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Rule Based Multi-Layer Obstacle-Avoiding Rectilinear Steiner Tree
Construction

Student: Chen-Hui Hung Advisor: Prof. Hung-Ming Chen

Department of Electronics Engineering
& Institute of Electronics
National Chiao Tung University

Abstract

In veryl/ultra large scale design (VLSI/ULSI), routing is a very challenging work.
Especially, the routing tree construction, as an extremely important step for routers, plays a
crucial role for the routing results. In this thesis, we have proposed an algorithm to
construct a single/multi-layer obstacle-avoiding rectilinear Steiner tree, which can get good
solution at single layer and fast yet.effective at multi layers. We use a concept called
co-edge to minimize the total wirelength. It is better than just considering the U-Shaped
refinement [20] under the same topology. In _multi-layer, we proposed a hierarchical and
heuristic approach to solve this problem. Experimental results have shown that our
algorithm is still efficient in larger multizlayericases, with slightly more wirelength.
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Chapter 1

Introduction

In very /ultra large scale design (VLSI/ULSI), routing is a very challenging work. To
get accurate interconnect informationysuich fas. wirelength, congestion, and timing
estimations, a good router is necessary.-Especially, the routing tree construction, as
an extremely important step forrouters, plays a crucial role for the routing results.
Rectilinear Steiner minimal tree-(RSMT)Tconstruction is a fundamental problem
in VLSI/ULSI design. In fact, today’s.design often contains rectilinear obstacle,
marco cells, IP blocks, and pre-routed nets. Taking obstacles into consideration
which is called obstacle - avoiding RSMT (OARSMT) becomes a very practical and

complicated problem.

There are many works on OARSMT problem. The researches at single layer have
received attention, such as [19] [20] [4] [10] [11]. They can be classified into four
major categories according to connection graph construction : (1) the grid based
connection graph approach, (2) the Hanan graph based connection graph approach,
(3) the Escape graph based connection graph approach, and (4) the spanning graph

based connection graph approach.

To route by spanning graph could save a lot of run time[20]. [14] improves the
spanning graph to get better solution. But the spanning graph could not extend the

relationship between pins and obstacles to multi-layers. [2] pops the nodes of pins



and obstacles to other layers for spanning graph construction. It could increase the

run time and the complexity by scaling nodes and obstacles.

However, [8] proves the RSMT routing problem is NP-Complete. If we extend the
RSMT problem to OARSMT or multi-layers OARSMT problem, the problems are
more complex than RSMT. Some approaches extend the problem to timing driven
routing problem[13][1]. It would increase the complex of the problem too. Recently,
there are some researches considering multi-layer OARSMT. [2] considered multi-
layer pins and obstacles problem. But they popped too many of nodes to other

layers, the run time would scale a lot in larger cases.

1.1 Contribution

For the OARSMT problem, we have the following distinguished features and theo-

retical findings:

e We propose some good rules to get the minimal total wirelength. Using the
rules to get routing path is better than just using U-shaped refinement at the

same topology.|[20]

e We propose a very fast yet effective method to form the routing path at multi-

layers. When the size of case grows larger, it is still effective.

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 introduces the previous
works and basic terminology definitions first, and then formulates the OARSMT
and multi-layer OARSMT problems. Chapter 3 presents our algorithm. Chapter 4

reports the experimental results. Finally, we conclude our work in Chapter 5.



Chapter 2

Preliminary

In this chapter, we introduce some previous works and problem formulation.

2.1 Previous Works

There are many works on obstacles-avoiding rectilinear Steiner minimal tree (OARSMT)
problem. They can be classified intofour major.¢ategories according to connection
graph : (1) the grid based connection graph approach, (2) the Hanan graph based
connection graph approach, (3) the Escape graph based connection graph approach,

and (4) the spanning graph based connection graph approach.

The number of vertices and edges in spanning graph is smaller than others, but
it means losing more solution space more than others. There are some approaches
without using connection graph. [4][5][16] use lookup table to construct the routing
tree, but the approach without considering obstacles. [18] is circuit simulation based
obstacle-aware Steiner routing. [3] uses multi-levels approach to handle the problem
on multi-layers, but their approach could only use vertical / horizontal at single
layer. We can say almost all the approaches use some kind of connection graph,
and then do some correction or improvement. We will talk about some approaches

recently in this section.



2.1.1 Grid Based Connection Graph Approach

T ] 2232
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Figure 2.1: (a) The initial routing problem,Maze routing [12] (b) Line search is the
variant of Maze routing [15])

These approaches are the ancestor of the, erting. Maze routing, first proposed
in [12], find a path from a source t@ a: target.on-a 1élyer by wave propagation as show
in Figure 2.1 (a). It can get an of)timal sblufioﬁ at fvvo—pins net. However, the time
complexity and memory usage giﬁg)w prbhibifci;;gly hugé as the routing area becomes
larger. Further, there are some varTatits [15][9].. They decide several ”escape points”
to make the computation more efficient as show in Figure 2.1(b), but they still incur

unsuitable solution quality since they only handle the two-pins net.

2.1.2 Hanan Graph and Escape Graph Based Connection
Graph Approach

The Hanan graph is similar with Escape graph, we can discuss them together. The
Hanan graph is shown in Figure 2.2 (a) and the Escape graph is shown in Figure 2.2
(b). When an edge is blocked by obstacle, the edge could be marked the prohibited

routing direction.

Ganley and Cohoon [7] introduces a strongly connected graph called the Escape
Graph. They show that at least one optimal solution can be found. They also provid
three approximation algorithms, namely G3S, B3S, and G4S, with time complexities

O(k*n), O(nklogk?®), and O(k*n?), where k is the sum of terminals and obstacle
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Figure 2.2: (a) Hanan graph consists of the pins and obstacle boundaries and the
lines which extended by pins and obstacle boundaries. (b)Escape graph remove the
extended edges which are blocked by obstacles.

boundaries and n is the number of ifitersections éver the Escape graph.

Tsai et al. [19] presents an algorithm [to construct a escape graph , obstacle-
weighted minimum spanning tree, and applies- Dijkstra’s algorithm [6] to get the

obstacle-avoiding rectilinear Steiner;minimal tree.

2.1.3 Spanning Graph Based Connection Graph Approach

.
i
(I

!

(a) ®
Figure 2.3: (a) Hanan graph consists of the pins and obstacle boundaries and the
lines which extended by pins and obstacle boundaries. (b)The spanning graph is an
undirected connected graph between the set of pins and the set of obstacles, where
no edge intersects with an obstacle.

The spanning graph is an undirected connected graph between the set of pins and



the set of obstacles, where no edge intersects with an obstacle, as shown in Figure
2.3. Shen. et al. [17] proposed a clever heuristic to construct an obstacle-avoiding
rectilinear minimal tree. In this heuristic, the plane is divided into four region is
chosen to construct and edge. Based on this method, a single-layer obstacle-avoiding
spanning graph is first constructed as shown in Figure 2.3 and Figure 2.4(a). This
work [17] is effective in general, but there are some edges are missed which lead to

better solutions.

Wu et al. [20] presents an approach for OARSMT problem. Their first step,
construct a minimal spanning tree for all pins as shown in Figure 2.4 (a) and partition
the tree into sub trees by removing edges whose two L-shaped segments both intersct
obstacle as shown in Figure 2.4 (b). ;The second step uses the ant colony optimization
to connect the sub trees as showirin Higure 2.4 (¢). Their ant colony optimization is
performed on the spanning graphin [13] t6 reduce the runtime. In the last step, the
tree constructed in the previous step.is transfornied into an OARSMT and further

improved for its wirelength as shown in Figure 2.4(d).

Recently, Lin et al. [14] proposes an algorithm for an obstacle-avoiding rectilinear
Steiner tree construction. It can achieve an optimal solution for any 2-pin net and
nets with more pins in many cases. Experimental results have shown that it is
very effective and efficient. They construct the spanning graph with ”essential”
edges and prove the existence of a rectilinear shortest path between any two-pin
net. They present an approach for multi-layer OARSMT problem at ICCAD 2007
[2]. They extend the spanning graph at [14] with some additional VIAS and edges.

This approach can construct a good connection graph for searching the solution.
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Figure 2.4: (a) A minimal spanning tree for all pins (b) partition the tree into sub
trees by removing edges whose two L-shaped segments both intersect obstacle (c)

use the ant colony optimization to connect the sub trees (d) transform the tree into
an OARSMT.

2.2 Basic Terminology Definitions

An obstacle is a rectangle on a layer. No two obstacles overlap with each other, but
two obstacles could point-touched at the corner or line-touched at the boundary. A
pin is a vertex on a layer. A pin must not locate inside any obstacle, but it can be

at the corner or on the boundary of an obstacle.

See Figure 2.6 (a) to show any two obstacles cannot overlap each other, but can
point-touched or line-touched with each other. See Figure 2.6 (b) to show the illegal

situation while the pin are inside the obstacle, but they can be at the corner or on



(a) (b)

(c) (d)

Figure 2.5: (a) The initial routing case (b) First, construct the spanning graph, and
improve the graph with additional edgesii(e) They construct the complete graph
to represent the relationship betweén pins. (d) They search the minimal spanning
tree at the complete graph, and then project the tree back to the spanning graph.
Finally, they route the path by the spanning gtaph and refinement it by U-shaped.

the boundary of an obstacle.

An via on layer z is an edge between (x, y, z) and (x, y, z+1). (x, y, z) and
(x, y, z+1) must not locate inside any obstacle, but can be at the corner or on the
boundary of an obstacle. see Figure 2.7(a), the illegal via is the via locate inside

any obstacle , but it can be at the corner or on the boundary of an obstacle(2.7(b)).

The routable region is the region without intersecting with any obstacle, but
the edge could be point-touched at the corner or line-touched on the boundary of an
obstacle. Figure 2.8 shows the tree edges intersecting an obstacle(a), and the tree

edges are point-touched and line touch at the obstacle boundary(b).

Co-edge means the possible overlapping wirelength with other connection at
one direction of search. Co-wirelength means >  (the co-edge on connection
path ). Figure 2.9 is an example of co-edge. When we check co-edge of t1, we can

see e2 is the co-edge of the right direction. There is no co-edge at up and down



direction ,but there is a path existed. At the left direction of t1, we never do any

search. The same as the left direction of t2, el is the co-edge.

Simple path means a pair of pins which have a ”L.” path to connect each other.

We call the connection of pins is ”simple path ”

LEN

Figure 2.6: (a) Any two obstacle cannot overlap each other (left), but two obstacles
can be point-touched at the corner or linestouched at the boundary (right). (b) A
pin must not locate inside any obstacle (left) but it can be at the corner or on the
boundary of an obstacle (right) .;‘7 2 E’Fi T, e

_ ? i &

> .
N A A

{a) (h)

Figure 2.7: (a) A via on layer z is an edge between (x, y, z) and (x, y, z+1). (X, y,
z) and (X, y, z+1) must not locate inside any obstacle. (b) It can be at the corner
or on the boundary of an obstacle.

Let T=t1, t2,........ , tn be the set of pins. Each t includes three information (x,
y, z). The x and y represent pin’s coordinate and z represents the layer which the
pin locates. The set of O=01, 02........ , on are the obstacle set. Every o includes five
information, (x1, y1 ,x2 ,y2 ,z), x1 and y1 represent the coordinate of an obstacle’s
left-down corner and x2 and y2 mean the coordinate of an obstacle’s right-up corner.

The z are the layer which the obstacle locate.
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Figure 2.8: (a) the tree edges intersecting an obstacle (b) the tree edges are point-
touched and line touch at the obstacle boundary.

2.3 Problem Formulation:

We consider the rectilinear routes which use hoth vertical /horizontal edges in layers
and vias between layers. The obstaclesavoiding rectilinear Steiner minimal tree
(OARSMT) and multi-layer obstacle=avoiding rectilinear Steiner minimal tree (ML-
OARSMT) problems as follows :

Problem 1 : Obstacle-Avoiding Rectilinear Minimal Steiner Tree :
Given a set T of pins and a set O of obstacle on single layer. To construct a
rectilinear Steiner tree which connects the pins without intersecting the obstacles is

called OARSMT and the total wirelength of the tree is minimized.

Problem 2 : Multi-Layer Obstacle-Avoiding Rectilinear Minimal Steiner
Tree: Given a set T of pins and a set O of obstacles, constructing a multi-layer
rectilinear Steiner tree to connect pins in the set ,possibly through some additional
points (called Steiner points ), and no edge or via intersects any obstacle in set O.

The total cost of the tree is minimized.

10



—
s
[
g
iy
Wl

Figure 2.9: The co-edge at the lft direction-of £2:is el and the co-edge at the right
direction of t1 is e2.
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Figure 2.10: (a) The edge E1 and E2 are connected as simple path (b) the path is
not a L path, so we called the path not a simple path.
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Chapter 3

Algorithm

Our algorithm for multi-layer Steiner tree construction consists of the following steps
: First, we choose a start layer which#has maximal number of pins and minimal
number of obstacle, and get a treesconsist of the.pins connected by simple path with
each other at this layer. second, e pop the pins which the simple connection is not
existed to next layer. Then, we repeat the work of previous step with some adding
methods over next layer for finding shortest-path. Third, some pins which can not
pop to other layer or still not find the path would be considered in this step. This
step will use spanning graph to get the routing path. If there is a path existed, it

can be found in this step. The overall algorithm is shown in Figure 3.1.

When we handle single layer problem, we can modify the algorithm of multi-
layers. The modified algorithm is shown in Figure 3.2. We remove the step 2, and
then run step 3 before selecting highest co-wirelengths path. When we run the step

first, we can increase the solution space at selecting highest co-wirelengths.

3.1 Starting Layer Determination

In this section, we construct a tree consist of the pins connected by simple path
with each other at single layer. We choose a start layer by a rule R : ( the number

of pins at the layer ) - ( the number of blocks at the layer ).

12



Algorithm: Rule based muiti-layer OARSMT()
Input : T /* the set of pins */, O /* the set of obstacles */
QOutput :G /* the tree of multi-layer OARSMT */
- Start layer determination
- Hanan-points-based routing graph construction
- MST topology construction
- Direction-oriented path search
- Choose the highest co-edge paths
- for each layer
- Pop the un-routed pins to now handled layer
- Find the shortest path by constraint and Reconstruct MST tree
- Add Vias
10 - Direction-oriented path search for each layer
11 - Choose the largest overlapping wirelength paths for each layer
12 - Connect pins which un-routed at previous stage

oo~ &Wwh =

Figure 3.1: The algorithm of multi-layers. There are three stages for this algorithm.
First, we select and handle a START layer, and then extend the solution to other
layer. Finally, we handle the un-routed pin-pairs.

We choose the layer which has maximal R te be the start layer. The reason is

when we consider the other layers, we will‘use completed layer to check the better

solution existed or not. If choosing the layer-having maximal R ,we usually have

more chance to get better solution.

3.1.1 Hanan-Points-Based Routing Graph Construction

After choosing start layer, we construct Hanan points graph first. The Hanan points
graph is based on Hanan graph, but the Hanan points graph only consists of vertices.
The reason is the cost of constructing Hanan points graph is smaller than Hanan

graph, and we don’t need some information (like edges) in Hanan graph.

When we read the data of pins and obstacles, we will dynamic construct x and y
coordinates table. The table of y coordinates is a reference table which only contains
y coordinates. The table of x coordinates is the table for the search of path which

contains vertices had constructed.

Figure 3.3 (a) shows the Hanan graph and its data structure. In (b), Y table

means the y reference table. In x table, each x coordinates consist by list of y
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Algorithm: Rule based single-layer OARSMT()
Input : T /* the set of pins */, O /* the set of obstacles */

Output :G /* the tree of single-layer OARSMT */

1 - Start layer determination

2 - Hanan-points-based routing graph construction

3 - MST topology construction

4 - Direction-oriented path search

5 - Connect the pins which un-routed at previous stage
6 - Choose the highest co-edge paths

Figure 3.2: When we handle single layer problem, we can modify the algorithm
of multi-layers. We remove the step 2, and run step 3 before selecting highest co-
wirelengths path.

coordinates. We construct the pins and obstacle vertices first. The other vertices
will be constructed while we Visit'thrém on searéh step. If we construct the vertices
only when we need them, we caﬁ save the run time. The reason is that the most
vertices are not visited on searching step™=" -

Y "lllb]c‘

”«

H BN BN EE N :

() (b)

Figure 3.3: (a) Hanan graph (b) The data structure is constructed by (a).

3.1.2 Minimum Spanning Tree Topology Construction

We apply Kruskal’s MST algorithm for finding MST topology with the distance

constrain. When we construct minimum spanning tree (MST) ,the distance between
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pins is as follows : Distance : Manhattan distance + obstacle penalty. Manhattan
distance : |z1-z3| + |y1-y2|. obstacle penalty : min (the length of obstacle

boundary edge).

In general, the minimum spanning tree uses the Manhattan distance between
two-pin net as cost. However, it will not be accurate in estimating the real routing
distance with the existence of obstacles. In order to have a better estimation of real
routing distance, we use the obstacle penalty to construct a better topology. The

method is used in [19][20] too.

First, we check any simple path existed or not in a two-pin net. There are at
most two L-shaped segment in a two-pin net. If all of them intersect the obstacle,
as show in Figure 3.4 (a), we say,ho simple pathexisted. Then, we assign a new
cost to the path. We draw a rectangle whose-boundaries pass through the two-pin
net, and two non-intersecting boundagies of the obstacle, as show in Figure 3.4 (b).
Then, we have two different path now (Edge 1 and*Edge 2). We will choose the path
which length is smaller than another one. To considering obstacle penalty means

the new length larger than Manhattan distance.

We use an example in Figure 3.5 to illustrate the difference between the general
MST and obstacle penalty MST. (a) is the MST routing result whose topology got
by general distance, and then we can easily dig out the topology is bad than (b).
The reason is the distance of (a) not consider the length from obstacle, and then

the topology is impertinent.

3.1.3 Direction-Oriented Path Search

On this step, we divide MST topology net into a set of two-pin nets. The direction-
oriented path search will work on these two pin nets. We handle a two-pin nets one

time and pick up every pin in a net to do two direction search. The direction of one
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Figure 3.4: 16 (a) There are at most two L-shaped segment in a two-pin net. If all
of them intersect the obstacle, we say no simple path existed. (b) a rectangle whose
boundaries pass through the two-pin.net, and-two non-intersecting boundaries of
the obstacle. Then we have two different path now.

search depends on the two-pin net topology.

We use Figure 3.6 to illustrate‘the. direction-oriented path search. There are
three two-pin net in this example and some searches cover with each other. (a)
shows the MST topology of an example. (b) is the Direction-Oriented Path Search
of the MST topology. We consider a two-pint net, t1-t3, the search direction of t1
is right and down and the direction of t3 is up and left. The search direction of a

pin depends on the two-pin net topology.

In addition, when we consider the two-pin net ,t1-t2 , the right direction of t1
is blocked by an obstacle. It means the search of this direction is false. We can
easily see that the searches of pins in a two-pin net meet at most twice in search
region. When there is no touched point in a two-pin net search, we call no simple

path between pins.

When we do the direction-oriented path search, we not only check the path

existed or not, but also recode some information for path selection. The information
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Figure 3.5: (a) The routing result whose MST topology got by general distance,
(b) The routing result whose MST topology got by obstacle penalty . The total
wirelength of (b) is smaller than (a).

are listed as follows :

1. The end position at every succeeded search.
2. The total search times of pin’siat-each direetion.
3. The failed search times of pin’s at each direction.

4. When any direction-oriented path search of two-pin net is failed in one direc-
tion, but the corresponding search is successful in the net. We will remark the

successful search and the end position of this search.

We explain (4) with Figure 3.6. In the two-pin net, ” t1-t2 7, t1’s right direction
search is failed, but the t2’s opposite search ,down direction , is successful. We will

special remark this kind of situation.

3.1.4 Path Selection

In general, if a routing path contains more co-wirelength, it means the total wire-

length is smaller. The purpose of all of our rules is to get as more co-wirelength
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(a) (b)

Figure 3.6: (a) the MST topology of an example (b) the Direction-Oriented Path
Search on the MST topology .

as possible. Here, we define a kind of edge, ¢osedge, and co-wirelength as follows :
Co-edge : the possible co-wirelength with other connection at one direction search

edge Co-wirelength : )"  (the co-edge on connection path )

Figure 2.9 is an example of co‘edge.When we ¢heck co-edge of t1, we can see e2
is the co-edge of the right direction. There is no co-edge at up and down direction
of t1, but there is a path existed. At the left direction of t1, we never do any search.

The same as the left direction of t2, el is the co-edge.

We say the possible co-wirelength is the total co-edge on the connection path.
This is the reason why we always select the path which contains highest total co-
edge. Then, how to estimate the co-edge accurately is the problem we should resolve.

The solution we proposed will be described at the rest of this section.

We propose a way about rule based path selection. Here, we use the information
from direction-oriented path search to give a better path selection. After observing
routing example we think all two-pins nets can be divide into two kinds of situation.
The different situation will be handled by difference modes, Enhanced mode and
Normal mode. The Enhanced mode means we should consider additional routing

path case (it will form Z-shape ), because the additional solution might be better
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than L-shape. The Normal mode means there is no chance to improve the solution
in Z-shape , and then we will add a property called ” Avoid property ” to help

making a decision at L-shape.

On this step, we still base on MST topology, and we only handle a two-pins net
one time. When we select a two-pins net for path selection, we will decide which
mode of this net should be. Then, we determine the routing path between these

two-pin nets by the rules. The algorithm of path selection is shown in Figure 3.7.

Algorithm: Path-Selection()
Input : N /* the set of MST NET */
Qutput :E /* the edge of routing path */
1E=0
2 fori=1ton/ nmeans the end of N */
3 if the handled net fit Enhanced mode
co-edge count (i};
if (Rule-1==true)
co-edge update
else if (Rule-2==true)
co-edge update
else if (Rule-3==true)
10 co-edge update
11 pick up the largest overlapping wirelength path
12  else /* Normal mode */
13 if ( the averlapping wirelength value of L-path are the same )
14 co-edge=co-edge + avoid-property
16 pick up the the largest overlapping wirelength path
17 Return E

w oo~

Figure 3.7: The algorithm of path selection. We divided the path into two kinds of
mode, and then selecting the path which had highest total number of co-edges

First, we show how to select which kind of mode the two-pins net belonged to.
When any search direction of two-pins net fit the condition shown in Figure 3.8, the

net will be led into Enhanced mode.
The two conditions are shown in Figure 3.8 (a) and (b). In Figure 3.8, the
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two-pins net to be handled are ” t1-t2 7 in (a) and ” t3-t4 7 in (b). (a)shows one
direction of the pin, t1, is more than once and longest at handled two-pins net (like
el). (b)shows one direction of the pin, t4, is a failed search, but it is succeed in

another two-pins net (like e2).

It is easy to show the reason why we only consider the Z-shape case when the
net fits the Enhanced condition. If the net does not fit the condition, it means every
direction of pins must be one of the situation: no path, only be searched one time,
or not the longest path. As shown in Figure 3.11 (b), when we consider t1-t2 net,
the down direction of t2 is not a longest path at this direction. IF we want to get
maximal co-edge, the meaning is to use whole e2 to be the path. At this kind of

case we only consider the L-shape path.

t3

=

{a) ()
Figure 3.8: The conditions of enhanced mode: (a) one of the pin’s direction search

is more than once and longest at handled two-pins net (like el) (b) one of the pin’s
direction is a failed search, but it is succeed in another two-pins net. (like €2).

e Enhanced Mode :

The difference of Enhanced mode and normal mode are not only the additional

routing case, but also some additional co-edge estimation mode. If there is no co-
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edge and path existed at one of any pin’s direction, we will check any hidden co-edge

existed or not. We give an example of hidden co-edge at Figure 3.9.

In Figure 3.9, (a) is the direction-oriented path search. When we consider the
two-pins net, t1-t3, shown in (b). There is only one path existed, if we just consider
L-shape and the all of the co-edge is 0. In fact, there are 2 hidden co-edge existed.
One is t1’s right direction. Although, the t1’s right direction is failed in t1-t3 net,
the t1’s right direction is successful in t1-t2 net. So, there is hidden co-edge, el, at
t1’s right direction. The same as e2 is an hidden co-edge. (c) is the net of t1-t2.

When we consider this net, there are two hidden co-edge too.

(a)

Figure 3.9: (a) the direction-oriented path search (b) the t1-t3 net have two hidden
co-edge el and e2. (c) the t1-t2 net has two hidden co-edge e3 and e4. When we
consider the hidden co-edge, we can have more solution space.

We list the hidden co-edge rules at table 3.1 If the co-edge is not existed, we will
use the rule to check hidden co-edge. We show the hidden co-edge checking flow at
Figure 3.10.

The Rule-1 is the same as el in Figure 3.9 (b) and e4 in (c¢). The search at the

direction is successful in handling net, but is failed in other net.

The Rule-2 means the information of search time getting form direction- oriented
path search. When any two-pin net’s direction-oriented path search is failed in one
direction, but the opposite search is successful in the net. We will remark the

successful search and the end position of this search. At this step, we measure the
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hidden co-edge by these information. The Rule-2 is shown in Figure 3.11(a). In
Figure 3.11 (a), there is no co-edge at t1’s right direction, but we can easily to
see that there is one co-edge at the t2’s down direction. The el in 3.11(a) not fits

Rule-1, because the down direction search of t2 is failed in handling net.

The Rule-3 means the total numbers of search time more than one time. The
priority of these rules means the chance of co-edge really existed at these three kinds
of condition. We discover the results of using these priority on experiment are better
than others. As shown in Figure 3.9 (b) and (c), €2 and e3 fit Rule-3. There is no
successful search at that direction, but the times of search are more than once.
Table 3.1: hidden co-edge rules. Thessuccess-fail search time means there is at

least one of the search in other two-pin net is failed in this direction, but the the
corresponding search direction is.Successful in the net.

Priority Formula
Rule-1 | High (Failed search time * length)
Rule-2 | Med. | (Success-Fail search time * length)
Rule-3 | Low ((All'search time -1)* length)

e Normal Mode :

At this mode, we don’t need to consider hidden co-edge, but we should consider
the net which is the neighbor of handled net. When the total co-edge at two L-
shape are the same, we add a new parameter called ” avoid property 7. If the avoid
property of one L-shape is higher than another one. We say the L-shape is not a

good choice.

We define the property should be avoided and avoid direction as follows : Prop-
erty : the co-edge of avoid direction. Avoid direction : the direction which will

increase total wirelength.

The property is the co-edge of avoid direction. The avoid direction means the
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Figure 3.10: When we determine the value of hidden co-edge in enhanced mode, our
algorithm will run as this flow.

direction avoid now direction. Figure 3.12 (a) shows the avoid direction. The
handling net is t1-t2 and the co-edge value of that net is the same at up L-shape
and down L-shape. Let’s us check the property of down L-shape. The avoid direction
of t1’s right direction is down direction. The reason is at t1-t3 net, if we select t1’s
right direction to be the path, t1’s down direction is not be selected. All the other
avoid directions are selected by the same way. In this example, the total number
of property at down L-shape is E1, and then the total number of property at up
L-shape is 0. We should select up L-shape at t1-t2 net. (b) is the final result at this

case by our algorithm.
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() (h)

Figure 3.11: (a) The right direction of the pin,tl , is a failed search, but it is
successful in another two-pins net. (el)(b) The down direction search of the pin, t2,
is more than once and not longest at handled two-pins net. (e2)

(a) 3 (b) 13

Figure 3.12: (a)an example of avoid direction. When we consider the two-pin net
t1-t2, t1’s down direction is the avoid direction of t1’s right direction, and E1 is the
co-edge of down direction. The property of t1’s right direction is E1. (b) The result
of considering the property.

e Path Selection :

After counting the co-edge in each direction of the two-pins net, we will pick up
any two of them which have maximal overlapping wirelength. When the net lead
in Enhanced mode, we should especially notice that the total co-edge of Z-shape be

bounded by the length of one direction.

When we consider the Z-shape, we should notice that the additional path is

available or not in the Z-shape. IF the path is not available, we will drop the
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solution and choose other solution. In addition, our approach can apply to preferred
direction problem too. The reason is that we consider one direction one time in our

search and path selection step.

To see Figure 3.13, in (a), the total co-edge of up L-shape is el+e2. In (b), the
total co-edge of the Z-shape is e3+e4, but be bounded by the length of x direction.

The total co-edge is | 243 - x4 |.

Figure 3.13: (a) In the up L-shape,the total co-edge is el+e2 (b) In the Z-shape,the
total co-edge is bounded. The total cosedgeof this'example is | ;3 - 244 |.

3.2 Solution Propagation to Other Layers

After graph construction, we have handled the two-pins nets which contain simple
path. We propagate the pins which not contain simple path. If we propagate the
pins which there is no simple path existed between them to other layers, it may be
better than finding the solution in that layer. The reason is when the simple path is
blocked by obstacle, the total wirelength may be worse than we propagate to other

layers.

3.2.1 Search for the Shortest Path

First, we propagate the uncompleted pins at last layer to next layer. Then, we

complete Hanan points graph construction and MST topology construction with
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these pins.

Before doing direction-oriented path search at the MST topology, we try to search
the shortest path with completed layers. We use Figure 3.14 to show the idea. In
Figure 3.14, there are three pins at last layer and two-pin at now layer. IF we

connect the pins of now layer with VIA to last layer, we can get smaller wirelength.

We propose a constrain to control the number of VIAs. When we cross a Via,
we add the user defined cost C to the wirelength. If the wirelength at layer N is W
and the wirelength at layer M is Z, layer N and M are connected by one via crossed

from N to M. The total wirelength should be W+Z+|N-M|.

The path of
A default
MST

e  The shorter

. 'The pin ol path

now laver o :
["het routed

path in Jast

taver

() Thepinaof

last laver

Figure 3.14: When we connect the pins of now layer with VIA to last layer, we can
get smaller wirelength without violating constrain. We can get best better solution
with adding these Vias.

3.2.2 MST Reconstruction

After finding the shortest path, the MST topology should reconstruct. We use an

example to show the reason. Figure 3.15 (a) is the default MST topology. After
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finding the shortest path, the result is (b). The new topology is not a MST anymore.
We must reconstruct the MST for the direction-oriented path search step. (c) is the

new tree after reconstruction.

To see Figure 3.15 (c), we do not reconnect the path between t1 and t2 for no
cycled. For no cycled and the keeping the connection of net, We will show that at

next sub-section.

t2
¢
(K. il & (K.
7
(a) (b (c)

Figure 3.15: (a) the default MST topology«(h). After finding the shortest path, we
got some new paths and broke some paths. TheMST should be reconstructed to
keep the property of MST (c) After reconstructing MST, the net should be still no
cycled and connect with each other(through Vias.or:lines).

3.2.3 The Connection Relationship of Net between Layers

As shown in Figure 3.16, when we break the connection between nets at n layer,
we add an via to the other net at n+1 layer. At Figure 3.16, all of the sub-net are
connected and there is no cycle in the net. The figure shows two information for us.
First is the pins of uncompleted MST, second is about finding of shortest path in

multi-layers.

For no cycled and the keeping the connection of net, we define some constrain

to simplify the problem and guarantee the connections.

1. If all of the pins in one un-routed two-pin net are popped successfully, we will
pop two of them, or else we not consider them until the step which is described

at next section.
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N laver

N+1 layer

N+2 layer

Figure 3.16: The connection relationship of net between layers. We can connect the
sub nets through the other layers sub nets. (connect sub net 4 and 5 through sub
net 8)

2. After popping pins from last layer‘zrnftrhﬁz pms :alre the nodes at this layer con-
sidering in MST step. Then, we shoiﬂél keep %he connection of the popped
two-pin pair.(The MST bertween:t}'liem should-be broke at searching shortest

path.)

3.3 Connect the Pins Which Are Not Connected
at Previous Steps

At this section, we will complete all routing path which not be connected at previous

stage.

3.3.1 Sub-Net Construction

First, we list all uncompleted pins (popped falsely or still un-routed pins), and then
find all pins which had connected to every uncompleted pin. For example, there are
4 pins, t1,t2 ;t3 and t4. The uncompleted pins are t3 and t4. The nets which had
be completed are t1-t2 and t2-t3. We can say t1, t2 ,t3 are connected with each

other. We group t1, t2 , t3 to the same group, and t4 is another group with only
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one pin. As shown in Figure 3.17.

This is because we need these groups and pins to make decision what the start

pin/net and end pin/net should be, when we find pins connection.

sub
net |

Sub net
3

]

Figure 3.17: There are 4 pins, t1,t2 ;t3 and t4. The uncompleted pins are t3 and
t4. The nets which had be completed are t1-t2 and t2-t3. We can say t1, t2 ,t3
are connected with each other. We group t1, t2 , t3 to the same group, and t4 is
another group with only one pin.

3.3.2 Spanning Graph Construction

In this step, we construct an obstacle-avoiding spanning graph which is defined as

follows :

e Obstacle-avoiding spanning graph : The graph is an undirected connected
graph between the set of pins and the set of obstacles, where no edge intersects

with an obstacle.
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We implement the algorithm proposed in [17] to construct the spanning graph.
The algorithm use an efficient algorithm to construct a spanning graph. The algo-
rithm holds two dynamic lists to decrease the solution space. Every obstacle can be
divided into 8 search region and every pin can be divided into 4 search region, as

show as Figure 3.18.

The algorithm is listed at Figure 3.19. For every pins and obstacle corner v,
we only connect at most one visible point v* in each neighboring search region,
where v is the closest point to v in the corresponding neighboring search region.
In algorithm, all points are sorted by coordinates in non-decreasing order, and then
keep an active set A of v such that all points in A are visible to v. The detail of this

algorithm can be found in [17].

R3 RS

|
i = R2 | R3

|
R2 7 i¢_____
T T Rl | R4
Rl R7 *-

{a)

Figure 3.18: (a) The search region of the obstacle. There are eight regions of one
obstacle. (b) The search region of pin. There are four regions of one pin.

3.3.3 Shortest Path Search on Spanning Graph

At this step, we pick up one uncompleted pin one time, and we know the target
point in the MST topology too. Then, we find out the nets which these two-pin pair
belong to. We can pick up one of the pins to be the START point, and the other
one is the END point; the sub net of START point which we got at previous step is
START net, and the sub net of END point is the END net. When the search meet
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Algorithm : Spanning graph construction is rectilinear Steiner

minimal tree with rectilinear blockages

input: Vs

sort Vs by non-decreasing x;

perform edge connection for R2 and R6 of all corners;

sort Vs by non-decreasing y;

perform edge connection for R4 and R8 of all corners;

sort Vs by non-decreasing x+y,;

perform edge connection for R1 and RS of all corners and R1
and R3 of all pins

sort Vs by non-decreasing y-x;

perform edge connection for R3 and R7 of all corners and R2
and R4 of all pins

Return :spanning graph G for Vs

Figure 3.19: The spanning graph congtruétion algorlthm The detail of these algo-
rithm can be found at [17]) .

the END net (it means any pin belong the sub net ) the search stops and then picks
up the END point to be the START pomt the START point to be the END point.
The pins of two-pin net will be the START pomt one by one. We choose the better

solution which be smaller total wirelength from these two calculations.

When we do the search, we not only consider the total wirelength, but also the
co-edge. Because of the start and end points in the connection path might have
co-edge to be used. The total wirelength should be estimated as the length minus

co-edge.

When we are doing a search, we can dynamically keep the best solution. If the
total wirelength until now is larger than the best solution, we can drop this search for
saving counting time. Then, there is a new problem how to get the initial solution
efficiently. The way to get an initial solution is to calculate the points which have
more chances of exiting a path first. The points which have more chances of exiting

a path mean the points nearest the END points in Manhattan distance.
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We implement and modify the Dijkstra’s algorithm [6] for shortest path search.
We modify the lightest vertex as the point nearest the target not nearest the source.
After completing one of two-pins net, the two sub nets of pins are combined together

and the vertices of the path are added into the sub net. It also increases efficient.

After shortest path search on spanning graph, we get the path for each un-
completed two-pin net. We run the path selection step for each solution, but there
is one difference from the section 3.1.4. The enhanced rule should be modified
because the false search should be subtracted. The modified rule is listed as table
3.2. The Rule-2 has higher priority than Rule-1 now. If the value of Rule-2 is not
zero, it means there is at least one successful two-pin net routing from previous step
at this direction. The successful two-pin net represents a co-edge, and the failed
search time means might be a existed co-edge. Finally, we list all rules in 3.20.

Table 3.2: The modified hidden ‘co-edge rulesfor the final step which is described
at section 3.3. They are modified from 3.1.

Priority Formula
Rule-1 | Med. | ((Failed search time -1) * length)
Rule-2 | High (Success Fail time * length)
Rule-3 | Low ((All search time -2)* length)
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Step Fule

Starting layer determination The net mode rules

Hidden co-edge

The property should he

avoided
Solution propagation to other | The rule of popped
layers Vertices

MST reconstruction rules

Connect the pins which are Modifying hidden co_edge
not connected at previous rules
sieps

Figure 3.20: The Rule list of our algorithm.)
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Chapter 4

Experimental Results

We implemented our algorithm in the C++ language on a 2.8 Ghz AMD-64 machine
with 2 GB memory under Linux versiom 2i4:121-51.ELsmp system. There are totally
23 benchmark circuits, fourteen test gasesused in [14](rcl-rcl4) in single layer, five
industrial test cases (ind1-ind5)and five random case$ in multi layers(rt1-rt5). The
cases in single layer got from [20].. The'easesrinimulti-layers got from Synopsys and
[2].

We compared our algorithm with those presented in [20], [14], [19] at one layer,
and [2] at multi layers. The paper [2] is based on [14] to extend the algorithm.
The results of these papers are quoted from the paper, where the algorithm [20]
was performed on a Sun Blade 2000 workstation with 1200 MHz CPU and 8GM
memory. The [19] was performed on a Sun Blade 2000 workstation with 1200 MHz
CPU and 4GM memory. The [14] is performed on a 2 GHz AMD-64 machine with
8GB memory. The [2] is performed on a 2.8 GHz AMD-64 machine with 8 GB

memory under Ubuntu 6.606 operating system.

4.1 Single Layer Routing Problem

Table 4.1 lists the total wirelength of these algorithms the comparison means to

compare the total wierlength of our algorithms with best solution. We discover
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the solution of our algorithm at most worst than others 1%. This is because the
topology getting by our method are different from [14], [19], but the same as [20].
The different topology would cause different solution.

Table 4.1: The comparison on the total wirelength in single layer cases. We compare

the total wierlength of our algorithms with best solutions in comparison column. The
best solutions are mark as boldface type in the table.

Pin | Obs. | [20] [14] [19] Ours | Comparison(%)
Rel 10 32 626 632 614 614 0
Re2 74 625 1640 X 1632 1608 0
Re3 | 115 | 1204 | 2872 X 2820 2796 0
Red4 | 10 10 | 27250 | 26900 26120 | 26040 0
Reb | 30 10 | 43220 | 42210 42320 | 42170 0
Rc6 | 50 10 | 56500 | 55750 25170 | 54800 0
Re7 | 70 10 | 61090 | 60350 959670 | 60050 -0.63
Re8 | 100 10 | 76870 [ 76330 75410 | 75910 -0.65
Rc9 | 100 | 500 | 84327 #4 83365 | 81904 - 82778 -1.05
Rcl0 | 200 | 500 | 115461+ 1132601123914 113046 -0.57
Rell | 200 | 800 | 122574 L 118747 -¥17602-| 119092 -1.25
Recl2 | 200 | 1000 | 120017 | 116168 | 115448 | 117244 -1.53
Recl3 | 500 | 100 | 172490 | 170690 | 169160 | 171240 -1.21
Rc14 | 1000 | 100 | 238377 | 236615 | 237475 | 237834 -0.51

4.2 Multi-Layers Routing Problem

The table 4.3 lists the information of test bench which we use in multi-layer routing
problem. The table 4.4 list the results of our algorithm and [2], and we compare
the cost with [2]. The algorithm of CC means the simple algorithm, based on the
construction by correction approach in [2]. It first constructs a minimum spanning
tree for all pins, then transforms slants edges into vertical / horizontal edges to form
an initial Steiner tree. Finally, it replaces the edges overlapping obstacles with edges

around the obstacles with a smaller cost.

The table 4.4 list the cost and the number of via. The cost means wirelength +
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Table 4.2: The comparison on the CPU time in single layer cases. Our run time is
worse than other approaches in a lot of cases. The diminution of the performance
comes from the difference of connection graph and topology construction.

Pin | Obs. | [20] [14] [19] | Ours
Rel 10 32 | <0.01 | <0.01 | <0.01 | <0.01
Rec2 74 625 0.1 X 0.07 0.21
Re3 | 115 | 1024 | 0.21 X 0.14 0.73
Rc4 10 10 | <0.01 | <0.01 | 0.02 | 0.01
Rcb 30 10 | <0.01 | <0.01 | 0.02 0.01
Rc6 50 10 | <0.01 | <0.01 | 0.06 0.02
Re7 70 10 | <0.01 | <0.01 | 0.09 0.03
Re8 | 100 10 | <0.01 | 0.01 0.14 0.05
Re9 | 100 | 500 | 0.31 0.24 0.81 1.29
Recl0 | 200 | 500 | 0.36 0.43 1.16 1.96
Rell | 200 | 800 | 1.53.4,0.83 | 2.02 | 3.74
Recl2 | 200 | 1000 % 1.8 s, f 2.72 4.87
Recl3 | 500 | 100} :0.27 0.61 1.73 6.13
Recl4 | 1000 | 100 . 0.81 3.15.71-10.05 | 14.72

C * number of vias. We compared our cost with.-the algorithm in [2] and then shown
in the cost reduction column. Here, we set C=3 to be the constant in these cases.
The table 4.5 list our cup time and we compared the cpu time with the algorithm
in [2] and then shown in the run time reduction column. We can easily see the CPU
time is faster than [2]. When the case size become larger, the saving of CPU time is
fabulous. The algorithm in [2] is propagated the pins to other layers. The solution
space at the algorithm is fabulous at large case, even they not propagate pins to

every layer at big case.

In addition, the rc14 in single layer and the rt5 in multi-layer are both containing
1000 pins and 100 obstacle. However, we spend more CPU time in rc14 than in rt5.
The reason is all the pins and obstacles locate at the same layer in rcl4, and the
pins and obstacles locate at different layers in rt5. The cpu time of constructing
connection graph depends on the number of pins and obstacles in one layer. Our

algorithm will have higher performance in multi-layer.
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Figure 4.1 and 4.2 are shown one of single layer rouging result and one of multi

layers routing result projected to a plane without showing the obstacles.

Table 4.3: We list the information of test bench which we use in multi layer problem.
The information include the number of pins, obstacles and layers.

Pin | Obs. | Layer
indl | 50 6 5t
ind2 | 200 | 85 6
ind3 | 250 13 10
ind4 | 500 | 100 D
ind5 | 1000 | 20 D
rtl 25 10 10
rt2 | 100 | 20 10
rt3 | 250 | 50 10
rtd | 500750 10
rth [ 1000 |..100 3]
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Figure 4.1: The single layer routing result of Rc13. The number of pins is 500, and
the number of obstacles is 100.
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Table 4.4: The cost and the number of vias of the algorithm in [2] and ours in multi-
layer cases. The cost is wirelength + C * number of vias and the cost reduction
means the results of the algorithm in [2] compared with ours. We set C=3 to be the

constant in these cases.

Ours CC[2] Cost ML-OASGI2] Cost
Cost Via Cost Via | reduction Cost Via | reduction

ind1 62809 33 82556 59 23.92% 56177 49 | -11.81%
ind2 14296 150 17568 293 18.62% 12689 223 | -12.66%
ind3 13218 252 17837 529 25.89% 11047 359 | -19.65%
ind4 76738 0 273235 0 71.92% 77509 0 0.99%
indb | 14473173 | 0 | 23314944 0 37.92% | 14656729 | 0 1.25%
rtl 4781 13 5095 91 6.16% 4379 76 -9.18%
rt2 11292 134 12885 290 12.36% 9623 215 | -17.34%
rt3 18221 361 23233 705 21.57% 15801 490 | -15.31%
rt4 25984 632 29464 12824 -11.81% 22355 922 | -16.23%
rth 31310 719 38702 1102 19.1% 28213 863 | -10.98%

Table 4.5: The list of the CPU time by the algorithm in [2]. We compared our run
time with the ML-OASG algorithm in [2] and list in "run time reduction” column.
[2] is performed on a 2.8 GHz AMD-64 machine with 8 GB memory and ours is
performed on a 2.8 GHz AMD-64 machine with 2 GB memory

CC[2] | ML-OASG]2] Ours | Run time

Run time Run time Run time | reduction
ind1 0.02 0.06 0.01 91.67%
ind2 0.21 2.96 0.40 83.11%
ind3 0.32 3.28 1.27 57.62%
ind4 0.97 7.86 2.43 68.70%
ind5 3.28 47.00 3.57 91.67%
rtl 0.01 0.05 0.01 80.00%
rt2 0.06 0.82 0.17 76.82%
rt3 0.41 6.60 1.22 76.52%
rt4 1.45 18.11 3.10 85.69%
rth 5.25 27.73 5.50 80.60%
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Figure 4.2: The routing result of rt4. All pins and path are projected to a plane,

without showing the obstacles.
obstacles is 50.

The number of pins is 500, and the number of
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Chapter 5

Conclusions and Future Works

In this thesis, we have proposed an algorithm, which can get good solution at single
layer and fast yet effective at multi layers:®/Fhe solution is limited by topology,
but previous routing result at completedglayers can provide an effective approach in
multi layers. Experimental results ‘have shown that obur algorithm is still effective
in larger case. The idea to estimate the‘coredge is good for wirelength saving. It is
better than just considering the U-Shaped.refinement.[20]. Our algorithm and [20]
have the same topology, but our results are better than [20]. In multi-layer cases, we
proposed a hierarchical and heuristic approach to solve this problem. Experimental
results have shown that our algorithm is still efficient in larger multi-layer cases,

with slightly more wirelength.

The results of our algorithm lost in some cases in single layer. The reason is
the different of topology. In the multi-layer cases, the orders of layers handling will
affect the results. If we improve the method to get efficient MST topology and the
order of layers, we should get higher performance. The run time of our algorithm
in single layer is a little large. There are two reasons for higher run time. One is
the construct of the penalty MST and the other is the construction of Hanan points
graph. We spent a lot of time at obstacle points construction in the construction

of Hanan points graph step.The time on the construction is large, but the time on
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the search is small. Because of the graph information we can decide the routing
path easily in multi-layers. And then, we can add the buffer insertion step into the

routing flow. The routing problem with timing driven might be the good target.
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