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摘要 

 

隨著矽智財整合系統單晶片成為可能，整合連結這些矽智財的晶片匯流排成

為整個系統效能上重要的角色，Advanced eXtensible Interface(AXI)是新一代

的晶片匯流排通訊協定，AXI 通訊協定採用封包基準的方式傳輸資料，使用分離

的位址與資料通道，每個通道交握方式使用來源的有效信號與目的的就緒信號在

時脈正緣取樣，當取樣到兩者的訊號皆是 1則完成交握並傳輸資料，因此可簡單

插入暫存器增加每個通道管線級數來提高工作頻率，另外還支援不需依序完成、

爆發模式傳輸，提供了更高效率的傳輸能力。 

在本論文之前並沒有針對新一代晶片匯流排通訊協定上的特性在連結器架

構的硬體成本與頻寬的完整探討，目前已存在的 AXI 匯流排設計都採用交叉開關

(Crossbar Switch)架構，雖然交叉開關提供了高頻寬，但也付出了極高的硬體

成本，使用共享匯流排架構可以減少許多硬體成本，運用 AXI 支援不需依序完成

的特性在共享匯流排上，仍然可以提供相當高的頻寬，因此我們以 SystemC 在交

換層級(Transaction-level)建構了一個可攜式媒體平台(Portable Media 

Platform)的模型來模擬分析。 

由於 AXI 匯流排連接器多了一層的暫存器，交握時為了確保資料傳輸正確，

在一般的傳輸模式下頻寬的最高使用率只有 50%，針對這點在本篇論文我們設計

了交錯傳輸模式(Interleaved Mode)來提高頻寬使用率最高達 99%。此模式的使

用只要連接器提供支援即可，完全不需要協定上的修改。此外，對於系統中有高

初始延遲的記憶體控制器裝置，我們另外設計了資料通道鎖定模式(Data Lock 

Mode)以及混合傳輸模式(Hybrid Mode)，可以有效地減少記憶體資料傳輸時間，

也給予記憶體控制器高度重新排程的能力，以提高頻寬使用率並進而提昇系統的

效能。 

在建構的平台上我們驗證了所提出的各種傳輸模式在真實系統環境下的效

用，除此之外，實驗中探討了 AXI 介面緩衝器大小、仲裁策略、傳輸模式以及仲

裁權重調整方式對系統效能的影響，實驗結果證明在適當傳輸模式配置和系統配

置下，可以提高 69%的頻寬使用量、進而提升 40%的系統速度。另外相較於傳統

不支援不需依序完成功能的匯流排如 AHB，AXI 匯流排搭配前述提出的傳輸模式
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與系統配置，最多可以提高 346%的頻寬使用率及 44%的系統速度。這顯現出採用

AXI 匯流排並恰當地搭配各種傳輸模式可以大幅度並有效地改善系統效能。 

最後我們做成實際的硬體，在 0.13 微米的互補式金氧半導體製程下，在 200

百萬赫茲的運作頻率下需要 18.85K 個邏輯閘，提供使用每一千個邏輯閘每秒

84MB 的頻寬。 
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Abstract 
 

The on-chip-bus (OCB) which connects silicon intellectual property (SIP) in a 
system-on-a-chip (SoC) plays a key role in affecting the system performance. 
Recently, a new generation of packet-based OCB protocol called Advance eXtensible 
Interface (AXI) has been proposed. The AXI separates the address and data into 
independent channels. The handshaking of each channel uses two signals which one is 
VALID from source and the other is READY from destination. Once the VALID and 
READY are high at the same clock positive edge, the handshaking completed and 
data transferred. Therefore, it is easy to add pipeline stage to increase operating 
frequency by inserting the register slice. Besides, the AXI protocol supports 
out-of-order completion and burst-based transaction to provide more bandwidth than 
traditional OCB protocol. 

Before this thesis, there is no complete analysis on the interconnect architecture 
and bandwidth of the of new generation OCB protocol. The existed AXI bus 
interconnect all adopt the crossbar switch as the architecture. Although the crossbar 
switch provides high bandwidth, it needs extreme hardware cost. Using the 
characteristic of AXI, we can adopt the shared bus as the architecture of the bus 
interconnect to obtain low hardware cost and keep fairly high bandwidth. To analyze 
impact of the architecture, a portable media platform (PMP) is modeled at 
transaction-level with SystemC for simulations. 

However, the AXI bus interconnect can only achieve 50% of bandwidth 
utilization at most when normal transfer mode is being used. Therefore, we propose 
an interleaved transfer mode to increase the bandwidth utilization up to 99%. The 
interleaved transfer mode can be implemented as a totally built in feature of a bus 
interconnect and does not need any modification to the protocol. In addition, this 
work also proposes a data lock transfer mode and hybrid mode to handle the 
transactions to the devices with long initial access latency, such as the memory 
controller in a system. These modes decrease the transfer time and give the memory 
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controller a higher degree of access rescheduling capability. 
We evaluate impact of the proposed transfer modes in the portable media 

platform. In addition, the impact of wrapper buffer size, arbitration policy, transfer 
mode setting, and arbitration parameter settings are also studied. The simulation result 
shows that the proposed transfer modes improve the bandwidth utilization by 69% 
and speed up the system by 44%. Compare the performance with the traditional bus 
such as the AHB; the AXI system can outperform the AHB system in bandwidth 
utilization by 346% and system speed by 44% at most. 

The implemented AXI bus interconnect with the proposed transfer modes has a 
gate count of 18.85K when synthesized with 0.13μm CMOS process under 200 MHz 
operating frequency. 
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Chapter 1 Introduction 

1.1 Background 

Recently, VLSI technology has improved significantly and more transistors can 

be integrated into a chip. This makes the ideal of system-on-a-chip  [1] more of an 

achievable goal than an abstract dream. However, along with the increasing transistor 

count comes along the increasing design and verification complexities. Although EDA 

tools have also been developed in hope of helping system designer to handle the 

massive complexity, proper system-level design and verification methodology have 

played a much more important role. One such methodology is the platform-based 

design methodology which uses pre-verified silicon intellectual property (SIP) and an 

on-chip-bus (OCB). The OCB connects SIPs and provides communication among 

SIPs. 

Since OCB is often the bottleneck of a system, a good OCB protocol plays an 

important role. One of the industry’s de facto standard bus protocols is ARM’s 

Advanced High-performance Bus (AHB). AHB is an OCB which adopts traditional 

bus architecture. It transfers the data in a pipeline way and completes the transaction 

in order. The exploration of AHB has been done for years  [2]~ [4], which includes 

architecture, low power and arbitration policy . However, Advance eXtensible 

Interface (AXI) is the successor of AHB but the study on AXI is still few. AXI 

contains lots of features which improves the performance of the OCB, such as 

packet-based transfer, out-of-order completion, and single address transaction. 

However, the related research of AXI is rare and lacks comparison with AHB. Thus, a 

complete analysis of AXI is necessary. 
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1.2 Related Work 

In a system design, the bus arbitration policy plays an important role. The 

traditional arbitration policies include fixed priority, Round-Robin, and time division 

multiple access (TDMA)  [5]. The fixed priority is the simplest policy which uses a 

static priority to arbitrate when contention occurs, but it has a fatal drawback that 

starvation. The Round-Robin and TDMA solve the starvation and provide a fair 

arbitration. In addition, There is a novel one: lottery  [6] which is a probability-based 

arbitration policy. The lottery provides a good bandwidth allocation than the other 

polices. Mixing these polices brings out various characteristic of polices. However, in 

these papers, they mostly focus the analysis on the arbitration policy itself but lack a 

complete analysis on a system platform running a real application. Being aware of this, 

Poletti  [6] [5] builds an AHB platform and uses various patterns to analyze the impact 

of the fixed priority, TDMA, Round-Robin, and a time-slot reserve arbitration. Later, 

Lee [7] builds a shared bus AHB platform and a crossbar AXI platform to evaluate the 

performance of the two platforms. The comparison between the two platforms reveals 

that AXI bus has a superior performance. With the multi-core system becoming a 

trend, Ruggiero  [8] builds a multi-core system with AHB, AXI and STBus to analyze 

the scalability of modern OCB protocol. Although the new generation OCB protocol 

has been analyzed in these two papers, their AHB bus architectures all adopt the 

shared bus and their AXI bus architectures adopt the crossbar, hence the comparison 

is not fair and the hardware cost is not taken into consideration. In addition, their 

arbitration policy in AXI bus interconnects are fixed priority so the potential of AXI 

may not have been fully explored. Until now, there has been no thorough analysis and 

exploration on AXI’s arbitration policy, architecture, and hardware cost. 
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1.3 Motivation and Contribution 

The issues mentioned above motivate us to investigate the performance of AXI 

bus in a system platform running an application. Being aware of the cost difference 

between the share bus and crossbar architecture, we focus our investigation in share 

bus architecture. In addition, the analysis result of using basic transfer which showed 

poor performance also motivated us to propose more efficient AXI transfer mode. 

Finally, the question of whether AHB or AXI is better for a system motivates us to 

conduct comparison on their performance and cost. 

The contribution of this thesis includes the following. 

1. The designed Transaction Level Models (TLM) are able to build various 

platforms and perform various scenarios to evaluate the system performance 

and to obtain proper configuration. 

2. We analyze the impact of the AXI on various arbitration policies. 

3. We give a proper way to design a shared bus AXI bus interconnect. 

4. The designed AXI bus interconnect provides high bandwidth and low 

hardware cost 

 

1.4 Thesis Organization 

In chapter 2, we give a brief overview of the AMBA bus protocol. In chapter 3, 

we describe the methods we used in modeling AXI system. In chapter 4, we proposed 

an AXI interconnection which is able to provide high bandwidth and configuration of 

arbitration policy. In chapter 5, we show the result of simulation and analysis. In 

chapter 6, we implement the AXI interconnection hardware according to result of 

chapter 5. Chapter 7 is the conclusion and future works. 
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Chapter 2 Overview of the AMBA Bus 

2.1 AHB 

Advanced High-performance Bus (AHB) was proposed in AMBA 2.0 in 1999 

and has been widely adopted since. Since then, AHB has been regarded as the 

industries de facto on-chip communication protocol. The basic architecture and 

protocol are described in this sub section. The features of AHB list below: 

 Pipelined transfer 

 Burst transfer 

 Single-cycle bus master handover 

 Single-clock edge operation 

 Non-tri-state implementation 

 Wider data bus configurations (64/128 bits) 

 

2.1.1 AHB Architecture 

Fig.  2-1 shows the simplified AHB architecture which contains masters, slaves,   

arbiter, decoder and mux. 

Each master and slave has three ports which are HADDR, HWDATA and 

HRDATA. HWDATA and HRDATA share the signal “HADDR” to indicate the 

destination of data transfer and therefore there is only one date transfer which is either 

HWDATA or HRDATA. 

In the specification of AHB, it defined that bus interconnect is composed of 

arbiter, decoder and mux and the bus ownership is controlled by the centralized 
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arbiter to guarantee that only one master can use the shared bus. 
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GRANT#3

 
Fig.  2-1 AHB architecture 

 

2.1.2 AHB Handshaking and Arbitration 

Each transaction of AHB contains two phases which are address phase and data 

phase as shown in Fig.  2-1. The address phase and data phase are sent in pipelined 

order, which means that data can only be sent after its address has been sent. This 

pipelined mechanism is controlled by the signal “HREADY”. If HREADY is high, no 
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pipeline stall is introduced; otherwise, a pipelined stall is introduced as shown in Fig. 

 2-3. 

 

 
Fig.  2-2 AHB simple transfer 

 

 
Fig.  2-3 Transfer with wait states 

 

The ownership of the bus is controlled by a centralized arbiter. Fig.  2-4 shows an 

example of the arbitration process. First, each master sends a request to the arbiter by 

pulling HBUSREQ high. After several cycles, the arbiter asserts HGRANT but the 
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ownership of the bus still has not changed. Once both HGRANT and HREADY are 

high (Fig.  2-4,cycle T5), the granted master gets the ownership of bus. The ownership 

of the bus would remain until its transaction has been completed. 

 

 
Fig.  2-4 AHB arbitration 

 

2.2 AXI 

Advanced eXtensible Interconnect (AXI) was introduced in AMBA 3.0 as the 

successor on-chip bus protocol of the AHB in AMBA 2.0. The basic architecture and 

protocol are introduced in this sub section. The AXI protocol is targeted at 

high-performance, high-frequency system designs and includes a number of features 

that make it suitable for high-speed submicron interconnect.  

The key features of the AXI are: 

 Separate address/control and data phases 

 Support for unaligned data transfer using byte strobes 

 Burst-based transaction with only start address issued 

 Separate read and write data channels to enable low-cost Direct Memory 

Access 
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 Ability to issue multiple outstanding addresses 

 Out-of-order transaction completion 

 Easy addition of registers stages to provide timing closure 

 

2.2.1 AXI Architecture 

Fig.  2-5 shows a generic AXI architecture. There are five independent channels 

which communicate with master and slave. The five channels are read address 

channel, write address channel, read data channel, write data channel and write 

response channel. Each channel has a set of forward signals and one feedback signal 

for handshaking. 

 

 
Fig.  2-5 Generic AXI architecture 
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Fig.  2-6 shows an AXI read transaction. When an AXI master performs a read 

transaction, it sends a read address transfer which contains a start address and control 

information through the read address channel to a slave. When the slave accepts the 

address and control transfer, it starts its process according to the transfer accepted. 

Once the slave completes its process, it sends the data requested by the master 

through the read data channel. This transaction is not done until the master accepted 

the last burst data which contains read transaction status. 

Fig.  2-7 shows an AXI write transaction. A master sends a write address transfer 

which also contains a state address and control information through the write address 

channel to a slave. Then, the master sends write data to the slave through the write 

data channel. After the slave accepted all write data, the salve sends a write response 

to tell the master the write transaction status through the write response channel. 

 

 
Fig.  2-6 Read transaction 
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Fig.  2-7 Write transaction 

 

2.2.2 Channel Handshaking 

Each channel has a VALD and READY signals for handshaking. The source 

asserts VALID when the control information or data is available. The destination 

asserts READY when it can accept the control information or data. Transfer occurs 

only when both the VALID and READY are asserted. Fig.  2-8 shows all possible 

cases of VALID/READ handshaking. Note that when source asserts VALID, the 

corresponding control information or data must also be available at the same time. 

The arrows in Fig.  2-8 indicate when the transfer occurs. 

A transfer takes place at the positive edge of clock. Therefore, the source needs a 

register input to sample the READY signal. In the same way, the destination needs a 

register input to sample the VALID signal. Considering the situation of Fig.  2-8(c), 

we assume the source and destination use output registers not combination circuit, 
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they need one cycle to pull low VALID/READY and sample the VALID/READY 

again at T4 cycle. When they sample the VALID/READY again at T4, there should be 

another transfer which is an error. Therefore source and destination should use 

combinational circuit as output. In short, AXI protocol is suitable register input and 

combinational output circuit. 

 

 
(a) 

 
(b) 
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(C) 

Fig.  2-8(a)VALID before READY (b)READY before VALID (c)VALID with READY 

2.2.3 Transaction Ordering 

Unlike AHB which only allows one granted transaction to access the bus 

interconnect until this transaction is finished, AXI allows granted transactions to 

access bus interconnect simultaneously. AXI uses “ID tag” to identify different 

transactions and enables out-of-order transaction completion. 

Out-of-order transaction completion improves system performance in two ways: 

 Bus interconnect allows the transactions to fast slave to complete in advance 

without waiting for the completion of the transaction to slow slave. 

 Complex slave can return read data which is available for later transaction 

without waiting data of prior transaction. 

AXI supports out-of-order transaction completion but it doesn’t mean that there 

is no restriction of reordering transactions. The rule is “Transactions with the same ID 

must be completed in order”. In other words, if a master requires multiple transactions 

to be completed in order, the master must assign the same ID to these transactions. If 

there is no restriction on in-order transaction completion, a master can assign different 

IDs to those transactions. 

The ID assignment rule only applies to single master system. In multi-master 
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system, bus interconnect must append additional master ID to each transaction so that 

each transaction becomes unique in the system. 

 

2.3 Comparison between AXI and AHB 

2.3.1 Protocol and Architecture 

Table  2-1 shows the main difference of protocol and architecture between AXI 

and AHB. There are seven key points as shown in below: 

 

Table  2-1 Main difference between AXI and AHB 

AXI AHB 
5 separated channels for address 
and data transfer 

Pipelined address and data 
transfer 

Every channel is uni-direction, 
except handshake signal  

Complex timing relation in 
read/write connection 

Easy register insertion to isolate 
timing 

Hard to isolate timing 

Easy register insertion to increase 
operating frequency 

Limited operating frequency 

Burst-based transaction with only 
one address issued 

Every data transfer need a 
address 

Out-of-order transaction 
completion 

Fixed order transaction 
completion 

Suitable for memory controller 
with high initial latency 

Unfriendly to memory controller 
device 

 

2.3.2 Latency and Bandwidth Utilization 

The separate channels in AXI provide less latency in transfer task of read/write 

transaction pair than AHB. The reason is that AXI is able to perform read and write 
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transactions at the same time. Fig.  2-9 and Fig.  2-10 show the difference in AHB and 

AXI transferring the same task. Fig.  2-9 shows AHB’s continuous transfer. There are 

four read data transfers and four write data transfers. Form Fig.  2-9, all eight data 

transfers spend eight cycles from T2 to T9. Fig.  2-10 shows the same task in AXI bus. 

In AXI case, it only spends four cycles form T2 to T5. 

 

 
Fig.  2-9 AHB continuous transfer 

 

 
Fig.  2-10 AXI continuous transfer 

 

As for the bandwidth utilization, AXI is more efficient than AHB. The reason is 

the same with the case of latency. Fig.  2-11 and Fig.  2-12 show the difference of AHB 

and AXI. In Fig.  2-11 and Fig.  2-12, AHB and AXI perform four beats read burst 

transaction and a four bests write burst transaction respectively. AHB totally takes 

eight cycles to complete these two transactions and the bandwidth utilization of data 

bus HRDATA/HWDATA is only 50%. As to AXI, it only takes four cycles to 

complete transactions and the bandwidth utilization of data bus RDATA/WDATA is 

100%. The bandwidth utilization of AHB is naturally 50% and AXI can increase 

14 



bandwidth utilization to 100% based on transferring read/write transaction pair. In 

short, AXI is capable to perform read/write transaction pair which improves the 

latency of transaction and bandwidth utilization. 

 

 
Fig.  2-11 AHB burst transaction 

 

 
Fig.  2-12 AXI burst transaction 

 

2.3.3 Hardware Cost 

In this section, we analyze the protocol of AXI and AHB to estimate the 

hardware cost of them based on the amount of mux and register which they used. 

Table  2-2 is the parameters defined for the hardware cost calculation and the 

following are the formula for hardware cost. The constants in the formula are 

indispensable bits. 
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Table  2-2 Parameters for hardware cost calculation 

Parameter Description 

Master_Num Number of masters 

Slave_Num Number of slaves 

Address_Width The maximum width of used address 

Data_Width Bus data width 

Buffer_Size Buffer size of master/slave wrapper; number of out-of-order 

transactions 

 

AHB master port register 

WidthDataster_Port_RegiAHB_Master _4+=  

 

AHB slave port register 

⎡ ⎤NumMasterWidthDataWidthAddressterPort_RegisAHB_Slave_ _log__11 2+++=

 

AHB arbiter register 

2__24 ×++= NumMasterWidthAddressr_RegisterAHB_Arbite  

 

AHB master buffer register 

16__9 ×++= WidthDataWidthAddressgister_Buffer_ReAHB_Master  

 

AHB slave buffer register 

16__9 ×++= WidthDataWidthAddresssterBufferRegiAHN_Slave_  

 

AXI master port register 

⎡ ⎤ 2_log_10 2 ×++= SizeBufferWidthDataster_Port_RegiAXI_Master  
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AXI slave port register 

⎡ ⎤ ⎡( ) 3_log_log_2_46 22 ×+++×+
=

NumMasterSizeBufferWidthDataWidthAddress
te

⎤
rPort_RegisAXI_Slave_

 

AXI interconnection master port register 

⎡ ⎤ 3_log_2_46
__

2 ×++×+
=

SizeBufferWidthDataWidthAddress
RegisterPortteronnect_MasAXI_Interc

 

 

AXI interconnection slave port register 

⎡ ⎤ ⎡( ) 2_log_2log_10
____

2 ×+++ ⎤
=

SizeBufferNumMasterWdithData
RegisterPortSlavectInterconneAXI

 

 

AXI interconnection WDATA table register 

⎡ ⎤NumberSlaveSizeBufferNumMasterTableWDATActInterconneAXI _log_____ 2××=

 

AXI master buffer register 

( ) SizeBufferWidthDataWidthAddress
isterBuffer_RegMasterAXI

_16__18
__

××++
=

 

 

AXI slave buffer register 

⎡ ⎤ ⎡ ⎤( ) SizeBufferWidthDataWidthAddressNumMasterSizeBuffer
isterBuffer_RegSlaveAXI

_16___log_log17
__

22 ××++++
=

 

AHB Master_Num to 1 mux 

WdithDataWidthAddressMuxtonumMasterAHB __15_1____ ++=  

 

AHB Slave_Num to 1 mux 

WdithDataMuxtonumSlaveAHB _19_1____ +=  
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AXI Master_Num to 1 mux 

⎡ ⎤ WidthDataWidthAddressSizeBuffer
MUXtoNumMasterAXI

_2_3_log41
_1____

2 +×+×+
=

 

 

AXI Slave_Num to 1 mux 

⎡ ⎤ WidthDataSizeBufferMUXtoNumSlaveAXI _2_log5_1____ 2 +×+=  

 

According to the formula, we give a system to compare the hardware cost 

between AXI and AHB. The system consists of 5 masters, 11 slaves and AHB system 

has one buffer and AXI system has eight buffers. The arbitration policy in system is 

fixed priority so we ignore the registers in arbiter. If we ignore the register used in 

master and slave buffer, the hardware cost of AXI is 3.18 times of AHB. The 

hardware cost of AXI is more than AHB indeed. 
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Table  2-3 Comparison of hardware cost between AHB and AXI 

  
  

AHB 
1 buffer 

AXI 
8 buffer

1 master port 36 48 
1 slave port 78 160 Wrapper interface register 
Total 114 208 
AHB arbiter 66 n/a 
AXI interconnection 1 master port 151 
AXI interconnection 1 Slave port 54 
AXI WDATA table 

n/a 
160 

Interconnection register 

Total 66 365 
1 master buffer 553 562 
1 slave buffer 553 567 Wrapper buffer register 
Total 1106 1129 
Master_Num to 1 mux 79 146 
Slave_Num to 1 mux 51 43 Interconnection mux 
Total 130 189 

System register without buffer 5 master, 11 slave 1104 3509 
System register with buffer 5 master, 11 slave 2210 12541 

19 



Chapter 3 Simulation Modeling for AXI 

System 

3.1 Overview of the Modeling Method 

3.1.1 Transaction-Level-Modeling 

Transaction-level-modeling (TLM)  [9] is a popular method to modeling a system. 

There are many kind of modeling level in modeling a system as shown in Fig.  3-1. 

We choose the node D in Fig.  3-1 as our modeling level. The communication model is 

modeled at transaction abstraction level. The computation model is modeled at 

behavior level, but we do not model the functions because of that our emphasis is on 

the bus communication. Choosing the node D, we check the correctness of bus 

protocol but also obtain precise analysis of system performance. 

A read/write transaction on the AXI protocol can be decomposed into 

address/control transfer, data transfers and response transfer. Each transfer we used is 

referred as the transaction on each channel. This is because of supporting the AXI’s 

capability of out-of-order transaction completion so we treat each transfer as an 

independent transaction and provide a cycle accurate timing 

transaction-level-modeling to archive our goal. 
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Fig.  3-1 System Modeling Graph 

3.1.2 Using SystemC as Modeling Language 

We use SystemC  [11] as our modeling language. SystemC has been widely used 

to model system at various abstraction levels. The reason we decided to use SystemC 

is because the timing simulation kernel and primitives are already available. SystemC 

is also a subset of C++ so that we can also use regular C++ expressions. It’s easy to 

use and there’s no need to learn another language. 

Fig.  3-2 shows how we use model a module using SystemC. The communication 

interface is implemented using SystemC input and output port. The SystemC 

processes related to the communication interface are implemented using SystemC 

method with clock edge trigger. Other internal SystemC processes are also 

implemented using SystemC method but some are event driven instead of clock 

driven. In addition to SystemC processes, there are also C/C++ processes inside the 

module. These un-timed processes implement basic computation and functionality 

whereas the SystemC processes provide cycle accurate behavior. 
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Fig.  3-2 Illustration of a modeling module 

 

3.2 Traffic Generation 

In this section, we introduce our traffic generation. The bus traffic is generated 

on transaction basis. Each transaction is generated by a bus access task which is 

associated with master device. Each master device possesses multiple bus access tasks. 

Many bus access tasks comprise a task state table (TST). In other words, each master 

device generates transactions from a task of TST as shown Fig.  3-3. 

 

 
Fig.  3-3 Illustration of traffic generation 

 

In the task state table, each task describes a set of transactions with the same 

direction and address pattern. Table  3-1 shows the fields of a task which includes 

current task number, next task number, task type, task transaction count, transaction 

burst length, pattern type, base address and vertical shift base address. 
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Table  3-1 Fields of a task state 

Field Description Possible value 

0 Total task count Total task count 

1 Current task number Current task number 

2 Next task number Next task number 

3 Task type 

0. Read channel idle 

1. Write channel idle 

2. Read transaction 

3. Write transaction 

4 Transaction count of task 
1. Access transaction count 

2. Idle cycle count 

5 Burst length of transaction Each access transaction burst length 

6 Access pattern type 

1. Random 

2. 1D, horizontal continuously access 

3. 2D, vertical continuously access 

7 Base address Base address of transaction 

8 Vertical shift base address Vertical shift address of 2D access 

 

Fig.  3-4 is an example of a task state table file. The total task count is 24000. We 

take the row 8 of Fig.  3-4 as a example to explain how a set of transactions are 

generated from a task. The current task number is 6 and next task number is 7 

meaning that when this task 6 finished it will take task 7 as next task. The remainder 

information means that this task generates 4 read transaction with burst length 16, 

base address 0x2001EF00 and the base address of each transaction shifts a base 

address 320. 
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This transaction generation using task state description allows us to specify bus 

access behavior at task level. In contrast to specify each transaction individually, we 

can specify related transaction using only one task. In other words, the traffic 

description can be greatly reduced by using task level description. 

 

 

1 2 3 4 5 6 7 8 

0 

Fig.  3-4 Example of a task state table file 

 

3.3 AXI Master 

This subsection describes how to model master devices. 

 

3.3.1 Master Behavior Modeling 

To model the behavior of a master device, we use task state table (TST), 

transaction table (TT) and processing transaction table (PTT) to control the master 

device’s behavior. 

A. Task State Table 

The task state table has mentioned in previous section. It is used to store all tasks 

of a master. However, a master may have multiple TST. 
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B. Transaction Table 

The transaction table exists in each master and each transaction table is 

associated with a TST. It is used to store the transactions which are generated by the 

tasks. Once the master device is reset, there is a process called LoadTaskToTrans() 

which starts to load all tasks and generates all transactions to store into TT. 

C. Processing Transaction Table 

The processing transaction table actually is the buffer of a master device. The 

entry of it is a processing transaction which is a state machine. The detail of 

processing transaction will describe in later section. The processing transaction table 

stores the transactions from TT and is controlled by a process called ProcPTT(). The 

ProcPTT() checks the state of processing transaction to decide which entry is 

processing or is done to be able to refill a new transaction. We use different ProcPTT() 

to model different behavior of the master. 

Fig.  3-5 show the relation of TST, TT, PTT, LoadTaskToTrans() and ProcPTT. 

 

 
Fig.  3-5 Flow of transaction generation in master 

 

3.3.2 Master Types 

In our modeling system, all masters are categorized into three types by their 
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behaviors. They are regular type, DMAC type and MPU type. 

A. Regular Type 

Fig.  3-6(a) shows the block diagram of a regular type master. It only contains a 

prime task state table so its behavior is very simple as shown in Fig.  3-6(b). It 

processes a prime task and sends the IRQ to MPU when it completes a prime task. 

After the repeat count reached the value set in advance, the master stopped. The 

examples of regular type masters are DSP, video encoder and etc. 

 

End

done/send IRQ

Processing
 prime task 
transaction

Start

Prime task 
need repeat? yes

no

 
(a)                               (b) 

Fig.  3-6 Regular type master (a) block diagram (b) Flow of ProcPTT() 

 

B. DMAC Type 

Fig.  3-7 shows the block diagram and state machine of DMAC type master. It 

contains multiple task state tables so its behavior is more complex than regular type 

master. Each task has its own a repeat counter which stores how many times it need to 

repeat and an active counter which uses to active the task periodically. When the task 

completes, the master sends the corresponding IRQ to MPU and resets the active 
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counter. After all tasks done and reached the repeat counts, the master stopped. 

 

Processing
 #0 task 

transaction

Start

End

done/send IRQ 0 and 
reset active counter

Processing
 #1 task 

transaction

Processing
 #2 task 

transaction

#0 active and 
need repeat ?

#1 active and 
need repeat ?

#2 active and 
need repeat ?

All done?

yes

no

yes

no

yes

no

yes

no

done/send IRQ 1 and 
reset active counter

done/send IRQ 2 and 
reset active counter

 
(a)                               (b) 

Fig.  3-7 DMAC type master (a) block diagram (b) Flow of ProcPTT() 

 

C. MPU Type 

Fig.  3-7(a) shows the block diagram of MPU type master. It is much different 

form the regular type and DMAC type. MPU type master not only processes prime 

task but also accepts external IRQ to execute corresponding ISR task as shown in Fig. 

 3-8(b). In the behavior of MPU, the priority of ISR is higher than prime task so the 

ISR task can interrupt the process of prime task. When MPU completes the all prime 

tasks, it gets into the idle state, but still waits for accepting the IRQ. 
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(a)                               (b) 

Fig.  3-8 MPU type master (a) block diagram (b) Flow of ProcPTT() 

 

3.3.3 States of Mater Processing Transaction 

The processing transaction in PTT is a state machine. We use the states to control 

the transaction’s status. There are six states in master’s processing transaction 

including empty/done, read request, read data, write request, write data and write 

response. 

A. Empty/done 

The state of processing transaction in PTT is empty in the initial. When any 

transaction completed, the state became to done. This state means the initial and finish 

state, and is ready to be filled transaction from transaction table by ProcPTT() process. 

According to the filled transaction is read or write, the state changes to read request or 

write request. 

B. Read request 

When the processing transaction in PTT is filled a read transaction, the state 
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becomes to read request state. The master sends the read address and control 

information to bus in this state. After request accepted, the state became to read data. 

C. Read data 

After the master sent read address and control information, the state changed 

form read request to read data. In this state, master accepts read data until last read 

data is accepted and the state changes to done which implies this transaction has 

completed. 

D. Write request 

This state is very similar to read request. The only different is that after the 

master sent write request, the state became to write data. 

E. Write data 

After the master sent write request, the master started to send write data. When 

the master sent the last write data, the state changed to write response. 

F. Write response 

After sending all write data, the state changes to write response. The master 

waits to accept the write response from the slave. Once the master accepted the write 

response, the state changed to done which implied the transaction had completed. 

Empty/done

Read request

Read data

Write request

Write data

Write 
response

Read transactionWrite transaction

Send read 
request

Accept last read 
data

Send write 
request

Send last write 
data Accept write 

response  

Fig.  3-9 FSM of master’s PTT 
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3.4 AXI Slave 

To model the slaves, it is much simpler than the masters. Modeling a slave don’t 

need ProcPTT() to handle the processing transactions of slaves but we only modify 

the states of processing transaction in master’s PTT to fit slave’s behavior. 

 

3.4.1 Slave Types 

Our modeled slaves are categorized into only two types. They are regular type 

and MEM type. The slaves also have PTT but the PTT divides into two parts which 

one is read PTT and the other is write PTT. 

A. Regular Type 

The behavior of a regular type slave is very simple. Each slave processes the 

transactions of read/write PTT independently, and responses corresponding transfers 

with single cycle delay. 

 

Fig.  3-10 Block diagram of regular type slave 

 

B. MEM Type 

The MEM type slave is similar to regular type slave except the state of 

processing transaction in read PTT is different. The state of processing transaction in 
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read PTT adds a memory delay count state to model the memory latency. 

 

Fig.  3-11 Block diagram of MEM type slave 

 

3.4.2 States of Slave Processing Transaction 

Fig.  3-12 shows the states of processing transaction in slave’s read PTT. There 

are three states and they are empty/done, read data and memory delay count down 

which is used to modeling the latency when reads a memory. 

A. Empty/done 

The empty/done state is initial and finished state and this processing transaction 

is ready to accept any read request. 

B. Memory delay count down 

This state entered only when a MEM type slave accepted a read request. The 

processing transaction becomes idle and counts down several of cycles in this state. 

After counting down to zero, the state changes to read data state. 

C. Read data 

When normal type slave accepts a read request or MEM type slave counts down 

to zero, the processing transaction enters the read data state. In this state, slave sends 

read data to master until the last read data is sent. Once all data is sent, the state 

changes to done. 
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count down
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Fig.  3-12 FSM of transaction in slave read PTT 

 

Fig.  3-13 show the states of processing transaction in slave’s write PTT. There 

are a single loop and three states, and the states are empty/done, write data and write 

response. 

A. Empty/done 

The empty/done state is initial and finished state, and this processing transaction 

is ready to accept any write request. 

B. Write data 

When slave accept a write request, the state of processing transaction becomes 

write data state and slave is ready to accept write data until last write data accepted. 

C. Write response 

After slave accepted last write data, slave returned the write response to the 

master in write response state, and changed the state to done. 
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Fig.  3-13 FSM of transaction in slave write PTT 

33 



Chapter 4 Design of AXI Bus Interconnect 

4.1 Bus Interconnect 

The architecture of an AXI bus interconnect can be categorized into three, shared 

bus, multi-layer, and crossbar. 

A. Shared Bus 

Fig.  4-1 shoes the architecture of shared bus. It is low cost and easy to design. 

Although there is only one shared bus to transfer data, the packet-based bus (AXI) 

protocol which supports out-of-order transfer wouldn’t result in congestion easily. 

Packet-based bus protocol is more tolerable to traffic than traditional pipelined (AHB) 

bus under single shared bus architecture. 

 

 
Fig.  4-1 Shared bus architecture 

 

B. Multi-Layer 

Fig.  4-2 shows the architecture of multi-layer. It provides more connectivity to 

transfer more data at the same time but need more hardware cost than shared bus. 

However, not all cases are able to adapt to this architecture such as that all devices 

34 



need connect each other or connectivity concentrates on single device and the other 

devices need little connectivity, which results in too much layer and hardware 

inefficient. 

 

 
Fig.  4-2 Multi-layer architecture 

 

C. Crossbar 

Fig.  4-3 shows the architecture of crossbar. It provides extreme connectivity and 

is able to transfer data as many as possible. The crossbar provides higher bandwidth 

than the shared bus and the multi-layer, but costs great hardware cost. Using crossbar 

dose not need complex arbitration policy because the big issue is the hardware cost 

and bandwidth. Although the providing bandwidth of crossbar overcomes with the 

shared bus and the multi-layer, there is still a problem which is the same with 

multi-layer. When the traffic is concentrated on a single device, the hardware becomes 

inefficient. ARM PL300  [12] and Synopsis DesignWare AXI IIP  [13] adopt the 

crossbar as their architecture because they only considerate the bandwidth but 

hardware cost. 
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Fig.  4-3 Crossbar architecture 

 

The bandwidth providing from the three architectures sorting from high to low 

are: crossbar, multi-layer, shared bus, but sorting according to the hardware cost are: 

shared bus, multi-layer, crossbar. This simple summary gives us a basic guild to 

choose the architecture of bus interconnect. However, if we consider the bus traffic of 

a SOC platform, we will find the memory access is always occupied the most 

percentage of bus traffic  [14]. 

According to the mentioned before, when bus traffic concentrates on single 

device (like memory), the bandwidth difference among the three bus interconnects 

would not be significant. Since the difference of bandwidth is not obvious, the 

hardware cost is the most important issue. Therefore, we adopt the shared bus as our 

architecture of interconnect. 

 

4.2 Transfer Mode 

Before describing our transfer modes, we give an assumption like the Fig.  2-8(b). 

We assume the READY signals of masters and slaves are always high if the master 

and slave are capable of accepting transfers. 
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According to the conclusion of chapter  2.2.2 Channel Handshaking, AXI is 

suitable for register input and combinational output circuit but there is a problem of 

inserting a layer of register slice as shown in Fig.  4-4. The inserting register slice 

makes the limitation of bandwidth utilization become 50 % based on ensuring there is 

no error occurring at the next cycle after information or data transferred. Fig.  4-5 

shows the error case. There is an error transfer occurring at the cycle T3 and T4 of Fig. 

 4-5. Fig.  4-6 is the correct case and it makes the limitation of bandwidth utilization 

50%. To increase the bandwidth utilization, we design another three transfer modes. 

They are interleaved mode, data lock mode and hybrid mode. Each of them is suitable 

for some devices and cases. 

 
Fig.  4-4 Register slice of AXI bus interconnect 
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Fig.  4-5 Error case of data transfer 

 

 
Fig.  4-6 Correct case of data transfer 
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4.2.1 Normal Mode 

Normal mode is the basic transfer mode of the AXI. Fig.  4-7 is a example of 

transferring four transactions. Each transfer takes two cycles to complete the transfer. 

The bandwidth utilization is only 50%. Although the normal mode only has half the 

bandwidth utilization, all transfers fit the AXI protocol.  

 

 

Fig.  4-7 Timing diagram of normal mode 

 

4.2.2 Interleaved Mode 

We propose an interleaved transfer mode which improves the bandwidth 

utilization. The interleaved mode allows the two transfers from different devices to be 

transferred within two cycles. 

Fig. 4-7 illustrates an example of using the interleaved transfer mode. Both 

device M0 and M1 send write address through the bus. By using the interleaved mode, 

M0’s request A is sent first. While request A is transferring through the bus, request C 
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from M1 is being processed. The one cycle latency introduced in the normal mode for 

request C is therefore hidden by request A sending time. As a result, the total time to 

send all 4 requests from M0 and M1 would only take 5 cycles, which is only 62.5% of 

the time taken by using the normal transfer. 

The interleaved transfer mode can also be applied to data channels in the same 

manner. Note that the implementation of interleaved mode can be done within the bus 

interconnect design. There’s no need for additional hardware in device interface and 

bus protocol modification. However, to use the interleaved mode, the source of the 

transfer from each device must be different. Otherwise, the normal mode must be 

used. 

 

 

Fig.  4-8 Timing diagram of interleaved mode 

 

4.2.3 Data Lock Mode 

For the situation of only one device accessing the bus, we design another transfer 

mode: data lock mode. This mode allows the devices to perform the continuously data 
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transfers of a transaction. 

Fig.  4-9 illustrates an example of using data lock mode. Device M0 sends data 

lock request A and device M1 send normal request B. Once bus interconnect accepted 

the request A, the bus interconnect recorded the transaction’s ID of request A. When 

the matched ID appears in the data channel, the bus interconnect uses data lock mode 

to transfer the data continuously. This example transfers four beats data which takes 

the same time as the Fig.  4-8. 

 

 

Fig.  4-9 Timing diagram of data lock mode 

 

To acknowledge the bus interconnection which transaction uses data lock mode, 

we proposed three two ways to acknowledge the bus interconnect. 

A. Using the signals in address channel 

We uses address channel port “ARLOCK/AWLOCK” which contains the control 

information to acknowledge the bus interconnect that there is a data lock mode 

transaction. Although doing that makes a misunderstanding with the specification, if 

the masters and slaves are able to accept continuous data transferring, there is 
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influence on the system. 

B. Build-in the bus interconnect 

The second way to acknowledge the bus interconnect is using address decoding 

to distinguish between the normal transaction and data lock transaction. This 

implementation would not additional modify for the masters and salves. The only 

overhead is that the bus interconnect needs to configure which device using data lock 

mode in advance. 

These two ways to acknowledge the bus interconnect do not conflict with each 

other so they could use both in the bus interconnect. 

Except the acknowledgement of data lock mode, using data lock mode also 

needs to record the ID of transaction using data lock mode. Therefore, the bus 

interconnect must need addition hardware to store the ID so we design the hardware 

“read/write data lock buffer” to record which transactions uses the data lock mode. 

The read/write data lock buffer has a limitation of capacity of recording transactions 

so that if the read/write data lock buffer is full, those requests of transactions using 

data lock mode will not be accepted by bus interconnection. According the description 

of prior, transactions using data lock mode will block each other when the read/write 

data lock buffer is full. The situation of transactions blocking each other is fine in the 

system without memory controller because the bandwidth utilization is still high 

enough. In a system with memory controller, if the transactions block each other and 

memory controller responses data with high initial latency, the bandwidth utilization 

will be low. The out-of-order transaction completion allows memory controller to 

hold all request form transactions and give the memory controller wider scope to 

rearrange the transaction to reduce the latency and power consumption  [10]. To make 

the memory controller keep the most scope of rearranging transactions, we can 

increase the read/write data lock buffer but it need more hardware cost. Therefore, we 
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designed another transfer mode to deal with the transactions using data lock mode and 

increase the scope of memory controller. This mode is described in later section. 

Although data lock mode provides continuously data transferring, if all 

transactions use data lock mode to transfer data, the bandwidth utilization would 

result in a limitation. Fig.  4-10 shows the reason. The first data lock transaction is 

nothing special but the second data transaction needs an additional cycle to start 

transferring data. At cycle T6, the bus interconnect ignores the request of device M0 

for ensuring that there is no error case like Fig.  4-5 occurred and then the bus 

interconnect processes the request of device M0 at cycle T7. After the bus 

interconnect processed the request of device M0, the bus interconnect started data 

lock mode transferring. When the two data lock mode transactions come from the 

same source, the bandwidth utilization would reach the limitation. There is a formula 

to calculate the limitation according to the burst length. Table  4-1 shows the 

bandwidth utilization with corresponding burst length. 

%100
_2

__ ×
+

=
lengthburst

lengthburstnUtilizatioBus  

 

 
Fig.  4-10 The case of data lock mode results in the limitation 
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Table  4-1 Limitation of bandwidth utilization using data lock mode 

Burst length Provide bandwidth utilization
2 50.00% 
4 66.67% 
6 75.00% 
8 80.00% 
10 83.33% 
12 85.57% 
14 87.50% 
16 88.89% 

 

4.2.4 Hybrid Mode 

Hybrid mode is used to increase the scope of memory controller to rearrange the 

transactions. Fig.  4-11 shows the flow of hybrid mode. When the read/write data lock 

buffer is full, the bus interconnect treat the transaction as a normal transaction 

according to the hybrid mode counter. If the counter does not reach the threshold, the 

bus interconnect treats the data lock transaction as a normal transaction. Once the 

counter reached the threshold, the data lock transaction would not treat as normal 

transaction until the counter reset. When the bus interconnect complete a data lock 

mode transaction, the counter would rest. 

If we treat all transactions as normal transactions when data lock buffer is full, 

the ratio of normal transactions and data lock mode transactions would become to the 

result we not expected. This may make the interleaved mode can not be applied 

because the data lock mode is always applied to the device required mass bandwidth. 

Therefore, we set a threshold to hybrid mode counter to prevent the case occurred. 
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Fig.  4-11 Flow of hybrid mode 

 

4.3 Arbitration Policy 

4.3.1 Our AXI Arbitration Flow 

The AXI protocol is defined in transfer level not transaction level. Therefore, the 

normal mode and interleaved mode in address channels and data channels also 

perform in the transfer level. Only the data lock mode in data channels is in the 

transaction level so we arbitrate the request of transactions in the transfer level. 

Fig.  4-12 shows our AXI arbitration flow. The principle of our arbitration is to 

grant based on which transfer mode is being used, namely the data lock mode and the 

normal mode. First, we check if there is any other transaction already using the data 

lock mode. If data lock mode is already in use, arbitration is done. Second, we check 

if the data lock mode buffer is full or not. If buffer is not full, we check if there is 

necessary to arbitrate the data lock mode transactions. If the buffer is full, we directly 

check if there is necessary to arbitrate normal mode transaction. We arbitrate the data 
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lock mode transaction first and then arbitrate the normal mode transaction. This is 

because of that the data lock mode transaction always comes from high priority 

device or mass bandwidth required device. Arbitrating the data lock mode transaction 

first is like giving more priority to the device using data lock mode so doing this helps 

us to configure the priority properly. 

 

 

Fig.  4-12 Flow of our arbitration 

 

4.3.2 Fixed Priority 

Fixed priority uses a pre-defined priority order of devices to arbitrate which 

device has the right to access the bus interconnect while the contention occurs. The 

advantages of fixed priority are low hardware cost and easy to implement. The 
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drawbacks of fixed priority are that fixed priority will result in starvation on low 

priority devices and cause some transactions extreme latency. 

 

4.3.3 TDMA 

Fig.  4-13 illustrates the TDMA policy. The TDMA divides time to very many 

time slots and distributes the time slots to devices according to bandwidth requirement. 

Each device has its own amount of time slots. When a device becomes the highest 

priority device, the number of its available time slot starts to decrease. Once the 

number of available time slot becomes zero, the priority of the device becomes the 

lowest and the priority of the second device becomes the highest. The darkened 

squares in Fig.  4-13 means that the master are granted. 

The advantages of TDMA are: 

 Predictable bandwidth allocation according to distribution of time slots 

 Predictable latency 

 No starvation problem 

The drawbacks of TDMA are: 

 Ignoring the urgent devices 

 More hardware cost than fixed priority 
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Fig.  4-13 Illustration of TDMA policy 

 

4.3.4 Round-Robin 

Fig.  4-14 illustrates of Round-Robin policy. Round-Robin divides the clock 

cycles to an arbitration cycle. The darkened squares in Fig.  4-14 mean that the 

masters are granted. Each device has its own threshold which is pre-defined according 

to the bandwidth requirements. As the device is granted, its counter adds one. When 

the counter reaches the threshold, the priority of the device becomes the lowest 

wherever its previous priority is in any place. Taking the master 1 as an example, the 

threshold of master 1 is two. After master 1 was granted twice, the priority of master 1 

became the lowest. 

The advantages of Round-Robin are: 

 Predictable bandwidth allocation according to devices’ threshold 

 Predictable latency 

 No starvation problem 

The drawbacks of Round-Robin are: 
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 More complex control than TDMA 

 More hardware cost than fixed priority and TDMA 
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Fig.  4-14 Illustration of Round-Robin policy 

 

4.3.5 Lottery 

The lottery policy is a probability based arbitration policy. There is a ticket 

manager which is like an arbiter to decide which device is the winner. Each device has 

its own amount of tickets according to the bandwidth requirements. When the devices 

want to access the bus, they send the request to the ticket manager. The ticket 

manager knows how many tickets each device has and then sums the tickets from 

devices that want to access the bus. After summing the tickets, the ticket manager 

randomly generates a number under the sum. The ticket manager picks up the winner 

according to the winner’s ticket falling into which area of the device. Fig. 

 4-15illustrates an example. The master 1, 2 and 4 send request to ticket manager for 

accessing the bus. The ticket manager sums the tickets of master requested and then 
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generate a winner’s ticket. The winner’s ticket is 10 and falls into the area of master 4 

so master 4 is granted. 

The advantages of Lottery are: 

 Good bandwidth allocation according to devices’ ticket 

 Low hardware cost 

 No starvation problem 

The drawbacks of Lottery are: 

 Unpredictable latency 

 More critical path than other arbitration policies 

 

 
Fig.  4-15 Example of lottery arbitration 
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Chapter 5 Simulation and Analysis 

5.1 Introduction 

In this chapter, we evaluate the performance of AXI interconnect with various 

parameter and transfer mode settings. These parameters and settings include wrapper 

buffer size, configuration of arbitration policies, and transfer mode setting. We built a 

portable media player (PMP) platform with a video phone scenario are used to 

determine the impact of the parameters and settings. The reason for selecting the PMP 

platform is because it is a multicore platform with various tasks running the video 

phone scenario. Running simulation in such complex platform with realistic video 

phone scenario would enable the experiment result and conclusion be more suitable to 

real systems and applications. In addition to the AXI PMP platform, an AHB PMP is 

also implemented using CoWare’s AHB TLM model. However, the architecture of 

interconnection in AHB PMP platform is different from PMP of AXI protocol because 

of performance concerning. This experiment compares the performance of AXI and 

AHB interconnect. The result and conclusion may serve as a reference for system 

designer in choosing the proper bus architecture and protocol. 
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5.2 PMP Platform 

5.2.1 Overview 

 
Fig.  5-1 AXI PMP platform 

 

Fig.  5-1 illustrates the system block diagram of the AXI PMP platform. The 

platform includes a MPU, a DSP, a video encoder, a DMA controller, a vector 

interrupt controller, a memory controller, a communication device, and audio/video 

input/output peripherals. All the devices are connected with the shared bus AXI bus 

interconnection. From the bus interconnect’s point of view, the platform consists of 5 

master ports and 11 slave ports. The master ports include 2 regular type ports, 2 

DMAC type ports, and 1 MPU type port. The slave ports have 9 regulartype ports and 

2 memory type ports. Detailed device settings are shown in Table  5-1 and Table  5-2. 

Note that device IRQs are directly connected to the MPU, bypassing the VIC. 

Although this is different from real system implementation, it is equivalent to 

connecting the IRQ to MPU through the VIC. Only a few transactions are lost which 
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would result in insignificant impact to the overall traffic and performance. 

 

Table  5-1 Master configuration of PMP platform 

Master port Type Description 
MPU MPU Process audio codec, OS and ISR 
DSP General Decode video 
Video encoder General Encode video 
DAMC1 DMAC Data movement of video in, audio in and 

communication to memory 
DMAC2 DAMC Data movement of video out and audio out 

to memory 

 

Table  5-2 Slave configuration of PMP platform 

Slave port Type Description 
Video in General Capture video from camera 
Video out General Display video to screen 
Audio in General Capture audio from microphone 
Audio out General Play audio to speaker 
Communication General I/O for 3G mobile communication  
SMI SRAM General Store instruction 
Memory controller 1 MEM External DRAM 
Memory controller 2 MEM External DRAM 
Vector interrupt controller General Accept interrupt 
Video encoder General Accept ISR from MPU 
DMAC General Accept ISR from MPU 

 

Table  5-3 shows the configuration of PMP platform. PMP operates at 40MHz 

because it is close to the bandwidth requirements of the video phone scenario. The 

detailed bandwidth requirements will be explained in next section. The PMP operates 

at 40MHz and the external memory operates at 133MHz. The access latency of the 

memory controller model is assumed to be ad random delay in the range of 0~16 

cycles. 
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Table  5-3 Performance of AXI PMP platform 

Address width 32 bit 
Data width 32 bit 
Operating frequency 40MHz 
Provide read bandwidth 160MB/sec 
Provide write bandwidth 160MB/sec 
Provide total bandwidth 320MB/sec 

 

5.2.2 Scenario 

Table  5-4 lists the tasks of each device and the bandwidth requirements of each 

task. The rows with light blue bottom color indicate the total bandwidth requirements 

of each device. The video phone scenario totally requires a bandwidth of 

236.3MB/sec to meet the real-time operating constraint of 30 fps. It occupied 77.4% 

of the total bandwidth that AXI PMP can provide. Although Table  5-4 lists the 

bandwidth requirements in MB/sec, we only simulate 33ms and check if all the tasks 

complete within the system timing constraint. 
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Table  5-4 Task of video phone scenario 

Device Task 
Required read 
BW(MB/sec) 

Required write 
BW(MB/sec) 

Total required 
BW(MB/sec) 

Audio codec 1.46667 1.46667 2.93333 
OS routine 0.00048 0.00061 0.00109 
Total ISR 0.17164 0.49273 2.93442 

MPU 

Total task of MPU 1.63879 1.96000 3.59879 
DSP Video decode 14.83636 42.47273 57.30909 
VE Video encode 59.92727 14.25455 74.18182 

Video in to MEM 27.92727 27.92727 55.85455 
Audio in to MEM 0.17648 0.17648 0.35297 
3G communication 0.13236 0.13236 0.26473 

DMAC 

Total task of DMAC1 28.23612 28.23612 56.47224 
MEM to video out 27.92727 27.92727 55.85455 
MEM to audio out 0.17648 0.17648 0.35297 DMAC2 
Total task of DAMC2 28.10376 28.10376 56.20752 

Total   132.74230 115.02715 247.76945 

 

5.3 Experiments 

5.3.1 Performance Metric 

Our mainly performance metrics are completion time, bandwidth utilization, and 

transaction latency. The completion time is defined as the time when all tasks are done. 

Note that all the tasks were supposed to be done within 33 ms to satisfy the system’s 

timing constraint. If any task fails to complete within 33ms, we say the system 

violates the real-time constraint.  

The bandwidth utilization is one of the commonly used performances metric. 

The bandwidth utilization is defined as the percentage of the maximum ideal available 

bandwidth being actually used. The actual used bandwidth can be regarded as the data 

transfer throughput. In other words, the bandwidth utilization can also be defined as 
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the ratio between the actual achieved throughput and the ideal maximum throughput. 

The mathematical definition of the bandwidth utilization is defined below. 

Bandwidth utilization 

bandwidthmaximumprovided
bandwidthusedactualnutilizatioBandwidth

__
___ =  x100% 

 

The other commonly used evaluation metric is the transaction latency. The 

transaction latency we used is defined as the average of read and write transaction 

latencies. The latency of a read or write transaction is measured from the start of the 

transaction request being sent from a master till the read data or write response is 

being returned to the master. In contrast to bandwidth which increases as more data 

can be transferred, the transaction latency may remain the same even if the bandwidth 

utilization has been increased. This is because the transaction latencies can be hidden 

by overlapping transactions. The definition of the transaction latency is defined in the 

equation below. 

 

Transaction latency 

∑∑
∑∑

+

+
=

ntransactiowritetransationread
latencyntransactiowritelatencyntransactioread

latencynTransactio
__

____
_

 

5.3.2 Simulation of Video Phone Scenario 

In our interconnection, we can configure the factors as shown in Table  5-5 in 

advance to simulate our video phone scenario. Simulating the all combination of the 

factors, which it is not an efficient way to get the optimal configuration of PMP 

platform performing video phone scenario so we analyze the impact of each factor or 
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some combination of factor to get a guide to configure the factor of PMP platform 

properly. 

 

Table  5-5 Factor of configuration 

Factor Description 
Wrapper buffer size Capability of out-of-order transaction 
Arbitration policy of channels When contention occurs, choose a device and 

grant it 
Task access setting Decide what kind of task using data lock mode 
Data lock mode buffer size Capability of interconnection processing data lock 

mode transaction 
Weight tuning of devices Priority tuning of arbitration policy 

 

A. Wrapper buffer size and arbitration policy of channels 

First of all, we take wrapper buffer size and arbitration policy of channels as our 

variables to analyze the impact of them. The detailed configure shows in Table  5-6. 

We test the wrapper buffer size with size of 1, 2, 4, 8 and 16, and take address and 

data channels as the separate variables to configure each arbitration policy. The policy 

setting in Table  5-6 uses two letters to express what policy used in address channel 

and data channel. The first letter means which arbitration policy used in address 

channel and the second letter means which arbitration policy used in data channel. We 

choose Round-Robin as the write response channel, which this is because there is only 

one completion of write transaction which needs to transfer write response so that we 

choose a fair arbitration policy as the write response channel. The task access setting 

is all normal transactions so there is no necessary to configure data lock mode buffer 

size. The weighting of devices is set according the bandwidth requirements of video 

phone scenario. 
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Table  5-6 Setting of simulation A 

Wrapper buffer size 
buffer size 1, 2, 4, 8, 16 

Arbitration policy of channels 
Policy setting Address channel Data channel Write response channel 

FF Fixed priority Fixed priority Round-Robin 
FT Fixed priority TDMA Round-Robin 
FR Fixed priority Round-Robin Round-Robin 
FL Fixed priority Lottery Round-Robin 
TF TDMA Fixed priority Round-Robin 
TT TDMA TDMA Round-Robin 
TR TDMA Round-Robin Round-Robin 
TL TDMA Lottery Round-Robin 
RF Round-Robin Fixed priority Round-Robin 
RT Round-Robin TDMA Round-Robin 
RR Round-Robin Round-Robin Round-Robin 
RL Round-Robin Lottery Round-Robin 
LF Lottery Fixed priority Round-Robin 
LT Lottery TDMA Round-Robin 
LR Lottery Round-Robin Round-Robin 
LL Lottery Lottery Round-Robin 

 

Table  5-7 shows that if the each configuration met timing constraint or not. It is 

obvious when buffer size is exceeding 8, the configurations met the timing constraint 

with all normal transactions of video phone scenario. Under buffer size 8, the data 

channel with policies of TDMA all met the constraint and the address channel with 

policies of fixed priority are most violated the timing constrain. It is interesting that 

the address channel with policies of Round-Robin most met the timing the constraint. 

It may explain that Round-Robin in address channel is more efficient than TDMA, 

and TDMA is data channel is more efficient than Round-Robin. It may caused by the 

different scheme of TDMA and Round-Robin mapping to the weight tuning. Under 

buffer size 16, TDMA, Round-Robin and Lottery most met timing constraint except 
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fixed priority. 

Fig.  5-2 shows the completion time of video phone scenario. It is obvious that 

whatever fixed priority used in address channel or data channel has longer completion 

time. Fig.  5-3 also shows the same result that fixed priority gets poor bandwidth 

utilization than others. This is because that fixed priority is more possible causing the 

starvation and limiting the out-of-order completion. 

 

Table  5-7 Timing constraint status with all normal transaction of video phone scenario 

 
1 2 4 8 16 

FF Violated Violated Violated Violated Violated 
FT Violated Violated Violated Met Met 
FR Violated Violated Violated Violated Violated 
FL Violated Violated Violated Violated Violated 
TF Violated Violated Violated Violated Violated 
TT Violated Violated Violated Met Met 
TR Violated Violated Violated Violated Met 
TL Violated Violated Violated Met Met 
RF Violated Violated Violated Violated Violated 
RT Violated Violated Violated Met Met 
RR Violated Violated Violated Met Met 
RL Violated Violated Violated Met Met 
LF Violated Violated Violated Violated Violated 
LT Violated Violated Violated Met Met 
LR Violated Violated Violated Violated Met 
LL Violated Violated Violated Met Met 

Buffer
size Policy 

setting 
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Fig.  5-2 Completion time of video phone with all normal transactions 
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Fig.  5-3 Bandwidth utilization of video phone with all normal transactions 
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B. Task access setting 

The previous simulations only used the normal and interleave transfer modes in 

our interconnection. This time we configure the task pattern to generate the 

transactions using data lock mode. Table  5-8 shows the configuration of tasks. We 

category the tasks into two kinds which one is accessing memory controller and the 

other is accessing other devices. In the setting 1, tasks of accessing memory controller 

use data lock mode and tasks of accessing other devices use normal mode. The setting 

2 is configured in the contrary way. Table  5-9 is the configuration of data lock mode 

in our interconnection. We also test the wrapper buffer size and arbitration policy of 

channels as simulation A. 

 

Table  5-8 Configuration of simulation B 

 Tasks of accessing memory 
controller 

Tasks of accessing other 
devices 

Setting 1 Using data lock mode Using normal mode 
Setting 2 Using normal mode Using data lock mode 

Task 
Setting 

 

Table  5-9 Configuration of data lock mode of simulation B 

Data lock mode buffer size 1 
Hybrid mode threshold 1 

 

Table  5-10 shows the simulation results of setting 1. There are 24 configurations 

which met the timing constraint. The setting 1 increased 6 met configurations 

comparing to simulation A. In the configuration of setting 1, we can observe that 

Round-Robin in data channel all violated the timing constraint under buffer size 8. 

The reason of this phenomenon may concern with the weight tuning of arbitration 

policy. The weight tuning of arbitration we will introduce in the later section. 

In Fig.  5-4, we can find that the there is no obvious glitch of completion time 
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under buffer size 8 so we can say that the Round-Robin dose not make significant 

violated the timing constraint. From the Fig.  5-4 and Fig.  5-5, we can find there is a 

obvious glitch in buffer size 16. It is the policy setting: FF. This is because the buffer 

size 16 is the same with the memory controller delay so that transactions accessing 

memory controller block the other transactions. Therefore, other devices starved and 

bandwidth utilization collapsed. 

 

Table  5-10 Timing constraint status with setting 1 of video phone scenario 

 
1 2 4 8 16 

FF Violated Violated Violated Violated Violated 
FT Violated Violated Violated Violated Met 
FR Violated Violated Violated Violated Violated 
FL Violated Violated Violated Met Met 
TF Violated Violated Violated Met Met 
TT Violated Violated Violated Met Met 
TR Violated Violated Violated Violated Met 
TL Violated Violated Violated Met Met 
RF Violated Violated Violated Met Met 
RT Violated Violated Violated Met Met 
RR Violated Violated Violated Violated Met 
RL Violated Violated Violated Met Met 
LF Violated Violated Violated Met Met 
LT Violated Violated Violated Met Met 
LR Violated Violated Violated Violated Met 
LL Violated Violated Violated Met Met 

Buffer
size Policy 

setting 
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Fig.  5-4 Completion time of video phone with setting 1 
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Fig.  5-5 Bandwidth utilization of video phone setting 1 
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Table  5-11 shows the simulation results of setting 2. There are 19 configuration 

met the timing constraint. The results are very similar to simulation A. 

In Fig.  5-6 and Fig.  5-7, there are obvious glitches in buffer 16. The reason is 

also the same with setting 1 but the blocking transactions changed to transactions 

accessing memory controller. The transactions accessing memory controller occupied 

76.91% in video phone scenario so that transactions using data lock mode still make 

an obvious impact to performance. 

 

Table  5-11 Timing constraint status with setting 2 of video phone scenario 

 
1 2 4 8 16 

FF Violated Violated Violated Met Violated 
FT Violated Violated Violated Violated Violated 
FR Violated Violated Violated Violated Violated 
FL Violated Violated Violated Violated Violated 
TF Violated Violated Violated Violated Violated 
TT Violated Violated Violated Met Met 
TR Violated Violated Violated Met Met 
TL Violated Violated Violated Met Met 
RF Violated Violated Violated Violated Violated 
RT Violated Violated Violated Met Met 
RR Violated Violated Violated Met Met 
RL Violated Violated Violated Met Met 
LF Violated Violated Violated Violated Violated 
LT Violated Violated Violated Met Met 
LR Violated Violated Violated Met Met 
LL Violated Violated Violated Met Met 

Buffer
size Policy 

setting 
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Fig.  5-6 Completion time of video phone with setting 2 
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Fig.  5-7 Bandwidth utilization of video phone setting 2 
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To observe the influence of task setting, we average the completion time and 

bandwidth utilization of each task setting. Observing the Fig.  5-8 and Fig.  5-9, setting 

1 has significant performance than others. It can be explained that data lock mode is 

useful for devices with high latency and solves the condition of transactions 

concentrating on one device which makes interleave mode useless. Data lock mode is 

sure that it is suitable for memory controller and mass bandwidth required devices. 

The setting 1 overcoming with other settings is more unobvious with the increasing of 

buffer size but data lock mode still has better performance. Although the setting 2 doe 

not have obvious improvement comparing to setting 1, the performance of the setting 

2 is slightly better than all normal transactions when buffer size over 4. Therefore, 

data lock mode is still more useful than using interleave mode alone. 
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Fig.  5-8 Average completion time of different task setting 

 

66 



Average Bandwidth Utilization of Different Task Setting
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Fig.  5-9 Average bandwidth utilization of different task setting 
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Fig.  5-10 Average Latency of Different Task Setting 

 

C. Data lock mode buffer size 

Form simulation B, data lock mode does improve the performance of video 
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phone scenario but the improvement of performance is limited so we increase data 

lock mode buffer to observe the impact to the performance. Table  5-12 is the 

configuration of simulation C. We increase the data lock mode buffer from 1 to 2 and 

4 and the tasks setting is the same with setting 1 of simulation B. 

 

Table  5-12 Configurations of simulation for data lock mode buffer size 

Data lock mode buffer size 2, 4 
Task access setting Accessing memory using data lock mode , others 

normal mode 

 

Table  5-13 shows the timing constraint status with data lock mode buffer 2. 

There are 33 configurations met the timing constraint; moreover, some configurations 

of buffer size 4 met the timing constraint. 

Fig.  5-11 and Fig.  5-12 show the result of video phone scenario with data lock 

mode buffer 2. We can note that the completion time and bandwidth utilization are 

both improved comparing to simulation B with data lock mode buffer 1. 

 

Table  5-13 Timing constraint status with data lock mode buffer 2 

 
1 2 4 8 16 

FF Violated Violated Violated Violated Violated 
FT Violated Violated Violated Met Met 
FR Violated Violated Violated Met Met 
FL Violated Violated Met Met Met 
TF Violated Violated Violated Met Met 
TT Violated Violated Violated Met Met 
TR Violated Violated Violated Met Met 
TL Violated Violated Met Met Met 
RF Violated Violated Violated Met Met 
RT Violated Violated Violated Met Met 

Buffer
size Policy 

setting 
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RR Violated Violated Violated Met Met 
RL Violated Violated Met Met Met 
LF Violated Violated Violated Met Met 
LT Violated Violated Violated Met Met 
LR Violated Violated Violated Met Met 
LL Violated Violated Violated Met Met 
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Fig.  5-11 Completion time of video phone with data lock buffer 2 
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Bus Utilization of Video Phone with Data Lock Buffer 2
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Fig.  5-12 Bandwidth utilization of video phone with data lock buffer 2 

 

There are 39 configurations met the timing constrain as shown in Table  5-14. 

The configurations of buffer size 4 are all met timing constraint except most fixed 

priority. Note that, the buffer size and data lock buffer mode buffer are both 4. It 

means that the buffers in memory controller are capable of buffering all data lock 

mode transactions.

//so increase data lock mode buffer size improve performance 

 

Table  5-14 Timing constraint status with data lock mode buffer 4 

 
1 2 4 8 16 

FF Violated Violated Violated Violated Violated 
FT Violated Violated Violated Met Met 
FR Violated Violated Violated Met Met 
FL Violated Violated Met Met Met 
TF Violated Violated Violated Met Met 

Buffer
size Policy 

setting 
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TT Violated Violated Met Met Met 
TR Violated Violated Met Met Met 
TL Violated Violated Met Met Met 
RF Violated Violated Violated Met Violated 
RT Violated Violated Met Met Met 
RR Violated Violated Met Met Met 
RL Violated Violated Met Met Met 
LF Violated Violated Violated Met Met 
LT Violated Violated Met Met Met 
LR Violated Violated Met Met Met 
LL Violated Violated Met Met Met 

 

Completion Time of Video Phone with Data Lock Buffer 4

0

11

22

33

44

1 2 4 8 16
Wrapper buffer (entry)

C
om

pl
et

io
n 

tim
e 

(m
s)

FF
FT
FR
FL
TF
TT
TR
TL
RF
RT
RR
RL
LF
LT
LR
LL

 
Fig.  5-13 Completion time of video phone with data lock buffer 4 
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Bus Utilization of Video Phone withData Lock Buffer 4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 4 8 16
Wrapper buffer (entry)

B
us

 u
til

iz
at

io
n

FF
FT
FR
FL
TF
TT
TR
TL
RF
RT
RR
RL
LF
LT
LR
LL

 
Fig.  5-14 Bandwidth utilization of video phone with data lock buffer 4 

 

 

D. Weighting tuning of arbitration policy 

Although we have simulated the impact of arbitration policy, we can not obtain a 

precise setting of arbitration policy to get a better performance than others. Therefore, 

we tune the weight of arbitration policy to find a way to set weight properly. Table 

 5-15 shows the configurations of simulation. The arbitration policies of channels are 

the same which means that the 5 channels use the same arbitration policy. We use 

burst length 8 as a base number to tune the weight. Take masters of video phone 

scenario as an example; the ratios of bandwidth requirement of MPU: DSP: VE: 

DMAC1: DMAC2 are 1:9:37:17:17. The MPU is the smallest devices so we give it a 

constant weight 4. The other devices take into consideration of weight tuning. The 

bandwidth requirement of DMAC1 and DMAC2 are almost the same so we treat them 

as one variable. Then, the variable of masters become to 3 which are x, y and z. Then 
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we give an equation :x+y+z=7, x>0,y>0,z>0. The solutions of the equation after 

multiply 8 which are our configurations of weight tuning. There are 15 configurations 

of master’s weight. The weight tuning of slave are the same as master. We take the 

first three of bandwidth requirement slaves as the variable. We also five an equation 

x+y+z=6, x>0,y>0,z>0. Therefore, the configurations of slave are 10 and the 

configurations which all we need to simulate are 15*10=150. 

 

Table  5-15 Configuration of weight tuning 

Wrapper buffer size 1, 2, 4, 8, 16 
Arbitration policy TDMA, Round-Robin, Lottery 
Task accessing setting Task accessing memory using data lock mode, 

others normal mode 
Data lock mode buffer size 4 
Hybrid threshold 1 

 

Fig.  5-15 and Fig.  5-16 are the result of simulations. According to Fig.  5-15, 

when buffer size is exceeding 8, the configurations are all met the constraint. It 

reveals that when buffer size increased the impact of weight is slighter from the 

distribution of standard deviation in Fig.  5-16 but it does not show us how to tune the 

weight. Table  5-16 shows the configurations of buffer size 4 met timing constrain. 

Analyzing the configurations met timing constraint; we can find that weight of 

configurations does not consist with bandwidth requirements. The distribution of 

configurations met timing constraint which equally concentrates on the average of 

bandwidth. It means that as long as the weight of arbitration policy is not an extreme 

then the performance is stable and good. 
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Fig.  5-15 Average bandwidth utilization of weight tuning 
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Fig.  5-16 Standard deviation of bandwidth utilization of weight tuning 
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Table  5-16 Met configurations of buffer size 4 in weigh tuning 

Arbitration policy Met configuration
TDMA 2 
Round-Robin 48 
Lottery 62 

 

5.4 AXI vs. AHB 

5.4.1 AHB PMP Platform 

 

Fig.  5-17 AHB PMP platform 

 

The AHB PMP platform shows in Fig.  5-17. The AHB PMP platform possesses 

the same devices as the AXI PMP platform. The TLM of AHB is built by the TLM 

library of CoWare. 

The AHB protocol does not support read data and write data transferring at the 

same time so we adopt the multi-layer as the bus architecture in order to compete with 
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AXI PMP platform. There are total five layers of AHB-lite interconnect. Each bus 

interconnect of the masters connects the corresponding slaves so the salve ports are 

more than the AXI PMP platform. The memory controller has five slave ports because 

of that all masters need access the memory controller. However, the memory 

controller has only one buffer. The reason is that the pipelined transferring of AHB 

protocol only allows one transaction access the bus. Therefore, the memory controller 

only can accept one request before the processing transaction completes. Increasing 

the buffer of the memory controller does not enlarge the scope of the memory 

controller to rearrange the transaction like the AXI. 

Table  5-17 shows the configuration of AHB PMP platform. The configuration of 

AHB PMP platform is the same as the AXI PMP platform except the provided 

bandwidth. 

 

Table  5-17Performance of AHB PMP platform 

Address width 32 bit 
Data width 32 bit 
Operating frequency 40MHz 
Single layer provided bandwidth 160MB/sec
Total provided bandwidth 800MB/sec

 

5.4.2 Comparison between AXI and AHB 

We use the same video phone scenario to test the performance of AHB PMP 

platform. The AHB PMP platform uses five layer AHB-lite as the bus interconnect so 

there is no necessary of using arbitration policy. Only the multi-slave port device 

needs to arbitrate which port to process. Considering the fairness and the problem of 

starvation, we adopt the Round-Robin as the arbitration policy to solve the contention 
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of ports. 

Table  5-18 shows the targets of comparison. The AHB only contains one buffer 

so the buffer size of AXI also set the same size. To show the gap between the AHB 

and AXI, we simulate the AXI of buffer size 8 in addition. 

Table  5-18  

Setting Wrapper buffer 

AHB 1 

AXI, all normal transactions 1 

AXI, memory using data lock mode, buffer 1 1 

AXI, all normal transactions 8 

AXI, memory using data lock mode, buffer 1 8 

 

Fig.  5-18, Fig.  5-19 and Fig.  5-20 show the result of simulation. Form 

completion time of the buffer 1 in Fig.  5-18, although the AHB bus interconnect 

adopt the multi-layer to against the AXI transferring read/write data simultaneously, 

the AHB still has longer completion time than the AXI. The reason is that the AXI 

platform has two memory ports to process the memory access so the completion time 

in the AXI is shorter than in AHB. 

Comparing to the buffer size 8, the completion time of the AXI is much shorter 

than the AHB. This is because of that the AXI supports transaction out-of-order 

completion. The out-of-order completion allows the AXI bus no waiting for 

transaction completion to transfer available data. The obvious example is the MPU 

access the memory. Once the MPU in AHB platform sent a request to the memory and 

waited for response, the bus connected with the MPU was stall. Therefore, if the other 

devices want to respond with the read data, the bus can not transfer the data in 

advance until the memory completed transaction. However, the AXI platform 
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supports out-of-order completion to allow the other devices to transfer data without 

waiting for memory completed the transaction, which reduces much idle cycles in the 

bus interconnect. 

Fig.  5-19 shows the result of bandwidth utilization. The bandwidth requirements 

of memory in the video phone scenario occupied 77.4% so that the distribution of 

required bandwidth is not balanced. Therefore, the un-balanced distribution results in 

the low bandwidth utilization on multi-layer and poor performance. Although the 

multi-layer bus interconnect provides more bandwidth than shared bus, not all 

scenarios or applications are suitable to the multi-layer so that the multi-layer needs 

proper scenario to prevent hardware wasted and to obtain better performance. 

Fig.  5-20 shows the result of latency. The buffer 1‘s latency of the AXI is shorter 

than the AHB. The reason is the same as the bandwidth utilization. The buffer 8’s 

latency of the AXI are much longer than the buffer 1’ because the more buffers, the 

more transactions queue in the bus interconnect. It is based on the different of the way 

to calculating the latency. 
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Fig.  5-18Completion time of AXI and AHB 
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Fig.  5-19 Bandwidth utilization of AXI and AHB 
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Fig.  5-20 Average latency of AXI and AHB 
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Chapter 6 Hardware Implementation 

There are two sections in this chapter. Section 6.1 describes the hardware design 

of the AXI bus interconnect. In Section 6.2 the implement result is shown. 

 

6.1 Hardware Design 

The AXI bus interconnect contains five separated channels. There are read 

address channel, read data channel, write address channel, write data channel and 

write response channel. These five channels process two kinds of transaction: read 

transaction and write transaction. Therefore, we separate the hardware architecture 

into two parts: 1.read transaction 2.write transaction. Following sections describe each 

design. 

 

6.1.1 Read Transaction Design 

Fig.  6-1 shows the block diagram of read transaction design. The read 

transaction design consists of read address channel (AR) and read data channel (R). 

The components of them are read address master port, slave read buffer monitor, read 

address channel arbiter, read address slave port, read data master port, read data 

channel arbiter, read lock mode buffer and read data slave port. Although there are 8 

components in read transaction channels, we can classify them into 5 types which are 

interface input port, interface output port, arbiter, slave buffer monitor, read lock 

mode buffer. 

The interface input port handle the channel handshaking and generate request to 
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arbiter. 

The interface output port is simpler. It handles the handshaking and transfer 

address/data from grant source to destination. 

The arbiter receives requests and generates grant and proper information to other 

devices. 

The slave read buffer monitor records each slave buffer conditions and send the 

conditions to arbiter to ensure that request is valid. 

The read lock mode buffer record the granted address transfer which use data 

lock mode. When RID match the RID in data lock mode buffer, the data lock mode 

send information to arbiter and lock the data channel until whole transfers of data 

completed. 

 

 
Fig.  6-1 Block diagram of read transaction design 

 

6.1.2 Write Transaction Design 

Fig.  6-2 shows the block diagram of write transaction design. The write 
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transaction design consists of write address channel (AW), write data channel (W), 

write response channel (B). The components of them are write address master port, 

slave write buffer monitor, write address arbiter, write address slave port, write data 

master port, write data arbiter, write lock mode buffer, write data slave port, write 

response master port, write response arbiter and write response salve port. We can 

classify them into 5 type devices just the same as read transaction design. 

 

 
Fig.  6-2 Block diagram of write transaction design 

 

6.2 Implementation Results 

Table  6-1 lists the implement result and the comparison to other designs. The 

proposed design adopts shared bus architecture and the targets of comparison adopt 

the crossbar architecture. The best case of the crossbar means that all the available 
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connections are connected and data channel are fully transferring the data. The 

number of available connection is the minimum number of master or slave. Take the 

ARM PL300 as an example, the number of available connections is 4. The worst case 

is the connection remained to only one. 

The ARM PL300 and IIP adopt the crossbar. Although, they provide more 

bandwidth than the proposed, considering the hardware cost, the proposed is more 

hardware efficient than the others; hence the proposed AXI bus interconnect has the 

better bandwidth/gate counts. Although the crossbar provides more bandwidth, not all 

platforms are suitable according our simulation. If the bandwidth requirements are 

concentrated on single devices, the bandwidth utilization becomes very low and 

hardware becomes inefficiency. Therefore, the available connections become the 

worst case. To choose a proper architecture, we should take the bandwidth 

requirements distribution into consideration. 

Table  6-1 Implementation result and comparison 

Design proposed ARM PL300  [12] proposed IIP AXI  [13]
Bus protocol AXI AXI AXI AXI 
Data width 64 64 32 32 
# of master 5 5 5 5 
# of slave 4 4 11 11 
Topology Shared bus Crossbar Shared bus Crossbar 
Operating 
frequency 

200Mhz 200Mhz 200Mhz 200MHz 

Process TSMC 
CBDK013 

TSMC CL013 TSMC 
CBDK013 

TSMC 013 

Gate count 13.40K 30K 18.85K 63.60K 
Provide 
bandwidth 

3.2GB/sec Best:12.8 GB/sec 
Worst:3.2GB/sec 

1.6GB/sec Best:8GB/sec 
Worst:1.6GB/sec

BW/gate 
count 

238MBps/K Best:426MBps/K 
Worst:106MBps/K

84MBps/K Best:125MBps/K
Worst:25MBps/K
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Chapter 7 Conclusion and Future Works 

7.1 Conclusion 

We proposed an AXI bus interconnect which contains four transfer modes: 

normal transfer mode, interleaved mode, data lock mode, and hybrid mode. The 

normal mode is the basic transfer mode which results in only 50% bandwidth 

utilization. Using the interleaved mode improves the bandwidth utilization to 99%. 

The data lock mode and hybrid mode are designed for high initial latency memory 

controller. The data lock mode decreases the time of transferring the data and increase 

the bandwidth utilization. The hybrid mode gives memory controller device more 

scope to reorder transaction to decrease latency from memory. These transfer modes 

can improve the overall system of an AXI share bus system. In addition, using the 

proposed data lock mode and increasing the buffer size also efficiently reduced the 

impact of arbitration policy in the video phone scenario. In conclusion, with proper 

usage of the transfer modes, simple traditional arbitration policies can be used to 

provide equally good system performance. 

 

7.2 Future Works 

The data lock mode is designed for memory controller but the other devices can 

also use the data lock mode to transfer data. Therefore, how to design a scheme 

smartly switching the transfer mode is a problem which is worth to elaborate. 

The AXI supports the out-of-order completion, which makes there be no obvious 

difference under traditional arbitration policy. To develop a new arbitration policy 
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which supports out-of-order completion would improves the system performance. 

The proposed AXI bus interconnect provides good ratio of bandwidth/hardware 

cost but different scenarios need different architecture of the bus interconnect. 

Designing a multi-layer inside the bus interconnect without increasing the overhead 

on masters and slaves is a good way to provide a better ratio of bandwidth/hardware 

cost. 
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