
國立交通大學

電子工程學系 電子研究所

碩 士 論 文

AXI 匯流排之系統設計與實現

System Design and Implementation of AXI Bus

研 究 生：廖英澤

 指導教授：張添烜 博士

中 華 民 國 九 十 六 年 十 月

AXI 匯流排之系統設計與實現

System Design and Implementation of AXI Bus

研 究 生：廖英澤 Student: Ying-Ze Liao

指導教授：張添烜 博士 Advisor: Dr. Tian-Sheuan

Chang

國立交通大學

電子工程學系 電子研究所

碩士論文

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical & Computer Engineering
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of Master

in
Electronics Engineering & Institute of Electronics

October 2007
Hsinchu, Taiwan, Republic of China

中華民國九十六年十月

AXI 匯流排之系統設計與實現

研究生：廖英澤 指導教授：張添烜博士

國立交通大學

電子工程學系 電子研究所

摘要

隨著矽智財整合系統單晶片成為可能，整合連結這些矽智財的晶片匯流排成

為整個系統效能上重要的角色，Advanced eXtensible Interface(AXI)是新一代

的晶片匯流排通訊協定，AXI 通訊協定採用封包基準的方式傳輸資料，使用分離

的位址與資料通道，每個通道交握方式使用來源的有效信號與目的的就緒信號在

時脈正緣取樣，當取樣到兩者的訊號皆是 1則完成交握並傳輸資料，因此可簡單

插入暫存器增加每個通道管線級數來提高工作頻率，另外還支援不需依序完成、

爆發模式傳輸，提供了更高效率的傳輸能力。

在本論文之前並沒有針對新一代晶片匯流排通訊協定上的特性在連結器架

構的硬體成本與頻寬的完整探討，目前已存在的 AXI 匯流排設計都採用交叉開關

(Crossbar Switch)架構，雖然交叉開關提供了高頻寬，但也付出了極高的硬體

成本，使用共享匯流排架構可以減少許多硬體成本，運用 AXI 支援不需依序完成

的特性在共享匯流排上，仍然可以提供相當高的頻寬，因此我們以 SystemC 在交

換層級(Transaction-level)建構了一個可攜式媒體平台(Portable Media

Platform)的模型來模擬分析。

由於 AXI 匯流排連接器多了一層的暫存器，交握時為了確保資料傳輸正確，

在一般的傳輸模式下頻寬的最高使用率只有 50%，針對這點在本篇論文我們設計

了交錯傳輸模式(Interleaved Mode)來提高頻寬使用率最高達 99%。此模式的使

用只要連接器提供支援即可，完全不需要協定上的修改。此外，對於系統中有高

初始延遲的記憶體控制器裝置，我們另外設計了資料通道鎖定模式(Data Lock

Mode)以及混合傳輸模式(Hybrid Mode)，可以有效地減少記憶體資料傳輸時間，

也給予記憶體控制器高度重新排程的能力，以提高頻寬使用率並進而提昇系統的

效能。

在建構的平台上我們驗證了所提出的各種傳輸模式在真實系統環境下的效

用，除此之外，實驗中探討了 AXI 介面緩衝器大小、仲裁策略、傳輸模式以及仲

裁權重調整方式對系統效能的影響，實驗結果證明在適當傳輸模式配置和系統配

置下，可以提高 69%的頻寬使用量、進而提升 40%的系統速度。另外相較於傳統

不支援不需依序完成功能的匯流排如 AHB，AXI 匯流排搭配前述提出的傳輸模式

i

與系統配置，最多可以提高 346%的頻寬使用率及 44%的系統速度。這顯現出採用

AXI 匯流排並恰當地搭配各種傳輸模式可以大幅度並有效地改善系統效能。

最後我們做成實際的硬體，在 0.13 微米的互補式金氧半導體製程下，在 200

百萬赫茲的運作頻率下需要 18.85K 個邏輯閘，提供使用每一千個邏輯閘每秒

84MB 的頻寬。

ii

 System Deign and Implementation of AXI Bus

Student: Ying-Ze Liao Advisor: Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

The on-chip-bus (OCB) which connects silicon intellectual property (SIP) in a
system-on-a-chip (SoC) plays a key role in affecting the system performance.
Recently, a new generation of packet-based OCB protocol called Advance eXtensible
Interface (AXI) has been proposed. The AXI separates the address and data into
independent channels. The handshaking of each channel uses two signals which one is
VALID from source and the other is READY from destination. Once the VALID and
READY are high at the same clock positive edge, the handshaking completed and
data transferred. Therefore, it is easy to add pipeline stage to increase operating
frequency by inserting the register slice. Besides, the AXI protocol supports
out-of-order completion and burst-based transaction to provide more bandwidth than
traditional OCB protocol.

Before this thesis, there is no complete analysis on the interconnect architecture
and bandwidth of the of new generation OCB protocol. The existed AXI bus
interconnect all adopt the crossbar switch as the architecture. Although the crossbar
switch provides high bandwidth, it needs extreme hardware cost. Using the
characteristic of AXI, we can adopt the shared bus as the architecture of the bus
interconnect to obtain low hardware cost and keep fairly high bandwidth. To analyze
impact of the architecture, a portable media platform (PMP) is modeled at
transaction-level with SystemC for simulations.

However, the AXI bus interconnect can only achieve 50% of bandwidth
utilization at most when normal transfer mode is being used. Therefore, we propose
an interleaved transfer mode to increase the bandwidth utilization up to 99%. The
interleaved transfer mode can be implemented as a totally built in feature of a bus
interconnect and does not need any modification to the protocol. In addition, this
work also proposes a data lock transfer mode and hybrid mode to handle the
transactions to the devices with long initial access latency, such as the memory
controller in a system. These modes decrease the transfer time and give the memory

iii

controller a higher degree of access rescheduling capability.
We evaluate impact of the proposed transfer modes in the portable media

platform. In addition, the impact of wrapper buffer size, arbitration policy, transfer
mode setting, and arbitration parameter settings are also studied. The simulation result
shows that the proposed transfer modes improve the bandwidth utilization by 69%
and speed up the system by 44%. Compare the performance with the traditional bus
such as the AHB; the AXI system can outperform the AHB system in bandwidth
utilization by 346% and system speed by 44% at most.

The implemented AXI bus interconnect with the proposed transfer modes has a
gate count of 18.85K when synthesized with 0.13μm CMOS process under 200 MHz
operating frequency.

iv

致 謝

 首先誠摯的感謝指導教授張添烜博士，老師耐心的教導使我學習到做

研究的方法，不時的討論並指點我正確的方向，使我在這些年中獲益匪淺。

本論文的完成另外亦得感謝張彥中學長的大力協助，因為有你細心地

跟我討論與我反覆的檢討，使得本論文能夠更完整而嚴謹。

在兩年的日子裡，實驗室裡共同的生活點滴，有學術上的討論與生活

經驗的分享。非常感謝眾位學長、同學、學弟的共同砥礪，你們的陪伴讓

這兩年的研究生活變得絢麗多彩。

感謝林佑昆、蔡旻奇、古君偉、王裕仁、余國亘、吳錦木學長們不厭

其煩的指出我研究中的缺失，且總能在我迷惘時為我解惑，也感謝林嘉俊

同學與我參加了兩年的 IC 競賽，使得我在設計 IC 的技巧更成熟，另外也

感謝吳秈景、郭子筠、李得瑋同學給予我的鼓勵，恭喜我們順利走過這兩

年。實驗室的蔡宗憲、曾宇晟、詹景竹、張瑋城、戴瑋呈學弟們當然也不

能忘記，你們的幫忙及搞笑我銘感在心。

最後，謹以此文獻給我摯愛的雙親。

v

 Content
Chapter 1 Introduction ..1

1.1 Background..1
1.2 Related Work..2
1.3 Motivation and Contribution..3
1.4 Thesis Organization ...3

Chapter 2 Overview of the AMBA Bus..4
2.1 AHB ...4

2.1.1 AHB Architecture ..4
2.1.2 AHB Handshaking and Arbitration..5

2.2 AXI ..7
2.2.1 AXI Architecture..8
2.2.2 Channel Handshaking ..10
2.2.3 Transaction Ordering ...12

2.3 Comparison between AXI and AHB..13
2.3.1 Protocol and Architecture ..13
2.3.2 Latency and Bandwidth Utilization ...13
2.3.3 Hardware Cost ...15

Chapter 3 Simulation Modeling for AXI System20
3.1 Overview of the Modeling Method..20

3.1.1 Transaction-Level-Modeling ...20
3.1.2 Using SystemC as Modeling Language.......................................21

3.2 Traffic Generation..22
3.3 AXI Master ..24

3.3.1 Master Behavior Modeling ..24
3.3.2 Master Types ..25
3.3.3 States of Mater Processing Transaction28

3.4 AXI Slave...30
3.4.1 Slave Types ..30
3.4.2 States of Slave Processing Transaction..31

Chapter 4 Design of AXI Bus Interconnect..34
4.1 Bus Interconnect ..34
4.2 Transfer Mode..36

4.2.1 Normal Mode ...39
4.2.2 Interleaved Mode ...39
4.2.3 Data Lock Mode ..40
4.2.4 Hybrid Mode..44

vi

4.3 Arbitration Policy...45
4.3.1 Our AXI Arbitration Flow..45
4.3.2 Fixed Priority ...46
4.3.3 TDMA..47
4.3.4 Round-Robin..48
4.3.5 Lottery..49

Chapter 5 Simulation and Analysis...51
5.1 Introduction..51
5.2 PMP Platform...52

5.2.1 Overview..52
5.2.2 Scenario..54

5.3 Experiments ...55
5.3.1 Performance Metric ...55
5.3.2 Simulation of Video Phone Scenario ...56

5.4 AXI vs. AHB..75
5.4.1 AHB PMP Platform ...75
5.4.2 Comparison between AXI and AHB..76

Chapter 6 Hardware Implementation..80
6.1 Hardware Design ...80

6.1.1 Read Transaction Design ...80
6.1.2 Write Transaction Design...81

6.2 Implementation Results ...82
Chapter 7 Conclusion and Future Works..84

7.1 Conclusion ...84
7.2 Future Works..84

Reference ..86

vii

List of Figures
Fig. 2-1 AHB architecture ...5
Fig. 2-2 AHB simple transfer ..6
Fig. 2-3 Transfer with wait states ..6
Fig. 2-4 AHB arbitration..7
Fig. 2-5 Generic AXI architecture ...8
Fig. 2-6 Read transaction...9
Fig. 2-7 Write transaction ..10
Fig. 2-8(a)VALID before READY (b)READY before VALID (c)VALID with

READY..12
Fig. 2-9 AHB continuous transfer ...14
Fig. 2-10 AXI continuous transfer...14
Fig. 2-11 AHB burst transaction..15
Fig. 2-12 AXI burst transaction ...15
Fig. 3-1 System Modeling Graph ..21
Fig. 3-2 Illustration of a modeling module..22
Fig. 3-3 Illustration of traffic generation ...22
Fig. 3-4 Example of a task state table file ...24
Fig. 3-5 Flow of transaction generation in master...25
Fig. 3-6 Regular type master (a) block diagram (b) Flow of ProcPTT()26
Fig. 3-7 DMAC type master (a) block diagram (b) Flow of ProcPTT()27
Fig. 3-8 MPU type master (a) block diagram (b) Flow of ProcPTT()28
Fig. 3-9 FSM of master’s PTT...29
Fig. 3-10 Block diagram of regular type slave ..30
Fig. 3-11 Block diagram of MEM type slave..31
Fig. 3-12 FSM of transaction in slave read PTT ...32
Fig. 3-13 FSM of transaction in slave write PTT..33
Fig. 4-1 Shared bus architecture..34
Fig. 4-2 Multi-layer architecture ...35
Fig. 4-3 Crossbar architecture ...36
Fig. 4-4 Register slice of AXI bus interconnect ..37
Fig. 4-5 Error case of data transfer..38
Fig. 4-6 Correct case of data transfer ..38
Fig. 4-7 Timing diagram of normal mode ...39
Fig. 4-8 Timing diagram of interleaved mode...40
Fig. 4-9 Timing diagram of data lock mode ..41
Fig. 4-10 The case of data lock mode results in the limitation....................................43

viii

Fig. 4-11 Flow of hybrid mode..45
Fig. 4-12 Flow of our arbitration...46
Fig. 4-13 Illustration of TDMA policy ..48
Fig. 4-14 Illustration of Round-Robin policy..49
Fig. 4-15 Example of lottery arbitration..50
Fig. 5-1 AXI PMP platform...52
Fig. 5-2 Completion time of video phone with all normal transactions......................60
Fig. 5-3 Bandwidth utilization of video phone with all normal transactions60
Fig. 5-4 Completion time of video phone with setting 1...63
Fig. 5-5 Bandwidth utilization of video phone setting 1 ...63
Fig. 5-6 Completion time of video phone with setting 2...65
Fig. 5-7 Bandwidth utilization of video phone setting 2 ...65
Fig. 5-8 Average completion time of different task setting ...66
Fig. 5-9 Average bandwidth utilization of different task setting67
Fig. 5-10 Average Latency of Different Task Setting..67
Fig. 5-11 Completion time of video phone with data lock buffer 269
Fig. 5-12 Bandwidth utilization of video phone with data lock buffer 270
Fig. 5-13 Completion time of video phone with data lock buffer 471
Fig. 5-14 Bandwidth utilization of video phone with data lock buffer 472
Fig. 5-15 Average bandwidth utilization of weight tuning..74
Fig. 5-16 Standard deviation of bandwidth utilization of weight tuning.....................74
Fig. 5-17 AHB PMP platform..75
Fig. 5-18Completion time of AXI and AHB ...78
Fig. 5-19 Bandwidth utilization of AXI and AHB ..79
Fig. 5-20 Average latency of AXI and AHB..79
Fig. 6-1 Block diagram of read transaction design..81
Fig. 6-2 Block diagram of write transaction design ..82

ix

List of Table
Table 2-1 Main difference between AXI and AHB ...13
Table 2-2 Parameters for hardware cost calculation..16
Table 2-3 Comparison of hardware cost between AHB and AXI................................19
Table 3-1 Fields of a task state ..23
Table 4-1 Limitation of bandwidth utilization using data lock mode..........................44
Table 5-1 Master configuration of PMP platform ...53
Table 5-2 Slave configuration of PMP platform..53
Table 5-3 Performance of AXI PMP platform...54
Table 5-4 Task of video phone scenario ..55
Table 5-5 Factor of configuration..57
Table 5-6 Setting of simulation A..58
Table 5-7 Timing constraint status with all normal transaction of video phone scenario

..59
Table 5-8 Configuration of simulation B...61
Table 5-9 Configuration of data lock mode of simulation B.......................................61
Table 5-10 Timing constraint status with setting 1 of video phone scenario62
Table 5-11 Timing constraint status with setting 2 of video phone scenario...............64
Table 5-12 Configurations of simulation for data lock mode buffer size....................68
Table 5-13 Timing constraint status with data lock mode buffer 268
Table 5-14 Timing constraint status with data lock mode buffer 470
Table 5-15 Configuration of weight tuning ...73
Table 5-16 Met configurations of buffer size 4 in weigh tuning75
Table 5-17Performance of AHB PMP platform ..76
Table 5-18 ..77
Table 6-1 Implementation result and comparison ...83

x

Chapter 1 Introduction

1.1 Background

Recently, VLSI technology has improved significantly and more transistors can

be integrated into a chip. This makes the ideal of system-on-a-chip [1] more of an

achievable goal than an abstract dream. However, along with the increasing transistor

count comes along the increasing design and verification complexities. Although EDA

tools have also been developed in hope of helping system designer to handle the

massive complexity, proper system-level design and verification methodology have

played a much more important role. One such methodology is the platform-based

design methodology which uses pre-verified silicon intellectual property (SIP) and an

on-chip-bus (OCB). The OCB connects SIPs and provides communication among

SIPs.

Since OCB is often the bottleneck of a system, a good OCB protocol plays an

important role. One of the industry’s de facto standard bus protocols is ARM’s

Advanced High-performance Bus (AHB). AHB is an OCB which adopts traditional

bus architecture. It transfers the data in a pipeline way and completes the transaction

in order. The exploration of AHB has been done for years [2]~ [4], which includes

architecture, low power and arbitration policy . However, Advance eXtensible

Interface (AXI) is the successor of AHB but the study on AXI is still few. AXI

contains lots of features which improves the performance of the OCB, such as

packet-based transfer, out-of-order completion, and single address transaction.

However, the related research of AXI is rare and lacks comparison with AHB. Thus, a

complete analysis of AXI is necessary.

1

1.2 Related Work

In a system design, the bus arbitration policy plays an important role. The

traditional arbitration policies include fixed priority, Round-Robin, and time division

multiple access (TDMA) [5]. The fixed priority is the simplest policy which uses a

static priority to arbitrate when contention occurs, but it has a fatal drawback that

starvation. The Round-Robin and TDMA solve the starvation and provide a fair

arbitration. In addition, There is a novel one: lottery [6] which is a probability-based

arbitration policy. The lottery provides a good bandwidth allocation than the other

polices. Mixing these polices brings out various characteristic of polices. However, in

these papers, they mostly focus the analysis on the arbitration policy itself but lack a

complete analysis on a system platform running a real application. Being aware of this,

Poletti [6] [5] builds an AHB platform and uses various patterns to analyze the impact

of the fixed priority, TDMA, Round-Robin, and a time-slot reserve arbitration. Later,

Lee [7] builds a shared bus AHB platform and a crossbar AXI platform to evaluate the

performance of the two platforms. The comparison between the two platforms reveals

that AXI bus has a superior performance. With the multi-core system becoming a

trend, Ruggiero [8] builds a multi-core system with AHB, AXI and STBus to analyze

the scalability of modern OCB protocol. Although the new generation OCB protocol

has been analyzed in these two papers, their AHB bus architectures all adopt the

shared bus and their AXI bus architectures adopt the crossbar, hence the comparison

is not fair and the hardware cost is not taken into consideration. In addition, their

arbitration policy in AXI bus interconnects are fixed priority so the potential of AXI

may not have been fully explored. Until now, there has been no thorough analysis and

exploration on AXI’s arbitration policy, architecture, and hardware cost.

2

1.3 Motivation and Contribution

The issues mentioned above motivate us to investigate the performance of AXI

bus in a system platform running an application. Being aware of the cost difference

between the share bus and crossbar architecture, we focus our investigation in share

bus architecture. In addition, the analysis result of using basic transfer which showed

poor performance also motivated us to propose more efficient AXI transfer mode.

Finally, the question of whether AHB or AXI is better for a system motivates us to

conduct comparison on their performance and cost.

The contribution of this thesis includes the following.

1. The designed Transaction Level Models (TLM) are able to build various

platforms and perform various scenarios to evaluate the system performance

and to obtain proper configuration.

2. We analyze the impact of the AXI on various arbitration policies.

3. We give a proper way to design a shared bus AXI bus interconnect.

4. The designed AXI bus interconnect provides high bandwidth and low

hardware cost

1.4 Thesis Organization

In chapter 2, we give a brief overview of the AMBA bus protocol. In chapter 3,

we describe the methods we used in modeling AXI system. In chapter 4, we proposed

an AXI interconnection which is able to provide high bandwidth and configuration of

arbitration policy. In chapter 5, we show the result of simulation and analysis. In

chapter 6, we implement the AXI interconnection hardware according to result of

chapter 5. Chapter 7 is the conclusion and future works.

3

Chapter 2 Overview of the AMBA Bus

2.1 AHB

Advanced High-performance Bus (AHB) was proposed in AMBA 2.0 in 1999

and has been widely adopted since. Since then, AHB has been regarded as the

industries de facto on-chip communication protocol. The basic architecture and

protocol are described in this sub section. The features of AHB list below:

 Pipelined transfer

 Burst transfer

 Single-cycle bus master handover

 Single-clock edge operation

 Non-tri-state implementation

 Wider data bus configurations (64/128 bits)

2.1.1 AHB Architecture

Fig. 2-1 shows the simplified AHB architecture which contains masters, slaves,

arbiter, decoder and mux.

Each master and slave has three ports which are HADDR, HWDATA and

HRDATA. HWDATA and HRDATA share the signal “HADDR” to indicate the

destination of data transfer and therefore there is only one date transfer which is either

HWDATA or HRDATA.

In the specification of AHB, it defined that bus interconnect is composed of

arbiter, decoder and mux and the bus ownership is controlled by the centralized

4

arbiter to guarantee that only one master can use the shared bus.

Master
#1

Slave
#1

Arbiter

Decoder

Master
#2

Master
#3

Slave
#2

Slave
#3

Slave
#4

HADDR

HADDR

HADDR

HWDATA

HWDATA

HWDATA

HRDATA

HRDATA

HRDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HADDR

HADDR

HRDATA

HWDATA

HWDATA

HRDATA

HWDATA

Address and
control mux

Write data mux

Read data mux

REQ

REQ

REQ

GRANT#1
GRANT#2

GRANT#3

Fig. 2-1 AHB architecture

2.1.2 AHB Handshaking and Arbitration

Each transaction of AHB contains two phases which are address phase and data

phase as shown in Fig. 2-1. The address phase and data phase are sent in pipelined

order, which means that data can only be sent after its address has been sent. This

pipelined mechanism is controlled by the signal “HREADY”. If HREADY is high, no

5

pipeline stall is introduced; otherwise, a pipelined stall is introduced as shown in Fig.

 2-3.

Fig. 2-2 AHB simple transfer

Fig. 2-3 Transfer with wait states

The ownership of the bus is controlled by a centralized arbiter. Fig. 2-4 shows an

example of the arbitration process. First, each master sends a request to the arbiter by

pulling HBUSREQ high. After several cycles, the arbiter asserts HGRANT but the

6

ownership of the bus still has not changed. Once both HGRANT and HREADY are

high (Fig. 2-4,cycle T5), the granted master gets the ownership of bus. The ownership

of the bus would remain until its transaction has been completed.

Fig. 2-4 AHB arbitration

2.2 AXI

Advanced eXtensible Interconnect (AXI) was introduced in AMBA 3.0 as the

successor on-chip bus protocol of the AHB in AMBA 2.0. The basic architecture and

protocol are introduced in this sub section. The AXI protocol is targeted at

high-performance, high-frequency system designs and includes a number of features

that make it suitable for high-speed submicron interconnect.

The key features of the AXI are:

 Separate address/control and data phases

 Support for unaligned data transfer using byte strobes

 Burst-based transaction with only start address issued

 Separate read and write data channels to enable low-cost Direct Memory

Access

7

 Ability to issue multiple outstanding addresses

 Out-of-order transaction completion

 Easy addition of registers stages to provide timing closure

2.2.1 AXI Architecture

Fig. 2-5 shows a generic AXI architecture. There are five independent channels

which communicate with master and slave. The five channels are read address

channel, write address channel, read data channel, write data channel and write

response channel. Each channel has a set of forward signals and one feedback signal

for handshaking.

Fig. 2-5 Generic AXI architecture

8

Fig. 2-6 shows an AXI read transaction. When an AXI master performs a read

transaction, it sends a read address transfer which contains a start address and control

information through the read address channel to a slave. When the slave accepts the

address and control transfer, it starts its process according to the transfer accepted.

Once the slave completes its process, it sends the data requested by the master

through the read data channel. This transaction is not done until the master accepted

the last burst data which contains read transaction status.

Fig. 2-7 shows an AXI write transaction. A master sends a write address transfer

which also contains a state address and control information through the write address

channel to a slave. Then, the master sends write data to the slave through the write

data channel. After the slave accepted all write data, the salve sends a write response

to tell the master the write transaction status through the write response channel.

Fig. 2-6 Read transaction

9

Fig. 2-7 Write transaction

2.2.2 Channel Handshaking

Each channel has a VALD and READY signals for handshaking. The source

asserts VALID when the control information or data is available. The destination

asserts READY when it can accept the control information or data. Transfer occurs

only when both the VALID and READY are asserted. Fig. 2-8 shows all possible

cases of VALID/READ handshaking. Note that when source asserts VALID, the

corresponding control information or data must also be available at the same time.

The arrows in Fig. 2-8 indicate when the transfer occurs.

A transfer takes place at the positive edge of clock. Therefore, the source needs a

register input to sample the READY signal. In the same way, the destination needs a

register input to sample the VALID signal. Considering the situation of Fig. 2-8(c),

we assume the source and destination use output registers not combination circuit,

10

they need one cycle to pull low VALID/READY and sample the VALID/READY

again at T4 cycle. When they sample the VALID/READY again at T4, there should be

another transfer which is an error. Therefore source and destination should use

combinational circuit as output. In short, AXI protocol is suitable register input and

combinational output circuit.

(a)

(b)

11

(C)

Fig. 2-8(a)VALID before READY (b)READY before VALID (c)VALID with READY

2.2.3 Transaction Ordering

Unlike AHB which only allows one granted transaction to access the bus

interconnect until this transaction is finished, AXI allows granted transactions to

access bus interconnect simultaneously. AXI uses “ID tag” to identify different

transactions and enables out-of-order transaction completion.

Out-of-order transaction completion improves system performance in two ways:

 Bus interconnect allows the transactions to fast slave to complete in advance

without waiting for the completion of the transaction to slow slave.

 Complex slave can return read data which is available for later transaction

without waiting data of prior transaction.

AXI supports out-of-order transaction completion but it doesn’t mean that there

is no restriction of reordering transactions. The rule is “Transactions with the same ID

must be completed in order”. In other words, if a master requires multiple transactions

to be completed in order, the master must assign the same ID to these transactions. If

there is no restriction on in-order transaction completion, a master can assign different

IDs to those transactions.

The ID assignment rule only applies to single master system. In multi-master

12

system, bus interconnect must append additional master ID to each transaction so that

each transaction becomes unique in the system.

2.3 Comparison between AXI and AHB

2.3.1 Protocol and Architecture

Table 2-1 shows the main difference of protocol and architecture between AXI

and AHB. There are seven key points as shown in below:

Table 2-1 Main difference between AXI and AHB

AXI AHB
5 separated channels for address
and data transfer

Pipelined address and data
transfer

Every channel is uni-direction,
except handshake signal

Complex timing relation in
read/write connection

Easy register insertion to isolate
timing

Hard to isolate timing

Easy register insertion to increase
operating frequency

Limited operating frequency

Burst-based transaction with only
one address issued

Every data transfer need a
address

Out-of-order transaction
completion

Fixed order transaction
completion

Suitable for memory controller
with high initial latency

Unfriendly to memory controller
device

2.3.2 Latency and Bandwidth Utilization

The separate channels in AXI provide less latency in transfer task of read/write

transaction pair than AHB. The reason is that AXI is able to perform read and write

13

transactions at the same time. Fig. 2-9 and Fig. 2-10 show the difference in AHB and

AXI transferring the same task. Fig. 2-9 shows AHB’s continuous transfer. There are

four read data transfers and four write data transfers. Form Fig. 2-9, all eight data

transfers spend eight cycles from T2 to T9. Fig. 2-10 shows the same task in AXI bus.

In AXI case, it only spends four cycles form T2 to T5.

Fig. 2-9 AHB continuous transfer

Fig. 2-10 AXI continuous transfer

As for the bandwidth utilization, AXI is more efficient than AHB. The reason is

the same with the case of latency. Fig. 2-11 and Fig. 2-12 show the difference of AHB

and AXI. In Fig. 2-11 and Fig. 2-12, AHB and AXI perform four beats read burst

transaction and a four bests write burst transaction respectively. AHB totally takes

eight cycles to complete these two transactions and the bandwidth utilization of data

bus HRDATA/HWDATA is only 50%. As to AXI, it only takes four cycles to

complete transactions and the bandwidth utilization of data bus RDATA/WDATA is

100%. The bandwidth utilization of AHB is naturally 50% and AXI can increase

14

bandwidth utilization to 100% based on transferring read/write transaction pair. In

short, AXI is capable to perform read/write transaction pair which improves the

latency of transaction and bandwidth utilization.

Fig. 2-11 AHB burst transaction

Fig. 2-12 AXI burst transaction

2.3.3 Hardware Cost

In this section, we analyze the protocol of AXI and AHB to estimate the

hardware cost of them based on the amount of mux and register which they used.

Table 2-2 is the parameters defined for the hardware cost calculation and the

following are the formula for hardware cost. The constants in the formula are

indispensable bits.

15

Table 2-2 Parameters for hardware cost calculation

Parameter Description

Master_Num Number of masters

Slave_Num Number of slaves

Address_Width The maximum width of used address

Data_Width Bus data width

Buffer_Size Buffer size of master/slave wrapper; number of out-of-order

transactions

AHB master port register

WidthDataster_Port_RegiAHB_Master _4+=

AHB slave port register

⎡ ⎤NumMasterWidthDataWidthAddressterPort_RegisAHB_Slave_ _log__11 2+++=

AHB arbiter register

2__24 ×++= NumMasterWidthAddressr_RegisterAHB_Arbite

AHB master buffer register

16__9 ×++= WidthDataWidthAddressgister_Buffer_ReAHB_Master

AHB slave buffer register

16__9 ×++= WidthDataWidthAddresssterBufferRegiAHN_Slave_

AXI master port register

⎡ ⎤ 2_log_10 2 ×++= SizeBufferWidthDataster_Port_RegiAXI_Master

16

AXI slave port register

⎡ ⎤ ⎡() 3_log_log_2_46 22 ×+++×+
=

NumMasterSizeBufferWidthDataWidthAddress
te

⎤
rPort_RegisAXI_Slave_

AXI interconnection master port register

⎡ ⎤ 3_log_2_46
__

2 ×++×+
=

SizeBufferWidthDataWidthAddress
RegisterPortteronnect_MasAXI_Interc

AXI interconnection slave port register

⎡ ⎤ ⎡() 2_log_2log_10

2 ×+++ ⎤
=

SizeBufferNumMasterWdithData
RegisterPortSlavectInterconneAXI

AXI interconnection WDATA table register

⎡ ⎤NumberSlaveSizeBufferNumMasterTableWDATActInterconneAXI _log_____ 2××=

AXI master buffer register

() SizeBufferWidthDataWidthAddress
isterBuffer_RegMasterAXI

_16__18
__

××++
=

AXI slave buffer register

⎡ ⎤ ⎡ ⎤() SizeBufferWidthDataWidthAddressNumMasterSizeBuffer
isterBuffer_RegSlaveAXI

_16___log_log17
__

22 ××++++
=

AHB Master_Num to 1 mux

WdithDataWidthAddressMuxtonumMasterAHB __15_1____ ++=

AHB Slave_Num to 1 mux

WdithDataMuxtonumSlaveAHB _19_1____ +=

17

AXI Master_Num to 1 mux

⎡ ⎤ WidthDataWidthAddressSizeBuffer
MUXtoNumMasterAXI

_2_3_log41
_1____

2 +×+×+
=

AXI Slave_Num to 1 mux

⎡ ⎤ WidthDataSizeBufferMUXtoNumSlaveAXI _2_log5_1____ 2 +×+=

According to the formula, we give a system to compare the hardware cost

between AXI and AHB. The system consists of 5 masters, 11 slaves and AHB system

has one buffer and AXI system has eight buffers. The arbitration policy in system is

fixed priority so we ignore the registers in arbiter. If we ignore the register used in

master and slave buffer, the hardware cost of AXI is 3.18 times of AHB. The

hardware cost of AXI is more than AHB indeed.

18

Table 2-3 Comparison of hardware cost between AHB and AXI

AHB
1 buffer

AXI
8 buffer

1 master port 36 48
1 slave port 78 160 Wrapper interface register
Total 114 208
AHB arbiter 66 n/a
AXI interconnection 1 master port 151
AXI interconnection 1 Slave port 54
AXI WDATA table

n/a
160

Interconnection register

Total 66 365
1 master buffer 553 562
1 slave buffer 553 567 Wrapper buffer register
Total 1106 1129
Master_Num to 1 mux 79 146
Slave_Num to 1 mux 51 43 Interconnection mux
Total 130 189

System register without buffer 5 master, 11 slave 1104 3509
System register with buffer 5 master, 11 slave 2210 12541

19

Chapter 3 Simulation Modeling for AXI

System

3.1 Overview of the Modeling Method

3.1.1 Transaction-Level-Modeling

Transaction-level-modeling (TLM) [9] is a popular method to modeling a system.

There are many kind of modeling level in modeling a system as shown in Fig. 3-1.

We choose the node D in Fig. 3-1 as our modeling level. The communication model is

modeled at transaction abstraction level. The computation model is modeled at

behavior level, but we do not model the functions because of that our emphasis is on

the bus communication. Choosing the node D, we check the correctness of bus

protocol but also obtain precise analysis of system performance.

A read/write transaction on the AXI protocol can be decomposed into

address/control transfer, data transfers and response transfer. Each transfer we used is

referred as the transaction on each channel. This is because of supporting the AXI’s

capability of out-of-order transaction completion so we treat each transfer as an

independent transaction and provide a cycle accurate timing

transaction-level-modeling to archive our goal.

20

Fig. 3-1 System Modeling Graph

3.1.2 Using SystemC as Modeling Language

We use SystemC [11] as our modeling language. SystemC has been widely used

to model system at various abstraction levels. The reason we decided to use SystemC

is because the timing simulation kernel and primitives are already available. SystemC

is also a subset of C++ so that we can also use regular C++ expressions. It’s easy to

use and there’s no need to learn another language.

Fig. 3-2 shows how we use model a module using SystemC. The communication

interface is implemented using SystemC input and output port. The SystemC

processes related to the communication interface are implemented using SystemC

method with clock edge trigger. Other internal SystemC processes are also

implemented using SystemC method but some are event driven instead of clock

driven. In addition to SystemC processes, there are also C/C++ processes inside the

module. These un-timed processes implement basic computation and functionality

whereas the SystemC processes provide cycle accurate behavior.

21

Fig. 3-2 Illustration of a modeling module

3.2 Traffic Generation

In this section, we introduce our traffic generation. The bus traffic is generated

on transaction basis. Each transaction is generated by a bus access task which is

associated with master device. Each master device possesses multiple bus access tasks.

Many bus access tasks comprise a task state table (TST). In other words, each master

device generates transactions from a task of TST as shown Fig. 3-3.

Fig. 3-3 Illustration of traffic generation

In the task state table, each task describes a set of transactions with the same

direction and address pattern. Table 3-1 shows the fields of a task which includes

current task number, next task number, task type, task transaction count, transaction

burst length, pattern type, base address and vertical shift base address.

22

Table 3-1 Fields of a task state

Field Description Possible value

0 Total task count Total task count

1 Current task number Current task number

2 Next task number Next task number

3 Task type

0. Read channel idle

1. Write channel idle

2. Read transaction

3. Write transaction

4 Transaction count of task
1. Access transaction count

2. Idle cycle count

5 Burst length of transaction Each access transaction burst length

6 Access pattern type

1. Random

2. 1D, horizontal continuously access

3. 2D, vertical continuously access

7 Base address Base address of transaction

8 Vertical shift base address Vertical shift address of 2D access

Fig. 3-4 is an example of a task state table file. The total task count is 24000. We

take the row 8 of Fig. 3-4 as a example to explain how a set of transactions are

generated from a task. The current task number is 6 and next task number is 7

meaning that when this task 6 finished it will take task 7 as next task. The remainder

information means that this task generates 4 read transaction with burst length 16,

base address 0x2001EF00 and the base address of each transaction shifts a base

address 320.

23

This transaction generation using task state description allows us to specify bus

access behavior at task level. In contrast to specify each transaction individually, we

can specify related transaction using only one task. In other words, the traffic

description can be greatly reduced by using task level description.

1 2 3 4 5 6 7 8

0

Fig. 3-4 Example of a task state table file

3.3 AXI Master

This subsection describes how to model master devices.

3.3.1 Master Behavior Modeling

To model the behavior of a master device, we use task state table (TST),

transaction table (TT) and processing transaction table (PTT) to control the master

device’s behavior.

A. Task State Table

The task state table has mentioned in previous section. It is used to store all tasks

of a master. However, a master may have multiple TST.

24

B. Transaction Table

The transaction table exists in each master and each transaction table is

associated with a TST. It is used to store the transactions which are generated by the

tasks. Once the master device is reset, there is a process called LoadTaskToTrans()

which starts to load all tasks and generates all transactions to store into TT.

C. Processing Transaction Table

The processing transaction table actually is the buffer of a master device. The

entry of it is a processing transaction which is a state machine. The detail of

processing transaction will describe in later section. The processing transaction table

stores the transactions from TT and is controlled by a process called ProcPTT(). The

ProcPTT() checks the state of processing transaction to decide which entry is

processing or is done to be able to refill a new transaction. We use different ProcPTT()

to model different behavior of the master.

Fig. 3-5 show the relation of TST, TT, PTT, LoadTaskToTrans() and ProcPTT.

Fig. 3-5 Flow of transaction generation in master

3.3.2 Master Types

In our modeling system, all masters are categorized into three types by their

25

behaviors. They are regular type, DMAC type and MPU type.

A. Regular Type

Fig. 3-6(a) shows the block diagram of a regular type master. It only contains a

prime task state table so its behavior is very simple as shown in Fig. 3-6(b). It

processes a prime task and sends the IRQ to MPU when it completes a prime task.

After the repeat count reached the value set in advance, the master stopped. The

examples of regular type masters are DSP, video encoder and etc.

End

done/send IRQ

Processing
 prime task
transaction

Start

Prime task
need repeat? yes

no

(a) (b)

Fig. 3-6 Regular type master (a) block diagram (b) Flow of ProcPTT()

B. DMAC Type

Fig. 3-7 shows the block diagram and state machine of DMAC type master. It

contains multiple task state tables so its behavior is more complex than regular type

master. Each task has its own a repeat counter which stores how many times it need to

repeat and an active counter which uses to active the task periodically. When the task

completes, the master sends the corresponding IRQ to MPU and resets the active

26

counter. After all tasks done and reached the repeat counts, the master stopped.

Processing
 #0 task

transaction

Start

End

done/send IRQ 0 and
reset active counter

Processing
 #1 task

transaction

Processing
 #2 task

transaction

#0 active and
need repeat ?

#1 active and
need repeat ?

#2 active and
need repeat ?

All done?

yes

no

yes

no

yes

no

yes

no

done/send IRQ 1 and
reset active counter

done/send IRQ 2 and
reset active counter

(a) (b)

Fig. 3-7 DMAC type master (a) block diagram (b) Flow of ProcPTT()

C. MPU Type

Fig. 3-7(a) shows the block diagram of MPU type master. It is much different

form the regular type and DMAC type. MPU type master not only processes prime

task but also accepts external IRQ to execute corresponding ISR task as shown in Fig.

 3-8(b). In the behavior of MPU, the priority of ISR is higher than prime task so the

ISR task can interrupt the process of prime task. When MPU completes the all prime

tasks, it gets into the idle state, but still waits for accepting the IRQ.

27

(a) (b)

Fig. 3-8 MPU type master (a) block diagram (b) Flow of ProcPTT()

3.3.3 States of Mater Processing Transaction

The processing transaction in PTT is a state machine. We use the states to control

the transaction’s status. There are six states in master’s processing transaction

including empty/done, read request, read data, write request, write data and write

response.

A. Empty/done

The state of processing transaction in PTT is empty in the initial. When any

transaction completed, the state became to done. This state means the initial and finish

state, and is ready to be filled transaction from transaction table by ProcPTT() process.

According to the filled transaction is read or write, the state changes to read request or

write request.

B. Read request

When the processing transaction in PTT is filled a read transaction, the state

28

becomes to read request state. The master sends the read address and control

information to bus in this state. After request accepted, the state became to read data.

C. Read data

After the master sent read address and control information, the state changed

form read request to read data. In this state, master accepts read data until last read

data is accepted and the state changes to done which implies this transaction has

completed.

D. Write request

This state is very similar to read request. The only different is that after the

master sent write request, the state became to write data.

E. Write data

After the master sent write request, the master started to send write data. When

the master sent the last write data, the state changed to write response.

F. Write response

After sending all write data, the state changes to write response. The master

waits to accept the write response from the slave. Once the master accepted the write

response, the state changed to done which implied the transaction had completed.

Empty/done

Read request

Read data

Write request

Write data

Write
response

Read transactionWrite transaction

Send read
request

Accept last read
data

Send write
request

Send last write
data Accept write

response

Fig. 3-9 FSM of master’s PTT

29

3.4 AXI Slave

To model the slaves, it is much simpler than the masters. Modeling a slave don’t

need ProcPTT() to handle the processing transactions of slaves but we only modify

the states of processing transaction in master’s PTT to fit slave’s behavior.

3.4.1 Slave Types

Our modeled slaves are categorized into only two types. They are regular type

and MEM type. The slaves also have PTT but the PTT divides into two parts which

one is read PTT and the other is write PTT.

A. Regular Type

The behavior of a regular type slave is very simple. Each slave processes the

transactions of read/write PTT independently, and responses corresponding transfers

with single cycle delay.

Fig. 3-10 Block diagram of regular type slave

B. MEM Type

The MEM type slave is similar to regular type slave except the state of

processing transaction in read PTT is different. The state of processing transaction in

30

read PTT adds a memory delay count state to model the memory latency.

Fig. 3-11 Block diagram of MEM type slave

3.4.2 States of Slave Processing Transaction

Fig. 3-12 shows the states of processing transaction in slave’s read PTT. There

are three states and they are empty/done, read data and memory delay count down

which is used to modeling the latency when reads a memory.

A. Empty/done

The empty/done state is initial and finished state and this processing transaction

is ready to accept any read request.

B. Memory delay count down

This state entered only when a MEM type slave accepted a read request. The

processing transaction becomes idle and counts down several of cycles in this state.

After counting down to zero, the state changes to read data state.

C. Read data

When normal type slave accepts a read request or MEM type slave counts down

to zero, the processing transaction enters the read data state. In this state, slave sends

read data to master until the last read data is sent. Once all data is sent, the state

changes to done.

31

Memory delay
count down

Read data

MEM slave
accept read

request

Normal slave
accept read

request

Send last read
data

Count down to
zero

Empty/done

Fig. 3-12 FSM of transaction in slave read PTT

Fig. 3-13 show the states of processing transaction in slave’s write PTT. There

are a single loop and three states, and the states are empty/done, write data and write

response.

A. Empty/done

The empty/done state is initial and finished state, and this processing transaction

is ready to accept any write request.

B. Write data

When slave accept a write request, the state of processing transaction becomes

write data state and slave is ready to accept write data until last write data accepted.

C. Write response

After slave accepted last write data, slave returned the write response to the

master in write response state, and changed the state to done.

32

Fig. 3-13 FSM of transaction in slave write PTT

33

Chapter 4 Design of AXI Bus Interconnect

4.1 Bus Interconnect

The architecture of an AXI bus interconnect can be categorized into three, shared

bus, multi-layer, and crossbar.

A. Shared Bus

Fig. 4-1 shoes the architecture of shared bus. It is low cost and easy to design.

Although there is only one shared bus to transfer data, the packet-based bus (AXI)

protocol which supports out-of-order transfer wouldn’t result in congestion easily.

Packet-based bus protocol is more tolerable to traffic than traditional pipelined (AHB)

bus under single shared bus architecture.

Fig. 4-1 Shared bus architecture

B. Multi-Layer

Fig. 4-2 shows the architecture of multi-layer. It provides more connectivity to

transfer more data at the same time but need more hardware cost than shared bus.

However, not all cases are able to adapt to this architecture such as that all devices

34

need connect each other or connectivity concentrates on single device and the other

devices need little connectivity, which results in too much layer and hardware

inefficient.

Fig. 4-2 Multi-layer architecture

C. Crossbar

Fig. 4-3 shows the architecture of crossbar. It provides extreme connectivity and

is able to transfer data as many as possible. The crossbar provides higher bandwidth

than the shared bus and the multi-layer, but costs great hardware cost. Using crossbar

dose not need complex arbitration policy because the big issue is the hardware cost

and bandwidth. Although the providing bandwidth of crossbar overcomes with the

shared bus and the multi-layer, there is still a problem which is the same with

multi-layer. When the traffic is concentrated on a single device, the hardware becomes

inefficient. ARM PL300 [12] and Synopsis DesignWare AXI IIP [13] adopt the

crossbar as their architecture because they only considerate the bandwidth but

hardware cost.

35

Fig. 4-3 Crossbar architecture

The bandwidth providing from the three architectures sorting from high to low

are: crossbar, multi-layer, shared bus, but sorting according to the hardware cost are:

shared bus, multi-layer, crossbar. This simple summary gives us a basic guild to

choose the architecture of bus interconnect. However, if we consider the bus traffic of

a SOC platform, we will find the memory access is always occupied the most

percentage of bus traffic [14].

According to the mentioned before, when bus traffic concentrates on single

device (like memory), the bandwidth difference among the three bus interconnects

would not be significant. Since the difference of bandwidth is not obvious, the

hardware cost is the most important issue. Therefore, we adopt the shared bus as our

architecture of interconnect.

4.2 Transfer Mode

Before describing our transfer modes, we give an assumption like the Fig. 2-8(b).

We assume the READY signals of masters and slaves are always high if the master

and slave are capable of accepting transfers.

36

According to the conclusion of chapter 2.2.2 Channel Handshaking, AXI is

suitable for register input and combinational output circuit but there is a problem of

inserting a layer of register slice as shown in Fig. 4-4. The inserting register slice

makes the limitation of bandwidth utilization become 50 % based on ensuring there is

no error occurring at the next cycle after information or data transferred. Fig. 4-5

shows the error case. There is an error transfer occurring at the cycle T3 and T4 of Fig.

 4-5. Fig. 4-6 is the correct case and it makes the limitation of bandwidth utilization

50%. To increase the bandwidth utilization, we design another three transfer modes.

They are interleaved mode, data lock mode and hybrid mode. Each of them is suitable

for some devices and cases.

Fig. 4-4 Register slice of AXI bus interconnect

37

Fig. 4-5 Error case of data transfer

Fig. 4-6 Correct case of data transfer

38

4.2.1 Normal Mode

Normal mode is the basic transfer mode of the AXI. Fig. 4-7 is a example of

transferring four transactions. Each transfer takes two cycles to complete the transfer.

The bandwidth utilization is only 50%. Although the normal mode only has half the

bandwidth utilization, all transfers fit the AXI protocol.

Fig. 4-7 Timing diagram of normal mode

4.2.2 Interleaved Mode

We propose an interleaved transfer mode which improves the bandwidth

utilization. The interleaved mode allows the two transfers from different devices to be

transferred within two cycles.

Fig. 4-7 illustrates an example of using the interleaved transfer mode. Both

device M0 and M1 send write address through the bus. By using the interleaved mode,

M0’s request A is sent first. While request A is transferring through the bus, request C

39

from M1 is being processed. The one cycle latency introduced in the normal mode for

request C is therefore hidden by request A sending time. As a result, the total time to

send all 4 requests from M0 and M1 would only take 5 cycles, which is only 62.5% of

the time taken by using the normal transfer.

The interleaved transfer mode can also be applied to data channels in the same

manner. Note that the implementation of interleaved mode can be done within the bus

interconnect design. There’s no need for additional hardware in device interface and

bus protocol modification. However, to use the interleaved mode, the source of the

transfer from each device must be different. Otherwise, the normal mode must be

used.

Fig. 4-8 Timing diagram of interleaved mode

4.2.3 Data Lock Mode

For the situation of only one device accessing the bus, we design another transfer

mode: data lock mode. This mode allows the devices to perform the continuously data

40

transfers of a transaction.

Fig. 4-9 illustrates an example of using data lock mode. Device M0 sends data

lock request A and device M1 send normal request B. Once bus interconnect accepted

the request A, the bus interconnect recorded the transaction’s ID of request A. When

the matched ID appears in the data channel, the bus interconnect uses data lock mode

to transfer the data continuously. This example transfers four beats data which takes

the same time as the Fig. 4-8.

Fig. 4-9 Timing diagram of data lock mode

To acknowledge the bus interconnection which transaction uses data lock mode,

we proposed three two ways to acknowledge the bus interconnect.

A. Using the signals in address channel

We uses address channel port “ARLOCK/AWLOCK” which contains the control

information to acknowledge the bus interconnect that there is a data lock mode

transaction. Although doing that makes a misunderstanding with the specification, if

the masters and slaves are able to accept continuous data transferring, there is

41

influence on the system.

B. Build-in the bus interconnect

The second way to acknowledge the bus interconnect is using address decoding

to distinguish between the normal transaction and data lock transaction. This

implementation would not additional modify for the masters and salves. The only

overhead is that the bus interconnect needs to configure which device using data lock

mode in advance.

These two ways to acknowledge the bus interconnect do not conflict with each

other so they could use both in the bus interconnect.

Except the acknowledgement of data lock mode, using data lock mode also

needs to record the ID of transaction using data lock mode. Therefore, the bus

interconnect must need addition hardware to store the ID so we design the hardware

“read/write data lock buffer” to record which transactions uses the data lock mode.

The read/write data lock buffer has a limitation of capacity of recording transactions

so that if the read/write data lock buffer is full, those requests of transactions using

data lock mode will not be accepted by bus interconnection. According the description

of prior, transactions using data lock mode will block each other when the read/write

data lock buffer is full. The situation of transactions blocking each other is fine in the

system without memory controller because the bandwidth utilization is still high

enough. In a system with memory controller, if the transactions block each other and

memory controller responses data with high initial latency, the bandwidth utilization

will be low. The out-of-order transaction completion allows memory controller to

hold all request form transactions and give the memory controller wider scope to

rearrange the transaction to reduce the latency and power consumption [10]. To make

the memory controller keep the most scope of rearranging transactions, we can

increase the read/write data lock buffer but it need more hardware cost. Therefore, we

42

designed another transfer mode to deal with the transactions using data lock mode and

increase the scope of memory controller. This mode is described in later section.

Although data lock mode provides continuously data transferring, if all

transactions use data lock mode to transfer data, the bandwidth utilization would

result in a limitation. Fig. 4-10 shows the reason. The first data lock transaction is

nothing special but the second data transaction needs an additional cycle to start

transferring data. At cycle T6, the bus interconnect ignores the request of device M0

for ensuring that there is no error case like Fig. 4-5 occurred and then the bus

interconnect processes the request of device M0 at cycle T7. After the bus

interconnect processed the request of device M0, the bus interconnect started data

lock mode transferring. When the two data lock mode transactions come from the

same source, the bandwidth utilization would reach the limitation. There is a formula

to calculate the limitation according to the burst length. Table 4-1 shows the

bandwidth utilization with corresponding burst length.

%100
_2

__ ×
+

=
lengthburst

lengthburstnUtilizatioBus

Fig. 4-10 The case of data lock mode results in the limitation

43

Table 4-1 Limitation of bandwidth utilization using data lock mode

Burst length Provide bandwidth utilization
2 50.00%
4 66.67%
6 75.00%
8 80.00%
10 83.33%
12 85.57%
14 87.50%
16 88.89%

4.2.4 Hybrid Mode

Hybrid mode is used to increase the scope of memory controller to rearrange the

transactions. Fig. 4-11 shows the flow of hybrid mode. When the read/write data lock

buffer is full, the bus interconnect treat the transaction as a normal transaction

according to the hybrid mode counter. If the counter does not reach the threshold, the

bus interconnect treats the data lock transaction as a normal transaction. Once the

counter reached the threshold, the data lock transaction would not treat as normal

transaction until the counter reset. When the bus interconnect complete a data lock

mode transaction, the counter would rest.

If we treat all transactions as normal transactions when data lock buffer is full,

the ratio of normal transactions and data lock mode transactions would become to the

result we not expected. This may make the interleaved mode can not be applied

because the data lock mode is always applied to the device required mass bandwidth.

Therefore, we set a threshold to hybrid mode counter to prevent the case occurred.

44

Fig. 4-11 Flow of hybrid mode

4.3 Arbitration Policy

4.3.1 Our AXI Arbitration Flow

The AXI protocol is defined in transfer level not transaction level. Therefore, the

normal mode and interleaved mode in address channels and data channels also

perform in the transfer level. Only the data lock mode in data channels is in the

transaction level so we arbitrate the request of transactions in the transfer level.

Fig. 4-12 shows our AXI arbitration flow. The principle of our arbitration is to

grant based on which transfer mode is being used, namely the data lock mode and the

normal mode. First, we check if there is any other transaction already using the data

lock mode. If data lock mode is already in use, arbitration is done. Second, we check

if the data lock mode buffer is full or not. If buffer is not full, we check if there is

necessary to arbitrate the data lock mode transactions. If the buffer is full, we directly

check if there is necessary to arbitrate normal mode transaction. We arbitrate the data

45

lock mode transaction first and then arbitrate the normal mode transaction. This is

because of that the data lock mode transaction always comes from high priority

device or mass bandwidth required device. Arbitrating the data lock mode transaction

first is like giving more priority to the device using data lock mode so doing this helps

us to configure the priority properly.

Fig. 4-12 Flow of our arbitration

4.3.2 Fixed Priority

Fixed priority uses a pre-defined priority order of devices to arbitrate which

device has the right to access the bus interconnect while the contention occurs. The

advantages of fixed priority are low hardware cost and easy to implement. The

46

drawbacks of fixed priority are that fixed priority will result in starvation on low

priority devices and cause some transactions extreme latency.

4.3.3 TDMA

Fig. 4-13 illustrates the TDMA policy. The TDMA divides time to very many

time slots and distributes the time slots to devices according to bandwidth requirement.

Each device has its own amount of time slots. When a device becomes the highest

priority device, the number of its available time slot starts to decrease. Once the

number of available time slot becomes zero, the priority of the device becomes the

lowest and the priority of the second device becomes the highest. The darkened

squares in Fig. 4-13 means that the master are granted.

The advantages of TDMA are:

 Predictable bandwidth allocation according to distribution of time slots

 Predictable latency

 No starvation problem

The drawbacks of TDMA are:

 Ignoring the urgent devices

 More hardware cost than fixed priority

47

Fig. 4-13 Illustration of TDMA policy

4.3.4 Round-Robin

Fig. 4-14 illustrates of Round-Robin policy. Round-Robin divides the clock

cycles to an arbitration cycle. The darkened squares in Fig. 4-14 mean that the

masters are granted. Each device has its own threshold which is pre-defined according

to the bandwidth requirements. As the device is granted, its counter adds one. When

the counter reaches the threshold, the priority of the device becomes the lowest

wherever its previous priority is in any place. Taking the master 1 as an example, the

threshold of master 1 is two. After master 1 was granted twice, the priority of master 1

became the lowest.

The advantages of Round-Robin are:

 Predictable bandwidth allocation according to devices’ threshold

 Predictable latency

 No starvation problem

The drawbacks of Round-Robin are:

48

 More complex control than TDMA

 More hardware cost than fixed priority and TDMA

Master1

Master2

Master3

Master4

Master5

Master2

Master3

Master4

Master5

Master1

Master2

Master4

Master5

Master1

Master3

Master4

Master5

Master1

Master3

Master2

Master4

Master5

Master3

Master2

Master1

Time

Master1

Master2

Master3

Master4

Master5

Master4

Master5

Master1

Master3

Master2

Fig. 4-14 Illustration of Round-Robin policy

4.3.5 Lottery

The lottery policy is a probability based arbitration policy. There is a ticket

manager which is like an arbiter to decide which device is the winner. Each device has

its own amount of tickets according to the bandwidth requirements. When the devices

want to access the bus, they send the request to the ticket manager. The ticket

manager knows how many tickets each device has and then sums the tickets from

devices that want to access the bus. After summing the tickets, the ticket manager

randomly generates a number under the sum. The ticket manager picks up the winner

according to the winner’s ticket falling into which area of the device. Fig.

 4-15illustrates an example. The master 1, 2 and 4 send request to ticket manager for

accessing the bus. The ticket manager sums the tickets of master requested and then

49

generate a winner’s ticket. The winner’s ticket is 10 and falls into the area of master 4

so master 4 is granted.

The advantages of Lottery are:

 Good bandwidth allocation according to devices’ ticket

 Low hardware cost

 No starvation problem

The drawbacks of Lottery are:

 Unpredictable latency

 More critical path than other arbitration policies

Fig. 4-15 Example of lottery arbitration

50

Chapter 5 Simulation and Analysis

5.1 Introduction

In this chapter, we evaluate the performance of AXI interconnect with various

parameter and transfer mode settings. These parameters and settings include wrapper

buffer size, configuration of arbitration policies, and transfer mode setting. We built a

portable media player (PMP) platform with a video phone scenario are used to

determine the impact of the parameters and settings. The reason for selecting the PMP

platform is because it is a multicore platform with various tasks running the video

phone scenario. Running simulation in such complex platform with realistic video

phone scenario would enable the experiment result and conclusion be more suitable to

real systems and applications. In addition to the AXI PMP platform, an AHB PMP is

also implemented using CoWare’s AHB TLM model. However, the architecture of

interconnection in AHB PMP platform is different from PMP of AXI protocol because

of performance concerning. This experiment compares the performance of AXI and

AHB interconnect. The result and conclusion may serve as a reference for system

designer in choosing the proper bus architecture and protocol.

51

5.2 PMP Platform

5.2.1 Overview

Fig. 5-1 AXI PMP platform

Fig. 5-1 illustrates the system block diagram of the AXI PMP platform. The

platform includes a MPU, a DSP, a video encoder, a DMA controller, a vector

interrupt controller, a memory controller, a communication device, and audio/video

input/output peripherals. All the devices are connected with the shared bus AXI bus

interconnection. From the bus interconnect’s point of view, the platform consists of 5

master ports and 11 slave ports. The master ports include 2 regular type ports, 2

DMAC type ports, and 1 MPU type port. The slave ports have 9 regulartype ports and

2 memory type ports. Detailed device settings are shown in Table 5-1 and Table 5-2.

Note that device IRQs are directly connected to the MPU, bypassing the VIC.

Although this is different from real system implementation, it is equivalent to

connecting the IRQ to MPU through the VIC. Only a few transactions are lost which

52

would result in insignificant impact to the overall traffic and performance.

Table 5-1 Master configuration of PMP platform

Master port Type Description
MPU MPU Process audio codec, OS and ISR
DSP General Decode video
Video encoder General Encode video
DAMC1 DMAC Data movement of video in, audio in and

communication to memory
DMAC2 DAMC Data movement of video out and audio out

to memory

Table 5-2 Slave configuration of PMP platform

Slave port Type Description
Video in General Capture video from camera
Video out General Display video to screen
Audio in General Capture audio from microphone
Audio out General Play audio to speaker
Communication General I/O for 3G mobile communication
SMI SRAM General Store instruction
Memory controller 1 MEM External DRAM
Memory controller 2 MEM External DRAM
Vector interrupt controller General Accept interrupt
Video encoder General Accept ISR from MPU
DMAC General Accept ISR from MPU

Table 5-3 shows the configuration of PMP platform. PMP operates at 40MHz

because it is close to the bandwidth requirements of the video phone scenario. The

detailed bandwidth requirements will be explained in next section. The PMP operates

at 40MHz and the external memory operates at 133MHz. The access latency of the

memory controller model is assumed to be ad random delay in the range of 0~16

cycles.

53

Table 5-3 Performance of AXI PMP platform

Address width 32 bit
Data width 32 bit
Operating frequency 40MHz
Provide read bandwidth 160MB/sec
Provide write bandwidth 160MB/sec
Provide total bandwidth 320MB/sec

5.2.2 Scenario

Table 5-4 lists the tasks of each device and the bandwidth requirements of each

task. The rows with light blue bottom color indicate the total bandwidth requirements

of each device. The video phone scenario totally requires a bandwidth of

236.3MB/sec to meet the real-time operating constraint of 30 fps. It occupied 77.4%

of the total bandwidth that AXI PMP can provide. Although Table 5-4 lists the

bandwidth requirements in MB/sec, we only simulate 33ms and check if all the tasks

complete within the system timing constraint.

54

Table 5-4 Task of video phone scenario

Device Task
Required read
BW(MB/sec)

Required write
BW(MB/sec)

Total required
BW(MB/sec)

Audio codec 1.46667 1.46667 2.93333
OS routine 0.00048 0.00061 0.00109
Total ISR 0.17164 0.49273 2.93442

MPU

Total task of MPU 1.63879 1.96000 3.59879
DSP Video decode 14.83636 42.47273 57.30909
VE Video encode 59.92727 14.25455 74.18182

Video in to MEM 27.92727 27.92727 55.85455
Audio in to MEM 0.17648 0.17648 0.35297
3G communication 0.13236 0.13236 0.26473

DMAC

Total task of DMAC1 28.23612 28.23612 56.47224
MEM to video out 27.92727 27.92727 55.85455
MEM to audio out 0.17648 0.17648 0.35297 DMAC2
Total task of DAMC2 28.10376 28.10376 56.20752

Total 132.74230 115.02715 247.76945

5.3 Experiments

5.3.1 Performance Metric

Our mainly performance metrics are completion time, bandwidth utilization, and

transaction latency. The completion time is defined as the time when all tasks are done.

Note that all the tasks were supposed to be done within 33 ms to satisfy the system’s

timing constraint. If any task fails to complete within 33ms, we say the system

violates the real-time constraint.

The bandwidth utilization is one of the commonly used performances metric.

The bandwidth utilization is defined as the percentage of the maximum ideal available

bandwidth being actually used. The actual used bandwidth can be regarded as the data

transfer throughput. In other words, the bandwidth utilization can also be defined as

55

the ratio between the actual achieved throughput and the ideal maximum throughput.

The mathematical definition of the bandwidth utilization is defined below.

Bandwidth utilization

bandwidthmaximumprovided
bandwidthusedactualnutilizatioBandwidth

__
___ = x100%

The other commonly used evaluation metric is the transaction latency. The

transaction latency we used is defined as the average of read and write transaction

latencies. The latency of a read or write transaction is measured from the start of the

transaction request being sent from a master till the read data or write response is

being returned to the master. In contrast to bandwidth which increases as more data

can be transferred, the transaction latency may remain the same even if the bandwidth

utilization has been increased. This is because the transaction latencies can be hidden

by overlapping transactions. The definition of the transaction latency is defined in the

equation below.

Transaction latency

∑∑
∑∑

+

+
=

ntransactiowritetransationread
latencyntransactiowritelatencyntransactioread

latencynTransactio
__

_

5.3.2 Simulation of Video Phone Scenario

In our interconnection, we can configure the factors as shown in Table 5-5 in

advance to simulate our video phone scenario. Simulating the all combination of the

factors, which it is not an efficient way to get the optimal configuration of PMP

platform performing video phone scenario so we analyze the impact of each factor or

56

some combination of factor to get a guide to configure the factor of PMP platform

properly.

Table 5-5 Factor of configuration

Factor Description
Wrapper buffer size Capability of out-of-order transaction
Arbitration policy of channels When contention occurs, choose a device and

grant it
Task access setting Decide what kind of task using data lock mode
Data lock mode buffer size Capability of interconnection processing data lock

mode transaction
Weight tuning of devices Priority tuning of arbitration policy

A. Wrapper buffer size and arbitration policy of channels

First of all, we take wrapper buffer size and arbitration policy of channels as our

variables to analyze the impact of them. The detailed configure shows in Table 5-6.

We test the wrapper buffer size with size of 1, 2, 4, 8 and 16, and take address and

data channels as the separate variables to configure each arbitration policy. The policy

setting in Table 5-6 uses two letters to express what policy used in address channel

and data channel. The first letter means which arbitration policy used in address

channel and the second letter means which arbitration policy used in data channel. We

choose Round-Robin as the write response channel, which this is because there is only

one completion of write transaction which needs to transfer write response so that we

choose a fair arbitration policy as the write response channel. The task access setting

is all normal transactions so there is no necessary to configure data lock mode buffer

size. The weighting of devices is set according the bandwidth requirements of video

phone scenario.

57

Table 5-6 Setting of simulation A

Wrapper buffer size
buffer size 1, 2, 4, 8, 16

Arbitration policy of channels
Policy setting Address channel Data channel Write response channel

FF Fixed priority Fixed priority Round-Robin
FT Fixed priority TDMA Round-Robin
FR Fixed priority Round-Robin Round-Robin
FL Fixed priority Lottery Round-Robin
TF TDMA Fixed priority Round-Robin
TT TDMA TDMA Round-Robin
TR TDMA Round-Robin Round-Robin
TL TDMA Lottery Round-Robin
RF Round-Robin Fixed priority Round-Robin
RT Round-Robin TDMA Round-Robin
RR Round-Robin Round-Robin Round-Robin
RL Round-Robin Lottery Round-Robin
LF Lottery Fixed priority Round-Robin
LT Lottery TDMA Round-Robin
LR Lottery Round-Robin Round-Robin
LL Lottery Lottery Round-Robin

Table 5-7 shows that if the each configuration met timing constraint or not. It is

obvious when buffer size is exceeding 8, the configurations met the timing constraint

with all normal transactions of video phone scenario. Under buffer size 8, the data

channel with policies of TDMA all met the constraint and the address channel with

policies of fixed priority are most violated the timing constrain. It is interesting that

the address channel with policies of Round-Robin most met the timing the constraint.

It may explain that Round-Robin in address channel is more efficient than TDMA,

and TDMA is data channel is more efficient than Round-Robin. It may caused by the

different scheme of TDMA and Round-Robin mapping to the weight tuning. Under

buffer size 16, TDMA, Round-Robin and Lottery most met timing constraint except

58

fixed priority.

Fig. 5-2 shows the completion time of video phone scenario. It is obvious that

whatever fixed priority used in address channel or data channel has longer completion

time. Fig. 5-3 also shows the same result that fixed priority gets poor bandwidth

utilization than others. This is because that fixed priority is more possible causing the

starvation and limiting the out-of-order completion.

Table 5-7 Timing constraint status with all normal transaction of video phone scenario

1 2 4 8 16

FF Violated Violated Violated Violated Violated
FT Violated Violated Violated Met Met
FR Violated Violated Violated Violated Violated
FL Violated Violated Violated Violated Violated
TF Violated Violated Violated Violated Violated
TT Violated Violated Violated Met Met
TR Violated Violated Violated Violated Met
TL Violated Violated Violated Met Met
RF Violated Violated Violated Violated Violated
RT Violated Violated Violated Met Met
RR Violated Violated Violated Met Met
RL Violated Violated Violated Met Met
LF Violated Violated Violated Violated Violated
LT Violated Violated Violated Met Met
LR Violated Violated Violated Violated Met
LL Violated Violated Violated Met Met

Buffer
size Policy

setting

59

Completion Time of Video Phone with All Normal Transactions

0

11

22

33

44

55

1 2 4 8 16
Wrapper buffer (entry)

C
om

pl
et

io
n

tim
e

(m
s)

FF
FT
FR
FL
TF
TT
TR
TL
RF
RT
RR
RL
LF
LT
LR
LL

Fig. 5-2 Completion time of video phone with all normal transactions

Bus Utilization of Video Phone with All Normal Transactions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 4 8 16
Wrapper buffer (entry)

B
us

 u
til

iz
at

io
n

FF
FT
FR

FL
TF
TT
TR
TL

RF
RT
RR
RL
LF
LT

LR
LL

Fig. 5-3 Bandwidth utilization of video phone with all normal transactions

60

B. Task access setting

The previous simulations only used the normal and interleave transfer modes in

our interconnection. This time we configure the task pattern to generate the

transactions using data lock mode. Table 5-8 shows the configuration of tasks. We

category the tasks into two kinds which one is accessing memory controller and the

other is accessing other devices. In the setting 1, tasks of accessing memory controller

use data lock mode and tasks of accessing other devices use normal mode. The setting

2 is configured in the contrary way. Table 5-9 is the configuration of data lock mode

in our interconnection. We also test the wrapper buffer size and arbitration policy of

channels as simulation A.

Table 5-8 Configuration of simulation B

 Tasks of accessing memory
controller

Tasks of accessing other
devices

Setting 1 Using data lock mode Using normal mode
Setting 2 Using normal mode Using data lock mode

Task
Setting

Table 5-9 Configuration of data lock mode of simulation B

Data lock mode buffer size 1
Hybrid mode threshold 1

Table 5-10 shows the simulation results of setting 1. There are 24 configurations

which met the timing constraint. The setting 1 increased 6 met configurations

comparing to simulation A. In the configuration of setting 1, we can observe that

Round-Robin in data channel all violated the timing constraint under buffer size 8.

The reason of this phenomenon may concern with the weight tuning of arbitration

policy. The weight tuning of arbitration we will introduce in the later section.

In Fig. 5-4, we can find that the there is no obvious glitch of completion time

61

under buffer size 8 so we can say that the Round-Robin dose not make significant

violated the timing constraint. From the Fig. 5-4 and Fig. 5-5, we can find there is a

obvious glitch in buffer size 16. It is the policy setting: FF. This is because the buffer

size 16 is the same with the memory controller delay so that transactions accessing

memory controller block the other transactions. Therefore, other devices starved and

bandwidth utilization collapsed.

Table 5-10 Timing constraint status with setting 1 of video phone scenario

1 2 4 8 16

FF Violated Violated Violated Violated Violated
FT Violated Violated Violated Violated Met
FR Violated Violated Violated Violated Violated
FL Violated Violated Violated Met Met
TF Violated Violated Violated Met Met
TT Violated Violated Violated Met Met
TR Violated Violated Violated Violated Met
TL Violated Violated Violated Met Met
RF Violated Violated Violated Met Met
RT Violated Violated Violated Met Met
RR Violated Violated Violated Violated Met
RL Violated Violated Violated Met Met
LF Violated Violated Violated Met Met
LT Violated Violated Violated Met Met
LR Violated Violated Violated Violated Met
LL Violated Violated Violated Met Met

Buffer
size Policy

setting

62

Completion Time of Video Phone with Setting 1

0

11

22

33

44

1 2 4 8 16
Wrapper buffer (entry)

C
om

pl
et

io
n

tim
e

(m
s)

FF
FT
FR
FL
TF
TT
TR
TL
RF
RT
RR
RL
LF
LT
LR
LL

Fig. 5-4 Completion time of video phone with setting 1

Bus Utilization of Video Phone with Setting 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 4 8 16
Wrapper buffer (entry)

B
us

 u
til

iz
at

io
n

FF
FT
FR
FL
TF
TT
TR
TL

RF
RT
RR
RL
LF
LT
LR
LL

Fig. 5-5 Bandwidth utilization of video phone setting 1

63

Table 5-11 shows the simulation results of setting 2. There are 19 configuration

met the timing constraint. The results are very similar to simulation A.

In Fig. 5-6 and Fig. 5-7, there are obvious glitches in buffer 16. The reason is

also the same with setting 1 but the blocking transactions changed to transactions

accessing memory controller. The transactions accessing memory controller occupied

76.91% in video phone scenario so that transactions using data lock mode still make

an obvious impact to performance.

Table 5-11 Timing constraint status with setting 2 of video phone scenario

1 2 4 8 16

FF Violated Violated Violated Met Violated
FT Violated Violated Violated Violated Violated
FR Violated Violated Violated Violated Violated
FL Violated Violated Violated Violated Violated
TF Violated Violated Violated Violated Violated
TT Violated Violated Violated Met Met
TR Violated Violated Violated Met Met
TL Violated Violated Violated Met Met
RF Violated Violated Violated Violated Violated
RT Violated Violated Violated Met Met
RR Violated Violated Violated Met Met
RL Violated Violated Violated Met Met
LF Violated Violated Violated Violated Violated
LT Violated Violated Violated Met Met
LR Violated Violated Violated Met Met
LL Violated Violated Violated Met Met

Buffer
size Policy

setting

64

Completion Time of Video Phone with Setting 2

0

11

22

33

44

55

1 2 4 8 16
Wrapper buffer (entry)

C
om

pl
et

io
n

tim
e

(m
s)

FF
FT
FR
FL
TF
TT
TR
TL
RF
RT
RR
RL
LF
LT
LR
LL

Fig. 5-6 Completion time of video phone with setting 2

Bus Utilization of Video Phone with Setting 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 4 8 16
Wrapper buffer (entry)

B
us

 u
til

iz
at

io
n

FF
FT
FR
FL
TF
TT
TR
TL
RF
RT
RR
RL
LF
LT
LR
LL

Fig. 5-7 Bandwidth utilization of video phone setting 2

65

To observe the influence of task setting, we average the completion time and

bandwidth utilization of each task setting. Observing the Fig. 5-8 and Fig. 5-9, setting

1 has significant performance than others. It can be explained that data lock mode is

useful for devices with high latency and solves the condition of transactions

concentrating on one device which makes interleave mode useless. Data lock mode is

sure that it is suitable for memory controller and mass bandwidth required devices.

The setting 1 overcoming with other settings is more unobvious with the increasing of

buffer size but data lock mode still has better performance. Although the setting 2 doe

not have obvious improvement comparing to setting 1, the performance of the setting

2 is slightly better than all normal transactions when buffer size over 4. Therefore,

data lock mode is still more useful than using interleave mode alone.

Average Completion Time of Different Task Setting

0

11

22

33

44

55

66

1 2 4 8 16
Wrapper buffer (entry)

C
om

pl
et

io
n

tim
e

(m
s)

All normal
Setting 1
Setting 2

Fig. 5-8 Average completion time of different task setting

66

Average Bandwidth Utilization of Different Task Setting

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 4 8 16
Wrapper buffer (entry)

B
an

dw
id

th
 u

til
iz

at
io

n

All normal
Setting 1
Setting 2

Fig. 5-9 Average bandwidth utilization of different task setting

Average Latency of Different Task Setting

0

50

100

150

200

250

300

350

1 2 4 8 16
Wrapper buffer (entry)

La
te

nc
y

(c
yc

le
)

All normal
Setting 1
Setting 2

Fig. 5-10 Average Latency of Different Task Setting

C. Data lock mode buffer size

Form simulation B, data lock mode does improve the performance of video

67

phone scenario but the improvement of performance is limited so we increase data

lock mode buffer to observe the impact to the performance. Table 5-12 is the

configuration of simulation C. We increase the data lock mode buffer from 1 to 2 and

4 and the tasks setting is the same with setting 1 of simulation B.

Table 5-12 Configurations of simulation for data lock mode buffer size

Data lock mode buffer size 2, 4
Task access setting Accessing memory using data lock mode , others

normal mode

Table 5-13 shows the timing constraint status with data lock mode buffer 2.

There are 33 configurations met the timing constraint; moreover, some configurations

of buffer size 4 met the timing constraint.

Fig. 5-11 and Fig. 5-12 show the result of video phone scenario with data lock

mode buffer 2. We can note that the completion time and bandwidth utilization are

both improved comparing to simulation B with data lock mode buffer 1.

Table 5-13 Timing constraint status with data lock mode buffer 2

1 2 4 8 16

FF Violated Violated Violated Violated Violated
FT Violated Violated Violated Met Met
FR Violated Violated Violated Met Met
FL Violated Violated Met Met Met
TF Violated Violated Violated Met Met
TT Violated Violated Violated Met Met
TR Violated Violated Violated Met Met
TL Violated Violated Met Met Met
RF Violated Violated Violated Met Met
RT Violated Violated Violated Met Met

Buffer
size Policy

setting

68

RR Violated Violated Violated Met Met
RL Violated Violated Met Met Met
LF Violated Violated Violated Met Met
LT Violated Violated Violated Met Met
LR Violated Violated Violated Met Met
LL Violated Violated Violated Met Met

Completion Time of Video Phone with Data Lock Buffer 2

0

11

22

33

44

1 2 4 8 16
Wrapper buffer (entry)

C
om

pl
et

io
n

tim
e

(m
s)

FF

FT

FR

FL

TF

TT

TR

TL

RF

RT

RR

RL

LF

LT

LR

LL

Fig. 5-11 Completion time of video phone with data lock buffer 2

69

Bus Utilization of Video Phone with Data Lock Buffer 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 4 8 16
Wrapper buffer (entry)

B
us

 u
til

iz
at

io
n

FF
FT
FR
FL
TF
TT
TR
TL
RF
RT
RR
RL
LF
LT
LR
LL

Fig. 5-12 Bandwidth utilization of video phone with data lock buffer 2

There are 39 configurations met the timing constrain as shown in Table 5-14.

The configurations of buffer size 4 are all met timing constraint except most fixed

priority. Note that, the buffer size and data lock buffer mode buffer are both 4. It

means that the buffers in memory controller are capable of buffering all data lock

mode transactions.

//so increase data lock mode buffer size improve performance

Table 5-14 Timing constraint status with data lock mode buffer 4

1 2 4 8 16

FF Violated Violated Violated Violated Violated
FT Violated Violated Violated Met Met
FR Violated Violated Violated Met Met
FL Violated Violated Met Met Met
TF Violated Violated Violated Met Met

Buffer
size Policy

setting

70

TT Violated Violated Met Met Met
TR Violated Violated Met Met Met
TL Violated Violated Met Met Met
RF Violated Violated Violated Met Violated
RT Violated Violated Met Met Met
RR Violated Violated Met Met Met
RL Violated Violated Met Met Met
LF Violated Violated Violated Met Met
LT Violated Violated Met Met Met
LR Violated Violated Met Met Met
LL Violated Violated Met Met Met

Completion Time of Video Phone with Data Lock Buffer 4

0

11

22

33

44

1 2 4 8 16
Wrapper buffer (entry)

C
om

pl
et

io
n

tim
e

(m
s)

FF
FT
FR
FL
TF
TT
TR
TL
RF
RT
RR
RL
LF
LT
LR
LL

Fig. 5-13 Completion time of video phone with data lock buffer 4

71

Bus Utilization of Video Phone withData Lock Buffer 4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 4 8 16
Wrapper buffer (entry)

B
us

 u
til

iz
at

io
n

FF
FT
FR
FL
TF
TT
TR
TL
RF
RT
RR
RL
LF
LT
LR
LL

Fig. 5-14 Bandwidth utilization of video phone with data lock buffer 4

D. Weighting tuning of arbitration policy

Although we have simulated the impact of arbitration policy, we can not obtain a

precise setting of arbitration policy to get a better performance than others. Therefore,

we tune the weight of arbitration policy to find a way to set weight properly. Table

 5-15 shows the configurations of simulation. The arbitration policies of channels are

the same which means that the 5 channels use the same arbitration policy. We use

burst length 8 as a base number to tune the weight. Take masters of video phone

scenario as an example; the ratios of bandwidth requirement of MPU: DSP: VE:

DMAC1: DMAC2 are 1:9:37:17:17. The MPU is the smallest devices so we give it a

constant weight 4. The other devices take into consideration of weight tuning. The

bandwidth requirement of DMAC1 and DMAC2 are almost the same so we treat them

as one variable. Then, the variable of masters become to 3 which are x, y and z. Then

72

we give an equation :x+y+z=7, x>0,y>0,z>0. The solutions of the equation after

multiply 8 which are our configurations of weight tuning. There are 15 configurations

of master’s weight. The weight tuning of slave are the same as master. We take the

first three of bandwidth requirement slaves as the variable. We also five an equation

x+y+z=6, x>0,y>0,z>0. Therefore, the configurations of slave are 10 and the

configurations which all we need to simulate are 15*10=150.

Table 5-15 Configuration of weight tuning

Wrapper buffer size 1, 2, 4, 8, 16
Arbitration policy TDMA, Round-Robin, Lottery
Task accessing setting Task accessing memory using data lock mode,

others normal mode
Data lock mode buffer size 4
Hybrid threshold 1

Fig. 5-15 and Fig. 5-16 are the result of simulations. According to Fig. 5-15,

when buffer size is exceeding 8, the configurations are all met the constraint. It

reveals that when buffer size increased the impact of weight is slighter from the

distribution of standard deviation in Fig. 5-16 but it does not show us how to tune the

weight. Table 5-16 shows the configurations of buffer size 4 met timing constrain.

Analyzing the configurations met timing constraint; we can find that weight of

configurations does not consist with bandwidth requirements. The distribution of

configurations met timing constraint which equally concentrates on the average of

bandwidth. It means that as long as the weight of arbitration policy is not an extreme

then the performance is stable and good.

73

Average Bus Utilization

60%

65%

70%

75%

80%

Arbitration policy

B
us

 U
til

iz
at

io
n

Buffer 1 62.360045% 62.326499% 62.339372%
Buffer 2 71.108044% 70.530258% 71.516573%
Buffer 4 73.715505% 76.280004% 76.491407%
Buffer 8 79.061074% 79.061078% 79.061059%
Buffer 16 79.061076% 79.061089% 79.061059%

TDMA Round-Robin Lottery

Fig. 5-15 Average bandwidth utilization of weight tuning

Standard Deviation of Bandwidth Utilization

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

Arbitration policy

B
us

 U
til

iz
at

io
n

Buffer 1 0.255646% 0.185349% 0.208641%
Buffer 2 1.671525% 1.959662% 1.512652%
Buffer 4 1.741517% 1.759624% 1.812892%
Buffer 8 0.000047% 0.000045% 0.000055%
Buffer 16 0.000055% 0.000036% 0.000052%

TDMA Round-Robin Lottery

Fig. 5-16 Standard deviation of bandwidth utilization of weight tuning

74

Table 5-16 Met configurations of buffer size 4 in weigh tuning

Arbitration policy Met configuration
TDMA 2
Round-Robin 48
Lottery 62

5.4 AXI vs. AHB

5.4.1 AHB PMP Platform

Fig. 5-17 AHB PMP platform

The AHB PMP platform shows in Fig. 5-17. The AHB PMP platform possesses

the same devices as the AXI PMP platform. The TLM of AHB is built by the TLM

library of CoWare.

The AHB protocol does not support read data and write data transferring at the

same time so we adopt the multi-layer as the bus architecture in order to compete with

75

AXI PMP platform. There are total five layers of AHB-lite interconnect. Each bus

interconnect of the masters connects the corresponding slaves so the salve ports are

more than the AXI PMP platform. The memory controller has five slave ports because

of that all masters need access the memory controller. However, the memory

controller has only one buffer. The reason is that the pipelined transferring of AHB

protocol only allows one transaction access the bus. Therefore, the memory controller

only can accept one request before the processing transaction completes. Increasing

the buffer of the memory controller does not enlarge the scope of the memory

controller to rearrange the transaction like the AXI.

Table 5-17 shows the configuration of AHB PMP platform. The configuration of

AHB PMP platform is the same as the AXI PMP platform except the provided

bandwidth.

Table 5-17Performance of AHB PMP platform

Address width 32 bit
Data width 32 bit
Operating frequency 40MHz
Single layer provided bandwidth 160MB/sec
Total provided bandwidth 800MB/sec

5.4.2 Comparison between AXI and AHB

We use the same video phone scenario to test the performance of AHB PMP

platform. The AHB PMP platform uses five layer AHB-lite as the bus interconnect so

there is no necessary of using arbitration policy. Only the multi-slave port device

needs to arbitrate which port to process. Considering the fairness and the problem of

starvation, we adopt the Round-Robin as the arbitration policy to solve the contention

76

of ports.

Table 5-18 shows the targets of comparison. The AHB only contains one buffer

so the buffer size of AXI also set the same size. To show the gap between the AHB

and AXI, we simulate the AXI of buffer size 8 in addition.

Table 5-18

Setting Wrapper buffer

AHB 1

AXI, all normal transactions 1

AXI, memory using data lock mode, buffer 1 1

AXI, all normal transactions 8

AXI, memory using data lock mode, buffer 1 8

Fig. 5-18, Fig. 5-19 and Fig. 5-20 show the result of simulation. Form

completion time of the buffer 1 in Fig. 5-18, although the AHB bus interconnect

adopt the multi-layer to against the AXI transferring read/write data simultaneously,

the AHB still has longer completion time than the AXI. The reason is that the AXI

platform has two memory ports to process the memory access so the completion time

in the AXI is shorter than in AHB.

Comparing to the buffer size 8, the completion time of the AXI is much shorter

than the AHB. This is because of that the AXI supports transaction out-of-order

completion. The out-of-order completion allows the AXI bus no waiting for

transaction completion to transfer available data. The obvious example is the MPU

access the memory. Once the MPU in AHB platform sent a request to the memory and

waited for response, the bus connected with the MPU was stall. Therefore, if the other

devices want to respond with the read data, the bus can not transfer the data in

advance until the memory completed transaction. However, the AXI platform

77

supports out-of-order completion to allow the other devices to transfer data without

waiting for memory completed the transaction, which reduces much idle cycles in the

bus interconnect.

Fig. 5-19 shows the result of bandwidth utilization. The bandwidth requirements

of memory in the video phone scenario occupied 77.4% so that the distribution of

required bandwidth is not balanced. Therefore, the un-balanced distribution results in

the low bandwidth utilization on multi-layer and poor performance. Although the

multi-layer bus interconnect provides more bandwidth than shared bus, not all

scenarios or applications are suitable to the multi-layer so that the multi-layer needs

proper scenario to prevent hardware wasted and to obtain better performance.

Fig. 5-20 shows the result of latency. The buffer 1‘s latency of the AXI is shorter

than the AHB. The reason is the same as the bandwidth utilization. The buffer 8’s

latency of the AXI are much longer than the buffer 1’ because the more buffers, the

more transactions queue in the bus interconnect. It is based on the different of the way

to calculating the latency.

Completion Time of Video Phone Scenario

58.81
55.11

33.41

43.46

32.82

0

11

22

33

44

55

66

1 8
Wrapper buffer (entry)

C
om

pl
et

io
n

tim
e

(m
s)

AHB

AXI, all normal
transactions
AXI, memory using data
lock mode buffer 1

Fig. 5-18Completion time of AXI and AHB

78

Bus Utilization of Video Phone Scenario

17.4%

45.9%

75.7%

58.5%

77.7%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 8
Wrapper buffer (entry)

B
us

 u
til

iz
at

io
n AHB

AXI, all normal
transactions
AXI, memory using data
lock mode buffer 1

Fig. 5-19 Bandwidth utilization of AXI and AHB

Average Latency of Video Phone Scenario

36.4 38.6

173.0

33.1

135.9

0
20
40
60
80

100
120
140
160
180
200

1 8
Wrapper buffer (entry)

La
te

nc
y

(c
yc

le
) AHB

AXI all normal
transactions
AXI memory using data
lock mode buffer 1

Fig. 5-20 Average latency of AXI and AHB

79

Chapter 6 Hardware Implementation

There are two sections in this chapter. Section 6.1 describes the hardware design

of the AXI bus interconnect. In Section 6.2 the implement result is shown.

6.1 Hardware Design

The AXI bus interconnect contains five separated channels. There are read

address channel, read data channel, write address channel, write data channel and

write response channel. These five channels process two kinds of transaction: read

transaction and write transaction. Therefore, we separate the hardware architecture

into two parts: 1.read transaction 2.write transaction. Following sections describe each

design.

6.1.1 Read Transaction Design

Fig. 6-1 shows the block diagram of read transaction design. The read

transaction design consists of read address channel (AR) and read data channel (R).

The components of them are read address master port, slave read buffer monitor, read

address channel arbiter, read address slave port, read data master port, read data

channel arbiter, read lock mode buffer and read data slave port. Although there are 8

components in read transaction channels, we can classify them into 5 types which are

interface input port, interface output port, arbiter, slave buffer monitor, read lock

mode buffer.

The interface input port handle the channel handshaking and generate request to

80

arbiter.

The interface output port is simpler. It handles the handshaking and transfer

address/data from grant source to destination.

The arbiter receives requests and generates grant and proper information to other

devices.

The slave read buffer monitor records each slave buffer conditions and send the

conditions to arbiter to ensure that request is valid.

The read lock mode buffer record the granted address transfer which use data

lock mode. When RID match the RID in data lock mode buffer, the data lock mode

send information to arbiter and lock the data channel until whole transfers of data

completed.

Fig. 6-1 Block diagram of read transaction design

6.1.2 Write Transaction Design

Fig. 6-2 shows the block diagram of write transaction design. The write

81

transaction design consists of write address channel (AW), write data channel (W),

write response channel (B). The components of them are write address master port,

slave write buffer monitor, write address arbiter, write address slave port, write data

master port, write data arbiter, write lock mode buffer, write data slave port, write

response master port, write response arbiter and write response salve port. We can

classify them into 5 type devices just the same as read transaction design.

Fig. 6-2 Block diagram of write transaction design

6.2 Implementation Results

Table 6-1 lists the implement result and the comparison to other designs. The

proposed design adopts shared bus architecture and the targets of comparison adopt

the crossbar architecture. The best case of the crossbar means that all the available

82

connections are connected and data channel are fully transferring the data. The

number of available connection is the minimum number of master or slave. Take the

ARM PL300 as an example, the number of available connections is 4. The worst case

is the connection remained to only one.

The ARM PL300 and IIP adopt the crossbar. Although, they provide more

bandwidth than the proposed, considering the hardware cost, the proposed is more

hardware efficient than the others; hence the proposed AXI bus interconnect has the

better bandwidth/gate counts. Although the crossbar provides more bandwidth, not all

platforms are suitable according our simulation. If the bandwidth requirements are

concentrated on single devices, the bandwidth utilization becomes very low and

hardware becomes inefficiency. Therefore, the available connections become the

worst case. To choose a proper architecture, we should take the bandwidth

requirements distribution into consideration.

Table 6-1 Implementation result and comparison

Design proposed ARM PL300 [12] proposed IIP AXI [13]
Bus protocol AXI AXI AXI AXI
Data width 64 64 32 32
of master 5 5 5 5
of slave 4 4 11 11
Topology Shared bus Crossbar Shared bus Crossbar
Operating
frequency

200Mhz 200Mhz 200Mhz 200MHz

Process TSMC
CBDK013

TSMC CL013 TSMC
CBDK013

TSMC 013

Gate count 13.40K 30K 18.85K 63.60K
Provide
bandwidth

3.2GB/sec Best:12.8 GB/sec
Worst:3.2GB/sec

1.6GB/sec Best:8GB/sec
Worst:1.6GB/sec

BW/gate
count

238MBps/K Best:426MBps/K
Worst:106MBps/K

84MBps/K Best:125MBps/K
Worst:25MBps/K

83

Chapter 7 Conclusion and Future Works

7.1 Conclusion

We proposed an AXI bus interconnect which contains four transfer modes:

normal transfer mode, interleaved mode, data lock mode, and hybrid mode. The

normal mode is the basic transfer mode which results in only 50% bandwidth

utilization. Using the interleaved mode improves the bandwidth utilization to 99%.

The data lock mode and hybrid mode are designed for high initial latency memory

controller. The data lock mode decreases the time of transferring the data and increase

the bandwidth utilization. The hybrid mode gives memory controller device more

scope to reorder transaction to decrease latency from memory. These transfer modes

can improve the overall system of an AXI share bus system. In addition, using the

proposed data lock mode and increasing the buffer size also efficiently reduced the

impact of arbitration policy in the video phone scenario. In conclusion, with proper

usage of the transfer modes, simple traditional arbitration policies can be used to

provide equally good system performance.

7.2 Future Works

The data lock mode is designed for memory controller but the other devices can

also use the data lock mode to transfer data. Therefore, how to design a scheme

smartly switching the transfer mode is a problem which is worth to elaborate.

The AXI supports the out-of-order completion, which makes there be no obvious

difference under traditional arbitration policy. To develop a new arbitration policy

84

which supports out-of-order completion would improves the system performance.

The proposed AXI bus interconnect provides good ratio of bandwidth/hardware

cost but different scenarios need different architecture of the bus interconnect.

Designing a multi-layer inside the bus interconnect without increasing the overhead

on masters and slaves is a good way to provide a better ratio of bandwidth/hardware

cost.

85

Reference

[1] Saleh R., Wilton S., Mirabbasi S., Hu A., Greenstreet M., Lemieux G., Pande P.

P., Grecu C., Ivanov A., “System-on-chip: Reuse and Integration,” Proceedings

of the IEEE, vol. 94, pp. 1050-1069, June 2006.

[2] Soo-Yun Hwang, et al., “ An improved implementation method of AHB

BusMatrix,“ in Proceeding of IEEE International SOC Conference, pp. 211-214,

September 2005.

[3] Srinivasan Prakash, Olugqbon Adeoye, Ahmadinia Ali, Erdogan Ahmet T, Arslan

Tunghrul, “Power Analysis of Arbitration Techniques for AMBA AHB based

Reconfigurable System-on-Chip,” in 24th Norchip Conference, pp. 227-230,

November 2006.

[4] Conti M., Caldri M., Vece G.B., Orcioni S., Turchetti C., ”Performance analysis

of defferent arbitration algorithms of the AMBA AHB bus,” in Proceedings of

41st Design Automation Conference, pp. 618-621, 2004.

[5] Francesco Poletti, Davide Bertozzi, Luca Benini, Alessandro Bogliolo,

“Performance Analysis of Arbitration Polices for SoC Communication

Architectures,” Design Automation for Embedded System, pp. 189-210, 2003.

[6] Lahir, K., Raghunathan A., Lakshminarayana G., “LOTTERYBUS: a new

high-performance communication architecture for system-on-chip deisgns,” in

Proceedings of Design Automation Conference, pp. 15-20, 2001.

[7] Sanghun Lee, Chanho Lee, Hyuk-Jae Lee, “A new multi-channel on-chip-bus

architecture for system-on-chips,” in Proceedings of IEEE international SOC

Conference, pp. 305-308, September 2004.

[8] Martino Ruggiero, Rederico Angiolini, Francesco Poletti, Davide Bertozzi, Luca

86

Benini, Roberto Zafalon, “Scalability Analysis of Evolving SoC Interconnect

Protocols,” Int. Symposium on System-on-Chip, 2004.

[9] Lukai Cai, Daniel Gajski, “Transaction level modeling: an overview,” in

Proceedings of the 1st IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis, pp. 19-24, October 2003.

[10] Min-Chi Tsai, “Smart Memory Controller Design for Video Applications,”

Master thesis: National Chiao Tung University, July 2006.

[11] SystemC, OSCI, http://www.systemc.org

[12] PrimeCell AXI Configurable Interconnect (PL300) Technical Reference Manual,

ARM, 2004

[13] Synopsys DesignWare IP solutions for AMBA Interconnect,

http://www.synopsys.com/products/designware/amba_solutions.html

[14] Kun-Bin Lee, Tzu-Chieh Lin, Chein-Wei Jen, “An efficient quality-aware

memory controller for multimedia platform SoC,” IEEE Transactions on Circuits

and Systems for Video Technology, vol.15, pp.620-633, May 2005.

[15] CoWare Limited, http://www.cowae.com

[16] AMBA Protocol, ARM Limited,

http://www.arm.com/products/solutions/AMBAHomePage.html

[17] AMBA AXI Protocol, ARM Limited,

http://www.arm.com/products/solutions/AMBA3AXI.html

87

http://www.systemc.org/
http://www.synopsys.com/products/designware/amba_solutions.html
http://www.cowae.com/
http://www.arm.com/products/solutions/AMBAHomePage.html
http://www.arm.com/products/solutions/AMBA3AXI.html

	Chapter 1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Motivation and Contribution
	1.4 Thesis Organization
	Chapter 2 Overview of the AMBA Bus
	2.1 AHB
	2.1.1 AHB Architecture
	2.1.2 AHB Handshaking and Arbitration

	2.2 AXI
	2.2.1 AXI Architecture
	2.2.2 Channel Handshaking
	2.2.3 Transaction Ordering

	2.3 Comparison between AXI and AHB
	2.3.1 Protocol and Architecture
	2.3.2 Latency and Bandwidth Utilization
	2.3.3 Hardware Cost

	Chapter 3 Simulation Modeling for AXI System
	3.1 Overview of the Modeling Method
	3.1.1 Transaction-Level-Modeling
	3.1.2 Using SystemC as Modeling Language

	3.2 Traffic Generation
	3.3 AXI Master
	3.3.1 Master Behavior Modeling
	3.3.2 Master Types
	3.3.3 States of Mater Processing Transaction

	3.4 AXI Slave
	3.4.1 Slave Types
	3.4.2 States of Slave Processing Transaction

	Chapter 4 Design of AXI Bus Interconnect
	4.1 Bus Interconnect
	4.2 Transfer Mode
	4.2.1 Normal Mode
	4.2.2 Interleaved Mode
	4.2.3 Data Lock Mode
	4.2.4 Hybrid Mode

	4.3 Arbitration Policy
	4.3.1 Our AXI Arbitration Flow
	4.3.2 Fixed Priority
	4.3.3 TDMA
	4.3.4 Round-Robin
	4.3.5 Lottery

	Chapter 5 Simulation and Analysis
	5.1 Introduction
	5.2 PMP Platform
	5.2.1 Overview
	5.2.2 Scenario

	5.3 Experiments
	5.3.1 Performance Metric
	5.3.2 Simulation of Video Phone Scenario

	5.4 AXI vs. AHB
	5.4.1 AHB PMP Platform
	5.4.2 Comparison between AXI and AHB

	Chapter 6 Hardware Implementation
	6.1 Hardware Design
	6.1.1 Read Transaction Design
	6.1.2 Write Transaction Design

	6.2 Implementation Results

	Chapter 7 Conclusion and Future Works
	7.1 Conclusion
	7.2 Future Works

	 Reference

