultaneously [1],[2].

One of the most promising modes in the IEEE 802.16e standard is the Orthogonal

Frequency Division Multiple Access (OFDMA) mode, which is generally accepted as a

performance efficient multiple access scheme. The Mobile WiMAX system also utilizes

the bandwidth scalability, where the FFT size typically increases with the bandwidth. In

this thesis, we consider the IEEE 802.16e WirelessMAN OFDMA system with a time-

division duplex (TDD) mode, where downlink (DL) and uplink (UL) transmissions are

time multiplexed in each TDD frame.

Our study can be divided into two parts. The first part is the synchronization tech-

niques for IEEE 802.16e OFDMA. Synchronization in OFDMA system involves fre-

quency and timing recovery. For operation under the current IEEE 802.16e OFDMA

TDD specifications, the identification of the preamble index may also be considered part

of the synchronization process. Therefore, in the present study we consider carrier fre-

quency synchronization, timing synchronization, and preamble index identification, for

both fixed and mobile communication channels.

1

The second part is the digital signal processor (DSP) implementation of the synchro-

nization techniques. We implement them on Texas Instrument (TI)’s DSP. Moreover, we

employ various optimization techniques to accelerate the execution speed of the programs

in the DSP implementation.

This thesis is organized as follows. We first introduce the IEEE 802.16e Wireless-

MAN OFDMA standard in chapter 2. Chapter 3 introduces the DSP implementation

platform. In chapter 4, the system parameters and channel environments are discussed.

The transmission filtering is also analyzed in chapter 4. We analyze the synchronization

problems and present some solutions in chapter 5. Chapter 6 discusses the DSP optimiza-

tion methods and presents the optimization results. Finally, the conclusion is given in

chapter 7, where we also point out some potential future work.

2

Chapter 2

Overview of the IEEE 802.16e OFDMA

Standard

In this chapter, we first introduce some basic concepts regarding OFDM and OFDMA.

Then we give an overview of the IEEE 802.16e OFDMA standard. For the sake of sim-

plicity, we only introduce the specifications that have use in our study. Other specifica-

tions like channel coding, MAP messages, transmit diversity, etc., are not our concern and

are ignored in this introduction. For more details we refer the readers to [1] and [2], from

which we take much of the material in this chapter.

2.1 Introduction to OFDM [3]

OFDM is a special case of multicarrier transmission technique, where a single datastream

is transmitted over a number of subcarriers a lower rates. The concept of OFDM is to use

parallel data transmission and frequency multiplexing. It divides the available spectrum

into narrower subcarrier bands, and each subcarrier only transmits a portion of the total

information.

The orthogonality of OFDM constitutes one major difference from the classical par-

allel data system, making its use of the available spectrum more efficient. Figure 2.1

shows the difference. As we can see, the subcarriers in an OFDM symbol can be arranged

so that the sideband of each subcarrier overlaps but the received symbols still live with-

3

Figure 2.1: Bandwidth efficiency comparison of traditional FDM and OFDM systems.

out adjacent-carrier interference. This can be accomplished by using the discrete Fourier

transform (DFT) proposed by Weinstein and Ebert in 1971 [4]. The complexity of DFT,

however, is too expensive. Fortunately, modern advances in very-large-scale integration

(VLSI) make it possible to use the fast Fourier transform (FFT) for a more efficient im-

plementation of the DFT. The complexity is reduced from N2 in DFT to N log2 N in

FFT.

One of the main reasons to use OFDM is to increase the robustness against frequency

selective fading or narrowband interference. An OFDM system may encode data using

forward error correction (FEC) coding and distribute them across several subcarriers. If

frequency-selective fading causes errors in the reception of few subcarriers, the data bits

in those subcarriers are recovered through FEC.

Another reason for choosing OFDM is its natural immunity to multipath. For a given

overall data rate, the increasing number of carriers due to overlapping can reduce the data

rate that each individual carriers must convey, and hence lengthen the symbol period.

This means that the inter symbol interference (ISI) affects a smaller percentage of each

symbol. Therefore complex equalization is normally not needed in the receiver.

In order to eliminate the ISI completely, a guard time (or guard interval, or cyclic pre-

fix) is inserted. The guard time is chosen larger than the expected delay spread, such that

4

Figure 2.2: The use of cyclic prefix (from [5]).

multipath components from one symbol cannot interfere with the next symbol. However,

if we insert zeros within the guard interval, the orthogonality among subcarriers will no

longer exist, which causes serious intercarrier interference (ICI). To preserve the orthog-

onality among the subcarriers and eliminate ICI, the OFDM symbol should be cyclically

extended in the guard time rather than just extended with zero. Figure 2.2 shows how to

add cyclic prefix in front of an OFDM symbol. Hence if the maximum multipath delay is

smaller than the guard time, there will not be ISI or ICI.

Finally, the advantages and disadvantages are summarized in Table 2.1. The advan-

tages are already discussed above. The first two disadvantages will be considered in this

thesis, while the last two are ignored.

2.2 Introduction to OFDMA

OFDMA is a multiple access method based on OFDM signaling that allows simultaneous

transmissions to and from multiple users along with the other advantages of OFDM. In

Table 2.1: OFDM Advantages and Disadvantages

Advantages Disadvantages

Bandwidth efficiency Sensitive to frequency offset

Immunity to multipath effect Sensitive to timing offset

Robust against narrowband interference Sensitive to phase noise

Large peak-to-average power ratio

5

Figure 2.3: Comparison of subcarrier allocatins in OFDM and OFDMA (from [6]).

OFDM, a channel is divided into carriers which is used by one user at any time. In

OFDMA, the carriers are divided into subchannels. Each subchannel has multiple carriers

that form one unit in frequency allocation. In this way, the bandwidth can be allocated

dynamically to the users according to their needs. A simple comparison of the subcarrier

allocation of OFDM and OFDMA is shown in Fig. 2.3.

An additional advantage of OFDMA is the following. Due to the large variance in a

mobile system’s path loss, inter-cell interference is a common issue in mobile wireless

systems. An OFDMA system can be designed such that subchannels can be composed

from several distinct permutations of subcarriers. This enables significant reduction in

inter-cell interference when the system is not fully loaded, because even on occasions

where the same subchannel is used at the same time in two different cells, there is only a

partial collision on the active sub-carriers.

Fig. 2.4 shows an example subcarrier allocation in an OFDMA symbol. The frequency

6

Figure 2.4: Subcarrier allocation in an OFDMA symbol (from [7]).

response of a typical broadband wireless channel is also depicted. In this example, the

deep-fading condition and narrowband interference are considered. In the top plot, we see

that when the channel is in deep fade, the subcarriers are not sufficiently energy efficient

to carry information. These wasted subcarriers can be utilized by there uses in OFDMA,

thus achieving higher efficiency and capacity. Very few, if any, subcarriers are likely to

be wasted in OFDMA, since no particular subcarrier is likely to be bad for all users.

In order to support multiple users, the control mechanism becomes more complex.

Besides, the OFDMA system has some implementation issues which are more compli-

cated to handle. For example, power control is needed for the uplink to make signals

7

from different users have equal power at the receiver, and all users have to adjust their

transmitting time to be aligned. We shall address some issues in the context of IEEE

802.16e.

2.3 Introduction to IEEE 802.16e

Since the publication of the IEEE 802.16 standard for fixed broadband wireless access

in 2001, a number of revision and amendments have taken place. Like other IEEE 802

standards, the 802.16 standards are primarily concerned with physical (PHY) layer and

medium access control (MAC) layer functionalities. The idea originally was to provide

broadband wireless access to buildings through external antennas communicating with

radio base stations (BSs).

To overcome the disadvantage of the line-of-sight (LOS) requirement between trans-

mitters and receivers in the 802.16 standard, the 802.16a standard was approved in 2003

to support nonline-of-sight (NLOS) links, operational in both licensed and unlicensed fre-

quency bands from 2 to 11 GHz, and subsequently revised to create the 802.16d standard

(now code-named 802.16-2004). With such enhancements, the 802.16-2004 standard has

been viewed as a promising alternative for providing the last-mile connectivity by radio

link. However, the 802.16-2004 specifications were devised primarily for fixed wireless

users. The 802.16e task group was subsequently formed with the goal of extending the

802.16-2004 standard to support mobile terminals.

The IEEE 802.16e has been published in Febuary 2006. It specifies four air inter-

faces: WirelessMAN-SC PHY, WirelessMAN-SCa PHY, WirelessMAN-OFDM PHY,

and WirelessMAN-OFDMA PHY. This study is concerned with WirelessMAN-OFDMA

PHY in a mobile communication environment.

Some glossary we will often use in the following is as follows. The direction of

transmission from the base station (BS) to the subscriber station (SS) is called downlink

(DL), and the opposite direction is uplink (UL). The SS is considered synonymous as the

mobile station (MS). It is sometimes termed the user. The BS is a generalized equipment

set providing connectivity, management, and control of the SS.

8

2.3.1 OFDMA Basic Terms

In the OFDMA mode, the active subcarriers are divided into subsets of subcarriers, where

each subset is termed a subchannel. The subcarriers forming one subchannel may, but

need not be, adjacent. The concept is shown in Fig. 2.5.

Three basic types subchannel organization are defined: partial usage of subchannels

(PUSC), full usage of subchannels (FUSC), and adaptive modulation and coding (AMC);

among which the PUSC is mandatory and the other two are optional. In PUSC DL,

the entire channel bandwidth is divided into three segments to be used separately. The

FUSC is employed only in the DL and it uses the full set of available subcarriers so as to

maximize the throughput.

Slot and Data Region

The definition of an OFDMA slot depends on the OFDMA symbol structure, which varies

for uplink and downlink, for FUSC and PUSC, and for the distributed subcarrier permu-

tations and the adjacent subcarrier permutation.

• For downlink PUSC using the distributed subcarrier permutation, one slot is one

subchannel by two OFDMA symbols.

• For uplink PUSC using either of the distributed subcarrier permutations, one slot is

one subchannel by three OFDMA symbols.

• For downlink FUSC and downlink optional FUSC using the distributed subcarrier

permutation, one slot is one subchannel by one OFDMA symbol.

Figure 2.5: OFDMA frequency description (3-channel schematic example, from [1]).

9

In OFDMA, a data region is a two-dimensional allocation of a group of contiguous sub-

channels, in a group of contiguous OFDMA symbols. All the allocations refer to logical

subchannels. This two-dimensional allocation may be visualized as a rectangle, such as

the 4×3 rectangle shown in Fig. 2.6.

Segment

A segment is a subdivision of the set of available OFDMA subchannels (that may include

all available subchannels). One segment is used for deploying a single instance of the

MAC.

Permutation Zone

A permutation zone is a number of contiguous OFDMA symbols, in the DL or the UL,

that use the same permutation formula. The DL subframe or the UL subframe may con-

tain more than one permutation zone. The concept of permutation zone will be further

elaborate later.

2.3.2 OFDMA Symbol Parameters

Some OFDMA symbol parameters are listed below.

• BW : Nominal channel bandwidth.

• Nused: Number of used subcarriers.

Figure 2.6: Example of the data region which defines the OFDMA allocation (from [1]).

10

• n: Sampling factor. This parameter, in conjunction with BW and Nused, determines

the subcarrier spacing and the useful symbol time.

• G: Ratio of cyclic prefix (CP) time to useful time.

• NFFT : Smallest power of two greater than Nused.

• Sampling frequency: Fs = bn ·BW/8000c × 8000.

• Subcarrier spacing: ∆f = Fs/NFFT .

• Useful symbol time: Tb = 1/∆f .

• Cyclic prefix (CP) time: Tg = G · Tb.

• OFDM symbol time: Ts = Tb + Tg.

• Sampling time: Tb/NFFT .

2.3.3 Scalable OFDMA [7]

One feature of the IEEE 802.16e OFDMA is the selectable FFT size, from 128 to 2048

in multiples of 2, excluding 256 to be used with OFDM. This has been termed scalable

OFDMA (S-OFDMA). One use of S-OFDMA is that if the channel bandwidths are allo-

cated based on integer power of 2 times a base bandwidth, then one may consider making

the FFT size proportional to the allocated bandwidth so that all systems are based on the

same subcarrier spacing and the same OFDMA symbol duration, which may simplify

system design. For example, Table 2.2 lists some S-OFDMA parameters proposed by the

WiMAX Forum [8]. S-OFDMA supports a wide range of bandwidth to flexibly address

the need for various spectrum allocation and usage model requirements.

When designing OFDMA wireless systems the optimal choice of the number of sub-

carriers per channel bandwidth is a tradeoff between protection against multipath, Doppler

shift, and design cost/coplexity. Increasing the number of subcarriers leads to better im-

munity to the ISI caused by multipath; on the other hand it increases the cost and com-

plexity of the system (it leads to higher requirements for signal processing power and

11

Table 2.2: S–OFDMA Parameters Proposed by WiMAX Forum

Parameters Values

System Channel Bandwidth (MHz) 1.25 5 10 20

Sampling Frequency (MHz) 1.4 5.6 11.2 22.4

FFT Size 128 512 1024 2048

Subcarrier Spacing (∆f) 10.94 kHz

Useful Symbol Time (Tb=1/∆f) 91.4 µsec

Guard Time (Tg=Tb/8) 11.4 µsec

OFDMA Symbol Duration (Ts=Tb+Tg) 102.9 µsec

power amplifiers with the capability of handling higher peak-to-average power ratios).

Having more subcarriers also results in narrower subcarrier spacing and therefore the sys-

tem becomes more sensitive to Doppler shift and phase noise. Calculations show that the

optimum tradeoff for mobile systems is achieved when subcarrier spacing is about 11 kHz

[9] .

2.4 OFDMA Frame Structure

Duplexing Modes

In licensed bands, the duplexing method shall be either frequency-division duplex (FDD)

or time-division duplex(TDD). FDD SSs may be half-duplex FDD (H-FDD). In license-

exempt bands, the duplexing method shall be TDD.

Point-to-Multipoint (PMP) Frame Structure

When implementing a TDD system, the frame is composed of BS and SS transmissions.

Figure 2.7 shows an example. Each frame in the downlink transmission begins with a

preamble followed by a DL transmission period and an UL transmission period. In each

frame, time gaps, denoted transmit/receive transition gap (TTG) and receive/transmit gap

(RTG), are between the downlink and uplink subframes and at the end of each frame,

12

Figure 2.7: Example of an OFDMA frame (with only mandatory zone) in TDD mode

(from [2]).

respectively placed. They allow transitions between transmission and reception functions.

Subchannel allocation in the downlink may be performed with PUSC where some of

the subchannels are allocated to the transmitter or FUSC where all subchannels are allo-

cated to the transmitter. The downlink frame shall start in PUSC mode with no transmit

diversity. The FCH shall be transmitted using QPSK rate 1/2 with four repetitions using

the mandatory coding scheme (i.e., the FCH information will be sent on four subchan-

nels with successive logical subchannel numbers) in a PUSC zone. The FCH contains the

DL Frame Prefix which specifies the length of the DL-MAP message that immediately

follows the DL Frame Prefix and the repetition coding used for the DL-MAP message.

The transitions between modulations and coding take place on slot boundaries in time

domain (except in AAS zone, where AAS stands for adaptive antenna system) and on sub-

channels within an OFDMA symbol in frequency domain. The OFDMA frame may in-

clude multiple zones (such as PUSC, FUSC, PUSC with all subchannels, optional FUSC,

AMC, TUSC1, and TUSC2, where AMC stands for adaptive modulation and coding, and

TUSC stands for tile usage of subchannels), the transition between zones is indicated in

13

Figure 2.8: Illustration of OFDMA with multiple zones (from [2]).

the DL-Map. Figure 2.8 depicts an OFDMA frame with multiple zones.

The PHY parameters (such as channel state and interference levels) may change from

one zone to the next.

The maximum number of downlink zones is 8 in one downlink subframe. For each SS,

the maximum number of bursts to decode in one downlink subframe is 64. This includes

all bursts without connection identifier (CID) or with CIDs matching the SS’s CIDs.

Allocation of Subchannels for FCH and DL-MAP, and Logical Subchannel Number-

ing

In PUSC, any segment used shall be allocated at least the same number of subchannels as

in subchannel group #0. For FFT sizes other than 128, the first 4 slots in the downlink part

of the segment contain the FCH as defined before. These slots contain 48 bits modulated

by QPSK with coding rate 1/2 and repetition coding of 4. For FFT-128, the first slot in the

downlink part of the segment is dedicated to FCH and repetition is not applied. The basic

allocated subchannel sets for segments 0, 1, and 2 are subchannel groups #0, #2, and #4,

respectively. Figure 2.9 depicts this structure.

After decoding the DL Frame Prefix message within the FCH, the SS has the knowl-

edge of how many and which subchannels are allocated to the PUSC segment. In order

14

Figure 2.9: FCH subchannel allocation for all 3 segments (from [1]).

to observe the allocation of the subchannels in the downlink as a contiguous allocation

block, the subchannels shall be renumbered. The renumbering, for the first PUSC zone,

shall start from the FCH subchannels (renumbered to values 0–11), then continue num-

bering the subchannels in a cyclic manner to the last allocated subchannel and from the

first allocated subchannel to the FCH subchannels. Figure 2.10 gives an example of such

renumbering for segment 1.

For uplink, in order to observe the allocation of the subchannels as a contiguous allo-

cation block, the subchannels shall be renumbered, and the renumbering shall start from

the lowest numbered allocated subchannel (renumbered to value 0), up to the highest

numbered allocated subchannel, skipping nonallocated subchannels.

The DL-MAP of each segment shall be mapped to the slots allocated to the segment

in a frequency first order, starting from the slot after the FCH (subchannel 4 in the first

symbol, after renumbering), and continuing to the next symbols if necessary. The FCH of

segments that have no subchannels allocated (unused segments) will not be transmitted,

15

Figure 2.10: Example of DL renumbering the allocated subchannels for segment 1 in

PUSC (from [1]).

and the respective slots may be used for transmission of MAP and data of other segments.

2.5 OFDMA Subcarrier Allocation

As mentioned, the OFDMA PHY defines four scalable FFT sizes: 2048, 1024, 512, and

128. For convenience, here we only take the 1024-FFT OFDMA subcarrier allocation

for introduction. The subcarriers are divided into three types: null (guard band and DC),

pilot, and data. Subtracting the guard tones from NFFT , one obtains the set of “used”

subcarriers Nused. For both uplink and downlink, these used subcarriers are allocated to

pilot subcarriers and data subcarriers. However, there is a difference between the differ-

ent possible zones. For FUSC and PUSC, in the downlink, the pilot tones are allocated

first; what remains are data subcarriers, which are divided into subchannels that are used

16

exclusively for data. Thus, in FUSC, there is one set of common pilot subcarriers, and in

PUSC downlink, there is one set of common pilot subcarriers in each major group, but in

PUSC uplink, each subchannel contains its own pilot subcarriers.

2.5.1 Downlink

Preamble

The first symbol of the downlink transmission is the preamble. There are three types of

preamble carrier-sets, which are defined by allocation of different subcarriers for each one

of them. The subcarriers are modulated using a boosted BPSK modulation with a specific

pseudo-noise (PN) code. The preamble carrier-sets are defined using

PreambleCarrierSetn = n + 3 · k (2.1)

where:

PreambleCarrierSetn

n

k

specifies all subcarriers allocated to the specific preamble,

is the number of the preamble carrier-set indexed 0–2,

is a running index 0–283.

For the preamble symbol there are 86 guard band subcarriers on the left side and the

right side of the spectrum. Each segment uses a preamble composed of a carrier-set out

of the three available carrier-sets in the manner that segment i uses preamble carrier-set

i, where i = 0, 1, 2. Therefore, each segment eventually modulates each third subcarrier.

In the case of segment 0, the DC carrier will be zeroed and the corresponding PN number

will be discarded.

The 114 different PN series modulating the preamble carrier-set are defined in Table

309 of [1] for the 1024-FFT mode. The series modulated depends on the segment used

and the IDcell parameter.

Symbol Structure for PUSC

The symbol is first divided into basic clusters and zero carriers are allocated. Pilots and

data carriers are allocated within each cluster. Table 310 of [2] summarizes the parameters

17

Table 2.3: 1024-FFT OFDMA DL Carrier Allocation for PUSC
Parameter Value Comments

Number of DC subcarriers 1 Index 512
Number of guard subcarriers, left 92
Number of guard subcarriers, right 91
Number of used subcarriers, Nused 841
Renumbering sequence 6, 48, 37, 21, 31, 40, 42, Used to renumber

56, 32, 47, 30, 33, 54, 18, clusters before
10, 15, 50, 51, 58, 46, 23, allocation to
45, 16, 57, 39, 35, 7, 55, subchannels.
25, 59, 53, 11, 22, 38, 28,
19, 17, 3, 27, 12, 29, 26,
5, 41, 49, 44, 9, 8, 1,
13, 36, 14, 43, 2, 20, 24,
52,4, 34, 0

Number of subcarriers per cluster 14
Number of clusters 60
Number of data subcarriers in each 24
symbol per subchannel
Number of subchannels 30
Basic permutation sequence 6 3, 2, 0, 4, 5, 1
(for 6 subchannels)
Basic permutation sequence 4 3, 0, 2, 1
(for 4 subchannels)

of the symbol structure of different FFT sizes for PUSC mode. Here we only take the

1024-FFT OFDMA downlink carrier allocation for example, which is summarized in

Table 2.3. Fig. 2.11 depicts the DL cluster structure.

Downlink Subchannels Subcarrier Allocation in PUSC

The subcarrier allocation to subchannels is performed using the following procedure:

1. Dividing the subcarriers into the number of clusters (Nclusters), where the physical

clusters contain 14 adjacent subcarriers each (starting from carrier 0). The number

of clusters varies with the FFT size.

2. Renumbering the physical clusters into logical clusters using the following formula:

18

Figure 2.11: DL cluster structure (from[10]).

LogicalCluster =

RenumberingSequence(PhysicalCluster), first DL zone, or Use All SC indicator

= 0 in STC DL Zone IE,

RenumberingSequence((PhysicalCluster)+ otherwise.

13 ·DL PermBase)modNclusters,

(2.2)

In the first PUSC zone of the downlink (first downlink zone) and in a PUSC zone

defined by STC DL ZONE IE() with “use all SC indicator = 0”, the default re-

numbering sequence is used for logical cluster definition. For all other cases DL PermBase

parameter in the STC DL Zone IE() or AAS DL IE() shall be used.

3. Allocating logical clusters to groups. The allocation algorithm varies with FFT

size. For FFT size = 1024, dividing the clusters into six major groups. Group 0

includes clusters 0–11, group 1 clusters 12–19, group 2 clusters 20–31, group 3

clusters 32–39, group 4 clusters 40–51, and group 5 clusters 52–59. These groups

may be allocated to segments; if a segment is used, then at least one group shall be

allocated to it. By default group 0 is allocated to sector 0, group 2 to sector 1, and

group 4 to sector 2.

4. Allocating subcarriers to subchannels in each major group, which is performed sep-

arately for each OFDMA symbol by first allocating the pilot carriers within each

cluster, and then partitioning all remaining data carriers into groups of contiguous

subcarriers. Each subchannel consists of one subcarrier from each of these groups.

The number of groups is therefore equal to the number of subcarriers per subchan-

19

nel, and it is denoted Nsubcarriers. The number of the subcarriers in a group is equal

to the number of subchannels, and it is denoted Nsubchannels. The number of data

subcarriers is thus equal to Nsubcarriers ·Nsubchannels. The parameters vary with FFT

sizes. For FFT size = 1024, use the parameters from Table 2.3, with basic permuta-

tion sequence 6 for even numbered major groups and basic permutation sequence 4

for odd numbered major groups, to partition the subcarriers into subchannels con-

taining 24 data subcarriers in each symbol. The exact partitioning into subchannels

is according to the permutation formula:

subcarrier(k, s) = Nsubchannels · nk

+{ps[nk mod Nsubchannels] + DL PermBase} mod Nsubcahnnels (2.3)

where:

subcarrier(k, s)

s

nk

Nsubchannels

ps[j]

DL PermBase

is the subcarrier index of subcarrier k in subchannel s,

is the index number of a subchannel, from the set {0,...,

Nsubcarriers − 1},

= (k + 13 · s) mod Nsubcarriers, where k is the subcarrier-in-

subchannel index from the set {0,..., Nsubcarriers − 1},

is the number of subchannels (for PUSC use number of sub-

channels in the currently partitioned major group),

is the series obtained by rotating basic permutation sequence

cyclically to the left s times,

is an integer ranging from 0 to 31, which is set to the preamble

IDCell in the first zone and determined by the DL-MAP for

other zones.

On initialization, an SS must search for the downlink preamble. After finding the pream-

ble, the user shall know the IDcell used for the data subchannels.

2.5.2 Uplink

The UL follows the DL model, therefore it also supports up to three segments. The

UL supports 35 subchannels where each transmission uses 48 data subcarriers as the

20

minimal block of processing. Each new transmission for the uplink commences with the

parameters as given in Table 2.4.

Symbol Structure for Subchannel (PUSC)

A slot in the uplink is composed of three OFDMA symbols and one subchannel. Within

each slot, there are 48 data subcarriers and 24 fixed-location pilots. The subchannel is

constructed from six uplink tiles, each tile has four successive active subcarriers and its

configuration is illustrated in Fig. 2.12.

Partitioning of Subcarriers into Subchannels in the Uplink

The usable subcarriers in the allocated frequency band shall be divided into Ntiles physical

tiles as defined in Fig. 2.12 with parameters from Table 2.4. The allocation of physical

tiles to logical tiles in subchannels is performed in the following manner:

Tiles(s, n) = Nsubchannels·n+{Pt[(s+n) mod Nsubchannels]+UL PermBase} mod Nsubcahnnels

(2.4)

Table 2.4: 1024-FFT OFDMA UL Carrier Allocation for PUSC
Parameter Value Comments

Number of DC subcarriers 1 Index 512
Nused 841
Guard subcarriers: left, right 92,91
TilePermutation 11, 19, 12, 32, 33, 9, 30, 7, used to allocate

4, 2, 13, 8, 17, 23, 27, 5, tiles to subchannels
15, 34, 22, 14, 21, 1, 0, 24,
3, 26, 29, 31, 20, 25, 16, 10,
6, 28, 18

Nsubchannels 35
Ntiles 210
Tile per subchannel 6

21

Figure 2.12: Description of an UL tile (from [10]).

where:

Tiles(s, n)

n

Pt

Nsubchannels

s

UL PermBase

is the physical tile index in the FFT with tiles being ordered

consecutively from the most negative to the most positive used

subcarrier (0 is the starting tile index),

is the tile index 0,...,5 in a subchannel,

is the tile permutation,

is the number of subchannels,

is the subchannel number in the range {0,...,Nsubchannels − 1},

is an integer value in the range 0...69, which is assigned by a

management entity.

After mapping the physical tiles in the FFT to logical tiles for each subchannel, the

data subcarriers per slot are enumerated by the following process:

1. After allocating the pilot carriers within each tile, indexing of the data subcarriers

within each slot is performed starting from the first symbol at the lowest indexed

subcarrier of the lowest indexed tile and continuing in an ascending manner through

the subcarriers in the same symbol, then going to the next symbol at the lowest

indexed data subcarrier, and so on. Data subcarriers shall be indexed from 0 to 47.

2. The mapping of data onto the subcarriers will follow (2.5), which calculates the

subcarrier index (as assigned in item 1) to which the data constellation point is to

be mapped:

Subcarriers(n, s) = (n + 13 · s) mod Nsubcarriers (2.5)

where:

22

Subcarriers(n, s)

n

s

Nsubcarriers

is the permutated subcarrier index corresponding to data sub-

carrier n is subchannel s,

is the running index 0,...,47, indicating the data constellation

point,

is the subchannel number,

is the number of subcarriers per slot.

2.6 Modulation
Subcarrier Randomization

The pseudo random binary sequence (PRBS) generator, as shown in Fig. 2.13, shall be

used to produce a sequence wk. The polynomial for the PRBS generator shall be X11 +

X9 + 1. The value of the pilot modulation on subcarrier k shall be derived from wk.

The initialization vector of the PRBS generator for both uplink and downlink, desig-

nated b10..b0, is defined as follows:

b0..b4 = five least significant bits of IDcell as indicated by the frame preamble in the

first downlink zone and in the downlink AAS zone with Diversity Map support,

DL PermBase following STC DL Zone IE() and 5 LSB of DL PermBase follow-

ing AAS DL IE without Diversity Map support in the downlink. Five least signifi-

cant bits of IDcell (as determined by the preamble) in the uplink. For downlink and

uplink, b0 is MSB and b4 is LSB, respectively.

Figure 2.13: PRBS generator for pilot modulation (from [2]).

23

b5..b6 = set to the segment number + 1 as indicated by the frame preamble in the

first downlink zone and in the downlink AAS zone with Diversity Map support,

PRBS ID as indicated by the STC DL Zone IE or AAS DL IE without Diver-

sity Map support in other downlink zone. 0b11 in the uplink. For downlink and

uplink, b5 is MSB and b6 is LSB, respectively.

b7..b10 = 0b1111 (all ones) in the downlink and four LSB of the Frame Number in the

uplink. For downlink and uplink, b7 is MSB and b10 is LSB, respectively.

Data Modulation

After the repetition block, the data bits are entered serially to the constellation mapper.

Gray-mapped QPSK and 16-QAM shall be supported, whereas the support of 64-QAM

is optional.

Pilot Modulation

In all permutations except uplink PUSC and downlink TUSC1, each pilot shall be trans-

mitted with a boosting of 2.5 dB over the average non-boosted power of each data tone.

The pilot subcarriers shall be modulated according to

<{ck} = 8
3
(1

2
− wk) · pk, ={ck} = 0, (2.6)

where pk is the pilot’s polarity for SDMA (spatial division multiple access) allocations in

AMC AAS zone, and p = 1 otherwise.

Preamble Pilot Modulation

The pilots in the downlink preamble shall be modulated according to

<{PreambleP ilotModulation} = 4 ·
√

2 · (1
2
− wk), (2.7)

={PreambleP ilotModulation} = 0. (2.8)

2.7 Transmit Spectral Mask

Due to requirement of bandwidth-limited transmission, the transmitted spectral density

of the transmitted signal shall fall within the spectral mask as shown in Fig. 2.14 and

24

Table 2.5 in license-exempt bands. The measurements shall be made using 100 kHz

resolution bandwidth and a 30 kHz video bandwidth. The 0 dBr level is the maximum

power allowed by the relevant regulatory body. IEEE 802.16e dose not specify the power

mask for the licensed bands.

2.8 Frequency and Timing Requirements
Timing Requirements

For any duplexing, all SSs shall acquire and adjust their timing such that all uplink

OFDMA symbols arrive time coincident at the BS to an accuracy of ±25% of the mini-

mum guard interval or better. For example, this translates into ±8 samples in the case of

1024-FFT OFDMA.

Frequency Requirements

At the BS, the transmitted center frequency, receive center frequency, and the symbol

clock frequency shall be derived from the same reference oscillator. At the BS, the refer-

ence frequency accuracy shall be better than ±2× 10−6.

At the SS, both the transmitted center frequency and the sampling frequency shall

be derived from the same reference oscillator. Thereby, the SS uplink transmission shall

be locked to the BS, so that its center frequency shall deviate no more than 2% of the

subcarrier spacing, compared to the BS center frequency.

During the synchronization period, the SS shall acquire frequency synchronization

within the specified tolerance before attempting any uplink transmission. During normal

operation, the SS shall track the frequency changes by estimating the downlink frequency

offset and shall defer any transmission if synchronization is lost. To determine the trans-

mit frequency, the SS shall accumulate the frequency offset corrections transmitted by the

BS (for example in the RNG-RSP message), and may add to the accumulated offset an

Table 2.5: Transmit Sprctral Mask for License-Exempt Bands
Bandwidth (MHz) A B C D

10 9.5 10.9 19.5 29.5
20 4.75 5.45 9.75 14.75

25

Figure 2.14: Transmit spectral mask for license-exempt operation (from [1]).

estimated UL frequency offset based on the downlink signal.

26

Chapter 3

Introduction to the DSP
Implementation Platform

In this chapter, we introduce the DSP platform used in our implementation.We use the

SMT395 DSP module made by Sundance housed on a Sundance PCI-plugin board. The

DSP chip on the module is the TMS320C6416T made by Texas Instrument (TI). It also

has a Xilinx Virtex II Pro FPGA. We will introduce the DSP card and the DSP chip.

In addition, we will also introduce the software development tool, the Code Composer

Studio (CCS), and the code development technique.

3.1 The DSP Card [11]

The DSP card used in our implementation is Sundance’s SMT395 shown in Fig. 3.1. It

houses a 1GHz 64-bit TMS320C6416T DSP of TI, manufactured on 90 nm technology.

The SMT395 is supported by TI’s Code Composer Studio and the 3L Diamond real-time

operating system (RTOS) to enable multi-DSP systems with minimum programmer effort.

It provides a flexible platform for various applications.

Some important features of the SMT395 module are as follows.

• 1 GHz TMS320C6416T fixed point DSP.

• 8000 MIPS peak DSP performance.

• Xilinx Virtex II Pro FPGA XC2VP30-6 in FF896 package.

• 256 Mbytes of SDRAM at 133MHz.

27

Figure 3.1: Sundance’s SMT395 module

• Two Sundance High-speed Bus (50 MHz, 100 MHz or 200 MHz) ports at 32 bits

width.

• Eight 2 Gbit/sec Rocket Serial Links (RSL) for inter-Module communications.

• Six common ports up to 20 MB per second for inter-DSP communication.

• 8 Mbytes flash ROM for configuration and booting.

• JTAG diagnostics port.

3.2 The DSP Chip [12]

The TMS320C6416T DSP is the a fixed-point DSP in the TMS320C64x series of the

TMS320C6000 DSP platform family. It is based on the advanced VelociTI very-long-

instruction-word (VLIW) architecture developed by TI. The functional block and DSP

core diagram of TMS320C64x series is shown in Fig. 3.2.

28

The C6000 core CPU consists of 64 general-purpose 32-bits registers and eight func-

tion units. Features of C6000 device include the following.

• VLIW CPU with eight functional units, including two multipliers and six arith-

metic:

– Executes up to eight instructions per cycle.

– Allows designers to develop highly effective RISC-like code for fast develop-

ment time.

• Instruction packing:

– Gives code size equivalence for eight instructions executed serially or in par-

allel.

– Reduces code size, program fetches, and power consumption.

• Conditional execution of all instructions:

– Reduces costly branching.

– Increases parallelism for higher sustained performance.

• Efficient code execution on independent functional units:

– Efficient C complier on DSP benchmark suite.

– Assembly optimizer for fast development and improved parallelization.

• 8/16/32-bit data support, providing efficient memory support for a variety of appli-

cations.

• 40-bit arithmetic options add extra precision for vocoders.

• 32x32-bit integer multiply with 32- or 64-bit result.

In the following subsections, three major parts of the TMS320C64x DSP are intro-

duced respectively. They are the central processing unit, memory, and peripherals.

29

Figure 3.2: Functional block and CPU (DSP core) diagram [13].

3.2.1 Central Processing Unit

The C64x DSP core contains 64 32-bit general purpose registers, program fetch unit,

instruction decode unit, two data paths each with four function units, control register,

control logic, advanced instruction packing, test unit, emulation logic and interrupt logic.

The program fetch, instruction fetch, and instruction decode units can arrange eight 32-bit

instructions to the eight function units every CPU clock cycle. The processing of instruc-

tions occurs in each of the two data paths (A and B) shown in Fig. 3.2, each of which

contains four functional units and one register file. The four functional units are as fol-

lows. The first unit is for multiplier operations (.M). The second unit is for arithmetic and

logic operations (.L). The third is for branch, byte shifts, and arithmetic operations (.S).

And the last is for linear and circular address calculation to load and store with external

memory operations (.D). The details of the functional units are described in Table 3.1.

30

Table 3.1: Functional Units and Operations Performed [12]
Parameter Value

.L unit(.L1, .L2) 32/40-bit arithmetic and compare operations
32-bit logical operations
Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts
Data packing/unpacking
5-bit constant generation
Dual 16-bit and Quad 8-bit arithmetic operations
Dual 16-bit and Quad 8-bit min/max operations

.S unit (.S1, .S2) 32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations
Branches
Constant generation
Register transfers to/from control register file (.S2 only)
Byte shifts
Data packing/unpacking
Dual 16-bit and Quad 8-bit compare operations
Dual 16-bit and Quad 8-bit saturated arithmetic operations

.M unit (.M1, .M2) 16 x 16 multiply operations
16 x 32 multiply operations
Dual 16 x 16 and Quad 8 x 8 multiply operations
Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operations
Bit expansion
Bit interleaving/de-interleaving
Variable shift operations
Rotation
Galois Field Multiply

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset
Loads and stores with 15-bit constant offset(.D2 only)
Loads and stores doubles words with 5-bit constant
Loads and store non-aligned words and double words
5-bit constant generation
32-bit logical operations

31

Each register file consists of 32 32-bit registers for each four functional units reads and

writes directly within its own data path. That is, the functional units .L1, .S1, .M1, .D1

can only write to register file A. The same condition occurs in register file B. However,

two cross-paths (1X and 2X) allow functional units from one data path to access a 32-

operand from the opposite side register file. The cross path 1X allows data path A to read

their source from register file B. The cross path 2X allows data path B to read their source

from register file A. In the C64x, CPU pipelines data-cross-path accesses over multiple

clock cycles. This allows the same register to be used as a data-cross-path operand by

multiply functional units in the same execute packet.

3.2.2 Memory Architecture and Peripherals

The C64x is a two-level cache-based architecture. The level 1 cache is separated into

program and data spaces. The level 1 program cache (L1P) is a 128 Kbit direct mapped

cache and the level 1 data cache (L1D) is a 128 Kbit 2-way set-associative mapped cache.

The level 2 (L2) memory consists of 8 Mbit memory space for cache (up to 256 Kbytes)

and unified mapped memory.

The external memory interface (EMIF) provides interfaces for the DSP core and

external memory, such as synchronous-burst SRAM (SBSRAM), synchronous DRAM

(SRAM), SDRAM, FIFO and asynchronous memories (SRAM and EPROM). The EMIF

also provides 64-bit-wide (EMIFA) and 16-bit-wide (EMIFB) memory read capability.

The C64x contains some peripherals such as enhanced direct-memory-access (EDMA),

host-port interface (HPI), PCI, three multichannel buffered serial ports (McBSPs), three

32-bit general-purpose timers and sixteen general-purpose I/O pins. The EDMA con-

troller handles all data transfers between the level-two (L2) cache/memory and the device

peripheral. The C64x has 64 independent channels. The HPI is a 32-/16-bit wide parallel

port through which a host processor can directly access the CPUs memory space. The

PCI port supports connection of the DSP to a PCI host via the integrated PCI master/slave

bus interface.

32

3.3 TI’s Code Development Environment [14]

The Code Composer Studio (CCS) is a key element of the DSP software and development

tools from Texas Instruments. The tutorial [15] introduces the key features of CCS and

the programmer’s guide [16] gives a reference for programming TMS320C6000 DSP

devices. A programmer needs to be familiar with coding development flow and CCS for

building a new project on the DSP platform efficiently.

3.3.1 Code Composer Studio

The CCS combines the basic code generation tools with a set of debugging and real-time

analysis capabilities which supports all phases of the development cycle shown in Fig. 3.3.

Some main features of the CCS are listed below:

• Real-time analysis.

• Source code debugger common interface for both simulator and emulator targets.

– C/C++ assembly language support.

– Simple breakpoints.

– Advanced watch window.

– Symbol browser.

• DSP/BIOS support.

– Pre-emptive multi-threading.

Figure 3.3: Code development cycle [15].

33

– Interthread communication.

– Interupt handing.

• Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

• DSP libraries for optimum DSP functionality. The DSP library includes many C-

callable, assembly-optimized, general-purpose signal-processing and image/video

processing routines. These routines are typically used in computationally intensive

real-time applications where optimal execution speed is critical. The TMS320C64x

digital signal processor library (DSPLIB) provides some routines for:

– Adaptive filtering.

– Correlation.

– FFT.

– Filtering and convolution.

– Math.

– Matrix functions.

– Miscellaneous.

Some of these routines are used in our implementation, such as FFT and filtering. We

introduce them in a later chapter.

3.3.2 Code Development Flow [16]

The recommended code development flow involves utilizing the C6000 code generation

tools to aid in optimization rather than forcing the programmer to code by hand in assem-

bly. Hence the programmer may let the compiler do all the laborious work of instruction

selection, parallelizing, pipelining, and register allocation. This simplifies the mainte-

nance of the code, as everything resides in a C framework that is simple to maintain,

support, and upgrade. Fig. 3.4 illustrates the three phases in the code development flow.

Because phase 3 is usually too detailed and time consuming, most of the time we will not

34

go into phase 3 to write linear assembly code unless the software pipelining efficiency is

too bad or the resource allocation is too unbalanced.

3.4 Code Optimization on TI DSP Platform

In this section, we describe several methods that can accelerate our code and reduce the

execution time on the C64x DSP. First, we introduce two techniques that can be used to

analyze the performance of specific code regions:

• Use the clock() and printf() functions in C/C++ to time and display the perfor-

mance of specific code regions. Use the stand-alone simulator (load6x) to run the

code for this purpose.

• Use the profile mode of the stand-alone simulator. This can be done by compiling

the code with the -mg option and executing load6x with the -g option. Then enable

the clock and use profile points and the RUN command in the Code Composer

debugger to track the number of CPU clock cycles consumed by a particular section

of code. Use “View Statistics” to view the number of cycles consumed.

Usually, we use the second technique above to analyze the C code performance. The

feedback of the optimization result can be obtained with the -mw option. It shows some

important results of the assembly optimizer for each code section. We take these results

into consideration in improving the computational speed of certain loops in our program.

3.4.1 Compiler Optimization Options [16]

In this subsection, we introduce the compiler options that control the operation of the

compiler. The CCS compiler offers high-level language support by transforming C/C++

code into more efficient assembly language source code. The compiler options can be

used to optimize the code size or the executing performance.

The major compiler options we use are -o3, -k, -pm -op2, -mh<n>, -mw, and -mi.

• -on: The “n” denotes the level of optimization (0, 1, 2, and 3), which controls the

type and degree of optimization.

35

Figure 3.4: Code development flow for C6000 (from [16]).

36

– -o3: highest level optimization, whose main features are:

∗ Performs software pipelining.

∗ Performs loop optimizations, and loop unrolling.

∗ Removes all functions that are never called.

∗ Reorders function declarations so that the attributes of called functions

are known when the caller is optimized.

∗ Propagates arguments into function bodies when all calls pass the same

value in the same argument position.

∗ Identifies file-level variable characteristics.

• -k: Keep the assembly file to analyze the compiler feedback.

• -pm -op2: In the CCS compiler option, -pm and -op2 are combined into one option.

– -pm: Gives the compiler global access to the whole program or module and

allows it to be more aggressive in ruling out dependencies.

– -op2: Specifies that the module contains no functions or variables that are

called or modified from outside the source code provided to the compiler.

This improves variable analysis and allowed assumptions.

• -mh<n>: Allows speculative execution. The appropriate amount of padding, n,

must be available in data memory to insure correct execution. This is normally not

a problem but must be adhered to.

• -mw: Produce additional compiler feedback. This option has no performance or

code size impact.

• -mi: Describes the interrupt threshold to the compiler. If compiler knows that no in-

terrupts will occur in the code, it can avoid enabling and disabling interrupts before

and after software-pipelined loops for improvement in code size and performance.

In addition, there is potential for performance improvement where interrupt regis-

ters may be utilized in high register pressure loops.

37

3.4.2 Software Pipelining [17]

Software pipelining is a technique used to schedule instructions from a loop so that mul-

tiple iterations of the loop execute in parallel. This is the most important feature we rely

on to speed up our system. The compiler always attempts to software-pipeline. Fig. 3.5

illustrates a software pipelined loop. The stages of the loop are represented by A, B, C,

D, and E. In this figure, a maximum of five iterations of the loop can execute at one time.

The shaded area represents the loop kernel. In the loop kernel, all five stages execute in

parallel. The area above the kernel is known as the pipelined loop prolog, and the area

below the kernel the pipelined loop epilog.

But under the conditions listed below, the compiler will not do software pipelining

[16]:

• If a register value lives too long, the code is not software-pipelined.

• If a loop has complex condition code within the body that requires more than five

condition registers, the loop is not software pipelined.

• A software-pipelined loop cannot contain function calls, including code that calls

the run-time support routines.

• In a sequence of nested loops, the innermost loop is the only one that can be

software-pipelined.

• If a loop contains conditional break, it is not software-pipelined.

Usually, we should maximize the number of loops that satisfy the requirements of soft-

ware pipelining. Software pipelining is a very important technique for optimization; its

importance cannot be overemphasized.

3.4.3 Intrinsics [16]

We do not use any intrinsics in our code, but we introduce the concept of this tech-

nique here. The C6000 compiler provides intrinsics, which are special functions that

38

Figure 3.5: Software-pipelined loop (from [12]).

map directly to C64x instructions, to optimize C/C++ code quickly. All assembly instruc-

tions that are not easily expressed in C/C++ code are supported as intrinsics. A table of

TMS320C6000 C/C++ compiler intrinsics can be found in [16].

39

Chapter 4

Transmission Environment and
Transmission Filtering

In this chapter, we first discuss the transmission environment used in our study. Then

we introduce the square–root raised cosine (SRRC) filter used for shaping of the power

spectrum and controlling of the ISI.

4.1 System Parameters

We have to specify the system parameters so that the simulation environment can be

constructed. The IEEE 802.16e standard is very flexible in choice of bandwidth and cyclic

prefix length. However, it would be difficult to conduct the simulation and implementation

study for all possible sets of parameters. Hence we pick a subset as follows.

The system profile we select is PMP, WirelessMAN-OFDMA PHY profile, TDD, and

single-input single-output (SISO) operation. The FFT sizes are 1024 and 2048, and the

carrier frequency is 3.5 GHz. We consider the mandatory PUSC permutation and use

segment 0 to allocate data subcarriers.

The modulation could be QPSK, 16-QAM, or 64-QAM with randomly generated data.

The frame duration could be 5 or 10 ms. Other parameter values are specified in Table

4.1.

40

Table 4.1: System Parameters Used in Our Study
Parameters Values

System Channel Bandwidth (MHz) 10 10 20
Sampling Frequency (MHz) 11.2 11.2 22.4
FFT Size 1024 2048 2048
Subcarrier Spacing (kHz) 10.94 5.47 10.94
Useful Symbol Time (µsec) 91.4 182.8 91.4
Guard Time (µsec) 11.4 22.8 11.4
OFDMA Symbol Time (µsec) 102.9 205.7 102.9

4.2 Channel Environments

Typical models of the wireless communication channel include additive noise and multi-

path fading. For channel simulation, noise and multipath fading are described as random

processes, so they can be algorithmically generated as well as mathematically analyzed.

4.2.1 Gaussian Noise

The simplest kind of channel is the additive white Gaussian noise (AWGN) channel,

where the received signal is only subject to added noise. A major source of this noise is

the thermal noise in the amplifiers which may be modeled as Gaussian with zero mean and

constant variance. In computer simulations, random number generators may be used to

generate Gaussian noise of given power to obtain a particular signal-to-noise ratio (SNR).

4.2.2 Slow Fading Channel

In slow fading, multipath propagation may exist, but the channel coefficients do not

change significantly over a relatively long transmission period. The channel impulse re-

sponse over a short time period can be modeled as

h(τ) =
N−1∑
i=0

αie
jθiδ(τ − τi) (4.1)

where N is the number of multipaths, αi and τi are respectively the amplitude and the

delay of the ith multipath, and θi represents the phase shift associated with path i. These

parameters are time-invariant in a short enough time period.

41

4.2.3 Fast Fading Channel

With sufficiently fast motion of either the transmitter or the receiver, the coefficient of

each propagation path becomes time varying. The equivalent baseband channel impulse

response can then be better modeled as

h(τ, t) =
N−1∑
i=0

αi(t)e
jθi(t)δ(τ − τi). (4.2)

Note that αi and θi are now functions of time. But τi is still time-invariant, because the

path delays usually change at a much slower pace than the path coefficients. The channel

coefficients are often modeled as complex independent stochastic processes. If there is

no LOS path between the transmitter and the receiver, then each path may be made of

the superposition of many reflected paths, yielding a Rayleigh fading characteristic. A

commonly used method to simulate Rayleigh fading is Jakes’ fading model, which is

a deterministic method for simulating time-correlated Rayleigh fading waveforms. An

improvement to Jakes’ model is proposed in [18].

4.2.4 Power-Delay Profile Model

For simplicity in analysis and simulation, the delay τi in the above two models can be

discretized to have a certain easily manageable granularity. This results in a tapped-delay-

line model for the channel impulse response, where the spacing between any two taps is

an integer multiple of the chosen granularity. For convenience, one may excise the initial

delay and make τ0 = 0. Often, it is convenient to normalize the path powers relative to

the strongest path. And, often, the first path has the highest average power.

The channel model used here is a modification of the Stanford University Interim

(SUI) channel models proposed in [19]. These models, for a collect of scenarios, provide

the parameters to model the various random phenomena involved with a simulation; of

course there are many possible combinations of these parameters to obtain such channel

descriptions.

A set of 6 typical channels was selected for the three most common terrain categories

that are typical of the continental United States. The parametric view of the SUI channels

is summarized in Tables 4.2 and 4.3.

42

Table 4.2: Terrain Type vs. SUI Channels
Terrain Type SUI Channels

A: hilly terrain, heavy tree SUI-5, SUI-6
B: between A and C SUI-3, SUI-4
C: flat terrain, light tree SUI-1, SUI-2

Table 4.3: General characteristics of SUI channels
Doppler Low delay spread Moderate delay spread High delay spread
Low SUI-1, SUI-2,SUI3 SUI-5
High SUI-4 SUI-6

The scenario of SUI channels are:

• Cell size: 7 km.

• Base station antenna height: 30 m.

• Receiver antenna height: 6 m.

• Base station antenna beamwidth: 120◦.

• Receiver antenna beamwidth: omnidirectional (360◦) and 30◦.

• Vertical polarization only.

We list the SUI channel models in Tables 4.4 to 4.9.

Another channel model chosen from one of the channel environments defined by ETSI

is used in this thesis. The model is as shown in Table 4.10. This is a channel model for

the vehicular test environment, where the tested speed is from 120 to 500 km/h. This

environment is characterized by larger cells and higher transmit power, is valid for NLOS

case only, and describes worse case propagation. Channel A is the low delay spread case

that occurs frequently. See [20] for more details.

4.3 Transmission Filtering

We introduce the SRRC filter based on [21] here. To avoid the complexity of an ideal

lowpass filter and to simulate path delays at non-integer sample times, an interpolator is

added to the transmitter to yield 4-times oversampled transmitter output. Figure 4.1 shows

43

Table 4.4: SUI-1 Channel Model
Relative delay (µs or sample number) Average power

Tap (µs) (4×oversampling) (normal) (dB) (normal scale) (normalized)
1 0 0 0 0 1 0.9610
2 0.4 17 4 -15 0.0316 0.0303
3 0.9 40 10 -20 0.01 0.0096

Table 4.5: SUI-2 Channel Model
Relative delay (µs or sample number) Average power

Tap (µs) (4×oversampling) (normal) (dB) (normal scale) (normalized)
1 0 0 0 0 1 0.9135
2 0.4 17 4 -12 0.0631 0.0576
3 1.1 49 12 -15 0.0316 0.0289

the spectrum of the signal after 4-times oversampling. The three duplicates of the original

are undesired and need to be filtered out to meet the power mask. As the ideal lowpass

interpolation filter cannot be implemented exactly, the easier realized SRRC filter is used

instead. The impulse response of the filter is given by

SRRC(t) =
sin

(
π t

Tsample
(1− α)

)
+ 4α t

Tsample
cos

(
π t

Tsample
(1 + α)

)

π t
Tsample

(
1− (4α t

Tsample
)2

) ,

where α is the roll-off factor. The reason for adopting the SRRC filter is that for this filter

the transmitter and receiver filters are matched to each other and they introduce no inter-

sample interference under ideal channels. Figure 4.2 shows that although the transmitter

output signal contains inter-sample interference introduced by the SRRC filter due to its

nonzero values at multiples of Tsample, the output of the receiver SRRC filter is ISI-free

for the reason that the convolution of two SRRC filters has zero values at all multiples of

Tsample.

Now, we have to decide the roll-off factor and the tap number of the SRRC filter (4-

Table 4.6: SUI-3 Channel Model
Relative delay (µs or sample number) Average power

Tap (µs) (4×oversampling) (normal) (dB) (normal scale) (normalized)
1 0 0 0 0 1 0.7061
2 0.4 17 4 -5 0.3162 0.2233
3 0.9 40 10 -10 0.1 0.0706

44

Table 4.7: SUI-4 Channel Model
Relative delay (µs or sample number) Average power

Tap (µs) (4×oversampling) (normal) (dB) (normal scale) (normalized)
1 0 0 0 0 1 0.6424
2 1.5 17 4 -4 0.3981 0.2557
3 4 67 16 -8 0.01585 0.1018

Table 4.8: SUI-5 Channel Model
Relative delay (µs or sample number) Average power

Tap (µs) (4×oversampling) (normal) (dB) (normal scale) (normalized)
1 0 0 0 0 1 0.7061
2 4 179 45 -5 0.3162 0.2233
3 10 448 112 -10 0.1 0.0706

times oversampled). The frequency range from 0.212π to 0.288π in Fig. 4.1 corresponds

to guard bands; hence the SRRC filter design can disregard this range. Thus the critical

point for the design is the lowest frequency of the first duplicate (0.288π in Fig. 4.1).

The power mask at this critical frequency is -26.63 dBr, so we have to design a filter

which has smaller response than -26.63 dBr at this frequency. The magnitude responses

of three different SRRC filters are shown in Fig. 4.3. Figure 4.3(a) is the response of a

57-taps SRRC filter (4-time oversampled) with roll-off factor α = 0.15. If the roll-off

factor is larger, say 0.155 as in Figure 4.3(b), the power will be larger than -26.63 dBr at

the critical frequency. A roll-off factor smaller than 0.15 would satisfy the mask at the

critical frequency. However, the power at high frequency becomes larger than -50 dBr as

shown in Fig. 4.3(c). Moreover, if the tap number is smaller, the power will not meet the

mask at high frequency no matter how small the roll-off factor is. Figure 4.4 shows the

frequency response of 49-taps SRRC filter with α = 0.15. Finally, we adopt the 57-taps

SRRC filter with α = 0.15.

The spectral density of the transmitted signal after oversampling and SRRC filtering is

Table 4.9: SUI-6 Channel Model
Relative delay (µs or sample number) Average power

Tap (µs) (4×oversampling) (normal) (dB) (normal scale) (normalized)
1 0 0 0 0 1 0.8773
2 14 627 156 -10 0.1 0.0877
3 20 896 224 -14 0.0398 0.0349

45

Table 4.10: ETSI “Vehicular A” Channel Model in Different Units [20]
Relative delay (µs or sample number) Average power

Tap (µs) (4×oversampling) (normal) (dB) (normal scale) (normalized)
1 0 0 0 0 1 0.4850
2 0.31 13 3 -1 0.7943 0.3852
3 0.71 31 8 -9 0.1259 0.061
4 1.09 48 12 -10 0.1 0.0485
5 1.73 77 19 -15 0.0316 0.0153
6 2.51 112 28 -20 0.01 0.0049

Figure 4.1: Frequency spectrum of the signal after 4 times oversampling and relation to
the power mask.

shown in Fig. 4.5. The transmitted signal we have used here is the DL preamble symbol.

We can see that the transmitted spectral density satisfies the required power mask.

In the receiver, we use the same SRRC filter followed by 4-times downsampling. We

apply the polyphase technique for implementing the interpolation filter and the decimation

filter to reduce the complexity. More details can be found in [21].

46

Figure 4.2: Impulse response of the SRRC filter (solid) and the convolution of the impulse
responses of two SRRC filters (dashed) [21].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−100

−80

−60

−40

−20

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−100

−80

−60

−40

−20

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−100

−80

−60

−40

−20

0

Power mask

Power mask

Power mask

SRRC filter: α=0.15, taps=57

SRRC filter: α=0.155, taps=57

SRRC filter: α=0.145, taps=57

Critical point

Critical point

Critical point

Figure 4.3: Magnitude responses of three different SRRC filters.

47

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−100

−80

−60

−40

−20

0
Powe mask

SRRC filter : α=0.15, taps=49

(π)

Figure 4.4: Magnitude responses of 49-taps SRRC filter with roll-off factor 0.15.

−1 −0.5 0 0.5 1
−100

−80

−60

−40

−20

0

π

Power mask

Transmitted signal power spectrum

Figure 4.5: Spectral density of the signal after the interpolation and SRRC filtering, com-
pared to the spectral mask.

48

Chapter 5

Synchronization Techniques for IEEE
802.16e OFDMA

In this chapter, we discuss the synchronization issues of the IEEE 802.16e OFDMA TDD

system and present our synchronization techniques.

5.1 OFDMA Synchronization Problems and Techniques

Accurate demodulation and detection of an OFDM signal requires subcarrier orthogo-

nality. Variations in the carrier oscillator, sampling clock or the symbol time affect this

orthogonality. Therefore, before a receiver can demodulate the signal, it has to perform

synchronization. The synchronizer estimates and compensates any offsets in carrier, sam-

pling time, and OFDMA symbol time in the receiver in reference to the transmitter.

In OFDMA DL, there are two synchronization conditions: initial synchronization and

normal synchronization. We apply initial DL synchronization when the mobile station

(MS) receiver enters the network for the first time. We assume that the frame synchro-

nization is done by monitoring the power of the received signal. Initial DL synchroniza-

tion at the MS includes carrier recovery and timing recovery. Upon entering the network

and upon a need to handover, the MS has to identify the preamble index of the BS seg-

ment that it will communicate with. Therefore, another important task needed to be done

during initial synchronization is to find the preamble index. Carrier recovery involves es-

timation and compensation of the carrier frequency offset (CFO) and timing recovery, in

principle, should include estimation and compensation of the sampling frequency offset

(SFO), sampling timing offset, and the OFDMA symbol time offset. The carrier phase

49

offset may be considered part of the channel response and resolved by channel estimator.

The sampling timing offset can also be absorbed into the channel response if the CP is

long enough.

Note that the IEEE 802.16e OFDMA requires not only that the MS carrier frequency

shall be synchronized to the BS within 2% of the subcarrier spacing, but also that the

transmitted center frequency and the sampling frequency of the MS shall be derived from

one reference oscillator. When these are true, the sampling phase difference from the

beginning of an OFDMA symbol to the end of it will only differ by at most 2%×(1+1/4)

of the true sample period, where the factor 1/4 accounts for the largest allowed CP time

ratio. As a result, it appears unnecessary to perform separate SFO recovery in either the

MS or the BS provided that the CFO can be accurately recovered. What remain to be

synchronized, besides preamble index identification in the DL, are therefore the CFO and

the OFDMA symbol timing.

Nonzero CFO results in ICI where nearby subcarriers interfere with one another. On

the other hand, incorrect symbol timing estimation may lead to two different kinds of

impairment. A negative timing error (or lead-error, where the estimated timing is earlier

than the actual timing) amounts to adding a delay to the channel response. Hence a neg-

ative timing error causes no performance problem as long as the amount of error plus the

original length of channel response is still within the CP length. Nevertheless, a smaller

negative timing error can better ensure proper system operation if the length of channel

response can vary from time to time. On the other hand, positive timing errors (i.e., lag-

errors, where the estimated timing is later than the actual timing) is more detrimental to

system performance because one would mistake some of next symbol’s samples for part

of the present symbol. As a result, it is desirable to minimize the probability of positive

timing errors. In Fig. 5.1, we can see that if the length of CP exceeds the channel im-

pulse response, as long as a receiver captures an OFDM symbol starting in the allowable

region, the OFDM symbol appears cyclic, orthogonality is maintained, and ISI and ICI

are avoided. Note that the above material is largely taken from the contents of [10].

In the DL, due to potentially large tolerance in the free-running oscillator frequency

of the MS, and due to the motion-induced Doppler spread, there may be large CFO in the

50

Figure 5.1: The symbol time offset requirement (from [22]).

received signal. The large CFO can be partitioned into the fractional part of “normalized

CFO” (where normalization is with respect to the subcarrier spacing) and integral part of

“normalized CFO”. We call them “fractional CFO” and “integer CFO” respectively in

this thesis.

In the DL normal synchronization, the synchronization task is easier, as the MS no

longer has to reidentify the preamble index, nor does it have to do acquisition of the

carrier and the timing but only need to track them. Disregarding the ranging operation,

the key task in UL synchronization (at the BS) involves timing recovery only. We mainly

focus on the DL synchronization rather than the UL synchronization in this thesis.

51

Figure 5.2: Structure of initial DL synchronization.

5.1.1 Initial DL Synchronization

As mentioned, we have to estimate the symbol timing offset, CFO, and preamble index

during initial DL synchronization. We achieve the task of initial DL synchronization

in several stages after considering the complexity for DSP implementation. Fig. 5.2

depicts the overall structure of the proposed initial DL synchronization. It is a two-stage

organization where stage1 operates in the time domain to estimate the OFDMA symbol

timing and the fractional CFO, and stage 2 operates in the frequency domain to detect the

integer CFO and the preamble index jointly.

Below we use the parameters of the 1024-FFT system as an example to describe the

synchronization techniques.

5.1.1.1 Timing Offset and Fractional Carrier Frequency Offset

A number of CFO estimation approaches have been proposed. One is the data-aided ap-

proach [23], [24], applicable when the preamble consists of known signal (or when a

reliable decision on the preamble contents can be made). In the case of IEEE 802.16e

OFDMA, it is not suitable because in DL, the preamble can be one of 114 choices, and

in UL, the a prior known signal (i.e., the pilots) only consists of one-third of the received

signal. The second approach is based on subspace analysis, e.g., via the ESPRIT algo-

52

rithm [25], [26]. While the resolution in CFO estimation of these methods can be high,

the computational complexity can also be high. The third approach is completely blind

estimation relying solely on the repetitive signal structure of OFDMA symbols, e.g., the

presence of CP. This appears simplest and suitable for use in IEEE 802.16e OFDMA.

Similarly, there are several approaches to symbol timing estimation, for example, an ap-

proach utilizing the quasi-periodic time-domain structure of the preamble is introduced

in [27]. But, again, one simplest and appropriate for IEEE 802.16e OFDMA is blind

estimation based on CP structure.

By taking advantage of CP, an algorithm proposed in [28] can estimate the symbol

timing instance and frequency offset relatively accurately in AWGN, blindly with no as-

sistance from pilot symbols. Nevertheless, it suffers considerable performance degrada-

tion in multipath propagation or Rayleigh fading [21]. A modified technique proposed in

[29] is shown to have better performance in fast Rayleigh fading.

Let N be the FFT size and L be the CP length in number of samples. Figure 5.3 il-

lustrates the algorithm structure proposed in [29]. Under the assumption that the received

samples are jointly Gaussian, symbol time offset τ̂ and fractional CFO θ̂ are given by

τ̂ = arg max{c|λ(τ)|2}, (5.1)

θ̂ = − 1

2π
tan−1(

Im{λ(τ̂)}
Re{λ(τ̂)}), (5.2)

respectively, where

λ(τ) =
τ+L−1∑

k=τ

r(k)r∗(k + N)

Figure 5.3: Structure of J.-C. Lin’s symbol timing and fractional carrier frequency syn-
chronization method [29].

53

and c is set to a constant 1/L.

As mentioned, one most important task needed to be done during initial DL synchro-

nization is to find the preamble index. Consequently, we may sacrifice the signal in the

first DL subframe in order to estimate the preamble index more accurately. As a result,

we use all the information in the DL subframe to attempt a more accurate estimate of

timing offset and fractional CFO, and then find the preamble index by using the preamble

symbol compensated by the estimated timing offset and CFO. We accumulate the real part

and the imaginary part of λ(τ) of all symbols in the first DL subframe to get Re{A(τ)}
and Im{A(τ)}. After that, we estimate the timing offset and fractional CFO in the last

symbol of the DL subframe with

τ̂ = arg max{c|A(τ)|2}, (5.3)

θ̂ = − 1

2π
tan−1(

Im{A(τ̂)}
Re{A(τ̂)}). (5.4)

5.1.1.2 Integer CFO Estimation and Preamble Index Identification

Since the preamble index must be estimated by using the preamble, we keep the received

preamble signal in a buffer and compensate it with the fractional CFO and timing offset

estimated in the last symbol of the first DL subframe. Then we estimate the integer CFO

and identify the preamble index using the compensated preamble in the frequency domain.

Note that there are three types of preamble carrier-sets and each segment uses only one

carrier-set. Carrier-set 0 uses subcarrier indexes 86, 89, 92, ..., 932, 935. The subcarrier

indexes used by carrier-set 1 are those used by carrier-set 0 adding 1, and carrier-set

2, adding 2. Because of this, we cannot find the exact integer CFO until we find the

correct preamble index which contains the information about the used carrier-sets. Here

we consider several methods to find the preamble index and integer CFO jointly.

A. Correlation Method [30]

First, we exploit some signal structure to find the coarse integer CFO. In IEEE 802.16e

OFDMA, the pilot subcarriers in a preamble are limited to the central part of the band

and there are guard bands at both bandedges. The pilot subcarriers are BPSK modulated.

54

Hence, we may look for the lower and upper ends (in frequency) of the pilot subcarri-

ers by examining the subcarrier amplitudes. Since the pilot subcarriers in a preamble

sequence are spaced three subcarriers apart, we may add up the power of every third sub-

carrier starting from the lower-end subcarrier as identified above up to the number of pilot

subcarriers in the preamble. To account for the possible mis-identification of the lower

or upper end of nonzero subcarriers, we may repeat the above power sum computation

starting from several subcarrier locations around the assumed lower end. Actually, there

are many terms repeated in each sums, so we can discard those repeated terms without

affecting the performance. Finially, all the power sums may be compared, and we can

find the coarse integer CFO from the one with the largest sum.

Since the preamble carrier-set can be one of three possibilities, the estimated inte-

ger CFO, say fI , through the above method does not necessarily give the actual integer

CFO, but could be ±1 away from it. The exact value will have to be determined after

identification of the preamble index.

After that, we conduct an exhaustive search to identify the preamble index by correlat-

ing each of the 114 candidates with the received signal in the frequency domain and find

the one with the largest magnitude of correlation. From the identified preamble index, we

also obtain the corresponding segment and carrier-set as well as the actual integer CFO.

Correlation of the received preamble with a possible preamble sequence does not nec-

essarily give a good indicator to their degree of match, because for it to be a good indica-

tor, the preamble cannot span a frequency range much beyond the coherence bandwidth–

but unfortunately this can be very far from the truth under the IEEE 802.16e OFDMA DL

system parameters discussed previously.

Towards a solution, note that since the coherence bandwidth may cover several subcar-

rier spacings, we may employ a technique resembling differential detection but working

in the frequency domain [31] prior to the cross-correlation in order to mitigate the cor-

ruption of either frequency selective fading or nonzero OFDM symbol timing offset. We

introduce the differential method and a number of variations to simplify the computational

complexity in the following. More details can be found in [32].

55

B. Differential Method [32]

First, we find the maximum power of all the subcarriers in the 3 possible carrier-sets which

start from the (86−fmax)th subcarrier, the (87−fmax)th subcarrier, and the (88−fmax)th

subcarrier of the received preamble, respectively, and determine the carrier-set used for

estimation, where fmax is the maximum CFO search range. Note that the carrier-set we

use here has length 284 + int(fmax/3)× 2 + 1, where 284 is the number of pilots in the

DL preamble. Second, we derive the differential sequence from this carrier-set by

DR[k] = Re{rkr
∗
k+1} = rre,krre,k+1 + rim,krim,k+1 (5.5)

where k = 0, 1, ..., 282 + int(fmax/3)× 2 + 1.

In writing the above, we have slightly abused the index k to let it indicate the kth

nonzero preamble subcarrier rather than the kth OFDMA subcarrier. This is because

in IEEE 802.16e OFDMA, the nonzero preamble subcarriers are not contiguous but are

spaced three subcarriers apart.

Then we derive 114 possible differential sequences from the known preamble se-

quences by

Dj[k] = 1− 2× qj[k]⊕ qj[k + 1] (5.6)

where j = 0, 1, ..., 113, k = 0, 1, ..., 282, qj[k] ∈ {0, 1} is the jth binary preamble

sequence, and ⊕ denotes the “exclusive or” operation. In the end, we compute 114 ×
(int(fmax/3)× 2 + 1) possible metrics by using

Mn,j =
282∑

k=0

DRn [k]×Dj[k] (5.7)

where n = 0, 1, ..., int(fmax/3) × 2 and DRn is the sequence started from the nth value

of DR, and the length of this sequence is 283 . Then we can find the preamble index ĵ

and n̂ by

(n̂, ĵ) = arg max
n,j

Mn,j. (5.8)

Note that n̂ denotes the lower-end subcarrier in the carrier-set and the estimated preamble

index ĵ determines the lower-end subcarrier of the preamble symbol in the transmitter.

Therefore, we can derive the integer CFO using n̂ and ĵ.

56

C. Early Dropping of Bad Candidates by Dynamic Metric Thresholding [32]

This method is used to reduce the computational complexity by dropping the bad candi-

dates early on. We divide the summation over 283 subcarriers in the metric computation

into a number of fixed-length windows. Rather than finish computing the metric for each

(n, j) pair over the total number of 283 subcarriers and then compare for the best, we may

set a threshold after each window. The (n, j) pairs that perform below the threshold are

dropped. This continues until only one (n, j) pair remains or until we come to the end of

the last window when all the surviving (n, j) pairs are compared.

There are several parameters that can be designed in this method. We can design the

length of the window size and the threshold for each window. In our design, we set the

threshold to a fraction of the largest metric of all the retained (n, j) pairs. It goes without

saying that the detection performance depends on the window size and the threshold,

and so is the computational complexity. In the end, considering that the channel may be

subject to multipath fading, it may not be good to let each window consist of contiguous

preamble subcarriers. Rather, the windows should be interleaved, with the subcarriers in

each window spaced, for example, beyond the coherence bandwidth.

D. Reduction of Search Range Through Coarse Estimation of Integer CFO [32]

In this method, we use the guard bands to reduce the number of candidates for integer

CFO. First, we use the same approach as the first step of the correlation method to find

the coarse integer CFO. This estimated coarse integer CFO may not be the true integer

CFO, but may be near the true value. Then we can apply the differential method discussed

previously around this coarse integer CFO for a more accurate result, but now the search

range can be more restricted than without the above coarse search. Furthermore, we may

apply the early dropping method around the coarse integer CFO to further reduce the

computational complexity.

E. Hardlimiting of the Differential Signal [32]

Here, we consider hardlimiting the “differential signal” to simplify the differential method.

First, we still need to find the carrier-set used for estimation as the first step of the differ-

57

Figure 5.4: Structure of normal DL synchronization.

ential method. Then we derive the hardlimited differential sequence from this carrier-set

by

DR[k] =

1, sgn{Re[rkr
∗
k+1]} < 0,

0, sgn{Re[rkr
∗
k+1]} > 0,

(5.9)

where k = 0, 1, ..., 282 + int(fmax/3)× 2 + 1. Then, we derive 114 possible differential

sequences from known preamble sequences by

Dj[k] = qj[k]⊕ qj[k + 1] (5.10)

where j = 0, 1, ..., 113, k = 0, 1, ..., 282, and qj[k] ∈ {0, 1}. In the end, we compute the

Hamming distance between the Dj[k] and DRn [k] by

M ′
n,j =

282∑

k=0

DRn [k]⊕Dj[k] (5.11)

where n = 0, 1, ..., int(fmax/3)× 2 + 1. Then we can find the preamble index ĵ and n̂ by

(n̂, ĵ) = arg min
n,j

M ′
n,j. (5.12)

Again, we can derive the integer CFO through the preamble index ĵ and n̂ as we do in

the differential method. This method is particularly useful for reducing the complexity of

hardware implementation.

58

5.1.2 Normal DL Synchronization

During normal DL synchronization, we need to track the CFO and the timing offset in

the receiver. Fig. 5.4 depicts the structure of normal DL synchronization. After initial DL

synchronization, we compensate the oscillator frequency in the MS by using the CFO we

estimated. As a result, there is no need to estimate the integer CFO during normal DL

synchronization. Again, we use the CP correlation method [29] to estimate the fraction

CFO and symbol timing. In order to get a more accurate estimation, we use the correlation

value from the previous subframe in the present subframe. Since the oscillator frequency

is compensated after every subframe, we also need to compensate the correlation value

from the previous subframe every subframe by using

Â(τ) =
A(τ)e−jθ

N
(5.13)

where N = 25 for the first subframe for normal synchronization and N = 1 otherwise,

Â(τ) is the correlation value used for current symbol, A(τ) is the correlation value of

previous subframe, and θ is the estimated fractional CFO of previous subframe.

Note that we assume that there are 25 symbols in one DL subframe. Since we use

the accumulation method to get more accurate results during initial DL synchronization,

we have to divide the compensated correlation value by 25 after the first DL subframe.

Then, we employ exponential average over the symbols in the DL subframe during normal

synchronization in order to obtain a more accurate estimation. We use

Â0 = αÂ + (1− α)A0,

Âk = αÂk−1 + (1− α)Ak, k = 1, 2, ..., 24,
(5.14)

to acquire the correlation value of each symbol, where Ak is the correlation value obtained

in the current symbol and Âk is the exponential average result. In the end, symbol timing

offset and fractional CFO for each symbol are given by

τ̂k = arg max{c|Âk(τ)|2}, (5.15)

θ̂k = − 1

2π
tan−1(

Im{Âk(τ̂)}
Re{Âk(τ̂)}). (5.16)

Here we introduce a data-aided method to estimate the symbol timing offset. Since

we have identified the preamble index during initial DL synchronization, the preamble

59

symbol is known during normal DL synchronization. We may use the known preamble to

estimate the timing offset during normal synchronization. The received preamble signal

in the time domain after CP removal can be expressed as

r(k + m) = h(k) ~ p(k)ej2πnk/N + η(k) (5.17)

where k = 0, 1, ..., N − 1, h(k) is the discrete channel response, p(k) is the preamble

symbol in the time domain, n is the CFO, m is the timing offset, ~ denotes the circular

convolution of length N , and η(k) is additive noise, assume white Gaussian.

Numerical evaluation shows that the preamble sequences in the time domain are quasi-

orthogonal over a large range of time offset values, mutually and with self, in the sense

that

|
N−1∑

k=0

pi(k)p∗j((k + m)modN)ej2πnk/N | ¿
N−1∑

k=0

|pi(k)|2 (5.18)

unless i = j and n = 0, for a large range of values of m around 0. For each possible time

offset value m, we may perform the circular correlation of p(k) with r(k+m) over all lag

values up to the length of CP. Note that p(k) is the known preamble in the time domain.

Let y(m), m = 0, 1, ..., L− 1, denote the result. Then the estimated timing offset is given

by

m̂ = arg max
m

y(m). (5.19)

However, the complexity of the above approach can be very significant because it requires

L × N complex multiplications. Another way to reduce the complexity is to use the

frequency domain equivalent to calculate the circular correlation. Mathematically, we

have

Y (k) = R(k)P (k)∗, (5.20)

y(m) = F−1{Y (k)}, (5.21)

where F denotes the fast Fourier transform (FFT). Then, we derive the timing offset

using (5.19). This approach requires on order of N log2 N complex multiplications for

IFFT and on order of Np complex multiplication for correlation, where Np is the number

of pilot subcarriers in the frequency-domain preamble sequence. Furthermore, since the

preamble sequences in the frequency domain are BPSK, the multiplications are simple.

60

Figure 5.5: Structure of UL synchronization.

5.1.3 UL Synchronization

As mentioned before, we only apply timing recovery in the BS receiver during UL trans-

mission. The techniques we use to estimate the symbol timing is the same as we use in

normal DL synchronization. Fig. 5.5 depicts the structure of UL synchronization.

5.2 Floating-Point Simulation Results

The system parameters for our simulation are defined in Table 4.1, and the channel envi-

ronments have been given in Chapter 4. We only use 16-QAM modulation in the simula-

tion for simplicity. Note that the receiver SNR specified in the IEEE 802.16e OFDMA is

from 5 to 20 dB (see Table 5.1). Our simulated SNR values are in the range 0 to 20 dB,

which is a suitable range for 16-QAM modulation. The mobile speed is from 0 to 120

km/hr, and the CFO is 9.35 ∆f . The symbol timing offset is 10 samples. Note that we

do not take sampling inaccuracy caused by the SFO into consideration in our simulation.

If not mentioned, the FFT size we use in this section is 1024, and we present some sim-

ulation results for FFT-2048 in the next chapter together with the fixed-point simulation

results. Note that the signal-to-noise ratio (SNR) used in our simulations means the ratio

of the variance of the signal samples to that of the noise samples.

5.2.1 Symbol Timing Estimation

Figure 5.6 shows timing error distribution in AWGN (upper two charts) and SUI3 channel

(lower two charts) at SNR of 10 and 20 dB, respectively. The mobile speed is 120 km/hr.

61

Table 5.1: OFDMA Receiver SNR Assumptions [2]
Modulation Coding Rate Receiver SNR (dB)

QPSK 1/2 5.0
QPSK 3/4 8.0

16-QAM 1/2 10.5
16-QAM 3/4 14.0
64-QAM 2/3 18.0
64-QAM 3/4 20.0

We can see that in AWGN channel, the correct rates (the probability that we estimate the

correct timing offset) for SNR of 10 and 20 dB are both 100%. This is because the length

of 128-sample CP is long enough to alleviate the Gaussian noise effect. Also, we can see

that the correct rate for SUI3 channel is not very high even at high SNR. This is because

the speed 120 km/hr makes the channel response vary fast and greatly, causing the CP

correlation to perform badly. We can also see in the figure that the estimation of timing

offset for normal synchronization is more accurate than that for initial synchronization.

The reason is that we not only use the information of initial synchronization, but also

exponential average in the present symbol, to estimate the timing offset during normal

synchronization.

In Fig. 5.7, we show how different SNRs affect the error distributions of symbol

timing during initial synchronization under the Vehicular A channel. When SNR=10

dB, almost 99% of errors are under ±8 samples, which is required by the specification

(1024/32 × 25% = 8) during initial synchronization. Figure 5.8 shows the results un-

der normal synchronization. Not surprisingly, the error rates are lower during normal

synchronization. The mobile speed here is 120 km/hr.

Figure 5.9 shows the root mean-square error (RMSE) of symbol timing offset estima-

tion in Vehicular A channel, where the RMSE is defined as
√

E
{|τ − τ̂ |2}, which is a

measurement of how spread out a distribution is.

Now, we show some simulation results for symbol timing estimation using data-

aided method during normal synchronization. These simulation results are obtained under

2048-FFT, bandwidth 20 MHz, and SNR 10 dB.

In Fig. 5.10, we show the timing error distribution of the two algorithms with mobil

62

Figure 5.6: Distribution of timing offset estimation errors.

63

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

Error distribution under Vehicular A (1),Speed=120km/hr (Initial Sync)

SNR (dB)

P
ro

ba
bi

lit
y

error=0 sample
error>=1 sample
error>=4 samples
error>=8 samples

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Error distribution under Vehicular A (2),Speed=120km/hr (Initial Sync)

SNR (dB)

P
ro

ba
bi

lit
y

error<=−1 sample
error<=−4 samples
error<=−8 samples

Figure 5.7: Symbol time synchronization error distribution under different SNRs (initial
synchronization).

64

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Error distribution under Vehicular A (1),Speed=120km/hr (Normal Sync)

SNR (dB)

P
ro

ba
bi

lit
y

error=0 sample
error>=1 sample
error>=4 samples
error>=8 samples

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Error distribution under Vehicular A (2),Speed=120km/hr (Normal Sync)

SNR (dB)

P
ro

ba
bi

lit
y

error<=−1 sample
error<=−4 samples
error<=−8 samples

Figure 5.8: Symbol time synchronization error distribution under different SNRs (normal
synchronization).

65

0 5 10 15 20
1

2

3

4

5

6

7

8

9

10

11
RMSE of symbol timing synchronization under Vehicular A

SNR (dB)

R
M

S
E

 (
sa

m
pl

es
)

Initial Sync.,0km/hr
Initial Sync.,120km/hr
Normal Sync.,0km/hr
Normal Sync.,120km/hr

Figure 5.9: RMSE of symbol timing offset synchronization for Vehicular A channel.

speed 120 km/hr under SUI3 channel. We see that using CP correlation can get more

accurate symbol timing. But when using the data-aided method, the distribution of the

time synchronization errors is closely related to the power-delay profile of the SUI3 chan-

nel. Fig. 5.11 shows not only the power-delay profile of the Vehicular A channel with

normal sample numbers and with normalized average power, but also the time synchro-

nization error distribution using data-aided method under Vehicular A channel. We see

that the different time offsets obtained at the synchronizer output almost coincide the

sample number of the multipath delays. Furthermore, the occurrence probabilities at the

different time offsets are proportional to the relative average power of the paths.

According to the simulation results, positive timing errors and ISI may result unless

we find the actual timing. In order to solve this problem, we may try to find the first path

after the symbol timing search. For this, we may set a threshold after we obtain all the

values of y(m), m = 0, 1, ..., L − 1. Then we examine these values.The earliest symbol

timing is given by the smallest value of m for which y(m) exceeds the threshold. Fig-

ure 5.12 shows the simulation results with mobile speed 120 km/hr under SUI3 channel.

We can see that we obtain more accurate symbol timing by using the threshold to find the

66

−5 0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timing error (samples)

pr
ob

ab
ili

lty

 SUI3 channel,120 km/hr,10dB

CP correlation
Data−aided method

Figure 5.10: Error distributions of two algorithms during normal synchronization.

earliest timing.

5.2.2 Fractional CFO Estimation

Fig. 5.13 shows the RMSE of fractional CFO estimation under AWGN channel for both

initial synchronization and normal synchronization, where the RMSE is defined as

√
E

{∣∣∣θ − θ̂
∣∣∣
2
}

.

It is found in the figure that the values of RMSE for normal synchronization are smaller

than those for initial synchronization.

Figure 5.14 shows the RMSE of fractional CFO estimation under SUI3 channel. The

top figure gives results of estimated CFO for initial synchronization and the bottom figure

is results for normal synchronization. We can see that the RMSE decreases as the SNR

increases. For initial synchronization when SNR exceeds 5 dB, the RMSE of higher

mobile speed is bigger than the RMSE of lower mobile speed. In normal synchronization,

the RMSE of higher mobile speed is always bigger than that of lower mobile speed.

We can learn how SNR affects the error distribution of carrier frequency synchroniza-

tion from Fig. 5.15. It is found in the figure that when SNR = 10 dB, in 90% of the cases

the correct frequency offset is under 2% of the subcarrier spacing (as required by IEEE

67

Channel Model

0km/hr

30km/hr

60km/hr

90km/hr

120km/hr

0
5

10
15

20
25

30
35

40

0

0.2

0.4

0.6

0.8

1

Figure 5.11: Error distributions at different speeds in Vehicular A channel.

802.16e) during initial synchronization, and in more than 98% of the cases is under 2%

of the subcarrier spacing during normal synchronization. The mobile speed here is 120

km/hr, and the channel model is SUI3 channel.

5.2.3 Integer CFO Estimation and Preamble Index Identification

Now we assume that the symbol timing and fractional CFO offset are perfect estimated

and compensated. The maximum search range for integer CFO is set to ±12 ∆f , and

we let the preamble index be 31. We present results for the following five joint detection

methods: the correlation method, the differential method, the reduction method, the early

dropping method, and the hardlimited differential method. The threshold fraction in the

early dropping method is set to 1/2.

Figure 5.16 shows the simulation results on detection error probability under Vehicular

A channel with FFT size 1024, where “error” means incorrect identification of the integer

CFO or the preamble index or both. It is observed in the figure that the differential method

gives the best performance in error probability. This is followed by the hardlimited dif-

ferential method, the early dropping method, the reduction method, and the correlation

68

−5 0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timing error (samples)

pr
ob

ab
ili

lty

 SUI3 channel,120 km/hr,10dB

Data−aided method
Modifided data−aided method

Figure 5.12: Error distributions of data-aided method and modified data-aided method
during normal synchronization.

method, in that order. For the early dropping method, larger window yields lower error

probabilities. For the reduction method, we can find in the figure that the the performance

of reduction with differential method is almost the same as that of reduction with early

dropping method. We may conclude that the coarse integer CFO estimation affects the

error probability significantly from this simulation result.

Figure 5.17 shows the simulation results under SUI3 channel with FFT size 1024.

Again, the differential method performs best, and the error probability for correlation

method is very high. But it is observed that the probability of early dropping method with

window size 20 is lower than that of hardlimited differential method under higher SNR.

Figure 5.18 shows the simulation results under SUI3 channel with FFT size 2048.

Comparing it with with FFT size 1024, we see that the curves with the correlation and

reduction methods are very close, but the performance of the differential method is some-

what better. This is because we do more correlations for FFT size 2048.

Now we consider the computational complexity for each method. Note that all the

data we present in the following are the cases with FFT size 1024 under Vehicular A

69

0 5 10 15 20
0

1

2

3

4

5

6

7

8
x 10

−3 RMSE of fractional CFO synchronization under AWGN

SNR (dB)

R
M

S
E

 (
nu

m
be

r
of

 s
ub

ca
rr

ie
r

sp
ac

in
gs

)

Initial Sync
Normal Sync

Figure 5.13: RMSE of fractional CFO under AWGN channel.

channel. First of all we consider the computational complexity of the correlation method.

Since the maximum search range of integer CFO is±12 ∆f , it needs (12/3)×2×4×(2×
12+1) = 800 multiplications to find the coarse integer CFO [30]. Then, if multiplication

by a signed binary number is also counted a multiplication operation, the amount of real

multiplications to find the preamble index is equal to 114× (284 + 1) = 32490. In total,

it needs 800 + 32490 = 33290 multiplications for the correlation method.

For the differential method and the early dropping method, we need to find the carrier-

set used for the estimation and derive the differential sequence from the carrier-set first. It

needs 293× 2× 3+292× 2 = 2342 multiplications for both methods to do these. Due to

the previously described preamble structure, we need to search among 1+(12/3)×2 = 9

different integer CFO conditions for each preamble index, for a total 114 × 9 possible

CFO-preamble combinations. The amount of multiplications is equal to 2342 + 283 ×
9× 114 = 99880 for the differential method. For the early dropping method, the amount

of multiplications is related to the window size, the threshold, and the iteration numbers.

We compute the number of multiplications in our simulation and average them. We can

find that the amounts of multiplications are equal to 2342 + 11535 = 13877 and 2342 +

70

21572 = 23914, respectively, for the early dropping method with window sizes 10 and

20.

For the hardlimited differential method, we need to find the carrier-set first and it costs

293 × 2 × 3 = 1758 multiplications. Then we need 292 × 2 = 584 logic operations to

derive the hardlimited differential sequence and 283×9×114 = 290358 logic operations

to find the integer CFO and preamble index. Therefore, it needs 1758 multiplications and

584 + 290358 = 290942 logic operations in total.

For the reduction method, we first find the coarse integer CFO and it costs (12/3) ×
2× 4× (2× 12+1) = 800 multiplications. Then we assume the smaller search range for

integer CFO is ±3 ∆f ; so we need to search among 1 + (3/3) × 2 = 3 different integer

CFO conditions for each preamble index. It needs 287× 2× 3 + 286× 2 = 2294 to find

the carrier-set and obtain the differential sequence. The total amount of multiplications is

equal to 800+2294+283×3×114 = 99880 for the reduction method with full differential

search. And it costs totally 800 + 2294 + 7377 = 10471 multiplications for the reduction

method with early dropping and window size 10. Note that 3812 is a average result in our

simulation.

Table 5.2 lists the amounts of multiplications required for all methods under different

FFT sizes. Note that the amount of multiplications for the early dropping method needs

to be obtained through simulations. As we only simulate the cases with FFT sizes 1024

and 2048, the amounts of multiplications for the early dropping method with FFT sizes

128 and 512 are not available. Complexity of the other methods under FFT sizes 128 and

512 can be obtained by calculation.

71

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12
RMSE of fractional CFO synchronization under SUI3 (Initial Sync)

SNR (dB)

R
M

S
E

 (
nu

m
be

r
of

 s
ub

ca
rr

ie
r

sp
ac

in
gs

)

0km/hr
60km/hr
120km/hr

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025
RMSE of fractional CFO synchronization under SUI3 (Normal Sync)

SNR (dB)

R
M

S
E

 (
nu

m
be

r
of

 s
ub

ca
rr

ie
r

sp
ac

in
gs

)

0km/hr
60km/hr
120km/hr

Figure 5.14: RMSE of fractional CFO under SUI3 channel.

72

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

Fractional CFO sync error distribution under SUI3 ,Speed=120km/hr (Initial Sync)

SNR (dB)

P
ro

ba
bi

lit
y

|error|>0.5% subcarrier spacing
|error|>1% subcarrier spacing
|error|>2% subcarrier spacing

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

Fractional CFO sync error distribution under SUI3 ,Speed=120km/hr (Normal Sync)

SNR (dB)

P
ro

ba
bi

lit
y

|error|>0.5% subcarrier spacing
|error|>1% subcarrier spacing
|error|>2% subcarrier spacing

Figure 5.15: Fractional CFO synchronization error distribution under different SNRs.

73

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

E
rr

or
 R

at
e

Error Rate of Preamble Index/Integer CFO Estimation under Vehicular A channel

Differential Method
Hardlimited Differential
Early Drop.,Window=10
Early Drop.,Window=20
Reduction Method
Reduction,Window=20
Correlation Method

Figure 5.16: Error probability in either the identified preamble index or the estimated
integer CFO under Vehicular A channel, where FFT size = 1024.

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

E
rr

or
 R

at
e

Error Rate of Preamble Index/Integer CFO Estimation under SUI3

Differential Method
Hardlimited Differential
Early Drop.,Window=10
Early Drop.,Window=20
Reduction Method
Reduction,Window=20
Correlation Method

Figure 5.17: Error probability in either the identified preamble index or the estimated
integer CFO under SUI3 channel, where FFT size = 1024.

74

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

E
rr

or
 R

at
e

Error Rate of Preamble Index/Integer CFO Estimation under Vehicular A channel

Differential Method

Hardlimited Differential

Early Drop.,Window=10

Early Drop.,Window=20

Reduction Method

Reduction,Window=20

Correlation Method

Figure 5.18: Error probability in either the identified preamble index or the estimated
integer CFO under Vehicular A channel, where FFT size = 2048.

Table 5.2: Computational Complexity for Integer CFO Estimation and Preamble Index
Identification

Multiplications
FFT Size 128 512 1024 2048

Correlation method 5018 17216 33290 65666
Differential method 36268 146906 292700 586356
Hardlimited differential 270+ 912+ 1758+ 3462+

35998 (logic) 145994 (logic) 290942 (logic) 582894 (logic)
Reduction method 13080 50530 99880 199280
Reduction
with window size=20

N.A. N.A. 10471 13551

Early drop.
with window size=10

N.A. N.A. 13877 16117

Early drop.
with window size=20

N.A. N.A. 23914 26056

75

Chapter 6

Fixed-Point DSP Implementation

We have introduced the synchronization techniques for IEEE 802.16e OFDMA in pre-

vious chapters. Now we consider the fixed-point implementation of the synchronization

techniques on DSP in this chapter.

6.1 Fixed-Point Implementation

In algorithm development, it is often convenient to employ floating-point computation

to verify the performance of the algorithms. But for power, speed, and hardware cost

reasons, practical transceiver implementations normally use fixed-point computation. The

DSP employed in this work, TI’s TMS320C6416T, is also of the fixed-point category,

which can perform fixed-point computations more efficiently than floating-point ones. We

consider fixed-point DSP implementation in this work, which entails careful conversion

of the original program used in algorithm development from floating-point to fixed-point.

We also try to making the resulting program run fast by making efficient use of the DSP’s

features.

The C6416T CPU contains 8 parallel 32-bit function units, two of which are multi-

pliers and the remaining six can do a number of arithmetic, logic, and memory access

operations. There is also flexibility in arranging the data so that each function unit can do

double 16-bit or quadruple 8-bit operations. Running at 1 GHz, the peak performance is

8000 MIPS. For many transmission systems, 32-bit computations are an overkill and 8-bit

computations do not provide the necessary accuracy. This appears to be the case with the

present system, too. Hence we choose to use the 16-bit data type mostly, with careful se-

76

lection of dynamic range of the data at different points in the function chain. Simulation

results confirm that this is an appropriate choice. In fact, a TI document also suggests

use of the short data type (16-bit) for fixed-point multiplication inputs whenever possible

[16]. The chosen data formats are as shown in Figs. 6.1 and 6.2 for the transmitter and the

receiver, respectively, where Qx.y means there are x bits before the binary points and y

bits after. In every case, x + y = 15 because the sign takes one bit. We discuss the details

of some blocks of the system in the following subsections.

6.1.1 Modulation and Subcarrier Allocation

The types of modulation supported in the IEEE 802.16e standard are BPSK, QPSK, 16-

QAM and, optionally, 64-QAM. The output signals of the modulators have normalized

symbol energy, but pilots for DL preamble and data symbols are power boosted. The

range of signal values of each modulation type are shown in Table 6.1. The widest range

occurs in the case of BPSK, which is [−2
√

2, 2
√

2]. Therefore we must have at least

two bits for the integer part of the signal value. With one bit for sign, there remains 13

fractional bits. Hence Q2.13 is the chosen data format, whose range covers [−4, 4). It can

cover the ranges of pilot and data modulations as well.

The subcarrier allocation block simply allocates the modulation data samples, null

samples and pilot samples to their assigned subcarriers. There is no need to change data

format in this block.

Table 6.1: Ranges of Modulated Signal Values
Modulation Range

BPSK [−2
√

2, 2
√

2]

QPSK [−1/
√

2, 1/
√

2]

16-QAM [−3/
√

10, 3/
√

10]

64-QAM [−7/
√

42, 7/
√

42]

Figure 6.1: Fixed-point data formats used at different points in the transmitter.

77

Figure 6.2: Fixed-point data formats used at different points in the receiver.

6.1.2 IFFT, FFT and SRRC Filter

Since the signals after the IFFT are in the range [−1, 1], we choose Q.15 as the data format

after IFFT and before FFT. Also, the data format of the input to and the output from the

SRRC filter are the same. For efficiency reason, we employ some functions provided by

TI in the DSPLIB for C64x to implement the IFFT, the FFT, and the SRRC filter. It will

be introduced in the next section.

6.1.3 Synchronization

The detailed synchronization method has been presented in Chapter 5. Besides translating

floating data type to short data type, here we only make two points related to fixed-point

implementation:

• In fractional CFO estimation, we use a lookup table to implement the arctan()

function. Since the corresponding arctan() curve for the entries covering the range

[tan 0, tan 0.5π) is not linear, it may lose the precision to estimate the fractional

CFO if we construct a table for arctan(). Hence, we construct a table for the

arcsin() function to estimate the fractional CFO instead of a table for the arctan()

function. The table contains 2048 entries covering the range [sin 0, sin 0.25π] uni-

formly. By using some trigonometric calculations, we can estimate the fractional

CFO precisely.

• In frequency offset compensation, we construct two tables for the sin() and the

cos() functions, each containing 2048 entries covering the range [0, π] uniformly.

78

6.2 DSP Optimization

In this section, we introduce some optimization techniques used in the system. Besides

utilizing the compiler options we mentioned before, we adjust the program for compiler

to software-pipeline the loop automatically. Moreover, we unroll the loop by 4 to speed

up by ourselves for some cases that the compiler cannot software-pipeline. Fig. 6.3 shows

an example to loop unroll a loop of compensation function. Figures 6.4 and 6.5 are the

assembly code for this loop. Besides, we utilize the TI C64x DSP library that includes

many C-callable, assembly optimized, and general-purpose signal-processing routines to

accelerate our system. We introduce some of them in the following subsections.

6.2.1 The IFFT and FFT

The DSPLIB contains FFT functions employing 32 × 32-bit and 16×16-bit multiplica-

tions. The former has higher computational complexity. We resolve to use the latter.

The function DSP fft16x16r() computes a complex forward mixed radix FFT

with scaling, rounding and digit reversal. The input data x[] and the coefficients w[]

are arrays of complex numbers, with the numbers stored in interleaved 16-bit real and

imaginary parts. The output data are returned in a separate array y[] in normal order, also

complex with interleaved 16-bit real and imaginary parts. The code uses a special ordering

of FFT coefficients (also called twiddle factors). These twiddle factors are generated by

using the function tw fft16x16() provided by TI.

6.2.2 Synchronization

We adopt the differential method to estimate the preamble index and integer CFO for

DSP implementation. As we introduced in chapter 5, it needs to do a lot of correlations

and, in the end, find the maximum correlation value with the differential method. We use

the DSP library function DSP dotprod() to calculate the correlation and the function

DSP maxidx() to find the maximum correlation value.

79

Figure 6.3: A part of C code for compensation function.

80

Figure 6.4: A part of assembly code for compensation function-I.

81

Figure 6.5: A part of assembly code for compensation function-II.

82

6.3 Fixed-Point Simulation Results

We present some simulation results in this section. All simulation parameters and envi-

ronments are similar to those in Section 5.2, but here we have fixed-point implementa-

tion. For comparison, floating-point simulation results are also presented together with

the fixed-point results. Most simulation results in this section use FFT size 2048 with

bandwidth 20 MHz (if not mentioned), but we also show some simulation results of FFT

size 2048 with bandwidth 10 MHz for comparison.

6.3.1 Symbol Timing Estimation

Figure. 6.6 shows the RMSE of symbol timing offset estimation in AWGN channel for

both initial synchronization and normal synchronization. As we discussed in Section 5.2,

the performance of normal synchronization is better than that of initial synchronization.

In Fig. 6.7, we see the error distributions of symbol timing estimation under different

SNRs during initial synchronization under SUI3 channel. When SNR = 10 dB, it is seen

that 99.7% of errors for both floating-point and fixed-point implementations are under

±16 samples, the requirement of the specification (2048/32 × 25% = 16) during initial

synchronization. Also, Fig. 6.8 shows the results under normal synchronization. The

error rates are lower during normal synchronization. The mobile speed here is 120 km/hr.

We can see that all curves of fixed-point simulations are very close to those of floating-

point simulations when we estimate the symbol timing.

6.3.2 Fractional CFO Estimation

Figure 6.9 shows the RMSE of fractional CFO estimation in AWGN channel for both

initial and normal synchronization. Again, the performance for normal synchronization

is better than initial synchronization.

Figures 6.10 and 6.11 show the RMSE of fractional CFO estimation under SUI3 chan-

nel for FFT size 2048 with bandwidths 20 MHz and 10 MHz, respectively. From these

figures, we can see that the RMSE for bandwidth 10 MHz is much higher than that for

bandwidth 20 MHz. When mobile speed is 120 km/hr, the RMSE for bandwidth 10MHz

is higher than 2% of subcarrier spacing even in high SNRs. This is because under same

83

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
RMSE of symbol timing synchronization under AWGN

SNR (dB)

R
M

S
E

 (
sa

m
pl

es
)

floating−point, Initial Sync
fixed−point, Initial Sync
floating−point, Normal Sync
fixed−point, Normal Sync

Figure 6.6: RMSE of symbol timing offset estimation in AWGN with fixed-point and
floating-point implementation.

FFT size, subcarrier spacing for smaller bandwidth is narrower, and the system becomes

more sensitive to Doppler shift. We may conclude that it is suitable to use bandwidth 20

MHz for FFT size 2048 as mentioned in Table 2.2 as proposed by the WiMAX Forum [8].

We can learn how the SNR affects the error distribution of carrier frequency synchro-

nization from Fig. 6.12. It is seen that when SNR = 10 dB, about 99% of the cases the

corrected frequency offset is under 2% of the subcarrier spacing, as required by IEEE

802.16e, for both initial and normal synchronization.

From the above figures on fractional CFO estimation results, we can also see that

the performance curves for fixed-point and floating-point implementations are almost the

same.

6.3.3 Integer CFO Estimation and Preamble Index Identification

Figure 6.13 shows the probability of either integer CFO or preamble index identification

error with fixed-point and floating-point implementations under Vehicular A channel. The

floating-point version has better performance when the SNR is under 10 dB, but within

84

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

Error distribution under SUI3 (1),Speed=120km/hr (Initial Sync)

SNR (dB)

P
ro

ba
bi

lit
y

error=0 sample, floating−point
error>=1 sample, floating−point
error>=8 samples, floating−point
error>=16 samples, floating−point
error=0 sample, fixed−point
error>=1 sample, fixed−point
error>=8 samples, fixed−point
error>=16 samples, fixed−point

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Error distribution under SUI3(2),Speed=120km/hr (Initial Sync)

SNR (dB)

P
ro

ba
bi

lit
y

error<=−1 sample, floating−point
error<=−8 samples, floating−point
error<=−16 samples, floating−point
error<=−1 sample, fixed−point
error<=−8 samples, fixed−point
error<=−16 samples, fixed−point

Figure 6.7: Symbol time synchronization error distribution under different SNRs (initial
synchronization).

85

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Error distribution under SUI3 (1),Speed=120km/hr (Normal Sync)

SNR (dB)

P
ro

ba
bi

lit
y

error=0 sample, floating−point
error>=1 sample, floating−point
error>=8 samples, floating−point
error>=16 samples, floating−point
error=0 sample, fixed−point
error>=1 sample, fixed−point
error>=8 samples, fixed−point
error>=16 samples, fixed−point

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Error distribution under SUI3(2),Speed=120km/hr (Normal Sync)

SNR (dB)

P
ro

ba
bi

lit
y

error<=−1 sample, floating−point
error<=−8 samples, floating−point
error<=−16 samples, floating−point
error<=−1 sample, fixed−point
error<=−8 samples, fixed−point
error<=−16 samples, fixed−point

Figure 6.8: Symbol time synchronization error distribution under different SNRs (normal
synchronization).

86

0 5 10 15 20
0

1

2

3

4

5

6
x 10

−3 RMSE of fractional CFO synchronization under AWGN

SNR (dB)

R
M

S
E

 (
nu

m
be

r
of

 s
ub

ca
rr

ie
r

sp
ac

in
gs

)

floating−point, Initial Sync
fixed−point, Initial Sync
floating−point, Normal Sync
fixed−point, Normal Sync

Figure 6.9: RMSE of fractional CFO estimation in AWGN with fixed-point and floating-
point implementation.

an acceptable difference.

6.4 DSP Optimization Results

In our system, the clock frequency of DSP is 1 GHz and one subframe duration is 2.5

ms for both FFT size 1024 with bandwidth 10 MHz and FFT size 2048 with bandwidth

20 MHz. Therefore, the available execution clock cycles are 2,500,000 in a subframe

duration. To achieve real-time processing speed, one subframe must execute less than

2,500,000 instruction cycles.

Table 6.2 shows the number of clock cycles for each function used in the synchroniza-

tion procedures, where “load” gives the fraction of a DSP’s real-time computing power.

(Note that in programming terms, an “optimized” program does not mean that a program

has been made ultimately efficient without any possibility of further improvement. It

merely means that suitable programming techniques have been used in writing the pro-

gram to make it reasonably efficient compared to one without using such techniques.) For

FFT size 1024, the total requirement for initial synchronization is approximately 0.1239

87

0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
RMSE of fractional CFO synchronization under SUI3 (Initial Sync)

SNR (dB)

R
M

S
E

 (
nu

m
be

r
of

 s
ub

ca
rr

ie
r

sp
ac

in
gs

)

0km/hr, floating−point
60km/hr, floating−point
120km/hr, floating−point
0km/hr, fixed−point
60km/hr, fixed−point
120km/hr, fixed−point

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03
RMSE of fractional CFO synchronization under SUI3 (Normal Sync)

SNR (dB)

R
M

S
E

 (
nu

m
be

r
of

 s
ub

ca
rr

ie
r

sp
ac

in
gs

)

0km/hr, floating−point
60km/hr, floating−point
120km/hr, floating−point
0km/hr, fixed−point
60km/hr, fixed−point
120km/hr, fixed−point

Figure 6.10: RMSE of fractional CFO under SUI3 channel for FFT size 2048 with band-
width 20 MHz.

88

0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
RMSE of fractional CFO synchronization under SUI3 (Initial Sync)

SNR (dB)

R
M

S
E

 (
nu

m
be

r
of

 s
ub

ca
rr

ie
r

sp
ac

in
gs

)

0km/hr, floating−point
60km/hr, floating−point
120km/hr, floating−point
0km/hr, fixed−point
60km/hr, fixed−point
120km/hr, fixed−point

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
RMSE of fractional CFO synchronization under SUI3 (Normal Sync)

SNR (dB)

R
M

S
E

 (
nu

m
be

r
of

 s
ub

ca
rr

ie
r

sp
ac

in
gs

)

0km/hr, floating−point
60km/hr, floating−point
120km/hr, floating−point
0km/hr, fixed−point
60km/hr, fixed−point
120km/hr, fixed−point

Figure 6.11: RMSE of fractional CFO under SUI3 channel for FFT size 2048 with band-
width 10 MHz.

89

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Fractional CFO sync error distribution under SUI3 ,Speed=120km/hr (Initial Sync)

SNR (dB)

P
ro

ba
bi

lit
y

|error|>0.5% subcarrier spacing, floating−point

|error|>1% subcarrier spacing, floating−point

|error|>2% subcarrier spacing, floating−point

|error|>0.5% subcarrier spacing, fixed−point

|error|>1% subcarrier spacing, fixed−point

|error|>2% subcarrier spacing, fixed−point

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

Fractional CFO sync error distribution under SUI3 ,Speed=120km/hr (Normal Sync)

SNR (dB)

P
ro

ba
bi

lit
y

|error|>0.5% subcarrier spacing, floating−point

|error|>1% subcarrier spacing, floating−point

|error|>2% subcarrier spacing, floating−point

|error|>0.5% subcarrier spacing, fixed−point

|error|>1% subcarrier spacing, fixed−point

|error|>2% subcarrier spacing, fixed−point

Figure 6.12: Fractional CFO synchronization error distribution under different SNRs.

90

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

SNR (dB)

E
rr

or
 R

at
e

Error Rate of Preamble Index/Integer CFO Estimation under Vehicular A channel

Differential Method, floating−point
Differential Method, fixed−point

Figure 6.13: Error probability in either the identified preamble index or the estimated in-
teger CFO with fixed-point and floating-point implementation under Vehicular A channel.

DSP chips’ processing power, while that for normal synchronization is 0.0926 DSP chips’

power. For FFT size 2048, the total requirement for initial synchronization is approx-

imately 0.2295 DSP chips’ processing power, while that for normal synchronization is

0.1373 DSP chips’ power.

Using the above results for FFT sizes 1024 and 2048, we may extrapolate for the DSP

computational loads for the cases of FFT sizes 128 and 512. Assume that the subframe

duration is also 2.5 ms, that is, the bandwidth for FFT size 128 is 1.25 MHz and the that

for FFT size 512 is 5 MHz. After rough estimation, the DSP loading for FFT size 128 is

0.0326 and 0.05 for initial synchronization and normal synchronization, respectively. For

FFT size 512, the initial synchronization needs 0.072 DSPs and the normal synchroniza-

tion needs 0.07 DSPs.

91

Table 6.2: DSP Optimization Results

DSP Computational
LoadAvg. Clock Cycles

(1 DL subframe / 2.5ms)Function
1024 2048 1024 2048

(10 MHz) (20 MHz) (10 MHz) (20 MHz)
Correlation 28620 47729
Estimator 4035 3911

Compensation 4130 8127
Initial Sync. FFT 11456 27122 0.1239 0.2295

PostFFTSync 260013 485351
Correlation

Compensation
1486 1594

Correlation (tracking) 35561 51181
Estimator (tracking) 98371 98164

Normal Sync. Compensation 96087 192475 0.0926 0.1373
Correlation

Compensation
1484 1542

92

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we first presented the synchronization techniques of the IEEE 802.16e

OFDMA TDD system, and verified them through floating-point computation. Second,

we modified them to fixed-point version and compare the difference of the performance

between floating-point and fixed-point versions. In the end, we implemented them on TI’s

C6416T digital signal processor.

We considered two DL synchronization conditions: initial synchronization and nor-

mal synchronization. There were timing offset, CFO, and preamble index needed to be

estimated during initial synchronization. We used the information of the first DL subframe

to estimate the more accurate timing and fractional CFO by CP correlation [29]. Then,

we considered the joint detection of integer CFO and preamble index using the compen-

sated preamble symbol in the frequency domain. Several methods of different complexity

were used and simulation results showed that the differential method performed rather

well even in low SNR.

During DL normal synchronization, we tracked the timing offset and fractional CFO

in the receiver. Again, we used the CP correlation to estimate the timing and CFO. We

employed exponential average over the symbols in the subframe to obtain a more accurate

estimation. More than 99% of the results can reach the requirement of the specification

if the SNR was more than 10dB when mobile speed was 120 km/hr under SUI3 channel.

Furthermore, the performance of normal synchronization performed better than that of

initial synchronization.

93

Also, we proposed a data-aided method to estimate the symbol timing offset during

normal synchronization. But we can only find the timing offset related to the power delay

profile of the channel in the beginning, and it causes ISI. We modified it with an adaptive

threshold to find the earliest possible timing, and the simulation results showed that the

performance became much better.

In the end, we modified the whole system to fixed-point version, and used some op-

timization techniques to accelerate each function of synchronization as fast as we can on

TI’s DSP. Simulation results showed that all curves of fixed-point simulations were very

close to those of floating-point simulations. After DSP optimization, the synchronization

tasks achieved the real-time requirements.

7.2 Future Work

There are several possible extensions for our research:

• Consider the ranging process for UL synchronization since we do not lay stress on

UL synchronization in this thesis.

• Take the effect caused by sampling frequency offset into consideration. This is for

a more practical simulation.

• Consider to deal with SFO synchronization in addition, especially in the high mo-

bile speed environment, this can help the performance of BER.

• Try to implement the complexity-reduced methods to estimate the integer CFO and

preamble index on DSP since we only implement the differential method on DSP

in this thesis.

• Analyze the effects of different length of guard interval. The guard interval length

may effect the performance of fractional CFO and symbol timing.

94

Bibliography

[1] IEEE Std 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks

— Part 16: Air Interface for Fixed Broadband Wireless Access Systems. New York:

IEEE, June 2004.

[2] IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor1-2005, IEEE Standard for

Local and Metropolitan Area Networks — Part 16: Air Interface for Fixed Broad-

band Wireless Access Systems — Amendment 2: Physical and Medium Access Con-

trol Layers for Combined Fixed and Mobile Operation in Licensed Bands and Cor-

rigendum 1. New York: IEEE, Feb. 28, 2006.

[3] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications.

Boston: Artech House, 2000.

[4] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-division multi-

plexing using the discrete Fourier transform,” IEEE Trans. Commun. Technol., vol.

COM-19, pp. 628–634, Oct. 1971.

[5] C.-C. Tung, “IEEE 802.16a OFDMA TDD uplink transceiver system integration and

optimization on DSP platform,” M.S. thesis, Department of Electronics Engineering,

National Chiao Tung University, Hsinchu, Taiwan, R.O.C., June 2005.

[6] J. Puthenkulam, and M. Goldhammer, “802.16 overview and coexistence aspects,”

http://grouper.ieee.org/groups/802/secmail/ppt00009.ppt.

[7] V. Bykovnikov, “The advantages of SOFDMA for WiMAX,”

http://mail.com.nthu.edu.tw/ jmwu/LAB/SOFDMA-for-WiMAX.pdf.

95

[8] WiMAX Forum, “Mobile WiMAX — Part 1: A technical overview and performance

evalution,” June 2006,

http://www.wimaxforum.org/news/downloads/Mobile WiMAX Part1 Overview and

Performance.pdf

[9] H. Yaghoobi, “Scalable OFDMA physical layer in IEEE 802.16 WirelessMAN,”

Intel Technology Journal, vol. 8, pp. 201–212, Aug 2004.

[10] K.-C. Hung and D. W. Lin, “Wireless MAN physical layer specifications: signal

processing perspective,” Book Chapter, Dec. 2006.

[11] Sundance home page: http://www.sundance.com

[12] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide. Liter-

ature no. SPRU189F, Oct. 2000.

[13] Texas Instruments, TMS320C6414T, TMS320C6415T, TMS320C6416T Fixed-Point

Digital Signal Processors. Literature no. SPRS226A, Mar. 2004.

[14] Texas Instruments, Code Composer Studio User’s Guide. Literature no. SPRU328B,

Feb. 2000.

[15] Texas Instruments, TMS320C6000 Code Composer Studio Tutorial. Literature no.

SPRU301CI, Feb. 2000.

[16] Texas Instruments, TMS320C6000 Programmer’s Guide. Literature no. SPRU198I,

Mar. 2006.

[17] Texas Instrument, TMS320C6000 Optimizing Compiler User Guide. Literature no.

SPRU187K, Oct. 2002.

[18] P. Dent, G. E. Bottomley, and T. Croft, “Jakes’ fading model revisited,” Electron.

Lett., vol. 29, no. 13, pp. 1162–1163, June 1993.

[19] V. Erceg et al., “Channel models for fixed wireless applications,” IEEE 802.16.3c-

01/29r4, July 2001.

96

[20] ETSI TR 101 112, “Selection procedures for the choice of radio transmission tech-

nologies of the UMTS,” ETSI Technical Report, V3.0.2, pp. 38–43, Apr. 1994.

[21] M.-T. Lin, “Fixed and mobile wireless communication based on IEEE 802.16a TDD

OFDMA: Transmission filtering and synchronization,” M.S. thesis, Department of

Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.,

June 2003.

[22] J. J. van de Beek, P. O. Borjesson, M. L. Boucheret, D. Landstromo J. M. Arenas, P.

Odling, and S. K. Wilson, “Three non-pilot-based time and frequency estimators for

OFDM,” Research Report 1998:08, Division of Signal Processing, Lulea University

of Technology, Sep. 1998.

[23] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for

OFDM,” IEEE Trans. Commun., vol. 45, no. 12, pp. 1613–1621, Dec. 1997.

[24] M. Morelli and U. Mengali, “An improved frequency offset estimator for OFDM

applications,” IEEE Commun. Lett., vol. 3, pp. 75–77, Mar. 1999.

[25] U. Tureli, H. Liu., and M. D. Zoltowski, “OFDM blind carrier offset estimation:

ESPRIT,” IEEE Trans. Commun., vol. 48, pp. 1459–1461, Sep. 2000.

[26] X. Ma, C. Tepedelenlioglu, G. B. Giannakis, and S. Barbarossa, “Non-data-aided

carrier offset estimator for OFDM with nullsubcarriers: Identifiabilit, algorithms,

and performance,” IEEE J. Select. Areas Commun., vol. 19, pp. 2504–2515, Dec.

2001.

[27] T. Bhatt, V. Sundaramurthy, J. Zhang, and D. McCain, “Initial synchronization for

802.16e downlink,” Proc. Asilomar Conf. Signals Systems Computers., Nov. 2006,

pp. 701-706 .

[28] J. J. van de Beek et al., “ML estimation of time and frequency offset in OFDM

systems,” IEEE Trans. Signal Processing, vol. 45, no. 7, pp. 1800–1805, July 1997.

97

[29] J.-C. Lin, “Maximum-likelihood frame timing instant and frequency offset estima-

tion for OFDM communication over a fast Rayleigh-fading channel,” IEEE Trans.

Vehicular Technology, vol. 52, no. 4, pp. 1049–1062, July 2003.

[30] G.-W. Ji, “Research in synchronization techniques and DSP implementation for

IEEE 802.16e OFDM uplink and OFDMA downlink,“ M.S. thesis, Department of

Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.,

June 2006.

[31] H. Lim and D. S. Kwon, “Initial synchronization for WiBro,” in Proc. Asia-Pacific

Conf. Commun., Oct. 2005, pp. 284–288.

[32] K.-C. Hung and D. W. Lin, “Joint detection of integral carrier frequency offset and

preamble index in OFDMA WiMAX downlink synchronization,” in Proc. IEEE

Wireless Commun. Networking Conf., Mar. 2007, pp. 1959-1964.

98

作者簡歷

 學生劉耀鈞，民國七十一年十一月出生於台北市。民國九十四年六月畢業於

國立交通大學電信工程系，並於同年九月進入國立交通大學電子研究所就讀，從

事 OFDMA 通訊系統方面相關研究。民國九十六年六月取得碩士學位，碩士論

文題目為『IEEE 802.16e OFDMA 同步技術之研究與數位信號處理器實現』。

	cover.doc
	abstract.doc
	誌謝.doc
	blank.pdf
	9411665.pdf
	bio.doc

