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摘要 

由於 AES 是屬於高速的加解密系統，但是硬體在和 CPU 系統平台整合後會造

成效能降低，因此提高生產率是很重要的。在本論文中，提出利用凌陽科技公司

的產品『S+Core』之系統平台，使用『S+Core』中所提供指令集擴充的功能 

Coprocessor 介面來加速 AES 加解密系統，支援鑰匙長度為 128 位元，192 位元

和 256 位元。我們所提供的鑰匙產生單元可以即時產生加密所需的鑰匙，另外我

們提出一套適合用於 Coprocessor 介面的加速硬體單元。我們所提出來的架構基

於 0.18 微米聯華電子(UMC)互補式金氧半導體製程， 我們的硬體設計需要包含

47500 個邏輯閘，產能可達到 1.82Gbps。 
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ABSTRACT 

AES crypto system needs high-throughput, and hardware implementation for 

embedded system will make the performance worse. How to increase the throughput is 

very important. In this thesis, we propose instruction-like architecture using 

coprocessor interface for AES acceleration on 32-bit embedded system “S+Core”. The 

cycle count is reduced from 3329 to 206. Our AES core can operate in 128, 192, and 

256 bit key, and the round key is on-the-fly generated. The total gate count is about 

47.5K gates, and maximal throughput is about 1.82Gbps with UMC 0.18 μm process. 
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Chapter 1  
Introduction 

1.1 Background 

The rapidly growth of internet and wireless communication has led to more 

requirement on security device to protect the data communication over open channels. 

If the hacker gets the message without protection, the message is not secret. 

Cryptography [1] is knowledge to research how to avoid that the hacker gets the real 

message. The concept of crypto-system illustrated in Fig. 1.1 is used to protect 

message transmitted over public channel. Every message is encrypted to cipher text 

with Key1 by Host A before transmitted, and decrypted to plain text with Key2 after 

received by Host B. According to the Key, two type of crypto-system are classified, 

such as symmetric-key or private-Key, and asymmetric-key or public-Key 

crypto-system. The symmetric-key crypto-system uses identical key for encryption and 

decryption, i.e., Key1 is equal to Key2 or we can get Key2 easily from Key1. DES, 

3DES, and AES are symmetric-key algorithms use in symmetric-key crypto-system. 

The asymmetric-key crypto-system uses different key when encryption and decryption, 

i.e., Key1 is not equal to Key2. RSA and Elliptic Curve are asymmetric-key algorithms 

used in symmetric-key crypto-system. All secret-key crypto-systems are based on 

substitution and transposition. Substitution means mapping from one field to another 



 

 2

and transposition means replacing the element of the message. Because of that the 

hardware of substitution and transposition is very easy, so secret-key crypto-system is 

much faster than public-key crypto-system in general. Tab. 1.1 shows each different 

parameter size with the same level of security strengths compared with given 

cryptography [2]. The f and k are key length of ECC and RSA. 

 

Figure 1.1   The Concept of Crypto System 

Table 1.1   Comparable security strength for given cryptography 

AES ECC (ECDSA) RSA
 f = 160 - 223 k = 1024

f = 224 - 255 k = 2048
AES-128 f = 256 - 383 k = 3072
AES-192 f = 384 - 511 k = 7680
AES-256 f >512 k = 15360

 

Advanced Encryption Standard (AES) [3] is a symmetric block cipher 

proposed by National Institute Standard Technology (NIST) of United States. In 

January, 1997, the NIST announced the start of an initiative to develop a new 

encryption standard: the AES. The algorithm should be a symmetric-key block cipher, 

and support block size under 128 bits and key sizes under 128, 192, and 256 bits. The 

new encryption standard was to become a Federal Information Processing Standard 

(FIPS), replacing the old Data Encryption Standard (DES) and triple-DES. Then the 
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first Advanced Encryption Standard Candidate conference (AES1) was held in Ventura, 

California, August, 1998. Fifteen AES algorithms submitted by members of the 

cryptographic community around the world were announced in AES1. Five algorithms, 

MARS, RC6, Rijndael, Serpent, and Twofish, were selected as the finalist in the 

Second Advanced Encryption Standard Candidate conference (AES2), held in Rome, 

Italy. Until April, 2000, the Third Advanced Encryption Standard Candidate conference 

(AES3), held in New York, invited the submitters in finalist to attend and described 

their algorithm. Finally, NIST selected that Rijndael as the AES algorithm in October, 

2000. The AES algorithm has broad applications, including smart cards and cellular 

phones, WWW servers and automated teller machines (ATMs), and digital video 

recorders. [4] 

1.2 Motivation 

In resent years, security issues on communications are more and more significant 

as the wireless industry explodes. The AES has become an important role in secret-key 

cryptographic systems. As compared to software implementations, the hardware 

implementations of the AES algorithm provide more physical security as well as higher 

speed. AES crypto system needs high throughput. Although the AES hardware for 

embedded system will limit the performance because of its limited instruction set. So 

we will provide a hardware AES design for 32 bits embedded system to increase the 

throughput. And the 『S+Core』 is 32-bit RISC CPU, it established high-efficient 

development platform with integrated software/hardware tools. The 『S+Core』 CPU 

compile AES algorithm to several instructions listed in Fig. 1.2. It cost more than 3000 

cycle count to encrypt a message. We analyze the instructions in detail. Obviously, it 
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takes a lot of time to exchange the data and perform finite field computation. We can 

use hardware to solve this problem. In the design, We make use of 『S+Core』 to finish 

a cryptographic system, flexibility is the advantage. Because the development of 

『S+Core』 is quite complete, it is convenient in replacing the circuit to make use of 

development platform to realize the hardware. Because 『S+Core』 has good user’s 

interface, We devote us to designing the cryptographic systems to work with higher 

speed, alleviate other burdens. 

10% 8%

43%
39%

load & store

arith & logic

shift_rotate

others

 

Figure 1.2   AES instructions of S+Core 

1.3 Organization of this thesis 

This thesis is organized as follows. In Chapter 2, we present the AES algorithm. It 

contains AES basic operations. Chapter 3 shows the proposed architecture of the 

encryption of AES design. In addition, we also introduce the S+Core Platform. The 
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verification method and simulation result will be shown in Chapter 4. We make a brief 

conclusion and future work in the last chapter. 
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Chapter 2  
Algorithm Specification 

In this chapter, the Advanced Encryption Standard (AES) algorithm is described. 

2.1 Advanced Encryption Standard (AES) 

Specification  

The input and output of AES specification is described follow in Table 2.1. For 

the AES algorithm, the length of the input block and the output block is 128 bits, and 

the different key length will execute different iteration count. For key length 128 bits, 

10 iteration is execute, and 12 iteration for 192 bits, 14 iteration for 256 bits. 

Table 2.1   AES specification relations 

In/Output Block Size Key Length Number of Rounds
AES-128 128 bits 128 bits 10
AES-192 128 bits 192 bits 12
AES-256 128 bits 256 bits 14

 

The input – the array of bytes in0, in1, … in15 – is copied into the State array as 

illustrated in Fig. 2.1. The Cipher or Inverse Cipher operations are then conducted on 

this State array, after which its final value is copied to the output – the array of bytes 
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out0, out1, … out15. Roughly, there are 4 kinds of transformation: 

1. Non-linear byte substitution, so called SubBytes(). 

2. Cyclic shift on each row of the State array by different offsets, so called 

ShiftRows(). 

3. Mixing the data within each column of the State array, so called 

MixColumns(). 

4. Adding the round key with the State, so called AddRoundKey(). 

in0 in4 in8 in12
in1 in5 in9 in13
in2 in6 in10 in14
in3 in7 in11 in15

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

out0 out4 out8 out12
out1 out5 out9 out13
out2 out6 out10 out14
out3 out7 out11 out15   

Figure 2.1   State array input and output 

2.1.1 Basic Galois Field Arithmetic 

The basic unit for processing in the AES algorithm is byte, and most operation in 

AES round function is based on GF(28) arithmetic addition and multiplication. The 

addition in GF(28) is defined as XOR operation, but the multiplication between 8 bit 

vector will produce a vector longer than 8 bits which in GF(28). Therefore, the finite 

field multiplication always performs a modular multiplication, that modulo with 

irreducible polynomial after multiplication. For AES, the irreducible polynomial is  

8 4 2( ) 1m x x x x x= + + + +                                          (2.1) 

2.1.2 Composite Field Arithmetic 

Composite filed arithmetic can be employed to reduce the hardware complexity. 
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We call two pairs  

( ) ( ) ( )1

0
2 , , 2nn n i

i ii
GF Q y y q y q GF−

=
= + ∈∑                               (2.2) 

and  

( )( ) ( ) ( )1

0
2 , , 2

m mn m i n
i ii

GF P x x p x p GF−

=
= + ∈∑                           (2.3) 

a composite field [5] if 

 GF(2n) is constructed from GF(2) by Q(y); 

 GF((2n)m) is constructed from GF(2n) by P(x). 

Composite fields will be denoted by GF((2n)m), and a composite field GF((2n)m) is 

isomorphic to the field GF(2k) for k = nm. Additionally, composite fields can be built 

iteratively from lower order fields. For example, the composite field of GF(28) can be 

built iteratively from GF(2) using the following irreducible polynomials [6]: 

( ) ( ) ( )

( ) ( )( ) ( )

( )( ) ( )( ) ( )

2 2
0

22 2 2
1

22 22 2 2
2

2 2 ................................. 1

2 2 ..........................

2 2 ...............

GF GF P x x x

GF GF P x x x

GF GF P x x x

φ

λ

⎧
⎪ ⇒ = + +
⎪
⎪ ⇒ = + +⎨
⎪
⎪ ⎛ ⎞⇒ = + +⎪ ⎜ ⎟

⎝ ⎠⎩

               (2.4) 

Where { }2
10φ = and { }2

1100λ = . Meanwhile, an isomorphic mapping function 

( )f x xδ= ×  and its inverse need to be applied to map the representation of an 

element in GF(28) to its composite field and vice versa. The 8×8 binary matrix δ  are 

decided by the field polynomials of GF(28) and its composite fields. Such a matrix can 

be found by the exhaustive-search-based algorithm in [5]. The δ  matrix 

corresponding to 8 4 3( ) 1p x x x x x= + + + +  and the field polynomials in (2.4) can be 

found as below: 
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1 1 0 0 0 0 1 0
0 1 0 0 1 0 1 0
0 1 1 1 1 0 0 1
0 1 1 0 0 0 1 1
0 1 1 1 0 1 0 1
0 0 1 1 0 1 0 1
0 1 1 1 1 0 1 1
0 0 0 0 0 1 0 1

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                          (2.5) 

2.2 Encryption and Decryption Procedure 

The encryption and decryption procedure are shown in Fig. 2.2. At the beginning 

of encryption procedure, the plain block is XORed with initial round key, by 

AddRoundKey() procedure. After an initial Round Key addition, the State array is 

applied to SubBytes(), ShiftRows(), MixColumns(), and AddRoundKey() for 10, 12, or 

14 times (depending on the key length), with the final round differing slightly from the 

first Nr-1 rounds. The State is only applied to SubBytes(), ShiftRows(), and 

AddRoundKey(), then the cipher block is outputted. Similar to the encryption 

procedure, the decryption is applied to the reverse direction. 
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Figure 2.2   The Procedure of Encryption and Decryption 
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Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)]) 

begin 

   byte state[4,Nb] 

   state = in 

   AddRoundKey(state, w[0, Nb-1])          // See Sec. 2.2.4 

   for round = 1 step 1 to Nr–1 

       SubBytes(state)                        // See Sec. 2.2.1 

       ShiftRows(state)                       // See Sec. 2.2.2 

       MixColumns(state)                      // See Sec. 2.2.3 

       AddRoundKey(state, w[round*Nb, (round+1)*Nb-1]) 

   end for 

   SubBytes(state) 

   ShiftRows(state) 

   AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1]) 

   out = state 

end 

Figure 2.3   Pseudo Code for the Cipher 

InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)]) 

begin 

   byte state[4,Nb] 

   state = in 

   AddRoundKey(state, w[Nr*Nb, (Nr+1)Nb-1])          

   for round = Nr-1 step -1 downto 1 

       InvShiftRows (state)                          

       InvSubBytes (state)                    

       AddRoundKey(state, w[round*Nb, (round+1)*Nb-1]) 

       InvMixColumns(state)                        

   end for 

   InvShiftRows (state) 

   InvSubBytes (state) 

   AddRoundKey(state, w[0, Nb-1]) 

   out = state 

end 

Figure 2.4   Pseudo Code for the Inverse Cipher 
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The Cipher is described in the pseudo code in Fig. 2.3, and the inverse cipher is 

described in the pseudo code in Fig. 2.4. 

2.2.1 SubBytes() and InvSubBytes() Transformation 

The SubBytes() transformation is a non-linear byte substitution that operates 

independently on each byte of the State using a substitution table (S-box). The S-box is 

invertible and consists of two transformations: 

1. Take the multiplicative inverse in the finite field GF(28), the element {00} 

is mapped to itself. Tab. 2.2 shows the multiplicative inverse of {xy}16 

using Equ. 2.1 as the irreducible polynomial. 

2. Apply the following affine transformation (over GF(2)): 

'
i i (i+4)mod8 (i+5)mod8 (i+6)mod8 (i+7)mod8 ib b b b b b c= ⊕ ⊕ ⊕ ⊕ ⊕              (2.6) 

      for 0≦ i＜8, where bi is the ith bit of the byte b, and ci is the ith bit of the 

byte c with the value {63}16 or {01100011}2. 

In matrix form, the affine transformation element of the S-box can be expressed 

as: 

 

 

 

 

 

                                                             (2.7) 

Fig. 2.5 illustrates the effect of the SubBytes() transformation on the State. The 

S-Box used in the SubBytes() transformation is presented in hexadecimal form in Tab. 

'
00

'
11

'
22

'
33

'
44

'
55

'
66

'
77

1 0 0 0 1 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 1 0 0 0 1 1 0
1 1 1 1 0 0 0 1 0
1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 1
0 0 1 1 1 1 1 0 1
0 0 0 1 1 1 1 1 0

bb
bb
bb
bb
bb
bb
bb
bb

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎣ ⎦⎣ ⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦
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2.3. For example, if s1,1 = {53}, then the substitution value would be determined by the 

intersection of the row with index ‘5’ and the column with index ‘3’ in Tab. 2.3. This 

would result in s’1,1 having a value of {ed}. 

Table 2.2   Multiplicative Inverse table for the byte {xy}16 

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 00 01 8d f6 cb 52 7b d1 e8 4f 29 c0 b0 e1 e5 c7
1 74 b4 aa 4b 99 2b 60 5f 58 3f fd cc ff 40 ee b2
2 3a 6e 5a f1 55 4d a8 c9 c1 0a 98 15 30 44 a2 c2
3 2c 45 92 6c f3 39 66 42 f2 35 20 6f 77 bb 59 19
4 1d fd 37 67 2d 31 f5 69 a7 64 ab 13 54 25 e9 09
5 ed 5c 05 ca 4c 24 87 bf 18 3f 22 f0 51 ec 61 17
6 16 5e af d3 49 a6 36 43 f4 47 91 df 33 93 21 3b
7 79 b7 97 85 10 b5 ba 3v b6 70 d0 06 a1 fa 81 82
8 83 7e 7f 80 96 73 be 56 9b 9e 95 d9 f7 02 b9 a4
9 de 6a 32 6d d8 8a 84 72 2a 14 9f 88 f9 dc 89 9a
a fb 7c 2e c3 8f b8 65 48 26 c8 12 4a ce e7 d2 62
b 0c e0 1f ef 11 75 78 71 a5 8e 76 3d bd bc 86 57
c 0b 28 8f a3 da d4 e4 0f a9 27 53 04 1b fc ac e6
d 7a 07 ae 63 c5 db e2 ea 94 8b c4 d5 9d f8 90 6b
e b1 0d d6 eb c6 0e cf ad 08 4e d7 e3 5d 50 1e b3
f 5b 23 38 34 68 46 03 8c dd 9c 7d a0 cd 1a 41 1c

y

x

 

 

Figure 2.5   SubBytes() applies the S-Box to each byte of the State array 

 



 

 14

Table 2.3   S-Box, a substitution table for the byte {xy}16 

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 d2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 1c

y

x

 

InvSubBytes() is the inverse of the byte substitution transformation, in which the 

inverse S-box is applied to each byte of the State. This is obtained by applying the 

inverse of the affine transformation (2.4) followed by taking the multiplicative inverse 

in GF(28). 

The inverse S-box used in the InvSubBytes() transformation is presented in Tab. 

2.4. 

 

 

 

 

 

 

 



 

 15

Table 2.4   Inverse S-Box, a substitution table for the byte {xy}16 

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
5 6c 70 48 50 fd eb b9 da 5e 15 46 57 a7 8d 9d 84
6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

y

x

 

2.2.2 ShiftRows() and InvShiftRows() Transformation 

In the ShiftRows() transformation, the bytes in the last three rows of the State are 

cyclically shifted over different numbers of bytes(offsets). The first row, r = 0, is not 

shifted. 

Specifically, the ShiftRows() transformation proceeds as follows: 

'
, ,( ( , )) modr c r c shift r Nb NbS S +=     for 0 4r< <    and 0 4c≤ <            (2.8) 

Where the shift value shift(r, Nb) depends on the row number, r, as follows: 

( )1, 4 1shift =    ( )2, 4 2shift =    ( )3, 4 3shift =                       (2.9) 

Fig. 2.6 illustrates the ShiftRows() transformation. 
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s3,3s3,2s3,1s3,0

s2,3s2,2s2,1s2,0

s1,3s1,2s1,1s1,0

s0,3s0,2s0,1s0,0

s3,3s3,2s3,1s3,0

s2,3s2,2s2,1s2,0

s1,3s1,2s1,1s1,0

s0,3s0,2s0,1s0,0

s3,2s3,1s3,0s3,3

s2,1s2,0s2,3s2,2

s1,0s1,3s1,2s1,1

s0,3s0,2s0,1s0,0

s3,2s3,1s3,0s3,3

s2,1s2,0s2,3s2,2

s1,0s1,3s1,2s1,1

s0,3s0,2s0,1s0,0

 

Figure 2.6   ShiftRows() operates on the row of the State 

The InvShiftRows() transformation proceeds as follows: 

' '
,( ( , )) mod ,r c shift r Nb Nb r cS S+ =     for 0 4r< <    and 0 4c≤ <          (2.10) 

Fig. 2.7 illustrates the InvShiftRows() transformation. 

s3,3s3,2s3,1s3,0

s2,3s2,2s2,1s2,0

s1,3s1,2s1,1s1,0

s0,3s0,2s0,1s0,0

s3,3s3,2s3,1s3,0

s2,3s2,2s2,1s2,0

s1,3s1,2s1,1s1,0

s0,3s0,2s0,1s0,0

s3,0s3,3s3,2s3,1

s2,1s2,0s2,3s2,2

s1,2s1,1s1,0s1,3

s0,3s0,2s0,1s0,0

s3,0s3,3s3,2s3,1

s2,1s2,0s2,3s2,2

s1,2s1,1s1,0s1,3

s0,3s0,2s0,1s0,0

 

Figure 2.7   InvShiftRows() operates on the row of the State 

2.2.3 MixColumns() and InvMixColumns() 

Transformation 

The MixColumns() transformation takes a linear operation on each column – 

32-bit word of the State. The linear operation treats the column of the State as a 

four-degree polynomial over GF(28) and multiplies the column with a fixed polynomial 

a(x) modulo 4 1x + . The polynomial a(x) is given by 



 

 17

{ } { } { } { }3 2( ) 03 01 01 02a x x x x= + + +                               (2.11) 

The polynomial is co-prime to 4 1x + and therefore is invertible. This operation can 

also be written as a matrix multiplication. Let ( ) ( ) ( )'S x a x s x= ⊗  

0, 0,

1, 1,

2, 2,

3, 3,

' 02 03 01 01
' 01 02 03 01
' 01 01 02 03
' 03 01 01 02

c c

c c

c c

c c

s s
s s
s s
s s

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

                                 (2.12) 

Fig. 2.8 describes the effect of the MixColumns() transformation on the State. The 

elements in column 1 are processed at the same time. After the operation, a(x), the 

results are generated in column 1. 

 

Figure 2.8   MixColumns() operates on each column of the State 

The InvMixColumns() multiplies with the inverse matrix of MixColumns() as 

follow 

0, 0,

1, 1,

2, 2,

3, 3,

' 0 0 0 09
' 09 0 0 0
' 0 09 0 0
' 0 0 09 0

c c

c c

c c

c c

s se b d
s se b d
s sd e b
s sb d e

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

                                (2.13) 
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2.2.4 AddRoundKey() Transformation 

In the AddRoundKey() transformation, a Round Key is added to the State by a 

simple bitwise XOR operation. Each Round Key consists of Nb words from the key 

schedule (described in Sec. 2.3). Those Nb words are each added into the columns of 

the State, such that 

' ' ' '
0, 1, 2, 3, 0, 1, 2, 3,[ , , , ] [ , , , ] [ ]c c c c c c c c round Nb cS S S S S S S S W ∗ += ⊕    for 0 c Nb≤ <    (2.14) 

Where [ ]iw are the key schedule words described in Sec. 2.3, and round is a value 

in the range 0 round Nr≤ ≤ . In the Cipher, the initial Round Key addition occurs when 

round = 0. The application of the AddRoundKey() transformation to the Nr rounds of 

the Cipher occurs when 1 round Nr≤ ≤ .  

The action of this transformation is illustrated in Fig. 2.9, where l round Nb= ∗ .  

S'00 S'02S01 S'03

S'10 S'12S11 S'13

S'20 S'22S21 S'23

S'30 S'32S31 S'33

S'0C

S'1C

S'2C

S'3C

S00 S02S01 S03

S10 S12S11 S13

S20 S22S21 S23

S30 S32S31 S33

S0C

S1C

S2C

S3C

Wl Wl+2 Wl+3Wl+C⊕

l round Nb= ∗

 

Figure 2.9   AddRoundKey() XORs each column of the State with a word  
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2.3 Key Expansion  

The AES algorithm takes the key K, and performs a Key Expansion routine to 

generate a key schedule. The Key Expansion generates a total of Nb(Nr+1) words: the 

algorithm requires an initial set of Nb words, and each of the Nr rounds requires Nb 

words of Key data. The expansion of the input key into the key schedule proceeds 

according to the pseudo code in Fig. 2.10. As the pseudo code goes, there are different 

operations to be performed depending on i. Subword() is a operation, consists of 4 

SubBytes() operations. RotWord() just performs a cyclic shift, word [a0, a1, a2, a3] will 

be shifted as [a1, a2, a3, a0]. The Rcon[i] array, consists of [xi-1, {00}, {00}, {00}], 

where the xi-1 is power of x, with irreducible polynomial ( ) 8 4 3m x =x +x +x +x+1 in 

GF(28). The following word, w[i], is derived from the XOR of the preview word, 

w[i-1], with the word w[i-Nk], which is Nk positions earlier, where Nk means the key 

length in word. For words in positions that are a multiple of Nk, a transformation, 

followed by an XOR with the round constant, Rcon[i], is applied to w[i] prior to the 

XOR with the word w[i-Nk]. This transformation consists of RotWord() and 

SubWord(). 

The Key Expansion routine will produce a key array like upper of Fig. 2.11. 

Whenever the AddRoundKey() routine is invoked, the current index i will increased 4, 

and the four key after index i are used as input of AddRoundKey(), just as illustrated in 

lower of Fig. 2.11. 
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KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk) 

begin 

   word temp 

   i = 0 

   while (i < Nk) 

     w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]) 

     i = i+1 

   end while 

   i = Nk 

   while (i < Nb * (Nr+1)] 

      temp = w[i-1] 

      if (i mod Nk = 0) 

          temp = SubWord(RotWord(temp)) xor Rcon[i/Nk] 

      else if (Nk > 6 and i mod Nk = 4) 

          temp = SubWord(temp) 

      end if 

      w[i] = w[i-Nk] xor temp 

      i = i + 1 

   end while 

end 

Figure 2.10   The pseudo Code of the Key Expansion 

 

Figure 2.11   Round Key Select in 192 bit and 256 bit Key Length 

k0 k1 k2 k3 k4 k5

Round Key 0 Round Key 1 ...

k0 k1 k2 k3 k4 k5 k6 k7

Round Key 0 Round Key 1 ...

k6 k7 k8 k9 k10 k11

k8 k9 k10 k11 k12 k13 k14 k15
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Chapter 3  
AES Design 

In this chapter, we will propose the AES architecture. AES was announced since 

2001. Until now, lots of research had shown their AES implementations in hardware or 

software. In this chapter, we will introduce what is S+Core and how to realize our AES 

architecture. 

This chapter is organized as follows. In section 3.1, consider the system 

requirement, we modify the AES architecture to match the system request, then new 

architecture will be given. In section 3.2, we introduce the overview of S+Core, and 

what is Coprocessor interface (CI). In section 3.3, we present the architecture of the 

AES. 

3.1 AES System Architecture  

At the beginning, we use S+Core’s simulator to process the AES encryption 

procedure, and we find the S+Core’s compiler compile the program inefficient. 

Because the instruction set of S+Core is limited. So, we can use Coprocessor Interface 

to solve this problem. The coprocessor is like we plus an accelerator on the system. We 

will introduce what is S+Core and its Coprocessor Interface in Sec. 3.2. The 

Coprocessor Interface is the I/O device of our AES design. Our core gets the data from 

S+Core and starts to encrypt and decrypt the data through the Coprocessor Interface. 



 

 22

Fig. 3.1 shows the block diagram of our AES architecture by Coprocessor Interface.  

The coprocessor’s general registers receive or transmit data from S+Core only 

when MTC or LDC instruction is executed, and S+Core gets data from the 

coprocessor’s general registers when MFC or STC instruction is executed. Take 

AES-128 for example: First, we give eight MTC or LDC instructions for data and key 

transmitting from CPU’s general registers or memory unit. We will discuss these 

instructions in detail in Sec. 3.2.1.And then we start the AES coprocessor when the 

start signal is assert. Because AES-128 needs 10 cycles to generate the correct cipher, 

we need Freeze signal to stall the CPU, or the cipher will be wrong. When the Ready 

signal is assert which means current data is valid, we can transfer the correct 128-bit 

cipher to coprocessor’s output registers. Finally, we need 4 MFC or STC instructions 

for transmitting the 128 bits cipher to CPU. Fig. 3.2 shows the waveform of AES-128 

encryption. 

 

Figure 3.1   Block diagram of AES architecture by CI 
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CLK

rst

START

DATA & Key

Cipher out

Freeze

Ready
 

Figure 3.2   Waveform of AES-128 encryption 

Because of speed consideration, we insert a pipeline register in the core of AES, 

and Fig. 3.3 shows the block diagram of the core. 

 

Figure 3.3   Pipelined AES core 

3.2 Overview of S+Core Platform 

The S+Core™ [12] is Taiwan's first self-defined 32-bit RISC CPU with 

Sunplus-owned instruction set architecture (ISA). The ISA has 32/16-bit hybrid 
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instruction mode and parallel conditional execution for high code density, high 

performance and versatile application. The micro-architecture includes AMBA bus for 

SoC integration, coprocessor and custom engine interface for function flexibility, and 

SJTAG for efficient debugging and In-Circuit Emulation (ICE).  

The user friendly development environment including S+Core IDE, simulator, 

optimization GNU C/C++ compiler and GDB enable users to develop the high quality 

application in fast time. 

The most important feature of S+Core is that it has Optional customer-defined 

coprocessors. That means we can define a new instruction for some dedicated function. 

Because of that, we can improve the performance of S+Core by customer-defined 

coprocessors. We will introduce how to use Coprocessor Interface in next section. 

3.2.1 Coprocessor Interface (CI) 

The S+Core can plug coprocessor 1~3 for some dedicated function; for example, 

floating pointer device, DSP device. Coprocessor device can plug into S+Core by 

“Coprocessor Interface”. Up to three Coprocessors may be employed on one design. In 

this section, we only discuss the coprocessor interface and coprocessor instruction for 

coprocessor. 

S+Core will issue the instruction to coprocessor by CI in first stage. Coprocessor 

will determine the instruction that belongs to them or not first. And then coprocessor 

will execute the instruction in it. A coprocessor may contain up to 32 general registers. 

Each of these registers is up to 32 bits wide. Typically, programs use the general 

register for loading and storing data on which the coprocessor operates. Data is moved 

to the coprocessor’s general register from the processor’s general registers with the 
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MTCz instruction. Data is moved from the coprocessor’s general register to the 

processor’s general register with the MFCz instruction. Main memory data is loaded 

into or stored from the coprocessor’s general register with the LDCz and STCz 

instructions. Fig. 3.4 shows the interaction of S+Core CPU and coprocessor. 

All coprocessor instructions share one main opcode encoding. There are three 

types of coprocessor instruction: coprocessor register transfer instructions, coprocessor 

data transfer instructions and coprocessor operation instructions. The Sub-OP field 

distinguishes different coprocessor instructions while CP# specifies the coprocessor 

number. Coprocessor register transfer instructions are MTC# (move to coprocessor) 

and MFC# (move from coprocessor). Coprocessor data processing instruction are 

LDC# (coprocessor load) and STC# (coprocessor store). And Fig. 3.5 shows the 

coprocessor instructions format. 

Coprocessor

Pipeline signal

data

Freeze

 

Figure 3.4   Coprocessor Interface 

mtc/mfc OP rD CrA CP# Sub-OP

ldc/stc OP rD CrA CP# Sub-OP

cop OP CrD CrA CrB Cop-Code CP# Sub-OP

0

imm10

 

Figure 3.5   Coprocessor instructions format 
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3.3 Proposed AES Architecture  

Fig. 3.6 shows the architecture of our AES core design. The core is composed of 

three parts, Main function unit, Key Unit, and Control Unit. The Control Unit count the 

different number of count for different key length. And it generates data ready signal 

and busy signal to control the AES architecture. The detail components of the Main 

function Unit will be discussed in Sec. 3.3.1. In our AES design, encryption can run in 

different key length, such as 128, 192, 256-bit key, and we will discuss how the Key 

Unit works in Sec. 3.3.2. 

Main function Unit

Key Unit
Control 

Unit

128 128

CipherMassage

Key
256

128

 

Figure 3.6   Block diagram of the AES 

3.3.1 Efficient implementation of the Function Unit 

Because of speed consideration, we process the 128-bit block message in each 

cycle. The basic architecture unrolls only one full cipher round, and iteratively loops 
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data through this round until the entire encryption is completed. The basic component 

is shown in Fig. 3.7.  

 

Figure 3.7   Main function Unit for encryption 

SubBytes and InvSubBytes Transformation [4] 

The multiplicative inversion in GF(28) involved in the SubBytes is a hardware 

demanding operation, it takes at least 620 gates to implement by repeat multiplications 

in GF(28) [7]. However, the gate count can be reduced greatly by using composite field 

arithmetic. In the SubBytes transformation, using substructure sharing, the isomorphic 

mapping function can be implemented by 12 XOR gates with 4 XOR gates in the 

critical path. Meanwhile, the combined inverse isomorphic mapping and the affine 

transformation can be implemented by 19 XOR gates, and the critical path consists of 

4 XOR gates also. In the composite field GF((24)2), an element can be expressed as 

h ls x s+ , where ( )4, 2h ls s GF∈  and x is a root of P2(x). Using Extended Euclidean 

algorithm, the multiplicative inverse of h ls x s+  modulo P2(x) can be computed as in 

(3.1) 

( ) ( )1
h l h h ls x s s x s x s−+ = Θ + + Θ                                     (3.1) 

where ( ) 12 2
h h l ls s s sλ

−
Θ = + + . The proof of this equation is as follow: 

Proof: The problem of finding the inverse of S(x) = h ls x s+  module 



 

 28

( ) 2
2P x x x λ= + +  is equivalent to finding polynomials A(x) and B(x) satisfying the 

following equation: 

( ) ( ) ( ) ( )2 1A x P x B x S x+ =                                        (3.2) 

The B(x) in (3.2) is the inverse of S(x) module P2(x). Such A(x) and B(x) can be 

found by using the Extended Euclidean Algorithm for one iteration. First, we need to 

rewrite P2(x) in the form of  

( ) ( ) ( ) ( )2P x Q x S x R x= +                                         (3.3) 

where Q(x) and R(x) are the quotient and remainder polynomials of dividing P2(x) by 

S(x), respectively. By long division, it can be derived that 

( ) ( )1 1 11h h l hQ x s x s s s− − −= + +                                         (3.4) 

( ) ( )1 11 h l h lR x s s s sλ − −= + +                                          (3.5) 

Substituting (3.4) and (3.5) into (3.3) and multiplying 2
hs  to both sides of the 

equation, it follow that 

( ) ( )( ) ( ) ( )2 2 2
2h h h l h h l ls P x s x s s S x s s s sλ= + + + + +                       (3.6) 

Multiplying ( ) 12 2
h h l ls s s sλ

−
Θ = + +  to both side of (3.6), we get 

( ) ( )( ) ( )2
2 1h h h ls P x s x s s S xΘ = Θ + + +                                (3.7) 

Since addition and subtraction are the same in the extended field of GF(2), the 

first term on the right side of (3.7) can be moved to the left side. Comparing (3.2) and 

(3.7), it can be observed that  

( ) ( )1
h h lS x s x s s− = Θ + + Θ                                         (3.8) 

According to (3.1), the multiplicative inversion in GF(28) can be carried out in 

GF((24)2) by the architecture illustrated in Fig. 3.8. 



 

 29

 

Figure 3.8   Implementation of the SubBytes Transformation 

 

The SubBytes can be described by 

' 1
, ,i j i jS MS C−= +                                                  (3.9) 

where M is an 8*8 binary matrix, and C is an 8-bit binary vector with only 4 nonzero 

bits. The InvSubBytes performs the following operation on each byte of the State 

( )( ) 1' 1
, ,i j i jS M S C

−
−= +                                           (3.10) 

From (3.10), the InvSubBytes transformation can be implemented according to the 

block diagram illustrated in Fig. 3.9. 

 

Figure 3.9   Block diagram of the InvSubBytes transformation 
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MixColumns and InvMixColumns Transformation 

Various architectures have been proposed for the implementation of the 

MixColumns transformation [6], [8], [9], [10], [11]. Applying substructure sharing both 

to the computation of a byte and between the computation of the four bytes in a 

column of the State, an efficient MixColumns implementation architecture can be 

derived. Particularly, (2.10) can be rewritten as 

'
0, 16 0, 1, 2, 3, 1,

'
1, 16 1, 2, 3, 0, 2,

'
2, 16 2, 3, 0, 1, 3,

'
3, 16 3, 0, 1, 2, 0,

{02} ( ) ( )

{02} ( ) ( )

{02} ( ) ( )

{02} ( ) ( )

c c c c c c

c c c c c c

c c c c c c

c c c c c c

S S S S S S

S S S S S S

S S S S S S

S S S S S S

⎧ = + + + +
⎪

= + + + +⎪
⎨

= + + + +⎪
⎪ = + + + +⎩

                          (3.11) 

According to (3.11), the MixColumns transformation can be implemented by the 

architecture shown in Fig. 3.10. The function of the block “XTime” is to compute 

constant multiplication by {02}16. An element of GF(28) can be expressed in 

polynomial form as 7 6 5 4 3 2
7 6 5 4 3 2 1 0S s x s x s x s x s x s x s x s= + + + + + + + , where 

( )0 1 7, ,..., 2s s s GF∈ , and x is a root of the field polynomial p(x). Then 

{ } 8 7 6 5 4 3 2
7 6 5 4 3 2 1 016

02 S xS s x s x s x s x s x s x s x s x= = + + + + + + +   ( )mod p x  

   ( ) ( ) ( ) ( )7 6 5 4 3 2
6 5 4 3 7 2 7 1 0 7 7s x s x s x s s x s s x s x s s x s= + + + + + + + + + +  

Therefore, the “XTime” block can be implemented by 3 XOR gates with only one 

XOR gate in the critical path. As illustrated in Fig. 3.5, the total number of XOR gates 

for computing one column of the State is 108, and the critical path is 3 XOR gates. The 

InvMixColumns multiplies the input polynomial by constant polynomial: 

( ) ( ) { } { } { } { }1 3 20 0 09 0d x c x b x d x x e−= = + + +                       (3.12) 

The InvMixColumns is far more complex and occupies larger area. A. Satoh et al. 

[6] proposed an implantation based idea. This implementation yields logic 

optimizations since InvMixColumns shares logic resources with MixColumns. 
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We propose a different method for exploring resource sharing. Recall (2.9) and 

(3.12). ( ) ( ) { }01a x d x• = . If we multiply both sides of the equation by d(x) we 

obtain ( ) ( ) ( )2a x d x d x• = , where ( ) { } { }2 204 05d x x= + . Note that two of the 

coefficients of the ( )2d x  are equal to {00}. The MixColumns and InvMixColumns 

can be implemented using shared logic resources as shown in Fig. 3.11. 

S0 S1 S2 S3

XOR XOR XOR XOR

XOR XOR

XOR XOR

XTime XTime XTime XTime

XOR XOR XOR XOR

S3' S0' S1' S2'  

Figure 3.10   Implementation of the MixColumns Transformation 
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( )a x

( )2d x

 

Figure 3.11   Implementation of MixColumns and InvMixcolumns 

3.3.2 Reconfigurable Key Unit 

Fig. 3.12 shows our Key Unit, it is composed of two part, control logic and Key- 

Generator. The KeyGenerator generate the round key for AES encryption every round. 

The counter count 10 rounds for 128-bit key, 12 rounds for 192-bit key and 14 rounds 

for 256-bit key. But we only need 128-bit key in every round, so we use registers to 

store the round key for next round when 192-bit key and 256-bit key scheduling. The 

SBox in KeyGenerator is the same as that in Main Function Unit. And the control logic 

chooses the correct round key for AddRoundKey transformation of Main Function Unit 

in every round. 
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Figure 3.12   Block diagram of Key Unit for Encryption 

The Key Unit for decryption is different with from that for encryption. At first, we 

generate all keys for each round and stored in the STACK. When all key we need for 

decryption is ready, we start to decrypt the cipher. The Fig. 3.13 shows our Key Unit 

for decryption. 

 

Figure 3.13   Block diagram of Key Unit for Decryption 
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Chapter 4  
Simulation and FPGA Verification 

AES arithmetic in hardware and design for embedded system are given in this 

work. This chapter shows the hardware implantation results. The hardware 

implementation results and design flow are described in Sec. 4.1. The RTL synthesizer 

uses Synopsys1 Design Compiler for ASIC. The FPGA verification will discuss in Sec. 

4.2. 

4.1 ASIC Implementation  

Fig. 4.1 illustrates the entire ASIC design and testing flow with various CAD 

(Computer Aided Design) tools. The design is done by pre-layout gate-level simulation 

but the pre-layout simulation can not calculate the circuit speed precisely. The results 

for post-layout gate-level simulation will be worse than the results shown in former. 

 Tab. 4.1 compares our design with other proposed paper. [14] implements the 

SBox using Look-up-Table. [13] uses composite field arithmetic to implement the 

SBox. Our design is 2-stage pipelined. The throughput in 128 bit-key length is 

1.82Gbps. 
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Figure 4.1   ASIC design flow 

Table 4.1   The AES Core Comparison 

Kuo [14] Lai [15] Horng [13] Ours
Technology 0.18 0.25 0.18 0.18
Clock rate  (MHz) 154 125 125 150
Gate count 173K 80K 67.9K 47.5K
Throughput  (Gbps) 1.6 1.454 1.6 1.82
Pipeline stage 1 6 1 2
Key Size All 128 All All
Function E E/D E/D E  

And Tab. 4.2 compares S+Core with AES-128 encryption accelerator and S+Core 
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without AES-128 encryption accelerator. Tab. 4.2 shows the time we need to encrypt 

the first data. We don’t need to spend so much time calculating data as before did. 

Table 4.2   The comparison of S+Core with accelerator and not 

S+Core (without accelerator) 3329 cycles
S+Core (with accelerator) 206 cycles  

4.2 FPGA Verification 

Figure 4.2 illustrates the FPGA design and testing flow in contrast to the ASIC 

design flow. Besides the RTL simulation, we also verified our design by using Field 

Programmable Gate Array (FPGA). Our design is implemented in S+Core, and the 

operation clock rate is about 33MHz. Tab. 4.3 shows the hardware utilization of our 

design. 
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Figure 4.2   FPGA design flow 

Table 4.3   The hardware utilization on S+Core 

Device S+Core
Number of Slice Flip-Flops 20801/93184  (22%)

Number of 4 Input LUT 62400/93184  (66%)
clcok rate 33MHz  
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Chapter 5  
Conclusions 

First, we have proposed an efficient AES design supported 128, 192, and 256 bits 

key length. Because of our real time variable KeyGenerator, we don’t need to store all 

round keys. We only need 10% storage area than others. Second, by implementing the 

multiplicative inverter in composite field, the area cost can be smaller then that in 

Look-up-table (LUT). The whole design area can be also reduced by sharing the 

hardware for encryption and decryption. We also proposed an AES accelerator for 

32-bit Embedded Processors. Third, we extend the instruction set of the processor. 

Because of that, we only need less than 300 cycle count. The processor without 

accelerator needs over 3000 cycle count to process AES encryption. We speed up 10 

times by our design. Besides, from the analysis of various instruction schedules, the 

2-stage pipelined architecture is suitable and efficient for most schedules. The total 

gate count is about 47.5K gates, and maximal throughput is about 1.82Gbps with UMC 

0.18 μm process.  
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