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AES Accelerator using Coprocessor Interface on

32-bit Embedded Systems

Student : Po-Yuan Yeh Advisor : Hsie-Chia Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

ABSTRACT

AES crypto system needs*high-throughput, ‘/and hardware implementation for
embedded system will make the performance:worse. How to increase the throughput is
very important. In this thesis, we propose instruction-like architecture using
coprocessor interface for AES acceleration on 32-bit embedded system “S*Core”. The
cycle count is reduced from 3329 to 206. Our AES core can operate in 128, 192, and
256 bit key, and the round key is on-the-fly generated. The total gate count is about

47.5K gates, and maximal throughput is about 1.82Gbps with UMC 0.18 1 m process.
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Chapter 1
Introduction

1.1 Background

The rapidly growth of internet and wireless communication has led to more
requirement on security device to protect the data communication over open channels.
If the hacker gets the message withoutprotection, the message is not secret.
Cryptography [1] is knowledge:to ‘research-how to avoid that the hacker gets the real
message. The concept of crypto-system.‘ilustrated in Fig. 1.1 is used to protect
message transmitted over public channel. [Every message is encrypted to cipher text
with Keyl by Host A before transmitted, and decrypted to plain text with Key2 after
received by Host B. According to the Key, two type of crypto-system are classified,
such as symmetric-key or private-Key, and asymmetric-key or public-Key
crypto-system. The symmetric-key crypto-system uses identical key for encryption and
decryption, i.e., Keyl is equal to Key2 or we can get Key2 easily from Keyl. DES,
3DES, and AES are symmetric-key algorithms use in symmetric-key crypto-system.
The asymmetric-key crypto-system uses different key when encryption and decryption,
i.e., Keyl is not equal to Key2. RSA and Elliptic Curve are asymmetric-key algorithms
used in symmetric-key crypto-system. All secret-key crypto-systems are based on

substitution and transposition. Substitution means mapping from one field to another



and transposition means replacing the element of the message. Because of that the
hardware of substitution and transposition is very easy, so secret-key crypto-system is
much faster than public-key crypto-system in general. Tab. 1.1 shows each different
parameter size with the same level of security strengths compared with given

cryptography [2]. The f and k are key length of ECC and RSA.

cipher text
Keyl Key2
A Encryption B Decryption

Figure 1.1  The Concept of Crypto System

Table 1.1  Comparable security strength-for given cryptography

AES ECC{(ECDSA] RSA

f=160 - 223| k = 1024
f=224 -255| k =2048
AES-128|f = 256 - 383| k = 3072
AES-192(f =384 - 511{k = 7680
AES-256[ f>512 |k =15360

Advanced Encryption Standard (AES) [3] is a symmetric block cipher
proposed by National Institute Standard Technology (NIST) of United States. In
January, 1997, the NIST announced the start of an initiative to develop a new
encryption standard: the AES. The algorithm should be a symmetric-key block cipher,
and support block size under 128 bits and key sizes under 128, 192, and 256 bits. The
new encryption standard was to become a Federal Information Processing Standard
(FIPS), replacing the old Data Encryption Standard (DES) and triple-DES. Then the
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first Advanced Encryption Standard Candidate conference (AES1) was held in Ventura,
California, August, 1998. Fifteen AES algorithms submitted by members of the
cryptographic community around the world were announced in AES1. Five algorithms,
MARS, RC6, Rijndael, Serpent, and Twofish, were selected as the finalist in the
Second Advanced Encryption Standard Candidate conference (AES2), held in Rome,
Italy. Until April, 2000, the Third Advanced Encryption Standard Candidate conference
(AES3), held in New York, invited the submitters in finalist to attend and described
their algorithm. Finally, NIST selected that Rijndael as the AES algorithm in October,
2000. The AES algorithm has broad applications, including smart cards and cellular
phones, WWW servers and automated teller machines (ATMs), and digital video

recorders. [4]

1.2 Motivation

In resent years, security issues on communications are more and more significant
as the wireless industry explodes. The AES has become an important role in secret-key
cryptographic systems. As compared to software implementations, the hardware
implementations of the AES algorithm provide more physical security as well as higher
speed. AES crypto system needs high throughput. Although the AES hardware for
embedded system will limit the performance because of its limited instruction set. So
we will provide a hardware AES design for 32 bits embedded system to increase the
throughput. And the FS*Core; is 32-bit RISC CPU, it established high-efficient
development platform with integrated software/hardware tools. The TS*Core; CPU
compile AES algorithm to several instructions listed in Fig. 1.2. It cost more than 3000
cycle count to encrypt a message. We analyze the instructions in detail. Obviously, it
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takes a lot of time to exchange the data and perform finite field computation. We can
use hardware to solve this problem. In the design, We make use of TS*Core ; to finish
a cryptographic system, flexibility is the advantage. Because the development of

FS*Corey is quite complete, it is convenient in replacing the circuit to make use of
development platform to realize the hardware. Because FS*Core; has good user’s
interface, We devote us to designing the cryptographic systems to work with higher

speed, alleviate other burdens.

B load & store
B arith & logic
[ shift_rotate
Ul others

Figure 1.2 AES instructions of S*Core

1.3 Organization of this thesis

This thesis is organized as follows. In Chapter 2, we present the AES algorithm. It
contains AES basic operations. Chapter 3 shows the proposed architecture of the

encryption of AES design. In addition, we also introduce the S*Core Platform. The



verification method and simulation result will be shown in Chapter 4. We make a brief

conclusion and future work in the last chapter.




Chapter 2
Algorithm Specification

In this chapter, the Advanced Encryption Standard (AES) algorithm is described.

2.1 Advanced Encryption Standard (AES)

Specification

The input and output of AES specification. is described follow in Table 2.1. For
the AES algorithm, the length of the input bloek and the output block is 128 bits, and
the different key length will execute different iteration count. For key length 128 bits,

10 iteration is execute, and 12 iteration for 192 bits, 14 iteration for 256 bits.

Table 2.1  AES specification relations

In/Output Block Size| Key Length [Number of Rounds
AES-128 128 bits 128 bits 10
AES-192 128 bits 192 bits 12
AES-256 128 bits 256 bits 14

The input — the array of bytes in0Q, inl, ... in15 — is copied into the State array as
illustrated in Fig. 2.1. The Cipher or Inverse Cipher operations are then conducted on

this State array, after which its final value is copied to the output — the array of bytes



out0, outl, ... outl5. Roughly, there are 4 kinds of transformation:

1. Non-linear byte substitution, so called SubBytes().

2. Cyclic shift on each row of the State array by different offsets, so called

ShiftRows().
3. Mixing the data within each column of the State array,

MixColumns().

4. Adding the round key with the State, so called AddRoundKey().

in0
inl
in2
i3

in4
in5
in6
in7

i8
in9
in10
in11

in12
in13
inl4
in15

-

Figure 2.1

s2

State array input and output

6
s7

8 s12
s9 s13
s10 sl4
si1 s15

-

2.1.1 Basic Galois Field Arithmetic

outo
outl
ou2
out3

outd
outs
outé
out7

out8
out9
outl0
outll

so called

out12
out13
outl4
out5

The basic unit for processing in the AES algorithm is byte, and most operation in

AES round function is based on GF(2%) arithmetic addition and multiplication. The

addition in GF(2%) is defined as XOR operation, but the multiplication between 8 bit

vector will produce a vector longer than 8 bits which in GF(2%). Therefore, the finite

field multiplication always performs a modular multiplication, that modulo with

irreducible polynomial after multiplication. For AES, the irreducible polynomial is

m(x) = x® +x* +x* +x+1

2.1.2 Composite Field Arithmetic

(2.1)

Composite filed arithmetic can be employed to reduce the hardware complexity.
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We call two pairs

GF(2'),Q(y)=y"+>." 4y GF(2) (22)
and
GF((Z“)m),P(x):xm+z:1 pX, p, € GF (2') 2.3)

a composite field [5] if

® GF(2") is constructed from GF(2) by Q(y);

® GF((2"™) is constructed from GF(2") by P(x).

Composite fields will be denoted by GF((2"™), and a composite field GF((2")™) is
isomorphic to the field GF(2¥) for k = nm. Additionally, composite fields can be built
iteratively from lower order fields. For example, the composite field of GF(2®) can be

built iteratively from GF(2) using the followingrirreducible polynomials [6]:

GF(22):>GF((22)2) .......................... R{X) < + X+ (2.4)

Where ¢ = {10}, and 4 = {1100},. Meanwhile, an isomorphic mapping function

f(x)=5><x and its inverse need to be applied to map the representation of an

element in GF(2°) to its composite field and vice versa. The 8x8 binary matrix & are
decided by the field polynomials of GF(2®8) and its composite fields. Such a matrix can
be found by the exhaustive-search-based algorithm in [5]. The & matrix
corresponding to  p(x) = x® +x* +x*+ x+1 and the field polynomials in (2.4) can be

found as below:



(11000010 |
01001010
01111001
01100011

01110101
00110101
01111011

100000101 |

2.2 Encryption and Decryption Procedure

The encryption and decryption procedure are shown in Fig. 2.2. At the beginning
of encryption procedure, the plain block  is XORed with initial round key, by
AddRoundKey() procedure. Afteryan initial:Round. Key addition, the State array is
applied to SubBytes(), ShiftRows(), MixColumns(), and AddRoundKey() for 10, 12, or
14 times (depending on the key length), with'the final round differing slightly from the
first Nr-1 rounds. The State is only japplied to SubBytes(), ShiftRows(), and
AddRoundKey(), then the cipher block is outputted. Similar to the encryption

procedure, the decryption is applied to the reverse direction.



Key

Ciphertext

v

AddRoundKey

A

» AddRoundKey
, v
> SubBytes SubBytes |«
Rotword ShiftRows
Key-Xor MixColumns
» AddRoundKey
)4
Nr-1
round
v
SubBytes SubBytes
Rotword ShiftRows
Key-Xor » AddRoundKey
A
Ciphertext
Figure 2.2
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InvSubBytes

InvShifiRows

AddRoundKey

InvMixColumns

InvSubBytes

InvShiftRows

AddRoundKey

Plaintext

The Procedure of Encryption and Decryption
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Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin
byte state[4,Nb]

state = in

AddRoundKey(state, w[0, Nb-1]) // See Sec. 2.2.4

for round = 1 step 1 to Nr-1
SubBytes(state) // See Sec. 2.2.1
ShiftRows(state) // See Sec. 2.2.2
MixColumns(state) // See Sec. 2.2.3
AddRoundKey(state, w[round*Nb, (round+1)*Nb-17])

end for

SubBytes(state)

ShiftRows(state)

AddRoundKey(state, W[Nr*Nb, (Nr+1)*Nb-17])

out = state

end

Figure 2.3 . Pseudo Caode for the Cipher

InvCipher(byte in[4*Nb]; byte out[4*Nb], word w[Nb*(Nr+1)])
begin
byte state[4,Nb]
state = 1in
AddRoundKey(state, wW[Nr*Nb, (Nr+1)Nb-1])
for round = Nr-1 step -1 downto 1
InvShiftRows (state)
InvSubBytes (state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb-17])
InvMixColumns(state)
end for
InvShiftRows (state)
InvSubBytes (state)
AddRoundKey(state, w[0, Nb-1])

out = state

end

Figure 2.4  Pseudo Code for the Inverse Cipher

11



The Cipher is described in the pseudo code in Fig. 2.3, and the inverse cipher is

described in the pseudo code in Fig. 2.4.

2.2.1 SubBytes() and InvSubBytes() Transformation

The SubBytes() transformation is a non-linear byte substitution that operates
independently on each byte of the State using a substitution table (S-box). The S-box is
invertible and consists of two transformations:

1. Take the multiplicative inverse in the finite field GF(2%), the element {00}

is mapped to itself. Tab. 2.2 shows the multiplicative inverse of {xy}
using Equ. 2.1 as the irreducible polynomial.

2. Apply the following affine transformation (over GF(2)):
bi' = bi ® b(i+4)modS ® b(i+5)mod8 @ b(i+6)m0d8 D b(i+7)mod8 ® Ci (26)
for 0= i< 8, where by is the i" bit of the byte b, and c; is the i bit of the

byte ¢ with the value {63} or {01100011},.

In matrix form, the affine transformation element of the S-box can be expressed

as:
by] [1 0001 1 1 177 [1]
b| |1 100011 1fb| |1
bl |11 1100 0 1 1|b,| |0
b;_11110001b3+0
b,/ |11 111100 0fb| |O
bl |01 11110 0fb| |1
b| [0 01 1 1 1 1 Ofby| |1
b, 0001111 1fb] |0 2.7)

Fig. 2.5 illustrates the effect of the SubBytes() transformation on the State. The

S-Box used in the SubBytes() transformation is presented in hexadecimal form in Tab.

12



2.3. For example, if s;1 = {63}, then the substitution value would be determined by the
intersection of the row with index ‘5’ and the column with index ‘3’ in Tab. 2.3. This

would result in s’; 1 having a value of {ed}.

Table 2.2  Multiplicative Inverse table for the byte {xy}s

00/01|8d|f6|cb|52|7b|dl|eB|4Ff|29|cO|b0O|el|e5]|cT
74 b4 |aa|4b|99|2b|60|5f|58|3f|fd|cc| ff |40 ee|b2
3a|6e|5a|fl|55/4d|a8|c9|cl|0a|98|15|30]|44|a2]|c2
2c|45]192|6¢|f3]39]|66|42|f2|35[20|6f|77|bb|59]|19
1d | fd | 37|67 |2d [ 31| f5[69|a7|64]|ab|13[54|25]|¢€9 |09

16| 5e| af |[d3]49|a6|36[43|f4|47|91|df |33]93|21|3b
79| b7197[85[10|b5|ba|3v|b6]|70/d0|[06|al]| fa|81]|82
83|7e| 7f {8096 |73 |.be{5649b|9% [95|d9|f7[02|h9|ad
de|6a|32|6d|dB|8al84 |72 2a)14|9f|88|f9|dc|89]|9a
fb | 7c| 2e|c3| 8f ;b8 65148 [26|¢€8|12|4a|ce|e7|d2]|62
Oc|eQ| 1f | ef | 11+ 75 78 | 714 a5-{8e | 76| 3d | bd | bc | 86 | 57
Ob|28|8f|a3|dafdd|e4{0f|a9|27|53|04]|1b]| fc|ac|eb
7a| 07| ae | 63| c5ydble2wea94{8b|c4|d5|9d]| 8|90 |6b
b1|0d|d6|eb|c6|Oelcf|ad|08)4e|d7|e3]|5d|50] 1le|b3
5b|23[38[34]|68|461038¢idd|9c|7d|a0|cd|1a|4l]|1c

—h|D QO [T OO (NDO|OTBRIWIN|F|O

———Sbox—_

Ago | Ao % Ao “s@ Sor | Soz2 | Sos

A | Az S

A20 A21 A22 A23 SZO SZl S22 SZ3

A30 ABI A32 A33 S30 SBI S32 S33

Figure 2.5  SubBytes() applies the S-Box to each byte of the State array
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Table 2.3  S-Box, a substitution table for the byte {xy}s

63| 7c|77|7b|f2|6b|6f|c5[30|01|67|2b|fe|d7|ab| 76
ca|82|co9|7d| fa|59|47|f0|ad|dd|a2| af |9c|ad | 72| cO
b7 | fd |93 |26 |36 | 3f | f7 |cc|34|a5|e5|fl |71|d8| 31|15
04|c7|23|c3|18|9 |05|9 |07 |12|80|e2|eb|27|d2]|75
09|83|2c|la|1lb|6e|5a|a0|52|3b|d6|b3|29|e3|2f]| 84
53|d1|00|ed| 20| fc |bl|5b|6a|cb|be|39|4a|4c|58] cf
do| ef |aa| fb |43 |4d|33|85|45|f9 |02 | 7f [ 50| 3c | 9f | a8
51| a3 |40 | 8f|92|9d|38|f5|bc|b6|da|21|10]| ff | f3 | d2
cd|Oc|13|ec|5f|97 (44|17 |c4|a7|T7e|3d|64|5d|19 |73
60 | 81| 4f |dc|22|2a|90|88|46|ee | b8 |14 |de|5e|0b|db
e0 | 32|3a|0a|49|06|24|5¢c|c2|d3|ac|62|91|95|ed |79
e7 | c8|37|6d|8d|d5|4e|a9|6c|56|f4|ea|65| 7a| ae | 08
ba|78 25| 2 |1c|ab|b4d|c6|e8|dd| 74| 1f | 4b| bd | 8b | 8a
70| 3e|b5|66|48| 03| f6 |0e|61|35|57|hb9|86|cl|ld]| e
el | f8 (98| 11[(69|d9|8e |94 |9 |1e|87|e9|ce|55| 28] df
8¢c|al|89|0d|bf|e6|42|68|41|99|2d| 0f |b0|54]|bb| 1c

=h|(D Q|0 |T|® |[O(O(N(O(C1|D|W|IN|F|O

InvSubBytes() is the inverse of the byte substitution transformation, in which the
inverse S-box is applied to each byte of the State. This is obtained by applying the
inverse of the affine transformation (2.4) followed by taking the multiplicative inverse
in GF(2°).

The inverse S-box used in the InvSubBytes() transformation is presented in Tab.

2.4.

14



Table 2.4

Inverse S-Box, a substitution table for the byte {xy}s

y

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

- D® QO O T QL ©OoOoO~NO U WNEO

52

09

6a

d5

30

36

as

38

bf

40

a3

9e

81

f3

d7

fb

1c

e3

39

82

9b

2f

ff

87

34

8e

43

44

c4

de

e9

ch

54

7b

94

32

ab

c2

23

3d

€e

4c

95

Ob

42

fa

c3

4e

08

2e

al

66

28

dg

24

b2

76

5b

a2

49

6d

8b

dl

25

72

f8

f6

64

86

68

98

16

d4

a4

5¢c

CC

5d

65

b6

92

6C

70

48

50

fd

eb

b9

da

5e

15

46

57

ar

8d

9d

84

90

ds

ab

00

8c

bc

d3

Oa

7

e4

58

05

b8

b3

45

06

do

2C

le

8f

ca

3f

of

02

cl

af

bd

03

01

13

8a

6b

3a

91

11

41

4f

67

dc

ea

97

2

cf

ce

f0

b4

e6

73

96

ac

74

22

ev’

ad

35

85

e2

9

37

e8

1c

75

df

6e

47

fl

la

71

1d

29

c5

89

6f

b7

62

Oe

aa

18

be

1b

fc

56

3e

4b

c6

d2

79

20

9a

db

c0

fe

78

cd

5a

4

1f

dd

a8

33

88

07

c/

31

bl

12

10

59

27

80

ec

5f

60

51

7f

a9

19

b5

4a

od

2d

e5

7a

of

93

c9

9c

ef

a0

e0

3b

4d

ae

2a

5

b0

c8

eb

bb

3c

83

53

99

61

17

2b

04

7e

ba

77

d6

26

el

69

14

63

55

21

Oc

7d

2.2.2 ShiftRows() and InvShiftRows() Transformation

In the ShiftRows() transformation,the bytes in the last three rows of the State are
cyclically shifted over different numbers of bytes(offsets). The first row, r = 0, is not
shifted.

Specifically, the ShiftRows() transformation proceeds as follows:

St = St (chshift(r.Nb)mod Nb for O<r<4 and 0<c<4 (2.8)
Where the shift value shift(r, Nb) depends on the row number, r, as follows:
shift(1,4)=1  shift(2,4)=2  shift(3,4)=3 (2.9)

Fig. 2.6 illustrates the ShiftRows() transformation.
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So,0 | So,1 | So,2 | So,3 So0 | So1 | So2 | Sos
S10|S1,1|S1,2| S13 [ "| S11 | S12 | S13 | S10
S20 | S21 | S22 | S23 u <—| Sp2 | Sa3 | S20 | S21
S30 | S31 | S32 | S33 O . S33 | S30 | S31 | S32

Figure 2.6  ShiftRows() operates on the row of the State

The InvShiftRows() transformation proceeds as follows:

St (coshift(r.nbymod b = S for 0<r<4 and 0<c<4 (2.10)

r,c

Fig. 2.7 illustrates the InvShiftRows() transformation.

S0,0 | So1 | Soz2 | So3 S00 | So1 | So2 | So3
S10 | S11 | S1z | S1s o [ ] S13 | S10 | S11 | S12
S20 | S22 | S22 | S23 | “f [ 7} S22 | S2s | S20 | San
S30 | S31 | S32 | S33 r ] S31 | S32 | S33 | S30

Figure 2.7  InvShiftRows() operates on the row of the State

2.2.3 MixColumns() and InvMixColumns()

Transformation

The MixColumns() transformation takes a linear operation on each column -
32-bit word of the State. The linear operation treats the column of the State as a
four-degree polynomial over GF(2°) and multiplies the column with a fixed polynomial
a(x) modulo x*+1. The polynomial a(x) is given by
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a(x) ={03} x* + {01} x* +{01} x + {02} (2.11)
The polynomial is co-prime to x* +1and therefore is invertible. This operation can

also be written as a matrix multiplication. LetS (x) =a(x)®s(x)

e | [02 03 01 01

S
S'le 01 02 03 01

Tl= ’ 2.12
. (212)
S

w
o

©

N7

o

Le| |01 01 02 03
.| |03 01 01 02

w N
o ©

Fig. 2.8 describes the effect of the MixColumns() transformation on the State. The
elements in column 1 are processed at the same time. After the operation, a(x), the

results are generated in column 1.

=== X a(x
e Ao Ay/A/m ( )\\SOK So1 S | o
A]O A]] 412 A13 SIO \ S” SlZ Sl3
A20 A21 A22 A23 SZO 821 S22 S23
A30 A31 A32 A33 S30 S31 S32 S33

Figure 2.8  MixColumns() operates on each column of the State

The InvMixColumns() multiplies with the inverse matrix of MixColumns() as

follow
S0 Oe Ob 0d 09| s,
s' 09 0e Ob Od]|ls
M= o (2.13)
S, 0d 09 Oe Ob (s,
S'sc Ob 0d 09 Oe]||s;,
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2.2.4 AddRoundKey() Transformation

In the AddRoundKey() transformation, a Round Key is added to the State by a
simple bitwise XOR operation. Each Round Key consists of Nb words from the key
schedule (described in Sec. 2.3). Those Nb words are each added into the columns of

the State, such that
[SOC ! Si,c’ SZC ' S3c] = [SO,c’ Sl,c ! SZ,c ' SS,C] ® [eround*Nb+c] for O sCc< Nb (214)

Where [w;]are the key schedule words described in Sec. 2.3, and round is a value
in the range 0 < round < Nr . In the Cipher, the initial Round Key addition occurs when
round = 0. The application of the AddRoundKey() transformation to the Nr rounds of
the Cipher occurs when 1< round < Nr'.

The action of this transformation is ilfustrated in-Fig. 2.9, wherel = round * Nb .

l'="round * Nb
| , [, ,
Soo Soc So2 | Sos . ] S'oo S'oc 02| S'o3
S10 S % Si3 D || e halwe S'10 N S'c 12| S'13
S0 5 S22 | So3 S' S'ye ‘22 | S'xs
S30 Sac S32 | Sa3 S'30 S'ac ‘22 | S'as

Figure 2.9  AddRoundKey() XORs each column of the State with a word
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2.3 Key Expansion

The AES algorithm takes the key K, and performs a Key Expansion routine to
generate a key schedule. The Key Expansion generates a total of Nb(Nr+1) words: the
algorithm requires an initial set of Nb words, and each of the Nr rounds requires Nb
words of Key data. The expansion of the input key into the key schedule proceeds
according to the pseudo code in Fig. 2.10. As the pseudo code goes, there are different
operations to be performed depending on i. Subword() is a operation, consists of 4
SubBytes() operations. RotWord() just performs a cyclic shift, word [ao, a1, a2, az] will

be shifted as [a:, a2, as, a]. The Reonl[i] array, consists of [x'*, {00}, {00}, {00}],

where the X" is power of x, withsirreducible, polynomial m(x)=x®+x‘+x*+x+1in

GF(2%). The following word, wii], is derived from-the XOR of the preview word,
wli-1], with the word w[i-Nk], which.is"NKpositions earlier, where Nk means the key
length in word. For words in positions. that area multiple of Nk, a transformation,
followed by an XOR with the round constant, Rcon[i], is applied to w[i] prior to the
XOR with the word wl[i-NK]. This transformation consists of RotWord() and
SubWord().

The Key Expansion routine will produce a key array like upper of Fig. 2.11.
Whenever the AddRoundKey() routine is invoked, the current index i will increased 4,
and the four key after index i are used as input of AddRoundKey(), just as illustrated in

lower of Fig. 2.11.
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KeyExpansion(byte key[4*NKk], word w[Nb*(Nr+1)], Nk)
begin
word temp
i=0
while (i < Nk)
w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
i=i+l
end while
i =Nk
while (i < Nb * (Nr+1)]
temp = w[i-1]
if (i mod Nk = 0)
temp = SubWord(RotWord(temp)) xor Rcon[i/NKk]
else if (Nk > 6 and i mod Nk = 4)
temp = SubWord(temp)
end if
wli] = w[i-NKk] xor temp

i=i+1

end while .

end sy - B

W g

A

e

Figure 2.10  The pseudo Codé of the Key Expansion

Round Key 0 Round Key 1 -

ko ku ke ks ke ko (8 K9 koo Ky s

Round Key 0 Round Key 1 -

Figure 2.11  Round Key Select in 192 bit and 256 bit Key Length
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Chapter 3
AES Design

In this chapter, we will propose the AES architecture. AES was announced since
2001. Until now, lots of research had shown their AES implementations in hardware or
software. In this chapter, we will introduce what is S*Core and how to realize our AES
architecture.

This chapter is organized as follows. In section 3.1, consider the system
requirement, we modify the AES architecture to match the system request, then new
architecture will be given. In seéction 3.2; we.introduce the overview of S*Core, and
what is Coprocessor interface (Cl). In-section-3.3, we present the architecture of the

AES.

3.1 AES System Architecture

At the beginning, we use S'Core’s simulator to process the AES encryption
procedure, and we find the S'Core’s compiler compile the program inefficient.
Because the instruction set of S'Core is limited. So, we can use Coprocessor Interface
to solve this problem. The coprocessor is like we plus an accelerator on the system. We
will introduce what is S'Core and its Coprocessor Interface in Sec. 3.2. The
Coprocessor Interface is the 1/0 device of our AES design. Our core gets the data from
S*Core and starts to encrypt and decrypt the data through the Coprocessor Interface.
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Fig. 3.1 shows the block diagram of our AES architecture by Coprocessor Interface.
The coprocessor’s general registers receive or transmit data from S*Core only
when MTC or LDC instruction is executed, and S*'Core gets data from the
coprocessor’s general registers when MFC or STC instruction is executed. Take
AES-128 for example: First, we give eight MTC or LDC instructions for data and key
transmitting from CPU’s general registers or memory unit. We will discuss these
instructions in detail in Sec. 3.2.1.And then we start the AES coprocessor when the
start signal is assert. Because AES-128 needs 10 cycles to generate the correct cipher,
we need Freeze signal to stall the CPU, or the cipher will be wrong. When the Ready
signal is assert which means current data is valid, we can transfer the correct 128-bit
cipher to coprocessor’s output registers. Finally, we need 4 MFC or STC instructions
for transmitting the 128 bits cipherito CPU. Fig. 3.2 shows the waveform of AES-128

encryption.

coagd BN |
— S  <rst—
S"Core
Ready
Freeze
‘ -

Figure 3.1  Block diagram of AES architecture by ClI
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rst

DATA & Key

START

Cipher out

Freeze

Ready T

Figure 3.2  Waveform of AES-128 encryption

Because of speed consideration, we insert a pipeline register in the core of AES,

and Fig. 3.3 shows the block diagram of the:core.

ShiftRows
SubBytes ‘
MixColumns|

AddRoundKey ﬁ

~ @
-~ o
~—Gr

Figure 3.3  Pipelined AES core

3.2 Overview of S"Core Platform

The S'Core™ [12] is Taiwan's first self-defined 32-bit RISC CPU with
Sunplus-owned instruction set architecture (ISA). The ISA has 32/16-bit hybrid
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instruction mode and parallel conditional execution for high code density, high
performance and versatile application. The micro-architecture includes AMBA bus for
SoC integration, coprocessor and custom engine interface for function flexibility, and
SJTAG for efficient debugging and In-Circuit Emulation (ICE).

The user friendly development environment including S*Core IDE, simulator,
optimization GNU C/C++ compiler and GDB enable users to develop the high quality
application in fast time.

The most important feature of S'Core is that it has Optional customer-defined
coprocessors. That means we can define a new instruction for some dedicated function.
Because of that, we can improve the performance of S'Core by customer-defined

coprocessors. We will introduce how to use Coprocessor Interface in next section.

3.2.1 Coprocessor Interface (Cl)

The S*Core can plug coprocessor ‘1=3 for 'some dedicated function; for example,
floating pointer device, DSP device. Coprocessor device can plug into S*Core by
“Coprocessor Interface”. Up to three Coprocessors may be employed on one design. In
this section, we only discuss the coprocessor interface and coprocessor instruction for
COprocessor.

S*Core will issue the instruction to coprocessor by Cl in first stage. Coprocessor
will determine the instruction that belongs to them or not first. And then coprocessor
will execute the instruction in it. A coprocessor may contain up to 32 general registers.
Each of these registers is up to 32 bits wide. Typically, programs use the general
register for loading and storing data on which the coprocessor operates. Data is moved

to the coprocessor’s general register from the processor’s general registers with the
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MTCz instruction. Data is moved from the coprocessor’s general register to the
processor’s general register with the MFCz instruction. Main memory data is loaded
into or stored from the coprocessor’s general register with the LDCz and STCz
instructions. Fig. 3.4 shows the interaction of S"Core CPU and coprocessor.

All coprocessor instructions share one main opcode encoding. There are three
types of coprocessor instruction: coprocessor register transfer instructions, coprocessor
data transfer instructions and coprocessor operation instructions. The Sub-OP field
distinguishes different coprocessor instructions while CP# specifies the coprocessor
number. Coprocessor register transfer instructions are MTC# (move to coprocessor)
and MFC# (move from coprocessor). Coprocessor data processing instruction are
LDC# (coprocessor load) and STC# (coprocessor store). And Fig. 3.5 shows the

coprocessor instructions format.

Pipeline signal
- >

data
Coprocessor > S+C ore

Freeze >

Figure 3.4  Coprocessor Interface

mtc/mfc OP D CrA 0 CP# Sub-OP
1dc/stc OP D CrA mm10 CP# Sub-OP
cop OP CrD CrA CrB  |Cop-Code| CP# Sub-OP

Figure 3.5  Coprocessor instructions format
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3.3 Proposed AES Architecture

Fig. 3.6 shows the architecture of our AES core design. The core is composed of
three parts, Main function unit, Key Unit, and Control Unit. The Control Unit count the
different number of count for different key length. And it generates data ready signal
and busy signal to control the AES architecture. The detail components of the Main
function Unit will be discussed in Sec. 3.3.1. In our AES design, encryption can run in

different key length, such as 128, 192, 256-bit key, and we will discuss how the Key

Unit works in Sec. 3.3.2.

Control |
Unit

Key

256

i

Key Unit

——j */ 128

Massage /

128

Main function Unit

Cipher
—p P

128

Figure 3.6

3.3.1 Efficient implementation of the Function Unit

Because of speed consideration, we process the 128-bit block message in each

cycle. The basic architecture unrolls only one full cipher round, and iteratively loops
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data through this round until the entire encryption is completed. The basic component

Is shown in Fig. 3.7.

SubBytes

ShiftRows

MixColumns

[000000000000000 - DOChODoonODoonoo - DOCROChODOROODOD - DODOCDUDOCDOCDUDAddRoundkey

Figure 3.7  Main function Unit for encryption

SubBytes and InvSubBytes Transformation [4]

The multiplicative inversion in GF(2®) involved in the SubBytes is a hardware
demanding operation, it takes at feast 620 gates to implement by repeat multiplications
in GF(2®) [7]. However, the gate count can be reduced greatly by using composite field
arithmetic. In the SubBytes transformation, using substructure sharing, the isomorphic
mapping function can be implemented by 12 XOR gates with 4 XOR gates in the
critical path. Meanwhile, the combined inverse isomorphic mapping and the affine
transformation can be implemented by 19 XOR gates, and the critical path consists of

4 XOR gates also. In the composite field GF((2*)?), an element can be expressed as
s,X+S,, where s,,5, € GF(2") and x is a root of P(x). Using Extended Euclidean

algorithm, the multiplicative inverse of s,x+s, modulo P,(x) can be computed as in
(3.1)

(syx+5, )_1=sh®x+(shx+s,)® (3.1)

where® = (224 +5,5, +5/ )71 . The proof of this equation is as follow:

Proof: The problem of finding the inverse of S(x) = s,x+s, module
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Pz(x): X’ +x+ A is equivalent to finding polynomials A(x) and B(x) satisfying the
following equation:
A(X)P,(x)+B(x)S(x)=1 (3.2)

The B(x) in (3.2) is the inverse of S(x) module P,(x). Such A(x) and B(x) can be
found by using the Extended Euclidean Algorithm for one iteration. First, we need to

rewrite P,(x) in the form of
P, (x)=Q(x)S(x)+R(x) (3.3)
where Q(x) and R(x) are the quotient and remainder polynomials of dividing P»(x) by

S(x), respectively. By long division, it can be derived that
Q(x)=s,'x+(1+5,'s)s;" (3.9)
R(x) :i+(1+ s.'s, )SglsI (3.5)
Substituting (3.4) and (3.5) into (3:3) and multiplying s’ to both sides of the
equation, it follow that
soP, (X) = (s,x+(s, +s,))S(x)+(s§/1+shs, +s|2) (3.6)
Multiplying © =(SZA+s,s, +5/ )_1 to both side of (3.6), we get
@s2P, (X) =O(s,x+(s, +5,))S(x)+1 (3.7)

Since addition and subtraction are the same in the extended field of GF(2), the
first term on the right side of (3.7) can be moved to the left side. Comparing (3.2) and

(3.7), it can be observed that
S7(X)=5,0x+(s, +5,)O (3.8)

According to (3.1), the multiplicative inversion in GF(2%) can be carried out in

GF((2%?) by the architecture illustrated in Fig. 3.8.
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«—Multiplicative inversion———

Figure 3.8  Implementation of the SubBytes Transformation

The SubBytes can be described by
Si"j = MS;} +C (3.9)

where M is an 8*8 binary matrix,'and C is.an 8-bit binary vector with only 4 nonzero

bits. The InvSubBytes performs the following-operation on each byte of the State

s =(M(s,;+C)) (3.10)

(]
From (3.10), the InvSubBytes transformation can be implemented according to the

block diagram illustrated in Fig. 3.9.

Inverse affine e
& N M1.11t1p11c.:at1ve 5%
5 X inversion

Figure 3.9  Block diagram of the InvSubBytes transformation
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MixColumns and InvMixColumns Transformation

Various architectures have been proposed for the implementation of the
MixColumns transformation [6], [8], [9], [10], [11]. Applying substructure sharing both
to the computation of a byte and between the computation of the four bytes in a
column of the State, an efficient MixColumns implementation architecture can be
derived. Particularly, (2.10) can be rewritten as
o =§02}5(Soc +S1.) + (S, +S5.0) + Sy
e ={02}6 (S, +S,0)+(Ssc +S0.) + S,

S
S
S, =102}(S, +S;.) +(So . +S,.)+ S,
Sy ={02}5(S; . +S5c) +(Sic +S,.) + S

(3.11)

According to (3.11), the MixColumns transformation can be implemented by the
architecture shown in Fig. 3.10. The function of the block “XTime” is to compute

constant multiplication by {02}15. Anmelement ‘of GF(2% can be expressed in

polynomial form as S =sX'+8X° +8:X° +5,X"+5,x> +5,X° +sX+5, , where
S9:5,,-+S, €GF(2) , and x is";a root of ‘the field polynomial p(x). Then
{02}, S = xS =5,X° +5,X" +5,X° +8,X° +5,X" +5,x° +5x* +5,x mod p(x)

= 5sX" + X7 +5,X° +(S; +5, ) X* +(5,+5,) X+ 5% + (S +5; ) X+(S,;)

Therefore, the “XTime” block can be implemented by 3 XOR gates with only one
XOR gate in the critical path. As illustrated in Fig. 3.5, the total number of XOR gates
for computing one column of the State is 108, and the critical path is 3 XOR gates. The

InvMixColumns multiplies the input polynomial by constant polynomial:
d(x)=c™(x)={0b}x*+{0d} x> + {09} x+{0e} (3.12)
The InvMixColumns is far more complex and occupies larger area. A. Satoh et al.

[6] proposed an implantation based idea. This implementation yields logic

optimizations since InvMixColumns shares logic resources with MixColumns.
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We propose a different method for exploring resource sharing. Recall (2.9) and

(3.12). a(x)ed(x)={01}. If we multiply both sides of the equation by d(x) we
obtain a(x)ed?(x)=d(x), where d?(x)={04}x*+{05} . Note that two of the
coefficients of the dz(x) are equal to {00}. The MixColumns and InvMixColumns

can be implemented using shared logic resources as shown in Fig. 3.11.

S0 st | [ s2 | [ s3 |

XOR »—@4—»—@4—»—@

) J A

e @_f“

=/

[ XTime ] | XTime | XTlme XTime |
o Qe #
[ s | [ S0 | |

Figure 3.10  Implementation of the MixColumns Transformation
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InvMixcolumns

4>| a(x) |—>| Fx) —»

MixColumns

S0’ _— S1' — S2! _— S3' _—

a(x)
A A A A

‘ X4Time ‘ ‘ X4Time ‘ ‘ X4Time ‘ ‘ X4Time ‘ d?(x)

A : ﬂ v

4’@% XOR XOR XOR

S0 S1 S2 S3

Figure 3.11  Implementation of MixColumns and InvMixcolumns

3.3.2 Reconfigurable"Key Unit

Fig. 3.12 shows our Key Unit, it is composed of two part, control logic and Key-
Generator. The KeyGenerator generate the round key for AES encryption every round.
The counter count 10 rounds for 128-bit key, 12 rounds for 192-bit key and 14 rounds
for 256-bit key. But we only need 128-bit key in every round, so we use registers to
store the round key for next round when 192-bit key and 256-bit key scheduling. The
SBox in KeyGenerator is the same as that in Main Function Unit. And the control logic
chooses the correct round key for AddRoundKey transformation of Main Function Unit

in every round.
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Startkey >
counter >
KeyGenerator
‘ Control
stn logic
CLK —» Register
mode

Figure 3.12

> Roundkey
128

Block diagram of Key Unit for Encryption

The Key Unit for decryption is:different with from that for encryption. At first, we

generate all keys for each round and stored in-the STACK. When all key we need for

decryption is ready, we start to decryptthe cipher. The Fig. 3.13 shows our Key Unit

Roundkey
>

128

for decryption.
A J
counter >
256
Startkey - KeyGenerator — sTACK
i 4
Control
st n | i
CLK, ——w 10gIC
mode
Figure 3.13  Block diagram of Key Unit for Decryption
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Chapter 4
Simulation and FPGA Verification

AES arithmetic in hardware and design for embedded system are given in this
work. This chapter shows the hardware implantation results. The hardware
implementation results and design flow are described in Sec. 4.1. The RTL synthesizer
uses Synopsys® Design Compiler for ASIC. The FPGA verification will discuss in Sec.

4.2.

4.1 ASIC Implementation

Fig. 4.1 illustrates the entire ASIC design and testing flow with various CAD
(Computer Aided Design) tools. The design is done by pre-layout gate-level simulation
but the pre-layout simulation can not calculate the circuit speed precisely. The results
for post-layout gate-level simulation will be worse than the results shown in former.

Tab. 4.1 compares our design with other proposed paper. [14] implements the
SBox using Look-up-Table. [13] uses composite field arithmetic to implement the
SBox. Our design is 2-stage pipelined. The throughput in 128 bit-key length is

1.82Gbps.
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Specification

RTL
RTL Coding Simulation /

\ ) nLint

( Pre-layout )

Get SDF from
Timing Gate-level
Engine Simulation
No
» Prime Time /
OK - Prime Power
Yes
Get SDF from ( Post-layout )
Place & Route Timing Gate-level
Engine \ Simulation )
! No
OK -
Yes
DRC/ERC/ o
LVS Foundry

Figure4.1  ASIC design flow

Table 4.1  The AES Core Comparison

Kuo [14]] Lai [15] [Horng [13] Ours
Technology 0.18 0.25 0.18 0.18
Clock rate (MHz)|| 154 125 125 150
Gate count 173K 80K 67.9K 475K
Throughput (Gbps|| 1.6 1.454 1.6 1.82
Pipeline stage 1 6 1 2
Key Size All 128 All All
Function E E/D E/D E

And Tab. 4.2 compares S*Core with AES-128 encryption accelerator and S*Core
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without AES-128 encryption accelerator. Tab. 4.2 shows the time we need to encrypt

the first data. We don’t need to spend so much time calculating data as before did.

Table 4.2  The comparison of S*Core with accelerator and not

S*Core (without accelerator) || 3329 cycles
S*Core (with accelerator) 206 cycles

4.2 FPGA Verification

Figure 4.2 illustrates the FPGA design and testing flow in contrast to the ASIC
design flow. Besides the RTL simulation; we"also verified our design by using Field
Programmable Gate Array (FPGA).! Olir-design is-implemented in S'Core, and the
operation clock rate is about 33MHz. Tab. 4.3 shows the hardware utilization of our

design.
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Specification

( ) RTL
RTL Coding Simulation / [«----- ]
\_ ) nLint H

A

RTL Get EDIF Gate-level
Synthesis Netlist Simulation

A
i No
OK <
Yes
Get SDF from Gate-level
Place & Route Timing Timing
Engine Simulation
A
i No
OK <

Configure
Device

 J

(/4

Figure 4.2  FPGA design flow
Table 4.3  The hardware utilization on S*Core

Device [ S'Core
Number of Slice Flip-Flops [20801/93184 (22%)
Number of 4 Input LUT  [62400/93184 (66%)
clcok rate I 33MHz
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Chapter 5
Conclusions

First, we have proposed an efficient AES design supported 128, 192, and 256 bits
key length. Because of our real time variable KeyGenerator, we don’t need to store all
round keys. We only need 10% storage area than others. Second, by implementing the
multiplicative inverter in composite field, the area cost can be smaller then that in
Look-up-table (LUT). The whole design area can be also reduced by sharing the
hardware for encryption and decryption. We also. proposed an AES accelerator for
32-bit Embedded Processors. Third, we extend the-instruction set of the processor.
Because of that, we only need less than-300. cycle count. The processor without
accelerator needs over 3000 cycle count to precess AES encryption. We speed up 10
times by our design. Besides, from the analysis of various instruction schedules, the
2-stage pipelined architecture is suitable and efficient for most schedules. The total
gate count is about 47.5K gates, and maximal throughput is about 1.82Gbps with UMC

0.18 . m process.
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