
國立交通大學 

 
  電子工程學系 電子研究所碩士班 

碩士論文 

 

適用於多輸入多輸出系統之 

低複雜度 K-Best 球體解碼演算法 

 

Low-complexity Techniques of K-Best Sphere 

Decoding for MIMO systems 

 

 

 

 

研究生  : 張修齊 

      指導教授: 張錫嘉  博士 

 

中華民國 九十六 年 九月 



 適用於多輸入多輸出系統之低複雜度 K-Best 球體解碼演算法 

Low-complexity Techniques of K-Best Sphere Decoding 

           for MIMO systems 

研究生  ：張修齊           Student: Hsiu-Chi Chang 

指導教授：張錫嘉 博士      Advisor: Dr.Hsie-Chia Chang 

 

國 立 交 通 大 學 

   電子工程學系 電子研究所碩士班 

碩士論文 

 

A Thesis 
Submitted to Department of Electronics Engineering & Institute of Electronics 

College of Electrical and Computer Engineering 
National Chiao Tung University 

in partial Fulfillment of the Requirements 
for the Degree of Master of Science 

In 

Electronics Engineering 

September 2007 

Hsinchu, Taiwan, Republic of China 

 

 

 

中華民國 九十六 年 九月 
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國立交通大學 

電子工程學系   電子研究所碩士班 

                         摘要 

   這篇論文中，我們在維持和傳統K-Best球體解碼演算法及最大概似偵側(ML 

detection)相近的效能的前提下提出了兩個化簡K-Best 球體解碼演算法的方

法。其中可變動式K-Best 球體解碼演算法提供利用接收訊號來決定K值大小的方

式。 而分群式K-Best球體解碼演算法利用接收訊號的統計特性僅僅需要粗略排

序的比較器就可以替換運算複雜的排序電路。藉由 4x4 64-QAM的系統模擬，位

元錯誤率(BER)訂在 5x10-4 的條件下與傳統的 64-Best 球體解碼演算法做比

較，使用可變動式K-Best 球體解碼演算法可以化簡 23.65% 到 52.22% 的計算

複雜度，並且僅造成 0.13dB到 1.18dB的效能衰減。使用分群式K-Best球體解碼

演算法可以化簡計算複雜度超過 99%，並且僅造成 0.09dB的效能衰減。 
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ABSTRACT 

     

In the thesis, two low-complexity techniques of K-best SD algorithm are proposed 

while remain similar performance to conventional K-best SD algorithm and ML 

detection. Adaptive K-Best SD algorithm provides a means to determine the value K 

according to the received signals. Clustered K-Best SD algorithm uses the statistics 

knowledge of the received signal, and the clustering technique replaces the high 

complexity of the sorter with a few comparators. As compared with conventional 

64-Best SD algorithm for 4x4 64 -QAM system, the adaptive K-Best SD algorithm can 

reduce complexity ranges from 23.65% to 52.22% within 0.13dB and 1.18dB 

performance degradation, whereas the clustered K-Best SD algorithm can reduce over 

99% complexity within 0.09dB performance degradation. 
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Chapter 1
Introdu
tion
1.1 Resear
h MotivationRe
ently, multiple-input multiple-out (MIMO) systems are applied in many wireless ap-pli
ations for better transmission eÆ
ien
y and signal quality due to the inherent diver-sity gain provided by the multi-path environment. Maximum-likelihood (ML) sequen
edete
tion is one of the dete
tion s
hemes for dete
ting the re
eived signals in MIMOsystems. By sear
hing for the 
onstellation point nearest to the re
eived signal, ML de-te
tion is optimized for minimizing the symbol error probabilities, but exhaustive sear
hbe
omes infeasible sin
e the 
omputation 
omplexity grows as the number of antennaor the 
onstellation points in
reases. Sphere de
oding (SD) algorithm 
an redu
e the
omputation 
omplexity by 
on�ning the number of 
onstellation points to be sear
hed,Fin
ke-Pohst [1℄ and S
hnorr-Eu
hner [2℄ are two of the most 
ommon 
omputationallyeÆ
ient sear
h strategies for realizing the ML dete
tion. Nevertheless, the diÆ
ulties inhardware implementation arise be
ause of the non-
onstant 
omputation 
omplexity andde
oding throughput. Alternatively, K-Best SD algorithm [3℄, [4℄ simpli�es the hardwareimplementation of SD algorithm by keeping at most K best paths in ea
h layer, leading to�xed-throughput and predi
table 
omplexity. Note that the term layer refers to the signal
onstellations of an transmit antenna. However, K-Best SD algorithm 
an not guaranteeML performan
e sin
e the ML path might be eliminated due to the breadth-�rst nature ofK-Best SD sear
h approa
h. Thus the value of K should be large enough, and the valueK dominates the performan
e and 
omputation 
omplexity.1



Although K-Best SD algorithm solved the non-
onstant de
oding speed problem of SDalgorithm, the sorting 
omputation 
omplexity is still heavy. In this thesis, two modi�edK-Best SD algorithms are proposed for redu
ing the sorting 
omputation 
omplexity whileremaining the performan
e similar to ML dete
tion. An adaptive K-best SD algorithmis proposed, providing an adaptive sele
tion of K by observing the ratio of the se
ondminimum and minimum of all paths at the previous de
oding layer, and with predi
ted
andidate te
hnique, we 
an 
ompute only a fra
tion of the paths before sele
t the K best
andidates. During the 
omputing pro
ess, sorting be
omes a serious problem when thenumber of K is large. A divided sorting strategy is proposed to a
hieve the near 
onven-tional sorter performan
e, we divid one global sorter into several lo
al sorters, simulationresults show the performan
e will a
hieve near one global sorter when the K sele
tion islarge enough. Furthermore, be
ause the sorting operations 
ause the most 
omputation
omplexity of K-Best SD algorithm, a 
on
ept of 
lustered K-Best SD algorihtm is pro-posed. Due to the statist
s knowledge of re
eved signal, we 
an get the possible 
andidatesby using a few 
omparators instead of sorter whi
h redu
e the 
omputation 
omplexity.As 
ompared with 
onventional 64-Best SD aglroithm for 4� 4 64-QAM system. Theadaptive K-Best SD algorithm 
an redu
e 
omplexity ranges from 23.65% to 52.22%within 0.13dB and 1.18dB performan
e degradation, whereas the 
lustered K-Best SDalgorihtm 
an redu
e over 99% 
omplexity within 0.09dB performan
e degradation.1.2 Thesis OrganizationThis thesis fo
uses on redu
ing the 
omputation 
omplexity of K-Best SD algorithm whilea
hieve similar performan
e to ML dete
tion. The organizeion is as follows. In 
hapter2, basi
 
on
ept of MIMO system model, traditional dete
ting te
hinque and SphereDe
oding(SD) algorihtm are introdu
ed. Adaptive K-Best SD algorithm are des
ribed inChapter 3. In Chapter 4 divided sorting strategy and 
lustered K-Best SD algorithm areintrodu
ed. The simulatioin and 
omparison results are shown in Chapter 5. At last, wemention the 
on
lusion and give some potential future work in Chapter 6.
2



Chapter 2
MIMO System Model
Multiple-input-multiple-output(MIMO) 
ommun
ation systems and spatial multiplexinghave re
ently drawn signi�
ant attention. This is a means to a
hieve gains in system
apa
ity [5℄ and use spatial diversity to manage multipath fading. The following in-trodu
es the 
on
ept of diversity and the advantage of using MIMO system and brifelyexplain linear and non-linear de
oding te
hnique. Further, the sphere de
oding algorithmis des
ribed and the K-Best sphere de
oding algorithm is mentioned for easier hardwareimplementation.2.1 Diversity gainFading, is 
aused by the random 
u
tuations in signal level, is a probelm in the wire-less 
ommuni
ation. Diversity provides multiple path(ideally independent) for the sametransmitted signal. The probability that all bra
hes su�erd in deep fade fade is smallif the number of bra
h in
reases. Thus diveristy te
hnique plays an important role inthe wireless 
ommuni
ation to handle fading 
hannel. The symbol error rate(SER) for asystem employing diversity te
hniques at high SNR 
an be approximated byPe � 
�M (2.1)utilizing log-s
ale log(Pe) � �Mlog(�) + 
0 (2.2)where 
 is a s
aling 
onstant to spe
ify the nature of 
hannel and the modulation type ofthe system and M is the diversity order of the system, and 
0 is the log term of 
. Fig. 2.13



introdu
es diversity gain. The slope of diversity gain will be
ome sharp in log-s
ale byin
reasing M (diversity order) in high SNR region.
S
E
R

SNR(dB)

Low SNR

region

Diversity

gain

By increasing M

(diversity order)

Figure 2.1: Diversity gain in
reases due to SNR advantageFrom the previous disussion, it is obvious that diversity is a powerful te
hnique tomanage fading 
hannel in wireless systems. The te
hnique with the highest diversity willbe prefered for the MIMO system design.2.2 Channel modelFor a MIMO system with NT transmit antennas and NR re
eive antennas, the transmittedand re
eived signals 
an be represented by~y = ~H~s+ ~n; (2.3)where ~y is the NR�1 re
eived 
omplex signals, ~H is an NR�NT matrix of independent andidenti
al distributed (i.i.d.) 
ir
ular Gaussian random variables (
at fading is assumed), ~sis anNT�1 
omplex ve
tor representing the signals transmitted by ea
h transmit antenna,and ~n is the NR � 1 i.i.d. 
omplex Gaussian noise ve
tor. Moreover, the 
omplex model4



in Eq.(2.3) is often des
ribed by the equivalent real-valued representation, whi
h isy = 24 Ref~ygImf~yg 35= 24 Ref ~Hg �Imf ~HgImf ~Hg Ref ~Hg 3524 Ref~sgImf~sg 35 + 24 Ref~ngImf~ng 35= Hs+ n: (2.4)
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Figure 2.2: S
hemati
 of a linear re
eiver for separating the transmitted data streamsover a MIMO 
hannel
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 of a linear re
eiver for separating the transmitted datastreams over a MIMO 
hannelThis is also referred to as the real value de
omposition. For QAM signals, real value5



de
omposition transforms the 
omplex 
onstellation into two real-valued PAM 
onstella-tions, whi
h 
an result to fewer 
omputation. Fig.2.2 shows the general blo
k diagram ofMIMO system. As the �gure shows, a MIMO system takes NT paralle data streams, anduses spe
ial spa
e-time en
oding te
hniques su
h as spatial interleaving and spa
e-time
oding [6℄ [7℄. However, in this thesis to simplify the problem, we use simple blo
k asFig.2.3. After takes NT paralle data streams, the system modulates ea
h of them using
omplex 
onstellations as previous introdu
ed and arrages them through NT antennas.2.3 MIMO dete
tion methodsSeveral dete
tion methods are introdu
ed in the following2.3.1 Linear Dete
tion MethodsAssume a 
hannel has a response, linear det
tion methods try to estimate that mat
h theinverse of the 
hannel. This is done by multiply a 
ompensate matrix to orignal 
hannelmatrix whi
h is usually based on Zero For
ing(ZF) the SER of ZF is de�ned by a upperbound by Pe � Ne��d2min2NT ��(NR�NT+1) (2.5)where Ne is the number of the neighbors of the 
onstellation, dmin is the minimum distan
eof two 
onstelation, and � represents the SNR, NT , NR are transmit antennas and re
eiveantennas respe
tively. where Eq.(2.5) demonstrates the diveristy oreder of ea
h streamis NR � NT + 1. ZF re
eiver has low 
omplexity but it su�ers from noise enhan
ement.MinimumMean Square Error(MMSE) is another linear dete
tion methods. It 
on
erns thenoise enhan
ement problem and minimizes the total error rate. The MMSE re
eiver 
analso a
heive NR �NT + 1 [8℄ diversity order of ZF re
eiver. Though the linear dete
tionmethods requires low 
omputational 
omplexity, but the performan
e degradtation issigni�
ant.2.3.2 Suppression and Su

essive Can
ellationSu

essive 
an
ellation(SC) de
odes the transmission signal by iterative de
oding a up-triangular matrix using bottom up method. It de
odes new data stream iteratively until6



all the transmitted streams are solved it provides only NR�NT +1 diversity order but theperforman
e is only slightly better than MMSE. Ordered su

essive 
an
ellation (OSC)re
eiver or 
alled V-BLAST [9℄ is the improved method. It sorts the de
oding order fromthe highest SNR to the lowest SNR. The OSC may have diversity more thanNR�NT+1 [8℄and have a better performan
e than SC, but it su�ers from error propagation problem,and the performan
e is still suboptimal.2.3.3 Maximum-likelihood dete
tion
Channel 

(H)

QR 

Decomposition
ZF_cost 

Maximum Likelihood

 Algorithm

Channel 

Estimation

Detect 

Symbols

Transmit 

Symbols

Figure 2.4: Blo
k diagram of MIMO dete
tionFor dete
ting the re
eived signals, maximum likelihood (ML) sequen
e dete
tion isone of the MIMO system dete
tion te
hnique that optimizes the symbol error probability[10℄. A

ording to the system model des
ribed in, Fig.2.4 ML dete
tion is equivalent tosear
hing for the ve
tor ŝ that minimizes ky�Hsk2. That is,ŝ = argmins2
 ky �Hsk2 ; (2.6)where 
 is the set 
onsisting of all possible 2Nt-dimensional signal 
onstellation points.Fig.2.4 shows the simpli�ed blo
k diagram of a MIMO re
eiver. The 
hannel estimatorprovides the required 
hannel state information H. By QR de
omposition, the 
hannelmatrix H is de
omposed by H = QR, and Eq.(2.6) 
an be rewritten asky �Hsk2 = (s� szf )HHHH(s� szf )+ yH(I �H(HHH)�1HT )y7



and ŝ = argmins2
 (s� szf )HHTH(s� szf )= argmins2
 �sHRHR�s: (2.7)Note that the matrix R derived from QR de
omposition is an upper triangular matrixwith non-negative diagonal elements, and HHH=RHR. Moreover, szf is the zero-for
ing(ZF) solution that 
an be derived by szf = H+y for H+ is the pseudo-inverse of H. It isper
eived that �s = s� szf is the distan
e from the 
andidates of signal to the ZF solution.Due to the triangular form of R, we 
an rewrite Eq.(2.7) asŝ = argmins2
 NRXi=1 




yi � NTXj=i Rijs(i)j 




2 ; (2.8)where Rij and sj denote the i-th row, j-th 
olumn of R and the j-th element of s.Moreover, we 
an de�ne e(s(i)), the partial square Eu
lidean distan
e(PED) of the i-thlayer, by e(s(i)) = 




yi � NTXj=i Rijs(i)j 




2 ; (2.9)where s(i) = [s(i)i s(i)i+1 � � � s(i)NT ℄T and s(i)j is the j-th element of s(i). Then the a

umulatedEu
lidean distan
e 
orresponding to the 
andidate s(i) 
an be derived re
ursively fromthe PED and the a

umulated Eu
lidean distan
e 
orresponding to s(i+1), denoted byT (si+1)), that is T (s(i)) = T (s(i+1)) + e(s(i)): (2.10)The dete
tion pro
ess starts from i=NT , resulting to a tree-stru
ture, or 
alled depth-�rst,sear
h strategy. However, exhaustively sear
hing for the ML solution be
omes infeasi-ble [11℄ sin
e the 
omputation 
omplexity grows exponentially with Nt or the number of
onstellation points.The ML pefroman
e 
an be de�ned by pairwise error probability(PEP) [8℄, whi
h deter-mines the probability when the input ve
tor symbol s(i) is transmitted while dete
ted ass(j) with i 6= j. The average PEP is upper-bounded at high SNR byP (s(i) ! s(j)) � � �4NT kdi;jk2��NR (2.11)where di;j = s(i) � s(j). From Eq.(2.11) NR order of diversity is a
hieved. For un
odedsystem, ML dete
tion te
hinques outperfroms other in diversity, however the 
omputation8



Table 2.1: Summary of 
omparative performan
e and 
omputation 
omplexity of re
eiversfor di�erent dete
tion te
hniquesRe
eiver Diversity order Performan
e ComplexityZF NR �NT + 1 Poor LowMMSE � NR �NT + 1 Poor LowSC � NR �NT + 1 Medium MediumOSC NR �NT + 1 �, � NR Medium MediumML NR Good High
omlexity is in
reased in an exponetial form, thus next se
tion will introdu
e SphereDe
oding algorihtm to maintain the diversity of ML, while de
rease the 
omputation
omplexity.Tabel 2.1 is the summary of diversity order and SNR loss for di�erent dete
tionte
hinues with spatial multiplexing. The ML re
eiver has zero SNR loss and a
hiver NRorder of diversity.2.4 Sphere De
odingAs the previous se
tion mentioned, ML dete
tion 
an a
hieve full diversity and good per-forman
e for MIMO systems. However, in order to a
hive more diversity gain, in
reasingnumber of antennas is ne
essary, whi
h will 
ause the 
omputation 
omplexity of MLdete
tion higher than linear dete
tion and su

essive 
an
ellation method. Thus, thereshould be some te
hniques to simplify the ML dete
tion method. The following of thisse
tion introdu
ed Sphere De
oding(SD) algorithm and K-Best SD algorithm to a
hievethe goal.
9



2.4.1 Con
ept of Sphere De
oding (SD) algorithmSphere de
oding (SD) algorithm has been proposed and re
ognized as a powerful meansto solve the ML dete
tion problems [4℄ [12℄ [13℄. SD algorithm redu
es the 
omputationby restri
ting the sear
h range. Instead of sear
hing all 
andidates in 
 Eq.(2.6), SDalgorithm 
onstrains a mu
h smaller sear
h range 
SD = fs : �sHRHR�s � d2g; only the
andidates in 
SD will be 
ompared. By the aforementioned pro
edure, the 
andidate ofthe smallest T (s(1)) in Eq.(2.10) is always the ML solution as long as d is properly de�ned.The problem 
an be illustrated as a two-dimensional problem in Fig. 2.5, the solution 
anbe obtained by drawing a 
ir
le around the re
eived signal, and 
hosen proper radius todis
ard the points outside the radius.
dddd

Figure 2.5: Geometri
al representation of the sphere de
oding algorithmFig. 2.6 is an illustrative 
on
ept of Sphere De
oding algorithm. We 
an map thetwo dimensional problem into a tree sear
h problem. For a NT=2 antenna system. Thepossible singal 
andidates are on the green path and passed the initail radius 
onstraint.The rest of the path are pruned during the pro
ess.However, not only the value d, but the 
omputation varies with SNR, leading to anon-
onstant de
oding throughput. Hardware implementation of SD algorithm be
omes
ompli
ated. 10
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S4

Figure 2.6: Extend sphere de
oding to tree sear
h representation2.4.2 Sphere De
oding algorithmThe sphere de
oding 
an be ragarded as �nding s [14℄y = Hs+ n (2.12)where s = [s1s2 � � � sNT ℄T The maximum likelihood de
oding algorihtm 
an be rewrittenas from in Eq.(2.4) theknk2 = ky �Hsk2 = (s� szf )HHHH(s� szf )+ kyk2 � kHszfk2 : (2.13)Based on Fin
ke Pohst method in [1℄, the latti
e point (H)szf lies inside the sphere ofradius d d2 � ky �Hsk2 = (s� szf )HHHH(s� szf )+ kyk2 � kHszfk2 : (2.14)By using the transform of Eq.(2.4)(2.5), Eq.(2.14) 
an be rewritten asd02 � NRXi=1 




yi � NTXj=i Rijs(i)j 




2 ; (2.15)Futher simpli�
ation of Eq.(2.15) and assume NT = NR =M and szf = ~s gives
11



d02 � (s� ~s)HHHH(s� ~s)= (s� ~s)HRHR(s� ~s)= MXi=1 R2i;i (si � ~s) + MXj=i+1 Ri;jRi;i (si � ~s)!2= R2M;M(sM � ~sM)2+ R2M�1;M�1�sM�1 � ~sM�1 + RM�1;MRM�1;M�1 (sM � ~sM)�2 + : : : : (2.16)The 
ondition leads to sM falls in the interval�~sM � d0RM;M � � sM � �~sM + d0RM;M � (2.17)For every sM satisfy Eq.(2.17) we de�ned a new 
onstantd02M�1 = d02 �R2M;M(sM � ~sM)2 (2.18)and a new 
ondition 
an be modi�ed asd0M�12 � R2M�1;M�1�sM�1 � ~sM�1 + RM�1;MRM�1;M�1 (sM � ~sM)�2 (2.19)De�ned sM�1jM = ~sM�1 + RM�1;MRM�1;M�1 (sM � ~sM) and Eq.(2.19) is equuvalent to�~sM�1jM � d0M�1RM�1;M�1� � sM�1 � �~sM�1jM + d0M�1RM�1;M�1� (2.20)In a similar pro
ess, one 
an �nd possible sM�2 and so on, starting nested 
onditionuntil possible s1 is found.2.5 K-Best Sphere De
oding algorithmK-best SD algorithm is an alternative method that improves the de
oding throughput.It simpli�ed the original SD algorithm and maintains a 
onstant throughput by keepingonly the K smallest a

umulated PED at ea
h layer. However, K-best SD algorithm 
annot guarantee the performan
e of ML dete
tion sin
e the ML solution may be eliminated12



when it is not of the K best a

umulated PEDs. Thus, larger K is required and the valueK be
omes a tradeo� between 
omplexity and error performan
e.Fig. 2.8 illustrates the bit error rate of a 4 � 4 MIMO dete
tor of di�erent values ofK, Experimental results show that for 64-QAM, if K is equal to 64, there is pra
ti
allyno performan
e degradation to the ML perfroman
e. However, there is performan
edegradation when K is 
hosen too small.
S1

S2

S3

SM

SM-1

SM-2

Figure 2.7: Geometri
al representation for K-Best SD algorithm in ea
h de
oding layer
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Chapter 3
Proposed Adaptive K-Best SDAlgorihtm
To keep the performan
e similar to ML dete
tion, we should take advantage of bothSphere De
oding algorithm and K-Best SD algorithm. Where one used spe
i�
 radius to
hoose possible 
andidates and the other kept 
onstant K to a
hieve 
onstant de
odingthroughput and easier for parrallel and pipeline hardware implemtation. The adaptive K-Best SD algorithm are introdu
ed whi
h use signal indi
ator to relfe
t the signal 
onditionto 
hoose di�erent K to a
hieve low 
omputation 
omplexity. Predi
ted 
andidates keptthe paths with smaller Partial Eu
lidean Distan
e(PED), and pruned those improperones. The other method is introdu
ed in the next Chapter.3.1 Adaptive K-Best SD algorithmDetermining a proper K value is a way to redu
e 
omplexity and error probability. Dueto fading, the signals su�er from low SNR when they are in deep fades, and K shouldbe 
hosen larger. Contrarily, smaller K is suÆ
ient when the signal strength is high.Dynami
 K implies an signal quality indi
ator is required.A te
hnique for supporting dynami
 K whi
h is referred as adaptive K-best SD algo-rithm, provides a means to observe the required signal quality. For a MIMO system ofNT transmit antennas, this indi
ator 
an be a
quired by the ratio

15



R = M2M1 ; (3.1)where M2 and M1 are the se
ond minimum and minimum of the Nt-th de
oding layer,respe
tively. It 
an be observed that when the value R is below some threshold, theprobability of the ML path being eliminated during the K-best SD pro
essing in
reases.Fig.3.1 is an illustrative example of a 4� 4 64-QAM system, whi
h shows the relationbetween T and the symbol error probability 
onditioned on the value T . The 
urve standsfor the probability Pr(R < T ), and the histogram shows the the 
onditional symbol errorprobability. It is per
eived that symbol error probability is small as T in
reases. Thus,the value K 
an be determined by �rst 
omputing R in Eq.(3.1) , thenK = 8<: K1 if R � T ;K2 otherwise. (3.2)
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Figure 3.1: The probability of R < T and the 
onditional symbol error probability.The value R 
an be regarded as a signal quality indi
ator of the visited signals. In fa
t,at ea
h de
oding layer, there is always a 
orresponding R, and the layer number in whi
h16



R is determined be
omes a tradeo� between 
omputation 
omplexity and performan
e.If R is determined at the �rst few de
oding layers, the 
omputation of the rest of thede
oding layers 
an be redu
ed if K = K2 is 
hosen. However, if R is determined earlier,there are 
han
es that R 
annnot provide suÆ
ient information to report the signal qualityand the performan
e will degrade.The following analysis will show that why R 
an be regarded as a signal qualityindi
ator. We de�ned ~S2N as the re
eived signal of the de
oding layer and Ŝ2N is thesignal re
eived that makes Eq.(2.10) smallest. ~S2N may have a distan
e K � � to Ŝ2N .C(2N)min is the min 
ost in one de
oding layer and C(2N)2nd�min is the se
ond min 
ost of the samede
oding layer. The ratio of C(2N)2nd�min and C(2N)min 
an be the same as previous mentionedR. There are k = 0 and k 6= 0 
ase. For k = 0 
ase, it illustrates that the de
oding signalis the transmitted signal , whi
h implies the noise is samll. From the equation whenthe SNR be
omes larger, the ratio in
reased. Non-zero k implies large noise. Larger Kindi
ates the 2N layer signal su�er from server noise, therefore the ratio be
omes smaller.ŝ2N = ~s2N + k� (3.3)
C(2N)min = (y2N � R2N ŝ2N )2= (y2N � R2N ~s2N � R2Nk�)2= (n2N �R2Nk�)2: (3.4)

C(2N)2nd�min = (y2N � R2N (ŝ2N + u�))2; u 2 f+1;�1g= (n2N �R2N (k + u)�)2: (3.5)
C(2N)2nd�minC(2N)min = 8><>: 1 + �2SNR2N � 2u�pSNR2N if k = 0;1 + (2ku+ 1)�2SNR2N � 2u�(pSNR2N )1 + SNR2Nk2(�2)� 2pSNR2Nk� if k 6= 0. (3.6)

17
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Figure 3.2: The ratio of se
ond minimum over mimimum for k=0 �gure3.2 Predi
ted 
andidatesAlthough the 
omputation 
omplexity of adaptive K-best SD algorihtm is ne
essarilylower than the 
onventional SD algorithm sin
e we use di�erent K to 
hoose the PEDs ofea
h de
oding pro
ess need to be 
al
ulated. However, in some 
ase (low SNR region) onlythe K PEDs resulting to the K best a

umulated PEDs 
an a�e
t the PED 
al
ulationin the next de
oding layer. That is, part of 
omputations of the PEDs are unne
essary.A method to predi
t the more likely PEDs is presented in the following. Only a fra
tionof the PEDs are 
omputed, and thus, the 
omputation 
an be greatly redu
ed.At de
oding layer i, the point ŝi results in the smallest PED for a given s(i+1) 
an bederived by ŝi(i+1) = Q"yi �PNTj=i+1Rijs(i+1)jRii # ; (3.7)where Q [�℄ represents for quntization value and only the L � 1 points nearest to ŝi(i+1)will be 
omputed for e(s(i)). That is, the s(i)i of the ve
tor s(i) will be ŝi(i+1) and its L� 1nearest 
onstellation points. Only L PEDs from e(s(i+1)) should be 
al
ulated instead.18
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Figure 3.3: The ratio of se
ond minimum over mimimum for k 6= 0 �gureA

ordingly, we 
an always have the PED values 
omputed in an as
ending order, andthe �rst L smallest PEDs will 
ontribute to more likely 
andidates.
i-th

layer

(i+1)-th

layer

Figure 3.4: Adaptive K-Best SD algorithm by using predi
ted 
andidatesFig.3.4 is a 64-QAM example with L = 3. The 
onstellation 
orresponds to the i-thlayer is denoted as sj(blue ball), as the �gure shows, the points with 
ross mark will bequantized to the ŝ(i+1), and only the three 
onstellation points (linked by solid lines) willbe 
omputed. Thus, the 
omputation 
omplexity 
an be redu
ed, espe
ially when NT islarge. 19



Chapter 4
Proposed Divided Sorting Strategyand Clustered K-Best SD algorithm
During the de
oding, sorter is a bottle ne
k in the 
omputing pro
ess, thus divdidedsorting strategy is proposed to use several lo
al sorter instead of one global one. Redu
ingthe sorter size will redu
e the 
omputation 
omplexity. Further, we enhan
e the idea ofnot using any sorter to keep the 
andidates by utilizing the 
on
ept to set spe
i�
 radiusof Sphere De
oding, 
onstant 
andidates of K-best SD algorithm, and repla
e sorter witha few 
omparators. Without sorter, we loosely keep the possible 
andidates instead ofpre
isely order all the 
andidates. The algorihtms are introdu
ed as follows.4.1 Divided Sorting StrategyThough we have used adaptvie K-Best SD algorithm to support dynami
 K value a
-
ording to the signal quality, and predi
ted 
andidates method to keep the nearest node,the heavy 
omputation 
omplexity of sorting is still a unsolved problem. A te
hnique toredu
e the number of sorting operation is the divided sorter te
hnique. The 
on
ept isbased on divides the original one global sorter into several lo
al sorters. Arithmeti
 
om-plexity is generally written in a form known as Big-O notation, where the O representsthe 
omplexity of the algorithm and a value n represents the size of the set the algorithmis run against. The two 
lasses of sorting algorithms are O(n2), whi
h in
ludes the bubble,insertion, sele
tion, and shell sorts; and O(n log n) [15℄ whi
h in
ludes the heap, merge,20



and qui
k sorts. for O(n2) algorithms, the divided sorting strategy for four lo
al sorter
an be expressed as (n2) > (n=4)2 � 4 (4.1)and for O(n log n) algorihtms, the divided sorting strategy for four lo
al sorter 
an berewritten as (nlogn) > (n=4)log(n=4)� 4 (4.2)
Even Sorter Odd Sorter

Figure 4.1: divided sorterFig. 4.1 is a example. The 
omputation e�ort is redu
ed to 25% for O(n2) algorithms,and the redu
tion of 
omputation 
omplexity for O(n log n) will be small when n islarge. As long as K is suÆ
iently large, ea
h lo
al sorter will still have similar inputdistribution as the orignal global sorter. Thus using divided sorter strategy will keepsimilar peforman
e to 
onventional K-Best SD algorithm The simulation results show in
hapter 5.4.2 Clustered K-Best SD algorithmIn [16℄ the paper 
hoose an upper bound C and dis
ard e(si) > C-� � i � C=8 wherei = 9�k, and k is the dete
tion layer. But this bound is set by simulation result and thisbound may vary with di�erent 
hannel nature. Our method use statsti
s 
hara
terist
s[17℄ thus the bound will not vary, and is suitalbe for hardware implementation. As theequation model in Chap 2, a MIMO system with NT transmit antennas and NR re
eive21



antennas, the transmitted and re
eived signals 
an be represented by~y = ~H~s+ ~n; (4.3)the assumption of ea
h parameter is spe
i�ed in Chap.2 
hannel model.The equation is equivalent to minimize the ve
tor n̂. To make the ky �Hsk part assmall as possible. for k~nk = ky �Hsk ; (4.4)we 
an rewrite Eq.(4.4) as followsXNRi=1

n(i)

2 = NRXi=1 




yi � NTXj=i Rijs(i)j 




2 ; (4.5)where s(i) = [s(i)i s(i)i+1 � � � s(i)NT ℄T and s(i)j is the j-th element of s(i). Then the 

n(i)

2 isthe square term of the i-th layer. Sin
e we assume the noise is a i.i.d Gaussian randomvarialbe with varian
e �2n, the PNRi=1

n(i)

2 term 
an be viewed as a Chi-square with ndegrees of freedom. To take the advantage of Chi-sqaure for using the 
on�den
e intervalof probability, we use the inverse of the �2 Chi-square 
umulative distribution whi
h is asumation of n i.i.d N(0; 1) fun
tion. The inverse of the �2 
df for a given probability pand v degrees of freedom isx = F�1(pjv) = nx : ~F (xjv) = po (4.6)where p = F (xjv) = Z x0 t(v�2)=2e�t=22v=2�(v=2) dt (4.7)and �(�) is the Gamma fun
tion [18℄. Ea
h element of output x is the value whose 
umu-lative probability under the �2(F ) 
df de�ned by the 
orresponding degrees of freedom v(whi
h means the NR-th re
eiver antenna) is spe
i�ed the 
orresponding probability p.Fig. 4.2 shows that there is always a minimum working BER 
orresponding to aminimum working SNR for a system to operate properly. By using this SNR, we 
ould
al
ulate the �2n of noise and use this �n to de
ide the invese Chi-square 
df mentionedabove. On the re
eiver side, it is not possible to derive the true varian
e of the transmittedsignals, thus using varian
e of noise is an alternative way to be a 
riterion. And the valuex will need to multiply �2n to satisfy the Chi-square 
ondition. We de�nedAml = x� �2n (4.8)22
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SNRFigure 4.2: Representation of minimum working SNR and 
orresponding mimimum work-ing BERThat is , there is very large probability that the value PNRk=i knk2 will fall in the regionh0; A(i)mli. Di�erent layers will have their own A(i)ml 
onstraint and has been de
ided beforethe system start to operate. From previous, one 
an obtain a typi
al value of r, for a truetransmitted signal s ky �Hsk2 = kNk2 / �2 � �22N (4.9)where �22N is a Chi-square random variable with 2N degrees of freedom. We 
an derivedthis expa
ted random varialbe by �2E�22N = 2�2N . In [5℄ the paper 
ounts in the 
hannele�e
t to 
hoose a proper radius. Thus from Eq.(2.7) one possible 
hoi
e of radius isr2 = 2�2KN � y�(I �H(H�H)�1H�)y (4.10)where K � 1 is 
hosen, and a 
on�dan
e interval is set up for the �22N random variable,then one 
an 
apture the true s. However, this method have to 
hoose proper K anda 
on�dan
e interval of �22N for the radius by try and error. In fa
t, the 
hannel gainshould be estimated 
orre
tly or the 
hoi
e of radius will not keep proper 
andidates.It is di�u
ult to 
hoose a proper radius sin
e the 
hannel estimation is never easy tobe estimated pre
isely. Also, for MIMO system, the probability for all the 
hannel gain23



in
reased or de
reased simultaneously is very low. Thus in this thesis, we will not 
onsider
hannel gain, we only use statist
is of 
hi-square and 
hoose a loosely bound based onminimum working BER to keep K 
andidates in ea
h de
oding layer.Fig. 4.3 shows the 
lustered K-Best SD algorithm of keep all the survival paths underthe 
onstraint of A(i)ml. After load the initial data, we 
al
ulate the path 
ost of ea
hsurvival path. Compare with minimum 
ost 
riterion, if there is no path pass the Aml
riterion, load minimum 
ost and index ba
k to the initial state. In the de
oding pro
ess,there may have large 
andidates pass the Aml 
riterion, thus the system have to keepall the survival 
andidates, this be
omes a problem for hardware implementation sin
ememory will be 
on
erned in design a system. Thus we have to take the 
on
ept similar tothe K-Best SD algorithm, to keep 
ertain K 
andidates in ea
h de
oding iteration insteadof keep all the survival paths. Also, how to keep the survival paths without sorter is aproblem. Sin
e the size of storage is only K, we should put those path's 
ost smallestin to the memory. However, we didn't pre
iesly have the order of all survival paths, weshould prune some possible path in the de
oding pro
ess. To provide the solution to thisproblem we divided A(i)ml into C blo
k. By this arrangement, we 
ould arrange the smallerpaths in the former then we 
ould prevent the pruning smaller path's 
ost event.Fig. 4.4 is the statsit
s 
umulative probability of Aml 
onstraint, by using minimumworking SNR to get �n we 
an derive Aml 
riterion as Eq.(4.8). Fig. 4.5 is an illustrativeexample of how Aml 
onsrtaint works. There is a spe
i�
 Aml distribution for ea
h layer.In the i-th layer 
ompare the present PED with A(i)ml 
onstraint. Those path below the
onstraint whi
h is on the left side of the red line, will be kept. Fig. 4.6 shows that dividedthe original Aml 
onstraint into C blo
k. For the original Aml 
onstraint, there may bemore 
andidates than K will survive under the 
onstraint. However, there are only K
andidates 
an be kept during the de
oding pro
ess. One 
an keep the smaller path inthe former to prevent pruing the possible 
andidates by this method. Though be
ause wedidn't prer
isely sort the order of ea
h path's 
ost in the storage blo
ks. Those paths inthe last blo
k may slightly 
ause 
al
ulation error. But as the simulation shows this 
anbe sovled by in
reasing C and have suÆ
inet number of K. Chapping 
riterion into morepi
eses takes the advantage of get the more possible 
andidates in the former.Fig. 4.7 shows the blo
k diagram. The de
oding pro
ess is as follows. At ea
h dete
tion24



1. Load K-best candidate

    from the previous layer

2. Calculate the path cost

    of each survival paths

3. Search for minimum

    cost

End

iteration

Initial load

data

Next data

streamFigure 4.3: Clustered K-Best SD algorithm diagramlayer we refresh the 
andidate lists from the previous layer. There are memory blo
ks
ontain 
nadidates of ea
h possible path with their 
ost at present. We 
al
ulate the n-th
hild index from their m-th parent and its path's 
ost. To prevent the 
ase that no pathsurvived under the A(i)ml 
onstraint when the system will lose the possible 
andidates, thepath with minimum 
ost should always be re
orded and kept.
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Chapter 5
Simulation Results and Comparison
In this se
tion, a 4 � 4 MIMO system is simulated for 
omparing the proposed s
hemesand the 
onventional SD and K-best SD algorithms (K = 64), whereas the ML dete
tionprovides a performan
e baseline. The signal is modulated by 64-QAM and the MIMO
hannel is assumed to fade un
orrelatedly and independently. Totally 106 bits are simu-lated when the SNR is below 30dB, and 107 bits are simulated for SNR � 30dB.5.1 Proposed Adpative K-Best SD AlgorithmThe proposed adaptive K-best SD algorithm 
an be applied with the above mentioned
andidate predi
tion te
hnique, whereas theK1 andK2 
an have distin
t L1 and L2 values,respe
tively. Fig.5.1 presents the error probabilities versus SNR for di�erent dete
tionmethods. It is per
eived that for SNR lower or equal to 30 dB, all the proposed s
hemes
an provide performan
e very 
lose to that of the ML dete
tion. When SNR is greaterthan 30dB, a slight degradation is shown, and the value L dominates the degradation.As shown in Fig. 5.1, for K1 = K2 = 64, the one with L1 = L2 = 8 outperforms the onewith L1 = L2 = 3.The value T provides a tradeo� between the 
omplexity and error probability. Sin
esmaller K2 may lead to performan
e degradation in high SNR, a larger T will be required.On the other hand, Fig. 3.1 shows that symbol error probability drops when T > 10.A

ordingly, we �rst 
ompare two 
ases K1 = 64; K2 = 32; T = 30 with L1 = 8; L2 = 8and K1 = 64; K2 = 32; T = 15 with L1 = L2 = 8, As Fig. 5.1 shows, the former29
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Figure 5.1: BER 
omparisons of di�erent dete
tion s
hemes for 4 � 4 64-QAM MIMOsystemresults to slightly smaller error probabilities, be
ause K1 = 64 is used more often thanK2 = 32, thus, the former 
ase will gain some performan
e advantage. Next, we 
ompareK1 = 64; K2 = 32; T = 15 with L1 = 8; L2 = 8 and K1 = 64; K2 = 32; T = 15 withL1 = 8; L2 = 3 
ases, whereas the parameters 
hosen will result to similar 
omputation
omplexities. It 
an be observed that the value L a�e
t error probability. The maximumvalue of L is the dimension of the PAM 
onstellation. Smaller L will redu
e 
omputatione�ort, however, the performan
e will also degrade sin
e some 
omputation is ignored.Fig.5.3 and Fig.5.4 shows the per
entage of K1 and K2 are sele
ted for SNR = 30,32, and 34 dB. As the SNR in
reases, the per
entage of K2 being sele
ted also in
reases,and more 
omputation 
omplexity 
an be redu
ed. For all dete
tion s
hemes, sorting30
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Figure 5.2: Performan
e 
omparison of di�erent K for di�erent size of sorting groupalways 
ontributes the most to the overall 
omputation 
omplexity. Thus, the number ofsorting operations are re
orded and shown in Table 5.1 and Table 5.2 for 
omparing the
omplexities. As 
ompared with 
onventional 64-Best SD algorithm in a 64-QAM 4� 4MIMO system, The table shows that the redu
tion in the 
omparing 
omplexity rangesfrom 23.65% to 52.22%, whereas the 
orresponding SNR degradation is maintained within0.13dB and 1.1dB for a . Also, the redu
tion of addition and multipli
ation operationranges from 18.59% to 61.66%.
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Figure 5.3: Redu
e 
omputation e�ort of adpative K-Best SD algorithm in SNR = 30,32, and 34dB for T = 30.5.2 Divided Sorting StrategyDivided sorting strategy is based on the knowledge as the kept path in
reased, the per-forman
e degradation with ML dete
tion is samll. Fig. 5.2 shows that when K = 64,the performan
e of dividing lo
al sorter into 4 groups is 
lose to 2 lo
al sorter and globalsorter. This provides the information that we 
an use smaller size lo
al sorter in hardware
onsideration to a
hieve similar performan
e of global sorter te
hnique and ML dete
tion.5.3 Clustered K-Best SD algorithmFig. 5.5 shows the perforna
e 
omparison of using Aml 
onstraint with 
onventional K-Best SD algorihtm and ML dete
tion. From the �gure we 
an observe that when we
hoose the same 
andidates as 64-best SD algorithm divided Aml 
riterion into 16 blo
k,their is only slightly performan
e degradation with 
onventional 64-Best SD algorihtm andML dete
tion. When the number of blo
ks is de
reased, the performan
e degradation issigni�
ant. When one takes Aml 
onstraint with K = 64 
andidates and C = 4 blo
k32
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Figure 5.4: Redu
e 
omputation e�ort of adpative K-Best SD algorithm in SNR = 30,32, and 34dB for T = 15.the performan
e degradation is 2dB 
ompared to the same 
andidates but with C = 16blo
k at BER = 10�4. And when the number of 
andidates is de
reased to 32, theperforman
e degradation is not endured. From the simulation shows, we should 
hooseK = 64 
andidates and divided the blo
k into 16, to maintain similar pefroman
e of
onventional 64-Best SD algorihtm and ML dete
tion.Table 5.3 for 
omparing the 
omplexities. The normalized 
omparing 
omplexity refersto the number of 
ompare operation of all methods normalized to that of the 
onventional64-Best SD algorithm. As 
ompared to 64-Best SD algorithm in a a 64-QAM 4�4 MIMOsystem. The redu
tion in the 
omparing 
omplexity is over 99%, whereas the 
orrespond-ing SNR degradation is maintained within 0.09dB. Also, the redu
tion 
opmlexity inaddition and multipli
ation operation is over 98%.Table 5.4 shows the average path using 
lustered K-Best SD algorithm in ea
h de-
oding layer. The average path in ea
h layer is 4:56 per layer. In 
onsequen
e, the pathneeded to be 
al
ulated is in a small proportion in the de
oding pro
ess when it 
omparedto the 
onventional 64-Best SD algorithm. Besides we normalized addtion and multipli-
ation, the redu
tion is 98.83% when 
ompared to 
onventional 64-best algorithm, thisbeni�t 
omes from the average path derived by 
lustered K-best SD algorithm is very33



Table 5.1: Comparison of ML and 
onventional K-Best SD algorithm and adaptive K-BestSD algorithm Method ML Conventional K1 = K2 = 6464-best L1 = L2 = 3Normalized add/mulp 1:21� 105% 100% 38.34%operationsComparing 3:45� 109 2:03� 106 7:02� 105OperationsNormalized 
omparing 1:67� 105 % 100% 34.58%ComplexitySNR (dB) for 32.64 32.72 33.82BER = 5� 10�4small thus the number of addition and multipli
ation is de
reased. From this result, we
an show that the 
lustered K-Best SD algorithm 
an redu
e most of the addition andmultipli
ation, and 
omparing operations to keep performan
e near 
onventional K-BestSD algorithm and ML dete
tion. Fig 5.6 shows the 
omparing 
omplexity normalized to
onventional 64-Best SD algorithm with performan
e at BER=5�10�4 and Fig 5.7 showsthe normalized add/mutiply operation to 
onvnetional 64-Best SD algortithm with per-forman
e at BER=5� 10�4. They are the position of 
omplexity with the 
orrespondingperforman
e.
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Table 5.2: Comparison of 
onventional K-Best SD algorithm and adaptive K-Best SDalgorithm with predi
ted 
andidates
Method Conventional K1 = 64; K2 = 32 K1 = 64; K2 = 32 K1 = 64; K2 = 3264-best L1 = 8; L2 = 8 L1 = 8; L2 = 8 L1 = 8; L2 = 3T=30 T=15 T=15Normalized add/mulp 100% 81.41% 63.72% 54.65%operationsComparing 2:03� 106 1:55� 106 1:28� 106 9:7� 105OperationsNormalized Comparing 100% 76.35% 63.05% 47.78%ComplexitySNR (dB) for 32.72 32.85 33.05 33.24BER = 5� 10�4
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Table 5.3: Comparison of 
onventional K-Best SD algorithm and 
lustered K-Best SDalgorithm
Method Conventional Aml 
riterion64-best K = 64blo
k C = 16Normalized add/mulp 100% 1.17%operationsComparing 2:03� 106 156OperationsNormalized Comparing 100% 7:68� 10�3%ComplexitySNR (dB) for 32.72 32.81BER = 5� 10�4

36



Table 5.4: Average path number of 
lustered K-Best SD algorithm for K=64, C=16de
oding layer average path8 2.917 3.866 4.915 5.794 6.093 6.012 4.701 2.22
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Chapter 6
Con
lusion
In this thesis, low-
omplexity predi
tion te
hniques of K-Best SD algorithm are proposed.Adaptive K-Best SD algorithm, based on the signal indi
atorR derived in the 
omputationpro
ess, the approa
h 
an re
e
t the 
hannel nature and noise interfern
e to 
hoose properK for di�erent singal level. Predi
ted 
andidates te
hnique 
an 
ompute only a fra
tion ofthe PEDs and thus the 
omputation 
an be greatly redu
ed. During the de
oding pro
ess,sorter is always a 
omputation bottlene
k when K is large. A divdied sorting strategy isintrodu
ed to redu
e the 
ompuatation 
omplexity. Sorting arithmeti
 
omplexity is referto the input set size of the sorter. Several lo
al sorters take advantage of having smallerinput set size than the original global sorter. In order to redu
e the sorting operation andkeep similar performan
e with 
onventional K-Best SD algorihtm. The idea of 
lusteredK-Best SD algorithm is introdu
ed. Due to the statist
s knowledge of the re
eived signal,we 
an repla
e high 
omplexity sorter with a few 
omparators. One 
an use the Chi-squarestatisti
s, whi
h provides a lower bound with high probability for possible 
andidates tosurvive under the 
onstraint. Instead of sorting pre
isely, 
omparators loosely deliveringthe 
andidates into their spe
i�
 
luster. Based on the 
on
ept of K-Best SD algorithm,keeping 
onstant 
andidates in ea
h de
oding layer, we 
an use pipeline ar
hite
ture forhardeware implementation to a
hive 
onstant de
oding speed.In 
on
lusion, the thsis is fo
used on how to solve the 
omputation 
omplexity problemof K-Best SD algorithm. As 
ompared with 
onventional 64-Best SD aglroithm for 4� 464-QAM system. The adaptive K-Best SD algorithm 
an redu
e 
omplexity ranges from23.65% to 52.22% within 0.13dB and 1.18dB performan
e degradation, whereas the 
lus-41



tered K-Best SD algorihtm 
an redu
e over 99% 
omplexity within 0.09dB performan
edegradation.The proposed methods in
luding adaptive K-Best SD algorithm and 
lustered K-BestSD algorithm 
an apply not only to the des
ribed MIMO signal dete
tion probelms, butalso the dete
tion of non-orthogonal Spa
e-Time-Blo
k-Code (STBC) signals. Further,our proposed methods 
an redu
e 
omputation 
omplexity and peform easier hardwareimplementation for those nearest latti
e point problem utilizing SD algorithm.
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