

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

利用 Coprocessor 介面在 32 位元嵌入式系統上

實現加解密加速器

AES Accelerator using Coprocessor Interface on 32-bit

Embedded System

研 究 生：葉 博 元

指導教授：張 錫 嘉 教授

中 華 民 國 九 十 六 年 八 月

利用 Coprocessor 介面在 32 位元嵌入式系統上實現

加解密加速器

AES Accelerator using Coprocessor Interface on 32-bit

Embedded Systems

研 究 生：葉博元 Student：Po-Yuan Yeh

指導教授：張錫嘉 教授 Advisor：Hsie-Chia Chang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Master

in

Electronics Engineering
August 2007

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 六 年 八 月

利用 Coprocessor 介面在 32 位元嵌入式系統上實現

加解密加速器

研究生：葉博元 指導教授：張錫嘉 教授

國立交通大學

電子工程研究所碩士班

摘要

由於 AES 是屬於高速的加解密系統，但是硬體在和 CPU 系統平台整合後會造

成效能降低，因此提高生產率是很重要的。在本論文中，提出利用凌陽科技公司

的產品『S+Core』之系統平台，使用『S+Core』中所提供指令集擴充的功能

Coprocessor 介面來加速 AES 加解密系統，支援鑰匙長度為 128 位元，192 位元

和 256 位元。我們所提供的鑰匙產生單元可以即時產生加密所需的鑰匙，另外我

們提出一套適合用於 Coprocessor 介面的加速硬體單元。我們所提出來的架構基

於 0.18 微米聯華電子(UMC)互補式金氧半導體製程， 我們的硬體設計需要包含

47500 個邏輯閘，產能可達到 1.82Gbps。

AES Accelerator using Coprocessor Interface on

32-bit Embedded Systems

Student：Po-Yuan Yeh Advisor：Hsie-Chia Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

ABSTRACT

AES crypto system needs high-throughput, and hardware implementation for

embedded system will make the performance worse. How to increase the throughput is

very important. In this thesis, we propose instruction-like architecture using

coprocessor interface for AES acceleration on 32-bit embedded system “S+Core”. The

cycle count is reduced from 3329 to 206. Our AES core can operate in 128, 192, and

256 bit key, and the round key is on-the-fly generated. The total gate count is about

47.5K gates, and maximal throughput is about 1.82Gbps with UMC 0.18 μm process.

 誌 謝

兩年多來的碩士研究生涯，即將劃下休止符，心裡真是五味雜陳。相

當珍惜這兩年來在交大學到的研究態度，我想這是我最受用且最珍貴的。

在這期間給予我指導的師長和共同研究的夥伴們令人最為難忘。首先，要

感謝的就是指導教授張錫嘉博士，在這兩年多的時間裡不斷地給我許多專

業的指導，甚至生活上的大小瑣事也都非常關心，這也讓實驗室的研究氣

氛相當好。還有建青學長、彥欽學姊、大頭學長在我研究遇到困難時給我

適時的幫助，也給了我相當多的啟發。再來要感謝已畢業的維均學長、耀

仁學長和允律學長，在我碩一時期帶著我研究密碼學，讓我認識密碼學的

奧妙。還有其他已畢業學長們在學術上給我的建議。此外，要感謝實驗室

裡共同研究的好伙伴，實驗室一姐佳瑋，又會念書又會打球的修齊，博班

高材生國光，碩二才加入的胖達和義凱，幫助我完成論文的大嘴和 Q 毛學

弟，還有實驗室許許多多的學弟們，真的很開心跟你們一起做研究。再來，

我要特別感謝凌陽科技公司給我的一切幫助，感謝梁伯嵩博士，蕭信志學

長，吳政諭學長、林啟民學長和張雅閔學姊的幫助，讓我很快的可以進入

狀況，順利的在凌陽公司所研發的系統平台上做研究。最後要感謝的是我

的家人和女友，感謝他們一直在背後給我莫大的支持與鼓勵，讓我沒有後

顧之憂的專心研究。

 ii

Contents

Chapter 1 Introduction.. 1

1.1 Background... 1

1.2 Motivation... 3

1.3 Organization of this thesis ... 4

Chapter 2 Algorithm Specification ... 6

2.1 Advanced Encryption Standard (AES) Specification 6

2.1.1 Basic Galois Field Arithmetic... 7

2.1.2 Composite Field Arithmetic ... 7

2.2 Encryption and Decryption Procedure .. 9

2.2.1 SubBytes() and InvSubBytes() Transformation 12

2.2.2 ShiftRows() and InvShiftRows() Transformation 15

2.2.3 MixColumns() and InvMixColumns() Transformation........... 16

2.2.4 AddRoundKey() Transformation .. 18

2.3 Key Expansion.. 19

Chapter 3 AES Design ... 21

3.1 AES System Architecture .. 21

3.2 Overview of S+Core Platform ... 23

3.2.1 Coprocessor Interface (CI)... 24

 iii

3.3 Proposed AES Architecture... 26

3.3.1 Efficient implementation of the Function Unit......................... 26

3.3.2 Reconfigurable Key Unit .. 32

Chapter 4 Simulation and FPGA Verification.. 34

4.1 ASIC Implementation.. 34

4.2 FPGA Verification .. 36

Chapter 5 Conclusions... 38

Bibliography ... 39

 iv

List of Figures

Figure 1.1 The Concept of Crypto System.. 2

Figure 1.2 AES instructions of S+Core.. 4

Figure 2.1 State array input and output ... 7

Figure 2.2 The Procedure of Encryption and Decryption............................... 10

Figure 2.3 Pseudo Code for the Cipher..11

Figure 2.4 Pseudo Code for the Inverse Cipher ..11

Figure 2.5 SubBytes() applies the S-Box to each byte of the State array 13

Figure 2.6 ShiftRows() operates on the row of the State.................................. 16

Figure 2.7 InvShiftRows() operates on the row of the State 16

Figure 2.8 MixColumns() operates on each column of the State..................... 17

Figure 2.9 AddRoundKey() XORs each column of the State with a word 18

Figure 2.10 The pseudo Code of the Key Expansion 20

Figure 2.11 Round Key Select in 192 bit and 256 bit Key Length 20

Figure 3.1 Block diagram of AES architecture by CI...................................... 22

Figure 3.2 Waveform of AES-128 encryption... 23

Figure 3.3 Pipelined AES core.. 23

Figure 3.4 Coprocessor Interface... 25

Figure 3.5 Coprocessor instructions format ... 25

 v

Figure 3.6 Block diagram of the AES.. 26

Figure 3.7 Main function Unit for encryption .. 27

Figure 3.8 Implementation of the SubBytes Transformation 29

Figure 3.9 Block diagram of the InvSubBytes transformation....................... 29

Figure 3.10 Implementation of the MixColumns Transformation................. 31

Figure 3.11 Implementation of MixColumns and InvMixcolumns 32

Figure 3.12 Block diagram of Key Unit for Encryption 33

Figure 3.13 Block diagram of Key Unit for Decryption 33

Figure 4.1 ASIC design flow... 35

Figure 4.2 FPGA design flow.. 37

 vi

List of Tables

Table 1.1 Comparable security strength for given cryptography 2

Table 2.1 AES specification relations .. 6

Table 2.2 Multiplicative Inverse table for the byte {xy}16 13

Table 2.3 S-Box, a substitution table for the byte {xy}16 14

Table 2.4 Inverse S-Box, a substitution table for the byte {xy}16.................... 15

Table 4.1 The AES Core Comparison.. 35

Table 4.2 The comparison of S+Core with accelerator and not....................... 36

Table 4.3 The hardware utilization on S+Core ... 37

 1

Chapter 1
Introduction

1.1 Background

The rapidly growth of internet and wireless communication has led to more

requirement on security device to protect the data communication over open channels.

If the hacker gets the message without protection, the message is not secret.

Cryptography [1] is knowledge to research how to avoid that the hacker gets the real

message. The concept of crypto-system illustrated in Fig. 1.1 is used to protect

message transmitted over public channel. Every message is encrypted to cipher text

with Key1 by Host A before transmitted, and decrypted to plain text with Key2 after

received by Host B. According to the Key, two type of crypto-system are classified,

such as symmetric-key or private-Key, and asymmetric-key or public-Key

crypto-system. The symmetric-key crypto-system uses identical key for encryption and

decryption, i.e., Key1 is equal to Key2 or we can get Key2 easily from Key1. DES,

3DES, and AES are symmetric-key algorithms use in symmetric-key crypto-system.

The asymmetric-key crypto-system uses different key when encryption and decryption,

i.e., Key1 is not equal to Key2. RSA and Elliptic Curve are asymmetric-key algorithms

used in symmetric-key crypto-system. All secret-key crypto-systems are based on

substitution and transposition. Substitution means mapping from one field to another

 2

and transposition means replacing the element of the message. Because of that the

hardware of substitution and transposition is very easy, so secret-key crypto-system is

much faster than public-key crypto-system in general. Tab. 1.1 shows each different

parameter size with the same level of security strengths compared with given

cryptography [2]. The f and k are key length of ECC and RSA.

Figure 1.1 The Concept of Crypto System

Table 1.1 Comparable security strength for given cryptography

AES ECC (ECDSA) RSA
 f = 160 - 223 k = 1024

f = 224 - 255 k = 2048
AES-128 f = 256 - 383 k = 3072
AES-192 f = 384 - 511 k = 7680
AES-256 f >512 k = 15360

Advanced Encryption Standard (AES) [3] is a symmetric block cipher

proposed by National Institute Standard Technology (NIST) of United States. In

January, 1997, the NIST announced the start of an initiative to develop a new

encryption standard: the AES. The algorithm should be a symmetric-key block cipher,

and support block size under 128 bits and key sizes under 128, 192, and 256 bits. The

new encryption standard was to become a Federal Information Processing Standard

(FIPS), replacing the old Data Encryption Standard (DES) and triple-DES. Then the

 3

first Advanced Encryption Standard Candidate conference (AES1) was held in Ventura,

California, August, 1998. Fifteen AES algorithms submitted by members of the

cryptographic community around the world were announced in AES1. Five algorithms,

MARS, RC6, Rijndael, Serpent, and Twofish, were selected as the finalist in the

Second Advanced Encryption Standard Candidate conference (AES2), held in Rome,

Italy. Until April, 2000, the Third Advanced Encryption Standard Candidate conference

(AES3), held in New York, invited the submitters in finalist to attend and described

their algorithm. Finally, NIST selected that Rijndael as the AES algorithm in October,

2000. The AES algorithm has broad applications, including smart cards and cellular

phones, WWW servers and automated teller machines (ATMs), and digital video

recorders. [4]

1.2 Motivation

In resent years, security issues on communications are more and more significant

as the wireless industry explodes. The AES has become an important role in secret-key

cryptographic systems. As compared to software implementations, the hardware

implementations of the AES algorithm provide more physical security as well as higher

speed. AES crypto system needs high throughput. Although the AES hardware for

embedded system will limit the performance because of its limited instruction set. So

we will provide a hardware AES design for 32 bits embedded system to increase the

throughput. And the 『S+Core』 is 32-bit RISC CPU, it established high-efficient

development platform with integrated software/hardware tools. The 『S+Core』 CPU

compile AES algorithm to several instructions listed in Fig. 1.2. It cost more than 3000

cycle count to encrypt a message. We analyze the instructions in detail. Obviously, it

 4

takes a lot of time to exchange the data and perform finite field computation. We can

use hardware to solve this problem. In the design, We make use of 『S+Core』 to finish

a cryptographic system, flexibility is the advantage. Because the development of

『S+Core』 is quite complete, it is convenient in replacing the circuit to make use of

development platform to realize the hardware. Because 『S+Core』 has good user’s

interface, We devote us to designing the cryptographic systems to work with higher

speed, alleviate other burdens.

10% 8%

43%
39%

load & store

arith & logic

shift_rotate

others

Figure 1.2 AES instructions of S+Core

1.3 Organization of this thesis

This thesis is organized as follows. In Chapter 2, we present the AES algorithm. It

contains AES basic operations. Chapter 3 shows the proposed architecture of the

encryption of AES design. In addition, we also introduce the S+Core Platform. The

 5

verification method and simulation result will be shown in Chapter 4. We make a brief

conclusion and future work in the last chapter.

 6

Chapter 2
Algorithm Specification

In this chapter, the Advanced Encryption Standard (AES) algorithm is described.

2.1 Advanced Encryption Standard (AES)

Specification

The input and output of AES specification is described follow in Table 2.1. For

the AES algorithm, the length of the input block and the output block is 128 bits, and

the different key length will execute different iteration count. For key length 128 bits,

10 iteration is execute, and 12 iteration for 192 bits, 14 iteration for 256 bits.

Table 2.1 AES specification relations

In/Output Block Size Key Length Number of Rounds
AES-128 128 bits 128 bits 10
AES-192 128 bits 192 bits 12
AES-256 128 bits 256 bits 14

The input – the array of bytes in0, in1, … in15 – is copied into the State array as

illustrated in Fig. 2.1. The Cipher or Inverse Cipher operations are then conducted on

this State array, after which its final value is copied to the output – the array of bytes

 7

out0, out1, … out15. Roughly, there are 4 kinds of transformation:

1. Non-linear byte substitution, so called SubBytes().

2. Cyclic shift on each row of the State array by different offsets, so called

ShiftRows().

3. Mixing the data within each column of the State array, so called

MixColumns().

4. Adding the round key with the State, so called AddRoundKey().

in0 in4 in8 in12
in1 in5 in9 in13
in2 in6 in10 in14
in3 in7 in11 in15

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

out0 out4 out8 out12
out1 out5 out9 out13
out2 out6 out10 out14
out3 out7 out11 out15

Figure 2.1 State array input and output

2.1.1 Basic Galois Field Arithmetic

The basic unit for processing in the AES algorithm is byte, and most operation in

AES round function is based on GF(28) arithmetic addition and multiplication. The

addition in GF(28) is defined as XOR operation, but the multiplication between 8 bit

vector will produce a vector longer than 8 bits which in GF(28). Therefore, the finite

field multiplication always performs a modular multiplication, that modulo with

irreducible polynomial after multiplication. For AES, the irreducible polynomial is

8 4 2() 1m x x x x x= + + + + (2.1)

2.1.2 Composite Field Arithmetic

Composite filed arithmetic can be employed to reduce the hardware complexity.

 8

We call two pairs

() () ()1

0
2 , , 2nn n i

i ii
GF Q y y q y q GF−

=
= + ∈∑ (2.2)

and

()() () ()1

0
2 , , 2

m mn m i n
i ii

GF P x x p x p GF−

=
= + ∈∑ (2.3)

a composite field [5] if

 GF(2n) is constructed from GF(2) by Q(y);

 GF((2n)m) is constructed from GF(2n) by P(x).

Composite fields will be denoted by GF((2n)m), and a composite field GF((2n)m) is

isomorphic to the field GF(2k) for k = nm. Additionally, composite fields can be built

iteratively from lower order fields. For example, the composite field of GF(28) can be

built iteratively from GF(2) using the following irreducible polynomials [6]:

() () ()

() ()() ()

()() ()() ()

2 2
0

22 2 2
1

22 22 2 2
2

2 2 1

2 2

2 2

GF GF P x x x

GF GF P x x x

GF GF P x x x

φ

λ

⎧
⎪ ⇒ = + +
⎪
⎪ ⇒ = + +⎨
⎪
⎪ ⎛ ⎞⇒ = + +⎪ ⎜ ⎟

⎝ ⎠⎩

 (2.4)

Where { }2
10φ = and { }2

1100λ = . Meanwhile, an isomorphic mapping function

()f x xδ= × and its inverse need to be applied to map the representation of an

element in GF(28) to its composite field and vice versa. The 8×8 binary matrix δ are

decided by the field polynomials of GF(28) and its composite fields. Such a matrix can

be found by the exhaustive-search-based algorithm in [5]. The δ matrix

corresponding to 8 4 3() 1p x x x x x= + + + + and the field polynomials in (2.4) can be

found as below:

 9

1 1 0 0 0 0 1 0
0 1 0 0 1 0 1 0
0 1 1 1 1 0 0 1
0 1 1 0 0 0 1 1
0 1 1 1 0 1 0 1
0 0 1 1 0 1 0 1
0 1 1 1 1 0 1 1
0 0 0 0 0 1 0 1

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.5)

2.2 Encryption and Decryption Procedure

The encryption and decryption procedure are shown in Fig. 2.2. At the beginning

of encryption procedure, the plain block is XORed with initial round key, by

AddRoundKey() procedure. After an initial Round Key addition, the State array is

applied to SubBytes(), ShiftRows(), MixColumns(), and AddRoundKey() for 10, 12, or

14 times (depending on the key length), with the final round differing slightly from the

first Nr-1 rounds. The State is only applied to SubBytes(), ShiftRows(), and

AddRoundKey(), then the cipher block is outputted. Similar to the encryption

procedure, the decryption is applied to the reverse direction.

 10

Figure 2.2 The Procedure of Encryption and Decryption

 11

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])

begin

 byte state[4,Nb]

 state = in

 AddRoundKey(state, w[0, Nb-1]) // See Sec. 2.2.4

 for round = 1 step 1 to Nr–1

 SubBytes(state) // See Sec. 2.2.1

 ShiftRows(state) // See Sec. 2.2.2

 MixColumns(state) // See Sec. 2.2.3

 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

 end for

 SubBytes(state)

 ShiftRows(state)

 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])

 out = state

end

Figure 2.3 Pseudo Code for the Cipher

InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])

begin

 byte state[4,Nb]

 state = in

 AddRoundKey(state, w[Nr*Nb, (Nr+1)Nb-1])

 for round = Nr-1 step -1 downto 1

 InvShiftRows (state)

 InvSubBytes (state)

 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

 InvMixColumns(state)

 end for

 InvShiftRows (state)

 InvSubBytes (state)

 AddRoundKey(state, w[0, Nb-1])

 out = state

end

Figure 2.4 Pseudo Code for the Inverse Cipher

 12

The Cipher is described in the pseudo code in Fig. 2.3, and the inverse cipher is

described in the pseudo code in Fig. 2.4.

2.2.1 SubBytes() and InvSubBytes() Transformation

The SubBytes() transformation is a non-linear byte substitution that operates

independently on each byte of the State using a substitution table (S-box). The S-box is

invertible and consists of two transformations:

1. Take the multiplicative inverse in the finite field GF(28), the element {00}

is mapped to itself. Tab. 2.2 shows the multiplicative inverse of {xy}16

using Equ. 2.1 as the irreducible polynomial.

2. Apply the following affine transformation (over GF(2)):

'
i i (i+4)mod8 (i+5)mod8 (i+6)mod8 (i+7)mod8 ib b b b b b c= ⊕ ⊕ ⊕ ⊕ ⊕ (2.6)

 for 0≦ i＜8, where bi is the ith bit of the byte b, and ci is the ith bit of the

byte c with the value {63}16 or {01100011}2.

In matrix form, the affine transformation element of the S-box can be expressed

as:

 (2.7)

Fig. 2.5 illustrates the effect of the SubBytes() transformation on the State. The

S-Box used in the SubBytes() transformation is presented in hexadecimal form in Tab.

'
00

'
11

'
22

'
33

'
44

'
55

'
66

'
77

1 0 0 0 1 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 1 0 0 0 1 1 0
1 1 1 1 0 0 0 1 0
1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 1
0 0 1 1 1 1 1 0 1
0 0 0 1 1 1 1 1 0

bb
bb
bb
bb
bb
bb
bb
bb

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎣ ⎦⎣ ⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 13

2.3. For example, if s1,1 = {53}, then the substitution value would be determined by the

intersection of the row with index ‘5’ and the column with index ‘3’ in Tab. 2.3. This

would result in s’1,1 having a value of {ed}.

Table 2.2 Multiplicative Inverse table for the byte {xy}16

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 00 01 8d f6 cb 52 7b d1 e8 4f 29 c0 b0 e1 e5 c7
1 74 b4 aa 4b 99 2b 60 5f 58 3f fd cc ff 40 ee b2
2 3a 6e 5a f1 55 4d a8 c9 c1 0a 98 15 30 44 a2 c2
3 2c 45 92 6c f3 39 66 42 f2 35 20 6f 77 bb 59 19
4 1d fd 37 67 2d 31 f5 69 a7 64 ab 13 54 25 e9 09
5 ed 5c 05 ca 4c 24 87 bf 18 3f 22 f0 51 ec 61 17
6 16 5e af d3 49 a6 36 43 f4 47 91 df 33 93 21 3b
7 79 b7 97 85 10 b5 ba 3v b6 70 d0 06 a1 fa 81 82
8 83 7e 7f 80 96 73 be 56 9b 9e 95 d9 f7 02 b9 a4
9 de 6a 32 6d d8 8a 84 72 2a 14 9f 88 f9 dc 89 9a
a fb 7c 2e c3 8f b8 65 48 26 c8 12 4a ce e7 d2 62
b 0c e0 1f ef 11 75 78 71 a5 8e 76 3d bd bc 86 57
c 0b 28 8f a3 da d4 e4 0f a9 27 53 04 1b fc ac e6
d 7a 07 ae 63 c5 db e2 ea 94 8b c4 d5 9d f8 90 6b
e b1 0d d6 eb c6 0e cf ad 08 4e d7 e3 5d 50 1e b3
f 5b 23 38 34 68 46 03 8c dd 9c 7d a0 cd 1a 41 1c

y

x

Figure 2.5 SubBytes() applies the S-Box to each byte of the State array

 14

Table 2.3 S-Box, a substitution table for the byte {xy}16

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 d2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 1c

y

x

InvSubBytes() is the inverse of the byte substitution transformation, in which the

inverse S-box is applied to each byte of the State. This is obtained by applying the

inverse of the affine transformation (2.4) followed by taking the multiplicative inverse

in GF(28).

The inverse S-box used in the InvSubBytes() transformation is presented in Tab.

2.4.

 15

Table 2.4 Inverse S-Box, a substitution table for the byte {xy}16

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
5 6c 70 48 50 fd eb b9 da 5e 15 46 57 a7 8d 9d 84
6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

y

x

2.2.2 ShiftRows() and InvShiftRows() Transformation

In the ShiftRows() transformation, the bytes in the last three rows of the State are

cyclically shifted over different numbers of bytes(offsets). The first row, r = 0, is not

shifted.

Specifically, the ShiftRows() transformation proceeds as follows:

'
, ,((,)) modr c r c shift r Nb NbS S += for 0 4r< < and 0 4c≤ < (2.8)

Where the shift value shift(r, Nb) depends on the row number, r, as follows:

()1, 4 1shift = ()2, 4 2shift = ()3, 4 3shift = (2.9)

Fig. 2.6 illustrates the ShiftRows() transformation.

 16

s3,3s3,2s3,1s3,0

s2,3s2,2s2,1s2,0

s1,3s1,2s1,1s1,0

s0,3s0,2s0,1s0,0

s3,3s3,2s3,1s3,0

s2,3s2,2s2,1s2,0

s1,3s1,2s1,1s1,0

s0,3s0,2s0,1s0,0

s3,2s3,1s3,0s3,3

s2,1s2,0s2,3s2,2

s1,0s1,3s1,2s1,1

s0,3s0,2s0,1s0,0

s3,2s3,1s3,0s3,3

s2,1s2,0s2,3s2,2

s1,0s1,3s1,2s1,1

s0,3s0,2s0,1s0,0

Figure 2.6 ShiftRows() operates on the row of the State

The InvShiftRows() transformation proceeds as follows:

' '
,((,)) mod ,r c shift r Nb Nb r cS S+ = for 0 4r< < and 0 4c≤ < (2.10)

Fig. 2.7 illustrates the InvShiftRows() transformation.

s3,3s3,2s3,1s3,0

s2,3s2,2s2,1s2,0

s1,3s1,2s1,1s1,0

s0,3s0,2s0,1s0,0

s3,3s3,2s3,1s3,0

s2,3s2,2s2,1s2,0

s1,3s1,2s1,1s1,0

s0,3s0,2s0,1s0,0

s3,0s3,3s3,2s3,1

s2,1s2,0s2,3s2,2

s1,2s1,1s1,0s1,3

s0,3s0,2s0,1s0,0

s3,0s3,3s3,2s3,1

s2,1s2,0s2,3s2,2

s1,2s1,1s1,0s1,3

s0,3s0,2s0,1s0,0

Figure 2.7 InvShiftRows() operates on the row of the State

2.2.3 MixColumns() and InvMixColumns()

Transformation

The MixColumns() transformation takes a linear operation on each column –

32-bit word of the State. The linear operation treats the column of the State as a

four-degree polynomial over GF(28) and multiplies the column with a fixed polynomial

a(x) modulo 4 1x + . The polynomial a(x) is given by

 17

{ } { } { } { }3 2() 03 01 01 02a x x x x= + + + (2.11)

The polynomial is co-prime to 4 1x + and therefore is invertible. This operation can

also be written as a matrix multiplication. Let () () ()'S x a x s x= ⊗

0, 0,

1, 1,

2, 2,

3, 3,

' 02 03 01 01
' 01 02 03 01
' 01 01 02 03
' 03 01 01 02

c c

c c

c c

c c

s s
s s
s s
s s

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.12)

Fig. 2.8 describes the effect of the MixColumns() transformation on the State. The

elements in column 1 are processed at the same time. After the operation, a(x), the

results are generated in column 1.

Figure 2.8 MixColumns() operates on each column of the State

The InvMixColumns() multiplies with the inverse matrix of MixColumns() as

follow

0, 0,

1, 1,

2, 2,

3, 3,

' 0 0 0 09
' 09 0 0 0
' 0 09 0 0
' 0 0 09 0

c c

c c

c c

c c

s se b d
s se b d
s sd e b
s sb d e

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.13)

 18

2.2.4 AddRoundKey() Transformation

In the AddRoundKey() transformation, a Round Key is added to the State by a

simple bitwise XOR operation. Each Round Key consists of Nb words from the key

schedule (described in Sec. 2.3). Those Nb words are each added into the columns of

the State, such that

' ' ' '
0, 1, 2, 3, 0, 1, 2, 3,[, , ,] [, , ,] []c c c c c c c c round Nb cS S S S S S S S W ∗ += ⊕ for 0 c Nb≤ < (2.14)

Where []iw are the key schedule words described in Sec. 2.3, and round is a value

in the range 0 round Nr≤ ≤ . In the Cipher, the initial Round Key addition occurs when

round = 0. The application of the AddRoundKey() transformation to the Nr rounds of

the Cipher occurs when 1 round Nr≤ ≤ .

The action of this transformation is illustrated in Fig. 2.9, where l round Nb= ∗ .

S'00 S'02S01 S'03

S'10 S'12S11 S'13

S'20 S'22S21 S'23

S'30 S'32S31 S'33

S'0C

S'1C

S'2C

S'3C

S00 S02S01 S03

S10 S12S11 S13

S20 S22S21 S23

S30 S32S31 S33

S0C

S1C

S2C

S3C

Wl Wl+2 Wl+3Wl+C⊕

l round Nb= ∗

Figure 2.9 AddRoundKey() XORs each column of the State with a word

 19

2.3 Key Expansion

The AES algorithm takes the key K, and performs a Key Expansion routine to

generate a key schedule. The Key Expansion generates a total of Nb(Nr+1) words: the

algorithm requires an initial set of Nb words, and each of the Nr rounds requires Nb

words of Key data. The expansion of the input key into the key schedule proceeds

according to the pseudo code in Fig. 2.10. As the pseudo code goes, there are different

operations to be performed depending on i. Subword() is a operation, consists of 4

SubBytes() operations. RotWord() just performs a cyclic shift, word [a0, a1, a2, a3] will

be shifted as [a1, a2, a3, a0]. The Rcon[i] array, consists of [xi-1, {00}, {00}, {00}],

where the xi-1 is power of x, with irreducible polynomial () 8 4 3m x =x +x +x +x+1 in

GF(28). The following word, w[i], is derived from the XOR of the preview word,

w[i-1], with the word w[i-Nk], which is Nk positions earlier, where Nk means the key

length in word. For words in positions that are a multiple of Nk, a transformation,

followed by an XOR with the round constant, Rcon[i], is applied to w[i] prior to the

XOR with the word w[i-Nk]. This transformation consists of RotWord() and

SubWord().

The Key Expansion routine will produce a key array like upper of Fig. 2.11.

Whenever the AddRoundKey() routine is invoked, the current index i will increased 4,

and the four key after index i are used as input of AddRoundKey(), just as illustrated in

lower of Fig. 2.11.

 20

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)

begin

 word temp

 i = 0

 while (i < Nk)

 w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])

 i = i+1

 end while

 i = Nk

 while (i < Nb * (Nr+1)]

 temp = w[i-1]

 if (i mod Nk = 0)

 temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]

 else if (Nk > 6 and i mod Nk = 4)

 temp = SubWord(temp)

 end if

 w[i] = w[i-Nk] xor temp

 i = i + 1

 end while

end

Figure 2.10 The pseudo Code of the Key Expansion

Figure 2.11 Round Key Select in 192 bit and 256 bit Key Length

k0 k1 k2 k3 k4 k5

Round Key 0 Round Key 1 ...

k0 k1 k2 k3 k4 k5 k6 k7

Round Key 0 Round Key 1 ...

k6 k7 k8 k9 k10 k11

k8 k9 k10 k11 k12 k13 k14 k15

 21

Chapter 3
AES Design

In this chapter, we will propose the AES architecture. AES was announced since

2001. Until now, lots of research had shown their AES implementations in hardware or

software. In this chapter, we will introduce what is S+Core and how to realize our AES

architecture.

This chapter is organized as follows. In section 3.1, consider the system

requirement, we modify the AES architecture to match the system request, then new

architecture will be given. In section 3.2, we introduce the overview of S+Core, and

what is Coprocessor interface (CI). In section 3.3, we present the architecture of the

AES.

3.1 AES System Architecture

At the beginning, we use S+Core’s simulator to process the AES encryption

procedure, and we find the S+Core’s compiler compile the program inefficient.

Because the instruction set of S+Core is limited. So, we can use Coprocessor Interface

to solve this problem. The coprocessor is like we plus an accelerator on the system. We

will introduce what is S+Core and its Coprocessor Interface in Sec. 3.2. The

Coprocessor Interface is the I/O device of our AES design. Our core gets the data from

S+Core and starts to encrypt and decrypt the data through the Coprocessor Interface.

 22

Fig. 3.1 shows the block diagram of our AES architecture by Coprocessor Interface.

The coprocessor’s general registers receive or transmit data from S+Core only

when MTC or LDC instruction is executed, and S+Core gets data from the

coprocessor’s general registers when MFC or STC instruction is executed. Take

AES-128 for example: First, we give eight MTC or LDC instructions for data and key

transmitting from CPU’s general registers or memory unit. We will discuss these

instructions in detail in Sec. 3.2.1.And then we start the AES coprocessor when the

start signal is assert. Because AES-128 needs 10 cycles to generate the correct cipher,

we need Freeze signal to stall the CPU, or the cipher will be wrong. When the Ready

signal is assert which means current data is valid, we can transfer the correct 128-bit

cipher to coprocessor’s output registers. Finally, we need 4 MFC or STC instructions

for transmitting the 128 bits cipher to CPU. Fig. 3.2 shows the waveform of AES-128

encryption.

Figure 3.1 Block diagram of AES architecture by CI

 23

CLK

rst

START

DATA & Key

Cipher out

Freeze

Ready

Figure 3.2 Waveform of AES-128 encryption

Because of speed consideration, we insert a pipeline register in the core of AES,

and Fig. 3.3 shows the block diagram of the core.

Figure 3.3 Pipelined AES core

3.2 Overview of S+Core Platform

The S+Core™ [12] is Taiwan's first self-defined 32-bit RISC CPU with

Sunplus-owned instruction set architecture (ISA). The ISA has 32/16-bit hybrid

 24

instruction mode and parallel conditional execution for high code density, high

performance and versatile application. The micro-architecture includes AMBA bus for

SoC integration, coprocessor and custom engine interface for function flexibility, and

SJTAG for efficient debugging and In-Circuit Emulation (ICE).

The user friendly development environment including S+Core IDE, simulator,

optimization GNU C/C++ compiler and GDB enable users to develop the high quality

application in fast time.

The most important feature of S+Core is that it has Optional customer-defined

coprocessors. That means we can define a new instruction for some dedicated function.

Because of that, we can improve the performance of S+Core by customer-defined

coprocessors. We will introduce how to use Coprocessor Interface in next section.

3.2.1 Coprocessor Interface (CI)

The S+Core can plug coprocessor 1~3 for some dedicated function; for example,

floating pointer device, DSP device. Coprocessor device can plug into S+Core by

“Coprocessor Interface”. Up to three Coprocessors may be employed on one design. In

this section, we only discuss the coprocessor interface and coprocessor instruction for

coprocessor.

S+Core will issue the instruction to coprocessor by CI in first stage. Coprocessor

will determine the instruction that belongs to them or not first. And then coprocessor

will execute the instruction in it. A coprocessor may contain up to 32 general registers.

Each of these registers is up to 32 bits wide. Typically, programs use the general

register for loading and storing data on which the coprocessor operates. Data is moved

to the coprocessor’s general register from the processor’s general registers with the

 25

MTCz instruction. Data is moved from the coprocessor’s general register to the

processor’s general register with the MFCz instruction. Main memory data is loaded

into or stored from the coprocessor’s general register with the LDCz and STCz

instructions. Fig. 3.4 shows the interaction of S+Core CPU and coprocessor.

All coprocessor instructions share one main opcode encoding. There are three

types of coprocessor instruction: coprocessor register transfer instructions, coprocessor

data transfer instructions and coprocessor operation instructions. The Sub-OP field

distinguishes different coprocessor instructions while CP# specifies the coprocessor

number. Coprocessor register transfer instructions are MTC# (move to coprocessor)

and MFC# (move from coprocessor). Coprocessor data processing instruction are

LDC# (coprocessor load) and STC# (coprocessor store). And Fig. 3.5 shows the

coprocessor instructions format.

Coprocessor

Pipeline signal

data

Freeze

Figure 3.4 Coprocessor Interface

mtc/mfc OP rD CrA CP# Sub-OP

ldc/stc OP rD CrA CP# Sub-OP

cop OP CrD CrA CrB Cop-Code CP# Sub-OP

0

imm10

Figure 3.5 Coprocessor instructions format

 26

3.3 Proposed AES Architecture

Fig. 3.6 shows the architecture of our AES core design. The core is composed of

three parts, Main function unit, Key Unit, and Control Unit. The Control Unit count the

different number of count for different key length. And it generates data ready signal

and busy signal to control the AES architecture. The detail components of the Main

function Unit will be discussed in Sec. 3.3.1. In our AES design, encryption can run in

different key length, such as 128, 192, 256-bit key, and we will discuss how the Key

Unit works in Sec. 3.3.2.

Main function Unit

Key Unit
Control

Unit

128 128

CipherMassage

Key
256

128

Figure 3.6 Block diagram of the AES

3.3.1 Efficient implementation of the Function Unit

Because of speed consideration, we process the 128-bit block message in each

cycle. The basic architecture unrolls only one full cipher round, and iteratively loops

 27

data through this round until the entire encryption is completed. The basic component

is shown in Fig. 3.7.

Figure 3.7 Main function Unit for encryption

SubBytes and InvSubBytes Transformation [4]

The multiplicative inversion in GF(28) involved in the SubBytes is a hardware

demanding operation, it takes at least 620 gates to implement by repeat multiplications

in GF(28) [7]. However, the gate count can be reduced greatly by using composite field

arithmetic. In the SubBytes transformation, using substructure sharing, the isomorphic

mapping function can be implemented by 12 XOR gates with 4 XOR gates in the

critical path. Meanwhile, the combined inverse isomorphic mapping and the affine

transformation can be implemented by 19 XOR gates, and the critical path consists of

4 XOR gates also. In the composite field GF((24)2), an element can be expressed as

h ls x s+ , where ()4, 2h ls s GF∈ and x is a root of P2(x). Using Extended Euclidean

algorithm, the multiplicative inverse of h ls x s+ modulo P2(x) can be computed as in

(3.1)

() ()1
h l h h ls x s s x s x s−+ = Θ + + Θ (3.1)

where () 12 2
h h l ls s s sλ

−
Θ = + + . The proof of this equation is as follow:

Proof: The problem of finding the inverse of S(x) = h ls x s+ module

 28

() 2
2P x x x λ= + + is equivalent to finding polynomials A(x) and B(x) satisfying the

following equation:

() () () ()2 1A x P x B x S x+ = (3.2)

The B(x) in (3.2) is the inverse of S(x) module P2(x). Such A(x) and B(x) can be

found by using the Extended Euclidean Algorithm for one iteration. First, we need to

rewrite P2(x) in the form of

() () () ()2P x Q x S x R x= + (3.3)

where Q(x) and R(x) are the quotient and remainder polynomials of dividing P2(x) by

S(x), respectively. By long division, it can be derived that

() ()1 1 11h h l hQ x s x s s s− − −= + + (3.4)

() ()1 11 h l h lR x s s s sλ − −= + + (3.5)

Substituting (3.4) and (3.5) into (3.3) and multiplying 2
hs to both sides of the

equation, it follow that

() ()() () ()2 2 2
2h h h l h h l ls P x s x s s S x s s s sλ= + + + + + (3.6)

Multiplying () 12 2
h h l ls s s sλ

−
Θ = + + to both side of (3.6), we get

() ()() ()2
2 1h h h ls P x s x s s S xΘ = Θ + + + (3.7)

Since addition and subtraction are the same in the extended field of GF(2), the

first term on the right side of (3.7) can be moved to the left side. Comparing (3.2) and

(3.7), it can be observed that

() ()1
h h lS x s x s s− = Θ + + Θ (3.8)

According to (3.1), the multiplicative inversion in GF(28) can be carried out in

GF((24)2) by the architecture illustrated in Fig. 3.8.

 29

Figure 3.8 Implementation of the SubBytes Transformation

The SubBytes can be described by

' 1
, ,i j i jS MS C−= + (3.9)

where M is an 8*8 binary matrix, and C is an 8-bit binary vector with only 4 nonzero

bits. The InvSubBytes performs the following operation on each byte of the State

()() 1' 1
, ,i j i jS M S C

−
−= + (3.10)

From (3.10), the InvSubBytes transformation can be implemented according to the

block diagram illustrated in Fig. 3.9.

Figure 3.9 Block diagram of the InvSubBytes transformation

 30

MixColumns and InvMixColumns Transformation

Various architectures have been proposed for the implementation of the

MixColumns transformation [6], [8], [9], [10], [11]. Applying substructure sharing both

to the computation of a byte and between the computation of the four bytes in a

column of the State, an efficient MixColumns implementation architecture can be

derived. Particularly, (2.10) can be rewritten as

'
0, 16 0, 1, 2, 3, 1,

'
1, 16 1, 2, 3, 0, 2,

'
2, 16 2, 3, 0, 1, 3,

'
3, 16 3, 0, 1, 2, 0,

{02} () ()

{02} () ()

{02} () ()

{02} () ()

c c c c c c

c c c c c c

c c c c c c

c c c c c c

S S S S S S

S S S S S S

S S S S S S

S S S S S S

⎧ = + + + +
⎪

= + + + +⎪
⎨

= + + + +⎪
⎪ = + + + +⎩

 (3.11)

According to (3.11), the MixColumns transformation can be implemented by the

architecture shown in Fig. 3.10. The function of the block “XTime” is to compute

constant multiplication by {02}16. An element of GF(28) can be expressed in

polynomial form as 7 6 5 4 3 2
7 6 5 4 3 2 1 0S s x s x s x s x s x s x s x s= + + + + + + + , where

()0 1 7, ,..., 2s s s GF∈ , and x is a root of the field polynomial p(x). Then

{ } 8 7 6 5 4 3 2
7 6 5 4 3 2 1 016

02 S xS s x s x s x s x s x s x s x s x= = + + + + + + + ()mod p x

 () () () ()7 6 5 4 3 2
6 5 4 3 7 2 7 1 0 7 7s x s x s x s s x s s x s x s s x s= + + + + + + + + + +

Therefore, the “XTime” block can be implemented by 3 XOR gates with only one

XOR gate in the critical path. As illustrated in Fig. 3.5, the total number of XOR gates

for computing one column of the State is 108, and the critical path is 3 XOR gates. The

InvMixColumns multiplies the input polynomial by constant polynomial:

() () { } { } { } { }1 3 20 0 09 0d x c x b x d x x e−= = + + + (3.12)

The InvMixColumns is far more complex and occupies larger area. A. Satoh et al.

[6] proposed an implantation based idea. This implementation yields logic

optimizations since InvMixColumns shares logic resources with MixColumns.

 31

We propose a different method for exploring resource sharing. Recall (2.9) and

(3.12). () () { }01a x d x• = . If we multiply both sides of the equation by d(x) we

obtain () () ()2a x d x d x• = , where () { } { }2 204 05d x x= + . Note that two of the

coefficients of the ()2d x are equal to {00}. The MixColumns and InvMixColumns

can be implemented using shared logic resources as shown in Fig. 3.11.

S0 S1 S2 S3

XOR XOR XOR XOR

XOR XOR

XOR XOR

XTime XTime XTime XTime

XOR XOR XOR XOR

S3' S0' S1' S2'

Figure 3.10 Implementation of the MixColumns Transformation

 32

()a x

()2d x

Figure 3.11 Implementation of MixColumns and InvMixcolumns

3.3.2 Reconfigurable Key Unit

Fig. 3.12 shows our Key Unit, it is composed of two part, control logic and Key-

Generator. The KeyGenerator generate the round key for AES encryption every round.

The counter count 10 rounds for 128-bit key, 12 rounds for 192-bit key and 14 rounds

for 256-bit key. But we only need 128-bit key in every round, so we use registers to

store the round key for next round when 192-bit key and 256-bit key scheduling. The

SBox in KeyGenerator is the same as that in Main Function Unit. And the control logic

chooses the correct round key for AddRoundKey transformation of Main Function Unit

in every round.

 33

Figure 3.12 Block diagram of Key Unit for Encryption

The Key Unit for decryption is different with from that for encryption. At first, we

generate all keys for each round and stored in the STACK. When all key we need for

decryption is ready, we start to decrypt the cipher. The Fig. 3.13 shows our Key Unit

for decryption.

Figure 3.13 Block diagram of Key Unit for Decryption

 34

Chapter 4
Simulation and FPGA Verification

AES arithmetic in hardware and design for embedded system are given in this

work. This chapter shows the hardware implantation results. The hardware

implementation results and design flow are described in Sec. 4.1. The RTL synthesizer

uses Synopsys1 Design Compiler for ASIC. The FPGA verification will discuss in Sec.

4.2.

4.1 ASIC Implementation

Fig. 4.1 illustrates the entire ASIC design and testing flow with various CAD

(Computer Aided Design) tools. The design is done by pre-layout gate-level simulation

but the pre-layout simulation can not calculate the circuit speed precisely. The results

for post-layout gate-level simulation will be worse than the results shown in former.

 Tab. 4.1 compares our design with other proposed paper. [14] implements the

SBox using Look-up-Table. [13] uses composite field arithmetic to implement the

SBox. Our design is 2-stage pipelined. The throughput in 128 bit-key length is

1.82Gbps.

 35

Figure 4.1 ASIC design flow

Table 4.1 The AES Core Comparison

Kuo [14] Lai [15] Horng [13] Ours
Technology 0.18 0.25 0.18 0.18
Clock rate (MHz) 154 125 125 150
Gate count 173K 80K 67.9K 47.5K
Throughput (Gbps) 1.6 1.454 1.6 1.82
Pipeline stage 1 6 1 2
Key Size All 128 All All
Function E E/D E/D E

And Tab. 4.2 compares S+Core with AES-128 encryption accelerator and S+Core

 36

without AES-128 encryption accelerator. Tab. 4.2 shows the time we need to encrypt

the first data. We don’t need to spend so much time calculating data as before did.

Table 4.2 The comparison of S+Core with accelerator and not

S+Core (without accelerator) 3329 cycles
S+Core (with accelerator) 206 cycles

4.2 FPGA Verification

Figure 4.2 illustrates the FPGA design and testing flow in contrast to the ASIC

design flow. Besides the RTL simulation, we also verified our design by using Field

Programmable Gate Array (FPGA). Our design is implemented in S+Core, and the

operation clock rate is about 33MHz. Tab. 4.3 shows the hardware utilization of our

design.

 37

Figure 4.2 FPGA design flow

Table 4.3 The hardware utilization on S+Core

Device S+Core
Number of Slice Flip-Flops 20801/93184 (22%)

Number of 4 Input LUT 62400/93184 (66%)
clcok rate 33MHz

 38

Chapter 5
Conclusions

First, we have proposed an efficient AES design supported 128, 192, and 256 bits

key length. Because of our real time variable KeyGenerator, we don’t need to store all

round keys. We only need 10% storage area than others. Second, by implementing the

multiplicative inverter in composite field, the area cost can be smaller then that in

Look-up-table (LUT). The whole design area can be also reduced by sharing the

hardware for encryption and decryption. We also proposed an AES accelerator for

32-bit Embedded Processors. Third, we extend the instruction set of the processor.

Because of that, we only need less than 300 cycle count. The processor without

accelerator needs over 3000 cycle count to process AES encryption. We speed up 10

times by our design. Besides, from the analysis of various instruction schedules, the

2-stage pipelined architecture is suitable and efficient for most schedules. The total

gate count is about 47.5K gates, and maximal throughput is about 1.82Gbps with UMC

0.18 μm process.

 39

Bibliography

[1] W. Stallings, Cryptography and Network Security: Principles and Practice.

Prentice Hall, 2002.

[2] Recommendation on Key Management, NIST Special Publications Std. 800-57,

2005.

[3] J. Daemen and V. Rijmen, AES Proposal: Rijndael, AES Algorithm Submission,

September 3, 1999.

[4] X. Zhang, K. K. Parhi, “High-speed VLSI Architectures for the AES algorithm,”

IEEE Trans. On VLSI Systems, vol. 12, no. 9, pp. 957-967, 2004.

[5] C. Paar, “Efficient VLSI architecture for bit-parallel computations in Galois field,”

Ph.D. dissertation, Institute for Experimental Mathematics, University of Essen,

Essen, Germany, 1994.

[6] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact Rijndael hardware

architecture with S-Box optimization,” in Proc. ASIACRYPT 2001, Gold Coast,

Australia, Dec. 2000, pp. 239-254.

[7] M. H. Jing, Y. H. Chen, Y. T. Chang, and C. H. Hsu, “The design of a fast inverse

module in AES,” in Proc. Int. Conf. Info-Tech and Info-Net, vol. 3, Beijing,

China, Nov. 2001, pp. 298–303.

[8] V. Fischer and M. Drutarovsky, “Two methods of Rijndael implementation in

reconfigurable hardware,” in Proc. CHES 2001, Paris, France, May 2001, pp.

77–92.

 40

[9] H. Kuo and I. Verbauwhede, “Architectural optimization for a 1.82 Gbits/sec VLSI

implementation of the AES Rijndael algorithm,” in Proc. Cryptographic

Hardware and Embedded Systems (CHES) 2001, Paris, France, May 2001, pp.

51–64.

[10] C. C. Lu and S. Y. Tseng, “Integrated design of AES (advanced encryption

standard) encrypter and decrypter,” in Proc. IEEE Int. Conf. Application Specific

Systems, Architectures Processors, 2002, pp. 277–285.

[11] X. Zhang and K. K. Parhi, “Implementation approaches for the advanced

encryption standard algorithm,” IEEE Circuits Syst. Mag., vol. 2, no. 4, pp.

24–46, 2002.

[12] http://w3.sunplus.com/products/S%2Bcore.asp

[13] C. L. Horng, “An AES cipher chip design using on-the fly key scheduler”, Master

Thesis, Dept. Electrical Engineering, National Tsing Hua University, Hsinchu,

Taiwan, June 2004.

[14] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and performance testing of a

2.29Gb/s Rijndael Processor”, IEEE Jour. of Solid-State Circuits, vol. 38, no. 3,

March 2003, pp. 569-572, 2003.

[15] Y. K. Lai, L. C. Chang, L. F. Chen, C. C. Chou, and C. W. Chiu, “A novel

memory less AES cipher architecture for networking applications”, in Proc.

IEEE Circuit and Systems Symp, May 2004.

 41

About the Author

姓 名：葉博元 Po-Yuan Yeh

出 生 地：台北市

出生日期：1982. 11. 09

學 歷：

1989. 9 ~ 1995. 6 台北市立康寧國民小學

1995. 9 ~ 1998. 6 台北市立三民國民中學

1998. 9 ~ 2001. 6 國立台北師大附中

2001. 9 ~ 2005. 6 國立中正大學 電機工程學系 學士

2005. 9 ~ 2007. 8 國立交通大學 電子研究所系統組

