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Abstract

OFDMA (orthogonal frequency division multiple access) technique has drawn
much interest recently in the mobile transmission environment and been successfully
applied to a wide variety of digital communications applications over the past several
years. One of the main reason to use OFDMA is its robustness against frequency
selective fading and narrowband interference. We focus on the OFDMA uplink and
downlink channel estimation based on IEEE 802.16e. We also implement these
channel estimation schemes on Texas Instruments’ TMS320C6416 digital signal
processor (DSP) housed on Sundance board.

The channel estimation schemes can be separated into three steps. First, we use
LS estimator on pilot subcarriers because of its low computational complexity.

Second, we estimate the channel response on data subcarriers using linear



interpolation in the frequency domain. Finally we try time averaging technique to
improve the performance in the time domain. We verify our simulation model on
AWGN channel and then do the simulation on SUI-2 and SUI-3 multipath channels.

In uplink transmission, we propose the tile linear interpolation and as for
downlink, we use the 2-point, 4-point and advanced 4-point cluster linear
interpolation. In order to increase the efficiency on DSP, we rewrite the floating-point
C program to fixed-point version and further refine our codes by considering the
features of the DSP chip.

In this thesis, we first introduce the standard of the IEEE 802.16e OFDMA
uplink and downlink and the DSP implementation.environment . Then we describe the
channel estimation methods.we use and .discuss: the performance and the DSP

implementation results in each transmission condition.
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Chapter 1

Introduction

Orthogonal frequency division multiple access (OFDMA) has emerged as one of the prime
multiple access schemes for broadbandswireless networks (e.g., IEEE 802.16 Mobile WiMAX,
DVB-RCA, etc.). As a special casé of multicarrier multiple access schemes, OFDMA exclu-
sively assigns each subchannel to-only one user,-€liminating the intra-cell interference (ICI).
For fixed or portable applications.where. the frequency selective channels are slowly varying,
an intrinsic advantage of OFDMA fs its. capability te exploit the so-called multiuser diver-
sity embedded in multipath channels. Furthermore, OFDMA has the merit of easy decoding
at the receiver side due to the absence of ICI. Other advantages of OFDMA include finer
granularity and better link budget [1]. OFDMA can be easily generated using an inverse

fast Fourier transform (IFFT) and received using a fast Fourier transform (FFT).

The IEEE 802.16 standard committee has developed a group of standards for wireless
metropolitan area networks (MANs). OFDMA is used in the 2 to 11 GHz Fixed Wireless
Access (FWA) systems. IEEE 802.16 has developed the IEEE Standard 802.16-2004 for
broadband wireless access systems, which provides a variety of services to fixed outdoor as
well as nomadic indoor users. The 802.16e is designed to support terminal mobility, and

currently it aims to serve terminals with a speed of 120 km/hr [2].



This thesis focuses on the channel estimation part for WirelessMAN-OFDMA in both
uplink and downlink transmission, and it is organized as follows. First, in chapter 2, we
introduce some OFDMA basics in the IEEE 802.16e OFDMA uplink and downlink standard.
In chapter 3, we describe the implementation platform, which consists of Texas Instrument’s
TMS320C6416 digital signal processor (DSP) on a Sundance Carrier board. In chapter 4,
the various channel estimation techniques are introduced and we discuss the performance of
channel estimation methods in uplink transmission and some DSP implementation issues.
In chapter 5, we propose several methods for downlink, compare the performance of each
method and also give some DSP implementation issues. At last, we mention the conclusion

and give some potential future work in chapter 6.



Chapter 2

Introduction to IEEE802.16e OFDMA

We first give the basic concept of the OFDMA techniques for multicarrier modulation. The

downlink and uplink specifications of HEEE 802.16¢ are introduced afterward.

2.1 Overview of OFDMA [3]; [4]

Orthogonal frequency-division multiplea¢eess (OFDMA) is being considered to be the mul-
tiple access scheme for future wireless systems; e.g., WiMAX or fourth-generation (4G)
broadband wireless networks. In an OFDMA system, several users simultaneously transmit
their data by modulating an exclusive set of orthogonal subcarriers, thus each user’s sig-
nal can be separated easily in the frequency domain. One typical structure is the subband
OFDMA, which divides all available subcarriers into a number of subbands. Each user is
allowed to use one available subband for the data transmission. Pilot symbols are employed
for the estimation of channel state information (CSI) within the subband. Furthermore,
robustness to narrowband interference and dynamic channel assignment are other two ad-
vantages of OFDMA systems. Figure 2.1 shows an OFDMA network in which active users

simultaneously communicate with the base station (BS).
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Figure 2.1: Discrete-time model of the baseband OFDMA system (from/[3]).

2.1.1 Cyclic Prefix

Cyclic prefix (CP) is used to overeome the intersymbol and interchannel interference prob-
lems. The multiuser channel is assimed to be substantially invariant within one-block (or
-symbol) duration. The symbol timing mismatch is assumed to be smaller than the CP

duration. In this scenario, users do not interfere each other in the frequency domain.

A CP is a copy of the last part of the OFDMA symbol (see Fig. 2.2). A copy of the last
T, of the useful symbol period, termed CP, is used to collect multipath while maintaining the
orthogonality of the tones. However, the transmitter energy increases with the length of the
guard time while the receiver energy remains the same (the cyclic extension is discarded),

so there is a 10 log(1-7,/(T,+17,))/log(10) dB loss in E}/Nj.
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Figure 2.2: OFDMA symbol time structure (from [5]).

2.1.2 Discrete Time Baseband Equivalent System Model

The material in this subsection is mainly taken from [4]. If we consider an OFDMA system
with M active users sharing a bandwidth of B =% Hz (Tis the sampling period) as shown in
Fig. 2.3. The system consists of K subcarriers of-which /K, are useful subcarriers (excluding
guard bands and DC subcarrier).=The users‘are allocated non-overlapping subcarriers in the

spectrum depending on their needs:

The discrete time baseband channel consists of L multipath components and has the

form
L1
h(l) =Y hwd(l = 1y) (2.1)
m=0
where h,, is a zero-mean complex Gaussian random variable with E[h;h}] = 0 for i # j. In

frequency domain

H=Fh (2.2)

where H = [Hy, Hy,..., Hx 1]T , h = [ho, ..., hp—1,0,...,0]T and F is K-point DFT matrix.

The impulse response length [, is upper bounded by the length of CP (L,,).

The received signal in frequency domain is given by

M

=1
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Figure 2.3: Discrete-time baseband.equivalent-of an OFDMA system with M users (from

[4])-

where Xi,n = diag(XLn’O,

, Xinrk-1)is K x K diagonal data matrix and H,, is the K x 1

channel vector (2.2) corresponding to the ith user in nth symbol. The noise vector V,, is

distributed as CN (0, 0% Ik).

2.2 Basic OFDMA Symbol Structure in IEEE 802.16e

The WirelessMAN-OFDMA PHY, based on OFDM modulation, is designed for nonline-

of-sight (NLOS) operation in frequency bands below 11 GHz. For licensed bands, channel

bandwidths allowed shall be limited to the regulatory provisioned bandwidth divided by any

power of 2 no less than 1.0 MHz. The material is mainly taken from [5] and [6].



2.2.1 OFDMA Basic Terms

We introduce some basic terms appeared in OFDMA PHY. These definitions would help
us to understand the concepts of subcarrier allocation and transmission of IEEE 802.16e

OFDMA.

e Slot: A slot in the OFDMA PHY is a two-dimensional entity spanning both a time
and a subchannel dimension. It is the minimum possible data allocation unit. For
downlink (DL) PUSC (Partial Usage of SubChannels), one slot is one subchannel by
two OFDMA symbols. For uplink (UL), one slot is one subchannel by three OFDMA

symbols.

e Data Region: In OFDMA, a:data region isa two-dimensional allocation of a group of
contiguous subchannels, in a group of contigious OFDMA symbols. All the allocations
refer to logical subchannels. . A two“dimensional allocation may be visualized as a

rectangle, such as the 4 x 3 rectangle shown inFig. 2.4.

e Segment: A segment is a subdivision of the set of available OFDMA subchannels (that
may include all available subchannels). One segment is used for deploying a single

instance of the MAC.

2.2.2 Frequency Domain Description

An OFDMA symbol (see Fig. 2.5) is made up of subcarriers, the number of which determines

the FFT size used. There are several subcarrier types:

e Data subcarriers: For data transmission.

e Pilot subcarriers: For various estimation purposes.
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Figure 2.5: OFDMA frequency description (from [5]).

e Null subcarriers: No transmission at all; foriguard bands and DC subcarrier.

2.2.3 Primitive Parameters

Four primitive parameters characterize the OFDMA symbols:

e BIW: The nominal channel bandwidth.
® Nyseq: Number of used subcarriers (which includes the DC subcarrier).

e n: Sampling factor. This parameter, in conjunction with BW and N, determines
the subcarrier spacing and the useful symbol time. Its value is set as follows: For chan-

nel bandwidths that are a multiple of 1.75 MHz n = 8/7, else for channel bandwidths



that are a multiple of any of 1.25, 1.5, 2 or 2.75 MHz n = 28/25, else for channel

bandwidths not otherwise specified n = 8/7.

e (: This is the ratio of CP time to “useful” time, i.e., T,,/Ts. The following values
shall be supported: 1/32, 1/16, 1/8, and 1/4.

2.2.4 Derived Parameters

The following parameters are defined in terms of the primitive parameters.

e Nppp: Smallest power of two greater than N, q.

e Sampling frequency: Fs = floor{i-BW /8000) . 8000.
e Subcarrier spacing: Af = Eg/Nppr-

e Useful symbol time: T, = I/Af.

o CP time: T, = G x Tj.

e OFDMA symbol time: T, = Ty, + Tj.

e Sampling time: T,/Ngpr.

2.2.5 Frame Structure

When implementing a time-division duplex (TDD) system, the frame structure is built from
base station (BS) and subscriber station (SS) transmissions. Each frame in the DL transmis-
sion begins with a preamble followed by a DL transmission period and an UL transmission
period. In each frame, the TTG and RTG shall be inserted between the downlink and uplink
and at the end of each frame, respectively, to allow the BS to turn around. Fig. 2.6 shows

an example of an OFDMA frame with only mandatory zone in TDD mode.
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Figure 2.6: Example of an OFDMA frame (with only. mandatory zone) in TDD mode (from

[6])-

2.3 Uplink Transmission in IEEE 802.16e OFDMA

In this section we briefly introduce the specification of IEEE 802.16e OFDMA uplink trans-

mission. The material is mainly taken from [5] and [6].

2.3.1

Data Mapping Rules

The UL mapping consists of two steps. In the first step, the OFDMA slots allocated to each

burst are selected. In the second step, the allocated slots are mapped.

Step 1 : Allocate OFDMA slots to bursts.

1) Segment the data into blocks sized to fit into one OFDMA slot.

2) Each slot shall span one or more subchannels in the subchannel axis and one or more

10



OFDMA symbols in the time axis (see Fig. 2.7 for an example). Map the slots such
that the lowest numbered slot occupies the lowest numbered subchannel in the lowest

numbered OFDMA symbol.

3) Continue the mapping such that the OFDMA symbol index is increased. When the
edge of the UL zone is reached, continue the mapping from the lowest numbered

OFDMA symbol in the next available subchannel.

4) An UL allocation is created by selecting an integer number of contiguous slots, accord-
ing to the ordering of steps 1 to 3. This results in the general Burst structure shown

by the gray area in Fig. 2.7.

Step 2 : Map OFDMA slots within“the UL allocation.

1) Map the slots such that the lowest numbered slot occupies the lowest numbered sub-

channel in the lowest numbered QFEDMA: symbol.

2) Continue the mapping such that’ the Subg¢hannel index is increased. When the last
subchannel is reached, continue the mapping from the lowest numbered subchannel in
the next OFDMA symbol that belongs to the UL allocation. The resulting order is

shown by the arrows in Fig. 2.7.

Fig. 2.7 illustrates the order of OFDMA slots mapping to subchannels and OFDMA symbols.

2.3.2 Carrier Allocations

The uplink supports 70 subchannels for 2048-FFT PUSC permutation. Each transmission
uses 48 data carriers as the minimal block of processing. Each new transmission for the

uplink commences with the parameters as given in Table 2.1.

11
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Figure 2.7: Example of mapping OFDMA slots to subchannels and symbols in the uplink
(from [6]).

% % Symbol 0

Symbol |

% % Symbaol 2

% pilot carrier data carrier

Figure 2.8: Description of an uplink tile (from [5]).

A slot in the uplink is composed of three OFDMA symbols and one subchannel. Within
each slot, there are 48 data subcarriers and 24 pilot subcarriers. The subchannel is con-

structed from six uplink tiles, each having four successive active subcarriers with the config-

uration as illustrated in Fig. 2.8.

The usable subcarriers in the allocated frequency band shall be divided into N, physical

12



Table 2.1: OFDMA Uplink Subcarrier Allocations [5], [6]

] Parameter \ Value \ Notes ‘
Number of DC 1 Index 1024 (counting from 0)
subcarriers
Noysed 1681 Number of all subcarriers used within a symbol
Guard subcarriers: 184,183
Left, Right
TilePermutation Used to allocate tiles to subchannels

6, 48, 58, 57, 50, 1, 13, 26, 46, 44,
30, 3, 27, 53, 22, 18, 61, 7, 55, 36,
45, 37, 52, 15, 40, 2, 20, 4, 34, 31,
10, 5, 41, 9, 69, 63, 21, 11, 12, 19,
68, 56, 43, 23, 25, 39, 66, 42, 16,
47,51, 8, 62, 14, 33, 24, 32, 17
54, 29, 67, 49, 65, 35, 38, 59, 64,

28, 60, 0
Nsubchcmnels 70
Nsubcarm’ers 48
Ntiles 420
Number of subcarriers 4 Number of all subearriers within a tile
per tile
Tiles per subchannel 6

tiles with parameters from Table 2.1. The allocation of physical tiles to logical tiles in

subchannels is performed according to:

Til€3<37 n) = Nsubchannels o+ (Pt[(s + n) mod Nsubchannels] + UL,PeTmBase)mod Nsubchannels
where:

e Tiles(s,n) is the physical tile index in the FFT with tiles being ordered consecutively
from the most negative to the most positive used subcarrier (0 is the starting tile

index),
e 1 is the tile index 0..5 in a subchannel,

e Pt is the tile permutation,

13



e s is the subchannel number in the range 0... Ngupchanners — 1,

UL_PermBase is an integer value in the range 0..69, which is assigned by a manage-

ment entity, and

Ngubchanners 18 the number of subchannels for the FFT size given in Table 2.1.

After mapping the physical tiles to logical tiles for each subchannel, the data subcarriers

per slot are enumerated by the following process:

1)

After allocating the pilot carriers within each tile, indexing of the data subcarriers
within each slot is performed starting from the first symbol at the lowest indexed
subcarrier of the lowest indexed tile and continting in an ascending manner through
the subcarriers in the same symbol;-then going to themext symbol at the lowest indexed

data subcarrier, and so on.;Data subcarriers shall be indexed from 0 to 47.

The mapping of data onto thesubcarriers will follow the equation below. This equation
calculates the subcarrier index (as‘assigned in item 1) to which the data constellation

point is to be mapped:
Subcarrier(n,s) = (n+ 13 - s) mod Nsybearriers

where:

e Subcarrier(n,s) is the permutated subcarrier index corresponding to data sub-
carrier n is subchannel s,
e 1 is a running index 0..47, indicating the data constellation point,

e 5 is the subchannel number, and

® Noupcarriers 1S the number of subcarriers per slot.

14



LSB MSB
Initialization DLz 1 1 1 | R B B 1 1

Sequences U1 0 0 1 ] L0 1 0 1

| 3 516 |7 [t

Wy

Figure 2.9: PRBS generator for pilot modulation (from [5] and [6]).

2.3.3 Pilot Modulation

The PRBS (pseudo-random binary sequence) generatoer depicted in Fig. 2.9 is used to produce
a sequence, wy. The value of the-pilot modulation; en 'subcarrier k, shall be derived from

Wi,

For the mandatory tile structure in the uplink;“pilot subcarriers shall be inserted into each
data burst in order to constitute the symbol-and they shall be modulated according to their
subcarrier location within the OFDMA symbol. The pilot subcarriers shall be modulated

according to

R{cr) = 2(% —w), e} =0. (2.4)

2.3.4 Data Modulation

As shown in Fig. 2.10, the data bits are entered serially to the constellation mapper.
Gray-mapped QPSK and Gray-mapped 16QAM shall be supported, whereas the support

of 64QAM (also Gray-mapped) is optional.
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Figure 2.10: QPSK, 16-QAM; and 64-QAM constellations (from [5]).

2.4 Downlink Transmission m IEEE 802.16e OFDMA

This section briefly introduces the‘specifigations of TEEE 802.16e OFDMA PUSC downlink

transmission. The material is mainly takenfrom [5] and [6].

2.4.1 Data Mapping Rules

The downlink data mapping rules are as follows:

1. Segment the data after the modulation block into blocks sized to fit into one OFDMA

slot.

2. Each slot shall span one subchannel in the subchannel axis and one or more OFDMA
symbols in the time axis, as per the slot definition mentioned before. Map the slots
such that the lowest numbered slot occupies the lowest numbered subchannel in the

lowest numbered OFDMA symbol.

16
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Figure 2.11: Example of mapping OEDMA slots to subehannels and symbols in the downlink
in PUSC mode (from [6]).

3. Continue the mapping such that the OEDMA subchannel index is increased. When the
edge of the Data Region is reached, continue the mapping from the lowest numbered

OFDMA subchannel in the next available symbol.

Figure 2.11 illustrates the order of OFDMA slots mapping to subchannels and OFDMA

symbols.

2.4.2 Preamble Structure and Modulation

The first symbol of the downlink transmission is the preamble. Fig. 2.12 shows a downlink
transmission period. There are three types of preamble carrier-sets, those are defined by
allocation of different subcarriers for each one of them. The subcarriers are modulated
using a boosted BPSK modulation with a specific pseudo-noise (PN) code. The PN series

modulating the pilots in the preamble can be found in [5, pp. 553-562].
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Figure 2.12: Downlink transmission basic structure (from [5]).

The preamble carrier-sets are defined, as

PreambleCaryierSet, =n+ 3 - k, (2.5)

where:

e PreambleCarrierSet, specifies:all'subearriers allocated to the specific preamble,
e 1 is the number of the preamble carrier-set indexed 0, 1, 2, and

e [ is a running index 0,...,567.

Each segment uses one type of preamble out of the three sets in the following manner: For
the preamble symbol, there will be 172 guard band subcarriers on the left side and the right
side of the spectrum. Segment i uses preamble carrier-set ¢, where ¢ = 0,1,2. The DC
subcarrier will not be modulated at all and the appropriate PN will be discarded. Therefore,

DC subcarrier shall always be zeroed.

The pilots in downlink preamble shall be modulated as
1
R{ PreamblePilotsModulated} = 4 - v/2 - (5 — wy),

(2.6)
S{ Preamble PilotsModulated} = 0.

18
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Figure 2.13: Cluster structure (from [6]).

2.4.3 Subcarrier Allocations

The OFDMA symbol structure is constructed using pilots, data and zero subcarriers. The
symbol is first divided into basic clusters and zero carriers are allocated. The pilot tones are
allocated first; what remains are data subcarriers;swhich are divided into subchannels that

are used exclusively for data. Pilotg-and datajearriers are allocated within each cluster.

Figure 2.13 shows the cluster structure with subcarriers from left to right in order of
increasing subcarrier index. For the purpese of determining PUSC pilot location, odd and
even symbols are counted from the beginning of the.current zone. The first symbol in
the zone is even. The preamble shall not ‘he ecounted as part of the first zone. Table 2.2

summarizes the parameters of the OFDMA PUSC symbol structure.

The allocation of subcarriers to subchannels is performed using the following procedure:

1) Divide the subcarriers into a number (Nyysiers) of physical clusters containing 14 ad-

jacent subcarriers each (starting from carrier 0).

2) Renumber the physical clusters into logical clusters using the following formula:

LogicalCluster

RenumberingSequence( Physical Cluster), first DL zone,
= RenumbermgSequence((PhysicalC’luster+
13- DL_PermBase)mod chustem), otherwise.
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Table 2.2: OFDMA Downlink Subcarrier Allocation under PUSC [5], [6]

Parameter ‘ Value ‘ Comments

Number of DC 1 Index 1024 (counting from 0)

subcarriers

Number of guard 184

subcarriers, left

Number of guard 183

subcarriers, right

Number of used 1681 Number of all subcarriers used within a

subcarriers (Nyseq) symbol, including all possible allocated
pilots and the DC carrier

Number of subcarriers 14

per cluster

Number of clusters 1260

Renumbering sequence 1 Used to renumber clusters before
allocation to subchannels:
6,108.37,81,31,100,42,116,32,107,30,93,54,78,
10,75,50,111,58,106,23,105,16,117,39,95,7,
115,25,119,53,71,22,98,28,79,17,63,27,72,29,
86,5,101,49,104,9,68,1,73,36,74,43,62,20,84,
52,64,34,60,66,48,97,21,91,40,102,56,92,47,
90,33,114,18,70,15,110,51,118,46,83,45,76,57,
99,35,67,55,85,59,113,11,82,38,88,19,77,3,87,
12,89,26,65,41,109,44,69,8,61,13,96,14,103,2,
80,24,112,4,94.0

Number of data 24

subcarriers in each

symbol per subchannel

Number of subchannels 60

Basic permutation 12 6,9,4,8,10,11,5,2,7,3,1,0

sequence 12 (for 12

subchannels)

Basic permutation 8 7,4,0,2,1,5,3,6

sequence 8 (for 8

subchannels)
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3)

Dividing the clusters into six major groups. Group 0 includes clusters 0-23, group 1
clusters 24-39, group 2 clusters 40-63, group 3 clusters 64-79, group 4 clusters 80—
103 and group 5 clusters 104-119. These groups may be allocated to segments. If a
segment is being used, then at least one group shall be allocated to it. (By default

group 0 is allocated to segment 0, group 2 to segment 1, and group 4 to segment 2) .

Allocate subcarriers to subchannel in each major group separately for each OFDMA
symbol by first allocating the pilot subcarriers within each cluster and then taking all
remaining data subcarriers within the symbol. The exact partitioning into subchannels

is according to the equation below, called a permutation formula:

SUbCCLT?“i@T(k, 8) = Nsubchannels c N + {ps [nk mod Nsubchannels]_'_

DL_PermBase}mod Nsubchannels

where:

e subcarrier(k, s) is the subeatrier index of subcarrier k£ in subchannel s,
e s is the index number of a subchannel, from the set [0... Nsupenanners — 1],

e ny = (k+ 13- s)mod Ngypearriers , where k is the subcarrier-in-subchannel index

from the set [O--'Nsubcarriers - 1]7

® Ngubchanners 18 the number of subchannels (for PUSC use number of subchannels

in the currently partitioned group),

e p,[j] is the series obtained by rotating basic permutation sequence cyclically to

the left s times,

® Noubcarriers 15 the number of data subcarriers allocated to a subchannel in each

OFDMA symbol, and

e DIL_PermBase is an integer from 0 to 31.
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2.4.4 Pilot Modulation

Pilot subcarriers shall be inserted into each data burst in order to constitute the symbol.
The PRBS (pseudo-random binary sequence) generator depicted in Fig. 2.9 shall be used to

produce a sequence, wy.

Each pilot shall be transmitted with a boosting of 2.5 dB over the average non-boosted

power of each data tone. The pilot subcarriers shall be modulated according to

R{ck} =

(

wl oo
N | —

2.4.5 Data Modulation

As shown in Fig. 2.10, for downlink transmission, gray-mapped QPSK and Gray-mapped

16QQAM shall be supported, wheréas the support of 64QAM (also Gray-mapped) is optional.
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Chapter 3

The DSP Hardware and Associated
Software Development Environment

DSP implementation is the final goal of our work. “The DSP on the Sundance board is
TMS320C6416 made by Texas InStruments(see Fig.3.1). In this chapter, we introduce the

architectures of the DSP chip.

3.1 The TMS320C6416 DSP [7]

3.1.1 TMS320c64x Features

The TMS320C64x DSPs are the highest-performance fixed-point DSP generation of the
TMS320C6000 DSP devices, with a performance of up to 600 million instructions per second
(MIPS) and an efficient C compiler. The TMS320C64x device is based on the second-
generation high-performance, very-long-instruction-word (VLIW) architecture developed by
Texas Instruments (TT). The C6416 device has two high-performance embedded coproces-
sors, Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP) that sig-
nificantly speed up channel-decoding operations on-chip. But they do not apply to the work

reported in this thesis.

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 function units,
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Figure 3.1: The DSP on the Sundance board

these 8 functional units contain 2 1rnul-i3,1p'hér| )d @%thmetic units. C6000 features:

develop highly effective RISQ hke @M ff)r fast deveibpment time.
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e Instruction packing gives code-’glze equlvaleriggxf'qi eight instructions executed serially

i

or in parallel and reduces code size, pi’ogf‘a{hl fetches and power consumption.

e Conditional execution of all instructions reduces costly branching. and increases par-

allelism for higher sustained performance.

e Efficient code execution on independent functional units include efficient C compiler
on DSP benchmark suite. and assembly optimizer for fast development and improved

parallelization.

e 8/16/32-bit data support, providing efficient memory support for a variety of applica-

tions.

e 40-bit arithmetic options add extra precision for applications requiring it.
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e Saturation and normalization provide support for key arithmetic operations.

e Field manipulation and instruction extract, set, clear, and bit counting support com-

mon operation found in control and data manipulation applications.

The additional features of C64x include:

e Each multiplier can perform two 16x16 bits or four 8x8 bits multiplies every clock

cycle.

Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

Support for non-aligned 32-bit (word)-and 64-bit (double word) memory accesses.

Special communication-specific instructions have been added to address common op-

erations in error-correctingscodes.

Bit count and rotate hardware extends support for-bit-level algorithms.

3.1.2 Central Processing Unit

The block diagram of the C6416 DSP is shown in the Fig. 3.2. The C64x CPU, shaded in

figure, contains:

Program fetch unit.

Instruction dispatch unit.

Instruction decode unit.

Two data paths, each with four functional units.

64 32-bit registers.
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Figure 3.2: Block diagram ef the A I'MS320C6416 DSP [7].

e Control registers.
e Control logic.

e Test, emulation, and interrupt logic.

The program fetch, instruction dispatch, and instruction decode units can deliver up to
eight 32-bit instructions to the functional units every CPU clock cycle. The processing of
instructions occurs in each of the two data paths (A and B), each of which contains four

functional units (.L, .S, .M, and .D) and 32 32-bit general-purpose registers for the C6416.

3.1.2.1 Pipeline Structure

The TMS320C64x DSP pipeline provides flexibility to simplify programming and improve
performance. The pipeline can dispatch eight parallel instructions every cycle. The pipeline

phases are divided into three stages as shown in Fig. 3.3.
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Figure 3.3: Pipeline phases of TMS320C6416 DSP [7].

e Fetch has 4 phases:

— PG (program address generate): The address of the fetch packet is determined.
— PS (program address send): The address of the fetch packet is sent to memory.
— PW (program access ready wait): A program memory access is performed.
— PR (program fetch packetireeeive): Thefatch packet is at the CPU boundary.

e Decode has two phases:
— DP (instruction dispateh): The next.execute packet in the fetch packet is deter-

mined and sent to the appropriate functional units to be decoded.

— DC (instruction decode): Instructions are decoded in functional units.
e Execute has five phases:

— E1: Execute 1.
— E2: Execute 2.
— E3: Execute 3.
— E4: Execute 4.

— E5: Execute b.

The pipeline operation of the C62x/C64x instructions can be categorized into seven in-

struction types. Six of these are shown in Table 3.1, which gives a mapping of operations
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Table 3.1: Execution Stage Length Description for Each Instruction Type [7]

Instruction Type

16 X 16 Single Cé4x
. Multiply/ Multiply
Single Cycl St Load B h
ingle Lycle C64x .M Unit ore Extensions oa ranc
Non-Multiply
Execution E1 Compute Read operands Compute  Reads oper- Compute Target-
phases result and start address ands and address code
and write to  computations start com- in PGT
register putations
E2 Compute result  Send ad- Send ad-
and write to dress and dress to
register data to memaory
memory
E3 Access Access
memory memaory
E4 Write results ~ Send data
to register back to CFU
ES Whte data
into register
Delay 0 1 ot 3 41 51

slots

occurring in each execution phasg for the different instruction types. The delay slots associ-

ated with each instruction type are listed in the bottom row.

The execution of instructions can' be defined in' terms of delay slots. A delay slot is
a CPU cycle that occurs after the first execution phase (E1) of an instruction. Results
from instructions with delay slots are not available until the end of the last delay slot. For
example, a multiply instruction has one delay slot, which means that one CPU cycle elapses
before the results of the multiply are available for use by a subsequent instruction. However,
results are available from other instructions finishing execution during the same CPU cycle

in which the multiply is in a delay slot.
3.1.2.2 Functional Units

The eight functional units in the C6000 data paths can be divided into two groups of four;

each functional unit in one data path is almost identical to the corresponding unit in the
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other data path. The functional units are described in Table 3.2 and Table 3.3.

Besides being able to perform 32-bit operations, the C64x also contains many 8-bit to
16-bit extensions to the instruction set. For example, the MPY U4 instruction performs four
8x8 unsigned multiplies with a single instruction on an .M unit. The ADD4 instruction

performs four 8-bit additions with a single instruction on an .L unit.

The data line in the CPU supports 32-bit operands, long (40-bit) and double word (64-
bit) operands. Each functional unit has its own 32-bit write port into a general-purpose
register file (listed in Fig. 3.4). All units ending in 1 (for example, .L1) write to register file
A, and all units ending in 2 write to register file B. Each functional unit has two 32-bit read
ports for source operands srcl and src24Four dnits (.L1, .12, .S1, and .S2) have an extra
8-bit-wide port for 40-bit long writes, as wellasran8-bitinput for 40-bit long reads. Because
each unit has its own 32-bit write port, when performing 32-bit operations all eight units

can be used in parallel every cycle.

3.1.3 Memory Architecture

The C64x has a 32-bit, byte-addressable address space. Internal (on-chip) memory is orga-
nized in separate data and program spaces. When off-chip memory is used, these spaces are
unified on most devices to a single memory space via the external memory interface (EMIF).
The C64x has two 64-bit internal ports to access internal data memory have and a single

internal port to access internal program memory, with an instruction-fetch width of 256 bits.

A variety of memory options are available for the C6000 platform. In our system, the

memory types we can use are:

e On-chip RAM, up to 875 MB.

e Program cache.
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Table 3.2: Functional Units and Operations Performed [7]

Functional Unit

Fixed-Point Operaticns

Floating-Paint Operaticns

Lunit (L1, L2)

Suniti.51, 52)

32M40-bit arithmetic and compare
opsrations

A2-hit logical operatiors

Leftrmost 1 or O counting for 32 bils

Marmalization count for 32 and 40 bits

Byte shifts

Data packing/unpacking

S-bit constant gensration

Dual 16-kit arithmetic operations

Cuad &-bit arithmetic operations

Dual 16-kit minfmax opsrations

Quad &bit minfmax cperations

A2-bit arithmetic opsrations

32/40-bit shifts and 22-bit bit-fisld
opsrations

32-hit logical operatiors

Branches

Constant generation

Reqgister trarsfers tofrom control regster
file (.52 anly)

Byte shifts

Data packingfunpacking

Dual 16-kit compare opsration s

Cuad & bit compars operations

Dual 16-kit shift cperaticns

Dual 16-kit saturated arithmetic
aperations

Guad &hbit saturated arithmetic
aparations

Arithmetic oparations

DPF — 5P, INT —DP, INT — 5P
comversion oparations

Compars

Reciprocal and red procal squars-root
operations

Absolute valus operations

SF — DP conversion opsrafions
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Table 3.3:

Functional Units and Operations Performed (Continued) [7]

— . .
Functicnal Unit

__
Fized-Point Operations

-
Flzating-Paint Operations

Mouriti M1, M2)

Durit{.D1, 02)

16 x 18 multiply operalions

16 & 22 multiply cperations
Ciuad 8 x 8 multiply operations
Dwal 16 x 16 multip by cperations

Dwal 16 = 16 multip by with
add/subtract operations

Ciuad 8 ® 8 miultiply with add operation

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rtaticn

Galois Field Multiply

32-bit add, subtrad, linear and circular
address calculation

Loads and stores with 5-bit constant offsst

Loads and stores with 15-bil constant
offset (D2 only)

Load and store doulsle words with 5-hit
constant

Laad and store nen-aligned words and
double words

S-bit constant gensraticn
J2-bit logical cpearations

32 ¥ 32-bit fixed-point multiply operations
Floating-point multiply operations

Load doubleword with 5-bit corstant offset
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e 32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and other asyn-

chronous memories.

e Two-level caches [8]. Level 1 cache is split into program (L1P) and data (L1D) cache.
Each L1 cache is 16 KB. Level 2 memory is configurable and can be split into L2 SRAM
(addressable on-chip memory) and L2 cache for caching external memory locations.
The size of 1.2 is 1 MB. External memory can be several MB large. The access time
depends on the memory technology used but is typically around 100 to 133 MHz. In

our system, the external memory usable by the DSP is a 32 MB SDRAM.

3.2 The Code ComposersStudio Development Tools
[9], [10]

We now introduce the software environment used in -our work. TI supports a useful GUI
development tool set to DSP usets for developingmand debugging their projects: the Code
Composer Studio (CCS). The CCS development tools are a key element of the DSP software
and development tools from TI. The fully integrated development environment includes real-
time analysis capabilities, easy to use debugger, C/C++ compiler, assembler, linker, editor,
visual project manager, simulators, XDS560 and XDS510 emulation drivers and DSP/BIOS

support.
Some of CCS’s fully integrated host tools include:
e Simulators for full devices, CPU only and CPU plus memory for optimal performance.

e Integrated visual project manager with source control interface, multi-project support

and the ability to handle thousands of project files.

e Source code debugger common interface for both simulator and emulator targets:
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— C/C++/assembly language support.
— Simple breakpoints.
— Advanced watch window.

— Symbol browser.
e DSP/BIOS host tooling support (configure, real-time analysis and debug).
e Data transfer for real time data exchange between host and target.

e Profiler to analyze code performance.

CCS also delivers “foundation softwate” consisting of:

e DSP/BIOS kernel for the TMS320€6000 -DSPs.

— Pre-emptive multi-threading,
— Interthread communication:

— Interrupt handling.
e TMS320 DSP Algorithm Standard to enable software reuse.

e Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

TI also supports some optimized DSP functions for the TMS320C64x devices: the
TMS320C64x digital signal processor library (DSPLIB). This source code library includes
C-callable functions (ANSI-C language compatible) for general signal processing mathemat-
ical and vector functions [11]. The routines included in the DSP library are organized as

follows:
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Adaptive filtering.

Correlation.

e FFT.

Filtering and convolution.

Math.

Matrix functions.

o Miscellaneous.

3.3 Code Optimization Methods: [12]

The recommended code developriient flow invelves utilizing the C6000 code generation tools
to aid in optimization rather than forcing the programmer‘to code by hand in assembly. This
makes the compiler do all the laborious wetk of instriiction selection, parallelizing, pipelining,
and register allocation, which simplifies the maintenance of the code, as everything resides

in a C framework that is simple to maintain, support, and upgrade.

The recommended code development flow for the C6000 involves the phases described in
Fig. 3.5. The tutorial section of the Programmer’s Guide [12] focuses on phases 1 and phase
2, and the Guide also instructs the programmer about the tuning stage of phase 3. What
is learned is the importance of giving the compiler enough information to fully maximize its
potential. An added advantage is that this compiler provides direct feedback on the entire
program’s high MIPS areas (loops). Based on this feedback, there are some simple steps the
programmer can take to pass complete and better information to the compiler to maximize

the compiler performance.
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Phase 1: Write C code
Develop C Code 3
Compile
Y
Profile

Yes
Complete )
Mo
Refine C code
Phase 2: T
Refine C Code .
Compile
y
Profile
Complete )
Yes
optimization?,
Write linear assembly
Phase 3:
Write Linear ¥ —
Assembly Assembly optimize
¥
Profile
No
Yes

( Complete )

Figure 3.5: Code development flow for TI C6000 DSP [12].
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The following items list the goal for each phase in the software development flow shown

in Fig. 3.5.

e Developing C code (phase 1) without any knowledge of the C6000. Use the C6000
profiling tools to identify any inefficient areas that we might have in the C code. To

improve the performance of the code, proceed to phase 2.

e Use techniques described in [12] to improve the C code. Use the C6000 profiling tools
to check its performance. If the code is still not as efficient as we would like it to be,

proceed to phase 3.

e Extract the time-critical areas fromuthe C ¢ode,and rewrite the code in linear assembly.

We can use the assembly optimizer toreptimize this code.

TT provides high performance C program optimization tools, and they do not suggest the
programmer to code by hand in assembly. In this thesis, the development flow is stopped at
phase 2. We do not optimize the code by writing-linear assembly. Coding the program in

high level language keeps the flexibility of porting to other platforms.

3.3.1 Compiler Optimization Options [9], [10]

The compiler supports several options to optimize the code. The compiler options can be
used to optimize code size or execution performance. Our primary concern in this work is
the execution performance. Hence we do not care very much about the code size. The easiest
way to invoke optimization is to use the cl6x shell program, specifying the -on option on the
cl6x command line, where n denotes the level of optimization (0, 1, 2, 3) which controls the

type and degree of optimization:

e -00.
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— Performs control-flow-graph simplification.

Allocates variables to registers.

— Performs loop rotation.

Eliminates unused code.
— Simplifies expressions and statements.

— Expands calls to functions declared inline.
e —0l. Performs all -00 optimization, and:

— Performs local copy/constant propagation.
— Removes unused assignments.

— Eliminates local commen expressions.
e -02. Performs all -0l optimizations, and:

— Performs software pipelining:
— Performs loop optimizations.

— Eliminates global common subexpressions.

Eliminates global unused assignments.

Converts array references in loops to incremented pointer form.

— Performs loop unrolling.

e -03. Performs all -02 optimizations, and:

— Removes all functions that are never called.
— Simplifies functions with return values that are never used.

— Inlines calls to small functions.
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— Reorders function declarations so that the attributes of called functions are known

when the caller is optimized.

— Propagates arguments into function bodies when all calls pass the same value in

the same argument position.

— Identifies file-level variable characteristics.

The -02 is the default if -0 is set without an optimization level.

The program-level optimization can be specified by using the -pm option with the -
03 option. With program-level optimization, all of the source files are compiled into one
intermediate file called a module. The module moves through the optimization and code
generation passes of the compiler. «Because the compiler can see the entire program, it

performs several optimizations that arerarely applied during file-level optimization:

e [f a particular argument in & function always has the same value, the compiler replaces

the argument with the value and passes the valude.instead of the argument.

e If a return value of a function is never used, the compiler deletes the return code in

the function.

e [f a function is not called directly or indirectly, the compiler removes the function.

When program-level optimization is selected in Code Composer Studio, options that have
been selected to be file-specific are ignored. The program level optimization is the highest

level optimization option. We use this option to optimize our code.

3.3.2 Using Intrinsics

The C6000 compiler provides intrinsics, which are special functions that map directly to

C64x instructions, to optimize the C code performance. All instructions that are not easily
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expressed in C code are supported as intrinsics. Intrinsics are specified with a leading under-
score (_) and are accessed by calling them as we call a function. A table of TMS320C6000

C/C++ compiler intrinsics can be found in [12].

40



Chapter 4

Uplink Channel Estimation and DSP
Implementation

The aim of our work is the algorithm design and DSP implementation of IEEE 802.16e
OFDMA transmission system. From implemientation consideration, we use simple channel
estimation techniques such as linear interpolation in frequency domain and simple improve-
ment methods in time domain. ‘We. evaluate the performance of each channel estimation

method mainly by observing the symbolerror rate (SER) and the mean square error (MSE).

4.1 Channel Estimation Techniques

Channel estimators in OFDMA system usually need pilot information as reference. A fading
channel requires constant tracking, so pilot information has to be transmitted continuously.
In general, the fading channel can be viewed as a two-dimensional (2-D) signal (time and

frequency), whose values are sampled at pilot positions.

We consider three topics in this section, which are channel estimation at pilot subcar-
riers, interploation schemes and time-domain improvement methods. More specifically we
use the least-squares (LS) technique to estimate the channel response at pilots, use linear

interpolation to estimate the frequency response at nonpilot subcarriers in the frequency
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domain, and consider two ways of time-domain improvement including simple average and

exponential average. These are discussed seperately in the following subsections.

4.1.1 The Least-Squares (LS) Estimator

Based on the priori known data, we can estimate the channel information on pilot carriers
roughly by the least-squares (LS) estimator. An LS estimator minimizes the squared error
[13]

1Y — HpsX]|? (4.1)

where Y is the received signal and X is a priori known pilots, both in the frequency domain

and both being N x 1 vectors where N4i§ the FFL size. H;s is an N x N matrix whose

values are 0 except at pilot locations m,; where@==0,--+_ N, — 1:
Hipomeo 0 0 - 0
0 . ] 0 0
Hps = 0 TR O~ H IS 0 (4.2)
0 e 0 ok 0 e 0
0 0 0 v Hpy oy
Therefore, (4.1) can be rewritten as
[V (m) — Hyg(m)X (m)]?, for all m = m;. (4.3)

Then the estimate of pilot signals, based on only one observed OFDMA symbol, is given by

Y (m) _ X(m)H(m) + N(m)
X(m) X(m)

_ H(m) + Xm) (4.4)

Hislm) = X(m)

where N(m) is the complex white Gaussian noise on subcarrier m. We collect Hyg(m) into

A~

H, s, an N, x 1 vector where N, is the total number of pilots, as

I:IP,LS = [Hp,LS([)) Hp,LS(1> e 'Hp,LS<Np - 1)]T
(4.5)
[YP(O) Yp(1) Yp(Np_l)]T
Xp(0)? Xp(1)? """ 7 Xp(Np—1)

The LS estimator is a simplest channel estimator one can think of.
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4.1.2 Linear Interpolation

After obtaining the channel response estimate at the pilot subcarriers, we use interpolation
to obtain the response at the rest of the subcarriers. Linear interpolation is a commonly
considered scheme due to its low complexity. It does the interpolation between two known
data. That is, we use the channel information at two pilot subcarriers obtained by the
LS estimator to estimate the channel frequency response information at the data subcarri-
ers between them. We also use linear extrapolation to estimate the response as the data

subcarriers beyond the outermost pilot subcarriers.

The channel estimatw at data subcarrier k, mL < k < (m+ 1)L , using linear interpola-
tion is given by [14]

H (k) = H.(m &) = (Hp(im=+ 1)~ Hp(m))% + H,(m) (4.6)

where H,(k),k =0,1,--- , N, are the channel frequiency responses at pilot subcarriers, L is

the pilot subcarriers spacing, and 0 < L. < L.

4.1.3 Time Averaging

We also consider processing the channel information along the time axis to get better estima-
tion. Averaging several channel responses over a period of time should mitigate the influence
of noise. Coherence time is a statistical measure of the time duration over which the channel
impulse response is essentially invariant. It quantifies the similarity of the channel response
at different times. The channel can be considered slowly varying if the coherence time is
greater than the OFDMA symbol period. The channel may even be assumed to be static

over one or several reciprocal Doppler spread intervals.

For example, assume the SS moves at a speed of 60 km/h. The maximum Dopper shift
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with a center frequency 3.5 GHz can be calculated as
v
S = =194.44 Hz. (4.7)

The corresponding coherence time is approximately [15]

9
167 fn

= 920.83 pus. (4.8)

e~

Consider an OFDMA system of bandwidth 20 MHz, and using 2048-FFT and 256-point

cyclic prefix. The symbol period is

(2048 + 256) = 102.86 ps. (4.9)
28 20M
(L%SOOO X 8000)

920.83
102.86

Hence, the channel response over | = 8 symbols can be regarded static. Thus we may

use simple averaging over 3 symbols to:reduce noise. effect as

Hinterp k Hinterp k Hinterp k
Havg(k) — 0 ( )+ —13 ( )+ —2 ( ) (410)

where H™¢P(k) is the interpolated ¢hannel response atsthe previous nth symbol time.

If the channel remains static, over a longer time period, we may use more symbols in the
averaging to reduce the noise effect more effectively. But then the storage requirement and
the computational complexity both increase, a simple way to take more (or less) symbols into
the average effectively and yet without the storage and complexity penalty is exponential

averaging:

Femng iy _ § W BB+ (L= w) - R (f), n> 1
hn p(f) - { iﬂ:’ﬂf@’/‘p(}), n = 1’

where ﬁffp( f) is the estimated channel after exponential averaging at nth symbol time,

(4.11)

ﬁ;”te"p (f) is the channel response by using only the interpolation discussed before at the nth

symbol time, and w is the exponential factor.

Exponential averaging may yield better performance than simple moving average when

the channel is very static, but its performance may degrade more significantly than that of
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Figure 4.1: Tile structure.

moving average in fading channels. We will compare the performance at different values of

w and in different conditions later.

4.1.4 Application to TEEE 802:16e‘OFDMA Uplink

As described before in chapter 2, uplink transmission uses tile structure to transmit pilot
and data information. Fig 4.1 shows an example-of tile/transmission. Within a tile, we first
estimate the channel response at each pilot position.~Second, we interpolate the frequency
response at data subcarriers in symbol 1 and 3 by the estimated pilot. Last, we get the
frequency response of symbol 2 by time averaging the channel response estimates of symbols

1 and 3.
We give the detail steps for channel estimation as follows:
e Estimate the channel response at each pilot location by using the LS technique.

e Use the linear interpolation scheme to get the data subcarrier response in symbols 1

and 3 from the estimated values at pilot locations.

e Estimate the channel response at middle symbol that contains no pilots in a tile by
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Table 4.1: OFDMA Uplink Parameters

’ Parameters Values ‘
Bandwidth 20 MHz
Central frequency 3.5 GHz
Nysed 1681
Sampling factor n 28/25
G 1/8
Nrrr 2048
Sampling frequency 22.4 MHz
Subcarrier spacing 10.94 kHz
Useful symbol time 91.43 ps
CP time 11.43 us
OFDMA symbol time 102.86 ps
Sampling time 44.65 ns

averaging the first and third Symbols injthefime domain as

H;St(f): Hl (f)—;H3 (f)

(4.12)

Exponential averaging is an alternative.

4.2 Simulation Parameters and Channel Model

This section gives the parameters and introduce the channel model used in our simulation

work.

4.2.1 OFDMA Uplink System Parameters

In chapter 2, we introduced the primitive and the derived parameters of the system. The

system parameters used in our simulation are listed in Table 4.1.
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4.2.2 Simulation Channel Model

Erceg et al [16] published a total of 6 different radio channel models for type G2 (i.e, LOS
and NLOS) MMDS BWA systems in three terrain categories. The three types in suburban

area are

e A: hilly terrain, heavy tree,
e C: flat terrain, light tree, and

e B: between A and C.
The correspondence with the so-called SUI'chantrels is:

e C: SUI-1, SUI-2,
e B: SUI-3, SUI-4, and

e A: SUL5, SULSG.

In the above, SUI-1 and SUI-2 are Ricean multipath channels, whereas the other four are
from Hari and are Rayleigh multipath channels. The Rayleigh channels are more hostile and
exhibit a greater rms delay spread. And the SUI-2 represents a worst case link for terrain
type C. We employ SUI-2 and SUI-3 model in our simulation, but we use Rayleigh fading to

model all the paths in these channels. The channel charateristics are as shown in Table 4.2.

4.3 Simulation Results

4.3.1 Simulation Flow

Figure 4.2 illustrates our simulated system. We assume perfect synchronization and omit it

in our simultion. After channel estimation, we calculate the MSE between the real channel
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Table 4.2: Channel Profiles of SUI-2 and SUI-3 [16]

SUI - 2 Channel

Tap L Tap2 Tap 3 Units

Delay 0 04 1.1 Hs
Power (omni ant.) 0 -12 -15 dB
20% K-fact, fomni) |2 0 Q
75% K-Tact. (ommni) | 11 0 0
Power (30° ant.) 0 -18 -27 dB
90% K-fact. (30%) 8 0 a
75% K-fact. (30°) 36 0 Q
Doppler 0.2 0.15 0.25 Hz
Antenna Correlation: Py = 0.5 Terrain Type: C
Gain Rednction Factor: GRF=2dB Omni antenna: oy = 0.202 ps.
Normalization Factor: ?mﬂ ::'?j E?;% %Bﬁ overall K: K = 1.6 (90%): K = 5.1 (75%)

eI e 30° antenna: Tra = 0.069 s,

overall K: K= 6.9 (90%); K = 21.8 (75%)

SUI - 3 Channel

Tap 1 Tap 2 Tap 3 Units

Delay 0 04 0.9 s
Power {pmmi ant.) o -5 -10 dB
90% K-fact, (omnD) | 1 0 0
75% K-fact. (omnd) | 7 0 0
Power (30° ant.) 0 -11 22 dB
90% K-fact. (307 3 ] 0
75% K-fact, (307 19 1] 1]
Doppler 0.4 0.3 0.3 Hz
Antenna Correlation: ey =04 Terrain Type: B
Gain Reduction Factor: GRF=31dB Omni antenna: Ty = 0.264 ps,
Normallzatlon Factor: - Fean= 15113 ‘;‘j‘a overall K: K = 0.5 (90%): K = 1.6 (75%)

i ’ 30° antenna: T = 0.123 ps,

overall K: K =2.2 (90%). K =7.0 (75%)
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Figure 4.2: Block diagram of the simulated system.

and the estimated one, where the average is taken over the subcarriers. The symbol error

rate (SER) can also be obtained after demapping:

4.3.2 Validation of Simulation Meodel

Before considering multipath channels, we do-simulation with an AWGN channel to validate
the simulation model. We validate the model by comparing theoretical SER curves and the

SER curves resulting from simulations.

For an even number of bits per symbol, the SER of rectangular QAM is given by

P8=4(1—\/LM)Q< %%) (4.13)

where

e M = number of symbols in modulation constellation; for example, M = 4 for QPSK,

M = 16 for 16QAM and M = 64 for 64QAM,
e [, = average symbol energy,

e Ny = noise power spectral density (W/Hz), and

Q) = e [T, 20
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Figure 4.3: The SER curve for uicoded QPSK resulting from simulation matches the theo-
retical one.

In Figure 4.3, the theoretical symbol error rate (SER) curve versus E;/N, for uncoded
QPSK is plotted together with the SER c¢urve résulting from the simulation. In this figure,
we simulate for no channel estimation error. This validates the simulation (we use C/C++

programming language and TI’s code composer studio).

4.3.3 Floating-point Simulation

In our simulation, we assume using 10 subchannels to transmit. Figure 4.4 shows the per-
formance of tile linear interpolation with different exponential weighting in AWGN. The
method of with weighting w = 0.9 has the best SER and MSE. But in the condition of SUI-
2, velocity being 60, this becomes the worst situation in both SER and MSE (see Fig. 4.5).
It is because in multipath such as SUI-2, the variance of channel condition is much violent

than in AWGN. We also get the validation from the analysis of in given velocity, calculating
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the MSE by using the variance of Bessel function. Therefore, using exponential weighting of
previous tile can not help estimate validly. Figure 4.6 shows tile linear interpolation with ex-
ponential weighting 0.9 in SUI-2 with different velocity of QPSK. We use no tile exponential

averaging in following work.

Figure 4.7 illustrates tile linear interpolation with different modulations (uncoded QPSK,
16QAM and 64QAM) in AWGN. We compare our simulation results with theory and no
estimation error curves in SER (Fig. 4.7(b)). Figure 4.8 shows tile linear interpolation
compared with another theory curve which takes data MSE into consideration in AWGN.
Figure 4.7(a) shows the MSE curves of these three modulation types. The three lines match
with each other as a straight line with slopesmu=.—1. The results of MSE are unrelated to
the modulation type because the pilots are BPSK modulated in each modulation case. And

the channel response is interpolated only using‘the pilot information.|[17]

The simulation of tile linear interpolation with different.velocity and different modulation

in SUI-2 is given in Fig. 4.9, and Fig: 4.10 gives only QPSK in SUI-3.

Figure 4.11 illustrates tile linear interpolation with different used number of subchannels
in AWGN and SUI-2. We use 60 tiles to transmit in occupying 10 subchannels while using

120 tiles for 20 subchannels.
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Figure 4.4: Tile linear interpolation with different exponential weighting in AWGN with
QPSK. (a) MSE. (b) SER.
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Figure 4.5: Tile linear interpolation with different exponential weighting in SUI-2 with ve-
locity v=60 km/hr with QPSK. (a) MSE. (b) SER.
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Figure 4.6: Tile linear interpolation of exponential weighting 0.9 with different velocities in
SUI-2 with QPSK. (a) MSE. (b) SER.
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Figure 4.7: Tile linear interpolation with different modulations in AWGN. (a) MSE. (b)
SER.
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Uplink__ AWGN__QPSK
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Figure 4.8: Tile linear interpolation compared with theory adding data MSE in AWGN:
(a),(b) QPSK. (c),(d) 16QAM. (e),(f) 64QAM.
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Uplink__QPSK__SUI2__tile linear interpolation

Uplink__QPSK__SUI2__tile linear interpolation
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Figure 4.9: Tile linear interpolation with different velocity and different modulations in

SUL-2. (a),(b) QPSK. (c),(d) 16QAM. (e),(f) 64QAM.
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Uplink_QPSK__SUI3__tile linear interpolation
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Figure 4.10: Tile linear interpolation with different velocities in SUI-3 with QPSK. (a) MSE.
(b)SER.
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Uplink__QPSK__AWGN__tile linear interpolation
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Figure 4.11: Tile linear interpolation with different used subchannels. (a),(b) AWGN. (c),(d)

SUI-2.
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. TX- Channel Simulator
FEC [={Framing [ IFFT ™ spre (AWGN SUI-2,5U1-3)
De- | | Channel | @2.13 L RX-
DeFECk— Framing |*— Estimation FFT [—SYNC.f— (o
|
RX

Figure 4.12: Fixed-point data format in our design.

Channel Estimation

Q2.13 LS Q2.13 | Urear interpolation | @213 | Time Average
Pilot Estirmation *| In frequency domain *| Intime domain

Figure 4.13: Fixed-point formats|in channel estimation of our design.

4.4 DSP Implementation

4.4.1 Fixed-Point Data Formats

In algorithm development, it is often convenient to employ floating-point computation to
acquire better accuracy. However, for the sake of power consumption, execution speed,
and hardware costs, practical implementations usually adopt fixed-point computations. The
DSP chip used in our work, TI's TMS320C6416 is also of the fixed-point category. It means
that fixed-point computations are executed more efficiently than floating-point ones on this
platform. Due to these facts, we do simulation in 16-bit fixed-point domain. Meanwhile,
compared with 32-bit computation, it has better efficiency and negligible accuracy loss.

Although fixed operation has less accuracy , it does have much shorter the executing time.

In our simulation, we try several kinds of data formats to simulate the fixed-point compu-
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tation. We find out that Q2.13 is relatively close to our results of floating-point computation.
(Q2.13 means a 16-bit fixed point with one sign bit, 2 integer bits, and then 13 fractional bits
at the right side of dot. Here we only focus on the ”channel estimation” function. Therefore,
we only translate the input to channel estimation into fixed for simplicity. The fixed-point
data formats used in our design based on linear frequency-domain interpolation are as shown

in Fig. 4.12. The detail data formats of channel estimation are also illustrated in Fig. 4.13.

4.4.2 Fixed-Point Simulation

Figure 4.14 illustrates the performance of fixed-operation compared with floating operation

in AWGN and SUI-2. As we can see, thereisalmost no difference between the two.
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Figure 4.14: Performance of fixed-point computation of tile linear interpolation (10 used
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Table 4.3: OFDMA Uplink DSP Loading

Condition Cycle count DSP loading for
channel estimation

1024-FFT, BW: 10 MHz 4576 0.015

10 subchannels
2048-FFT, BW: 20 MHz 4800 0.016

10 subchannels
2048-FFT, BW: 20 MHz 9224 0.031

20 subchannels

4.4.3 DSP Computational Load

The last part of our work is to do DSP implementation. We use CCS to simulate. In the
condition of 2048-FFT using 10 subchannels, it takes.4800 cycles to complete the channel
estimation job when executing on £CS! Sinee a tile contains 3 symbols, it equals 1600 cycles
to be taken for per symbol. The DSP we use-«is: C6416T and its processor clock rate is 1
GHz with 256 MB DRAM. As the BWiis'20MHz-and target symbol time is 102.86 usec, it

may take approximately 0.016 DSP“computational load:

We also compare with two other conditions: 1024-FFT using 10 subchannels (BW:
10MHz, symbol time: 102.86 ps) and 2048-FFT using 20 subchannels. Table 4.3 illus-
trates the needed cycles, and we can find that the cycle count depends on the number of
used subchannels. We transmit twice number of tiles when using 20 subchannels than only
using 10 subchannels. It means the complexity is almost twice. Therefore, the needed DSP

loading is almost twice.
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#define 0114 short

#define 7 13 short

<t Thaugd same Lipe fsbart). using JIfferesi {pes to decdlore Is amnch more olear
o snd SWeld Some mIstaies

#define ftoQl_14(A) (short) (A*1A3G4) v Float to (.14 [P id=16384)
#define ftoQ2_13(A) (short) (A*H192 ) v Flast ta (5. 17 [P I3=818.2)
#define ftoQ3_12(A) (short) (A*4096 ) vt Flaat ta (F. I8 [P0 I2=4096)
#define Q1_14tof(A) (((float) A)/16384) . (7. 74 to Flost
#define Q2_13tof (&) (((float) A)-8192) .~ O7 17 to Float
#define 03 _12tof(A) (((Float) A)-/4096) . (7. 47 ta Flast

Figure 4.15: FIXED.H.

4.5 Appendix

Fig. 4.15 shows the header file FIXED.Hswhichswe use to transform into the formats of
fixed-point. Function channel_estimation_F XD is. the main function of channel estimation.
It contains two subfunctions of palot_cztraction-FIXED and interpolation_FIXED. Function
pilot_extraction_ FIXED gets the ¢hannel response at pilot-subcarriers by using the LS tech-
nique, and function interpolation*FIXED: does the interpolation part which plays an im-
portant role in the channel estimation scheme-and also estimate the frequency response of
the middle symbol within a tile. The original codes are shown in Fig. 4.16, Fig. 4.17, and
Fig. 4.18. The corresponding assembly codes of function channel_estimation_FIXED and in-
terpolation_FIXFED are also listed in Figures 4.19 and 4.20. Software pipelining information

of function channel_estimation_ FIXED is illustrated in Fig. 4.21.
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volid channel estimation FIXED( short N_pilot, short *datal. short *datal.
short *pilot, short *wk_ PUSC,
02_13 *#tile_ChannelOut0_Re, 02_13 *tile_ChannelOut0_Im,
02_13 *#tile ChannelOutl Re, (02_13 #*tile ChannelOutl _Im,
02_13 *tile_ChannelOutZ_Re, (02_13 *tile_ChannelCutZ_Im.
Q2_13 =#tile_ChannelRespl_Re,Q2_ 13 *tile_ChannelRespl_Im,
Q2_13 #tile_ChannelRespl_Re,Q2_13 #tile_ChannelRespl_Im,
0Z_13 #tile_ChannelRespZ Re,Z 13 #tile_ChannelRespZ Im )
1
pilot_extraction FIXED({ M _pilot, pilot, wk_PUSC, tile_ChannelOut0O_Re, tile_ ChannelOut0_Im,
tile_ ChannelOutZ_ Re, tile_ChannelOut2_Im, tile_ChannelRespl_Re,
tile_ChannelRespl_Im,tile ChannelResp2 Re,tile ChannelRespZ Im 118

interpolation FIXED(N _pilot, datal, datal, pilet, tile ChannelRespl_Re.tile_ChannelResp0_Im,
tile_ChannelRespl Re,tile_ChannelRespl Im,
tile_ChannelResp?_Re,tile_ChannelRespZ_Im 1:

Figure 4.16: Function channel_estimation_FIXED.

void pilot extraction FIXED(short N _pilot, short *pilot, short *=wk_ PUSC,
02 13 *tile ChannelOutl_Re, 0213 #*#tile_ChannelOut0_Im,
02 13 *#tile ChannelOutZ Be, 02 13 *tile ChannelOutZ Im,
NZ2_13 #tile_ChannelRespl_Re, 0Z_13 #*#tile ChannelRespd_Im.
D2 13 =*tile ChannelRespZ Re, Q2 13 *tile ChannelRespZ_Im )

1
short 1i.,temp.location:
for(i=0;i<MN_pilot;i++)
location=pilot[i]:
wwdoad pilot 1's foceiion i carrier distrbuilion
temp=1-2#wk_PUSC[location]:
% =00 Send FURC pr it 2 0D
=7 ar -F
tile_ChannelResp0_Re[location]=tile_ChannelDutl_Re[location]#*#temp:
tile_ChannelRespl_Im[location]=tile_ChannelOutl_Im[location]*temp:
tile_ChannelResp? Re[location]=tile_ChannelDut?_Re[location]*temp;
tile_ChannelRespZ_Im[location]=tile_ChannelOut?Z_Im[location]*temp:
¥
¥

Figure 4.17: Function pilot_extraction- FIXED.
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wvoid interpolation FIXED(short MN_pilot, short *datal, short *datal, short *pilot,

02_13 =tile_ChannelRespl_Re, 02 _13 *tile_ChannelResp0_Im,
QZ_13 =*#tile_ChannelRespl Re, 0Z_13 #*tile_ ChannelRespl Im,
2_13 =#tile_ChannelResp2_Re, 0Z_13 *tile_ChannelRespZ_Im )

1_14 spacing:

Q2 13 spacing_real, spacing_imayg, delta_real, delta_imay, deltaZ real, deltaZ_imag:
short i,Pilotlocddd,PilotLocEven,DataloeOdd, DatalocEven, Datalocl;

spacing=ftoQl 14(0.333333333); . ~F=w0-3)

for(i=0:1<(HN_pilots/2);1++)

{

PilotLocOdd=pilot [2*i+1]:;
PilotLocEven=pilot [2*1];
DatalocOdd=datal[2*i+1];
DatalocEven=datal[Z*i];

e /o T 7 I Py Sy Ry yEy Ry Sy Sy Sy Sy s puyu g P
spacing_real=tile ChannelRespl _Re[PilotLocOdd]-tile ChannelRespl_Re[PilotLocEven]:
delta_real = [ spacing_real = spacing ) >»14;-0 ~FH354

SLRY FEEGE Id--008 17
spacing_imag=tile_ ChannelRespl_Im[PilotLocOdd]-tile_ ChannelRespl _Im[PilotLocEven]:
delta_imay = ( spacing_ilmay * spacing ) >»14;

woyd? FARGE J4--2(.7 FF

deltaZ_real="=delta_real:

deltaZ imag==2*delta_imacg;
tile_ChannelRespl_Re[DatalocEven]=tile_ChannelRespl_Re[PilotLocEwven]
tile ChannelRespl Im[DatalocEven]=tile ChannelRespl_Im[PiloctLocEwven]
tile ChannelRespl Re[DatalocOdd]= tile ChannelResp0_Re[PilotLocEwven]
tile ChannelRespl_Im[DatalocOdd]= tile_ChannelRespl_Im[PilotLocEwven]

delta_real:
delta_imag;
deltaZ_real:
deltaZ_imayg:

+ o+ o+

spacing_real=tile ChannelResp2 Re[FilotLocOdd]- tile ChannelRespZ Re[PilotLocEven]:
delta_real= { spacing_real = spacing ) »>14:

il FEERQT TL--008 17

spacing_imag=tile_ ChannelResp? Im[PilotLocOdd]- tile ChannelRespZ Im[PilotLocEwven]:
delta_imag= (spacing_lmay = spacing) >>14;

woyd? FARGE Jd-—27 FF

deltaZ_real="=delta_real:

deltaZ imag==2*delta_imacg;

tile ChannelRespZ Re[DatalocEven]=tile_ ChannelRespZ Re
tile_ChannelRespZ Im[DatalocEven]=tile_ChannelRespZ Im
tile_ChannelRespZ_Re[DatalocOdd]= tile_ChannelRespZ_Re
tile_ChannelRespZ Im[DatalocOdd]= tile_ ChannelRespZ Im

PilotLocEven
PilotLocEwven
PilotLocEven
PilotLocEven

delta_real;
delta_imag:;
deltaZ_real:
deltaZ imag;

— e

] +
1 +
1 +
1 +

Datalocl=datal[4=*i];

tile_ChannelRespl Re[Datalocl]=

(tile_ChannelRespl_Re[Datalocl]+tile_ChannelRespZ_Re[Datalocl])>>1;
tile_ChannelRespl_ Im[Datalocl]=
tile_ChannelRespO_Im[Datalocl] + tile_ChannelResp?Z_Im[Datalocl]) >>1:
tile ChannelRespl Re[Datalocl+l]=

(tile_ChannelRespl_Re[Datalocl+l] + tile_ChannelRespZ Re[Datalocl+1]) >>1;
tile_ChannelRespl_Im[Datalocl+l]=
tile_ChannelRespl Im[Datalocl+l] + tile ChannelRespZ Im[Datalocl+l]) »>1;
tile_ChannelRespl_Re[Datalocl+i?]=
tile ChannelRespl Re[Datalocl+?] + tile ChannelRespZ Re[Datalocl+Z]) >>1;
tile ChannelRespl Im[Datalocl+?]=

{(tile_ChannelRespl_Im[Datalocl+?] + tile_ChannelResp? Im[Datalocl+2]) »>1;
tile_ChannelRespl_ Re[Datalocl+3]=

(tile_ChannelRespl_Re[Datalocl+3] + tile_ChannelResp?_ HRe[Datalocl+3]) »>1:
tile_ChannelRespl_ Im[Datalocl+3]=

(tile_ChannelRespl_Im[Datalocl+3] + tile ChannelResp? Im[Datalocl+3]) »>1;

—

—1 —]

Figure 4.18: Function interpolation_FIXED.
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5 33636333636 3 3636 3 363633363636 3636 336 36363 3636 33636 336 3636 36 3636 3 30 36 36 3363636363633 3636 W33 36 3636 336 363636363636 3636 3 3636 33636 KK

;* FUNCTION HAHME: _channel_estimation_FIXED

;*
¥
;*
o ¥
¥
;*
¥

*

3*

Regs Hodified : A@,A1,A3,A4,A5,A6,A7 ,A8,A%,A10,A12,B0,83 ,B4,B5 ,B6,B7,*

Regs Used

: A@,n1,Aa3,a%,A5,A6,A7 ,A%,A%,A18,012 60,83 ,B4,B5 ,B6,B7,
B8 ,B9,B10,B12,DP,SP,FP,A16,A17 ,A18,A19,A20,A21,
A22,n23,A2%,A25,A26 ,A27 A28 ,A29,A30,B16,B17 ,B18,
B19,B20,B21,B22,B23 ,B24 ,B25 ,B26 ,B27 ,B28

B8 ,B%,B818,5P,FP,A16,A17,A18,A19,0280,021,A22,0A23,
A24 ,A25,A26 ,A27 ,AZ8 ,A29 ,A30,B16,B17,B18,819,B248,

BE21,B22,B23,B24 ,B25 ,B26,B27 ,B28

Local Frame Size : 8 Args + B Auto + 28 Save = 28 byte

Ok Ok K K K % K

* Using -g {(debug) with

optimization (-03) may disable key optimizations?

_channel_estimation_FIXED:

LDY
LDY
LDW
LDY
LDW
My
LDY
My
My
My

MU
AHD
MU
My
My

Bxbe, A
8x89, 126,
LY
D211
ax8a, 32, A
D212
8x88, 26, 1
D212
axg8a, 19, 2
D111
axg8a, 12, 3
D111
ax84a, 18, 4

D172
D172
D172
D171
D172
L2
D171
32X
L1X
-D2

.52
L2
.52
-L1
.51

19
SP,FP
FP,=SP--(24)

B18,=+5P(20)
B3,*+5P(16)
A12,*-FP{12)

A18,*-FP{16)

*+FP{8),B17
=+FP({12),B28
*+FP{4} ,B16
*+FP({24) ,A3
*+FP({2@) ,B18
BE12,B9
*+FP{16),A10
n12,B8

B6 A9

BS,B7

CSR,B27
-2,B27,B5
BS,CSR
f6,n8
As,A16

Figure 4.19: Assembly code of function
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interrupts off
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T
LI O

Regs Used

L]

Reqgs Modified

¥ Local Frame Size
; ExrE T FE S EL T E TS ESEE S S ESES S S S ESESEEEEEEESEEEEEE SRS EEE R RS EEEEEES TS EEE ST

;* Using -g (debug) with optimization {-03) may disable key optimizations?

FUNCTION NHAME: _interpolation_FIXED

B22 ,B23,B24

A0,A%,A%,A5 A6, A7 A8 ,A9 B4, B5 B7 B8 ,BY,A16,A17 ,A18,
A19,A28,021,A22,A23,A24,A25,A26,A27 ,A28,A29,A38,
B16,B17 ,B18,B19,B20,821,B22 ,B23 ,B24

A8,A3,Ak,A5 ,A6,A7,A8,A9,A10,A12 B3 ,B4,B5,B6,B7 B8 B9,
BE10,DP,SP,A16,Aa17,A18,A19,A28,A21,A22 ,A23,A2Y,
A25,A26,A27 ,A28 ,A29 ,A30,B16,B17,B18 ,B19 620,821,

0 Args + 0 Auto + B Save = @ byte

* ok % ok ok ok K % % X%

*

3 F3E 336 3636 3 336 36 3636 336 36363636 36363636 3 3636 36363036 3636 3 363636 36 36330 3636 3 303636363636 -3 36363363636 366 3 3636363636 3 3636 3 36363636363 M

_interpolation_FIXED:

DTS o o e o T I o o I I o o e o e o e e o e e e o T o e e S e

-dwcfa
.dwcfa

MU

MU
I suB
HU
MU
MU
MUK

HU
LDH
LDH
LDH
I HU
I LDH
I HU
LDH
I MUC
LDH
I LDH
I AND
LDH
I MUC

Figure 4.20: Assembly code of function interpolation_ FIXED.

Gxbe, B

8x89, 126, 19

L2X
-L1K
L2%
-L18
-1

L2X
=31

-L1

D172
D172

D171

L2%

D212

L1X

D271

.32

D272

D171

L2

D271

.32

ns,B5
BY4,A19
Ak, 4, B21
B18,A9
A12,A8
A10,B4
Bx1555,A22

A6,A21
*+A21(2),B16
*021,B7
*+(21(2) A7
A19 B8
*++B21(4) ,B28
B8 ,A20

*B8 ,A29
CSR,B24

*B8 BY
*A21,A3

-2 ,B24,B17
*B8 A6
B17,CSR
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| 4]
| 4]

[58] (P) <@8,2>
[58] (P) <8,3>
|96] (P) <@0,8>
|78] (P) <0,6>
[182] (P) <8,2>

[124] (P) <0,5>
|96] (P) <8,4>

[136] (P) <08,3>
interrupts off



3% SOFTWARE PIPELINE INFORMATIOHN

T E Loop source line - 188

S Loop opening brace source line 181

e Loop closing brace source line : 192

= Known Hinimum Trip Count - 128

j* Known Haximum Trip Count - 128

T E KEnown Hax Trip GCount Factor - 128

T E Loop Carried Dependency Bound{™) : @

S Unpartitioned Resource Bound : 7

2 Partitioned Resource Bound{=) Hr

= Resource Partition:

j* A-side B-side

j* .L units a a

=3 .S units 1 1

S .D units T T

=3 .M units 3 1

b -& cross paths 2 2

T E -T address paths [i] F*

g Long read paths a a

=3 Long write paths a 5]

S Logical ops {.LS) a a {.L or .S unit)
=3 Addition ops {.LSD) a 1 {.L or .S or .D unit)
b Bound{.L .5 _.L%)} 1 1

T * Bound{.L .S .D .LS .LSD) 3 3

;*

=3 Searching for software pipeline schedule at ...

S ii = 7 Schedule found with 4 iterations in parallel
T E Done

;*

g Epilog not removed

g Collapsed epilog stages -8

;*

H Prolog not entirely removed

g Collapsed prolog stages 12

=¥

] Hinimum required memory pad : B8 bytes

;*

=3 For further improvement on this loop, try option -mhé
=3

=3 Minimum safe trip count - 3

T *

Figure 4.21: Software pipelining information of function channel_estimation_ FIXED.
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Table 4.4: OFDMA Uplink Efficiency Performance Comparison

Condition Execution Cycles | Minimum Needed | FEfficiency
Cycles

1024-FFT, BW: 10 MHz 4576 900 19.67%
10 subchannels

2048-FFT, BW: 20 MHz 4800 900 18.75%
10 subchannels

2048-FFT, BW: 20 MHz 9224 1800 19.51%
20 subchannels

Our DSP can execute 2 multiplications and 6 additions in one cycle. We have 5 mul-
tiplications and 1 additions per sample in function pilot_extraction_FIXED, and 12 mul-
tiplications, 40 additions, 12 shift computation: per tile in function interpolation FIXED.
Assuming using 10 subchannels, wé need a,minimuni, max{5/2,1/6}x120=360 cycles in
pilot_extraction_ FIXED and max{12/2,(40+12)/6}x60=540 for interpolation_ FIXED. The
total needed minimum cycles are"360+540=900. If we use 20 subchannels to transmit, the

needed minimum cycles would be twicé~and equal-to 1800.

We compare the actual execution cyeles taken by the compiled code with the minimum

cycles needed and calculate the efficiency, where the efficiency is defined as:

Minimum Cycles Needed

Efficiency = [18]. (4.14)

Practical Execution Cycles

Table 4.4 illustrates the efficiency comparisons in three different kinds of transmission con-

ditions.
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Chapter 5

Downlink Channel Estimation and
DSP Implementation

In this chapter, we introduce three methods to do the ehannel estimation in downlink trans-
mission. The simple techniques dnd channel inodels we*use are the same as described in
chapter 4. The channel estimation techniques-include L.S«in pilot positions, linear interpo-
lation in frequency domain and séveral improvement methods in time domain. We evaluate
the performance of each channel estimation approach*mainly via symbol error rate (SER)

and mean square error (MSE). The final of our work is the DSP implementation.

5.1 System Parameters and Channel Model

Table 5.1 gives the primitive and derived parameters used in our simulation work. In our
system, we let the preamble be followed by 24 data symbols. In addition to AWGN, we use

SUI-2 and SUI-3 to do simulation. Their profiles are already introduced in Table 4.2.

5.2 Channel Estimation Methods

The first symbol of the downlink transmission is preamble, and 24 data symbols are followed

in each subframe. Pilots in the preamble appear every 3 subcarriers. Therefore, we first use

71



Table 5.1: OFDMA Downlink Parameters

Parameters Values
Bandwidth 20 MHz
Central frequency 3.5 GHz
Nuysed 1681
Sampling factor n 28/25
G 1/8
Nrpr 2048
Sampling frequency 22.4 MHz
Subcarrier spacing 10.94 kHz
Useful symbol time 91.43 us
CP time 11.43 us
OFDMA symbol time 102.86 us
Sampling time 44.65 ns

LS technique to estimate the chanmel respense-atrcache pilot location. Next, we do linear
interpolation in frequency domain.to_get channel estimates:at non-pilot subcarriers. We take

this as the initial channel estimate.

In chapter 2, we mentioned downlink transmission*uses cluster structure to transmit
pilot and data information. Fig 5.1 shows the cluster transmission. The pilot positions are

different in even and odd symbols. It plays an important role to the methods we propose.

5.2.1 Two-Point Cluster Linear Interpolation

Since there are two pilots in each cluster, we directly use these two pilots as reference to
do linear interpolation in the frequency domain within the cluster. We also use exponential
averaging to enhance the performance in time domain. Here are the detailed steps of this

method:

e Estimate the channel response at each pilot location by using the LS technique.

e Use the linear interpolation scheme to get the data channel response from the two
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Figure 5.1: Structuzé-of cluster etganization in time.
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Figure 5.2: (a) 2-point cluster linear interpolation illustration, bold line is our estimation of
linear interpolation (b) pilot positions are different in even and odd symbols
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estimated pilot values (see Fig. 5.2(a)).
e Preamble information is utilized by exponential averaging weighting w = 0.9.

e Exponential averaging of data symbols is used in time domain.

5.2.2 Four-Point Cluster Linear Interpolation

As mentioned, time-domain averaging over several OFDMA symbols can enhance the channel
estimation performance, if the channel does not vary significantly over this time period.
The channel response stays relatively constant over a few OFDMA symbols, or it can be

approximately modeled as slowly linearly varying over a larger number of OFDMA symbols.

Since the pilot positions are different in_even.and®edd symbols, we take the pilots in
previous symbol as reference. There would be four pilots in a cluster to estimate other data
channel response instead of its original two.pilots. Next,we do linear interpolation in the

frequency domain within the clusfer.

Here are the detailed steps in this method:

Estimate the channel response at each pilot location by using the LS technique.

Take the pilots in previous symbol as reference (see Fig. 5.3(a)). It becomes four pilots

in a cluster (see Fig. 5.3(b)).

Use the linear interpolation scheme to get the data channel response from the four

estimated pilot values (see Fig. 5.3(c)).

Preamble information is utilized by exponential averaging weighting w = 0.9.
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Figure 5.3: (a) Pilots in previous symbol taken as reference. (b) Four pilot points in cluster.

(¢) Four-point cluster linear interpolation illustration. Bold line is our estimation by linear
interpolation.
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Figure 5.4: Advanced four-point cluster linear interpolation. (a) First data symbol. (b)
Second to (n — 1)th data symbols. (c) Last (nth) data symbol.

5.2.3 Advanced Four-Point Cluster Linear Interpolation

The channel may be modeled as linearly varying in a short time period can be used to yield

a predicted channel response at future OFDMA symbol instants, for example,
Hy(t+1) = Hg(t) + [He(t) — He(t — 1)].

If the receiver latency is not a concern, time-domain interpolation can be performed. A

simplest way of time-domain interpolation is, of course, linear interpolation, such as:

Hy(t) = 3[Hg(t — 1) + Hy(t + 1)] [19].
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We take the pilots in previous and next symbols as reference. Therefore, there would
also be four pilots in a cluster to estimate other data channel response instead of its original
two pilots (see Fig. 5.3(b)). We do linear interpolation in the frequency domain within the

cluster afterward (see Fig. 5.3(c)). The detailed steps each symbol are as follows:
1) First data symbol:
e Estimate the channel response at each pilot location by using the LS technique.

e Take the pilots only in next symbol as reference(see Fig. 5.4(a)). It becomes four pilots

in a cluster.

e Use the linear interpolation schemié to get“the data channel response from the four

estimated pilot values.

e Preamble information is utilized by exponential -averaging weighting w = 0.9.

2) Second to (n — 1)th data symbéls:

e Estimate the channel response at each pilot location by using the LS technique.

e Take the pilots in previous and next symbol as reference(see Fig 5.4(b)). It becomes 4

pilots in a cluster.

e Use the linear interpolation scheme to get the data channel response from the 4 esti-

mated pilot values.

3) Last data symbol:

e Estimate the channel response at each pilot location by using the LS technique.

e Take the pilots only in previous symbol as reference(see Fig 5.4(c)). It becomes 4 pilots

in a cluster.
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e Use the linear interpolation scheme to get the data channel response from the 4 esti-

mated pilot values.

Last to mention, this method gives our system a symbol time latency. For example, if
we want to get the channel response of the first symbol, we must wait until we receive the
second data symbol. In the last symbol, we get not only the previous symbol information

but also the last one’s.

5.3 Simulation Results

5.3.1 Simulation Flow

Figure 5.5 illustrates the block diagrams offoiir simulated system. We also assume perfect
synchronization and omit it in our simultion. Because of. all pilots in the preamble, there
is no need to do DeFraming and DeEEC: After channel estimation, as we do in uplink
transmission, we calculate the channel MSE between the real channel and the estimated
one, where the average is taken over the'subearriers. The symbol error rate (SER) can also

be obtained after demapping.

5.3.2 Validation with AWGN Channel

Before considering multipath channels, we do simulation with an AWGN channel to validate
the simulation model. We validate this model by comparing theoretical SER curves, and the

SER curves resulting from simulation.

In Figure 5.6, the theoretical symbol error rate (SER) curve versus Fy/Ny for uncoded
QPSK is plotted together with the SER curve resulting from the simulation. In this figure,
we simulate for no channel estimation error. This validates the simulation (we use C/C++

programming language and TI’s code composer studio).
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Figure 5.5: Downlink transmission simulation flow. (a) Preamble. (b) Data symbols.

5.3.3 Floating-Point Simulation

Figure 5.7 shows the performance of 2-point cluster linear interpolation with different ex-
ponential weighting in AWGN and SUI-2 with velocity v = 60km/hr. The method of with
weighting w = 0.9 in AWGN has the best SER and MSE. But in the condition of SUI-2,
velocity being 60 km/hr, this becomes the worst situation in both SER and MSE. It is
because the variance of channel condition is much violent in multipath such as SUI-2 than

in AWGN. We also get the validation from the analysis of in given velocity, calculating the
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Figure 5.6: The SER curve for uicoded QPSK resulting from simulation matches the theo-
retical one.

MSE by using the variance of Besseldfunction. Therefore, the performance of using exponen-
tial weighting in multipath channel is very poor.” Figure 5.8 shows 3 methods in SUI-2 with
different velocity of QPSK, including: two-point with exponential weighting 0.9, two-point

and four-point cluster cluster linear interpolation.

Figures 5.9 and 5.10 illustrate the comparison between all methods we use, including
two-point, two-point with exponential weighting w=0.9, four-point and advanced four-point
cluster linear interpolation in different channel condition. It is shown that the advanced
four-point has the best performance in multipath channel. Therefore, we use this method to

simulate other conditions in the following.

Figure 5.11 illustrates advanced four-point cluster linear interpolation with different mod-

ulation (uncoded QPSK, 16QAM and 64QAM) in AWGN. We also compare our simulation
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results with theoretical and no estimation error curves in SER. Figure 5.12 shows compar-
isons with another theory curve which takes data MSE into consideration in AWGN. The
3 lines in MSE of different modulation match with each other as a straight line with slope
m = —1 in Fig. 5.11(a). The results of MSE are unrelated to the modulation type because
the pilots are boosted-BPSK modulated in each modulation case. And the channel response

is interpolated only using the pilot information.[17]

The simulation with different velocity and different modulation in SUI-2 is given in

Fig. 5.13, and Fig. 5.14 gives only QPSK in SUI-3.

Figure 5.15 shows the comparison of taking preamble information into consideration.
When higher the velocity in SUI-2, the, pérforménee of no preamble effect in high E,/Ny is

better.
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Figure 5.7: Two-point cluster linear interpolation with different exponential weighting with

QPSK. (a),(b) In AWGN. (c),(d) In SUI-2 with velocity v=60 km/hr.
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Figure 5.8: Three methods of cluster cluster linear interpolation with different velocity in
SUI-2 of QPSK. (a),(b) Two-point with exponential weighting w=0.9. (c),(d) Two-point.
(e),(f) Four-point.
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Figure 5.10: Comparison of all methods we use, including two-point , two-point with expo-
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SUI-2 with velocity v=60 km/hr. (a) MSE. (b) SER.
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Figure 5.11: Advanced four-point linear interpolation with different modulation in AWGN.
(a) MSE. (b) SER.
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Figure 5.13: Advanced four-point cluster linear interpolation with different velocities and
different modulations in SUI-2. (a),(b) QPSK. (c),(d) 16QAM. (e),(f) 64QAM.
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Figure 5.14: Advanced four-point cluster linear interpolation with different velocities
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Figure 5.16: Advanced four-point cluster linear interpolation with no preamble in AWGN.
(a) MSE. (b) SER.

5.3.4 Cluster Analysis

In this section, we give detail performance-analysis.of advanced 4-point cluster linear inter-

polation. Here we do not transmit any preambles but-all data symbols for simulation.

Figure 5.16 shows the SER and MSE in" AWGN without transmitting any preambles. Here
we especially illustrate the MSE curve resulting from only data subcarriers. In Fig. 5.16(b),
we give another theoretical curve considering the data MSE in our simulation. We can find

out that our simulation curve is near to it.

We can find the SER and MSE spread over all subcarriers in Fig. 5.17. If we collect MSE
of all used clusters and average, we get the curve showed in Fig. 5.18(a). We calculate the
theory MSE value of non-pilot positions. It appears that our results are match with them.
We put these MSE values into consideration when showing the theoretical SER curve. As
shown in Fig. 5.18(b), our resulted average cluster SER curve is lower than the theory. It is

because the MSE values contains not only pilot but data subcarriers.
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Figure 5.17: (a)MSE and (b)SER over used subcarriers in AWGN at 10 dB SNR.

Figure 5.19(a) shows the MSE values resultingsonly from data subcarriers. We calculate
the theory MSE value of non-pilet positions too.+In Eig:=5.19(b), we get the exact theory
curve which is lower than our simulation. Figure 5.20 illustrates the SER and MSE perfor-

mance in even and odd symbols. “The pilot positions of both even and odd symbols have

high MSE but SER is 0.
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Figure 5.18: Average cluster performance in AWGN at 10 dB SNR. (a) MSE. (b) SER.
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Figure 5.19: Average cluster performance in AWGN at 10 dB SNR. (a) MSE. (b) SER.
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5.20: Average cluster performance in AWGN at 10 dB SNR. (a),(b) Even symbols.
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(AWGN,SUI-2,SUI-3)
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Figure 5.21: Fixed-point preamble transmission formats in our design.

5.4 DSP Implementation

5.4.1 Fixed-Point Data Formats

Here we only focus on the ” channel estimation’-funmction.' Therefore, we translate the input to
channel estimation into fixed for simplicity. The fixed-point preamble and data transmission
formats used in our design based of advanced four-point cluster linear interpolation method
are shown in Figures 5.21 and 5.22. We use Q3.12 instead of Q2.13 for preambles because
of the range of pilot values in the preamble, which is [~2v/2,2v/2]. The detail data formats

of preamble estimation and channel estimation are also illustrated in Figures 5.23 and 5.24.

5.4.2 Fixed-Point Simulation

Figure 5.25 illustrates the performance of fixed-point computation compared with floating-
point computation in AWGN. As we can see, there are almost no difference between these
two kinds of fixed-point data formats in the function of channel estimation (preamble data
formats are still 33.12). We use Q2.13 as final because of more accuracy. Figure 5.26

compares fixed-point computation using Q2.13 and floating-point computation in SUI-2.
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Figure 5.22: Fixed-point data transmission formats in our design.
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Figure 5.23: Fixed-point data formats in preamble estimation of our design.
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Time Average |.Q2-1 3

Q3.12

Preamble Information

Linear Interpolation
In frequency domain

Q2.13

LS

Pilot Estimation|

Q2

13

Figure 5.24: Fixed-point data formats in channel estimation of our design.

96



Downlink_ AWGN__QPSK

Downlink__ AWGN__QPSK

10 T T - 10 T T T T
—*— floating —*— floating
—o— fixed Q2__13 & —o— fixed Q2__13
& —— fixed Q3__12 10" —— fixed Q3__12
——+— no estimation error —+— no estimation error
theory
10t 107 ]
w -3
(%2} w E: E|
2 10
107 107 3
107 E
10'3 i i i 10 6 i i
0 5 10 15 20 0 2 4 6 8 10 12 14 16

Es/No | ' . Es/No
(a) | N (b)

Figure 5.25: Fixed-point computdtion of advanced rfouﬁpoint cluster linear interpolation in
AWGN. (a) MSE. (b) SER.
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Figure 5.26: Fixed-point computation of advanced four-point cluster linear interpolation in
SUI-2. (a) MSE. (b) SER.
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Table 5.2: OFDMA DL DSP Loading for Channel Estimation in 2048-FFT, BW: 20 MHz

’ Symbol Number \ Cycles \ DSP Loading ‘

preamble 16425 0.164

1st data symbol 560 0.006

2nd data symbol 8365 0.084

3rd—23rd data symbols 4029 0.040
(average)

24th data symbol 3832+3094 0.069

=6926
average 7261 0.073

5.4.3 DSP Simulation Loading

The last part of our work is to do DSP implementation. We use CCS to simulate and get the
cycle count we need. Table 5.2 shows the needed eycles,and DSP loading for each symbol
in a DL subframe. The cycles for-estimating preamble:is the highest because of calculating
every subcarrier. In the first symbol data, swe only. calculate the channel response of pilots
and store them for the next symbols After receiving the second data symbol, we can get the
channel response of the first data symbol: Here the eycles of the second data symbol is higher
than other average data symbol due to taking preamble information into estimation. When
getting the information of the last (24th) data symbol, we not only calculate the previous
but also the last symbol’s frequency response. The average cycle cost within a subframe is
7261, and it equals to 0.073 DSP loading as symbol time is 102.86 us, and BW is 20 MHz
in 2048-FFT.
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#define 0114 short

#define 7 13 short

<t Thaugd same Lipe fsbart). using JIfferesi {pes to decdlore Is amnch more olear
o snd SWeld Some mIstaies

#define ftoQl_14(A) (short) (A*1A3G4) v Float to (.14 [P id=16384)
#define ftoQ2_13(A) (short) (A*H192 ) v Flast ta (5. 17 [P I3=818.2)
#define ftoQ3_12(A) (short) (A*4096 ) vt Flaat ta (F. I8 [P0 I2=4096)
#define Q1_14tof(A) (((float) A)/16384) . (7. 74 to Flost
#define Q2_13tof (&) (((float) A)-8192) .~ O7 17 to Float
#define 03 _12tof(A) (((Float) A)-/4096) . (7. 47 ta Flast

Figure 5.27: FIXED.H.

5.5 Appendix

Fig. 5.27 shows the header file FIXED.Hswhichswe use to transform into the formats of
fixed-point. Since the first transmitted symbeol-im a DL subframe is preamble, we do the
preamble estimation first. Fig. 5.28 illustrates the Functien preamble_estimation FIXED in

which we gain the channel respofise of preamble.

Function channel,estimatéon,F IXED is the main funetion of channel estimation. It con-
tains two subfunctions of pilot_extraction FIXED and interpolation_.FIXED. Function pi-
lot_extraction_FIXED gets the channel response at pilot subcarriers by using the LS tech-
nique, and function interpolation_ FIXFED shows using the advanced 4-point cluster linear
interpolation to get the frequency response on data subcarriers. Furthermore, we use the

former preamble estimation results by multiplying an weighting of 0.9.

The original C codes are shown in Fig. 5.29, Fig. 5.30, Fig. 5.31, Fig. 5.32, and Fig. 5.33.
The corresponding assembly codes to each function are also listed in Fig. 5.34, Fig. 5.35,
Fig. 5.36 and 5.37. Software pipelining information of functionpreamble_estimation_ FIXED
and channel_estimation_FIXED are illustrated in Fig. 5.38 and Fig. 5.39.
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void preamble estimation FIXED (int SEGMENT, short *Bin_preamble, Q3_12 =*preamble_out_real,
Q3_12 *preamble_out_imayg, Q2_13 *preamble_response_real, Q2_13 =preamble response_imag)

short i,preamblepilot PUSC[561];
Q1_14 kk,aa;
Q2_13 preamblespacing_real [S60],preamblespacing_imag[560],preambledelta_real [560],preambladelta_imag[560]

kk=ftoQ1_14({0.35355339)
aa=ftoQl_14(0.33333333);

if[SEGMENT==0)

for(i=0;i<561l:i++)
{

}

preamblepilot PUSC[1]=SEGMENT+3#i;
preamble_response_real [preamblepilet_PUSC[i]]

= preamble_out_real [preamblepilot PUSC[i]]*kk*({1-?*Bin preamble[(i+4)])>>13;
preamble_response_imag[preamblepilet_PUSC[i]]

= preamble_out_imag[preamblepilot PUSC[i]]*kk*({1-?*Bin preamble[(i+4)])>>13;
PR TPRGE P08 17

for(i=0;i<560;i++)

i
i

else

preamblespacing_real[i] = (Q2_13)preamble_response_real [preamblepilot_PUSC[i+1]]
-preamble_response_real [preamblepilot _PUSC[1]]:
preambledelta_real[i]=(preamblespacing real[i]*aa)>>14;
preamblespacing imag[i] = (Q2_13)preamble_response_imayg[preamblepilot PUSC[i+1]]
—preamble_response_imag [preamblepilot PUSC[i]];
reambledelta_imag[i]=(preamblespacing_imag[i]*aa)>>14;
L JREGE Fd--a08 137

preamble_response_real [ (preamblepilot PUSC[i]+1)]

= [QZ2_13)preamble_response_real [presmblepilot_PUSC[i]]+preambledelta_real[i]:
preamble_response_imag [ (preamblepilot_PUSC[1]+1)]

= [QZ2_13)preamble_response_imag[presmblepilot _PUSC[i]]+preambledelta_imag[1]:
preamble_response_real [(preamblepilot_PUSC[1]+2)]

= [Q2_13)preamble_response_real [presmblepilot_PUSC[i]]+Z2*preambledelta_real [1]:

preamble_response_imag|[ (preamblepilot_PUSC[1]+2)]
= (Q2_13)preamble_response_imay [preamblepilot PUSC[i]]+Z*preambledelta_imag[i]:

for(i=0;i<560;1++)

{

preamblepilot PUSC[i]=SEGMENT+3%*1i;
preamble_response_real [preamblepilot_PUSC[1]]
= preamble out real[preamblepilot PUSC[i]]=kk*(1-2*Bin preamble[ [i+2)])>>13;
preamble_response_imag [preamblepilot_PUSC[i]]
= preamble_out_imayg[preamblepilot_PUSC[1i]]*kk*(1-2#Bin_preamble[ (i+2)]32>>13;
F Jowg] Fd--aF 17

T(i=0;1<559;i++)

preamblespacing_real[i] = (QZ_13)preamble_response_real [preamblepilot PUSC[i+1]
—preamble_response_real [preamblepilot _PUSC[i]]:
preambledelta_real [i]=(preamblespacing_real[i]*aa)>>14;
preamblespacing_imag[i] = (QZ_13)preamble response_imag[preamblepilot PUIC[i+1]
—preamble_response_imag [preamblepilot_PUSC[i]]:
preambledelta_imag[i]=(preamblespacing_imag[i]*aa)>>14;
SRE JTRG F--0P I3
preamble_response_real [ (preamblepilot_PUSC[1]+1)]
= (02_13)preamble response_real [preamblepilot PUSC[1]]+preambledelta_real[i]:
preamble_response_imag[ (presmblepilot_PUSC[1]+1)]
= (Q2_13)preamble_response_imag [preamblepilot PUIC[1]]+preambledelta_imag[i]:
preamble_response_real [ (preamblepilot_PUSC[i]+2)]
= (QZ2_l3)preamble_response_real [preamblepilot_PUSC[i]]+2*#preambledelta_real [1]
preamble_response_imag[ (preamblepilot PUSC[1]+2)]
= (0Z2_13)preamble response_imag [preamblepilot PUSC[1]]+2*preambledelta_imag[i]

i
if (SEGMENT==1)
{

preamble_response_real [0]=preamble_response_real [1]-preambledelta_real [0]:
preamble_response _imag[0]=preamble_response_imag[l]-preambledelta_imag[0];
preamble response real [1679]=preamble response real [1675]+preambledelta real[559];
preamble_response_imag[l679]=preamble_response_imag[l675]+preambledelta_imag[559];

preamble_response_real [ 1660]=preamble_response _real [1675]+2*%preambledelta_real [559]:
preamble_response_imag [ 1680]=preamble_response_imag[ l67E8]+2*#preambledelta_imag [559]:

else

]=preamble_response_real [2]-Z*preambledelta_real [0]:
]=preamble_response_imag[Z]-Z*preambledelta_imag[0];

preamble_response_real [0
0
1]=preamble_response_real [2]-preambledelta_real [0]:
1
1
1

[
preamble_response imag[
preamble_response_real [
preamble_response_imag[l]=preamble_response_imag[Z2]-preambledelta_imag[0];
[16B0]=preamble response real [1679]+preambledelta_real [559]:
[1680]=preamble_response_imayg[1679]+preambledelta_imag [559]:

preamble response real
preamble_response imag

Figure 5.28: Function preamble_estimation_FIXED.
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#define symbollength 24

#define NEft 2048

#define Nused 1681

#define Npilots_ PUSC_group 48

#define NGsubLeft 154

#define NGsubRight 153

#define Ndata_group 2568

short channel_real pre FIXED[Z?][1681].channel_imag_pre FIXED[Z][1681]:

void pilot_extraction FIXED(int .int =*,int *=,02 13 =,02_13 =,02_ 13 =, Q2 13 =);
vold interpolation FIXED(int,int.,int *,1int *=,02 13 *,02 13 *,02 13 =,02 13 =);

void channel estimation FIXED(int last,int PUSC_SvmbolMumber,int =*data_PUSIC,int *pilct_PUSC, int =wk_PUSC,
Q2_13 =channel_out_real,QZ_ 13 =#channel_out_imag,QZ_ 13 *channel response_real,(Z_13 =*channel_response_imag,
Q2_13 =preamble_response_real.02_13 *preamble_response_imag)

int 1;

if(last==1)

{interpolation_FIXED({last,PUSC_SymbolNumber,data_PUSC,pilot_PUSC,channel_response_real .
channel response_imag.preamble response_real,preasmble response_imag): )}

else

{ if (PUSC_SvmbolMNumberX#symbol length==0)

pilot_extraction FIXED(PUSC_SymbolNumber,pilet_PUSC,wlk_PUSC,
channel_ocut_real,channel out_imag.channel response_real.channel response_imag):
for(i=0;i<Mpilots_PUSC_group;i++)

channel_real pre FIXED[O][i]=channel_ response_real [pilot_PUSC[i]];
channel_imag_pre FIXED[O][i]=channel response_imag[pilot_PUSC[i]]
¥

else

{

pilot_extraction FIXED(PUSC_Symbollumber,pilot_PUSC,wk_PUSC,channel _out_real,channel_out_imag,
channel_response_real .channel_response_imag):
interpolation FIXED(last . PUSC_SyvmholHumber,data PUSC,pilet PUSC,channel_ response real.,
channel response imag.preamble response real ,preamble response imag);

Figure 5.29: Function channel_estimation_ FIXED.

volid pilot_extraction_FIXED(int PUSC_SymbolMumber,int *pilot_PUSC,int =wk_PUSC,
02 13 #*channel out_re=al., Qz_13 #*channel_out_imag,
Q2_13 #=channel response_real Q2 13 *channel_response_imag)

short bbb fb=3-4,

int i;

bb=ftoQ1_14(0.75);

for{i=0;i<Npilots_PUSC_group:i++)

{
channel response_real [pilot_PU3C[i]]=channel_out_real [pilot_PUIC[i] ]*bh=*(1l-Z=wk_ PUIC[pilot_PU3C[i]])>>14 ;
channel response_imag[pilot_PUSC[i]]=channel out_imag[pilot_PUSC[i]]*bh=*(1-2*wk_ PUSC[pilot_PUSC[i]])>>14 :
SRR FARGT JF--237 17

Figure 5.30: Function pilot_extraction FIXED.
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vold interpolati

int Mpilots,
Q1_14 exp_we

on_FIXED(int last,int PUSC_SymbolNumber,int *data_PUSC,int *pilot_PUSC,
Q2_13 =#channel_response_real,Q2_13 *channel response_imayg,
Q2_13 =#=preamble_response_real,Q2_13 *preamhble_response_imag)

Nelusters,i,j;
ightf,exp weightf_inv:-axp weight=0. %

Q2_13 delta_real[24][3].delta_imag[24][3].channel_real _now[48],channel_imag_now[45]:

exp_weightf=ftoQl 14(0.9);
exp_weightf_inv=ftoQl 14(0.1);

Nelusters=Np
MNpilots=Hpil

if(last==0)

1
if (PUSC_Symb
1

ilots_PUSC_groups?;
ots_PUSC_group:

alMumber®2==1)

for{i=0;i<Npilots_PUSC_group:i++)

{

i

channel_real_now[i]=channel_response_real [pilot_PUSC[i]]:
channel_imayg_now[i]=channel_response_imag[pilot_PUSC[i]]:

f{PUSC_SymbolNumber==1)

for{i=0;i<Npilots_PUSC_group:i++)
{
channel _response_real [pilot_PUSCO[i]]=channel_real_pre FIXED[O][i]:
channel _response_imag[pilot_PUSCO[i]]=channel_imayg_pre FIXED[O][i]:
¥

¥
else
{
for{i=0;i<Npilots_PUSC_group:i++)
{
channel _response_real [pilot_PUSCO[i]]=channel_real_pre FIXED[O][i]:
channel _response_imag[pileot_PUSCO[i]]=channel_imayg_pre FIXED[O][i]:
channel _response_real [pilot_PUSC1[i]]=(channel_real_pre FIXED[1][1]
+channel response_real [pilot_PUSC[1]]1)1>>1;
channel response_imag[pilot_PUSC1[i]]=(channel_imag_pre FIXED[1][1]
+channel response_imag[pilot_PUSC[1]]1)1>>1;
PN B
¥
¥
for(i=0;i<Npilots_PUSC_group;i++)

channel_real_pre FIXED[1][i]=channel_real_nowl[i]:
channel _imag_pre FIXED[1][i]=channel_imayg_nowl[i]:

or{i=0;i<Nclusters;i+t)

delta_real [1][0]=(02_13) (channel_response_real [pilot_PUSCO[2*1i]]
—channel_response_real [pilot PUIC1[Z*i]]1>>2;
delta_imag[1][0]=(02_13) (channel_ response_imag[pllot_PUICO[2=i]]
—channel_response_imag [pilot_PUSCL[2*1]])>>2;

AR =

for{j=1;j<4;:]++)
i

channel_response_real [pilet_PUSCL[Z%i]+j]=channel_ response_real [pilot_PUSC1[2*i]]
+j*delta_real [1][0]:

channel_response_imag[pilot_PUSC1[2#i]+j]=channel response_imag[pilot_PUSC1[Z2*i]]
+j*delta_imag[1][0]:

¥
delta_real[1][1]=(02_13) (channel_response real [pilot_PUICO[2=i+1]]
—channel_response_real [pilot PUSCO[Z*1i]]1>>2;
delta_imag[i1][1]=(02_13) (channel_ response_imag[pllot_PUISCO[2#i+1]]
—channel response_imag [pilot_PUSCO[2*1]])>>2;
AT =
for(j=1;j<4;j++)

channel response_real [pilot PUSCO[Z%i]+4j]=channel response real [pilot PUSCO[Z2*i]]
+j*delta_real[1][1]:

channel _response_imag[pilot_PUSCO[2#i]+j]=channel response_imag[pilot_PUSCO[Z2*i]]
+j*delta_imag[i][1]:

iy
delta_real[i1][2]=(02_13) (channel_ response_real [pilot_PUSC1[2#i+1]]
—channel_response_real [pilot _PUSCO[Z*i+1]])3>>2;

[
N ; : 11)>
delta_imag[i][2]=(02_13) (channel_response_imag[pilot_PUSC1[2*=i+1]]
—channel_response_imag [pilot PUSCO[Z*i+1]]1>>2;

Figure 5.31: Function interpolation_FIXED.
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for(j=1:j<6:j++)
{

channel response real [pilot PUSCO[Z*i+1]+j]=channel response real[pilot PUSCO[Z=xi+1]]
+i*delta_real[1][2];

channel _response_imag[pilot_PUSCO[Z2*i+1]+j]=channel_response_imag[pilot_PUSCO[Z2=i+1]]
+i*delta_imag[i][2]:

else
for{i=0;i<Npilots PUSC_group;i+t)

channel_real_new[i]=channel_response_real [pilet_PUSC[i]];
channel_imag_neow[i]=channel_response_imag[pilet_PUSC[i]];

¥
for(i=0;i<Npilots_ PUIC_group:i++)

channel response_real [pilot PUSCO[1]]=({channel_real pre FIXED[O][1]
+channel response real [pilot PUSC[1]])>>1:
channel response imag[pilot PUSCO[i]]=({channel imag pre FIXED[O][1i]
+channel response_imag[pilot PUSC[i]])>>1;
coasd o= 2
channel_response_real [pilot_PUSC1[i]]=channel_real_pre FIXED[1][i]:
channel_response_imag[pilot_PUSC1[i]]=channel_imayg_pre FIXED[1][i]:
¥
for{i=0:iMtp1lots_PUSC_group:i+t)
{
channel real pre FIXED[O][i]=channel_real_now[i]:
channel imag pre FIXED[O][i]=channel imayg now[i];
¥
for(i=0;i<Nclusters;i++)
{
delta_real[1][0]=(02_13) (channel_response_real [pilot_PUSCO[2%1i]]
—channel response_real [pilot _PUSC1[Z*1]])1>>2;
delta_imag[1][0]=(0Z_13) (channel_response_imag[pillot_PUSCO[Z*1]]
—channel response_imayg [pllot _PUSCl[2*1]])>>2:
Era R e 4
for(j=1:j<4:j++)
{

channel response real [pilot PUSC1[2#i]+j]=channel response real[pilot PUSCL[2*i]]
+i*delta_real[1][0];

channel_response_imag [pilot_PUSC1[2*i]+j]=channel_response_imag[pilot_PUSC1[Z2*i]]
+j*delta_imag[1][0]:

}

delta_real[1][1]=(02_13) (channel_response_real [pilot_PUSCO[Z2#i+1]]
—channel_response_real [pllot_PUICO[Z*1]])>>2;

delta_imag[i][1]=(02_13) (channel_response_imag[pilot_PUSCO[Z2*i+1]]
—channel_ response_imag [pllot PUSCO[Z*1]])>>2:

L AAS =

for(j=1;j<4;j++)

channel_response_real [pilot_PUSCO[2*i]+4j]=channel_response_real [pilot_PUSCO[2*i]]
+j*delta_real[1][1]:

channel_response_imag [pilot_PUSCO[2*i]+4j]=channel_response_imag[pilot_PUSCO[2*i]]
+i*delta_imag[1][1]:

}

delta_real[i][2]=(Q2_13)(channel response real[pilot PUSC1[Z*i+1]]
—channel_response_real [pilot PUSCO[Z*=i+1]])1>>2;

delta_imag[i][2]=(02_13) (channel_response_imag[pilot_PUSC1[Z2=i+1]]
—channel response_imag [pllot_PUSCO[Z2*i+1]])>>2;

S B3I =

for{j=1;]<6;j++)

channel response_real [pilot_PUSCO[Z*i+1]+j]=channel_response_real [pilot_PUSCO[ *i+1]]
+i*delta_real [1][2]:

channel response imag [pilot PUSCO[Z*i+1]+j]=channel response imag[pilot PUSCO[:Z*i+1]]
+i*delta_imag[i][2]:

Figure 5.32: Function interpolation_FIXED (cont.).
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else ylisst==i}

for{i=0;i<Npilots_PUSC_group;i++)

1
channel _response_real [pileot_PUSC0[1]]=channel_real_pre FIXED[O
channel _response_imag[pileot_PUSCO0[1]]=channel_imagy_pre FIXED[O
channel response_real [pillot_PUSC1[1]]=channel_real pre FIXED[1
channel response_imag[pilot_PUSC1[1i]]=channel_imag_pre FIXED[1

HeR R

}
for{i=0:i<MNclusters:i++)
{
delta_real [1][0]=(02_13) (channel_response_real [pilot PUSCO[Z2*i]]
—channel_response_real [pilot_PUSC1[2*1]])>>2;
delta_imag[1][0]=(Q2_13) (channel_response_imag[pllot_PUICO[Z=x1]]
—channel _response_imag [pilot_PUSCI1[2=i]]1>>2;
AT =
for{j=1;j<4;:1++)

channel _response_real [pilot_PUSC1[2#i]+j]=channel response_real [pilot_PUSC1[Z2#*i]]
+j*delta_real [1][0]:
channel_response_imayg[pilot_PUSCL[2%i]+j]=channel_response_imag[pilet_PUSC1[Z=i]]
+j*delta_imag[i][0]:
}

delta_real[1][1]=(02_13) (channel_response_real [pilot PUSCO[Z2*i+1]]
—channel _response_real [pilot_PUSCO[Z*1]]1>>2;
delta_imag[1][1]=(02_13) (channel_response_imag[pllot_PUICO[2=i+1]]
—channel response_imag[pilot_PUSCO[Z*1i]])1>>2;
AT =

for{j=1;j<4;:]++)
{

channel_response_real [pilot_PUSCO[2#1i]+j]=channel_response_real [pilot_PUSCO[Z%*1]]
+j*delta_real [1][1]:
channel _response_imag[pilot_PUSCO[2%i]+4j]=channel_response_imag[pilet_PUSCO[Z*i]]
+j*delta_imag[i][1]:
¥

delta_real [1][2]=(02_13) (channel response_real [pilot_PUSCI[Z*i+1]]
—channel_response_real [pilot PUSCO[Z*i+1]]1>>2:
delta_imag[i][2]=(02_13) (channel response_imag[pilot_PUSCL[Z*i+1]]
—channel_response_imag [pllot PUSCO[Z*i+1]]1>>2;
e AaE = e

for(j=1:j<o:j++)
{

channel_response_real [pilot PUSCO[:Z=*i+1]+j]=channel_response_real [pilot PUICO[Z=i+1]]
+j*delta_real[i][Z2]:;

channel response imag[pilot PUSCO[Z*i+1]+j]=channel response imag[pilot PUICO[Z=i+1]]
+j*delta_imag[i][Z2]:;

¥
¥

Srerponantisd sversgisgy for presmbie-------------om oo

if (PUSC_SymbolNumberXsymbollength==1)

i
for(i=0;i<Ndata_group;it+t)
channel response_real [data_PUSC[i]]=(exp_weightf{_inv*channel response_real [data_PUSC[i]]
+exp_welightf{*preamble response_real [data _PUSC[1]])>»>14;
channel response_imayg[data_PUSC[i]]=(ezp_weightf{_inv*channel response_imag[data_PUSC[1]]
+exp_welightf{*preamble_response_imag[data _PUSC[1]])»>14;
SRR IFEGT P20 IR
)
for(i=0;i<Npilots_PUSC_group;:i++)
channel response_real [pilot_PUSC[i]]=(ezp_welightf_inv*channel response_real [pilot_PUSC[1]]
+exp_welghtf*preamble_response_real [pilot_PUSC[1i]]1»>14;
channel response_imag[pilot_PUSC[i]]=(ezp_welightf_inv*channel response_imag[pilot_PUSC[1]]
+exp_welghtf*preamble_response_imag[pilot _PUSC[1]]1>>14;
gF? TG E--302 1T
¥

Figure 5.33: Function interpolation_FIXED (cont.).
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;* FUNCTION NAME: _preamble_estimation_FIXED *
3 *
;* Regs Hodified : ABO,A3,A4,A5,A6 A7 ,A8,A9,B0,B1,B2,B3,B4,B5,86,B7,B8, =*
. B9 ,B10,5P,A16,A17,A18,A19,A20,A21,A22 ,A23,A2Y, *
HJ A25,A26,A27 ,A28,A29 ,A30,A31,B16,B17,B18,B19,B20, =
13 B21,B22,B23,B24,B25 ,B26 ,B27 ,B28 ,B29,B30,B31 *
;* Regs Used : A@,A3,A4,A5,A6,A7,A8,A9,B0,B1,B2,B3,B4,B5,B6,B7 ,B8, =
T B9,B10,DP,SP,A16,A17 ,A18 ,A19 ,A20,A21,A22 ,A23 ,A2L =
T A25,A26 ,A27 A28 ,A29 ,A38,731,B16,B17,B18,B19,,B28, =
Hd B21,B22,B23,B24,825,B26,B27 ,B28,B29 ,B30,B31 *

*

H Local Frame Size : @ Args + 5612 Auto + 8 Save = 5628 byte

*

’
;¢ Using -g (debug) with optimization (-03) may disable key optimizations?

_preamble_estimation_FIXED:

e R e e e e RS -_——
-ducfa @8xbe, 8
-ducfa @8x89, 126, 19

ADDK .52 -G624,5P HE R
.ducfa @OxB8e, 5624
sSTW .D2T12 B18,*+SP(5624) ;111
.ducfa 0x88, 26, 8
sTW .p2T12 B3,*+5P(5628) ; 11]
.ducfa @x8a, 19, 1
ADD L2X 10,A4,B24
ADD L2X 8,A4,B25
ADD L2 18,SP,B27
11 ADD .32 12,5SP,B21
11 HY -D2X A4,B3 HERAT|
11 ADD -L1 14,A4,A26
11 HU .81 AG,A19 HERAT|
11 HU D1 Ag,n21 ;111
HY L2 B6,B16 ; 11]
11 ADD .52 8,5P,B26
11 ADD D2 14,5P,B22
11 HUK .31 8xb5 ,A17
11 ADD -L1 12,A4,A25
11 HY D1X B4,A18 : 111]
ZERD L2 B28
ADD L2 1,828,823 ; |26] (P) <8,8>
HPY -H2 B23,3,B7 ; |26] (P) <8,1>
11 ADD .L2 2,828,831 ; |26] (P) <o0,08>
11 ZERD .L1 A24
HPY -H2 B31,3,B2 ; |26] (P) <@,2%
11 ADD -L1 3,A24,A7 ; |26] (P) <@,8>
HPY -1 A7,3,A31 ; |26] (P) <8,1>
11 STH D212 B7 ,»+B27[B28] ; |26] (P) <8,4>
HPY -H1 A24,3,A29 ; |26] (P) <8,0>
11 STH D212 B2 ,=+B21[B28] ; |26] (P) <8,5>
STH .Dp2T1 A31,=+B22[B2A] ; |26] (P) <@8,8>
11 HPY .M A24,3,A3 ; |27] (P) <@,2%
11 HUC .52 GSR,B18
STH .D2T1 A29,%+B26[B20] ; |26] (P) <9,18>
11 AND .L2 -2,B18,B4
11 HU SL1X B22,A28
LDH .D2T12 *+B27[B28] ,B38 ; |28] (P) <9,13>
11 LDH D171 =+A28[A24] ,A9 ; |28] (P) <9,14
11 EXT .31 Ad3,16,16,A4 ; |27] (P) <0,14>
11 HUG .52 B4,C5R ; interrupts off
11 HPY -H2 B31,3,B5% ; |27] (P) <8,14>

Figure 5.34: Assembly code of function preamble_estimation_ FIXED.

105



SEEAEE AR KA E XA XA EE AR AR KA E XA XX AR KA AR AR KA E XA XX AR LA A EE AR A EXEA XX AXK AR REXAXER XXX XN

;* FUNCTION HAME: _channel_estimation_FIXED *
;* *
3 Regs Hodified : AB,A1,A2,A3,A4,A5,A6,A7 AR A9, ,A10,B0,B1,B2,B3,B4,B5, =
T B6,B7 ,B8,B9,B10,5P ,A16,A17,A18,A19,A20,A21,A22, =
3 AZ23,A24 ,A25%,A26,A27 A28 ,A29,A30,A31,B16,B17,B18, =
. g19,828,821,8B22,B23,B24 ,B25,B26,B27 ,B28 ,B29,B30, =
T B34 *
3 Regs Used : AB,A1,A2,A3,A4,A5,A6,A7 AR A9 ,A10,A12,B0,B1,B2 ,B3,B4, %
. B% ,B6,B7,B8,89,B10,812,DP,5P,A16,A17,A18,A19,A20,*
T 621,a22 ,A23, 024,025 A26,A27 A28 ,A29 ,A30,031,B16, =
3 B17 ,B18,B19,B20,821,B22 ,B23,B24 ,B25 ,B26 ,B27 ,B28, =
. B29,B838,B31 *

*

s Local Frame Size : 8 Args + @ Auto + 12 Save = 12 byte

SEEAEE AR KA E XA XA EE AR AR KA E XA XX AR KA AR AR KA E XA XX AR LA A EE AR A EXEA XX AXK AR REXAXER XXX XN

;* Using -g (debug) with optimization (-03) may disable Key optimizations? *

_cthannel_estimation_FIXED:

.ducfa ©9x@Pe, @
ducfa ©8x89, 1246, 19
STW D212 B18,=SP--(16) ;|21
.ducfa ©8x8e, 16
.ducfa ©x88, 24, 8

STW D212 B3 ,=+SP{12) : 121
.ducfa 8x8a, 19, 1
STW .D2T1 A18,*+5P(8) 121

.dwcfa 8x8a, 18, 2

HU L1 BY4,A25 ; |21)
HU L1x BE10,A24 : |21)

HU L2x 68 ,B6 ; |21)

1 HU L1x B6 A6 ; |21]
I HY .51 6 ,A22 ;|21
HU L2x a4 ,B1 ; |21]

I HY L1 BS,A8 ; 121]
1 HU .52 BE12,B18 : |21)
1 HU .51 A10,023 : |21)
[ B1] BHOP .81 L52,5 ;|24

; BRANCHCC OCCURS {L52} ;|28

Figure 5.35: Assembly code of function channel_estimation_ FIXED.
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PEEEAEE AR KA E XA XX AA AR K AR KA E XA XX AA XA R K AR A E XA XX AR X AR A XK R EXA XX AAXE X AREXARXRER XXX K

;* FUNCTIDN HAME: _pilot_extraction_FIXED

x

;* Regs Modified

;*

;*
;¥ Regs Used
;*

x

3 Local Frame Size

: AB,A1,RA2,A3,A%,A5,A0,A7,A8,A9,B0,B4,B5,86,B7,B8,89,

A16,017 018,019 ,020,021 ,B16,B17 ,B18 ,B19 ,B208,B21,

B22 ,B23,B24,B25,B26,B27 ,B28,B29,B830
Ad,A1,A2,A3,A4,A%,A0,A7 ,A8,A?,A10,B0,B3,B4,B5,B6,B7,

B8 ,B9 ,DP,SP,A16,017 418 419,028,021 ,B16,B17 ,B18,

B19,B20,B821,B22,823,B24 ,B25,B26,B27 ,B28,B29,B30
A8 Args + @ Auto + @ Save = @ hyte

SEEEAEE AR KA E XA XX AA XA AR K AR KA E XA XX AA XX AR AR KR E XA XX AR X AR AR KR EXAEXAXEXARXAXER XXX K

;* Using -g (debug) with optimization (-03) may disable Key optimizations!

¥ oH K & OB ¥ K ¥ K

¥

_pilot_extraction_FIXED:

DED o o e e I o T e o o e e e I S e e e T e I I o

-dwucfa
-ducfa

[yl
1 My

[yl
suB
My

My
MUK
HUC

[yl
My
AND
MUK
MUK

HUC
My
[yl
MUK
HUK
MUK

Bxfe, A

8x089, 126, 19

-L1X
.51

-L1X
L2
520

L2X
D2
.52

-L1X
L2X
.52
D2
.51

.52
L1X
L2X
.51
-1
D2

B8 ,AG
A6 ,A7

B6 A5
BY4,8,B28
n10,B28

ng,B27
1,B4
CSR,B30

B20,A4
a6 ,B24

-2 ,B38,B5
3.B26

0x2 ,A2

BS,CSR
B4, 03
A5 ,B23
23,A0
0x3,A1
0x1,B0

; 1251)
; 1251)
; 1251)
; 1251)
; 1257)

|257]

init prolog collapse predicate
; interrupts off
|255]

init prolog collapse predicate
init prolog collapse predicate

Figure 5.36: Assembly code of function pilot_extraction_FIXED.
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s* FUNCTION NAME: _interpolation_FIXED

*
s* =
;* Regs Hodified : A0,A1,A2,A3,AH,A5,A6,A7 ,A8,A9,A10,A11,A12,A13,A14, *
H3 A15,80,B1,B2,B3,B4,B5,B6 ,B7 ,B8 ,B9 ,B10,B11,5P,A16, %
H A17,A18,A19,A20,A21,A22 ,A23,A24,A25,A26 ,A27 A28, *
H A29,A30,A31,B16,B17,B18 ,819,B20,B21,B22 ,B23 ,B24, *
* B25,B26,B27,B28,B29 ,B30,B31 ®
;* Regs Used : A0,A1,A2,A3,AH,A5,A6,A7 ,A8,A9,A10,A11,A12,A13,A14, *
H3 A15,80,B1,B2,B3,B4,B5,B6 ,B7 ,B8 ,B9 ,B10,B11,DP,SP, *
H A16,A17,A18,A19,A20,A21,A22,A23 ,A24,A25 ,A26,A27, *
H A28,A29,A30,031,B16,B17 ,B18,B19 ,820,B21,B22,B23, *
* B24,B25,B26,B27,B28,B29 ,B30,B31 ®
;* Local Frame Size : 0 Args + 484 Auto + 36 Save = 520 byte =
;* Using -g (debug) with optimization {-02) may disable key optimizations? =
_interpolation_FIXED:
Saw
.ducfa 0OxBe, 0
.ducfa 0x09, 126, 19
HU -L1¥ SP,A31 HE |
1 ADDK .52 -520,5P ;%9
sTW -D2T1 A15,=+SP(520)
.ducfa ©0x86, 15, @
sTW -D2T12 B10,*+SP({512)
STW .D2T2  B11,*+SP{516)
-dwcfa 6x88, 26, 1
-dwcfa Ox88, 27, 2
STW .D2T2  B3,=+SP(588)
-dwcfa 6x88, 19, 3
STW D1T1 A4, =-A31(16)
-dwcfa Bx88, 14, 4
STDW -D1T1 A13:A12,%-A31(24)
-dwcfa 6x88, 12, 5
-dwcfa 6x88, 13, 6
STW -D2T1 A18,*+SP(488)
STW -D2T1 A11,%+3P(492)
-dwcfa 6x86, 18, 7
.ducfa Ox88, 11, 8
HU -1 A6 ,A15 HELM |
1 HU .L2X  n10,B3 ;o |ue|
1 HU .$1 n4,N0 ;o |ue|
1 HU s2 B4,B2 ;o |ue|
1 HU b2 B6 ,B1 ;o |ue|
1 HU 1% B8,n23 ;o |ue|
HU L2y A8 ,B18 HELM |
-dwpsn  “D:\CCS_UL_ChEst 1@810\Channel_estimation_FIXED.c",64,5
[ hO] B .52 L36 ;|64
Il [ A0] MUKL .81 _channel_imag_pre_FIXED,A3
[ AB] HUKH .81 _channel_imag_pre_FIXED,A3
11 [ A8] MUK .82 3354,B4
[ fAB] MUK .82 8x691,B7
[ fAB] MUK .82 8x693,B9
Il [ A8] ADD L2X B4,A3,B28
[ fAB] MUK .82 82694 ,B16
[ fAB] MUK .82 8x692 ,B8
; BRANCHCC OCCURS {L36} 3 |64]
=
-dwpsn  “D:\CCS_UL_ChEst 1818\Channel_estimation_FIXED.c™”,66,5
SHRU .52 B2,31,B4 S |66]
ADD L2 B2 ,B4,B4 ; |66]
AND L2 -2,B4,B4 5 |68
SUB L2 B2,B4,B4 5 |68
CHPEQ  .L2 B4,1,B8 ; |66]
[ BO]  BHOP .$1 L18,% ;|66
1l [ B8] Sue b2 B1,16,B6
[tBO] SuB -b2 B1,16,B6
; BRANCHCC OCCURS {L18} ; |66]
e
-dwpsn  “D:\CCS_UL_ChEst 1@816\Channel_estimation_FIXED.c",133,24%
HUK =31 384,A3
1 HuC -52 CSR,B28
1 HU L1 n23,n6
1 HU L2 B18,B5
11 HUK -D1 ox1,n1 ; init prolog collapse predicate
1 ADD b2 4,B6,B8
HUK -52 288,BY4
1 AND -L2 -2,B20,B31
1 ADD -L1¥ A3,SP,AS
1 HUK .51 11,00 ; [133)
ADD -L2 BL4,SP,BY
1 ADD -D2¥ A3,SP,BY
1 HUC -52 B31,CSR ; interrupts off
1 HU .L1%  B6,M3
ADD -L2 2,Bu4,B7

Figure 5.37: Assembly code of function interpolation_ FIXED.
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;*  SOFTWARE PIPELINE INFORMATION

3 ¥ Loop source line o 24

ix Loop opening brace source line : 2%

ix Loop closing brace source line : 38

;¥ Loop Unroll Multiple I 4

=3 Known Minimum Trip Count : 148

=3 Known Maximum Trip Count : 148

;¥ Known HMax Trip Gount Factor - 148

HE Loop Carried Dependency Bound({™) : 19

=3 Unpartitioned Resource Bound : 16

= Partitioned Resource Bound(=) : 16

= Resource Partition:

=3 A-side B-side

= .L units 1] 1]

= .5 units [i} 7

=3 .D units 16=% 16=%

= .M units 12 12

3 * -& cross paths 2 1

b -T address paths 14 14

i Long read paths 8 8

H Long write paths a a

3 Logical ops (.LS) a a {(.L or .5 unit)
=3 Addition ops (.LSD) Y 3 (.L or .S or .D unit)
3 ¥ Bound{.L .5 _L5) 3 !}

S Bound{.L .S .D .LS .LSD) 9 9

;*

H Searching for software pipeline schedule at ...

3 ii = 19 Did not find schedule

=3 ii = 28 Did not find schedule

= ii = 21 Did not find schedule

=3 ii = 22 Did not find schedule

=3 ii = 22 Did not find schedule

= ii = 24 Schedule found with 2 iterations in parallel
HE Done

;*

;¥ Epilug not removed

i* Collapsed epilog stages - e

;*

;¥ Prolog not removed

3 * Collapsed prolog stages i

;*

i* Hinimum required memory pad : 8 bytes

;*

= For further improvement on this loop, try option -mhi
;*

= Hinimum safe trip count : 2 {after unrolling)

e *

Figure 5.38: Software pipelining information of function preamble_estimation_FIXED.
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e SOFTUARE PIPELINE INFORMATIOH

3 * Loop source line - 111

e Loop opening brace source line : 3%

b Loop closing brace source line  : 38

;* Known Hinimum Trip Count 1 48

;% Known Maximum Trip Count - 4B

P * Known Max Trip Count Factor ]

2 Loop Carried Dependency Bound(™) : @

;* Unpartitioned Resource Bound - 3

;% Partitioned Resource Bound( =) - 3

H Resource Partition:

= 3 A-side B-side

;* .L units 5} a

;* .5 units 1 a

H .D units I RS

= 3 .M units 5} a

3 -% cross paths a a

;¥ -T address paths 3 L

$* Long read paths 1] a

b Long write paths a 8

= Logical ops (.LS) 5} a (.L or .S unit)
;* Addition ops {.LSD) 5} a {(.L or .5 or .D unit)
$* Bound{.L .5 .LS) 1 a

i* Bound{.L .5 .D .LS .LSD) 2 1

;*

] Searching for software pipeline schedule at ...

;¥ ii = 3 Schedule found with 4 iterations in parallel
T * Done

;*

i* Epilog not removed

3 * Collapsed epilug stages - a

g Prolog not entirely removed

g Collapsed prolog stages 2

] Minimum required memory pad : 8 bytes

;% For further improvement on this loop, try option -mhi2
2 Hinimum safe trip count 1 3

e *

Figure 5.39: Software pipelining information of function channel_estimation_FIXED.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we presented several channelsestimation methods for OFDMA uplink and
downlink. To do the channel estimation, first, we used I.S-estimator to estimate the channel
frequency response on the pilot subcarriers.Sécond, interpolations was used to get a rough
channel estimation in the frequency.: domain.=Fhird, we combined the rough estimation
with some time domain improvement”techmiques. In uplink simulation, we used tile linear
interpolation and in downlink simulation, we tried two-point, four-point and advanced four-

point cluster linear interpolation.

In the case of uplink transmission, it showed that the performance of no using tile ex-
ponential averaging was better than with weighting w = 0.9 in mutipath channels, such as
SUI-2. As for downlink transmission, although advanced 4-point cluster linear interpolation
gave us a symbol latency, it had the best performance among all used methods in SUI-2. We

also showed the cluster analysis on SER and MSE performance in this thesis.

Our last work was the DSP implementation, and we implemented both uplink and down-
link on TI’s chip. To achieve the real-time channel estimation on CCS, we replaced all

operations into 16-bit fixed point operation. We also compared the results of floating and
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fixed operation. The DSP loading for 2048-FFT, 20MHz BW, and 10 used subchannels in
uplink transmission is 0.016; and the average DSP cost for using major group 0, 2048-FFT,

20MHz in downlink transmission was 0.073.

6.2 Potential Future Work

There are several possible extensions for our research:

Consider the transmission of FUSC mode in downlink, propose channel estimation

method and put them on DSP.

e Optimize the performance on DSPfor both uplink and downlink.

e Try other kinds of techniques to estiméte channel response on pilots for less estimated

CITrors.

e In this thesis, we do not consider the influence of intercarrier interference. The simu-

lation can be involved in the future:

112



Bibliography

1]

Hongxiang Li and Hui Liu, “An analysis on uplink OFDMA optimality,” in Proc. IEEE
VTC, vol. 3, 2006, pp. 1339-1343.

Liangshan Ma and Dongyan Jia, “The competition and cooperation of WiMAX, WLAN
and 3G,” Inter. Conf. Applica. Syss, Mobile Tech., Nov. 15-17, 2005, pp. 1-5.

Man-On Pun, Michele Morelli, and-C.-CG. Jay Kuo, “Maximum-likelihood synchroniza-
tion and channel estimation for OFDMA wplink transmissions,” IEEE Trans. Commun.,

vol. 54, no. 4, pp. 726-736, April 2006.

Lior Eldar, M. R. Raghavendra, S*Bhashyam, Ron Bercovich, and K. Giridhar, “Para-
metric channel estimation for pseudo-random user-allocation in uplink OFDMA,” IEEFE

Int. Conf. Commun., 2006, vol. 7, pp. 3035-3039.

IEEE Std 802.16-2004, IEEFE Standard for Local and Metropolitan Area Networks—Part
16: Auwr Interface for Fized Broadband Wireless Access Systems. New York: IEEE, June
24, 2004.

[EEE Std 802.16e-2005 and IEEE Std 802.16-2004 /Cor 1-2005, IEEE Standard for Local
and metropolitan area networks—Part 16: Air Interface for Fixed and Mobile Broadband
Wireless Access Systems—Amendment 2: Physical and Medium Access Control Layers

for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1. New

York: TEEE, Feb. 28, 2006.

113



[7]

[10]

[11]

[14]

[15]

[16]

Texas Instruments, TMS320C6000 CPU and Instruction Set. Literature number
SPRU189F, Oct. 2000.

Texas Instruments, TMS320C6000 DSP Cache Users Guide. Literature number
SPRUG656A, May. 2003.

Texas Instruments, Code Composer Studio User’s Guide. Literature number SPRU328B,

Feb. 2000.

Texas Instruments, TMS320C6000 Code Composer Studio Getting Started Guide. Lit-
erature number SPRU509D, Aug. 2003.

Texas Instruments, TMS320C64a - DSP Library Programmer’s Reference. Literature

number SPRU565B, Oct. 2003.

Texas Instruments, TMS32006000 Programmer;s Guide. Literature number

SPRU198G, Oct. 2002.

M.-H. Hsieh, “Synchronization and channel estimation techniques for OFDM systems,”
Ph.D. dissectation, Department of Electronics Engineering, National Chiao Tung Uni-

versity, Hsinchu, Taiwan, R.O.C., May 1998.

S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques based
on pilot arrangement in OFDM systems,” IEEE Trans. Broadcasting, vol. 48, no. 3,
pp. 223-229, Sep. 2002.

T. S. Rappaport, Wireless Communications Principles and Practice. Upper Saddle

River, New Jersey: Prentice Hall, 1996.

V. Erceg et al., “Channel models for fixed wireless applications,” IEEE 802.16.3c-

01/29r4, July 2001.

114



[17]

[18]

Chih-Chieh Wang, “Research in channel estimation techniques and DSP implementation
for IEEE 802.16e OFDM uplink and OFDMA downlink,” M.S. thesis, Department of
Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.,
June 2006.

Ruu-Ching Chen, “Techniques for the DSP software implementation of IEEE 802.16a
TDD OFDMA downlink pilot-symbol-aided channel estimation,” M.S. thesis, Depart-
ment of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan,

R.O.C., June 2005.

Tien-Hsiang Lo, Kun-Chien Hung and David W. Lin, “Role of channel estimation in
physical layer protocol design of M\OFDM wirele§s systems and relay-type cooperative
communication,* in Proc. Werkshop Wireless Ad Hoc Sensor Networks, Chungli, Tai-

wan, ROC, Aug. 2006, pp. 301-308.

115



y.

%‘f’—**fﬁ‘ﬂ%’%ﬁl»‘i—ﬁ:gﬂzi%?‘;‘%*;a#—r‘s AR R L
GLEREEE SRR T N SRR S B S L RT3
?é’l’kik;%/ﬁf»u? ;}pf’ﬁgﬁﬂﬂ N4 LA ES BRI - AL A

v

p % TIEEE 802.16e OFDMA } (7% —~ (EETR RIS P e - B BRI
B gAY #%}*’E’E}é\s PR T A I u\xé'sj_lp/P B BRI E

%)E%



	Cover.pdf
	國立交通大學 
	電子工程學系 電子研究所碩士班 
	碩士論文 
	  
	研究生：王依翎 
	指導教授：林大衛 博士 
	 
	中華民國九十六年六月 



	Cover2.pdf
	A Thesis




