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ABSTRACT

In the thesis, two low-complexity technigues.of K-best SD algorithm are proposed
while remain similar performance itoconventional K-best SD algorithm and ML
detection. Adaptive K-Best SD algorithm _provides a means to determine the value K
according to the received signals. Clustered K-Best SD algorithm uses the statistics
knowledge of the received signal, and the clustering technique replaces the high
complexity of the sorter with a few comparators. As compared with conventional
64-Best SD algorithm for 4x4 64 -QAM system, the adaptive K-Best SD algorithm can
reduce complexity ranges from 23.65% to 52.22% within 0.13dB and 1.18dB
performance degradation, whereas the clustered K-Best SD algorithm can reduce over

99% complexity within 0.09dB performance degradation.
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Chapter 1

Introduction

1.1 Research Motivation

Recently, multiple-input multiple-out (MIMO) systems are applied in many wireless ap-
plications for better transmission efficiency and signal quality due to the inherent diver-
sity gain provided by the multi—path environment Maximum-likelihood (ML) sequence
detection is one of the detection schemes for. detectlng the received signals in MIMO
systems. By searching for the consfellatlolnlpomt nea:rest to the received signal, ML de-
tection is optimized for rn1n1rn1z1ng the |symm1_rr0r probablhtles but exhaustive search
becomes infeasible since the cornputatlon Complexity grows as the number of antenna
or the constellation points increases. S‘pheré‘ 'decodlng (SD) algorithm can reduce the
computation complexity by confining the number of constellation points to be searched,
Fincke-Pohst [1] and Schnorr-Euchner [2] are two of the most common computationally
efficient search strategies for realizing the ML detection. Nevertheless, the difficulties in
hardware implementation arise because of the non-constant computation complexity and
decoding throughput. Alternatively, K-Best SD algorithm [3], [4] simplifies the hardware
implementation of SD algorithm by keeping at most K best paths in each layer, leading to
fixed-throughput and predictable complexity. Note that the term layer refers to the signal
constellations of an transmit antenna. However, K-Best SD algorithm can not guarantee
ML performance since the ML path might be eliminated due to the breadth-first nature of
K-Best SD search approach. Thus the value of K should be large enough, and the value

K dominates the performance and computation complexity.



Although K-Best SD algorithm solved the non-constant decoding speed problem of SD
algorithm, the sorting computation complexity is still heavy. In this thesis, two modified
K-Best SD algorithms are proposed for reducing the sorting computation complexity while
remaining the performance similar to ML detection. An adaptive K-best SD algorithm
is proposed, providing an adaptive selection of K by observing the ratio of the second
minimum and minimum of all paths at the previous decoding layer, and with predicted
candidate technique, we can compute only a fraction of the paths before select the K best
candidates. During the computing process, sorting becomes a serious problem when the
number of K is large. A divided sorting strategy is proposed to achieve the near conven-
tional sorter performance, we divid one global sorter into several local sorters, simulation
results show the performance will achieve near one global sorter when the K selection is
large enough. Furthermore, because the sorting operations cause the most computation
complexity of K-Best SD algorithm, a concept of clustered K-Best SD algorihtm is pro-
posed. Due to the statistcs knowledge of receved signal, we can get the possible candidates
by using a few comparators instead of sorter Wthh reduce the computation complexity.

As compared with conventlonal 64~ Best SD aglrolthm for 4 x 4 64-QAM system. The
adaptive K-Best SD algorithm can redude| oomplemty ranges from 23.65% to 52.22%
within 0.13dB and 1.18dB performance degradatlon IWhereas the clustered K-Best SD

algorihtm can reduce over 99% cornplex,Lty w1th1n 0 09dB performance degradation.

L& e

1.2 Thesis Organization

This thesis focuses on reducing the computation complexity of K-Best SD algorithm while
achieve similar performance to ML detection. The organizeion is as follows. In chapter
2, basic concept of MIMO system model, traditional detecting techinque and Sphere
Decoding(SD) algorihtm are introduced. Adaptive K-Best SD algorithm are described in
Chapter 3. In Chapter 4 divided sorting strategy and clustered K-Best SD algorithm are
introduced. The simulatioin and comparison results are shown in Chapter 5. At last, we

mention the conclusion and give some potential future work in Chapter 6.



Chapter 2

MIMO System Model

Multiple-input-multiple-output(MIMO) communcation systems and spatial multiplexing
have recently drawn significant attention. This is a means to achieve gains in system
capacity [5] and use spatial diversity to manage multipath fading. The following in-
troduces the concept of diversity and the advantage of using MIMO system and brifely
explain linear and non-linear decoding_t.e,chniqule:_.. Further, the sphere decoding algorithm

is described and the K-Best sphere decoding algpfithm is mentioned for easier hardware

H4
implementation. :

2.1 Diversity gain

o ne

Fading, is caused by the random fluctuations in signal level, is a probelm in the wire-
less communication. Diversity provides multiple path(ideally independent) for the same
transmitted signal. The probability that all braches sufferd in deep fade fade is small
if the number of brach increases. Thus diveristy technique plays an important role in
the wireless communication to handle fading channel. The symbol error rate(SER) for a

system employing diversity techniques at high SNR can be approximated by

P, ~ piM (2.1)

utilizing log-scale
log(P,) =~ —Mlog(p) + ¢ (2.2)
where c is a scaling constant to specify the nature of channel and the modulation type of

the system and M is the diversity order of the system, and ¢’ is the log term of ¢. Fig. 2.1
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introduces diversity gain. The slope of diversity gain will become sharp in log-scale by

increasing M (diversity order) in high SNR region.

Low SNR
region
A /
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~ ~
~N
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>
SNR(dB)

Figure 2.1: Diversity; galn ingreaﬁéé due to SNR advantage
=5\
From the previous disussion, =it 1§ obvioug that diversity is a powerful technique to
manage fading channel in wireless; jsystems':ﬁ_ﬂ;hﬁr te(;hnique with the highest diversity will

be prefered for the MIMO system design.

2.2 Channel model

For a MIMO system with Np transmit antennas and Ng receive antennas, the transmitted

and received signals can be represented by
y = Hs + n, (2.3)

where y is the Np x 1 received complex signals, H is an N x Ny matrix of independent and
identical distributed (i.i.d.) circular Gaussian random variables (flat fading is assumed), §
is an Ny x 1 complex vector representing the signals transmitted by each transmit antenna,

and n is the N x 1 i.i.d. complex Gaussian noise vector. Moreover, the complex model



in Eq.(2.3) is often described by the equivalent real-valued representation, which is

Input
symbol
stream

Re{y}
y = ~
| Im{y}
| Ry —1m{E} [ rets) ] N | Refa) |
| Im{H} Re{H} || Im{s}| | Im{a} |
= Hs+n. (2.4)
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Figure 2.2: Schematic of a lineat receiver for.separating the transmitted data streams

over a MIMO channel
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Figure 2.3: Simplified schematic of a linear receiver for separating the transmitted data

streams over a MIMO channel

This is also referred to as the real value decomposition. For QAM signals, real value



decomposition transforms the complex constellation into two real-valued PAM constella-
tions, which can result to fewer computation. Fig.2.2 shows the general block diagram of
MIMO system. As the figure shows, a MIMO system takes Np paralle data streams, and
uses special space-time encoding techniques such as spatial interleaving and space-time
coding [6] [7]. However, in this thesis to simplify the problem, we use simple block as
Fig.2.3. After takes Ny paralle data streams, the system modulates each of them using

complex constellations as previous introduced and arrages them through Ny antennas.

2.3 MIMO detection methods

Several detection methods are introduced in the following

2.3.1 Linear Detection Methods

Assume a channel has a response, linear detction methods try to estimate that match the
inverse of the channel. This is done by multlp]y a compensate matrix to orignal channel
matrix which is usually based on Zero Forcmg(ZF) the SER of ZF is defined by a upper
bound by j Ha '.'. A

. (N +1)
7 o #
e S N (f; mm:. = 3 (2:5)

where N, is the number of the nmghb@ré olf the constellatlon ymin 1S the minimum distance
of two constelation, and p represents the SNR, NT, Npg are transmit antennas and receive
antennas respectively. where Eq.(2.5) demonstrates the diveristy oreder of each stream
is Np — Ny + 1. ZF receiver has low complexity but it suffers from noise enhancement.
Minimum Mean Square Error(MMSE) is another linear detection methods. It concerns the
noise enhancement problem and minimizes the total error rate. The MMSE receiver can
also acheive N — Ny + 1 [8] diversity order of ZF receiver. Though the linear detection
methods requires low computational complexity, but the performance degradtation is

significant.

2.3.2 Suppression and Successive Cancellation

Successive cancellation(SC) decodes the transmission signal by iterative decoding a up-

triangular matrix using bottom up method. It decodes new data stream iteratively until



all the transmitted streams are solved it provides only Np — Ny +1 diversity order but the
performance is only slightly better than MMSE. Ordered successive cancellation (OSC)
receiver or called V-BLAST [9] is the improved method. It sorts the decoding order from
the highest SNR to the lowest SNR. The OSC may have diversity more than Ngp—Np+1 [8]
and have a better performance than SC, but it suffers from error propagation problem,

and the performance is still suboptimal.

2.3.3 Maximum-likelihood detection

Transmit Channel
Symbols (H) i l
Channel QR
Estimation Decomposition > ZF_cost
Detect Maximum Likelihood
- . R
Symbols Algorithm <

Figure 2.4: Blogk “d‘"iagrarrn of‘MIMO detection

For detecting the received signals, maximum likelihood (ML) sequence detection is
one of the MIMO system detection technique that optimizes the symbol error probability
[10]. According to the system model described in, Fig.2.4 ML detection is equivalent to

searching for the vector § that minimizes ||y — Hs||>. That is,

A . . 2

s = argmin [y — Hs[[", (2.6)
where (2 is the set consisting of all possible 2/N;-dimensional signal constellation points.
Fig.2.4 shows the simplified block diagram of a MIMO receiver. The channel estimator

provides the required channel state information H. By QR decomposition, the channel

matrix H is decomposed by H = QR, and Eq.(2.6) can be rewritten as
ly = Hs||” = (s —s.0) "H"H(s — 5,¢)

+ y"(I - HH"H)'H")y

7



and

§ = argmiél(s—szf)HHTH(s—szf)
s€
. . _HP Hr =
= argmins R"Rs. (2.7)

Note that the matrix R derived from QR decomposition is an upper triangular matrix
with non-negative diagonal elements, and H? H=R¥ R. Moreover, s,¢ is the zero-forcing
(ZF) solution that can be derived by s,s = H"y for HT is the pseudo-inverse of H. It is
perceived that s = s — s,¢ is the distance from the candidates of signal to the ZF solution.

Due to the triangular form of R, we can rewrite Eq.(2.7) as

ZRZJ 5

where R;; and s; denote the i-th row, j-th column of R and the j-th element of s.

Ng 2

, (2.8)

§ = arg min
SEQ

Moreover, we can define e(s(), the partial square Euclidean distance(PED) of the i-th
layer, by

6

, (2.9)

Z}?v !
(@) (2)

where s = [5;"s;", - SNT]T and s is tﬁ% ;j thele’ment of s). Then the accumulated
Euclidean distance correspondmg to the candldate s() can be derived recursively from
the PED and the accumulated E-uchdean ‘distance C(;rrespondlng to st+D_ denoted by
T(s**)), that is ot o
T(s) = T(s1) 4 e(s®). (2.10)
The detection process starts from i=/Np, resulting to a tree-structure, or called depth-first,
search strategy. However, exhaustively searching for the ML solution becomes infeasi-
ble [11] since the computation complexity grows exponentially with NV, or the number of
constellation points.

The ML pefromance can be defined by pairwise error probability(PEP) [8], which deter-

mines the probability when the input vector symbol s is transmitted while detected as

sY) with i # j. The average PEP is upper-bounded at high SNR by

—Ng
P(s® — sy < (L 1d, |2 2.11
(5 = 510 < (12 (2.11)

where d; ; = s — s0). From Eq.(2.11) Ng order of diversity is achieved. For uncoded

system, ML detection techinques outperfroms other in diversity, however the computation

8



Table 2.1: Summary of comparative performance and computation complexity of receivers

for different detection techniques

Receiver Diversity order Performance | Complexity
ZF Nr— Npr+1 Poor Low
MMSE ~ Np— Np+1 Poor Low
SC ~ Nrp— Np+1 Medium Medium
OSC Nr— Nr+1<, < Ng Medium Medium
ML Npr Good High

comlexity is increased in an exponetial form, thus next section will introduce Sphere
Decoding algorihtm to maintain the_ diversityz.of ML, while decrease the computation

complexity. . ,'l__; Tl
; |£ ol alk Y ._

Tabel 2.1 is the summary of diversity order and SNR loss for different detection
techinues with spatial multiplexiﬁ_g". T‘h[e";,ML_:J_:ga‘eeiv_err has zero SNR loss and achiver Np

order of diversity.

2.4 Sphere Decoding

As the previous section mentioned, ML detection can achieve full diversity and good per-
formance for MIMO systems. However, in order to achive more diversity gain, increasing
number of antennas is necessary, which will cause the computation complexity of ML
detection higher than linear detection and successive cancellation method. Thus, there
should be some techniques to simplify the ML detection method. The following of this
section introduced Sphere Decoding(SD) algorithm and K-Best SD algorithm to achieve
the goal.



2.4.1 Concept of Sphere Decoding (SD) algorithm

Sphere decoding (SD) algorithm has been proposed and recognized as a powerful means
to solve the ML detection problems [4] [12] [13]. SD algorithm reduces the computation
by restricting the search range. Instead of searching all candidates in Q Eq.(2.6), SD
algorithm constrains a much smaller search range Qgp = {s : sS"R”Rs < d?}; only the
candidates in Qgp will be compared. By the aforementioned procedure, the candidate of
the smallest 7'(s(")) in Eq.(2.10) is always the ML solution as long as d is properly defined.
The problem can be illustrated as a two-dimensional problem in Fig. 2.5, the solution can
be obtained by drawing a circle around the received signal, and chosen proper radius to

discard the points outside the radius.

- -

// \\
7 N
/// O O \\\O O
/ N

/ \
I/ \\
O (a® 0
\ d I
\ L -
\/ ,/

~— — %

Figure 2.5: Geometrical representation of the sphere decoding algorithm

Fig. 2.6 is an illustrative concept of Sphere Decoding algorithm. We can map the
two dimensional problem into a tree search problem. For a Ny=2 antenna system. The
possible singal candidates are on the green path and passed the initail radius constraint.
The rest of the path are pruned during the process.

However, not only the value d, but the computation varies with SNR, leading to a
non-constant decoding throughput. Hardware implementation of SD algorithm becomes

complicated.

10
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S2
S1 OO0 O O O O

Figure 2.6: Extend sphere decoding to tree search representation

2.4.2 Sphere Decoding algorithm
The sphere decoding can be ragarded as finding s [14]

y=Hs+n (2.12)

where s = [s155 - sx,|7 The maximum likelihood decoding algorihtm can be rewritten

as from in Eq.(2.4) the

e
J B J

!

Inll* = lly —Bs[ | =285 sur) FHH(s — s.r)

O IV A s (2.13)

Based on Fincke Pohst method in [1], the lattice point (H)s,¢ lies inside the sphere of
radius d
d*> |ly —Hs||” = (s —s)THTH(s — s,)
+ v ll” — 1 Hsge|” (2.14)
By using the transform of Eq.(2.4)(2.5), Eq.(2.14) can be rewritten as

: (2.15)

Ngr Nr _
53 B
i=1 j=i

Futher simplification of Eq.(2.15) and assume Ny = Np = M and s,; = § gives

11



d? > (s—38)"H"H(s —3)

= (s—8)"R"R(s —3)

SDILACTERD SECTE)

j=i+1

= Ry a(sm—8u)?

N Ryi— \
+ R%/[*I,Mfl (SMI —Sp-1+ RM&(SM — SM)> +.... (2.16)
M—1,M—1

The condition leads to s, falls in the interval

[éM— d w < sy < FMJF d J (2.17)

M,M Ryrm

For every s, satisfy Eq.(2.17) we defined a new constant
i =d? — Ry p(sy —8u)° (2.18)

and a new condition can be modified agi ' is

== 2 3% R
dy_” > R%_l,Mil-(sMH-_;—"st + R'Mil’M(sM - sM)> (2.19)
A Yoy v
Defined sy—ijpm = Spr—1 + 7RM;I€"M‘ (sar — s}w)and Eq.(2.19) is equuvalent to
RMfl,Mfl' o
Ay

MJ (2.20)

—‘ <sy-1 < FM1M +
Ry 11

%M”M T Rt iaa

In a similar process, one can find possible s); 5 and so on, starting nested condition

until possible s; is found.

2.5 K-Best Sphere Decoding algorithm

K-best SD algorithm is an alternative method that improves the decoding throughput.
It simplified the original SD algorithm and maintains a constant throughput by keeping
only the K smallest accumulated PED at each layer. However, K-best SD algorithm can

not guarantee the performance of ML detection since the ML solution may be eliminated

12



when it is not of the K best accumulated PEDs. Thus, larger K is required and the value
K becomes a tradeoff between complexity and error performance.

Fig. 2.8 illustrates the bit error rate of a 4 x 4 MIMO detector of different values of
K, Experimental results show that for 64-QAM, if K is equal to 64, there is practically
no performance degradation to the ML perfromance. However, there is performance

degradation when K is chosen too small.

Figure 2.7: Geometrical representdtion fo‘r K=Best SD algorithm in each decoding layer

13
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Figure 2.8: Comparison of ML, and K-Best SD algorithm for 4 x 4 64-QAM MIMO system
with K=8 and 64
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Chapter 3

Proposed Adaptive K-Best SD
Algorihtm

To keep the performance similar to ML detection, we should take advantage of both
Sphere Decoding algorithm and K-Best SD algorithm. Where one used specific radius to
choose possible candidates and the otl}.er-kept..gpnstant K to achieve constant decoding
throughput and easier for parralleln,ziﬁlci'i)ipgline -hérdx_zvare implemtation. The adaptive K-
Best SD algorithm are introduced-IWhich ﬁ's'(.é‘s;l.'gfiléil'”irfd.icator to relfect the signal condition
to choose different K to achieve Iow CompuMl CornpleX1ty Predicted candidates kept
the paths with smaller Partial Euchdean Dlstance(PED) and pruned those improper

ones. The other method is mtroduced it the next Chapter.

3.1 Adaptive K-Best SD algorithm

Determining a proper K value is a way to reduce complexity and error probability. Due
to fading, the signals suffer from low SNR when they are in deep fades, and K should
be chosen larger. Contrarily, smaller K is sufficient when the signal strength is high.
Dynamic K implies an signal quality indicator is required.

A technique for supporting dynamic K which is referred as adaptive K-best SD algo-
rithm, provides a means to observe the required signal quality. For a MIMO system of

Nr transmit antennas, this indicator can be acquired by the ratio

15



=

where M, and M, are the second minimum and minimum of the N;-th decoding layer,

R (3.1)

respectively. It can be observed that when the value R is below some threshold, the
probability of the ML path being eliminated during the K-best SD processing increases.

Fig.3.1 is an illustrative example of a 4 x 4 64-QAM system, which shows the relation
between T and the symbol error probability conditioned on the value 7. The curve stands
for the probability Pr(R < T'), and the histogram shows the the conditional symbol error
probability. It is perceived that symbol error probability is small as 7" increases. Thus,

the value K can be determined by first computing R in Eq.(3.1) , then

K, ifR<T,
K = (3.2)
K5 otherwise.

0.7

- Pr(R<T)
3 Pr (symbol error occurs | R=T)

Probabilities

30 35

Figure 3.1: The probability of R < T and the conditional symbol error probability.

The value R can be regarded as a signal quality indicator of the visited signals. In fact,

at each decoding layer, there is always a corresponding R, and the layer number in which
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R is determined becomes a tradeoff between computation complexity and performance.
If R is determined at the first few decoding layers, the computation of the rest of the
decoding layers can be reduced if K = K, is chosen. However, if R is determined earlier,
there are chances that R cannnot provide sufficient information to report the signal quality
and the performance will degrade.

The following analysis will show that why R can be regarded as a signal quality
indicator. We defined S’ZN as the received signal of the decoding layer and SQN is the
signal received that makes Eq.(2.10) smallest. S'QN may have a distance K x A to Son.

C®Y) is the min cost in one decodmg layer and 02 is the second min cost of the same

and C’mZ
R. There are k = 0 and k # 0 case. For k = 0 case, it illustrates that the decoding signal

nd min

decoding layer. The ratio of 02 can be the same as previous mentioned

nd min n

is the transmitted signal , which implies the noise is samll. From the equation when
the SNR becomes larger, the ratio increased. Non-zero k implies large noise. Larger K

indicates the 2N layer signal suffer from server noise, therefore the ratio becomes smaller.

S = Sl + kA (3.3)
i B AR
. P~ & -
Ol =iy SIRGRS )
= (pNERINSy — RoykA)?
= (nany — RonkA)?. (3.4)
(2N) _ 2 2
Corid’min = (an — Ran (52N +ul))*,u € {+1, -1}
= (naoy — Ron(k + U)A)Q. (3.5)
052];72 _ 1+A2SNR2N —2’LLA\/SNR2N if k :0,
oM |y Ghut DAPSNRyy = 20A(VSNBow) gy, (3.6)
mn 1+ SNRynk*(A?) — 2¢/SNRynkA '
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Figure 3.2: The ratio of second mlmmum over mimimum for k=0 figure

3.2 Predicted candldatesl

Although the computation complex1tylof Qpive K best SD algorihtm is necessarily
lower than the conventional SD algorlthm s‘lnce we. use different K to choose the PEDs of
each decoding process need to be calculated ! However, in some case (low SNR region) only
the K PEDs resulting to the K best accumulated PEDs can affect the PED calculation
in the next decoding layer. That is, part of computations of the PEDs are unnecessary.
A method to predict the more likely PEDs is presented in the following. Only a fraction

of the PEDs are computed, and thus, the computation can be greatly reduced.

At decoding layer i, the point §; results in the smallest PED for a given s can be

derived by . -
. P ,T Rz iS !
§Z.(z+1) =Q y Z]Erl 775 ’ (3.7)

where @) [*] represents for quntization value and only the L — 1 points nearest to PAGSY
will be computed for e(s(?). That is, the s( " of the vector s will be §;t!) and its L — 1

nearest constellation points. Only L PEDs from e(s("!)) should be calculated instead.
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Figure 3.3: The ratio of second minimum over mimimum for k& # 0 figure

Accordingly, we can always have the PED: jvalﬁés‘cp:mputed in an ascending order, and
the first L smallest PEDs will contribute tqf,r'ﬁ(.)re likerilgy candidates.

5 ‘

LD o O @

layer

_____ h i-th
\. \’ layer

Figure 3.4: Adaptive K-Best SD algorithm by using predicted candidates

Fig.3.4 is a 64-QAM example with L. = 3. The constellation corresponds to the i-th
layer is denoted as s;j(blue ball), as the figure shows, the points with cross mark will be
quantized to the 571 and only the three constellation points (linked by solid lines) will
be computed. Thus, the computation complexity can be reduced, especially when Nrp is

large.
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Chapter 4

Proposed Divided Sorting Strategy
and Clustered K-Best SD algorithm

During the decoding, sorter is a bottle neck in the computing process, thus divdided
sorting strategy is proposed to use several local sorter instead of one global one. Reducing
the sorter size will reduce the comput@ti-oncomplexity. Further, we enhance the idea of
not using any sorter to keep the can’"dlidat“e‘s_ by ,utiifzing the concept to set specific radius
of Sphere Decoding, constant Cancii.dates O"F 1Ktl—best SDI algorithm, and replace sorter with
a few comparators. Without softer, we 19@ kéep'ﬁthe possible candidates instead of

precisely order all the candidates.-'The"“fcﬂgor”i.h{fhs _{ire introduced as follows.

4.1 Divided Sorting Strategy

Though we have used adaptvie K-Best SD algorithm to support dynamic K value ac-
cording to the signal quality, and predicted candidates method to keep the nearest node,
the heavy computation complexity of sorting is still a unsolved problem. A technique to
reduce the number of sorting operation is the divided sorter technique. The concept is
based on divides the original one global sorter into several local sorters. Arithmetic com-
plexity is generally written in a form known as Big-O notation, where the O represents
the complexity of the algorithm and a value n represents the size of the set the algorithm
is run against. The two classes of sorting algorithms are O(n?), which includes the bubble,

insertion, selection, and shell sorts; and O(n log n) [15] which includes the heap, merge,
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and quick sorts. for O(n?) algorithms, the divided sorting strategy for four local sorter

can be expressed as
(n?) > (n/4)* x 4 (4.1)
and for O(n log n) algorihtms, the divided sorting strategy for four local sorter can be

rewritten as

(nlogn) > (n/4)log(n/4) x 4 (4.2)

Even Sorter Odd Sorter

Flgure s 1 d1v1ded Sorter
Bl

Fig. 4.1 is a example. The computatlon effOrt. 15 reduced to 25% for O(n?) algorithms,
and the reduction of computatlon complexrt—y—f-‘er Q(n log n) will be small when n is
large. As long as K is suﬂimently large each looal sorter will still have similar input
distribution as the orignal global sorter‘ Thus using divided sorter strategy will keep
similar peformance to conventional K-Best SD algorithm The simulation results show in

chapter 5.

4.2 Clustered K-Best SD algorithm

In [16] the paper choose an upper bound C and discard e(s;) > C-a x i x C'/8 where
t =9 —k, and k is the detection layer. But this bound is set by simulation result and this
bound may vary with different channel nature. Our method use statstics characteristcs
[17] thus the bound will not vary, and is suitalbe for hardware implementation. As the

equation model in Chap 2, a MIMO system with Ny transmit antennas and Npg receive
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antennas, the transmitted and received signals can be represented by
y =HS +n, (4.3)

the assumption of each parameter is specified in Chap.2 channel model.
The equation is equivalent to minimize the vector n. To make the ||y — Hs|| part as

small as possible. for

n|l = [ly — Hs||, (4.4)
we can rewrite Eq.(4.4) as follows
Nr . Nr 2
z:i:1Hn(Z H Z ZRZ] Sitll s (4.5)
=1

(@)

and S;

(@) () (#) T

where s@ = [ s, - s is the j-th element of s). Then the Hn(i)H2 is
the square term of the i-th layer. Since we assume the noise is a i.i.d Gaussian random
varialbe with variance o2, the ZfV:RlHn(l)HZ term can be viewed as a Chi-square with n
degrees of freedom. To take the advantage of Chi-sqaure for using the confidence interval
of probability, we use the inverse of the y2! Ch1+square cumulative distribution which is a

sumation of n i.i.d N(0,1) functlon The uilverse of the x? cdf for a given probability p

and v degrees of freedom is -1 = A

=f‘r-'f-1;.<,?’."5>-5§WFfﬁ*5> -1} "

- H0=2)/2 ~t/2 ]
= Fl(zlv) = ———dl 4.7
p=Fll) = [ T (@7)

and I'(x) is the Gamma function [18]. Each element of output x is the value whose cumu-

where

lative probability under the x*(F) cdf defined by the corresponding degrees of freedom v

(which means the Ng-th receiver antenna) is specified the corresponding probability p.
Fig. 4.2 shows that there is always a minimum working BER corresponding to a

minimum working SNR for a system to operate properly. By using this SNR, we could

calculate the o2

of noise and use this 0, to decide the invese Chi-square cdf mentioned
above. On the receiver side, it is not possible to derive the true variance of the transmitted
signals, thus using variance of noise is an alternative way to be a criterion. And the value

x will need to multiply o2 to satisfy the Chi-square condition. We defined
A =1z x 0?2 (4.8)
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Figure 4.2: Representation of minimum working SNR and corresponding mimimum work-

ing BER

That is , there is very large probablhty tl“ulqt the value STVE ||n|)* will fall in the region
[0 Al ] Different layers will have their own A( o constramt and has been decided before
the system start to operate. From prev1ous—eﬂe-ean obtam a typical value of r, for a true
transmitted signal s

ly — Hs|” = [[N]|* oc o* - 3y (4.9)

where 3, is a Chi-square random variable with 2N degrees of freedom. We can derived
this expacted random varialbe by 0?Ex2, = 20%N. In [5] the paper counts in the channel

effect to choose a proper radius. Thus from Eq.(2.7) one possible choice of radius is
r? =20°KN — y*(I — H(H*H)""H")y (4.10)

where K > 1 is chosen, and a confidance interval is set up for the y2, random variable,
then one can capture the true s. However, this method have to choose proper K and
a confidance interval of x3, for the radius by try and error. In fact, the channel gain
should be estimated correctly or the choice of radius will not keep proper candidates.
It is diffucult to choose a proper radius since the channel estimation is never easy to

be estimated precisely. Also, for MIMO system, the probability for all the channel gain
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increased or decreased simultaneously is very low. Thus in this thesis, we will not consider
channel gain, we only use statistcis of chi-square and choose a loosely bound based on
minimum working BER to keep K candidates in each decoding layer.

Fig. 4.3 shows the clustered K-Best SD algorithm of keep all the survival paths under
the constraint of Affl)l After load the initial data, we calculate the path cost of each
survival path. Compare with minimum cost criterion, if there is no path pass the A,
criterion, load minimum cost and index back to the initial state. In the decoding process,
there may have large candidates pass the A, criterion, thus the system have to keep
all the survival candidates, this becomes a problem for hardware implementation since
memory will be concerned in design a system. Thus we have to take the concept similar to
the K-Best SD algorithm, to keep certain K candidates in each decoding iteration instead
of keep all the survival paths. Also, how to keep the survival paths without sorter is a
problem. Since the size of storage is only K, we should put those path’s cost smallest
in to the memory. However, we didn’t preciesly have the order of all survival paths, we
should prune some possible path in the decodmg process. To provide the solution to this
problem we divided AD oy into C block By th1s arrangement we could arrange the smaller
paths in the former then we could prevent Jhe prﬂmng smaller path’s cost event.

Fig. 4.4 is the statsitcs Cumulatlve probablllty of Aml constraint, by using minimum

working SNR to get o0, we can derrve Aml crl’cerlon as Eq.(4.8). Fig. 4.5 is an illustrative
example of how Aml consrtaint Works T,here isa specn‘ic Aml distribution for each layer.
In the i-th layer compare the present PED with Aml constraint. Those path below the
constraint which is on the left side of the red line, will be kept. Fig. 4.6 shows that divided
the original Aml constraint into C' block. For the original Aml constraint, there may be
more candidates than K will survive under the constraint. However, there are only K
candidates can be kept during the decoding process. One can keep the smaller path in
the former to prevent pruing the possible candidates by this method. Though because we
didn’t prercisely sort the order of each path’s cost in the storage blocks. Those paths in
the last block may slightly cause calculation error. But as the simulation shows this can
be sovled by increasing C' and have sufficinet number of K. Chapping criterion into more
piceses takes the advantage of get the more possible candidates in the former.

Fig. 4.7 shows the block diagram. The decoding process is as follows. At each detection
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Figure 4.3: Clus-téred Kﬂ?gst" SD algorithm diagram
;\‘ | YT

layer we refresh the candidate lists from the previou$ layer. There are memory blocks

contain cnadidates of each possible pathavith their ¢ost at present. We calculate the n-th
child index from their m-th parent and/it§/path’s cost. To prevent the case that no path
survived under the Affl)l constraint when the system will lose the possible candidates, the

path with minimum cost should always be recorded and kept.
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Figure 4.7: Improved clustered K-Best SD algorithm diagram
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Chapter 5

Simulation Results and Comparison

In this section, a 4 x 4 MIMO system is simulated for comparing the proposed schemes
and the conventional SD and K-best SD algorithms (K = 64), whereas the ML detection
provides a performance baseline. The signal is modulated by 64-QAM and the MIMO
channel is assumed to fade uncorrelatedly and independently. Totally 10° bits are simu-

lated when the SNR. is below 30dB, and,lOT hifs are simulated for SNR > 30dB.

5.1 Proposed Adpative K_::-Best -SD Algorithm

|

The proposed adaptive K-best S]-f’)_-jﬂallgﬂ'oi‘{thrﬁ -'Ean be applied with the above mentioned
candidate prediction technique, Where'a'é‘the Ky afid“KQ can have distinct L, and L, values,
respectively. Fig.5.1 presents the error probabilities versus SNR for different detection
methods. It is perceived that for SNR lower or equal to 30 dB, all the proposed schemes
can provide performance very close to that of the ML detection. When SNR is greater
than 30dB, a slight degradation is shown, and the value L dominates the degradation.
As shown in Fig. 5.1, for K; = K5 = 64, the one with L; = Ly = 8 outperforms the one
with L; = Ly = 3.

The value T provides a tradeoff between the complexity and error probability. Since
smaller K5 may lead to performance degradation in high SNR, a larger 7" will be required.
On the other hand, Fig. 3.1 shows that symbol error probability drops when 7" > 10.
Accordingly, we first compare two cases K; = 64, Ky = 32, T = 30 with ; = 8, Ly, = 8
and K; = 64, Ky, = 32,7 = 15 with I = L, = 8, As Fig. 5.1 shows, the former
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Figure 5.1: BER comparisons of differept de’Fgcti'dﬁ schemes for 4 x 4 64-QAM MIMO

system

results to slightly smaller error probabilities, because K; = 64 is used more often than
Ky = 32, thus, the former case will gain some performance advantage. Next, we compare
Ky =64, Ky = 32,7 = 15 with L} = 8, Ly = 8 and K, = 64, Ky = 32,7 = 15 with
Ly = 8, L, = 3 cases, whereas the parameters chosen will result to similar computation
complexities. It can be observed that the value L affect error probability. The maximum
value of L is the dimension of the PAM constellation. Smaller L will reduce computation
effort, however, the performance will also degrade since some computation is ignored.
Fig.5.3 and Fig.5.4 shows the percentage of K; and K, are selected for SNR = 30,
32, and 34 dB. As the SNR increases, the percentage of Ky being selected also increases,

and more computation complexity can be reduced. For all detection schemes, sorting
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Figure 5.2: Performance comparison of different K for different size of sorting group

always contributes the most to the overall computation complexity. Thus, the number of
sorting operations are recorded and shown in Table 5.1 and Table 5.2 for comparing the
complexities. As compared with conventional 64-Best SD algorithm in a 64-QAM 4 x 4
MIMO system, The table shows that the reduction in the comparing complexity ranges
from 23.65% to 52.22%, whereas the corresponding SNR degradation is maintained within
0.13dB and 1.1dB for a . Also, the reduction of addition and multiplication operation
ranges from 18.59% to 61.66%.
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Figure 5.3: Reduce computation effort of adpative K-Best SD algorithm in SNR = 30,
32, and 34dB for T = 30.

5.2 Divided Sorting Strategy

Divided sorting strategy is based‘on thé kmowledge/as the kept path increased, the per-
formance degradation with ML detection is samll® Fig. 5.2 shows that when K = 64,
the performance of dividing local sorter into 4 groups is close to 2 local sorter and global
sorter. This provides the information that we can use smaller size local sorter in hardware

consideration to achieve similar performance of global sorter technique and ML detection.

5.3 Clustered K-Best SD algorithm

Fig. 5.5 shows the perfornace comparison of using A,,; constraint with conventional K-
Best SD algorihtm and ML detection. From the figure we can observe that when we
choose the same candidates as 64-best SD algorithm divided Aml criterion into 16 block,
their is only slightly performance degradation with conventional 64-Best SD algorihtm and
ML detection. When the number of blocks is decreased, the performance degradation is

significant. When one takes Aml constraint with K = 64 candidates and C' = 4 block
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Figure 5.4: Reduce computation effort of adpative K-Best SD algorithm in SNR = 30,
32, and 34dB for T = 15.

the performance degradation is 2dB comparedsto the same candidates but with C' = 16
block at BER = 10~*. And when the number (‘)f‘candidates is decreased to 32, the
performance degradation is not éndured. From the simulation shows, we should choose
K = 64 candidates and dividedZthe blockK into 16, to maintain similar pefromance of
conventional 64-Best SD algorihtm®and ML detection.

Table 5.3 for comparing the complexities. The normalized comparing complexity refers
to the number of compare operation of all methods normalized to that of the conventional
64-Best SD algorithm. As compared to 64-Best SD algorithm in a a 64-QAM 4 x 4 MIMO
system. The reduction in the comparing complexity is over 99%, whereas the correspond-
ing SNR degradation is maintained within 0.09dB. Also, the reduction copmlexity in
addition and multiplication operation is over 98%.

Table 5.4 shows the average path using clustered K-Best SD algorithm in each de-
coding layer. The average path in each layer is 4.56 per layer. In consequence, the path
needed to be calculated is in a small proportion in the decoding process when it compared
to the conventional 64-Best SD algorithm. Besides we normalized addtion and multipli-
cation, the reduction is 98.83% when compared to conventional 64-best algorithm, this

benifit comes from the average path derived by clustered K-best SD algorithm is very
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Table 5.1: Comparison of MLi and conventional K-Best SD algorithm and adaptive K-Best
SD algorithm

Conventional | K1 = Ky = 64
Method ML
64-best L1 = L2 =3
Normalized add/mulp
1.21 x 10°% 100% 38.34%
operations
Comparing
3.45 x 10° 2.03 x 10° 7.02 x 10°
Operations
Normalized comparing
1.67 x 10° % 100% 34.58%
Complexity
SNR (dB) for
32.64 .. 32.72 33.82
BER =5 x 10~* ]

:'_!ji S0 ~_4|
small thus the number of addltlon and Lml-ﬂtw_ﬂ(;atlon is decreased. From this result, we
can show that the clustered K- Best SD algorlthm can reduce most of the addition and
multiplication, and comparing operatlons to keep performance near conventional K-Best
SD algorithm and ML detection. Fig 5.6 shows the comparing complexity normalized to
conventional 64-Best SD algorithm with performance at BER=5 x 10~* and Fig 5.7 shows
the normalized add/mutiply operation to convnetional 64-Best SD algortithm with per-
formance at BER=5 x 10~%. They are the position of complexity with the corresponding

performance.
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Table 5.2: Comparison of conventional K-Best SD algorithm and adaptive K-Best SD

algorithm with predicted candidates

Conventional K1 = 64, KQ =32 K1 == 64, KQ = 32 K1 = 64, KQ =32
Method 64-best L1 = 8, L2 =8 L1 = 8, L2 =38 L1 = 8, L2 =3
T=30 T=15 T=15
Normalized add/mulp T
100% ST % 63.72% 54.65%
operations e AENA R
Comparing - | o :
2.03 %105, F4=EL55 x40° 1.28 x 10° 9.7 x 10°
Operations ¥ L5 1896 ¥
Normalized Comparing ‘ g
100% - 76.35% 63.05% 47.78%
Complexity
SNR (dB) for
32.72 32.85 33.05 33.24

BER =5 x 1071
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Table 5.3: Comparison of conventional K-Best SD algorithm and clustered K-Best SD

algorithm

Conventional | A, criterion
Method 64-best, K =64
block C' = 16
Normalized add/mulp
o0 % 1.17%
operations &+ -
= ‘
Comparing: ““ 2 2
=1 #2.03 x'10% 156
Operations= 1896 I
Normalized Comparing
100% 7.68 x 1073%
Complexity
SNR (dB) for
32.72 32.81

BER =5 x 104

36



Table 5.4: Average path number of clustered K-Best SD algorithm for K=64, C=16

decoding layer || average path

8 291

7 3.86
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Chapter 6

Conclusion

In this thesis, low-complexity prediction techniques of K-Best SD algorithm are proposed.
Adaptive K-Best SD algorithm, based on the signal indicator R derived in the computation
process, the approach can reflect the channel nature and noise interfernce to choose proper
K for different singal level. Predicted candidates technique can compute only a fraction of
the PEDs and thus the computation can be greatly reduced. During the decoding process,

sorter is always a computation bottleneck When K IS Jlarge. A divdied sorting strategy is

introduced to reduce the compuatatlon comble}aty Sortmg arithmetic complexity is refer

to the input set size of the sorter Several local sorters take advantage of having smaller

input set size than the original global sorter In order to reduce the sorting operation and
keep similar performance with conventlonal KLBest SD algorihtm. The idea of clustered
K-Best SD algorithm is introduced. Due to the statistcs knowledge of the received signal,
we can replace high complexity sorter with a few comparators. One can use the Chi-square
statistics, which provides a lower bound with high probability for possible candidates to
survive under the constraint. Instead of sorting precisely, comparators loosely delivering
the candidates into their specific cluster. Based on the concept of K-Best SD algorithm,
keeping constant candidates in each decoding layer, we can use pipeline architecture for
hardeware implementation to achive constant decoding speed.

In conclusion, the thsis is focused on how to solve the computation complexity problem
of K-Best SD algorithm. As compared with conventional 64-Best SD aglroithm for 4 x 4
64-QAM system. The adaptive K-Best SD algorithm can reduce complexity ranges from
23.65% to 52.22% within 0.13dB and 1.18dB performance degradation, whereas the clus-
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tered K-Best SD algorihtm can reduce over 99% complexity within 0.09dB performance
degradation.

The proposed methods including adaptive K-Best SD algorithm and clustered K-Best
SD algorithm can apply not only to the described MIMO signal detection probelms, but
also the detection of non-orthogonal Space-Time-Block-Code (STBC) signals. Further,
our proposed methods can reduce computation complexity and peform easier hardware

implementation for those nearest lattice point problem utilizing SD algorithm.
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