
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

使用規則導向且考慮障礙物之多層直角史坦納樹的建造

Rule Based Multi-Layer Obstacle-Avoiding Rectilinear Steiner Tree

Construction

研 究 生：洪禎徽

指導教授：陳宏明 博士

中 華 民 國 九 十 六 年 十 月

使用規則導向且考慮障礙物之多層直角史坦納樹的建

造

Rule Based Multi-Layer Obstacle-Avoiding Recitlinear

Steiner Tree Construction

研究生: 洪禎徽 Student: Chen-Hui Hung

指導教授: 陳宏明 博士 Advisor: Prof. Hung-Ming Chen

國 立 交 通 大 學

 電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering

National Chiao Tung University
in Partial Fulfillment of Requirements

for the Degree of
Master

in
Electronics Engineering

October 2007
Hsinchu, Taiwan, Republic of China

中華民國九十六年十月

使用規則導向且考慮障礙物之多層直角史坦納樹的建造

研究生：洪禎徽 指導教授：陳宏明 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

隨著超大型積體電路設計的大小增加，繞線的問題也越來越重要。繞線樹建立在

繞線器的運作中對於最後的繞線結果影響尤其重大。在我們的論文當中，我們提出了

一個單/多層考慮障礙物之直角史坦納樹的建造有效且可以快速的建立多層繞線的方

法。

我們介紹了一個最小化總繞線長度的方法，可以稱之為共用邊。在同樣的拓墣結

構中，這個方法比只有考慮Ｕ型修正來最小化總繞線長度好[20]。

在多層繞線部分，我們提出一個多層級近似的方法來處理這個問題，比起一次考

慮整個問題的方法，可以大量的縮短運算時間。實驗數據顯示，當測試檔的大小增大

時，我們的方法依然有很好的效能。

 i

Rule Based Multi-Layer Obstacle-Avoiding Rectilinear Steiner Tree
Construction

Student: Chen-Hui Hung Advisor: Prof. Hung-Ming Chen

Department of Electronics Engineering

& Institute of Electronics
National Chiao Tung University

Abstract

In very/ultra large scale design (VLSI/ULSI), routing is a very challenging work.
Especially, the routing tree construction, as an extremely important step for routers, plays a
crucial role for the routing results. In this thesis, we have proposed an algorithm to
construct a single/multi-layer obstacle-avoiding rectilinear Steiner tree, which can get good
solution at single layer and fast yet effective at multi layers. We use a concept called
co-edge to minimize the total wirelength. It is better than just considering the U-Shaped
refinement [20] under the same topology. In multi-layer, we proposed a hierarchical and
heuristic approach to solve this problem. Experimental results have shown that our
algorithm is still efficient in larger multi-layer cases, with slightly more wirelength.

 ii

誌謝

 首先要特別感謝的人，是我的指導教授陳宏明老師，沒有老師的指導與包

容，學生是不可能有能力完成這篇論文的。

此外，要感謝的是 VDA LAB 實驗室所有的成員，謝謝他們兩年來的砥勵、

幫助及帶給我的歡樂，讓我兩年的生活充滿歡笑及淚水。

另外，在研究的過程中，要感謝清華大學王廷基教授以及團隊所提供的協

助，以及台灣大學張耀文教授以及林忠緯同學的協助，讓我能順利完成這篇論文。

家人對我的支持、鼓勵更是我研究路上最大的依靠，對他們的感謝，更是筆

墨難以形容。

最後由衷感謝所有我幫助關懷過我的人。

 洪禎徽

民國九十六年十月 於新竹

 v

Contents

1 Introduction 1

1.1 Contribution . 2

1.2 Thesis Organization . 2

2 Preliminary 3

2.1 Previous Works . 3

2.1.1 Grid Based Connection Graph Approach 4

2.1.2 Hanan Graph and Escape Graph Based Connection Graph

Approach . 4

2.1.3 Spanning Graph Based Connection Graph Approach 5

2.2 Basic Terminology Definitions . 7

2.3 Problem Formulation . 10

3 Algorithm 12

3.1 Starting Layer Determination . 12

3.1.1 Hanan-Points-Based Routing Graph Construction 13

3.1.2 Minimum Spanning Tree Topology Construction 14

3.1.3 Direction-Oriented Path Search 15

i

3.1.4 Path Selection . 17

3.2 Solution Propagation to Other Layers 25

3.2.1 Search for the Shortest Path 25

3.2.2 MST Reconstruction . 26

3.2.3 The Connection Relationship of Net between Layers 27

3.3 Connect the Pins Which Are Not Connected at Previous Steps . . . 28

3.3.1 Sub-Net Construction . 28

3.3.2 Spanning Graph Construction 29

3.3.3 Shortest Path Search on Spanning Graph 30

4 Experimental Results 34

4.1 Single Layer Routing Problem . 34

4.2 Multi-Layers Routing Problem . 35

5 Conclusions and Future Works 40

Bibliography 42

ii

List of Figures

2.1 (a) The initial routing problem,Maze routing [12] (b) Line search is

the variant of Maze routing [15]) . 4

2.2 (a) Hanan graph consists of the pins and obstacle boundaries and

the lines which extended by pins and obstacle boundaries. (b)Escape

graph remove the extended edges which are blocked by obstacles. . . 5

2.3 (a) Hanan graph consists of the pins and obstacle boundaries and

the lines which extended by pins and obstacle boundaries. (b)The

spanning graph is an undirected connected graph between the set

of pins and the set of obstacles, where no edge intersects with an

obstacle. 5

2.4 (a) A minimal spanning tree for all pins (b) partition the tree into sub

trees by removing edges whose two L-shaped segments both intersect

obstacle (c) use the ant colony optimization to connect the sub trees

(d) transform the tree into an OARSMT. 7

2.5 (a) The initial routing case (b) First, construct the spanning graph,

and improve the graph with additional edges. (c) They construct the

complete graph to represent the relationship between pins. (d) They

search the minimal spanning tree at the complete graph, and then

project the tree back to the spanning graph. Finally, they route the

path by the spanning graph and refinement it by U-shaped. 8

iii

2.6 (a) Any two obstacle cannot overlap each other (left), but two obsta-

cles can be point-touched at the corner or line-touched at the bound-

ary (right). (b) A pin must not locate inside any obstacle (left), but

it can be at the corner or on the boundary of an obstacle (right) . . 9

2.7 (a) A via on layer z is an edge between (x, y, z) and (x, y, z+1). (x,

y, z) and (x, y, z+1) must not locate inside any obstacle. (b) It can

be at the corner or on the boundary of an obstacle. 9

2.8 (a) the tree edges intersecting an obstacle (b) the tree edges are point-

touched and line touch at the obstacle boundary. 10

2.9 The co-edge at the left direction of t2 is e1 and the co-edge at the

right direction of t1 is e2. 11

2.10 (a) The edge E1 and E2 are connected as simple path (b) the path is

not a L path, so we called the path not a simple path. 11

3.1 The algorithm of multi-layers. There are three stages for this algo-

rithm. First, we select and handle a START layer, and then extend

the solution to other layer. Finally, we handle the un-routed pin-pairs. 13

3.2 When we handle single layer problem, we can modify the algorithm

of multi-layers. We remove the step 2, and run step 3 before selecting

highest co-wirelengths path. 14

3.3 (a) Hanan graph (b) The data structure is constructed by (a). 14

3.4 16 (a) There are at most two L-shaped segment in a two-pin net.

If all of them intersect the obstacle, we say no simple path existed.

(b) a rectangle whose boundaries pass through the two-pin net, and

two non-intersecting boundaries of the obstacle. Then we have two

different path now. 16

iv

3.5 (a) The routing result whose MST topology got by general distance,

(b) The routing result whose MST topology got by obstacle penalty

. The total wirelength of (b) is smaller than (a). 17

3.6 (a) the MST topology of an example (b) the Direction-Oriented Path

Search on the MST topology . 18

3.7 The algorithm of path selection. We divided the path into two kinds

of mode, and then selecting the path which had highest total number

of co-edges . 19

3.8 The conditions of enhanced mode: (a) one of the pin’s direction search

is more than once and longest at handled two-pins net (like e1) (b)

one of the pin’s direction is a failed search, but it is succeed in another

two-pins net. (like e2). 20

3.9 (a) the direction-oriented path search (b) the t1-t3 net have two hid-

den co-edge e1 and e2. (c) the t1-t2 net has two hidden co-edge e3

and e4. When we consider the hidden co-edge, we can have more

solution space. 21

3.10 When we determine the value of hidden co-edge in enhanced mode,

our algorithm will run as this flow. 23

3.11 (a) The right direction of the pin,t1 , is a failed search, but it is

successful in another two-pins net. (e1)(b) The down direction search

of the pin, t2, is more than once and not longest at handled two-pins

net. (e2) . 24

3.12 (a)an example of avoid direction. When we consider the two-pin net

t1-t2, t1’s down direction is the avoid direction of t1’s right direction,

and E1 is the co-edge of down direction. The property of t1’s right

direction is E1. (b) The result of considering the property. 24

v

3.13 (a) In the up L-shape,the total co-edge is e1+e2 (b) In the Z-shape,the

total co-edge is bounded. The total co-edge of this example is | xt3 -

xt4 |. 25

3.14 When we connect the pins of now layer with VIA to last layer, we

can get smaller wirelength without violating constrain. We can get

best better solution with adding these Vias. 26

3.15 (a) the default MST topology (b) After finding the shortest path,

we got some new paths and broke some paths. The MST should be

reconstructed to keep the property of MST (c) After reconstructing

MST, the net should be still no cycled and connect with each other

(through Vias or lines). 27

3.16 The connection relationship of net between layers. We can connect

the sub nets through the other layers sub nets. (connect sub net 4

and 5 through sub net 8) . 28

3.17 There are 4 pins, t1,t2 ,t3 and t4. The uncompleted pins are t3 and

t4. The nets which had be completed are t1-t2 and t2-t3. We can

say t1, t2 ,t3 are connected with each other. We group t1, t2 , t3 to

the same group, and t4 is another group with only one pin. 29

3.18 (a) The search region of the obstacle. There are eight regions of one

obstacle. (b) The search region of pin. There are four regions of one

pin. 30

3.19 The spanning graph construction algorithm. The detail of these al-

gorithm can be found at [17]) . 31

3.20 The Rule list of our algorithm.) . 33

vi

4.1 The single layer routing result of Rc13. The number of pins is 500,

and the number of obstacles is 100. 37

4.2 The routing result of rt4. All pins and path are projected to a plane,

without showing the obstacles. The number of pins is 500, and the

number of obstacles is 50. 39

vii

List of Tables

3.1 hidden co-edge rules. The success-fail search time means there is at

least one of the search in other two-pin net is failed in this direction,

but the the corresponding search direction is successful in the net. . . 22

3.2 The modified hidden co-edge rules for the final step which is described

at section 3.3. They are modified from 3.1. 32

4.1 The comparison on the total wirelength in single layer cases. We

compare the total wierlength of our algorithms with best solutions in

comparison column. The best solutions are mark as boldface type in

the table. 35

4.2 The comparison on the CPU time in single layer cases. Our run time

is worse than other approaches in a lot of cases. The diminution of

the performance comes from the difference of connection graph and

topology construction. 36

4.3 We list the information of test bench which we use in multi layer

problem. The information include the number of pins, obstacles and

layers. 37

viii

4.4 The cost and the number of vias of the algorithm in [2] and ours in

multi-layer cases. The cost is wirelength + C * number of vias and

the cost reduction means the results of the algorithm in [2] compared

with ours. We set C=3 to be the constant in these cases. 38

4.5 The list of the CPU time by the algorithm in [2]. We compared our

run time with the ML-OASG algorithm in [2] and list in ”run time

reduction” column. [2] is performed on a 2.8 GHz AMD-64 machine

with 8 GB memory and ours is performed on a 2.8 GHz AMD-64

machine with 2 GB memory . 38

ix

Chapter 1

Introduction

In very/ultra large scale design (VLSI/ULSI), routing is a very challenging work. To

get accurate interconnect information, such as wirelength, congestion, and timing

estimations, a good router is necessary. Especially, the routing tree construction, as

an extremely important step for routers, plays a crucial role for the routing results.

Rectilinear Steiner minimal tree (RSMT) construction is a fundamental problem

in VLSI/ULSI design. In fact, today’s design often contains rectilinear obstacle,

marco cells, IP blocks, and pre-routed nets. Taking obstacles into consideration

which is called obstacle - avoiding RSMT (OARSMT) becomes a very practical and

complicated problem.

There are many works on OARSMT problem. The researches at single layer have

received attention, such as [19] [20] [4] [10] [11]. They can be classified into four

major categories according to connection graph construction : (1) the grid based

connection graph approach, (2) the Hanan graph based connection graph approach,

(3) the Escape graph based connection graph approach, and (4) the spanning graph

based connection graph approach.

To route by spanning graph could save a lot of run time[20]. [14] improves the

spanning graph to get better solution. But the spanning graph could not extend the

relationship between pins and obstacles to multi-layers. [2] pops the nodes of pins

1

and obstacles to other layers for spanning graph construction. It could increase the

run time and the complexity by scaling nodes and obstacles.

However, [8] proves the RSMT routing problem is NP-Complete. If we extend the

RSMT problem to OARSMT or multi-layers OARSMT problem, the problems are

more complex than RSMT. Some approaches extend the problem to timing driven

routing problem[13][1]. It would increase the complex of the problem too. Recently,

there are some researches considering multi-layer OARSMT. [2] considered multi-

layer pins and obstacles problem. But they popped too many of nodes to other

layers, the run time would scale a lot in larger cases.

1.1 Contribution

For the OARSMT problem, we have the following distinguished features and theo-

retical findings:

• We propose some good rules to get the minimal total wirelength. Using the

rules to get routing path is better than just using U-shaped refinement at the

same topology.[20]

• We propose a very fast yet effective method to form the routing path at multi-

layers. When the size of case grows larger, it is still effective.

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 introduces the previous

works and basic terminology definitions first, and then formulates the OARSMT

and multi-layer OARSMT problems. Chapter 3 presents our algorithm. Chapter 4

reports the experimental results. Finally, we conclude our work in Chapter 5.

2

Chapter 2

Preliminary

In this chapter, we introduce some previous works and problem formulation.

2.1 Previous Works

There are many works on obstacles-avoiding rectilinear Steiner minimal tree (OARSMT)

problem. They can be classified into four major categories according to connection

graph : (1) the grid based connection graph approach, (2) the Hanan graph based

connection graph approach, (3) the Escape graph based connection graph approach,

and (4) the spanning graph based connection graph approach.

The number of vertices and edges in spanning graph is smaller than others, but

it means losing more solution space more than others. There are some approaches

without using connection graph. [4][5][16] use lookup table to construct the routing

tree, but the approach without considering obstacles. [18] is circuit simulation based

obstacle-aware Steiner routing. [3] uses multi-levels approach to handle the problem

on multi-layers, but their approach could only use vertical / horizontal at single

layer. We can say almost all the approaches use some kind of connection graph,

and then do some correction or improvement. We will talk about some approaches

recently in this section.

3

2.1.1 Grid Based Connection Graph Approach

Figure 2.1: (a) The initial routing problem,Maze routing [12] (b) Line search is the
variant of Maze routing [15])

These approaches are the ancestor of the routing. Maze routing, first proposed

in [12], find a path from a source to a target on a layer by wave propagation as show

in Figure 2.1 (a). It can get an optimal solution at two-pins net. However, the time

complexity and memory usage grow prohibitively huge as the routing area becomes

larger. Further, there are some variants [15][9]. They decide several ”escape points”

to make the computation more efficient as show in Figure 2.1(b), but they still incur

unsuitable solution quality since they only handle the two-pins net.

2.1.2 Hanan Graph and Escape Graph Based Connection
Graph Approach

The Hanan graph is similar with Escape graph, we can discuss them together. The

Hanan graph is shown in Figure 2.2 (a) and the Escape graph is shown in Figure 2.2

(b). When an edge is blocked by obstacle, the edge could be marked the prohibited

routing direction.

Ganley and Cohoon [7] introduces a strongly connected graph called the Escape

Graph. They show that at least one optimal solution can be found. They also provid

three approximation algorithms, namely G3S, B3S, and G4S, with time complexities

O(k2n), O(nklogk2), and O(k3n2), where k is the sum of terminals and obstacle

4

Figure 2.2: (a) Hanan graph consists of the pins and obstacle boundaries and the
lines which extended by pins and obstacle boundaries. (b)Escape graph remove the
extended edges which are blocked by obstacles.

boundaries and n is the number of intersections over the Escape graph.

Tsai et al. [19] presents an algorithm to construct a escape graph , obstacle-

weighted minimum spanning tree, and applies Dijkstra’s algorithm [6] to get the

obstacle-avoiding rectilinear Steiner minimal tree.

2.1.3 Spanning Graph Based Connection Graph Approach

Figure 2.3: (a) Hanan graph consists of the pins and obstacle boundaries and the
lines which extended by pins and obstacle boundaries. (b)The spanning graph is an
undirected connected graph between the set of pins and the set of obstacles, where
no edge intersects with an obstacle.

The spanning graph is an undirected connected graph between the set of pins and

5

the set of obstacles, where no edge intersects with an obstacle, as shown in Figure

2.3. Shen. et al. [17] proposed a clever heuristic to construct an obstacle-avoiding

rectilinear minimal tree. In this heuristic, the plane is divided into four region is

chosen to construct and edge. Based on this method, a single-layer obstacle-avoiding

spanning graph is first constructed as shown in Figure 2.3 and Figure 2.4(a). This

work [17] is effective in general, but there are some edges are missed which lead to

better solutions.

Wu et al. [20] presents an approach for OARSMT problem. Their first step,

construct a minimal spanning tree for all pins as shown in Figure 2.4 (a) and partition

the tree into sub trees by removing edges whose two L-shaped segments both intersct

obstacle as shown in Figure 2.4 (b). The second step uses the ant colony optimization

to connect the sub trees as shown in Figure 2.4 (c). Their ant colony optimization is

performed on the spanning graph in [13] to reduce the runtime. In the last step, the

tree constructed in the previous step is transformed into an OARSMT and further

improved for its wirelength as shown in Figure 2.4(d).

Recently, Lin et al. [14] proposes an algorithm for an obstacle-avoiding rectilinear

Steiner tree construction. It can achieve an optimal solution for any 2-pin net and

nets with more pins in many cases. Experimental results have shown that it is

very effective and efficient. They construct the spanning graph with ”essential”

edges and prove the existence of a rectilinear shortest path between any two-pin

net. They present an approach for multi-layer OARSMT problem at ICCAD 2007

[2]. They extend the spanning graph at [14] with some additional VIAS and edges.

This approach can construct a good connection graph for searching the solution.

6

Figure 2.4: (a) A minimal spanning tree for all pins (b) partition the tree into sub
trees by removing edges whose two L-shaped segments both intersect obstacle (c)
use the ant colony optimization to connect the sub trees (d) transform the tree into
an OARSMT.

2.2 Basic Terminology Definitions

An obstacle is a rectangle on a layer. No two obstacles overlap with each other, but

two obstacles could point-touched at the corner or line-touched at the boundary. A

pin is a vertex on a layer. A pin must not locate inside any obstacle, but it can be

at the corner or on the boundary of an obstacle.

See Figure 2.6 (a) to show any two obstacles cannot overlap each other, but can

point-touched or line-touched with each other. See Figure 2.6 (b) to show the illegal

situation while the pin are inside the obstacle, but they can be at the corner or on

7

Figure 2.5: (a) The initial routing case (b) First, construct the spanning graph, and
improve the graph with additional edges. (c) They construct the complete graph
to represent the relationship between pins. (d) They search the minimal spanning
tree at the complete graph, and then project the tree back to the spanning graph.
Finally, they route the path by the spanning graph and refinement it by U-shaped.

the boundary of an obstacle.

An via on layer z is an edge between (x, y, z) and (x, y, z+1). (x, y, z) and

(x, y, z+1) must not locate inside any obstacle, but can be at the corner or on the

boundary of an obstacle. see Figure 2.7(a), the illegal via is the via locate inside

any obstacle , but it can be at the corner or on the boundary of an obstacle(2.7(b)).

The routable region is the region without intersecting with any obstacle, but

the edge could be point-touched at the corner or line-touched on the boundary of an

obstacle. Figure 2.8 shows the tree edges intersecting an obstacle(a), and the tree

edges are point-touched and line touch at the obstacle boundary(b).

Co-edge means the possible overlapping wirelength with other connection at

one direction of search. Co-wirelength means
∑n

i=1(the co-edge on connection

path). Figure 2.9 is an example of co-edge. When we check co-edge of t1, we can

see e2 is the co-edge of the right direction. There is no co-edge at up and down

8

direction ,but there is a path existed. At the left direction of t1, we never do any

search. The same as the left direction of t2, e1 is the co-edge.

Simple path means a pair of pins which have a ”L” path to connect each other.

We call the connection of pins is ”simple path ”

Figure 2.6: (a) Any two obstacle cannot overlap each other (left), but two obstacles
can be point-touched at the corner or line-touched at the boundary (right). (b) A
pin must not locate inside any obstacle (left), but it can be at the corner or on the
boundary of an obstacle (right)

Figure 2.7: (a) A via on layer z is an edge between (x, y, z) and (x, y, z+1). (x, y,
z) and (x, y, z+1) must not locate inside any obstacle. (b) It can be at the corner
or on the boundary of an obstacle.

Let T=t1, t2,........, tn be the set of pins. Each t includes three information (x,

y, z). The x and y represent pin’s coordinate and z represents the layer which the

pin locates. The set of O=o1, o2........, on are the obstacle set. Every o includes five

information, (x1, y1 ,x2 ,y2 ,z), x1 and y1 represent the coordinate of an obstacle’s

left-down corner and x2 and y2 mean the coordinate of an obstacle’s right-up corner.

The z are the layer which the obstacle locate.

9

Figure 2.8: (a) the tree edges intersecting an obstacle (b) the tree edges are point-
touched and line touch at the obstacle boundary.

2.3 Problem Formulation

We consider the rectilinear routes which use both vertical/horizontal edges in layers

and vias between layers. The obstacle-avoiding rectilinear Steiner minimal tree

(OARSMT) and multi-layer obstacle-avoiding rectilinear Steiner minimal tree (ML-

OARSMT) problems as follows :

Problem 1 : Obstacle-Avoiding Rectilinear Minimal Steiner Tree :

Given a set T of pins and a set O of obstacle on single layer. To construct a

rectilinear Steiner tree which connects the pins without intersecting the obstacles is

called OARSMT and the total wirelength of the tree is minimized.

Problem 2 : Multi-Layer Obstacle-Avoiding Rectilinear Minimal Steiner

Tree: Given a set T of pins and a set O of obstacles, constructing a multi-layer

rectilinear Steiner tree to connect pins in the set ,possibly through some additional

points (called Steiner points), and no edge or via intersects any obstacle in set O.

The total cost of the tree is minimized.

10

Figure 2.9: The co-edge at the left direction of t2 is e1 and the co-edge at the right
direction of t1 is e2.

Figure 2.10: (a) The edge E1 and E2 are connected as simple path (b) the path is
not a L path, so we called the path not a simple path.

11

Chapter 3

Algorithm

Our algorithm for multi-layer Steiner tree construction consists of the following steps

: First, we choose a start layer which has maximal number of pins and minimal

number of obstacle, and get a tree consist of the pins connected by simple path with

each other at this layer. second, we pop the pins which the simple connection is not

existed to next layer. Then, we repeat the work of previous step with some adding

methods over next layer for finding shortest path. Third, some pins which can not

pop to other layer or still not find the path would be considered in this step. This

step will use spanning graph to get the routing path. If there is a path existed, it

can be found in this step. The overall algorithm is shown in Figure 3.1.

When we handle single layer problem, we can modify the algorithm of multi-

layers. The modified algorithm is shown in Figure 3.2. We remove the step 2, and

then run step 3 before selecting highest co-wirelengths path. When we run the step

first, we can increase the solution space at selecting highest co-wirelengths.

3.1 Starting Layer Determination

In this section, we construct a tree consist of the pins connected by simple path

with each other at single layer. We choose a start layer by a rule R : (the number

of pins at the layer) - (the number of blocks at the layer).

12

Figure 3.1: The algorithm of multi-layers. There are three stages for this algorithm.
First, we select and handle a START layer, and then extend the solution to other
layer. Finally, we handle the un-routed pin-pairs.

We choose the layer which has maximal R to be the start layer. The reason is

when we consider the other layers, we will use completed layer to check the better

solution existed or not. If choosing the layer having maximal R ,we usually have

more chance to get better solution.

3.1.1 Hanan-Points-Based Routing Graph Construction

After choosing start layer, we construct Hanan points graph first. The Hanan points

graph is based on Hanan graph, but the Hanan points graph only consists of vertices.

The reason is the cost of constructing Hanan points graph is smaller than Hanan

graph, and we don’t need some information (like edges) in Hanan graph.

When we read the data of pins and obstacles, we will dynamic construct x and y

coordinates table. The table of y coordinates is a reference table which only contains

y coordinates. The table of x coordinates is the table for the search of path which

contains vertices had constructed.

Figure 3.3 (a) shows the Hanan graph and its data structure. In (b), Y table

means the y reference table. In x table, each x coordinates consist by list of y

13

Figure 3.2: When we handle single layer problem, we can modify the algorithm
of multi-layers. We remove the step 2, and run step 3 before selecting highest co-
wirelengths path.

coordinates. We construct the pins and obstacle vertices first. The other vertices

will be constructed while we visit them on search step. If we construct the vertices

only when we need them, we can save the run time. The reason is that the most

vertices are not visited on searching step.

Figure 3.3: (a) Hanan graph (b) The data structure is constructed by (a).

3.1.2 Minimum Spanning Tree Topology Construction

We apply Kruskal’s MST algorithm for finding MST topology with the distance

constrain. When we construct minimum spanning tree (MST) ,the distance between

14

pins is as follows : Distance : Manhattan distance + obstacle penalty. Manhattan

distance : |x1-x2| + |y1-y2|. obstacle penalty : min (the length of obstacle

boundary edge).

In general, the minimum spanning tree uses the Manhattan distance between

two-pin net as cost. However, it will not be accurate in estimating the real routing

distance with the existence of obstacles. In order to have a better estimation of real

routing distance, we use the obstacle penalty to construct a better topology. The

method is used in [19][20] too.

First, we check any simple path existed or not in a two-pin net. There are at

most two L-shaped segment in a two-pin net. If all of them intersect the obstacle,

as show in Figure 3.4 (a), we say no simple path existed. Then, we assign a new

cost to the path. We draw a rectangle whose boundaries pass through the two-pin

net, and two non-intersecting boundaries of the obstacle, as show in Figure 3.4 (b).

Then, we have two different path now (Edge 1 and Edge 2). We will choose the path

which length is smaller than another one. To considering obstacle penalty means

the new length larger than Manhattan distance.

We use an example in Figure 3.5 to illustrate the difference between the general

MST and obstacle penalty MST. (a) is the MST routing result whose topology got

by general distance, and then we can easily dig out the topology is bad than (b).

The reason is the distance of (a) not consider the length from obstacle, and then

the topology is impertinent.

3.1.3 Direction-Oriented Path Search

On this step, we divide MST topology net into a set of two-pin nets. The direction-

oriented path search will work on these two pin nets. We handle a two-pin nets one

time and pick up every pin in a net to do two direction search. The direction of one

15

Figure 3.4: 16 (a) There are at most two L-shaped segment in a two-pin net. If all
of them intersect the obstacle, we say no simple path existed. (b) a rectangle whose
boundaries pass through the two-pin net, and two non-intersecting boundaries of
the obstacle. Then we have two different path now.

search depends on the two-pin net topology.

We use Figure 3.6 to illustrate the direction-oriented path search. There are

three two-pin net in this example and some searches cover with each other. (a)

shows the MST topology of an example. (b) is the Direction-Oriented Path Search

of the MST topology. We consider a two-pint net, t1-t3, the search direction of t1

is right and down and the direction of t3 is up and left. The search direction of a

pin depends on the two-pin net topology.

In addition, when we consider the two-pin net ,t1-t2 , the right direction of t1

is blocked by an obstacle. It means the search of this direction is false. We can

easily see that the searches of pins in a two-pin net meet at most twice in search

region. When there is no touched point in a two-pin net search, we call no simple

path between pins.

When we do the direction-oriented path search, we not only check the path

existed or not, but also recode some information for path selection. The information

16

Figure 3.5: (a) The routing result whose MST topology got by general distance,
(b) The routing result whose MST topology got by obstacle penalty . The total
wirelength of (b) is smaller than (a).

are listed as follows :

1. The end position at every succeeded search.

2. The total search times of pin’s at each direction.

3. The failed search times of pin’s at each direction.

4. When any direction-oriented path search of two-pin net is failed in one direc-

tion, but the corresponding search is successful in the net. We will remark the

successful search and the end position of this search.

We explain (4) with Figure 3.6. In the two-pin net, ” t1-t2 ”, t1’s right direction

search is failed, but the t2’s opposite search ,down direction , is successful. We will

special remark this kind of situation.

3.1.4 Path Selection

In general, if a routing path contains more co-wirelength, it means the total wire-

length is smaller. The purpose of all of our rules is to get as more co-wirelength

17

Figure 3.6: (a) the MST topology of an example (b) the Direction-Oriented Path
Search on the MST topology .

as possible. Here, we define a kind of edge, co-edge, and co-wirelength as follows :

Co-edge : the possible co-wirelength with other connection at one direction search

edge Co-wirelength :
∑n

i=1(the co-edge on connection path)

Figure 2.9 is an example of co-edge. When we check co-edge of t1, we can see e2

is the co-edge of the right direction. There is no co-edge at up and down direction

of t1, but there is a path existed. At the left direction of t1, we never do any search.

The same as the left direction of t2, e1 is the co-edge.

We say the possible co-wirelength is the total co-edge on the connection path.

This is the reason why we always select the path which contains highest total co-

edge. Then, how to estimate the co-edge accurately is the problem we should resolve.

The solution we proposed will be described at the rest of this section.

We propose a way about rule based path selection. Here, we use the information

from direction-oriented path search to give a better path selection. After observing

routing example we think all two-pins nets can be divide into two kinds of situation.

The different situation will be handled by difference modes, Enhanced mode and

Normal mode. The Enhanced mode means we should consider additional routing

path case (it will form Z-shape), because the additional solution might be better

18

than L-shape. The Normal mode means there is no chance to improve the solution

in Z-shape , and then we will add a property called ” Avoid property ” to help

making a decision at L-shape.

On this step, we still base on MST topology, and we only handle a two-pins net

one time. When we select a two-pins net for path selection, we will decide which

mode of this net should be. Then, we determine the routing path between these

two-pin nets by the rules. The algorithm of path selection is shown in Figure 3.7.

Figure 3.7: The algorithm of path selection. We divided the path into two kinds of
mode, and then selecting the path which had highest total number of co-edges

First, we show how to select which kind of mode the two-pins net belonged to.

When any search direction of two-pins net fit the condition shown in Figure 3.8, the

net will be led into Enhanced mode.

The two conditions are shown in Figure 3.8 (a) and (b). In Figure 3.8, the

19

two-pins net to be handled are ” t1-t2 ” in (a) and ” t3-t4 ” in (b). (a)shows one

direction of the pin, t1, is more than once and longest at handled two-pins net (like

e1). (b)shows one direction of the pin, t4, is a failed search, but it is succeed in

another two-pins net (like e2).

It is easy to show the reason why we only consider the Z-shape case when the

net fits the Enhanced condition. If the net does not fit the condition, it means every

direction of pins must be one of the situation: no path, only be searched one time,

or not the longest path. As shown in Figure 3.11 (b), when we consider t1-t2 net,

the down direction of t2 is not a longest path at this direction. IF we want to get

maximal co-edge, the meaning is to use whole e2 to be the path. At this kind of

case we only consider the L-shape path.

Figure 3.8: The conditions of enhanced mode: (a) one of the pin’s direction search
is more than once and longest at handled two-pins net (like e1) (b) one of the pin’s
direction is a failed search, but it is succeed in another two-pins net. (like e2).

• Enhanced Mode :

The difference of Enhanced mode and normal mode are not only the additional

routing case, but also some additional co-edge estimation mode. If there is no co-

20

edge and path existed at one of any pin’s direction, we will check any hidden co-edge

existed or not. We give an example of hidden co-edge at Figure 3.9.

In Figure 3.9, (a) is the direction-oriented path search. When we consider the

two-pins net, t1-t3, shown in (b). There is only one path existed, if we just consider

L-shape and the all of the co-edge is 0. In fact, there are 2 hidden co-edge existed.

One is t1’s right direction. Although, the t1’s right direction is failed in t1-t3 net,

the t1’s right direction is successful in t1-t2 net. So, there is hidden co-edge, e1, at

t1’s right direction. The same as e2 is an hidden co-edge. (c) is the net of t1-t2.

When we consider this net, there are two hidden co-edge too.

Figure 3.9: (a) the direction-oriented path search (b) the t1-t3 net have two hidden
co-edge e1 and e2. (c) the t1-t2 net has two hidden co-edge e3 and e4. When we
consider the hidden co-edge, we can have more solution space.

We list the hidden co-edge rules at table 3.1 If the co-edge is not existed, we will

use the rule to check hidden co-edge. We show the hidden co-edge checking flow at

Figure 3.10.

The Rule-1 is the same as e1 in Figure 3.9 (b) and e4 in (c). The search at the

direction is successful in handling net, but is failed in other net.

The Rule-2 means the information of search time getting form direction- oriented

path search. When any two-pin net’s direction-oriented path search is failed in one

direction, but the opposite search is successful in the net. We will remark the

successful search and the end position of this search. At this step, we measure the

21

hidden co-edge by these information. The Rule-2 is shown in Figure 3.11(a). In

Figure 3.11 (a), there is no co-edge at t1’s right direction, but we can easily to

see that there is one co-edge at the t2’s down direction. The e1 in 3.11(a) not fits

Rule-1, because the down direction search of t2 is failed in handling net.

The Rule-3 means the total numbers of search time more than one time. The

priority of these rules means the chance of co-edge really existed at these three kinds

of condition. We discover the results of using these priority on experiment are better

than others. As shown in Figure 3.9 (b) and (c), e2 and e3 fit Rule-3. There is no

successful search at that direction, but the times of search are more than once.

Table 3.1: hidden co-edge rules. The success-fail search time means there is at
least one of the search in other two-pin net is failed in this direction, but the the
corresponding search direction is successful in the net.

Priority Formula
Rule-1 High (Failed search time * length)
Rule-2 Med. (Success-Fail search time * length)
Rule-3 Low ((All search time -1)* length)

• Normal Mode :

At this mode, we don’t need to consider hidden co-edge, but we should consider

the net which is the neighbor of handled net. When the total co-edge at two L-

shape are the same, we add a new parameter called ” avoid property ”. If the avoid

property of one L-shape is higher than another one. We say the L-shape is not a

good choice.

We define the property should be avoided and avoid direction as follows : Prop-

erty : the co-edge of avoid direction. Avoid direction : the direction which will

increase total wirelength.

The property is the co-edge of avoid direction. The avoid direction means the

22

Figure 3.10: When we determine the value of hidden co-edge in enhanced mode, our
algorithm will run as this flow.

direction avoid now direction. Figure 3.12 (a) shows the avoid direction. The

handling net is t1-t2 and the co-edge value of that net is the same at up L-shape

and down L-shape. Let’s us check the property of down L-shape. The avoid direction

of t1’s right direction is down direction. The reason is at t1-t3 net, if we select t1’s

right direction to be the path, t1’s down direction is not be selected. All the other

avoid directions are selected by the same way. In this example, the total number

of property at down L-shape is E1, and then the total number of property at up

L-shape is 0. We should select up L-shape at t1-t2 net. (b) is the final result at this

case by our algorithm.

23

Figure 3.11: (a) The right direction of the pin,t1 , is a failed search, but it is
successful in another two-pins net. (e1)(b) The down direction search of the pin, t2,
is more than once and not longest at handled two-pins net. (e2)

Figure 3.12: (a)an example of avoid direction. When we consider the two-pin net
t1-t2, t1’s down direction is the avoid direction of t1’s right direction, and E1 is the
co-edge of down direction. The property of t1’s right direction is E1. (b) The result
of considering the property.

• Path Selection :

After counting the co-edge in each direction of the two-pins net, we will pick up

any two of them which have maximal overlapping wirelength. When the net lead

in Enhanced mode, we should especially notice that the total co-edge of Z-shape be

bounded by the length of one direction.

When we consider the Z-shape, we should notice that the additional path is

available or not in the Z-shape. IF the path is not available, we will drop the

24

solution and choose other solution. In addition, our approach can apply to preferred

direction problem too. The reason is that we consider one direction one time in our

search and path selection step.

To see Figure 3.13, in (a), the total co-edge of up L-shape is e1+e2. In (b), the

total co-edge of the Z-shape is e3+e4, but be bounded by the length of x direction.

The total co-edge is | xt3 - xt4 |.

Figure 3.13: (a) In the up L-shape,the total co-edge is e1+e2 (b) In the Z-shape,the
total co-edge is bounded. The total co-edge of this example is | xt3 - xt4 |.

3.2 Solution Propagation to Other Layers

After graph construction, we have handled the two-pins nets which contain simple

path. We propagate the pins which not contain simple path. If we propagate the

pins which there is no simple path existed between them to other layers, it may be

better than finding the solution in that layer. The reason is when the simple path is

blocked by obstacle, the total wirelength may be worse than we propagate to other

layers.

3.2.1 Search for the Shortest Path

First, we propagate the uncompleted pins at last layer to next layer. Then, we

complete Hanan points graph construction and MST topology construction with

25

these pins.

Before doing direction-oriented path search at the MST topology, we try to search

the shortest path with completed layers. We use Figure 3.14 to show the idea. In

Figure 3.14, there are three pins at last layer and two-pin at now layer. IF we

connect the pins of now layer with VIA to last layer, we can get smaller wirelength.

We propose a constrain to control the number of VIAs. When we cross a Via,

we add the user defined cost C to the wirelength. If the wirelength at layer N is W

and the wirelength at layer M is Z, layer N and M are connected by one via crossed

from N to M. The total wirelength should be W+Z+|N-M|.

Figure 3.14: When we connect the pins of now layer with VIA to last layer, we can
get smaller wirelength without violating constrain. We can get best better solution
with adding these Vias.

3.2.2 MST Reconstruction

After finding the shortest path, the MST topology should reconstruct. We use an

example to show the reason. Figure 3.15 (a) is the default MST topology. After

26

finding the shortest path, the result is (b). The new topology is not a MST anymore.

We must reconstruct the MST for the direction-oriented path search step. (c) is the

new tree after reconstruction.

To see Figure 3.15 (c), we do not reconnect the path between t1 and t2 for no

cycled. For no cycled and the keeping the connection of net, We will show that at

next sub-section.

Figure 3.15: (a) the default MST topology (b) After finding the shortest path, we
got some new paths and broke some paths. The MST should be reconstructed to
keep the property of MST (c) After reconstructing MST, the net should be still no
cycled and connect with each other (through Vias or lines).

3.2.3 The Connection Relationship of Net between Layers

As shown in Figure 3.16, when we break the connection between nets at n layer,

we add an via to the other net at n+1 layer. At Figure 3.16, all of the sub-net are

connected and there is no cycle in the net. The figure shows two information for us.

First is the pins of uncompleted MST, second is about finding of shortest path in

multi-layers.

For no cycled and the keeping the connection of net, we define some constrain

to simplify the problem and guarantee the connections.

1. If all of the pins in one un-routed two-pin net are popped successfully, we will

pop two of them, or else we not consider them until the step which is described

at next section.

27

Figure 3.16: The connection relationship of net between layers. We can connect the
sub nets through the other layers sub nets. (connect sub net 4 and 5 through sub
net 8)

2. After popping pins from last layer, the pins are the nodes at this layer con-

sidering in MST step. Then, we should keep the connection of the popped

two-pin pair.(The MST between them should be broke at searching shortest

path.)

3.3 Connect the Pins Which Are Not Connected

at Previous Steps

At this section, we will complete all routing path which not be connected at previous

stage.

3.3.1 Sub-Net Construction

First, we list all uncompleted pins (popped falsely or still un-routed pins), and then

find all pins which had connected to every uncompleted pin. For example, there are

4 pins, t1,t2 ,t3 and t4. The uncompleted pins are t3 and t4. The nets which had

be completed are t1-t2 and t2-t3. We can say t1, t2 ,t3 are connected with each

other. We group t1, t2 , t3 to the same group, and t4 is another group with only

28

one pin. As shown in Figure 3.17.

This is because we need these groups and pins to make decision what the start

pin/net and end pin/net should be, when we find pins connection.

Figure 3.17: There are 4 pins, t1,t2 ,t3 and t4. The uncompleted pins are t3 and
t4. The nets which had be completed are t1-t2 and t2-t3. We can say t1, t2 ,t3
are connected with each other. We group t1, t2 , t3 to the same group, and t4 is
another group with only one pin.

3.3.2 Spanning Graph Construction

In this step, we construct an obstacle-avoiding spanning graph which is defined as

follows :

• Obstacle-avoiding spanning graph : The graph is an undirected connected

graph between the set of pins and the set of obstacles, where no edge intersects

with an obstacle.

29

We implement the algorithm proposed in [17] to construct the spanning graph.

The algorithm use an efficient algorithm to construct a spanning graph. The algo-

rithm holds two dynamic lists to decrease the solution space. Every obstacle can be

divided into 8 search region and every pin can be divided into 4 search region, as

show as Figure 3.18.

The algorithm is listed at Figure 3.19. For every pins and obstacle corner v,

we only connect at most one visible point v‘ in each neighboring search region,

where v‘ is the closest point to v in the corresponding neighboring search region.

In algorithm, all points are sorted by coordinates in non-decreasing order, and then

keep an active set A of v such that all points in A are visible to v. The detail of this

algorithm can be found in [17].

Figure 3.18: (a) The search region of the obstacle. There are eight regions of one
obstacle. (b) The search region of pin. There are four regions of one pin.

3.3.3 Shortest Path Search on Spanning Graph

At this step, we pick up one uncompleted pin one time, and we know the target

point in the MST topology too. Then, we find out the nets which these two-pin pair

belong to. We can pick up one of the pins to be the START point, and the other

one is the END point; the sub net of START point which we got at previous step is

START net, and the sub net of END point is the END net. When the search meet

30

Figure 3.19: The spanning graph construction algorithm. The detail of these algo-
rithm can be found at [17])

the END net (it means any pin belong the sub net), the search stops and then picks

up the END point to be the START point, the START point to be the END point.

The pins of two-pin net will be the START point one by one. We choose the better

solution which be smaller total wirelength from these two calculations.

When we do the search, we not only consider the total wirelength, but also the

co-edge. Because of the start and end points in the connection path might have

co-edge to be used. The total wirelength should be estimated as the length minus

co-edge.

When we are doing a search, we can dynamically keep the best solution. If the

total wirelength until now is larger than the best solution, we can drop this search for

saving counting time. Then, there is a new problem how to get the initial solution

efficiently. The way to get an initial solution is to calculate the points which have

more chances of exiting a path first. The points which have more chances of exiting

a path mean the points nearest the END points in Manhattan distance.

31

We implement and modify the Dijkstra’s algorithm [6] for shortest path search.

We modify the lightest vertex as the point nearest the target not nearest the source.

After completing one of two-pins net, the two sub nets of pins are combined together

and the vertices of the path are added into the sub net. It also increases efficient.

After shortest path search on spanning graph, we get the path for each un-

completed two-pin net. We run the path selection step for each solution, but there

is one difference from the section 3.1.4. The enhanced rule should be modified

because the false search should be subtracted. The modified rule is listed as table

3.2. The Rule-2 has higher priority than Rule-1 now. If the value of Rule-2 is not

zero, it means there is at least one successful two-pin net routing from previous step

at this direction. The successful two-pin net represents a co-edge, and the failed

search time means might be a existed co-edge. Finally, we list all rules in 3.20.

Table 3.2: The modified hidden co-edge rules for the final step which is described
at section 3.3. They are modified from 3.1.

Priority Formula
Rule-1 Med. ((Failed search time -1) * length)
Rule-2 High (Success Fail time * length)
Rule-3 Low ((All search time -2)* length)

32

Figure 3.20: The Rule list of our algorithm.)

33

Chapter 4

Experimental Results

We implemented our algorithm in the C++ language on a 2.8 Ghz AMD-64 machine

with 2 GB memory under Linux version 2.4.21-51.ELsmp system. There are totally

23 benchmark circuits, fourteen test cases used in [14](rc1-rc14) in single layer, five

industrial test cases (ind1-ind5)and five random cases in multi layers(rt1-rt5). The

cases in single layer got from [20]. The cases in multi-layers got from Synopsys and

[2].

We compared our algorithm with those presented in [20], [14], [19] at one layer,

and [2] at multi layers. The paper [2] is based on [14] to extend the algorithm.

The results of these papers are quoted from the paper, where the algorithm [20]

was performed on a Sun Blade 2000 workstation with 1200 MHz CPU and 8GM

memory. The [19] was performed on a Sun Blade 2000 workstation with 1200 MHz

CPU and 4GM memory. The [14] is performed on a 2 GHz AMD-64 machine with

8GB memory. The [2] is performed on a 2.8 GHz AMD-64 machine with 8 GB

memory under Ubuntu 6.606 operating system.

4.1 Single Layer Routing Problem

Table 4.1 lists the total wirelength of these algorithms the comparison means to

compare the total wierlength of our algorithms with best solution. We discover

34

the solution of our algorithm at most worst than others 1%. This is because the

topology getting by our method are different from [14], [19], but the same as [20].

The different topology would cause different solution.

Table 4.1: The comparison on the total wirelength in single layer cases. We compare
the total wierlength of our algorithms with best solutions in comparison column. The
best solutions are mark as boldface type in the table.

Pin Obs. [20] [14] [19] Ours Comparison(%)
Rc1 10 32 626 632 614 614 0
Rc2 74 625 1640 X 1632 1608 0
Rc3 115 1204 2872 X 2820 2796 0
Rc4 10 10 27250 26900 26120 26040 0
Rc5 30 10 43220 42210 42320 42170 0
Rc6 50 10 56500 55750 55170 54800 0
Rc7 70 10 61090 60350 59670 60050 -0.63
Rc8 100 10 76870 76330 75410 75910 -0.65
Rc9 100 500 84327 83365 81904 82778 -1.05
Rc10 200 500 115461 113260 112391 113046 -0.57
Rc11 200 800 122574 118747 117602 119092 -1.25
Rc12 200 1000 120017 116168 115448 117244 -1.53
Rc13 500 100 172490 170690 169160 171240 -1.21
Rc14 1000 100 238377 236615 237475 237834 -0.51

4.2 Multi-Layers Routing Problem

The table 4.3 lists the information of test bench which we use in multi-layer routing

problem. The table 4.4 list the results of our algorithm and [2], and we compare

the cost with [2]. The algorithm of CC means the simple algorithm, based on the

construction by correction approach in [2]. It first constructs a minimum spanning

tree for all pins, then transforms slants edges into vertical / horizontal edges to form

an initial Steiner tree. Finally, it replaces the edges overlapping obstacles with edges

around the obstacles with a smaller cost.

The table 4.4 list the cost and the number of via. The cost means wirelength +

35

Table 4.2: The comparison on the CPU time in single layer cases. Our run time is
worse than other approaches in a lot of cases. The diminution of the performance
comes from the difference of connection graph and topology construction.

Pin Obs. [20] [14] [19] Ours
Rc1 10 32 <0.01 <0.01 <0.01 <0.01
Rc2 74 625 0.1 X 0.07 0.21
Rc3 115 1024 0.21 X 0.14 0.73
Rc4 10 10 <0.01 <0.01 0.02 0.01
Rc5 30 10 <0.01 <0.01 0.02 0.01
Rc6 50 10 <0.01 <0.01 0.06 0.02
Rc7 70 10 <0.01 <0.01 0.09 0.03
Rc8 100 10 <0.01 0.01 0.14 0.05
Rc9 100 500 0.31 0.24 0.81 1.29
Rc10 200 500 0.36 0.43 1.16 1.96
Rc11 200 800 1.53 0.83 2.02 3.74
Rc12 200 1000 1.8 0.91 2.72 4.87
Rc13 500 100 0.27 0.61 1.73 6.13
Rc14 1000 100 0.81 3.15 10.05 14.72

C * number of vias. We compared our cost with the algorithm in [2] and then shown

in the cost reduction column. Here, we set C=3 to be the constant in these cases.

The table 4.5 list our cup time and we compared the cpu time with the algorithm

in [2] and then shown in the run time reduction column. We can easily see the CPU

time is faster than [2]. When the case size become larger, the saving of CPU time is

fabulous. The algorithm in [2] is propagated the pins to other layers. The solution

space at the algorithm is fabulous at large case, even they not propagate pins to

every layer at big case.

In addition, the rc14 in single layer and the rt5 in multi-layer are both containing

1000 pins and 100 obstacle. However, we spend more CPU time in rc14 than in rt5.

The reason is all the pins and obstacles locate at the same layer in rc14, and the

pins and obstacles locate at different layers in rt5. The cpu time of constructing

connection graph depends on the number of pins and obstacles in one layer. Our

algorithm will have higher performance in multi-layer.

36

Figure 4.1 and 4.2 are shown one of single layer rouging result and one of multi

layers routing result projected to a plane without showing the obstacles.

Table 4.3: We list the information of test bench which we use in multi layer problem.
The information include the number of pins, obstacles and layers.

Pin Obs. Layer
ind1 50 6 5
ind2 200 85 6
ind3 250 13 10
ind4 500 100 5
ind5 1000 20 5
rt1 25 10 10
rt2 100 20 10
rt3 250 50 10
rt4 500 50 10
rt5 1000 100 5

Figure 4.1: The single layer routing result of Rc13. The number of pins is 500, and
the number of obstacles is 100.

37

Table 4.4: The cost and the number of vias of the algorithm in [2] and ours in multi-
layer cases. The cost is wirelength + C * number of vias and the cost reduction
means the results of the algorithm in [2] compared with ours. We set C=3 to be the
constant in these cases.

Ours CC[2] Cost ML-OASG[2] Cost
Cost Via Cost Via reduction Cost Via reduction

ind1 62809 33 82556 59 23.92% 56177 49 -11.81%
ind2 14296 150 17568 293 18.62% 12689 223 -12.66%
ind3 13218 252 17837 529 25.89% 11047 359 -19.65%
ind4 76738 0 273235 0 71.92% 77509 0 0.99%
ind5 14473173 0 23314944 0 37.92% 14656729 0 1.25%
rt1 4781 13 5095 91 6.16% 4379 76 -9.18%
rt2 11292 134 12885 290 12.36% 9623 215 -17.34%
rt3 18221 361 23233 705 21.57% 15801 490 -15.31%
rt4 25984 632 29464 1282 11.81% 22355 922 -16.23%
rt5 31310 719 38702 1102 19.1% 28213 863 -10.98%

Table 4.5: The list of the CPU time by the algorithm in [2]. We compared our run
time with the ML-OASG algorithm in [2] and list in ”run time reduction” column.
[2] is performed on a 2.8 GHz AMD-64 machine with 8 GB memory and ours is
performed on a 2.8 GHz AMD-64 machine with 2 GB memory

CC[2] ML-OASG[2] Ours Run time
Run time Run time Run time reduction

ind1 0.02 0.06 0.01 91.67%
ind2 0.21 2.96 0.40 83.11%
ind3 0.32 3.28 1.27 57.62%
ind4 0.97 7.86 2.43 68.70%
ind5 3.28 47.00 3.57 91.67%
rt1 0.01 0.05 0.01 80.00%
rt2 0.06 0.82 0.17 76.82%
rt3 0.41 6.60 1.22 76.52%
rt4 1.45 18.11 3.10 85.69%
rt5 5.25 27.73 5.50 80.60%

38

Figure 4.2: The routing result of rt4. All pins and path are projected to a plane,
without showing the obstacles. The number of pins is 500, and the number of
obstacles is 50.

39

Chapter 5

Conclusions and Future Works

In this thesis, we have proposed an algorithm, which can get good solution at single

layer and fast yet effective at multi layers. The solution is limited by topology,

but previous routing result at completed layers can provide an effective approach in

multi layers. Experimental results have shown that our algorithm is still effective

in larger case. The idea to estimate the co-edge is good for wirelength saving. It is

better than just considering the U-Shaped refinement.[20]. Our algorithm and [20]

have the same topology, but our results are better than [20]. In multi-layer cases, we

proposed a hierarchical and heuristic approach to solve this problem. Experimental

results have shown that our algorithm is still efficient in larger multi-layer cases,

with slightly more wirelength.

The results of our algorithm lost in some cases in single layer. The reason is

the different of topology. In the multi-layer cases, the orders of layers handling will

affect the results. If we improve the method to get efficient MST topology and the

order of layers, we should get higher performance. The run time of our algorithm

in single layer is a little large. There are two reasons for higher run time. One is

the construct of the penalty MST and the other is the construction of Hanan points

graph. We spent a lot of time at obstacle points construction in the construction

of Hanan points graph step.The time on the construction is large, but the time on

40

the search is small. Because of the graph information we can decide the routing

path easily in multi-layers. And then, we can add the buffer insertion step into the

routing flow. The routing problem with timing driven might be the good target.

41

Bibliography

[1] C. Bartoschek, S. Held, D. Rautenbach, and J. Vygen. “ Efficient Generation

of Short and Fast Repeater Tree Topologies ”. In Proceedings International

Symposium on Physical Design, pages 120–127, 2006.

[2] M. X. Lee C. W. Lin. S. L. Huang, K. C. Hsu and Y. W. Chang. “Efficient Multi-

Layer Obstacle-Avoiding Rectilinear Steiner Tree Construction”. In Proceedings

IEEE/ACM International Conference on Computer-Aided Design, 2007.

[3] Y. W. Chang and S.P. Lin. “MR: A New Framework for Multilevel Full-Chip

Routing ”. In IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, volume 23, pages 793– 800, 2004.

[4] C. Chu. “FLUTE: Fast Lookup Table Based Wirelength Estimation sTech-

nique”. In Proceedings IEEE/ACM International Conference on Computer-

Aided Design, pages 696–701, 2004.

[5] C. Chu. “Fast and Accurate Rectilinear Steiner Minimal Tree Algorithm for

VLSI Design”. In Proceedings International Symposium on Physical Design,

pages 28–35, 2005.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stin. “Dijkstra’s Algo-

rithm”. In INTRODUCTION TO ALGORITHMS, pages 595–599, 2001.

42

[7] J. L. Ganley and J. P. Cohoon. “Routing a Multi-Terminal Critical Net: Steiner

Tree Construction in Presence of Obstacles”. In Proceedings Internationl Sym-

posium on Circuits and Systems, pages 113–116, 1994.

[8] M.R. Garey and D. S. Joheson. “The Rectilinear Steiner Tree Problem is NP-

Complete”. SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

[9] D. W. Hightower. “A Solution to The Line Routing Problem on The Continous

Plane”. In Proceedings of CAN Design Automation Workshop, pages 1–24,

1969.

[10] Y. Hu, T. Jing, X. Hong, W. Chang Z. Feng, and G. Yan. “An-OARSMan:

Obstacle-Avoiding Routing Tree Construction with Good Length Performance

”. In Proceedings IEEE Asia and South Pacific Design Automation Conference,

pages 7– 12, 2005.

[11] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh. “ Pattern routing: use and

theory for increasing predictability andavoiding coupling ”. In IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, pages

777–790, 2002.

[12] C. Y. Lee. “An Algorithm for Connections and It’s Application”. In IRE

Transactions on Electronic Compute, pages 346–365, 1961.

[13] J. Lillis, C. K. Cheng, T. T. Y. Lin, and C. Y. Ho. “ New Performance Driven

Routing Techniques with Explicit Area/Delaytradeoff and Simultaneous Wire

Sizing ”. In Proceedings IEEE/ACM Design Automation Conference, pages

395–400, 1996.

[14] C. W. Lin, S. Y. Chen, C. F. Li, Y. W. Chang, and C. L. Yang. “Efficient

Obstacle-Avoiding Rectilinear Steiner Tree Construction”. In Proceedings In-

ternational Symposium on Physical Design, pages 127–134, 2007.

43

[15] K. Mikami and K. Tabuchi. “A Computer Program for Optimal Routing of

Printed Circuit Conductors”. In Proceedings of IFIP Congress,, volume 2,

pages 1475–1478, 1968.

[16] M. Pan and C. Chu. “A Novel Performance-Driven Topology Design Algo-

rithm”. In Proceedings IEEE Asia and South Pacific Design Automation Con-

ference, pages 244–249, 2007.

[17] Z. C. Shen, C. C. N. Chu, and Y. N. Li. “Efficient Rectilinear Steiner Tree

Construction with Rectilinear Blockages”. In Proceedings IEEE International

Conference on Computer Design, pages 38–44, 2005.

[18] Y. shi, P. Mesa, H. Yu, and L. He. “Circuit Simulation Based Obstacle-aware

Steiner Routing”. In Proceedings IEEE/ACM Design Automation Conference,

pages 385–388, 2006.

[19] Y. W. Tsai, Y. T. Chang, J. C. Chi, and M. C. Chi. “An Obstacle-Avoiding

Rectilinear Steiner Minimal Tree Construction Algorithm”. In 18th VLSI/CAD

Symposium in Taiwan, Haulim, 2007.

[20] P. C. Wu, J. R. Gao, and T. C. Wang. “A Fast and Stable Algorithm for

Obstacle-Avoiding Rectilinear Steiner Minimal Tree Construction”. In Pro-

ceedings IEEE Asia and South Pacific Design Automation Conference, pages

262–267, 2007.

44

作者簡歷

 洪禎徽，民國七十年二月出生於台中市。民國九十三年六月畢業於國立中央

大學電機工程學系，並於九十四年九月進入國立交通大學電子研究所就讀，從事

VLSI 實體設計方面相關研究。民國九十六年十月取得碩士學位，碩士論文題目

為『使用規則導向且考慮障礙物之多層直角史坦納樹的建造』。

	Cover.pdf
	國立交通大學
	電子工程學系 電子研究所碩士班
	碩士論文
	Rule Based Multi-Layer Obstacle-Avoiding Rectilinear Steiner Tree Construction
	研究生：洪禎徽
	指導教授：陳宏明 博士
	
	中華民國九十六年十月

	Cover2.pdf
	Rule Based Multi-Layer Obstacle-Avoiding Recitlinear Steiner Tree Construction
	A Thesis

	Abstract.pdf
	acknowledgement.pdf
	Thesis.pdf
	bio.pdf

