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國立交通大學 

電子工程學系   電子研究所碩士班 

                         摘要 

   這篇論文中，我們在維持和傳統K-Best球體解碼演算法及最大概似偵側(ML 

detection)相近的效能的前提下提出了兩個化簡K-Best 球體解碼演算法的方

法。其中可變動式K-Best 球體解碼演算法提供利用接收訊號來決定K值大小的方

式。 而分群式K-Best球體解碼演算法利用接收訊號的統計特性僅僅需要粗略排

序的比較器就可以替換運算複雜的排序電路。藉由 4x4 64-QAM的系統模擬，位

元錯誤率(BER)訂在 5x10-4 的條件下與傳統的 64-Best 球體解碼演算法做比

較，使用可變動式K-Best 球體解碼演算法可以化簡 23.65% 到 52.22% 的計算

複雜度，並且僅造成 0.13dB到 1.18dB的效能衰減。使用分群式K-Best球體解碼

演算法可以化簡計算複雜度超過 99%，並且僅造成 0.09dB的效能衰減。 
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ABSTRACT 

     

In the thesis, two low-complexity techniques of K-best SD algorithm are proposed 

while remain similar performance to conventional K-best SD algorithm and ML 

detection. Adaptive K-Best SD algorithm provides a means to determine the value K 

according to the received signals. Clustered K-Best SD algorithm uses the statistics 

knowledge of the received signal, and the clustering technique replaces the high 

complexity of the sorter with a few comparators. As compared with conventional 

64-Best SD algorithm for 4x4 64 -QAM system, the adaptive K-Best SD algorithm can 

reduce complexity ranges from 23.65% to 52.22% within 0.13dB and 1.18dB 

performance degradation, whereas the clustered K-Best SD algorithm can reduce over 

99% complexity within 0.09dB performance degradation. 
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Chapter 1
Introdution
1.1 Researh MotivationReently, multiple-input multiple-out (MIMO) systems are applied in many wireless ap-pliations for better transmission eÆieny and signal quality due to the inherent diver-sity gain provided by the multi-path environment. Maximum-likelihood (ML) sequenedetetion is one of the detetion shemes for deteting the reeived signals in MIMOsystems. By searhing for the onstellation point nearest to the reeived signal, ML de-tetion is optimized for minimizing the symbol error probabilities, but exhaustive searhbeomes infeasible sine the omputation omplexity grows as the number of antennaor the onstellation points inreases. Sphere deoding (SD) algorithm an redue theomputation omplexity by on�ning the number of onstellation points to be searhed,Finke-Pohst [1℄ and Shnorr-Euhner [2℄ are two of the most ommon omputationallyeÆient searh strategies for realizing the ML detetion. Nevertheless, the diÆulties inhardware implementation arise beause of the non-onstant omputation omplexity anddeoding throughput. Alternatively, K-Best SD algorithm [3℄, [4℄ simpli�es the hardwareimplementation of SD algorithm by keeping at most K best paths in eah layer, leading to�xed-throughput and preditable omplexity. Note that the term layer refers to the signalonstellations of an transmit antenna. However, K-Best SD algorithm an not guaranteeML performane sine the ML path might be eliminated due to the breadth-�rst nature ofK-Best SD searh approah. Thus the value of K should be large enough, and the valueK dominates the performane and omputation omplexity.1



Although K-Best SD algorithm solved the non-onstant deoding speed problem of SDalgorithm, the sorting omputation omplexity is still heavy. In this thesis, two modi�edK-Best SD algorithms are proposed for reduing the sorting omputation omplexity whileremaining the performane similar to ML detetion. An adaptive K-best SD algorithmis proposed, providing an adaptive seletion of K by observing the ratio of the seondminimum and minimum of all paths at the previous deoding layer, and with preditedandidate tehnique, we an ompute only a fration of the paths before selet the K bestandidates. During the omputing proess, sorting beomes a serious problem when thenumber of K is large. A divided sorting strategy is proposed to ahieve the near onven-tional sorter performane, we divid one global sorter into several loal sorters, simulationresults show the performane will ahieve near one global sorter when the K seletion islarge enough. Furthermore, beause the sorting operations ause the most omputationomplexity of K-Best SD algorithm, a onept of lustered K-Best SD algorihtm is pro-posed. Due to the statists knowledge of reeved signal, we an get the possible andidatesby using a few omparators instead of sorter whih redue the omputation omplexity.As ompared with onventional 64-Best SD aglroithm for 4� 4 64-QAM system. Theadaptive K-Best SD algorithm an redue omplexity ranges from 23.65% to 52.22%within 0.13dB and 1.18dB performane degradation, whereas the lustered K-Best SDalgorihtm an redue over 99% omplexity within 0.09dB performane degradation.1.2 Thesis OrganizationThis thesis fouses on reduing the omputation omplexity of K-Best SD algorithm whileahieve similar performane to ML detetion. The organizeion is as follows. In hapter2, basi onept of MIMO system model, traditional deteting tehinque and SphereDeoding(SD) algorihtm are introdued. Adaptive K-Best SD algorithm are desribed inChapter 3. In Chapter 4 divided sorting strategy and lustered K-Best SD algorithm areintrodued. The simulatioin and omparison results are shown in Chapter 5. At last, wemention the onlusion and give some potential future work in Chapter 6.
2



Chapter 2
MIMO System Model
Multiple-input-multiple-output(MIMO) ommunation systems and spatial multiplexinghave reently drawn signi�ant attention. This is a means to ahieve gains in systemapaity [5℄ and use spatial diversity to manage multipath fading. The following in-trodues the onept of diversity and the advantage of using MIMO system and brifelyexplain linear and non-linear deoding tehnique. Further, the sphere deoding algorithmis desribed and the K-Best sphere deoding algorithm is mentioned for easier hardwareimplementation.2.1 Diversity gainFading, is aused by the random utuations in signal level, is a probelm in the wire-less ommuniation. Diversity provides multiple path(ideally independent) for the sametransmitted signal. The probability that all brahes su�erd in deep fade fade is smallif the number of brah inreases. Thus diveristy tehnique plays an important role inthe wireless ommuniation to handle fading hannel. The symbol error rate(SER) for asystem employing diversity tehniques at high SNR an be approximated byPe � �M (2.1)utilizing log-sale log(Pe) � �Mlog(�) + 0 (2.2)where  is a saling onstant to speify the nature of hannel and the modulation type ofthe system and M is the diversity order of the system, and 0 is the log term of . Fig. 2.13



introdues diversity gain. The slope of diversity gain will beome sharp in log-sale byinreasing M (diversity order) in high SNR region.
S
E
R

SNR(dB)

Low SNR

region

Diversity

gain

By increasing M

(diversity order)

Figure 2.1: Diversity gain inreases due to SNR advantageFrom the previous disussion, it is obvious that diversity is a powerful tehnique tomanage fading hannel in wireless systems. The tehnique with the highest diversity willbe prefered for the MIMO system design.2.2 Channel modelFor a MIMO system with NT transmit antennas and NR reeive antennas, the transmittedand reeived signals an be represented by~y = ~H~s+ ~n; (2.3)where ~y is the NR�1 reeived omplex signals, ~H is an NR�NT matrix of independent andidential distributed (i.i.d.) irular Gaussian random variables (at fading is assumed), ~sis anNT�1 omplex vetor representing the signals transmitted by eah transmit antenna,and ~n is the NR � 1 i.i.d. omplex Gaussian noise vetor. Moreover, the omplex model4



in Eq.(2.3) is often desribed by the equivalent real-valued representation, whih isy = 24 Ref~ygImf~yg 35= 24 Ref ~Hg �Imf ~HgImf ~Hg Ref ~Hg 3524 Ref~sgImf~sg 35 + 24 Ref~ngImf~ng 35= Hs+ n: (2.4)
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Figure 2.2: Shemati of a linear reeiver for separating the transmitted data streamsover a MIMO hannel
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deomposition transforms the omplex onstellation into two real-valued PAM onstella-tions, whih an result to fewer omputation. Fig.2.2 shows the general blok diagram ofMIMO system. As the �gure shows, a MIMO system takes NT paralle data streams, anduses speial spae-time enoding tehniques suh as spatial interleaving and spae-timeoding [6℄ [7℄. However, in this thesis to simplify the problem, we use simple blok asFig.2.3. After takes NT paralle data streams, the system modulates eah of them usingomplex onstellations as previous introdued and arrages them through NT antennas.2.3 MIMO detetion methodsSeveral detetion methods are introdued in the following2.3.1 Linear Detetion MethodsAssume a hannel has a response, linear dettion methods try to estimate that math theinverse of the hannel. This is done by multiply a ompensate matrix to orignal hannelmatrix whih is usually based on Zero Foring(ZF) the SER of ZF is de�ned by a upperbound by Pe � Ne��d2min2NT ��(NR�NT+1) (2.5)where Ne is the number of the neighbors of the onstellation, dmin is the minimum distaneof two onstelation, and � represents the SNR, NT , NR are transmit antennas and reeiveantennas respetively. where Eq.(2.5) demonstrates the diveristy oreder of eah streamis NR � NT + 1. ZF reeiver has low omplexity but it su�ers from noise enhanement.MinimumMean Square Error(MMSE) is another linear detetion methods. It onerns thenoise enhanement problem and minimizes the total error rate. The MMSE reeiver analso aheive NR �NT + 1 [8℄ diversity order of ZF reeiver. Though the linear detetionmethods requires low omputational omplexity, but the performane degradtation issigni�ant.2.3.2 Suppression and Suessive CanellationSuessive anellation(SC) deodes the transmission signal by iterative deoding a up-triangular matrix using bottom up method. It deodes new data stream iteratively until6



all the transmitted streams are solved it provides only NR�NT +1 diversity order but theperformane is only slightly better than MMSE. Ordered suessive anellation (OSC)reeiver or alled V-BLAST [9℄ is the improved method. It sorts the deoding order fromthe highest SNR to the lowest SNR. The OSC may have diversity more thanNR�NT+1 [8℄and have a better performane than SC, but it su�ers from error propagation problem,and the performane is still suboptimal.2.3.3 Maximum-likelihood detetion
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Figure 2.4: Blok diagram of MIMO detetionFor deteting the reeived signals, maximum likelihood (ML) sequene detetion isone of the MIMO system detetion tehnique that optimizes the symbol error probability[10℄. Aording to the system model desribed in, Fig.2.4 ML detetion is equivalent tosearhing for the vetor ŝ that minimizes ky�Hsk2. That is,ŝ = argmins2
 ky �Hsk2 ; (2.6)where 
 is the set onsisting of all possible 2Nt-dimensional signal onstellation points.Fig.2.4 shows the simpli�ed blok diagram of a MIMO reeiver. The hannel estimatorprovides the required hannel state information H. By QR deomposition, the hannelmatrix H is deomposed by H = QR, and Eq.(2.6) an be rewritten asky �Hsk2 = (s� szf )HHHH(s� szf )+ yH(I �H(HHH)�1HT )y7



and ŝ = argmins2
 (s� szf )HHTH(s� szf )= argmins2
 �sHRHR�s: (2.7)Note that the matrix R derived from QR deomposition is an upper triangular matrixwith non-negative diagonal elements, and HHH=RHR. Moreover, szf is the zero-foring(ZF) solution that an be derived by szf = H+y for H+ is the pseudo-inverse of H. It ispereived that �s = s� szf is the distane from the andidates of signal to the ZF solution.Due to the triangular form of R, we an rewrite Eq.(2.7) asŝ = argmins2
 NRXi=1 yi � NTXj=i Rijs(i)j 2 ; (2.8)where Rij and sj denote the i-th row, j-th olumn of R and the j-th element of s.Moreover, we an de�ne e(s(i)), the partial square Eulidean distane(PED) of the i-thlayer, by e(s(i)) = yi � NTXj=i Rijs(i)j 2 ; (2.9)where s(i) = [s(i)i s(i)i+1 � � � s(i)NT ℄T and s(i)j is the j-th element of s(i). Then the aumulatedEulidean distane orresponding to the andidate s(i) an be derived reursively fromthe PED and the aumulated Eulidean distane orresponding to s(i+1), denoted byT (si+1)), that is T (s(i)) = T (s(i+1)) + e(s(i)): (2.10)The detetion proess starts from i=NT , resulting to a tree-struture, or alled depth-�rst,searh strategy. However, exhaustively searhing for the ML solution beomes infeasi-ble [11℄ sine the omputation omplexity grows exponentially with Nt or the number ofonstellation points.The ML pefromane an be de�ned by pairwise error probability(PEP) [8℄, whih deter-mines the probability when the input vetor symbol s(i) is transmitted while deteted ass(j) with i 6= j. The average PEP is upper-bounded at high SNR byP (s(i) ! s(j)) � � �4NT kdi;jk2��NR (2.11)where di;j = s(i) � s(j). From Eq.(2.11) NR order of diversity is ahieved. For unodedsystem, ML detetion tehinques outperfroms other in diversity, however the omputation8



Table 2.1: Summary of omparative performane and omputation omplexity of reeiversfor di�erent detetion tehniquesReeiver Diversity order Performane ComplexityZF NR �NT + 1 Poor LowMMSE � NR �NT + 1 Poor LowSC � NR �NT + 1 Medium MediumOSC NR �NT + 1 �, � NR Medium MediumML NR Good Highomlexity is inreased in an exponetial form, thus next setion will introdue SphereDeoding algorihtm to maintain the diversity of ML, while derease the omputationomplexity.Tabel 2.1 is the summary of diversity order and SNR loss for di�erent detetiontehinues with spatial multiplexing. The ML reeiver has zero SNR loss and ahiver NRorder of diversity.2.4 Sphere DeodingAs the previous setion mentioned, ML detetion an ahieve full diversity and good per-formane for MIMO systems. However, in order to ahive more diversity gain, inreasingnumber of antennas is neessary, whih will ause the omputation omplexity of MLdetetion higher than linear detetion and suessive anellation method. Thus, thereshould be some tehniques to simplify the ML detetion method. The following of thissetion introdued Sphere Deoding(SD) algorithm and K-Best SD algorithm to ahievethe goal.
9



2.4.1 Conept of Sphere Deoding (SD) algorithmSphere deoding (SD) algorithm has been proposed and reognized as a powerful meansto solve the ML detetion problems [4℄ [12℄ [13℄. SD algorithm redues the omputationby restriting the searh range. Instead of searhing all andidates in 
 Eq.(2.6), SDalgorithm onstrains a muh smaller searh range 
SD = fs : �sHRHR�s � d2g; only theandidates in 
SD will be ompared. By the aforementioned proedure, the andidate ofthe smallest T (s(1)) in Eq.(2.10) is always the ML solution as long as d is properly de�ned.The problem an be illustrated as a two-dimensional problem in Fig. 2.5, the solution anbe obtained by drawing a irle around the reeived signal, and hosen proper radius todisard the points outside the radius.
dddd

Figure 2.5: Geometrial representation of the sphere deoding algorithmFig. 2.6 is an illustrative onept of Sphere Deoding algorithm. We an map thetwo dimensional problem into a tree searh problem. For a NT=2 antenna system. Thepossible singal andidates are on the green path and passed the initail radius onstraint.The rest of the path are pruned during the proess.However, not only the value d, but the omputation varies with SNR, leading to anon-onstant deoding throughput. Hardware implementation of SD algorithm beomesompliated. 10
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Figure 2.6: Extend sphere deoding to tree searh representation2.4.2 Sphere Deoding algorithmThe sphere deoding an be ragarded as �nding s [14℄y = Hs+ n (2.12)where s = [s1s2 � � � sNT ℄T The maximum likelihood deoding algorihtm an be rewrittenas from in Eq.(2.4) theknk2 = ky �Hsk2 = (s� szf )HHHH(s� szf )+ kyk2 � kHszfk2 : (2.13)Based on Finke Pohst method in [1℄, the lattie point (H)szf lies inside the sphere ofradius d d2 � ky �Hsk2 = (s� szf )HHHH(s� szf )+ kyk2 � kHszfk2 : (2.14)By using the transform of Eq.(2.4)(2.5), Eq.(2.14) an be rewritten asd02 � NRXi=1 yi � NTXj=i Rijs(i)j 2 ; (2.15)Futher simpli�ation of Eq.(2.15) and assume NT = NR =M and szf = ~s gives
11



d02 � (s� ~s)HHHH(s� ~s)= (s� ~s)HRHR(s� ~s)= MXi=1 R2i;i (si � ~s) + MXj=i+1 Ri;jRi;i (si � ~s)!2= R2M;M(sM � ~sM)2+ R2M�1;M�1�sM�1 � ~sM�1 + RM�1;MRM�1;M�1 (sM � ~sM)�2 + : : : : (2.16)The ondition leads to sM falls in the interval�~sM � d0RM;M � � sM � �~sM + d0RM;M � (2.17)For every sM satisfy Eq.(2.17) we de�ned a new onstantd02M�1 = d02 �R2M;M(sM � ~sM)2 (2.18)and a new ondition an be modi�ed asd0M�12 � R2M�1;M�1�sM�1 � ~sM�1 + RM�1;MRM�1;M�1 (sM � ~sM)�2 (2.19)De�ned sM�1jM = ~sM�1 + RM�1;MRM�1;M�1 (sM � ~sM) and Eq.(2.19) is equuvalent to�~sM�1jM � d0M�1RM�1;M�1� � sM�1 � �~sM�1jM + d0M�1RM�1;M�1� (2.20)In a similar proess, one an �nd possible sM�2 and so on, starting nested onditionuntil possible s1 is found.2.5 K-Best Sphere Deoding algorithmK-best SD algorithm is an alternative method that improves the deoding throughput.It simpli�ed the original SD algorithm and maintains a onstant throughput by keepingonly the K smallest aumulated PED at eah layer. However, K-best SD algorithm annot guarantee the performane of ML detetion sine the ML solution may be eliminated12



when it is not of the K best aumulated PEDs. Thus, larger K is required and the valueK beomes a tradeo� between omplexity and error performane.Fig. 2.8 illustrates the bit error rate of a 4 � 4 MIMO detetor of di�erent values ofK, Experimental results show that for 64-QAM, if K is equal to 64, there is pratiallyno performane degradation to the ML perfromane. However, there is performanedegradation when K is hosen too small.
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Figure 2.7: Geometrial representation for K-Best SD algorithm in eah deoding layer
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Chapter 3
Proposed Adaptive K-Best SDAlgorihtm
To keep the performane similar to ML detetion, we should take advantage of bothSphere Deoding algorithm and K-Best SD algorithm. Where one used spei� radius tohoose possible andidates and the other kept onstant K to ahieve onstant deodingthroughput and easier for parrallel and pipeline hardware implemtation. The adaptive K-Best SD algorithm are introdued whih use signal indiator to relfet the signal onditionto hoose di�erent K to ahieve low omputation omplexity. Predited andidates keptthe paths with smaller Partial Eulidean Distane(PED), and pruned those improperones. The other method is introdued in the next Chapter.3.1 Adaptive K-Best SD algorithmDetermining a proper K value is a way to redue omplexity and error probability. Dueto fading, the signals su�er from low SNR when they are in deep fades, and K shouldbe hosen larger. Contrarily, smaller K is suÆient when the signal strength is high.Dynami K implies an signal quality indiator is required.A tehnique for supporting dynami K whih is referred as adaptive K-best SD algo-rithm, provides a means to observe the required signal quality. For a MIMO system ofNT transmit antennas, this indiator an be aquired by the ratio

15



R = M2M1 ; (3.1)where M2 and M1 are the seond minimum and minimum of the Nt-th deoding layer,respetively. It an be observed that when the value R is below some threshold, theprobability of the ML path being eliminated during the K-best SD proessing inreases.Fig.3.1 is an illustrative example of a 4� 4 64-QAM system, whih shows the relationbetween T and the symbol error probability onditioned on the value T . The urve standsfor the probability Pr(R < T ), and the histogram shows the the onditional symbol errorprobability. It is pereived that symbol error probability is small as T inreases. Thus,the value K an be determined by �rst omputing R in Eq.(3.1) , thenK = 8<: K1 if R � T ;K2 otherwise. (3.2)
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Figure 3.1: The probability of R < T and the onditional symbol error probability.The value R an be regarded as a signal quality indiator of the visited signals. In fat,at eah deoding layer, there is always a orresponding R, and the layer number in whih16



R is determined beomes a tradeo� between omputation omplexity and performane.If R is determined at the �rst few deoding layers, the omputation of the rest of thedeoding layers an be redued if K = K2 is hosen. However, if R is determined earlier,there are hanes that R annnot provide suÆient information to report the signal qualityand the performane will degrade.The following analysis will show that why R an be regarded as a signal qualityindiator. We de�ned ~S2N as the reeived signal of the deoding layer and Ŝ2N is thesignal reeived that makes Eq.(2.10) smallest. ~S2N may have a distane K � � to Ŝ2N .C(2N)min is the min ost in one deoding layer and C(2N)2nd�min is the seond min ost of the samedeoding layer. The ratio of C(2N)2nd�min and C(2N)min an be the same as previous mentionedR. There are k = 0 and k 6= 0 ase. For k = 0 ase, it illustrates that the deoding signalis the transmitted signal , whih implies the noise is samll. From the equation whenthe SNR beomes larger, the ratio inreased. Non-zero k implies large noise. Larger Kindiates the 2N layer signal su�er from server noise, therefore the ratio beomes smaller.ŝ2N = ~s2N + k� (3.3)
C(2N)min = (y2N � R2N ŝ2N )2= (y2N � R2N ~s2N � R2Nk�)2= (n2N �R2Nk�)2: (3.4)

C(2N)2nd�min = (y2N � R2N (ŝ2N + u�))2; u 2 f+1;�1g= (n2N �R2N (k + u)�)2: (3.5)
C(2N)2nd�minC(2N)min = 8><>: 1 + �2SNR2N � 2u�pSNR2N if k = 0;1 + (2ku+ 1)�2SNR2N � 2u�(pSNR2N )1 + SNR2Nk2(�2)� 2pSNR2Nk� if k 6= 0. (3.6)
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Chapter 4
Proposed Divided Sorting Strategyand Clustered K-Best SD algorithm
During the deoding, sorter is a bottle nek in the omputing proess, thus divdidedsorting strategy is proposed to use several loal sorter instead of one global one. Reduingthe sorter size will redue the omputation omplexity. Further, we enhane the idea ofnot using any sorter to keep the andidates by utilizing the onept to set spei� radiusof Sphere Deoding, onstant andidates of K-best SD algorithm, and replae sorter witha few omparators. Without sorter, we loosely keep the possible andidates instead ofpreisely order all the andidates. The algorihtms are introdued as follows.4.1 Divided Sorting StrategyThough we have used adaptvie K-Best SD algorithm to support dynami K value a-ording to the signal quality, and predited andidates method to keep the nearest node,the heavy omputation omplexity of sorting is still a unsolved problem. A tehnique toredue the number of sorting operation is the divided sorter tehnique. The onept isbased on divides the original one global sorter into several loal sorters. Arithmeti om-plexity is generally written in a form known as Big-O notation, where the O representsthe omplexity of the algorithm and a value n represents the size of the set the algorithmis run against. The two lasses of sorting algorithms are O(n2), whih inludes the bubble,insertion, seletion, and shell sorts; and O(n log n) [15℄ whih inludes the heap, merge,20



and quik sorts. for O(n2) algorithms, the divided sorting strategy for four loal sorteran be expressed as (n2) > (n=4)2 � 4 (4.1)and for O(n log n) algorihtms, the divided sorting strategy for four loal sorter an berewritten as (nlogn) > (n=4)log(n=4)� 4 (4.2)
Even Sorter Odd Sorter

Figure 4.1: divided sorterFig. 4.1 is a example. The omputation e�ort is redued to 25% for O(n2) algorithms,and the redution of omputation omplexity for O(n log n) will be small when n islarge. As long as K is suÆiently large, eah loal sorter will still have similar inputdistribution as the orignal global sorter. Thus using divided sorter strategy will keepsimilar peformane to onventional K-Best SD algorithm The simulation results show inhapter 5.4.2 Clustered K-Best SD algorithmIn [16℄ the paper hoose an upper bound C and disard e(si) > C-� � i � C=8 wherei = 9�k, and k is the detetion layer. But this bound is set by simulation result and thisbound may vary with di�erent hannel nature. Our method use statstis haraterists[17℄ thus the bound will not vary, and is suitalbe for hardware implementation. As theequation model in Chap 2, a MIMO system with NT transmit antennas and NR reeive21



antennas, the transmitted and reeived signals an be represented by~y = ~H~s+ ~n; (4.3)the assumption of eah parameter is spei�ed in Chap.2 hannel model.The equation is equivalent to minimize the vetor n̂. To make the ky �Hsk part assmall as possible. for k~nk = ky �Hsk ; (4.4)we an rewrite Eq.(4.4) as followsXNRi=1n(i)2 = NRXi=1 yi � NTXj=i Rijs(i)j 2 ; (4.5)where s(i) = [s(i)i s(i)i+1 � � � s(i)NT ℄T and s(i)j is the j-th element of s(i). Then the n(i)2 isthe square term of the i-th layer. Sine we assume the noise is a i.i.d Gaussian randomvarialbe with variane �2n, the PNRi=1n(i)2 term an be viewed as a Chi-square with ndegrees of freedom. To take the advantage of Chi-sqaure for using the on�dene intervalof probability, we use the inverse of the �2 Chi-square umulative distribution whih is asumation of n i.i.d N(0; 1) funtion. The inverse of the �2 df for a given probability pand v degrees of freedom isx = F�1(pjv) = nx : ~F (xjv) = po (4.6)where p = F (xjv) = Z x0 t(v�2)=2e�t=22v=2�(v=2) dt (4.7)and �(�) is the Gamma funtion [18℄. Eah element of output x is the value whose umu-lative probability under the �2(F ) df de�ned by the orresponding degrees of freedom v(whih means the NR-th reeiver antenna) is spei�ed the orresponding probability p.Fig. 4.2 shows that there is always a minimum working BER orresponding to aminimum working SNR for a system to operate properly. By using this SNR, we ouldalulate the �2n of noise and use this �n to deide the invese Chi-square df mentionedabove. On the reeiver side, it is not possible to derive the true variane of the transmittedsignals, thus using variane of noise is an alternative way to be a riterion. And the valuex will need to multiply �2n to satisfy the Chi-square ondition. We de�nedAml = x� �2n (4.8)22
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inreased or dereased simultaneously is very low. Thus in this thesis, we will not onsiderhannel gain, we only use statistis of hi-square and hoose a loosely bound based onminimum working BER to keep K andidates in eah deoding layer.Fig. 4.3 shows the lustered K-Best SD algorithm of keep all the survival paths underthe onstraint of A(i)ml. After load the initial data, we alulate the path ost of eahsurvival path. Compare with minimum ost riterion, if there is no path pass the Amlriterion, load minimum ost and index bak to the initial state. In the deoding proess,there may have large andidates pass the Aml riterion, thus the system have to keepall the survival andidates, this beomes a problem for hardware implementation sinememory will be onerned in design a system. Thus we have to take the onept similar tothe K-Best SD algorithm, to keep ertain K andidates in eah deoding iteration insteadof keep all the survival paths. Also, how to keep the survival paths without sorter is aproblem. Sine the size of storage is only K, we should put those path's ost smallestin to the memory. However, we didn't preiesly have the order of all survival paths, weshould prune some possible path in the deoding proess. To provide the solution to thisproblem we divided A(i)ml into C blok. By this arrangement, we ould arrange the smallerpaths in the former then we ould prevent the pruning smaller path's ost event.Fig. 4.4 is the statsits umulative probability of Aml onstraint, by using minimumworking SNR to get �n we an derive Aml riterion as Eq.(4.8). Fig. 4.5 is an illustrativeexample of how Aml onsrtaint works. There is a spei� Aml distribution for eah layer.In the i-th layer ompare the present PED with A(i)ml onstraint. Those path below theonstraint whih is on the left side of the red line, will be kept. Fig. 4.6 shows that dividedthe original Aml onstraint into C blok. For the original Aml onstraint, there may bemore andidates than K will survive under the onstraint. However, there are only Kandidates an be kept during the deoding proess. One an keep the smaller path inthe former to prevent pruing the possible andidates by this method. Though beause wedidn't prerisely sort the order of eah path's ost in the storage bloks. Those paths inthe last blok may slightly ause alulation error. But as the simulation shows this anbe sovled by inreasing C and have suÆinet number of K. Chapping riterion into morepieses takes the advantage of get the more possible andidates in the former.Fig. 4.7 shows the blok diagram. The deoding proess is as follows. At eah detetion24
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Chapter 5
Simulation Results and Comparison
In this setion, a 4 � 4 MIMO system is simulated for omparing the proposed shemesand the onventional SD and K-best SD algorithms (K = 64), whereas the ML detetionprovides a performane baseline. The signal is modulated by 64-QAM and the MIMOhannel is assumed to fade unorrelatedly and independently. Totally 106 bits are simu-lated when the SNR is below 30dB, and 107 bits are simulated for SNR � 30dB.5.1 Proposed Adpative K-Best SD AlgorithmThe proposed adaptive K-best SD algorithm an be applied with the above mentionedandidate predition tehnique, whereas theK1 andK2 an have distint L1 and L2 values,respetively. Fig.5.1 presents the error probabilities versus SNR for di�erent detetionmethods. It is pereived that for SNR lower or equal to 30 dB, all the proposed shemesan provide performane very lose to that of the ML detetion. When SNR is greaterthan 30dB, a slight degradation is shown, and the value L dominates the degradation.As shown in Fig. 5.1, for K1 = K2 = 64, the one with L1 = L2 = 8 outperforms the onewith L1 = L2 = 3.The value T provides a tradeo� between the omplexity and error probability. Sinesmaller K2 may lead to performane degradation in high SNR, a larger T will be required.On the other hand, Fig. 3.1 shows that symbol error probability drops when T > 10.Aordingly, we �rst ompare two ases K1 = 64; K2 = 32; T = 30 with L1 = 8; L2 = 8and K1 = 64; K2 = 32; T = 15 with L1 = L2 = 8, As Fig. 5.1 shows, the former29
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Figure 5.1: BER omparisons of di�erent detetion shemes for 4 � 4 64-QAM MIMOsystemresults to slightly smaller error probabilities, beause K1 = 64 is used more often thanK2 = 32, thus, the former ase will gain some performane advantage. Next, we ompareK1 = 64; K2 = 32; T = 15 with L1 = 8; L2 = 8 and K1 = 64; K2 = 32; T = 15 withL1 = 8; L2 = 3 ases, whereas the parameters hosen will result to similar omputationomplexities. It an be observed that the value L a�et error probability. The maximumvalue of L is the dimension of the PAM onstellation. Smaller L will redue omputatione�ort, however, the performane will also degrade sine some omputation is ignored.Fig.5.3 and Fig.5.4 shows the perentage of K1 and K2 are seleted for SNR = 30,32, and 34 dB. As the SNR inreases, the perentage of K2 being seleted also inreases,and more omputation omplexity an be redued. For all detetion shemes, sorting30
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Figure 5.4: Redue omputation e�ort of adpative K-Best SD algorithm in SNR = 30,32, and 34dB for T = 15.the performane degradation is 2dB ompared to the same andidates but with C = 16blok at BER = 10�4. And when the number of andidates is dereased to 32, theperformane degradation is not endured. From the simulation shows, we should hooseK = 64 andidates and divided the blok into 16, to maintain similar pefromane ofonventional 64-Best SD algorihtm and ML detetion.Table 5.3 for omparing the omplexities. The normalized omparing omplexity refersto the number of ompare operation of all methods normalized to that of the onventional64-Best SD algorithm. As ompared to 64-Best SD algorithm in a a 64-QAM 4�4 MIMOsystem. The redution in the omparing omplexity is over 99%, whereas the orrespond-ing SNR degradation is maintained within 0.09dB. Also, the redution opmlexity inaddition and multipliation operation is over 98%.Table 5.4 shows the average path using lustered K-Best SD algorithm in eah de-oding layer. The average path in eah layer is 4:56 per layer. In onsequene, the pathneeded to be alulated is in a small proportion in the deoding proess when it omparedto the onventional 64-Best SD algorithm. Besides we normalized addtion and multipli-ation, the redution is 98.83% when ompared to onventional 64-best algorithm, thisbeni�t omes from the average path derived by lustered K-best SD algorithm is very33



Table 5.1: Comparison of ML and onventional K-Best SD algorithm and adaptive K-BestSD algorithm Method ML Conventional K1 = K2 = 6464-best L1 = L2 = 3Normalized add/mulp 1:21� 105% 100% 38.34%operationsComparing 3:45� 109 2:03� 106 7:02� 105OperationsNormalized omparing 1:67� 105 % 100% 34.58%ComplexitySNR (dB) for 32.64 32.72 33.82BER = 5� 10�4small thus the number of addition and multipliation is dereased. From this result, wean show that the lustered K-Best SD algorithm an redue most of the addition andmultipliation, and omparing operations to keep performane near onventional K-BestSD algorithm and ML detetion. Fig 5.6 shows the omparing omplexity normalized toonventional 64-Best SD algorithm with performane at BER=5�10�4 and Fig 5.7 showsthe normalized add/mutiply operation to onvnetional 64-Best SD algortithm with per-formane at BER=5� 10�4. They are the position of omplexity with the orrespondingperformane.
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Table 5.2: Comparison of onventional K-Best SD algorithm and adaptive K-Best SDalgorithm with predited andidates
Method Conventional K1 = 64; K2 = 32 K1 = 64; K2 = 32 K1 = 64; K2 = 3264-best L1 = 8; L2 = 8 L1 = 8; L2 = 8 L1 = 8; L2 = 3T=30 T=15 T=15Normalized add/mulp 100% 81.41% 63.72% 54.65%operationsComparing 2:03� 106 1:55� 106 1:28� 106 9:7� 105OperationsNormalized Comparing 100% 76.35% 63.05% 47.78%ComplexitySNR (dB) for 32.72 32.85 33.05 33.24BER = 5� 10�4
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Table 5.3: Comparison of onventional K-Best SD algorithm and lustered K-Best SDalgorithm
Method Conventional Aml riterion64-best K = 64blok C = 16Normalized add/mulp 100% 1.17%operationsComparing 2:03� 106 156OperationsNormalized Comparing 100% 7:68� 10�3%ComplexitySNR (dB) for 32.72 32.81BER = 5� 10�4
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Table 5.4: Average path number of lustered K-Best SD algorithm for K=64, C=16deoding layer average path8 2.917 3.866 4.915 5.794 6.093 6.012 4.701 2.22
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Chapter 6
Conlusion
In this thesis, low-omplexity predition tehniques of K-Best SD algorithm are proposed.Adaptive K-Best SD algorithm, based on the signal indiatorR derived in the omputationproess, the approah an reet the hannel nature and noise interferne to hoose properK for di�erent singal level. Predited andidates tehnique an ompute only a fration ofthe PEDs and thus the omputation an be greatly redued. During the deoding proess,sorter is always a omputation bottlenek when K is large. A divdied sorting strategy isintrodued to redue the ompuatation omplexity. Sorting arithmeti omplexity is referto the input set size of the sorter. Several loal sorters take advantage of having smallerinput set size than the original global sorter. In order to redue the sorting operation andkeep similar performane with onventional K-Best SD algorihtm. The idea of lusteredK-Best SD algorithm is introdued. Due to the statists knowledge of the reeived signal,we an replae high omplexity sorter with a few omparators. One an use the Chi-squarestatistis, whih provides a lower bound with high probability for possible andidates tosurvive under the onstraint. Instead of sorting preisely, omparators loosely deliveringthe andidates into their spei� luster. Based on the onept of K-Best SD algorithm,keeping onstant andidates in eah deoding layer, we an use pipeline arhiteture forhardeware implementation to ahive onstant deoding speed.In onlusion, the thsis is foused on how to solve the omputation omplexity problemof K-Best SD algorithm. As ompared with onventional 64-Best SD aglroithm for 4� 464-QAM system. The adaptive K-Best SD algorithm an redue omplexity ranges from23.65% to 52.22% within 0.13dB and 1.18dB performane degradation, whereas the lus-41



tered K-Best SD algorihtm an redue over 99% omplexity within 0.09dB performanedegradation.The proposed methods inluding adaptive K-Best SD algorithm and lustered K-BestSD algorithm an apply not only to the desribed MIMO signal detetion probelms, butalso the detetion of non-orthogonal Spae-Time-Blok-Code (STBC) signals. Further,our proposed methods an redue omputation omplexity and peform easier hardwareimplementation for those nearest lattie point problem utilizing SD algorithm.
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