S

\
37 a
4

4y
kit
oy
T
=

T3 1T,
|

oL

AXT i@tz a sv3-eF I

System Design and Implementation of AXI Bus

AXT Seomptz x sikzter g 10

System Design and Implementation of AXI Bus

oy oA L FEEE Student: Ying-Ze Liao
IR ke L Advisor: Dr. Tian-Sheuan
Chang

2|
|4
pag
(=
/\“
%

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of Master
in
Electronics Engineering & Institute of Electronics
October 2007
Hsinchu, Taiwan, Republic of China

PR L L

&

HEFITMHEL fAE R PR LT N E LR BT Y R
Rk Sisrae £ & o9& ¢ 5 Advanced eXtensible Interface(AXI) & 47—
g PR A AX[A et 3 A fﬁ;ﬁgjf\ﬂu D A
e Hh l-l'?'““}'xilg’—‘!‘lﬂitglg LIS N KR i %{__Elmmq} ZE A
AR L S Peth o PR TG F ey L] R R S L EL B TR Bl
B B aF BUY F R BRBFLEH S VAR FRARS
RO B #&T#I—") L % P g B,

hhHr 2 BTG AR AR PR AR AR B
HeeAl B = iﬁ*ﬁ%mmf% wh P B AXT R R Y 3 B
(Crossbar Switch)7 #f - se A VM G L - vy #7185 A 1
SR RN I ’}]%_?'1,)5\1$;Hiﬁg\ﬂ\ wr AXI L7 7 &A=
chiFid ik R RUREE o ERT R IAp Y B AU 0 Flet A2 SystemC R
& »(Transaction-level)47 — B ¥ 4 48~ = (Portable Media
Platform) e 4ca] ki~ 47 ©

3ot AT i B 50 - Rt B LEMG O RETE B L
b- SNBSS TR R R F 0 G 500 ST EARH Y AR
] iﬁ%@ﬁ%ﬁ;‘(lnterleaved Mode) % #& B #7 5 * B B i 99% o ot o5 eié
FRERREFHREAETT R 2T FRBI NG g g KR 5 3
Arheit Bee A FIF ALY > AP T ke TR 4 T3 (Data Lock
Mode)rs 2 j& & i@ g 3¢ (Hybrid Mode) » ¥ 14§ 2p g é“:'h‘%%ﬁ?ﬁi@ﬁ]%ﬁ“ ,
- A c'r‘%%"’#’#l&i@ BEFEMBONA BB TR FTEMER LD
AT o

BT 5 A PSRET R D B ORHG BE R R ARET gk

et YRR AKD A G g EEE S)~ B gt s
FREAF S SH AR PRT R RS RED L OEEGRE ok e
BTV OUEF 69 R & e 40%h ks R - Vb ip Rt B
AL F AR S R e AHB o AXT % g5 e 9 a3 0 e B B

\

B AR B 5T R SAB%THE R R KR AA%eh kS B o BRI IR Y
AXT it sfp 5 3 e & BRI ™ 1A R 35 ke ek SRy o
Lie AP R TR A0 I3 MF IR T EMEET > A& 200

FEAREE RS T L 18.85K B BAER o ket F - F BEBERE)
84MB =HE B -

System Deign and Implementation of AXI Bus

Student: Ying-Ze Liao Advisor: Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

The on-chip-bus (OCB) which connects silicon intellectual property (SIP) in a
system-on-a-chip (SoC) plays a key role in affecting the system performance.
Recently, a new generation of packet-based OCB protocol called Advance eXtensible
Interface (AXI) has been proposed. The AXI separates the address and data into
independent channels. The handshaking of each channel uses two signals which one is
VALID from source and the other is READY from destination. Once the VALID and
READY are high at the same clock positive edge;.the handshaking completed and
data transferred. Therefore, it-is\easy to add pipeline stage to increase operating
frequency by inserting the register slice. Besides, the AXI protocol supports
out-of-order completion and burst-based transaction to provide more bandwidth than
traditional OCB protocol.

Before this thesis, there is no complete analysis on the interconnect architecture
and bandwidth of the of new generation OCB protocol. The existed AXI bus
interconnect all adopt the crossbar switch as the architecture. Although the crossbar
switch provides high bandwidth, it needs extreme hardware cost. Using the
characteristic of AXI, we can adopt the shared bus as the architecture of the bus
interconnect to obtain low hardware cost and keep fairly high bandwidth. To analyze
impact of the architecture, a portable media platform (PMP) is modeled at
transaction-level with SystemC for simulations.

However, the AXI bus interconnect can only achieve 50% of bandwidth
utilization at most when normal transfer mode is being used. Therefore, we propose
an interleaved transfer mode to increase the bandwidth utilization up to 99%. The
interleaved transfer mode can be implemented as a totally built in feature of a bus
interconnect and does not need any modification to the protocol. In addition, this
work also proposes a data lock transfer mode and hybrid mode to handle the
transactions to the devices with long initial access latency, such as the memory
controller in a system. These modes decrease the transfer time and give the memory

controller a higher degree of access rescheduling capability.

We evaluate impact of the proposed transfer modes in the portable media
platform. In addition, the impact of wrapper buffer size, arbitration policy, transfer
mode setting, and arbitration parameter settings are also studied. The simulation result
shows that the proposed transfer modes improve the bandwidth utilization by 69%
and speed up the system by 44%. Compare the performance with the traditional bus
such as the AHB; the AXI system can outperform the AHB system in bandwidth
utilization by 346% and system speed by 44% at most.

The implemented AXI bus interconnect with the proposed transfer modes has a
gate count of 18.85K when synthesized with 0.13 ;z m CMOS process under 200 MHz

operating frequency.

v 2

R 3

FABE ORI ErRsRpal L XAt iR A F Y IR

FAg et F o A At g AR S e R A LipR £ EF R .

AT A VR ER SRR Y R x4 e, B e
PANHE A Rentgid R E ARG LR F A B o

e Ep TR RERFAAL P OLERF 0 3 B ot AR

SSes g c AFRMICEL SR E CF S E RG> RiPar L3R

EH#HEE B S o2 ~2IHCARE - IHBAFLPIR
ﬁ!ﬁfmz}ﬂ MAFTT P kA > P R AR AR S R EHRER
r"b-&mICm%’I% A2kt [Cerfssd 23+ ¥ ¥ ooh
EEE I R E RS S L R S RS E
RCYFERCERACERES LRI R
woRie o i enfl 2 4p X AR Al

B fs o B2 ;gk:ew“ B R

Content

Chapter 1 INtrodUCTIONcoiieiiiieee e 1
00 R = - Tod (o (011 o OSSR 1

1.2 RElAE WOIK.....ouiiieieiee e 2

1.3 Motivation and ContribUION.........cccoovviiiiiiiiineee e 3

1.4 ThesSis Organizationccccceeierieiireiesieeseesie e se e ee e sae e e sae e neas 3
Chapter 2 Overview of the AMBA BUS........ccocvviiiiienie e 4
2.1 AHB s 4
2.1.1 AHB AIChItECIUIE ..o s 4

2.1.2 AHB Handshaking and Arbitration............ccccccocevivevieiieineie s 5

2.2 AX e 7
2.2.1 AXT ATCNITECTUNE. ...t 8

2.2.2 Channel HandshakKingccccoveeiieiieie e 10

2.2.3 Transaction OrderiNgccecveeveriesieere e see e e 12

2.3 Comparison between AXI and AHB...........ccccoeiieieiiieci e 13
2.3.1 Protocol and ArChItEOLUI ws.,covevvvrveriiriieieiee s 13

2.3.2 Latency and Bandwidth Utilizationccccooveviieiiccecene. 13

2.3.3 Hardware COSt ... it b e e 15

Chapter 3 Simulation Modeling for AXI Systemcccooevvivivivennennn, 20
3.1 Overview of the Madeling Method:l....icu.....ccoovveieiier e 20
3.1.1 Transaction-Level-Modelingccceverieiiere e 20

3.1.2 Using SystemC as Modeling Language..........cccccvevvviververieseene. 21

3.2 Traffic GENEAtION.......ccueiviiiiiiiieee e 22

3.3 AXTMASTEL .. 24
3.3.1 Master Behavior Modelingcccoevevieiieievic e 24

3.3.2 MASTET TYPES ..ttt 25

3.3.3 States of Mater Processing Transactionc.ccccevvevevverieennnn 28

B4 AXISIAVE. ..ot 30
34.1 SIAVE TYPES ...veeeeetie ettt et et 30

3.4.2 States of Slave Processing Transaction..........c.cccccevvevesverieennnn 31

Chapter 4 Design of AXI Bus INterconnect..........cccccevveveeiieniesieeninenenns 34
4.1 BUS INTEICONNECT ... 34

4.2 TranSter MOUE.......coiiiiiiieiee et 36
4.2.1 NOIMAl MOGE ... s 39

4.2.2 Interleaved MOAEcoooiiiiieiec e 39

4.2.3 Data LOCK MOGEooviiiiiiiiieicice s 40

4.2.4 HYDBrid MOde........ooeeee e 44

Vi

4.3 ArDItration POIICY.......coviieiice e 45

4.3.1 Our AXI Arbitration FIOW.........cccocveviiiiiiciecc e 45

4.3.2 D10 1] €1 YU 46

4.3.3 TDMA e e 47

4.3.4 ROUNA-RODIN......ciiiiiieee e 48

4.3.5 LOTEIY e 49
Chapter 5 Simulation and AnalysiS........cccocviieiiiiiienieecee e 51
51 L1000 od 1o o USSP 51

5.2 PMP PIAtfOINM....ccuiiiice et 52
521 OVEIVIEBW ...ttt e te e sraesteenaenreenreenee e 52

522 RS ToT=T T L [TSR 54

5.3 EXPEIMENLS .ottt 55
53.1 Performance MELFiCccuvivervee e 55

5.3.2 Simulation of Video Phone Scenariocccccevvveevveinniececnn, 56

5.4 AXIVS. AHBi. ..o 75
54.1 AHB PMP PIAtfOrmccooiiiiiiiiecceeseses e 75

5.4.2 Comparison between AXl-and AHB...........ccooviievveieciecec, 76

Chapter 6 Hardware Implementation e ..ot e cveeeiveeiiee e 80
6.1 Hardware DeSIgN . i ... it e s sbe s tir e e sieesteeeessaesteeeesneesreaneesneeseens 80
6.1.1 Read TransaCtion DESIGNccctveervereerieeiereeseeeeseesieesee e e 80

6.1.2 Write Transaction DESIOMI ...l e e e e 81

6.2 Implementation RESUMS G .ovvecioifente e 82
Chapter 7 Conclusion and Future WOrkS...........ccccoovvevienienieniece e 84
% A O 4 o [1] o] o ISR 84

7.2 FULUIE WOTKS ...ttt snaenne s 84
RETEIBNCE ...t e re et e e re e e aree s 86

vii

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

List of Figures

2-1 AHB arChiteCIUIEvveveeii e 5
2-2 AHB SIMPIE tranSTerocoveiieece e 6
2-3 Transfer With Wait StALESccvvvieiieieee e 6
2-4 AHB arbDitration..........cccoooiiii i 7
2-5 Generic AXI arChItECIUIEcvveieeee e 8
2-6 REAA traNSACTION........eeivieieiie et se et et ns 9
2-7 WIIEE traNSACTIONveeeviciie ettt sre e e 10
2-8(a)VVALID before READY (b)READY before VALID (c)VALID with

READY .ttt bbbttt n ettt rennns 12
2-9 AHB CONtINUOUS tranSTercoviiieiiiic e 14
2-10 AXI CONLINUOUS TraNSTEI......cviiieciiee e 14
2-11 AHB burst tranSaCtioN..........cc.ecveiieiesie e 15
2-12 AX1 DUISE traNSACTIONcevveeiecie e 15
3-1 System Modeling Graphcccooeiieii i 21
3-2 Illustration of a modeling MOGUIB LA . cvvevecieciee e 22
3-3 Ilustration Of traffiC GENETATION i suws st rthssverreerrrereeriereereeseeseerieseeseeeeens 22
3-4 Example of a task statestable file .ol i i 24
3-5 Flow of transaction generation IN-MASEETcc...ccververieeieeresieseerie e e 25
3-6 Regular type master (a)-block'diagranyi(b) Flow of ProcPTT()c.cceenu.... 26
3-7 DMAC type master (a) block diagram (b)-Flow of ProcPTT()cccevveneee. 27
3-8 MPU type master (a) block diagram (b) Flow of ProcPTT()cccveevvrvrennee 28
3-9 FSM OF MASLEI™S PTT...eiiiiiieie et e 29
3-10 Block diagram of regular type SIaveccccecvevieve i 30
3-11 Block diagram of MEM type SIave.........cccceiieiieieie e 31
3-12 FSM of transaction in slave read PTTcccooevieie i 32
3-13 FSM of transaction in slave Write PTTcccoooevieveiie e 33
4-1 Shared buS arChitECIUIEeeiviiie e 34
4-2 Multi-layer architeCtUrecoveve i 35
4-3 Crosshar arChiteCIUIEccveivieie e ae s 36
4-4 Register slice of AXI bus INtErCONNECTccveveiverieiiesee e 37
4-5 Error case Of data transter..........ccco e ieiieccc e 38
4-6 Correct case oOf data transfer ... 38
4-7 Timing diagram of Normal MOdecccevveiiiii e 39
4-8 Timing diagram of interleaved MOde...........cccoeiveveiii i 40
4-9 Timing diagram of data 10CK Modecccevveiiiiienecc e 41
4-10 The case of data lock mode results in the limitation.............c.c.ccoceveveiiennns 43

viii

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

4-11 Flow of hybrid mode............cccecvevivrvenns
4-12 Flow of our arbitration...........cc.ccocvvvnene.
4-13 Ilustration of TDMA policycccceene.
4-14 Illustration of Round-Robin policy..........
4-15 Example of lottery arbitration..................
5-1 AXI PMP platform.......cccccevvviveveiieinennnns

5-2 Completion time of video phone with all normal transactions......................
5-3 Bandwidth utilization of video phone with all normal transactions...............
5-4 Completion time of video phone with setting 1..........cccoovevviieiievn e
5-5 Bandwidth utilization of video phone setting 1.........ccccoovevvvievvere e
5-6 Completion time of video phone with Setting 2..........cccccvevevievveve e,
5-7 Bandwidth utilization of video phone setting 2..........cccocvevevvevveve e,
5-8 Average completion time of different task settingccceccvvvevvernvciciecnnenn,
5-9 Average bandwidth utilization of different task settingc.ccoccvvivvvirennnnn.
5-10 Average Latency of Different Task Setting........cccceeveviveveiiennein s
5-11 Completion time of video phone with data lock buffer 2...............ccce......
5-12 Bandwidth utilization of videophone, with data lock buffer 2.....................
5-13 Completion time of video phone,with data lock buffer 4...............c..c.........
5-14 Bandwidth utilization:of videa phone with data lock buffer 4
5-15 Average bandwidth utilization of weight tuning...........ccccceevevveveiieceennenn
5-16 Standard deviation of bandwidthrutilization of weight tuning.....................

5-17 AHB PMP platform....... 00t isiiint
5-18Completion time of AXI and AHB...........
5-19 Bandwidth utilization of AXI and AHB ..
5-20 Average latency of AXI and AHB............
6-1 Block diagram of read transaction design..

6-2 Block diagram of write transaction design

List of Table

Table 2-1 Main difference between AXI and AHBccccooiiiiniiiiien 13
Table 2-2 Parameters for hardware cost calculation.............ccocuvvveviieneneninesen, 16
Table 2-3 Comparison of hardware cost between AHB and AXI...........ccccceveiveivennns 19
Table 3-1 Fields of @ task STALEccceieririiiieeiee e 23
Table 4-1 Limitation of bandwidth utilization using data lock mode..............c.ccc.c..... 44
Table 5-1 Master configuration of PMP platformccccccevveveiieiv e 53
Table 5-2 Slave configuration of PMP platform..........cccccovvieie i 53
Table 5-3 Performance of AXI PMP platform...........ccccoov i 54
Table 5-4 Task of Video phone SCENANIOccvevveiieiieie e 55
Table 5-5 Factor of CONfigUIatioN..........cccviiiiiiie e 57
Table 5-6 Setting of SIMUIALION A.......oooiiicee e 58
Table 5-7 Timing constraint status with all normal transaction of video phone scenario

.. 59
Table 5-8 Configuration of SIMulation B............cccccoeiieii i 61
Table 5-9 Configuration of data lock mode of simulation B.............cccccevvvvviieiiennns 61
Table 5-10 Timing constraint status with setting 1 of video phone scenario 62
Table 5-11 Timing constraint status with setting:2.of video phone scenario............... 64
Table 5-12 Configurations of simulation for data lock:mode buffer size.................... 68
Table 5-13 Timing constraint status with'datalock mode buffer 2..........c.ccccovvvennis 68
Table 5-14 Timing constraint status with data lock:-mode buffer 4cccccoeevennis 70
Table 5-15 Configuration of Weight tUNINGcceivveiieie e 73
Table 5-16 Met configurations of buffer size 4 in weigh tuning..........cccccceeveiviienns 75
Table 5-17Performance of AHB PMP platform ... 76
TADIE 5-18 ..ot re s 77
Table 6-1 Implementation result and COMPArISONccceevveiveriesieieere e 83

Chapter 1 Introduction

1.1 Background

Recently, VLSI technology has improved significantly and more transistors can
be integrated into a chip. This makes the ideal of system-on-a-chip [1] more of an
achievable goal than an abstract dream. However, along with the increasing transistor
count comes along the increasing design and verification complexities. Although EDA
tools have also been developed in hope of helping system designer to handle the
massive complexity, proper system-level design and verification methodology have
played a much more important role.: One such, methodology is the platform-based
design methodology which uses:pre-verified,silicon intellectual property (SIP) and an
on-chip-bus (OCB). The OCB:connects SIPs and provides communication among
SIPs.

Since OCB is often the bottleneck of a system, a good OCB protocol plays an
important role. One of the industry’s de facto standard bus protocols is ARM’s
Advanced High-performance Bus (AHB). AHB is an OCB which adopts traditional
bus architecture. It transfers the data in a pipeline way and completes the transaction
in order. The exploration of AHB has been done for years [2]~[4], which includes
architecture, low power and arbitration policy . However, Advance eXtensible
Interface (AXI) is the successor of AHB but the study on AXI is still few. AXI
contains lots of features which improves the performance of the OCB, such as
packet-based transfer, out-of-order completion, and single address transaction.
However, the related research of AXI is rare and lacks comparison with AHB. Thus, a

complete analysis of AXI is necessary.

1.2 Related Work

In a system design, the bus arbitration policy plays an important role. The
traditional arbitration policies include fixed priority, Round-Robin, and time division
multiple access (TDMA) [5]. The fixed priority is the simplest policy which uses a
static priority to arbitrate when contention occurs, but it has a fatal drawback that
starvation. The Round-Robin and TDMA solve the starvation and provide a fair
arbitration. In addition, There is a novel one: lottery [6] which is a probability-based
arbitration policy. The lottery provides a good bandwidth allocation than the other
polices. Mixing these polices brings out various characteristic of polices. However, in
these papers, they mostly focus the-analysis onthe arbitration policy itself but lack a
complete analysis on a system platform running a real application. Being aware of this,
Poletti [6][5] builds an AHB platform-and.uses-various patterns to analyze the impact
of the fixed priority, TDMA, Round-Rebin,.and a time-slot reserve arbitration. Later,
Lee[7] builds a shared bus AHB platform and a crossbar AXI platform to evaluate the
performance of the two platforms. The comparison between the two platforms reveals
that AXI bus has a superior performance. With the multi-core system becoming a
trend, Ruggiero [8] builds a multi-core system with AHB, AXI and STBus to analyze
the scalability of modern OCB protocol. Although the new generation OCB protocol
has been analyzed in these two papers, their AHB bus architectures all adopt the
shared bus and their AXI bus architectures adopt the crossbar, hence the comparison
is not fair and the hardware cost is not taken into consideration. In addition, their
arbitration policy in AXI bus interconnects are fixed priority so the potential of AXI
may not have been fully explored. Until now, there has been no thorough analysis and

exploration on AXI’s arbitration policy, architecture, and hardware cost.

2

1.3 Motivation and Contribution

The issues mentioned above motivate us to investigate the performance of AXI
bus in a system platform running an application. Being aware of the cost difference
between the share bus and crossbar architecture, we focus our investigation in share
bus architecture. In addition, the analysis result of using basic transfer which showed
poor performance also motivated us to propose more efficient AXI transfer mode.
Finally, the question of whether AHB or AXI is better for a system motivates us to
conduct comparison on their performance and cost.

The contribution of this thesis includes the following.

1. The designed Transaction Level Models (TLM) are able to build various
platforms and perform various scenarios:to evaluate the system performance
and to obtain proper configuration.

2. We analyze the impact of the/AXI-on.various arbitration policies.

3. We give a proper way to design a shared bus AXI bus interconnect.

4. The designed AXI bus interconnect provides high bandwidth and low

hardware cost

1.4 Thesis Organization

In chapter 2, we give a brief overview of the AMBA bus protocol. In chapter 3,
we describe the methods we used in modeling AXI system. In chapter 4, we proposed
an AXI interconnection which is able to provide high bandwidth and configuration of
arbitration policy. In chapter 5, we show the result of simulation and analysis. In
chapter 6, we implement the AXI interconnection hardware according to result of

chapter 5. Chapter 7 is the conclusion and future works.

3

Chapter 2 Overview of the AMBA Bus

2.1 AHB

Advanced High-performance Bus (AHB) was proposed in AMBA 2.0 in 1999
and has been widely adopted since. Since then, AHB has been regarded as the
industries de facto on-chip communication protocol. The basic architecture and
protocol are described in this sub section. The features of AHB list below:

® Pipelined transfer

® Burst transfer

® Single-cycle bus master handover

® Single-clock edge operation

® Non-tri-state implementation

® \Wider data bus configurations(64/128 bits)

2.1.1 AHB Architecture

Fig. 2-1 shows the simplified AHB architecture which contains masters, slaves,
arbiter, decoder and mux.

Each master and slave has three ports which are HADDR, HWDATA and
HRDATA. HWDATA and HRDATA share the signal “HADDR” to indicate the
destination of data transfer and therefore there is only one date transfer which is either
HWDATA or HRDATA.

In the specification of AHB, it defined that bus interconnect is composed of

arbiter, decoder and mux and the bus ownership is controlled by the centralized

arbiter to guarantee that only one master can use the shared bus.

GRANT#3
GRANT#2
GRANT#l—‘
> Arbiter
REQ HADDR
HADDR HWDATA Slave
#1
e Master | HWDATA | HRDATA
#1 HRDATA
e
L REQ—
HADDR
—‘ , 8 »
HADDR HWDATA Slave
(I #2
) Master HWDATA, Address and o HRDATA
#2 control mux
HRDATA M~
< e
REQ \ > P | | HADDR ————
HADDR » HWDATA Slave
/ Write datamux > #3
Master HWDATA, - HRDATA
#3 HRDATA Read data/mux
! fe—
HADDR
«]
HWDATA| glave
HRDATA| 74
Decoder

Fig. 2-1 AHB architecture

2.1.2 AHB Handshaking and Arbitration

Each transaction of AHB contains two phases which are address phase and data
phase as shown in Fig. 2-1. The address phase and data phase are sent in pipelined
order, which means that data can only be sent after its address has been sent. This

pipelined mechanism is controlled by the signal “HREADY”. If HREADY is high, no

pipeline stall is introduced; otherwise, a pipelined stall is introduced as shown in Fig.

2-3.
L Addessphase Dataphase
Mok | [
HADDR[31:0] ::X_X A X_X X_X:
Control :)O(Control)C(X:X:
HWDATA[31:0] :}(:X X X ':'{i‘]a X:X:
HREADY :x i 1/ \L
HRDATA[31:0] i)CX X ai‘]a)cx:
Fig. 252 AHB simple transfer
. Address phase | _ Data phase N
MCLK | -
HADDR{31:0] X:X A X:X X:X:
Control X:X Contral X:X X:X:
HWDATA[31:0] X:X >C>< Yy X:X:
wesoy) A\ A L/ A
HRDATA[31:0] X:X >CX X:X X ?it)a X:X:

Fig. 2-3 Transfer with wait states

The ownership of the bus is controlled by a centralized arbiter. Fig. 2-4 shows an
example of the arbitration process. First, each master sends a request to the arbiter by

pulling HBUSREQ high. After several cycles, the arbiter asserts HGRANT but the

6

ownership of the bus still has not changed. Once both HGRANT and HREADY are

high (Fig. 2-4,cycle T5), the granted master gets the ownership of bus. The ownership

of the bus would remain until its transaction has been completed.

1 T2 T3 T4 T5 T8 T7 T8 T9
Master asserts Anumber of cycles later Master drives address after both Address sampled and data
, request arbiter asgerts grant HGRANT and HREADY are high| _ starts when HREADY high
HCLK I I | | |
F(d
HBUSREQx L ¥
HGRANTx e I/
£
£C
HMASTER[3:0] - XX #
P
(4
.)
HADDR[31:0] p XX A XX +a
(4
HWDATA[31:0] > X paad)
{t
P
— O | T/ \
Fig. 2-4 AHB arbitration

Advanced eXtensible Interconnect (AXI) was introduced in AMBA 3.0 as the

successor on-chip bus protocol of the AHB in AMBA 2.0. The basic architecture and

protocol are introduced in this sub section. The AXI protocol is targeted at

high-performance, high-frequency system designs and includes a number of features

that make it suitable for high-speed submicron interconnect.

The key features of the AXI are:

Separate address/control and data phases

Support for unaligned data transfer using byte strobes

Burst-based transaction with only start address issued

Separate read and write data channels to enable low-cost Direct Memory

Access

® Ability to issue multiple outstanding addresses
® Qut-of-order transaction completion

® Easy addition of registers stages to provide timing closure

2.2.1 AXI Architecture

Fig. 2-5 shows a generic AXI architecture. There are five independent channels
which communicate with master and slave. The five channels are read address
channel, write address channel, read data channel, write data channel and write
response channel. Each channel has a set of forward signals and one feedback signal

for handshaking.

Read address/control

< ARREADY!

Write address/control

< AWREADY
Master Read data Slave
interface interface
RREADY =
Write data
< WREADY

Write response

BREADY »

Fig. 2-5 Generic AXI architecture

Fig. 2-6 shows an AXI read transaction. When an AXI master performs a read
transaction, it sends a read address transfer which contains a start address and control
information through the read address channel to a slave. When the slave accepts the
address and control transfer, it starts its process according to the transfer accepted.
Once the slave completes its process, it sends the data requested by the master
through the read data channel. This transaction is not done until the master accepted
the last burst data which contains read transaction status.

Fig. 2-7 shows an AXI write transaction. A master sends a write address transfer
which also contains a state address and control information through the write address
channel to a slave. Then, the master sends write data to the slave through the write
data channel. After the slave accepted all write data, the salve sends a write response

to tell the master the write transaction status through the write response channel.

Read address channel
Read
address
Master Slave
interface interface

Read data channel

Read Read Read Read
data data data data

-« +—— 4+ 4+

Fig. 2-6 Read transaction

Write address channel

Write
address
Write data channel
Master Write Write Write Write Slave
interface data data data data interface

_> > ———> ——»

Write response channel

Write
response

-«

Fig. 2-7:Write transaction

2.2.2 Channel Handshaking

Each channel has a VALD and"READY" signals for handshaking. The source
asserts VALID when the control information or data is available. The destination
asserts READY when it can accept the control information or data. Transfer occurs
only when both the VALID and READY are asserted. Fig. 2-8 shows all possible
cases of VALID/READ handshaking. Note that when source asserts VALID, the
corresponding control information or data must also be available at the same time.
The arrows in Fig. 2-8 indicate when the transfer occurs.

A transfer takes place at the positive edge of clock. Therefore, the source needs a
register input to sample the READY signal. In the same way, the destination needs a
register input to sample the VVALID signal. Considering the situation of Fig. 2-8(c),

we assume the source and destination use output registers not combination circuit,

10

they need one cycle to pull low VALID/READY and sample the VALID/READY
again at T4 cycle. When they sample the VALID/READY again at T4, there should be
another transfer which is an error. Therefore source and destination should use
combinational circuit as output. In short, AXI protocol is suitable register input and

combinational output circuit.

ACLK ;TO T T2 T3 T4
INFORMATION
VALID
READY
!
(@)
ACLK ;TO T T2 T3 T4
INFORMATION
VALID
READY
!
(b)

11

ACLK :TO T T2 T3 T4

INFORMATION

VALID :

READY :

(©)
Fig. 2-8(a)VALID before READY (b)READY before VALID (c)VALID with READY

2.2.3 Transaction Ordering

Unlike AHB which only allows one granted transaction to access the bus
interconnect until this transaction is finished, AXI allows granted transactions to
access bus interconnect simultaneously:jAXI. uses “ID tag” to identify different
transactions and enables out-of-order transaction completion.

Out-of-order transaction completion improves system performance in two ways:
® Bus interconnect allows the transactions to fast slave to complete in advance

without waiting for the completion of the transaction to slow slave.
® Complex slave can return read data which is available for later transaction

without waiting data of prior transaction.

AXI supports out-of-order transaction completion but it doesn’t mean that there
IS no restriction of reordering transactions. The rule is “Transactions with the same 1D
must be completed in order”. In other words, if a master requires multiple transactions
to be completed in order, the master must assign the same ID to these transactions. If
there is no restriction on in-order transaction completion, a master can assign different
IDs to those transactions.

The ID assignment rule only applies to single master system. In multi-master

12

system, bus interconnect must append additional master ID to each transaction so that

each transaction becomes unique in the system.

2.3 Comparison between AXI and AHB

2.3.1 Protocol and Architecture

Table 2-1 shows the main difference of protocol and architecture between AXI

and AHB. There are seven key points as shown in below:

Table 2-1 Main difference between AXI and AHB

AXI AHB
5 separated channels for address Pipelined address and data
and data transfer transfer
Every channel is uni-direction, Complex timing relation in
except handshake signal read/write connection

Easy register insertion to isolate Hard to isolate timing
timing

Easy register insertion to increase | Limited operating frequency
operating frequency

Burst-based transaction with only | Every data transfer need a

one address issued address

Out-of-order transaction Fixed order transaction
completion completion

Suitable for memory controller Unfriendly to memory controller
with high initial latency device

2.3.2 Latency and Bandwidth Utilization

The separate channels in AXI provide less latency in transfer task of read/write

transaction pair than AHB. The reason is that AXI is able to perform read and write

13

transactions at the same time. Fig. 2-9 and Fig. 2-10 show the difference in AHB and
AXI transferring the same task. Fig. 2-9 shows AHB’s continuous transfer. There are
four read data transfers and four write data transfers. Form Fig. 2-9, all eight data
transfers spend eight cycles from T2 to T9. Fig. 2-10 shows the same task in AXI bus.

In AXI case, it only spends four cycles form T2 to T5.

TO T T2 T3 T4 T5 T6 T7 T8 T9
HADDR A B c D E F G -
HRDATA Data(A) Data(B) <Data(C) Data(D)

HWDATA Data(E) Data(F) Data(G) -

Fig. 2-9 AHB continuous transfer

T0 T T2 T3 T4 T5 T6 T7 T8 T9
ARADDR A B Cc D
AWADDR E F G -
RDATA Data(A) Data(B) Data(C) Data(D)

WDATA Data(E) Data(F) Data(G) -

Fig. 2-10 AXI continuous transfer

As for the bandwidth utilization, AXI is more efficient than AHB. The reason is
the same with the case of latency. Fig. 2-11 and Fig. 2-12 show the difference of AHB
and AXI. In Fig. 2-11 and Fig. 2-12, AHB and AXI perform four beats read burst
transaction and a four bests write burst transaction respectively. AHB totally takes
eight cycles to complete these two transactions and the bandwidth utilization of data
bus HRDATA/HWDATA is only 50%. As to AXI, it only takes four cycles to
complete transactions and the bandwidth utilization of data bus RDATA/WDATA is

100%. The bandwidth utilization of AHB is naturally 50% and AXI can increase

14

bandwidth utilization to 100% based on transferring read/write transaction pair. In
short, AXI is capable to perform read/write transaction pair which improves the

latency of transaction and bandwidth utilization.

TO ™ T2 T3 T4 T5 T6 T7 T8 T9
HADDR A0 A1 A2 A3 BO B1 B2 B3
HRDATA Data(A0) Data(A1) Data(A2) Data(A3)
HWDATA Data(B0) Data(B1) Data(B2) Data(B3)

Fig. 2-11 AHB burst transaction

TO T1 T2 T3 T4 T5 T6 T7 T8 T9
ARADDR A(Burst)
AWADDR B(Burst)
RDATA Data(A0). Data(A1) Data(A2) Data(A3)
WDATA Data(B0) Data(B1) . Data(B2) Data(B3)

Fig. 2-12. AXI-burst transaction

2.3.3 Hardware Cost

In this section, we analyze the protocol of AXI and AHB to estimate the
hardware cost of them based on the amount of mux and register which they used.
Table 2-2 is the parameters defined for the hardware cost calculation and the
following are the formula for hardware cost. The constants in the formula are

indispensable bits.

15

Table 2-2 Parameters for hardware cost calculation

Parameter Description
Master_Num Number of masters
Slave_Num Number of slaves

Address_Width | The maximum width of used address

Data_Width Bus data width

Buffer_Size Buffer size of master/slave wrapper; number of out-of-order

transactions

AHB master port register

AHB_Master_Port_Register =4+ Data_Width

AHB slave port register

AHB_Slave_Port_Regiger =113 Address_ Width+Data_Width+[log, Master_ Num |

AHB arbiter register
AHB_Arbiter_Register = 24 + Address_Width + Master _ Numx 2

AHB master buffer register

AHB_Master Buffer_Register =9+ Address_Width+ Data_Widthx16

AHB slave buffer register
AHN_Slave_BufferRegister =9+ Address_Width+ Data _Width x16

AXI master port register

AXI_Master Port_Regbter =10+ Data_Width+log, Buffer_Size|x 2

16

AXI slave port register

AXI_Slave_Port_Register =
46 + Address _Widthx 2 + Data_Width + ([log,, Buffer _Size |+[log, Master _ Num])x3

AXI interconnection master port register

AXI_Interconnect_Master _ Port _ Register =
46 + Address_Widthx 2 + Data_ Width +[log, Buffer _ Size |x 3

AXI interconnection slave port register

AXI1 _Interconnect _Slave Port _Register =
10 + Data_Wdith + ([log 2Master _ Num |+ [log, Buffer _Size |)x 2

AXI interconnection WDATA table register

AXI _ Interconnect _WDATA _Table = Master_ Numx Buffer _ Size x[log, Slave _ Number |

AXI master buffer register

AXI _Master _Buffer_Register =
(18+ Address_Width+ Data_Widthx16)x Buffer _Size

AXI slave buffer register

AXI1 _Slave _ Buffer_Register =
(17 +[log, Buffer _Size |+[log, Master _ Num |+ Address _ Width + Data _Width x16)x Buffer _ Size

AHB Master_Num to 1 mux
AHB Master num _to_1 Mux =15+ Address Width+ Data _Wdith

AHB Slave_Num to 1 mux
AHB _Slave_num_to_1 Mux =19+ Data_Wdith

17

AXI Master_Num to 1 mux

AXI _Master _Num_to_1 MUX =
41+[log, Buffer _Size |x3+ Address_Width x 2+ Data_Width

AXI Slave_Num to 1 mux
AXI _Slave _Num _to_1_MUX =5+[log, Buffer _Size |x 2+ Data _Width

According to the formula, we give a system to compare the hardware cost
between AXI and AHB. The system consists of 5 masters, 11 slaves and AHB system
has one buffer and AXI system has eight buffers. The arbitration policy in system is
fixed priority so we ignore the registers in arbiter. If we ignore the register used in
master and slave buffer, the hardware cost of AXI is 3.18 times of AHB. The

hardware cost of AXI is more than;/AHB indeed.:

18

Table 2-3 Comparison of hardware cost between AHB and AXI

AHB AXI
1 buffer| 8 buffer
1 master port 36 48
Wrapper interface register 1 slave port 78 160
Total 114 208
AHB arbiter 66 n/a
AXI interconnection 1 master port 151
Interconnection register AXI interconnection 1 Slave port n/a 54
AX1 WDATA table 160
Total 66 365
1 master buffer 553 562
Wrapper buffer register 1 slave buffer 553 567
Total 1106 1129
Master_Num to 1 mux 79 146
Interconnection mux Slave_Num.to 1 mux 51 43
Total 130 189
System register without buffer |5 master, 11 slave 1104 3509
System register with buffer 5 master, 11 slave 2210 12541

19

Chapter 3 Simulation Modeling for AXI

System

3.1 Overview of the Modeling Method

3.1.1 Transaction-Level-Modeling

Transaction-level-modeling (TLM) [9] is a popular method to modeling a system.
There are many kind of modeling level in modeling a system as shown in Fig. 3-1.
We choose the node D in Fig. 3-1 as our modeling level. The communication model is
modeled at transaction abstraction' level. :The. computation model is modeled at
behavior level, but we do not model the functions because of that our emphasis is on
the bus communication. Choosing:the node D, we check the correctness of bus
protocol but also obtain precise analysis of system performance.

A read/write transaction on the AXI protocol can be decomposed into
address/control transfer, data transfers and response transfer. Each transfer we used is
referred as the transaction on each channel. This is because of supporting the AXI’s
capability of out-of-order transaction completion so we treat each transfer as an
independent transaction and provide a cycle accurate timing

transaction-level-modeling to archive our goal.

20

Communication

A
Cycle-
timed
A. Specification mode|
B. Component-assembly model
C. Bus-arbitration model
Approximate- D. Bus-functional model
timed E. Cycle-accurate computation
model
F. Implementation model
un- _
timed . .
Un- Approximate- Cycle- Computation
timed timed timed

Fig. 3-1 System Modeling Graph
3.1.2 Using SystemC:as Modeling Language

We use SystemC [11] as our modeling language: SystemC has been widely used
to model system at various abstraction levels. The reason we decided to use SystemC
is because the timing simulation kernel and primitives are already available. SystemC
is also a subset of C++ so that we can also use regular C++ expressions. It’s easy to
use and there’s no need to learn another language.

Fig. 3-2 shows how we use model a module using SystemC. The communication
interface is implemented using SystemC input and output port. The SystemC
processes related to the communication interface are implemented using SystemC
method with clock edge trigger. Other internal SystemC processes are also
implemented using SystemC method but some are event driven instead of clock
driven. In addition to SystemC processes, there are also C/C++ processes inside the
module. These un-timed processes implement basic computation and functionality

whereas the SystemC processes provide cycle accurate behavior.

21

’ sc_method(Systemc process) .

s G| O G K-
cloc ==transfer—=p

—=transfer—p CIC++ CIC++ CIC++ .
Process #1 Process #2 Process #3 = —handshaking~
=handshaking>

C meawe

Fig. 3-2 Illustration of a modeling module

3.2 Traffic Generation

In this section, we introduce our traffic generation. The bus traffic is generated
on transaction basis. Each transaction is generated by a bus access task which is
associated with master device. Each master device possesses multiple bus access tasks.
Many bus access tasks comprise.a task state tablei(TST). In other words, each master

device generates transactions froma task of TST as sHown Fig. 3-3.

Task state table

Task 1 Transaction 1 of task 1
Task 2 Transaction 2 of task 1
Task 3 Transaction 3 of task 1

Transaction 4 of task 1

Task n

Fig. 3-3 lllustration of traffic generation

In the task state table, each task describes a set of transactions with the same
direction and address pattern. Table 3-1 shows the fields of a task which includes
current task number, next task number, task type, task transaction count, transaction

burst length, pattern type, base address and vertical shift base address.

22

Table 3-1 Fields of a task state

Field | Description Possible value
0 | Total task count Total task count
1 | Current task number Current task number
2 | Next task number Next task number
0. Read channel idle
1. Write channel idle
3 | Task type
2. Read transaction
3. Write transaction
1. Access transaction count
4 | Transaction count of task
2. ldle eycle count
5 | Burst length of transaction Each access transaction burst length
1." Random
6 | Access pattern type 2. 1Dyhorizontal continuously access
3. 2D, vertical continuously access
7 | Base address Base address of transaction
8 | Vertical shift base address Vertical shift address of 2D access

take the row 8 of Fig. 3-4 as a example to explain how a set of transactions are
generated from a task. The current task number is 6 and next task number is 7
meaning that when this task 6 finished it will take task 7 as next task. The remainder
information means that this task generates 4 read transaction with burst length 16,

base address 0x2001EF00 and the base address of each transaction shifts a base

address 320.

Fig. 3-4 is an example of a task state table file. The total task count is 24000. We

23

This transaction generation using task state description allows us to specify bus
access behavior at task level. In contrast to specify each transaction individually, we
can specify related transaction using only one task. In other words, the traffic

description can be greatly reduced by using task level description.

ilzao00]g

2 [o] |1[z]1 z| 1] oxzoczsz00 0

3 |1] |z|o|z 0| 1| 0x00000000 0

4 |z| | 3/z|a| |16 z|0xz0000000 640

5 |3] | 20|z 0| 1| 0x00000000 0

6 |4| | 5|z|1| |1e| z|0xz0018c00 3z0

7 |s5| |6l 0|z 0| 1| 000000000 0

s |e| | 7lzla| [16| 2| 0xz001EFOD 320
1 3 OB 7 8

Fig. 3-4 Example of a task state table file

3.3 AX| Master

This subsection describes how to model master devices.

3.3.1 Master Behavior Modeling

To model the behavior of a master device, we use task state table (TST),
transaction table (TT) and processing transaction table (PTT) to control the master
device’s behavior.

A. Task State Table

The task state table has mentioned in previous section. It is used to store all tasks

of a master. However, a master may have multiple TST.

24

B. Transaction Table

The transaction table exists in each master and each transaction table is
associated with a TST. It is used to store the transactions which are generated by the
tasks. Once the master device is reset, there is a process called LoadTaskToTrans()
which starts to load all tasks and generates all transactions to store into TT.

C. Processing Transaction Table

The processing transaction table actually is the buffer of a master device. The
entry of it is a processing transaction which is a state machine. The detail of
processing transaction will describe in later section. The processing transaction table
stores the transactions from TT and is controlled by a process called ProcPTT(). The
ProcPTT() checks the state of processing transaction to decide which entry is
processing or is done to be able to.refill a new transaction. We use different ProcPTT()
to model different behavior of the master.

Fig. 3-5 show the relation of TST; TT,-PTT, LoadTaskToTrans() and ProcPTT.

Task State
Table.txt LoadTaskToTrans() ProcPTT()

Transaction Table Processing Transaction Table

R/W Tra nsactic&

Fig. 3-5 Flow of transaction generation in master

3.3.2 Master Types

In our modeling system, all masters are categorized into three types by their

25

behaviors. They are regular type, DMAC type and MPU type.
A. Regular Type

Fig. 3-6(a) shows the block diagram of a regular type master. It only contains a
prime task state table so its behavior is very simple as shown in Fig. 3-6(b). It
processes a prime task and sends the IRQ to MPU when it completes a prime task.
After the repeat count reached the value set in advance, the master stopped. The

examples of regular type masters are DSP, video encoder and etc.

Prime Task ISR 0O ISR1
srlmeT absl Task State Task State
tate Table Table Table
¥ v M Start
Prime Task ISR 0 Task ISR 1 Task
Transaction Transaction Transaction done/send IRQ
Table Table Table
' .
Processing
ProcPTT() 4—[prime task
transaction
v

Processing Transaction Table

t End

AXI Master Interface

(@) (b)

Fig. 3-6 Regular type master (a) block diagram (b) Flow of ProcPTT()

B. DMAC Type
Fig. 3-7 shows the block diagram and state machine of DMAC type master. It

contains multiple task state tables so its behavior is more complex than regular type
master. Each task has its own a repeat counter which stores how many times it need to
repeat and an active counter which uses to active the task periodically. When the task

completes, the master sends the corresponding IRQ to MPU and resets the active

26

counter. After all tasks done and reached the repeat counts, the master stopped.

Start

yes:

Processing
#0 task
transaction

#0 active and
need repeat ?
no
#1 active and
need repeat ?

yes

done/send IRQ 0 and
reset active counter

Processing
#1 task
transaction

done/send IRQ 1 and

no
#2 active and
need repeat ?

reset active counter

Processing
#2 task
transaction

done/send IRQ 2 and

no
All done?
no

I |

reset active counter

yes-»

End

(b)

Fig. 3-7 DMAC type master-(a) block diagrant,(b) Flow of ProcPTT()

#0 #1 #2
Task State Task State Task State
Table Table Table
#0 Task #1 Task #2 Task
Transaction Transaction Transaction
Table Table Table
l | |
v —» IRQO
ProcPTT() =—> IRQ1
* — IRQ1
Processing Transaction Table
AXI Master Interface
(a)
C. MPU Type

Fig. 3-7(a) shows the block diagram of -MPU type master. It is much different
form the regular type and DMAC type. MPU type master not only processes prime
task but also accepts external IRQ to execute corresponding ISR task as shown in Fig.
3-8(b). In the behavior of MPU, the priority of ISR is higher than prime task so the

ISR task can interrupt the process of prime task. When MPU completes the all prime

tasks, it gets into the idle state, but still waits for accepting the IRQ.

27

Start
Prime Task State Table

Accept Processing
. . e ISR 0 task
Prime Task Transaction Table IRQ0? Y transaction

done

‘ no
‘Accept Processing
ProcPTT() ——p IRQ ye ISR 1task
IRQ 1? "
transaction
l I done
no

Processing Transaction Table
Prime need
repeat?

¢

AXI Master Interface '

(a) (b)

Fig. 3-8 MPU type master (a):blockidiagram (b) Flow of ProcPTT()

Processing
prime task
transaction

3.3.3 States of Mater Processing Transaction

The processing transaction in PTT is a'state machine. We use the states to control
the transaction’s status. There are six states in master’s processing transaction
including empty/done, read request, read data, write request, write data and write

response.
A. Empty/done

The state of processing transaction in PTT is empty in the initial. When any
transaction completed, the state became to done. This state means the initial and finish
state, and is ready to be filled transaction from transaction table by ProcPTT() process.
According to the filled transaction is read or write, the state changes to read request or

write request.
B. Read request

When the processing transaction in PTT is filled a read transaction, the state

28

becomes to read request state. The master sends the read address and control

information to bus in this state. After request accepted, the state became to read data.
C. Read data

After the master sent read address and control information, the state changed
form read request to read data. In this state, master accepts read data until last read
data is accepted and the state changes to done which implies this transaction has

completed.
D. Write request

This state is very similar to read request. The only different is that after the

master sent write request, the state became to write data.
E. Write data

After the master sent write request, the master started to send write data. When

the master sent the last write data, the state changed to write response.
F. Write response

After sending all write data, the state changes to write response. The master
waits to accept the write response-from the slave. ©Once the master accepted the write

response, the state changed to done which implied the transaction had completed.

Write transaction Read transaction
Write request Read request
Send read
Empty/done request
Write
response Accept write Accept last read RBEE| PR
response data

Fig. 3-9 FSM of master’s PTT

Send write
request

Write data

Send last write
data

29

3.4 AXI Slave

To model the slaves, it is much simpler than the masters. Modeling a slave don’t
need ProcPTT() to handle the processing transactions of slaves but we only modify

the states of processing transaction in master’s PTT to fit slave’s behavior.

3.4.1 Slave Types

Our modeled slaves are categorized into only two types. They are regular type
and MEM type. The slaves also have PTT but the PTT divides into two parts which

one is read PTT and the other is write PTT.
A. Regular Type

The behavior of a regular:type slave is very simple. Each slave processes the
transactions of read/write PTT:dndependently, and responses corresponding transfers

with single cycle delay.

Read Write
Processing Processing
Transaction Table Transaction Table

t t
!

AXI Slave Interface

Fig. 3-10 Block diagram of regular type slave

B. MEM Type

The MEM type slave is similar to regular type slave except the state of

processing transaction in read PTT is different. The state of processing transaction in

30

read PTT adds a memory delay count state to model the memory latency.

Read

. Write
Processing .
. Processing
ULELE LS LD Transaction Table
With Delay

t t
!

AXI Slave Interface

Fig. 3-11 Block diagram of MEM type slave

3.4.2 States of Slave Processing Transaction

Fig. 3-12 shows the states Of processing transaction in slave’s read PTT. There
are three states and they are empty/done,.read data-and memory delay count down

which is used to modeling the latency-when-reads a memory.
A. Empty/done

The empty/done state is initial and finished state and this processing transaction

is ready to accept any read request.
B. Memory delay count down

This state entered only when a MEM type slave accepted a read request. The
processing transaction becomes idle and counts down several of cycles in this state.

After counting down to zero, the state changes to read data state.
C. Read data

When normal type slave accepts a read request or MEM type slave counts down
to zero, the processing transaction enters the read data state. In this state, slave sends
read data to master until the last read data is sent. Once all data is sent, the state

changes to done.

31

MEM slave
accept read
request

Memory delay
count down

Normal slave
accept read
request

Count down to
Zero

Empty/done

Read data

Send last read
data

Fig. 3-12 FSM of transaction in slave read PTT

Fig. 3-13 show the states of.processing transaction in slave’s write PTT. There
are a single loop and three states, and the states are empty/done, write data and write

response.
A. Empty/done

The empty/done state is initial and finished state, and this processing transaction

is ready to accept any write request.
B. Write data

When slave accept a write request, the state of processing transaction becomes

write data state and slave is ready to accept write data until last write data accepted.
C. Write response

After slave accepted last write data, slave returned the write response to the

master in write response state, and changed the state to done.

32

Accept write
request

Write data

Accept last write
data

Empty/done

Write

Accept write response

response

Fig. 3-13 FSM of transaction in slave write PTT

33

Chapter 4 Design of AXI Bus Interconnect

4.1 Bus Interconnect

The architecture of an AXI bus interconnect can be categorized into three, shared
bus, multi-layer, and crossbar.
A. Shared Bus

Fig. 4-1 shoes the architecture of shared bus. It is low cost and easy to design.
Although there is only one shared bus to transfer data, the packet-based bus (AXI)
protocol which supports out-of-order transfer wouldn’t result in congestion easily.
Packet-based bus protocol is more toléerable to traffic than traditional pipelined (AHB)

bus under single shared bus architecture.

Master 1 Master 2

interconnect

Slave 1 Slave 2 Slave 3

Fig. 4-1 Shared bus architecture

B. Multi-Layer
Fig. 4-2 shows the architecture of multi-layer. It provides more connectivity to
transfer more data at the same time but need more hardware cost than shared bus.

However, not all cases are able to adapt to this architecture such as that all devices

34

need connect each other or connectivity concentrates on single device and the other

devices need little connectivity, which results in too much layer and hardware

inefficient.
Master 1 Master 2
interconnect
Slave 1 Slave 2 Slave 3
Fig. 4-2 Multizlayerarchitecture
C. Crossbar

Fig. 4-3 shows the architecture of.crossbar. It provides extreme connectivity and
is able to transfer data as many as possible. 'The crossbar provides higher bandwidth
than the shared bus and the multi-layer, but costs great hardware cost. Using crossbar
dose not need complex arbitration policy because the big issue is the hardware cost
and bandwidth. Although the providing bandwidth of crossbar overcomes with the
shared bus and the multi-layer, there is still a problem which is the same with
multi-layer. When the traffic is concentrated on a single device, the hardware becomes
inefficient. ARM PL300 [12] and Synopsis DesignWare AXI IIP [13] adopt the
crossbar as their architecture because they only considerate the bandwidth but

hardware cost.

35

Master 1 Master 2

interconnect

Slave 1 Slave 2 Slave 3

Fig. 4-3 Crosshar architecture

The bandwidth providing from the three architectures sorting from high to low
are: crossbar, multi-layer, shared bus, but sorting according to the hardware cost are:
shared bus, multi-layer, crossbar. This,simple summary gives us a basic guild to
choose the architecture of bus interconnect:However, if we consider the bus traffic of
a SOC platform, we will find the memory access is always occupied the most
percentage of bus traffic [14].

According to the mentioned before; when bus traffic concentrates on single
device (like memory), the bandwidth difference among the three bus interconnects
would not be significant. Since the difference of bandwidth is not obvious, the
hardware cost is the most important issue. Therefore, we adopt the shared bus as our

architecture of interconnect.

4.2 Transfer Mode

Before describing our transfer modes, we give an assumption like the Fig. 2-8(b).
We assume the READY signals of masters and slaves are always high if the master

and slave are capable of accepting transfers.

36

According to the conclusion of chapter 2.2.2 Channel Handshaking, AXI is
suitable for register input and combinational output circuit but there is a problem of
inserting a layer of register slice as shown in Fig. 4-4. The inserting register slice
makes the limitation of bandwidth utilization become 50 % based on ensuring there is
no error occurring at the next cycle after information or data transferred. Fig. 4-5
shows the error case. There is an error transfer occurring at the cycle T3 and T4 of Fig.
4-5. Fig. 4-6 is the correct case and it makes the limitation of bandwidth utilization
50%. To increase the bandwidth utilization, we design another three transfer modes.
They are interleaved mode, data lock mode and hybrid mode. Each of them is suitable

for some devices and cases.

Master Bus interconnect Slave
< < < Combin.
DFF DFF
< : <
Combin.
Combin. > > >
DFF . 4 DFF
> >

Fig. 4-4 Register slice of AXI bus interconnect

37

ACLK TO T T2 T3 T4 T5

MO_INFORMATION Bursto] Burst 1| :
| | \ i i

MO_VALID | | | | |

| | | | |

M0_READY | | | | |

| | | |

SO0_INFORMATION

I I I

I | , I

| | AN m |

SO_VALID | | [|) | |

I I I I I

S0_READY : : ' ' :
Fig. 4-5 Error case of data transfer

ACLK TO T T2 T3 T4 T5
MO_INFORMATION : Burst 0: : Burst 1
N\
MO_VALID

MO_READY

SO_INFORMATION

S0_VALID

S0_READY

Fig. 4-6 Correct case of data transfer

38

4.2.1 Normal Mode

Normal mode is the basic transfer mode of the AXI. Fig. 4-7 is a example of
transferring four transactions. Each transfer takes two cycles to complete the transfer.
The bandwidth utilization is only 50%. Although the normal mode only has half the

bandwidth utilization, all transfers fit the AXI protocol.

miﬂﬂniﬂiﬂi T10
M0 AWADDR A B
M1 AWADDR c D
M0 AWREADY
M1 AWREADY
M0 WDATA Data(A) Data(B)
M1 WDATA Data(C) Data(D)
M0 WREADY L /
M1 WREADY X

Fig. 4-7 Timing diagram of normal mode

4.2.2 Interleaved Mode

We propose an interleaved transfer mode which improves the bandwidth
utilization. The interleaved mode allows the two transfers from different devices to be
transferred within two cycles.

Fig. 4-7 illustrates an example of using the interleaved transfer mode. Both
device MO and M1 send write address through the bus. By using the interleaved mode,

MQO’s request A is sent first. While request A is transferring through the bus, request C

39

from M1 is being processed. The one cycle latency introduced in the normal mode for

request C is therefore hidden by request A sending time. As a result, the total time to

send all 4 requests from MO and M1 would only take 5 cycles, which is only 62.5% of

the time taken by using the normal transfer.

The interleaved transfer mode can also be applied to data channels in the same

manner. Note that the implementation of interleaved mode can be done within the bus

interconnect design. There’s no need for additional hardware in device interface and

bus protocol modification. However, to use the interleaved mode, the source of the

transfer from each device must be different. Otherwise, the normal mode must be

used.

MO0 AWADDR A B
M1 AWADDR C

MO0 AWREADY

M1 AWREADY

L L1

M0 WDATA Data(A)

M1 WDATA

MO0 WREADY

M1 WREADY

Data(C)

O\

Data(B)

Data(D)

/)

Fig. 4-8 Timing diagram of interleaved mode

4.2.3 Data Lock Mode

For the situation of only one device accessing the bus, we design another transfer

mode: data lock mode. This mode allows the devices to perform the continuously data

40

transfers of a transaction.

Fig. 4-9 illustrates an example of using data lock mode. Device MO sends data
lock request A and device M1 send normal request B. Once bus interconnect accepted
the request A, the bus interconnect recorded the transaction’s ID of request A. When
the matched ID appears in the data channel, the bus interconnect uses data lock mode
to transfer the data continuously. This example transfers four beats data which takes

the same time as the Fig. 4-8.

mmiﬂwﬂﬂiﬂﬂ T10
MO0 AWADDR A(data lock mode)
M1 AWADDR B
MO0 AWREADY
M1 AWREADY
MO0 WDATA Data(A0) Data(A1) Data(A2)
M1 WDATA Data(B)
MO0 WREADY
M1 WREADY

Fig. 4-9 Timing diagram of data lock mode

To acknowledge the bus interconnection which transaction uses data lock mode,
we proposed three two ways to acknowledge the bus interconnect.

A. Using the signals in address channel

We uses address channel port “ARLOCK/AWLOCK” which contains the control
information to acknowledge the bus interconnect that there is a data lock mode
transaction. Although doing that makes a misunderstanding with the specification, if

the masters and slaves are able to accept continuous data transferring, there is

41

influence on the system.

B. Build-in the bus interconnect

The second way to acknowledge the bus interconnect is using address decoding
to distinguish between the normal transaction and data lock transaction. This
implementation would not additional modify for the masters and salves. The only
overhead is that the bus interconnect needs to configure which device using data lock
mode in advance.

These two ways to acknowledge the bus interconnect do not conflict with each
other so they could use both in the bus interconnect.

Except the acknowledgement of data lock mode, using data lock mode also
needs to record the ID of transaction using data lock mode. Therefore, the bus
interconnect must need addition hardware to store.the 1D so we design the hardware
“read/write data lock buffer” to record which transactions uses the data lock mode.
The read/write data lock buffer-has a limitation. of capacity of recording transactions
so that if the read/write data lock ‘buffer is full, ‘those requests of transactions using
data lock mode will not be accepted by bus interconnection. According the description
of prior, transactions using data lock mode will block each other when the read/write
data lock buffer is full. The situation of transactions blocking each other is fine in the
system without memory controller because the bandwidth utilization is still high
enough. In a system with memory controller, if the transactions block each other and
memory controller responses data with high initial latency, the bandwidth utilization
will be low. The out-of-order transaction completion allows memory controller to
hold all request form transactions and give the memory controller wider scope to
rearrange the transaction to reduce the latency and power consumption [10]. To make
the memory controller keep the most scope of rearranging transactions, we can

increase the read/write data lock buffer but it need more hardware cost. Therefore, we

42

designed another transfer mode to deal with the transactions using data lock mode and
increase the scope of memory controller. This mode is described in later section.
Although data lock mode provides continuously data transferring, if all
transactions use data lock mode to transfer data, the bandwidth utilization would
result in a limitation. Fig. 4-10 shows the reason. The first data lock transaction is
nothing special but the second data transaction needs an additional cycle to start
transferring data. At cycle T6, the bus interconnect ignores the request of device MO
for ensuring that there is no error case like Fig. 4-5 occurred and then the bus
interconnect processes the request of device MO at cycle T7. After the bus
interconnect processed the request of device MO, the bus interconnect started data
lock mode transferring. When the two data lock mode transactions come from the
same source, the bandwidth utilization would reach the limitation. There is a formula
to calculate the limitation according to' the burst length. Table 4-1 shows the

bandwidth utilization with corresponding-burst-length.

burst _length
2+burst _length

Bus _Utilization = x100%

WTL?L?LTL?L?L?LWLFL T10
MO0 AWADDR A(data lock mode) B(data lock mode)
MO0 AWREADY
MO WDATA Data(A0) Data(A1) Data(B0) Data(B1)
MO WREADY B

Fig. 4-10 The case of data lock mode results in the limitation

43

Table 4-1 Limitation of bandwidth utilization using data lock mode

Burst length | Provide bandwidth utilization
2 50.00%
4 66.67%
6 75.00%
8 80.00%
10 83.33%
12 85.57%
14 87.50%
16 88.89%

4.2.4 Hybrid Mode

Hybrid mode is used to increase the scope of memory controller to rearrange the
transactions. Fig. 4-11 shows the flow of hybrid mode. When the read/write data lock
buffer is full, the bus interconnect treat ‘the transaction as a normal transaction
according to the hybrid mode counter. If-the counter-does not reach the threshold, the
bus interconnect treats the data lock:transaction*as a normal transaction. Once the
counter reached the threshold, the data lock transaction would not treat as normal
transaction until the counter reset. When the bus interconnect complete a data lock
mode transaction, the counter would rest.

If we treat all transactions as normal transactions when data lock buffer is full,
the ratio of normal transactions and data lock mode transactions would become to the
result we not expected. This may make the interleaved mode can not be applied
because the data lock mode is always applied to the device required mass bandwidth.

Therefore, we set a threshold to hybrid mode counter to prevent the case occurred.

44

Data lock mode
transaction

Threat as a data lock
mode transaction

Data lock mode

buffer full? No-»

Yes

Block the data lock
transaction

ybrid mode counter
reach threshold?

No
A4

Treat as normal mode
transaction

Fig. 4-11 Flow of hybrid mode

4.3 Arbitration Policy

4.3.1 Our AXI Arbitration Flow

The AXI protocol is defined in transfer level not transaction level. Therefore, the
normal mode and interleaved mode in address channels and data channels also
perform in the transfer level. Only the data lock mode in data channels is in the
transaction level so we arbitrate the request of transactions in the transfer level.

Fig. 4-12 shows our AXI arbitration flow. The principle of our arbitration is to
grant based on which transfer mode is being used, namely the data lock mode and the
normal mode. First, we check if there is any other transaction already using the data
lock mode. If data lock mode is already in use, arbitration is done. Second, we check
if the data lock mode buffer is full or not. If buffer is not full, we check if there is
necessary to arbitrate the data lock mode transactions. If the buffer is full, we directly

check if there is necessary to arbitrate normal mode transaction. We arbitrate the data

45

lock mode transaction first and then arbitrate the normal mode transaction. This is
because of that the data lock mode transaction always comes from high priority
device or mass bandwidth required device. Arbitrating the data lock mode transaction
first is like giving more priority to the device using data lock mode so doing this helps

us to configure the priority properly.

Start

ransaction using data

lock mode? Yes

y

Data lock mode grant? No grant

Yes Yes
v v
Data lock mode grant Normal lock mode grant

Fig. 4-12 Flow of our arbitration

4.3.2 Fixed Priority

Fixed priority uses a pre-defined priority order of devices to arbitrate which
device has the right to access the bus interconnect while the contention occurs. The

advantages of fixed priority are low hardware cost and easy to implement. The

46

drawbacks of fixed priority are that fixed priority will result in starvation on low

priority devices and cause some transactions extreme latency.

4.3.3 TDMA

Fig. 4-13 illustrates the TDMA policy. The TDMA divides time to very many
time slots and distributes the time slots to devices according to bandwidth requirement.
Each device has its own amount of time slots. When a device becomes the highest
priority device, the number of its available time slot starts to decrease. Once the
number of available time slot becomes zero, the priority of the device becomes the
lowest and the priority of the second device becomes the highest. The darkened
squares in Fig. 4-13 means that the'master are granted.

The advantages of TDMA are:

® Predictable bandwidthallocation-according to distribution of time slots

® Predictable latency

® No starvation problem

The drawbacks of TDMA are:

® Ignoring the urgent devices

® More hardware cost than fixed priority

47

Time

>
L
O Master1 Master2 Master3 Master4 Master5
XL
Master2 Master3 Master4 Master5 Master1
>
=
’6 Master3 Masterd4 Master5 Master1 Master2
[
o
Master4 Master5 Master1 Master2 Master3
% Master5 Master1 Master2 Master3 Master4

Fig. 4-13 Illustration of TDMA policy

4.3.4 Round-Robin

Fig. 4-14 illustrates of Round-Robin policy. Round-Robin divides the clock
cycles to an arbitration cycle. “The~darkened squares in Fig. 4-14 mean that the
masters are granted. Each device has its ownthreshold which is pre-defined according
to the bandwidth requirements. As the device is granted, its counter adds one. When
the counter reaches the threshold, the priority of the device becomes the lowest
wherever its previous priority is in any place. Taking the master 1 as an example, the
threshold of master 1 is two. After master 1 was granted twice, the priority of master 1
became the lowest.

The advantages of Round-Robin are:

® Predictable bandwidth allocation according to devices’ threshold

® Predictable latency

® No starvation problem

The drawbacks of Round-Robin are:

48

® More complex control than TDMA

® More hardware cost than fixed priority and TDMA

Time
>
<
K=l Masterl| |Masterl| | Master2| |Master2| | Master4 || Master4| |Master4
I
Master2 | |Master2 | |Master3| |Master4 | | Master5| | Master5| | Master5
>
=
_§ Master3| [Master3| Master4| | Master5| |[Masterl Masterl |Master3
a
Master4 | |Master4 | |Master5| |Masterl| |Master3| | Master3| | Master2
§ Master5| [Master5| |Masterl | Master3| |Master2 | | Master2 | | Masterl
v

Fig. 4-14 Illustration of Round-Robin policy

4.3.5 Lottery

The lottery policy is a probability based arbitration policy. There is a ticket
manager which is like an arbiter to decide which device is the winner. Each device has
its own amount of tickets according to the bandwidth requirements. When the devices
want to access the bus, they send the request to the ticket manager. The ticket
manager knows how many tickets each device has and then sums the tickets from
devices that want to access the bus. After summing the tickets, the ticket manager
randomly generates a number under the sum. The ticket manager picks up the winner
according to the winner’s ticket falling into which area of the device. Fig.
4-15illustrates an example. The master 1, 2 and 4 send request to ticket manager for

accessing the bus. The ticket manager sums the tickets of master requested and then

49

generate a winner’s ticket. The winner’s ticket is 10 and falls into the area of master 4
S0 master 4 is granted.

The advantages of Lottery are:

® Good bandwidth allocation according to devices’ ticket

® | ow hardware cost

® No starvation problem

The drawbacks of Lottery are:

® Unpredictable latency

® More critical path than other arbitration policies

Device | Ticket Ticket manager
Master1 5
Sum of
Winner's
Master2| 4 request ;
tickets ticket
Random number
Master3| 3 + = 1 — R e — 10
Master4 2
Master5 1
Grant
1]2[3]4[5][6][7]8]9][10][11 C D
—— Master1 Master2 Ma:ter ——> Master4
Request
No request

Fig. 4-15 Example of lottery arbitration

50

Chapter 5 Simulation and Analysis

5.1 Introduction

In this chapter, we evaluate the performance of AXI interconnect with various
parameter and transfer mode settings. These parameters and settings include wrapper
buffer size, configuration of arbitration policies, and transfer mode setting. We built a
portable media player (PMP) platform with a video phone scenario are—used to
determine the impact of the parameters and settings. The reason for selecting the PMP
platform is because it is a multicore platform with various tasks running the video
phone scenario. Running simulation.iin“such’complex platform with realistic video
phone scenario would enable the:experiment result and conclusion be more suitable to
real systems and applications. In addition to the AXEPMP platform, an AHB PMP is
also implemented using CoWare’s AHB TLM maodel. However, the architecture of
interconnection in AHB PMP platform is different from PMP of AXI protocol because
of performance concerning. This experiment compares the performance of AXI and
AHB interconnect. The result and conclusion may serve as a reference for system

designer in choosing the proper bus architecture and protocol.

51

5.2 PMP Platform

5.2.1 Overview

0
]

IRO-
IRQr

MPUMO) DSP(M1) | [VideoEnc(M2)| (S3) DMAC(M3, M4) (s9) VIC(S6)
e ERE

M S M S S

|

VISR

VO_ISR

N
ey MReEHER

M
S S S S
VI(S0) VO(S1) AI(S7) AO(S8) COMM(S9) MemCtrl SMI SRAM

S S S
(52)(s10) (s5)

Fig. 5-1 AXI'PMP platform

Fig. 5-1 illustrates the system block diagram of the AXI PMP platform. The
platform includes a MPU, a DSP, a video encoder, a DMA controller, a vector
interrupt controller, a memory controller, a communication device, and audio/video
input/output peripherals. All the devices are connected with the shared bus AXI bus
interconnection. From the bus interconnect’s point of view, the platform consists of 5
master ports and 11 slave ports. The master ports include 2 regular type ports, 2
DMAC type ports, and 1 MPU type port. The slave ports have 9 regulartype ports and
2 memory type ports. Detailed device settings are shown in Table 5-1 and Table 5-2.
Note that device IRQs are directly connected to the MPU, bypassing the VIC.
Although this is different from real system implementation, it is equivalent to

connecting the IRQ to MPU through the VIC. Only a few transactions are lost which

52

would result in insignificant impact to the overall traffic and performance.

Table 5-1 Master configuration of PMP platform

Master port Type Description

MPU MPU Process audio codec, OS and ISR

DSP General | Decode video

Video encoder General | Encode video

DAMC1 DMAC | Data movement of video in, audio in and
communication to memory

DMAC2 DAMC | Data movement of video out and audio out
to memory

Table 5-2 Slave configuration of PMP platform

Slave port Type Description

Video in General, .| Capture video from camera
Video out General | Display video to screen

Audio in General: | Capture:audio from microphone
Audio out General | Play audio to speaker
Communication General-++0-for 3G mobile communication
SMI SRAM General | Store.instruction

Memory controller 1 MEM External DRAM

Memory controller 2 MEM External DRAM

Vector interrupt controller | General | Accept interrupt

Video encoder General | Accept ISR from MPU

DMAC General | Accept ISR from MPU

Table 5-3 shows the configuration of PMP platform. PMP operates at 40MHz
because it is close to the bandwidth requirements of the video phone scenario. The
detailed bandwidth requirements will be explained in next section. The PMP operates
at 40MHz and the external memory operates at 133MHz. The access latency of the
memory controller model is assumed to be ad random delay in the range of 0~16

cycles.

53

Table 5-3 Performance of AXI PMP platform

Address width 32 bit
Data width 32 bit
Operating frequency 40MHz

Provide read bandwidth 160MB/sec
Provide write bandwidth 160MB/sec
Provide total bandwidth 320MB/sec

5.2.2 Scenario

Table 5-4 lists the tasks of each-device and the bandwidth requirements of each
task. The rows with light blue bettem color:indicate the total bandwidth requirements
of each device. The video -phone -scenario totally requires a bandwidth of
236.3MB/sec to meet the real-time operating constraint of 30 fps. It occupied 77.4%
of the total bandwidth that AXI PMP can provide. Although Table 5-4 lists the
bandwidth requirements in MB/sec, we only simulate 33ms and check if all the tasks

complete within the system timing constraint.

54

Table 5-4 Task of video phone scenario

Device

Task

Required read

Required write

Total required

BW(MB/sec) BW(MB/sec) BW(MB/sec)
Audio codec 1.46667 1.46667 2.93333
MPU OS routine 0.00048 0.00061 0.00109
Total ISR 0.17164 0.49273 2.93442
Total task of MPU 1.63879 1.96000 3.59879
DSP |Video decode 14.83636 42.47273 57.30909
VE |Video encode 59.92727 14.25455 74.18182
Video in to MEM 27.92727 27.92727 55.85455
DMAC Audio in to MEM 0.17648 0.17648 0.35297
3G communication 0.13236 0.13236 0.26473
Total task of DMAC1 28.23612 28.23612 56.47224
MEM to video out 27.92727 27.92727 55.85455
DMAC2|MEM to audio out 0.17648 0.17648 0.35297
Total task of DAMC2 28.10376 28.10376 56.20752
Total 13274230 115.02715 247.76945

5.3 Experiments

5.3.1 Performance Metric

Our mainly performance metrics are completion time, bandwidth utilization, and

transaction latency. The completion time is defined as the time when all tasks are done.

Note that all the tasks were supposed to be done within 33 ms to satisfy the system’s

timing constraint. If any task fails to complete within 33ms, we say the system

violates the real-time constraint.

The bandwidth utilization is one of the commonly used performances metric.

The bandwidth utilization is defined as the percentage of the maximum ideal available

bandwidth being actually used. The actual used bandwidth can be regarded as the data

transfer throughput. In other words, the bandwidth utilization can also be defined as

55

the ratio between the actual achieved throughput and the ideal maximum throughput.
The mathematical definition of the bandwidth utilization is defined below.

Bandwidth utilization

actual _used _bandwidth

- - - x100%
provided _maximum_bandwidth

Bandwidth _utilization =

The other commonly used evaluation metric is the transaction latency. The
transaction latency we used is defined as the average of read and write transaction
latencies. The latency of a read or write transaction is measured from the start of the
transaction request being sent from a master till the read data or write response is
being returned to the master. In contrast to bandwidth which increases as more data
can be transferred, the transaction latency. may remain the same even if the bandwidth
utilization has been increased. This is because the transaction latencies can be hidden
by overlapping transactions. The definition-of the transaction latency is defined in the

equation below.

Transaction latency

Z read _transaction _latency + Z write _transaction _latency

Transaction _latency =
- y D read _transation+ »_write_transaction

5.3.2 Simulation of Video Phone Scenario

In our interconnection, we can configure the factors as shown in Table 5-5 in
advance to simulate our video phone scenario. Simulating the all combination of the
factors, which it is not an efficient way to get the optimal configuration of PMP

platform performing video phone scenario so we analyze the impact of each factor or

56

some combination of factor to get a guide to configure the factor of PMP platform

properly.
Table 5-5 Factor of configuration

Factor Description

Wrapper buffer size Capability of out-of-order transaction

Avrbitration policy of channels | When contention occurs, choose a device and
grant it

Task access setting Decide what kind of task using data lock mode

Data lock mode buffer size Capability of interconnection processing data lock
mode transaction

Weight tuning of devices Priority tuning of arbitration policy

A. Wrapper buffer size and arbitration policy of channels

First of all, we take wrapper, buffer size and arbitration policy of channels as our
variables to analyze the impact-of;them. The“detailed configure shows in Table 5-6.
We test the wrapper buffer size-with'sizetof-ip2, 4, 8 and 16, and take address and
data channels as the separate variables to.configure each arbitration policy. The policy
setting in Table 5-6 uses two letters to express what policy used in address channel
and data channel. The first letter means which arbitration policy used in address
channel and the second letter means which arbitration policy used in data channel. We
choose Round-Robin as the write response channel, which this is because there is only
one completion of write transaction which needs to transfer write response so that we
choose a fair arbitration policy as the write response channel. The task access setting
is all normal transactions so there is no necessary to configure data lock mode buffer
size. The weighting of devices is set according the bandwidth requirements of video

phone scenario.

57

Table 5-6 Setting of simulation A

Wrapper buffer size
buffer size 1,2,4,8,16
Arbitration policy of channels
Policy setting | Address channel | Data channel | Write response channel
FF Fixed priority Fixed priority | Round-Robin
FT Fixed priority TDMA Round-Robin
FR Fixed priority Round-Robin | Round-Robin
FL Fixed priority Lottery Round-Robin
TF TDMA Fixed priority | Round-Robin
TT TDMA TDMA Round-Robin
TR TDMA Round-Robin | Round-Robin
TL TDMA Lottery Round-Robin
RF Round-Robin Fixed priority | Round-Robin
RT Round-Robin TDMA Round-Robin
RR Round-Robin Round-Robin | Round-Robin
RL Round-Robin Lottery Round-Robin
LF Lottery Fixed priority | Round-Robin
LT Lottery TDMA Round-Robin
LR Lottery Round-Robin | Round-Robin
LL Lottery Lottery Round-Robin

Table 5-7 shows that if the each configuration met timing constraint or not. It is
obvious when buffer size is exceeding 8, the configurations met the timing constraint
with all normal transactions of video phone scenario. Under buffer size 8, the data
channel with policies of TDMA all met the constraint and the address channel with
policies of fixed priority are most violated the timing constrain. It is interesting that
the address channel with policies of Round-Robin most met the timing the constraint.
It may explain that Round-Robin in address channel is more efficient than TDMA,
and TDMA is data channel is more efficient than Round-Robin. It may caused by the
different scheme of TDMA and Round-Robin mapping to the weight tuning. Under

buffer size 16, TDMA, Round-Robin and Lottery most met timing constraint except

58

fixed priority.

Fig. 5-2 shows the completion time of video phone scenario. It is obvious that
whatever fixed priority used in address channel or data channel has longer completion
time. Fig. 5-3 also shows the same result that fixed priority gets poor bandwidth
utilization than others. This is because that fixed priority is more possible causing the

starvation and limiting the out-of-order completion.

Table 5-7 Timing constraint status with all normal transaction of video phone scenario

Buffer
Policy _ size 1 2 4 8 16
setting
FF Violated | Violated | Violated | Violated | Violated
FT Violated | Violated | Violated | Met Met
FR Violated: | Violated: .| Violated | Violated | Violated
FL Vialated {Violated | Violated | Violated | Violated
TF Violated | Violated *| Violated | Violated | Violated
TT Violated ' |'Violated | /\iolated | Met Met
TR Violated *| Violated:<|-Violated | Violated | Met
TL Violated' | Violated | Violated | Met Met
RF Violated | Violated | Violated | Violated | Violated
RT Violated | Violated | Violated | Met Met
RR Violated | Violated | Violated | Met Met
RL Violated | Violated | Violated | Met Met
LF Violated | Violated | Violated | Violated | Violated
LT Violated | Violated | Violated | Met Met
LR Violated | Violated | Violated | Violated | Met
LL Violated | Violated | Violated | Met Met

59

N w S a1
N w E (3]

Completion time (ms)

(=Y
[

90%
80%
70%
60%

o
S
X

40%
30%
20%
10%

0%

Bus utilization

Completion Time of Video Phone with All Normal Transactions

1 2 4 8 16
Wrapper buffer (entry)

OFF
BFT
OFR
OFL
BTF
aTT
B TR
oTL
B RF
B RT
ORR
ORL
BmLF
BLT
BELR
mLL

Fig. 5-2 Completion time of yvideo'phoene with all normal transactions

Bus Utilization of Video Phone with All Normal Transactions

1 2 4 8 16
Wrapper buffer (entry)

Fig. 5-3 Bandwidth utilization of video phone with all normal transactions

OFF
BFT
OFR
OFL
BTF
aTT
B TR
oTL
B RF
B RT
ORR
ORL
mLF
mLT
BLR
mLL

B. Task access setting

The previous simulations only used the normal and interleave transfer modes in
our interconnection. This time we configure the task pattern to generate the
transactions using data lock mode. Table 5-8 shows the configuration of tasks. We
category the tasks into two kinds which one is accessing memory controller and the
other is accessing other devices. In the setting 1, tasks of accessing memory controller
use data lock mode and tasks of accessing other devices use normal mode. The setting
2 is configured in the contrary way. Table 5-9 is the configuration of data lock mode
in our interconnection. We also test the wrapper buffer size and arbitration policy of

channels as simulation A.

Table 5-8 Configuration of simulation B

Task | Tasks of accessing: - memory Tasks of accessing other
Setting controller devices
Setting 1 Using data lock mode Using normal mode
Setting 2 Using normal mode Using data lock mode

Table 5-9 Configuration of data lock mode of simulation B

Data lock mode buffer size 1
Hybrid mode threshold 1

Table 5-10 shows the simulation results of setting 1. There are 24 configurations
which met the timing constraint. The setting 1 increased 6 met configurations
comparing to simulation A. In the configuration of setting 1, we can observe that
Round-Robin in data channel all violated the timing constraint under buffer size 8.
The reason of this phenomenon may concern with the weight tuning of arbitration
policy. The weight tuning of arbitration we will introduce in the later section.

In Fig. 5-4, we can find that the there is no obvious glitch of completion time

61

under buffer size 8 so we can say that the Round-Robin dose not make significant
violated the timing constraint. From the Fig. 5-4 and Fig. 5-5, we can find there is a
obvious glitch in buffer size 16. It is the policy setting: FF. This is because the buffer
size 16 is the same with the memory controller delay so that transactions accessing
memory controller block the other transactions. Therefore, other devices starved and

bandwidth utilization collapsed.

Table 5-10 Timing constraint status with setting 1 of video phone scenario

Buffer
Policy _ size 1 2 4 8 16
setting
FF Violated | Violated | Violated | Violated | Violated
FT Violated | Violated | Violated | Violated | Met
FR Violated: | Violated: .| Violated | Violated | Violated
FL Viaolated {\Violated | Violated | Met Met
TF Violated | Violated *| Violated | Met Met
TT Violated ' |'Violated | /\iolated | Met Met
TR Violated *| Violated:<|-Violated | Violated | Met
TL Violated' | Violated | Violated | Met Met
RF Violated | Violated | Violated | Met Met
RT Violated | Violated | Violated | Met Met
RR Violated | Violated | Violated | Violated | Met
RL Violated | Violated | Violated | Met Met
LF Violated | Violated | Violated | Met Met
LT Violated | Violated | Violated | Met Met
LR Violated | Violated | Violated | Violated | Met
LL Violated | Violated | Violated | Met Met

62

44

w
w

N
N

Completion time (ms)

=
=

90%
80%
70%

n
o
o
x

50%
40%
30%
20%
10%

0%

Bus utilizatio

Completion Time of Video Phone with Setting 1

2 4 8 16
Wrapper buffer (entry)

Fig. 5-4 Completion timelofivideo phone with setting 1

Bus Utilization of Video Phone with Setting 1

2 4 8 16
Wrapper buffer (entry)

Fig. 5-5 Bandwidth utilization of video phone setting 1

63

OFF
BFT
OFR
OFL
BTk
oTT
B TR
OTL
B RF
ERT
ORR
ORL
BmLF
BLT
BLR
mLL

OFF
BFT
OFR
OFL
BTk
B8TT
ETR
OTL
B RF
ERT
ORR
ORL
BmLF
mLT
ELR
EmLL

Table 5-11 shows the simulation results of setting 2. There are 19 configuration
met the timing constraint. The results are very similar to simulation A.

In Fig. 5-6 and Fig. 5-7, there are obvious glitches in buffer 16. The reason is
also the same with setting 1 but the blocking transactions changed to transactions
accessing memory controller. The transactions accessing memory controller occupied
76.91% in video phone scenario so that transactions using data lock mode still make

an obvious impact to performance.

Table 5-11 Timing constraint status with setting 2 of video phone scenario

Buffer
size 1 2 4 8 16
setting
FF Violated _ {sViolated | Violated | Met Violated
FT Violated | Violated 1. Violated | Violated | Violated
FR Violated | Violated. | Violated | Violated | Violated
FL Violated | Violated | Miolated | Violated | Violated
TF Violated: |:Violated | Violated | Violated | Violated
TT Violated: | Violated *| Violated | Met Met
TR Violated | Violated | Violated | Met Met
TL Violated | Violated | Violated | Met Met
RF Violated | Violated | Violated | Violated | Violated
RT Violated | Violated | Violated | Met Met
RR Violated | Violated | Violated | Met Met
RL Violated | Violated | Violated | Met Met
LF Violated | Violated | Violated | Violated | Violated
LT Violated | Violated | Violated | Met Met
LR Violated | Violated | Violated | Met Met
LL Violated | Violated | Violated | Met Met

64

Completion Time of Video Phone with Setting 2 BFF
BFT
OFR
OFL
55 mTF
aTT
’g44 ETR
Py oTL
IS
-233 B RF
2 mRT
Q9
322 ORR
S BRL
11 mLF
mLT
0" BLR
1 2 4
8 16 mLL
Wrapper buffer (entry)
Fig. 5-6 Completion timelofivideo phone with setting 2
e . . . D FF
Bus Utilization of Video Phone with Setting 2
BFT
90% - :zf
O
80%
BTF
70% @TT
S 60% BTR
T 50% | oTL
b= 40% B RF
0
2 30% BRT
o
10%
BmLF
0% mLT
1 2 4 8 16 BLR
Wrapper buffer (entry) mLL

Fig. 5-7 Bandwidth utilization of video phone setting 2

65

To observe the influence of task setting, we average the completion time and
bandwidth utilization of each task setting. Observing the Fig. 5-8 and Fig. 5-9, setting
1 has significant performance than others. It can be explained that data lock mode is
useful for devices with high latency and solves the condition of transactions
concentrating on one device which makes interleave mode useless. Data lock mode is
sure that it is suitable for memory controller and mass bandwidth required devices.
The setting 1 overcoming with other settings is more unobvious with the increasing of
buffer size but data lock mode still has better performance. Although the setting 2 doe
not have obvious improvement comparing to setting 1, the performance of the setting
2 is slightly better than all normal transactions when buffer size over 4. Therefore,

data lock mode is still more useful than using interleave mode alone.

Average Completion Time of Different Task Setting

(o2}
[op)

(&)}
a1
T

I
~
T

O All normal

w
w
\

W Setting 1
O Setting 2

)
[N}
\

\

Completion time (ms)

[=Y
[E=Y
T

o

1 2 4 8 16
Wrapper buffer (entry)

Fig. 5-8 Average completion time of different task setting

66

Average Bandwidth Utilization of Different Task Setting

80%
70% —
60% —

on

50% || |@ Allnormal
40% — |l Setting 1
30% | | |OSetting 2

20% —
10% [—
0%

Bandwidth utilizat

1 2 4 8 16
Wrapper buffer (entry)

Fig. 5-9 Average bandwidth utilization of different task setting

Average Latency of Different Task Setting

350

300 1

250 |
200 @ Allnormal
W Setting 1
O Setting 2

-

a1

o
T

Latency (cycle)

-

(6} o

o o
T

o |

1 2 4 8 16
Wrapper buffer (entry)

o

Fig. 5-10 Average Latency of Different Task Setting

C. Data lock mode buffer size

Form simulation B, data lock mode does improve the performance of video

67

phone scenario but the improvement of performance is limited so we increase data

lock mode buffer to observe the impact to the performance. Table 5-12 is the

configuration of simulation C. We increase the data lock mode buffer from 1 to 2 and

4 and the tasks setting is the same with setting 1 of simulation B.

Table 5-12 Configurations of simulation for data lock mode buffer size

Data lock mode buffer size

2,4

Task access setting

Accessing memory using data lock mode , others
normal mode

Table 5-13 shows the timing constraint status with data lock mode buffer 2.

There are 33 configurations met the timing constraint; moreover, some configurations

of buffer size 4 met the timing constraint.

Fig. 5-11 and Fig. 5-12 show the result ofivideo phone scenario with data lock

mode buffer 2. We can note that the jcompletion timie and bandwidth utilization are

both improved comparing to simulation B with data lock mode buffer 1.

Table 5-13 Timing constraint status with data lock mode buffer 2

Buffer
Policy size 1 2 4 8 16
setting
FF Violated | Violated | Violated | Violated | Violated
FT Violated | Violated | Violated | Met Met
FR Violated | Violated | Violated | Met Met
FL Violated | Violated | Met Met Met
TF Violated | Violated | Violated | Met Met
TT Violated | Violated | Violated | Met Met
TR Violated | Violated | Violated | Met Met
TL Violated | Violated | Met Met Met
RF Violated | Violated | Violated | Met Met
RT Violated | Violated | Violated | Met Met

68

RR

Violated

Violated

Violated

Met

Met

RL

Violated

Violated

Met

Met

Met

LF

Violated

Violated

Violated

Met

Met

LT

Violated

Violated

Violated

Met

Met

LR

Violated

Violated

Violated

Met

Met

LL

Violated

Violated

Violated

Met

Met

44

33 |

Completion time (ms)

11 |

Completion Time of Video Phone with Data Lock Buffer 2

22

2

Fig. 5-11 Completion time of video phone with data lock buffer 2

4
Wrapper buffer (entry)

69

16

OFF
BFT
OFR
OFL
BTk
aTT
B TR
OoTL
B RF
B RT
ORR
ORL
BLF
BLT
BLR
mLL

Bus Utilization of Video Phone with Data Lock Buffer 2

90%

80%

70%

60% |

50% |

N
o
o3

Bus utilization

30% |

20% |

10% j

0% "

Fig. 5-12 Bandwidth utilization of video phone with data lock buffer 2

There are 39 configurations met the timing constrain as shown in Table 5-14.
The configurations of buffer sizé. 4 are all met timing constraint except most fixed
priority. Note that, the buffer size and data lock buffer mode buffer are both 4. It

means that the buffers in memory controller are capable of buffering all data lock

mode transactions.

4
Wrapper buffer (entry)

16

//so increase data lock mode buffer size improve performance

Table 5-14 Timing constraint status with data lock mode buffer 4

OFF
BFT
OFR
OFL
BTk
oTT
B TR
oTL
B RF
B RT
ORR
ORL
BLF
BLT
BLR
mLL

Buffer
Policy size 1 2 4 8 16
setting
FF Violated | Violated | Violated | Violated | Violated
FT Violated | Violated | Violated | Met Met
FR Violated | Violated | Violated | Met Met
FL Violated | Violated | Met Met Met
TF Violated | Violated | Violated | Met Met

70

TT Violated | Violated | Met Met Met
TR Violated | Violated | Met Met Met
TL Violated | Violated | Met Met Met
RF Violated | Violated | Violated | Met Violated
RT Violated | Violated | Met Met Met
RR Violated | Violated | Met Met Met
RL Violated | Violated | Met Met Met
LF Violated | Violated | Violated | Met Met
LT Violated | Violated | Met Met Met
LR Violated | Violated | Met Met Met
LL Violated | Violated | Met Met Met

w
w

N
N

Completion time (ms)

=
(B

Completion Time of Video Phone with Data Lock Buffer 4
4 8 16
Wrapper buffer (entry)

71

OFF
BFT
OFR
OFL
BTF
aTT
B TR
OTL
B RF
B RT
ORR
ORL
mLF
BLT
BLR
mLL

Fig. 5-13 Completion time of video phone with data lock buffer 4

Bus Utilization of Video Phone withData Lock Buffer 4 mFF
90% mFT
OFR
80% OFL
70% mTF
aTT

= 60% f
= BTR
& 50% || oTL
% 40% | B RF
2 30% | mRT
ORR
20% | DRL
10% mLF
0% U EmLT
1 2 4 8 16 mLR
Wrapper buffer (entry) mLL

Fig. 5-14 Bandwidth utilizationof video, phone with data lock buffer 4

D. Weighting tuning of arbitration policy

Although we have simulated the impact'of arbitration policy, we can not obtain a
precise setting of arbitration policy to get a better performance than others. Therefore,
we tune the weight of arbitration policy to find a way to set weight properly. Table
5-15 shows the configurations of simulation. The arbitration policies of channels are
the same which means that the 5 channels use the same arbitration policy. We use
burst length 8 as a base number to tune the weight. Take masters of video phone
scenario as an example; the ratios of bandwidth requirement of MPU: DSP: VE:
DMAC1: DMAC?2 are 1:9:37:17:17. The MPU is the smallest devices so we give it a
constant weight 4. The other devices take into consideration of weight tuning. The
bandwidth requirement of DMAC1 and DMAC?2 are almost the same so we treat them

as one variable. Then, the variable of masters become to 3 which are x, y and z. Then

72

we give an equation :x+y+z=7, x>0,y>0,z>0. The solutions of the equation after
multiply 8 which are our configurations of weight tuning. There are 15 configurations
of master’s weight. The weight tuning of slave are the same as master. We take the
first three of bandwidth requirement slaves as the variable. We also five an equation
x+y+z=6, x>0,y>0,z>0. Therefore, the configurations of slave are 10 and the

configurations which all we need to simulate are 15*10=150.

Table 5-15 Configuration of weight tuning

Wrapper buffer size 1,2,4,8,16

Avrbitration policy TDMA, Round-Robin, Lottery

Task accessing setting Task accessing memory using data lock mode,
others normal mode

Data lock mode buffer size 4

Hybrid threshold 1,

Fig. 5-15 and Fig. 5-16 are the result of simulations. According to Fig. 5-15,
when buffer size is exceeding 8;.the configurations are all met the constraint. It
reveals that when buffer size increased the impact of weight is slighter from the
distribution of standard deviation in Fig. 5-16 but it does not show us how to tune the
weight. Table 5-16 shows the configurations of buffer size 4 met timing constrain.
Analyzing the configurations met timing constraint; we can find that weight of
configurations does not consist with bandwidth requirements. The distribution of
configurations met timing constraint which equally concentrates on the average of
bandwidth. It means that as long as the weight of arbitration policy is not an extreme

then the performance is stable and good.

73

Bus Utilization

Bus Utilization

Average Bus Utilization

80%

75% |

70%

65% [

60%)

TDMA Round-Robin Lottery
O Buffer 1 62.360045% 62.326499% 62.339372%
W Buffer 2 71.108044% 70.530258% 71.516573%
O Buffer 4 73.715505% 76.280004% 76.491407%
O Buffer 8 79.061074% 79.061078% 79.061059%
B Buffer 16 79.061076% 79.061089% 79.061059%
Arbitration policy
Fig. 5-15 Average'bandwidth. utilization of weight tuning
Standard Deviation of Bandwidth Utilization

2.5%

2.0%

1.5%

1.0%

0.5%

0.0% .

TDMA Round-Robin Lottery

O Buffer 1 0.255646% 0.185349% 0.208641%
W Buffer 2 1.671525% 1.959662% 1.512652%
O Buffer 4 1.741517% 1.759624% 1.812892%
O Buffer 8 0.000047% 0.000045% 0.000055%
W Buffer 16 0.000055% 0.000036% 0.000052%

Arbitration policy

Fig. 5-16 Standard deviation of bandwidth utilization of weight tuning

74

Table 5-16 Met configurations of buffer size 4 in weigh tuning

Acrbitration policy | Met configuration
TDMA 2

Round-Robin 48

Lottery 62

5.4 AXlvs. AHB

5.4.1 AHB PMP Platform

DMAC1 AHB lite

S| /S| |S||S|]|S

MemCtrl

The AHB PMP platform shows in Fig. 5-17. The AHB PMP platform possesses

the same devices as the AXI PMP platform. The TLM of AHB is built by the TLM

library of CoWare.

The AHB protocol does not support read data and write data transferring at the

same time so we adopt the multi-layer as the bus architecture in order to compete with

S

SMI SRAM

Fig. 5-17 AHB PMP platform

MPU(MO] DSP(M1 VideoEnc(M2)| (S3) DMAC(M3, M4) (S4) vIC
M M M Is]im M

H

H

75

Al

COMM

vo

AO

AXI PMP platform. There are total five layers of AHB-lite interconnect. Each bus
interconnect of the masters connects the corresponding slaves so the salve ports are
more than the AXI PMP platform. The memory controller has five slave ports because
of that all masters need access the memory controller. However, the memory
controller has only one buffer. The reason is that the pipelined transferring of AHB
protocol only allows one transaction access the bus. Therefore, the memory controller
only can accept one request before the processing transaction completes. Increasing
the buffer of the memory controller does not enlarge the scope of the memory
controller to rearrange the transaction like the AXI.

Table 5-17 shows the configuration of AHB PMP platform. The configuration of
AHB PMP platform is the same as the AXI PMP platform except the provided

bandwidth.

Table 5-17Performance of AHB PMP platform

Address width 32 bit

Data width 32 bit
Operating frequency 40MHz
Single layer provided bandwidth | 160MB/sec
Total provided bandwidth 800MB/sec

5.4.2 Comparison between AXI and AHB

We use the same video phone scenario to test the performance of AHB PMP
platform. The AHB PMP platform uses five layer AHB-lite as the bus interconnect so
there is no necessary of using arbitration policy. Only the multi-slave port device
needs to arbitrate which port to process. Considering the fairness and the problem of

starvation, we adopt the Round-Robin as the arbitration policy to solve the contention

76

of ports.
Table 5-18 shows the targets of comparison. The AHB only contains one buffer
so the buffer size of AXI also set the same size. To show the gap between the AHB

and AXI, we simulate the AXI of buffer size 8 in addition.

Table 5-18
Setting Wrapper buffer
AHB 1
AXI, all normal transactions 1
AXI, memory using data lock mode, buffer 1 1
AXI, all normal transactions 8
AXI, memory using data lock mode, buffer 1 8

Fig. 5-18, Fig. 5-19 and Fig. 5-20! show the result of simulation. Form
completion time of the buffer-L in Fig-+5-18, although the AHB bus interconnect
adopt the multi-layer to against the:tAXI transferring read/write data simultaneously,
the AHB still has longer completion time than the AXI. The reason is that the AXI
platform has two memory ports to process the memory access so the completion time
in the AXI is shorter than in AHB.

Comparing to the buffer size 8, the completion time of the AXI is much shorter
than the AHB. This is because of that the AXI supports transaction out-of-order
completion. The out-of-order completion allows the AXI bus no waiting for
transaction completion to transfer available data. The obvious example is the MPU
access the memory. Once the MPU in AHB platform sent a request to the memory and
waited for response, the bus connected with the MPU was stall. Therefore, if the other
devices want to respond with the read data, the bus can not transfer the data in

advance until the memory completed transaction. However, the AXI platform

77

supports out-of-order completion to allow the other devices to transfer data without
waiting for memory completed the transaction, which reduces much idle cycles in the
bus interconnect.

Fig. 5-19 shows the result of bandwidth utilization. The bandwidth requirements
of memory in the video phone scenario occupied 77.4% so that the distribution of
required bandwidth is not balanced. Therefore, the un-balanced distribution results in
the low bandwidth utilization on multi-layer and poor performance. Although the
multi-layer bus interconnect provides more bandwidth than shared bus, not all
scenarios or applications are suitable to the multi-layer so that the multi-layer needs
proper scenario to prevent hardware wasted and to obtain better performance.

Fig. 5-20 shows the result of latency. The buffer 1°s latency of the AXI is shorter
than the AHB. The reason is the.same as the bhandwidth utilization. The buffer 8’s
latency of the AXI are much longer than the-buffer-1’ because the more buffers, the
more transactions queue in the bus interconnect. It is-based on the different of the way

to calculating the latency.

Completion Time of Video Phone Scenario

66
55
£ m AHB
o 44
e
‘; 33 L 33.4132.82 m AXI, all normal
S transactions
% 20 | O AXI, memory using data
g lock mode buffer 1
O 11 ¢k
0
1 8
Wrapper buffer (entry)

Fig. 5-18Completion time of AXI and AHB

78

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

on

Bus utilizat

200
180
160
140
120
100
80
60
40
20

Latency (cycle)

Bus Utilization of Video Phone Scenario

75.7%-1%

58.5%

45 99,

T AHB

m AXI, all normal
transactions

O AXI, memory using data
lock mode buffer 1

1

8

Wrapper buffer (entry)

Fig. 5-19 Bandwidth utilization of AXI and AHB

Average Latency of Video Phone Scenario

173.0

36.4 38.6 331

35.9

1

8

Wrapper buffer (entry)

O AHB

m AXlall normal
transactions

O AXImemory using data
lock mode buffer 1

Fig. 5-20 Average latency of AXI and AHB

79

Chapter 6 Hardware Implementation

There are two sections in this chapter. Section 6.1 describes the hardware design

of the AXI bus interconnect. In Section 6.2 the implement result is shown.

6.1 Hardware Design

The AXI bus interconnect contains five separated channels. There are read
address channel, read data channel, write address channel, write data channel and
write response channel. These five channels process two kinds of transaction: read
transaction and write transaction. Therefore, we separate the hardware architecture
into two parts: 1.read transaction:2.write transaction.-Following sections describe each

design.

6.1.1 Read Transaction Design

Fig. 6-1 shows the block diagram of read transaction design. The read
transaction design consists of read address channel (AR) and read data channel (R).
The components of them are read address master port, slave read buffer monitor, read
address channel arbiter, read address slave port, read data master port, read data
channel arbiter, read lock mode buffer and read data slave port. Although there are 8
components in read transaction channels, we can classify them into 5 types which are
interface input port, interface output port, arbiter, slave buffer monitor, read lock
mode buffer.

The interface input port handle the channel handshaking and generate request to

80

arbiter.

The interface output port is simpler. It handles the handshaking and transfer
address/data from grant source to destination.

The arbiter receives requests and generates grant and proper information to other
devices.

The slave read buffer monitor records each slave buffer conditions and send the
conditions to arbiter to ensure that request is valid.

The read lock mode buffer record the granted address transfer which use data
lock mode. When RID match the RID in data lock mode buffer, the data lock mode

send information to arbiter and lock the data channel until whole transfers of data

completed.
Slave R —rslave_ready—p AR
buffer channel |)
monitor [—grant_slave=— arbiter — grant_info
T A A
AR [red_salve
req lock_id
AR channel master: grant AR
port araddr- » slave | ARchannel)
port
clear_slave
1 v
R ———lock_trans 'Read lock
grant_info— c¢hannel mode
arbiter | clear_lock— puffer
A L
rid: R
- slave (Rechannel |
R grant: »
{ Rchannel | master i« rdata port

port

Fig. 6-1 Block diagram of read transaction design

6.1.2 Write Transaction Design

Fig. 6-2 shows the block diagram of write transaction design. The write

81

transaction design consists of write address channel (AW), write data channel (W),

write response channel (B). The components of them are write address master port,

slave write buffer monitor, write address arbiter, write address slave port, write data

master port, write data arbiter, write lock mode buffer, write data slave port, write

response master port, write response arbiter and write response salve port. We can

classify them into 5 type devices just the same as read transaction design.

AW channel

B channel

Slave W __gjave ready—»| AW
buffer channel — tl it
monitor +—grant_slave— garbiter grant_into
T A A
AW red_salve
AW channel) master |_ regrant AW
port araddr. » slave
port
lock_id
+ -
. L W
Write lock lock_trans—»
de buff channel |
mode bUMeriq ciear lock— arbiter
J 'y grant_info
w wid:
rec
[Wehannel) master | :
port _ wg:gl =W5|ave
port
clear_slave
]
B
grant_inf—— channel
arbiter
t reg B
B grant .| slave
(Bchannel | master « bresp L
port

Fig. 6-2 Block diagram of write transaction design

6.2 Implementation Results

Table 6-1 lists the implement result and the comparison to other designs. The

proposed design adopts shared bus architecture and the targets of comparison adopt

the crossbar architecture. The best case of the crossbar means that all the available

82

connections are connected and data channel are fully transferring the data. The
number of available connection is the minimum number of master or slave. Take the
ARM PL300 as an example, the number of available connections is 4. The worst case
is the connection remained to only one.

The ARM PL300 and IIP adopt the crossbar. Although, they provide more
bandwidth than the proposed, considering the hardware cost, the proposed is more
hardware efficient than the others; hence the proposed AXI bus interconnect has the
better bandwidth/gate counts. Although the crossbar provides more bandwidth, not all
platforms are suitable according our simulation. If the bandwidth requirements are
concentrated on single devices, the bandwidth utilization becomes very low and
hardware becomes inefficiency. Therefore, the available connections become the

worst case. To choose a proper architecture,. we should take the bandwidth

requirements distribution into censideration.

Table 6-1 Implementation result and:comparison

Design proposed ARM PL300 [12] .| proposed [P AXI [13]

Bus protocol | AXI AXI AXI AXI

Data width 64 64 32 32

of master 5 5 5 5

of slave 4 4 11 11

Topology Shared bus Crossbar Shared bus | Crosshar

Operating 200Mhz 200Mhz 200Mhz 200MHz

frequency

Process TSMC TSMC CLO013 TSMC TSMC 013
CBDKO013 CBDKO013

Gate count 13.40K 30K 18.85K 63.60K

Provide 3.2GB/sec Best:12.8 GB/sec | 1.6GB/sec Best:8GB/sec

bandwidth Worst:3.2GB/sec Worst:1.6GB/sec

BW/gate 238MBps/K | Best:426MBps/K | 84MBps/K | Best:125MBps/K

count Worst:106MBps/K Worst:25MBps/K

83

Chapter 7 Conclusion and Future Works

7.1 Conclusion

We proposed an AXI bus interconnect which contains four transfer modes:
normal transfer mode, interleaved mode, data lock mode, and hybrid mode. The
normal mode is the basic transfer mode which results in only 50% bandwidth
utilization. Using the interleaved mode improves the bandwidth utilization to 99%.
The data lock mode and hybrid mode are designed for high initial latency memory
controller. The data lock mode decreases the time of transferring the data and increase
the bandwidth utilization. The hybrid mode gives memory controller device more
scope to reorder transaction to decrease latency:from memory. These transfer modes
can improve the overall system of an AXI share bus system. In addition, using the
proposed data lock mode and increasing the buffer size also efficiently reduced the
impact of arbitration policy in the video phone scenario. In conclusion, with proper
usage of the transfer modes, simple traditional arbitration policies can be used to

provide equally good system performance.

7.2 Future Works

The data lock mode is designed for memory controller but the other devices can
also use the data lock mode to transfer data. Therefore, how to design a scheme
smartly switching the transfer mode is a problem which is worth to elaborate.

The AXI supports the out-of-order completion, which makes there be no obvious

difference under traditional arbitration policy. To develop a new arbitration policy

84

which supports out-of-order completion would improves the system performance.

The proposed AXI bus interconnect provides good ratio of bandwidth/hardware
cost but different scenarios need different architecture of the bus interconnect.
Designing a multi-layer inside the bus interconnect without increasing the overhead
on masters and slaves is a good way to provide a better ratio of bandwidth/hardware

cost.

85

Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Saleh R., Wilton S., Mirabbasi S., Hu A., Greenstreet M., Lemieux G., Pande P.
P., Grecu C., lvanov A., “System-on-chip: Reuse and Integration,” Proceedings
of the IEEE, vol. 94, pp. 1050-1069, June 2006.

Soo-Yun Hwang, et al., “ An improved implementation method of AHB
BusMatrix,* in Proceeding of IEEE International SOC Conference, pp. 211-214,
September 2005.

Srinivasan Prakash, Oluggbon Adeoye, Ahmadinia Ali, Erdogan Ahmet T, Arslan
Tunghrul, “Power Analysis of Arbitration Techniques for AMBA AHB based
Reconfigurable System-on-Chip,in' 24" Norchip Conference, pp. 227-230,
November 2006.

Conti M., Caldri M., Vece 'G.B., Qrcioni S., Turchetti C., ”Performance analysis
of defferent arbitration algorithms of the AMBA AHB bus,” in Proceedings of
41% Design Automation Conference, pp. 618-621, 2004.

Francesco Poletti, Davide Bertozzi, Luca Benini, Alessandro Bogliolo,
“Performance Analysis of Arbitration Polices for SoC Communication
Architectures,” Design Automation for Embedded System, pp. 189-210, 2003.
Lahir, K., Raghunathan A., Lakshminarayana G., “LOTTERYBUS: a new
high-performance communication architecture for system-on-chip deisgns,” in
Proceedings of Design Automation Conference, pp. 15-20, 2001.

Sanghun Lee, Chanho Lee, Hyuk-Jae Lee, “A new multi-channel on-chip-bus
architecture for system-on-chips,” in Proceedings of IEEE international SOC
Conference, pp. 305-308, September 2004.

Martino Ruggiero, Rederico Angiolini, Francesco Poletti, Davide Bertozzi, Luca

86

Benini, Roberto Zafalon, “Scalability Analysis of Evolving SoC Interconnect
Protocols,” Int. Symposium on System-on-Chip, 2004.

[9] Lukai Cai, Daniel Gajski, “Transaction level modeling: an overview,” in
Proceedings of the 1* IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pp. 19-24, October 2003.

[10] Min-Chi Tsai, “Smart Memory Controller Design for Video Applications,”
Master thesis: National Chiao Tung University, July 2006.

[11] SystemC, OSCI, http://www.systemc.org

[12] PrimeCell AXI Configurable Interconnect (PL300) Technical Reference Manual,
ARM, 2004
[13] Synopsys DesignWare IP solutions for AMBA Interconnect,

http://www.synopsys.com/praducts/designware/amba solutions.html

[14] Kun-Bin Lee, Tzu-Chieh Lin,.Chein-Wei-Jen, “An efficient quality-aware
memory controller for multimedia platform.SoC,” IEEE Transactions on Circuits
and Systems for Video Technology;.vol.15; pp.620-633, May 2005.

[15] CoWare Limited, http://www.cowae.com

[16] AMBA Protocol, ARM Limited,

http://www.arm.com/products/solutionss/ AMBAHomePage.html

[17] AMBA AXI Protocol, ARM Limited,

http://www.arm.com/products/solutions/ AMBA3AXI.html

87

http://www.systemc.org/
http://www.synopsys.com/products/designware/amba_solutions.html
http://www.cowae.com/
http://www.arm.com/products/solutions/AMBAHomePage.html
http://www.arm.com/products/solutions/AMBA3AXI.html

	Chapter 1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Motivation and Contribution
	1.4 Thesis Organization
	Chapter 2 Overview of the AMBA Bus
	2.1 AHB
	2.1.1 AHB Architecture
	2.1.2 AHB Handshaking and Arbitration

	2.2 AXI
	2.2.1 AXI Architecture
	2.2.2 Channel Handshaking
	2.2.3 Transaction Ordering

	2.3 Comparison between AXI and AHB
	2.3.1 Protocol and Architecture
	2.3.2 Latency and Bandwidth Utilization
	2.3.3 Hardware Cost

	Chapter 3 Simulation Modeling for AXI System
	3.1 Overview of the Modeling Method
	3.1.1 Transaction-Level-Modeling
	3.1.2 Using SystemC as Modeling Language

	3.2 Traffic Generation
	3.3 AXI Master
	3.3.1 Master Behavior Modeling
	3.3.2 Master Types
	3.3.3 States of Mater Processing Transaction

	3.4 AXI Slave
	3.4.1 Slave Types
	3.4.2 States of Slave Processing Transaction

	Chapter 4 Design of AXI Bus Interconnect
	4.1 Bus Interconnect
	4.2 Transfer Mode
	4.2.1 Normal Mode
	4.2.2 Interleaved Mode
	4.2.3 Data Lock Mode
	4.2.4 Hybrid Mode

	4.3 Arbitration Policy
	4.3.1 Our AXI Arbitration Flow
	4.3.2 Fixed Priority
	4.3.3 TDMA
	4.3.4 Round-Robin
	4.3.5 Lottery

	Chapter 5 Simulation and Analysis
	5.1 Introduction
	5.2 PMP Platform
	5.2.1 Overview
	5.2.2 Scenario

	5.3 Experiments
	5.3.1 Performance Metric
	5.3.2 Simulation of Video Phone Scenario

	5.4 AXI vs. AHB
	5.4.1 AHB PMP Platform
	5.4.2 Comparison between AXI and AHB

	Chapter 6 Hardware Implementation
	6.1 Hardware Design
	6.1.1 Read Transaction Design
	6.1.2 Write Transaction Design

	6.2 Implementation Results

	Chapter 7 Conclusion and Future Works
	7.1 Conclusion
	7.2 Future Works

	 Reference

