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摘 要 

隨著半導體製程的進步，在未來十年後將有可能實現單一晶片上整合上百個運算

元件。屆時，各元件之間的通訊將會是影響系統效能的一大關鍵。IC 設計工程師

需要一個能考慮通訊效能的系統設計方法。在這篇論文中，改良傳統二維網狀單晶

片網路系統平台而提出階層式架構。此架構用以支援幾百個任務的複雜度或擁有大

量資料傳輸的應用。此外，藉由考慮傳輸資料量、資料傳輸衝突和頻寬設限損失的

任務結合方法來達到新架構的整體系統效能的提升。並在系統層級模擬單晶片網路

系統的資料傳輸行為以預測整體系統效能。建立一自動化的單晶片網路系統效能模

擬工具，IC 設計工程師在系統層級得藉此工具預測所設計平台的效能且得到所設

計平台的設計參數，補足自應用階段至 RTL 階段的設計斷層，以節省所需的設計時

間和成本。 
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ABSTRACT 

As the advance of semiconductor technology, it is possible to integrate hundreds 

of processing elements on a single chip in the next decade.  When the time comes, 

communication between the components will be the critical factor for system 

performance.  IC designers need a communication-driven system design methodology.  

In this thesis, improving the traditional 2-D mesh Network-on-Chip (NoC) platform by 

the hierarchical architecture is proposed.  The hierarchical architecture is used to 

support applications with the complexity of several hundreds of tasks or with large 

amount of transmission data.  Besides, applying the task binding method by 
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considering communication amount, communication data contention and bandwidth 

penalty to achieve the system overall performance improvement of the new architecture.  

Modeling the NoC system data transmission behavior at system level is applied to 

predict system overall performance.  Then, an automatic NoC system performance 

simulation tool is built.  Therefore, IC designers can predict the system performance 

and get all parameters of designed platform at system level.  That will make up the 

design gap between the application level and RTL level to reduce the design time and 

the design cost. 
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Chapter 1               

Introduction 

1.1 Technology Trend 

As the semiconductor technology advances, it is feasible to integrate multi-billion 

of transistors on a chip.  Hence, hundreds of intellectual properties (IPs) including 

general propose processors and application specific functional blocks will be integrated 

onto a single chip.  However, designers will encounter several new problems. 

First, the ever-shrinking feature size causes the gate delay scaling down linearly, 

whereas the wire delay remains constant.  Hence, the wire delay will become more 
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critical than the gate delay [1].  Though the wire delay can be conquered by wire 

pipelining techniques, the problem of timing uncertainty is still hard to be dealt with.  

On the other side, the clock skew can not be neglected any more and clock 

synchronization becomes another problem for designers.  It is almost impossible to 

synchronize all components on a chip with single clock.  The globally-asynchronous, 

locally synchronous (GALS) technique is the most suitable solution [2] for solving this 

problem. 

Second, traditional shared-bus based network architecture is the most popular 

architecture in current System-on-Chip (SoC).  However, high data transmission 

contentions between masters reduce the system performance and raise the power 

consumptions.  Moreover, buses only can handle 3 to 10 computation elements and can 

not scale to higher numbers [3]-[5].  Following the technology trend, communication 

between computing components becomes the critical factor of system performance.  

Designers need to search for new communication architecture in place of shared-bus 

architecture. 

Third, system design with integrating more computing components and verification 

become more complex.  The traditional design flow is not sufficient to support the 

technology trend.  The design trend is toward system level design.  A 

communication-driven system design methodology will be applied. 
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1.2 Communication-Driven System Design Methodology 

 Function
Modeling

Architecture
Modeling

Mapping and Analysis

Software
Implement

Hardware
Implement

System Integration  

Figure 1.1: Communication-driven system design methodology. 

A system design flow, communication-driven system design methodology [6], is 

shown in Figure 1.1.  It separates the system design into two parts: function modeling 

and architecture modeling.  Function modeling contains application modeling, task 

partition and job scheduling.  Architecture modeling contains the simulation models of 

various computation, memory components and communication fabrics.  Designers can 

make decision to select appropriate platform.  In the next step, map and allocate the 

tasks onto the platform provided by architecture modeling.  Designers can get more 

information of the system and make better design trade-off through performance 

evaluation.  Applying this method, designers can refine the implementation of design at 

system level and shorten the try-and-error iteration. 
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1.3 Relative Work 

The design methodology for communication-based design is proposed in [7].  

Researchers in this paper propose a Network-on-Chip (NoC) approach to partition the 

communication into layers to maximize the reuse and provide programmers with an 

abstraction of the underlying communication framework.  The integrated modeling, 

simulation and implementation environment are proposed in [8].  NoC infrastructure 

and processors are modeled, and simulation is performed to find the optimal network 

configuration.  In [9], an algorithm called NMAP which can be applied to both the 

single-path routing and the spilt-traffic routing to map the cores onto NoC architecture 

under bandwidth constraints is proposed.  A simple packet switching communication 

model to estimate the communication time and to propose a two-step genetic algorithm 

to map a parameterized task graph onto the 2-D mesh NoC architecture, which 

minimizes the overall execution time of the task graph is proposed in [10]. 

1.4 Motivation 

In this world, roads make communication of two far places, for example, footpaths 

between countries, roads between towns, freeways between cities etc.  We can find out 

that not all roads have the same width because of the different traffic requirement.  For 

example, if all the roads are limited only one-lane, somewhere with heavy traffic is 

always crowded; if all the roads are assigned four-lane, somewhere without heavy traffic 
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wastes the resource.  The freeway is wide and suitable for long distance and large 

traffic loading.  For example, if we want to go to Chu-Pei from Hsin-Chu, we can 

choose the provincial road or the freeway.  If the provincial road is crowded, the 

freeway is the better choice even the distance of the latter is longer than that of the 

former.  Undoubtedly, the freeway will be chosen if we want to go to Kaohsiung from 

Taipei, because the freeway is much more unobstructed than any other roads. 

To eliminate the communication bottleneck, NoC architecture is used to replace the 

shared-bus architecture.  When the application is complex and the communication 

loading is heavy, long distance transmission on NoC platform is necessary.  If the more 

complex applications implemented on NoC platform still can not achieve satisfied 

performance, another new improved architecture should be applied.  The conception 

described above can be used for the communication architecture of the NoC platform.  

The computing elements can be looked as a city, the communication channels can be 

looked as provincial roads, and the data flow can be looked as the traffic flow.  

Therefore, we will add some resource as freeways with large bandwidth to support the 

complex applications.  In this thesis, the hierarchical architecture for 2-D mesh NoC 

platform is proposed.  Moreover, solve the task binding problem to maximum the 

system performance.  Designers can benefit from the proposed framework to analyze 

the system performance and make decisions at higher design level because of the 

performance predictable of the platform. 
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1.5 Thesis Organization 

In chapter 2, the traditional NoC platform, the switch design considerations and the 

switch configuration are introduced.  Chapter 3 describes the configuration of proposed 

hierarchical 2-D mesh NoC platform and the communication contention-aware task 

binding methodology using the platform.  The experiment flow and experimental 

results are shown and discussed in chapter 4.  Finally, conclusions and future works are 

given in the last chapter. 
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Chapter 2                

Overview of Network-on-Chip 

This chapter will introduce the network-on-chip (NoC) platforms as well as the 

switch design of on-chip network communications.  Switches are the most critical 

elements for on-chip networks.  In this chapter, the common switch strategies, the 

required switch properties, the switch model, and the transaction behavior will be 

discussed in more detail. 

2.1 Network-on-Chip Platform 

Lots of NoC platform topologies have been developed, such as torus, octagon, 
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butterfly fat-tree (BFT), 2-D mesh, etc. which are collated and discussed in [11].  The 

2-D mesh topology NoCs have the properties of simple connection and easy routing for 

communications [12].  Such NoC architectures also have the uniform interconnection 

and transaction time between two elements, thus ensuring the scalability of the networks.  

Besides, the rectangular topology of such NoC architectures meets the IC manufacturing 

topology; in other words, the architectures are easy to be realized.  Because of these 

properties described above, the 2-D mesh topology NoCs are investigated in this work. 

 
SW

PE
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PE

SW

PE

SW

PE

SW

PE
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SW

PE

SW

PE

SW
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Figure 2.1: 2-D mesh topology network. 

Figure 2.1 shows the illustration of 2-D mesh topology networks consisting of 

processing elements (PE) and switches (SW).  Each PE is composed of a processor 

with buffers, local memories and network interface, and is used to execute computing 

jobs.  Each PE is also connected to its local switch.  This switch can buffer 

communication data.  Each switch connects to the four neighboring switches.  The 

PEs communicate through the switches. 
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2.2 Switch 

2.2.1 Switching Strategy 

Three widely used switching strategies are connection-oriented switching, 

connectionless switching, and hybrid switching.   

2.2.1.1 Connection-oriented Switching 

The connection-oriented switching, named circuit switching, determines a 

dedicated physical path from the source to the destination before transmitting the data.  

This dedicated path will be reserved until all the data are transmitted.  There are two 

connection ways of the dedicated paths.  The connection ways are determined 

according to whether the dedicated path can be reprogrammed or not.  The static way 

means that the decided path cannot be reprogrammed, such as point-to-point connection.  

In contrast, the dynamic way is reprogrammable.  If a physical channel is reserved for 

one dedicated path of data transmission, it is not available for other paths.  Such 

connection ways can have the full bandwidth of the physical channel.  This means that 

the latency will be guaranteed, and the performance is predicable.  Hence, the circuit 

switching is suitable for real-time applications and long, infrequent data transmission.  

However, one physical channel reserved for only one connection will make the 

bandwidth utilization low when the transmission is not continuous, and hence this will 

degrade the overall performance. 
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2.2.1.2 Connectionless Switching 

 

 

Figure 2.2: Example of packet switching. 

In the connectionless switching, named packet switching, the data packets are 

transmitted.  A packet contains the information of the destination, the packet size, and 

the transmission data.  In contrast to the circuit switching, the connection of packet 

switching from the source to the destination is not reserved before data transmission.  

For example, a packet will be transmitted from a source PE to a destination PE as shown 

in Figure 2.2.  There are four switches, A, B, C, and D, between the source PE and the 

destination PE, and there is not only one path to transmit the packet.  For the switch A, 

there are B, C, and D, connected to A. The transmission path is not reserved before the 

data transmission.  When the data is transmitted to A, the next passing switch, B, C, or 

D, is decided.  When utilizing the packet switching, the buffers of a switch are released 

until the packet is transmitted to the next switch.  If there are data buffered in the input 

or output of a physical channel, other data intending to access this physical channel will 

be stuck as well until the preceding buffers can be released.  In Figure 2.3, no data can 

be transmitted forward because not any of the front buffers is released.  In this example, 

it is a deadlock situation.  In summary, the advantage of the packet switching is that the 

buffers of packet switching strategies get high utilization.  But the latency is 
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unpredictable, because a packet may be blocked for uncertain time when there is heavy 

traffic. 

 

 

Figure 2.3: Illustration of communication deadlock.  

Three methods are commonly used to accomplish the packet switching.  They are 

the store-and-forward, the virtual-cut-through, and the wormhole, respectively.  In the 

store-and-forward, a packet is allowed to be transmitted to the next switch only when the 

whole packet is available, and the next switch has the capability of receiving this packet.  

Hence, the store-and-forward requires large buffer size to provide the capability of a 

whole packet.  Besides, it is efficient for short, frequent transmission.  In the 

virtual-cut-through, a switch can allocate buffers for a whole packet.  The packet will 

be transmitted to the next switch when the routing information is available rather than 

the whole packet.  The latency can be short, and the bandwidth utilization can be high 

if the routing information is not blocked.  However, if the routing information is really 



 

 

 

 

12

blocked, the packet will be completely buffered until it can be transmitted.  Summarily, 

the virtual-cut-through is more efficient than the store-and-forward when considering the 

latency and the bandwidth utilization.  Both of them require large buffer size.  In the 

wormhole switching, a switch only has the capability of some units of a packet instead 

of a whole packet. It directly transmits data when the next switch has released buffer.  

Hence, the wormhole switching requires fewer buffers than the store-and-forward and 

the virtual-cut-through. 

2.2.1.3 Hybrid Switching 

The hybrid switching means the use of both the circuit switching and the packet 

switching for different communication requirements in NoC platforms.  Therefore, it 

can have the characteristics of both the circuit and packet switching.  The virtual-circuit 

switching is a hybrid switching when it uses dedicated virtual connections similar to the 

circuit switching and packet transmission similar to the packet switching. 

2.2.2 Virtual-Circuit Switching 

In this work, we use a switch architecture which is based on the latency-insensitive 

concepts [13][14] and utilize the virtual-circuit switching technique.  Using the 

switching architecture can achieve high bandwidth utilization, guaranteed bandwidth 

and predictable latency under high communication loading.  This switching 

architecture also has predictable characteristics and can support real-time applications. 
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Figure 2.4: Example of virtual channel scheme. 

For the virtual channel flow control [15], a physical channel can be divided into 

several virtual channels.  For example as shown in Figure 2.4, both path A and path B 

try to access the physical channel between SW1 and SW2.  Without using the virtual 

channel scheme, if path A gets the grant of the physical channel first, path B can not 

access the physical channel until path A finishes transmitting data.  The data of the path 

B will be buffered in the input or output of the physical channel.  When applying the 

virtual channel technique, path A and path B access the physical channel in turns.  The 

waiting time for transmitting the buffered data will be reduced.  Thus, the latency will 

be decreased, the utilization of the channel will be increased, and the system throughput 

will be improved. 
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Figure 2.5: Request-oriented weighted round-robin scheduling scheme. 

In the virtual-circuit switching, the physical channel is divided into several virtual 

channels.  Thus, these virtual channels share the bandwidth of the physical channel.  

To arrange the available bandwidth of each virtual channel, the request-oriented 

weighted round-robin scheduling scheme is applied.  The round-robin scheduling gives 

grant sequentially and cyclically, and ignores the buffers without giving request.   If a 

requested buffer has a weight number, w, it can transmit w times continuously as it gets 

the grant of transmission from the scheduler.  The higher weight of the buffer gets the 

more bandwidth.  For example shown in Figure 2.5, Buffer A, B, C and D have weight 

numbers 1, 2, 2, 1, respectively.  The scheduled sequence using the physical channel 

will be A, B, B, C, C and D.  If Buffer A, C and D make requests, Buffer B will be 

ignored as the sequence index reaches Buffer B in a clock cycle, and Buffer C will get 

the grant in this clock cycle.  As finishing a round, the sequence index will be back to 

Buffer A.  In this case, each Buffer A and D gets one-sixth of the physical channel 

bandwidth, and each Buffer B and C gets one-third of one. 



 

 

 

 

15

 

E2, SW1
[Data]

E1, SW1
[Data]

E4, SW1
[Data]

E3, SW1
[Data]

M
U
X

Scheduler

E2, SW2

E1, SW2
[Data]

S1, SW2 S2, SW2

Address

Data

Ack

SW1 SW2

SW1 SW2

E1, SW1 E1, SW2

E2, SW1 E2, SW2

E3, SW1 S1, SW2

E4, SW1 S2, SW2

Address Mapping Table

1 2 3 4 5

E1,SW2

False

E1,SW1

Reserve

Clock Cycle

Scheduler

Address

Data

Acknowledge

SW1 Data

E2,SW1 E3,SW1

S1,SW2E2,SW2

E1,SW1E4,SW1

S2,SW2

TrueTrue

Release  

Figure 2.6: Data transmission from a switch to the adjacent switch or the local 

processor. 

Figure 2.6 illustrates the data transmission from a switch to an adjacent switch or 

to the local processor.  The address mapping table in a switch records the destination 

buffer address of each buffer in this switch.  As shown in Figure 2.6, E1, SW1 makes a 

connection to E1, SW2.  If there are data in E1, SW1, they will be transmitted to E1, SW2.  

The data transmission expends four clock cycles.  In the first cycle, the requested 

buffer E1, SW1 gets the grant from the scheduler, and E1, SW1 can transmit the data in the 

following cycles.  In the second cycle, E1, SW1 sends the destination address of E1, SW2 to 

SW2 through the Address-line to request SW2 that the transmitted data should be 
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reserved in E1, SW2.  In the third cycle, E1, SW2 sends an acknowledge signal back to   

E1, SW1 through the Ack-line to notify E1, SW1 of the status of E1, SW2.  If E1, SW2 is full, 

the acknowledge signal will be true.  On the contrary, if E1, SW2 is available, the 

acknowledge signal will be false.  In the same cycle, E1, SW1 sends the data to E1, SW2 

through the Data-line.  The transmitted data will be reserved or discarded according to 

whether E1, SW2 is available or not.  In the fourth cycle, the data in E1, SW1 that has been 

transmitted should be reserved or released according to the acknowledge signal issued 

from E1, SW2.  If the acknowledge signal is false, the data should be reserved and 

retransmitted in the next round. 

 

 

Figure 2.7: Switch buffer organization. 

The switch buffer utilization is an important factor for the communication 

efficiency.  Because that sometimes not all the switch buffers are reserved when the 

number of the connection paths is less than the number of the virtual channels in a 
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physical channel.  We use two-port SRAM memories instead of registers to implement 

the switch buffers.  Therefore, we provide the flexibility to make the trade-off between 

the buffer size and the number of the virtual channels.  Figure 2.7 shows an example of 

the switch buffer organization.  There are four buffer banks in a port and each bank 

only receives data from the corresponding direction.  For example, bank-N of E-port 

only receives data from the input of N-port.  Each buffer bank can be divided into 

several buffer queues to provide necessary virtual channels.  As shown in Figure 2.7, a 

buffer bank is divided into four buffer queues, and there are total sixteen provided 

virtual channels in a port.  Designers can figure out the number of the necessary virtual 

channels of a buffer bank in the early system design stage and make a suitable switch 

buffer partition.  Taking a 32-word buffer bank for example, it can be divided into 4 

8-word buffer queues, 8 4-word buffer queues, or 16 2-word buffer queues for different 

applications.  Thus, this switch buffer organization will make the switch buffer 

utilization higher, and improve the communication efficiency. 

Finally, the switch will assign the dedicated connection paths by reserving the 

corresponding virtual channels and buffers before the data transmission.  The passing 

switches of connection paths and the communication behavior can be known in early 

stage of the system design.  It means that the switch has predictable characteristics and 

can support real-time applications. 

We utilize the switch architecture with the virtual channel scheme, the 

request-oriented weighted round-robin scheduling, and SRAM configuration buffers.  It 
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has features of deadlock free, high bandwidth utilization, high buffer utilization, and can 

support real-time applications.  Also, it provides capabilities of small latency and high 

throughput.  Comparing to the traditional switching strategies, circuit switching has 

latency guarantee and can support real-time applications; wormhole switching has 

smaller buffer size and higher hardware utilization.  The virtual-circuit switching has 

not only the capabilities of circuit switching and wormhole switching but also many 

other advantages mentioned before. 

2.2.3 Switch Architecture 

 

 

Figure 2.8: Switch architecture. 

Figure 2.8 shows the architecture of the proposed switch.  There are five ports, 

East (E), South (S), West (W), North (N), and Local (L), in a switch.  The outputs of 

the ports, E, S, W and N, are connected to the corresponding input ports of the adjacent 



 

 

 

 

19

switches, and the L port is connected to the interface of the local PE.  For example 

shown in Figure 2.8, the E port output of the left switch is connected to the W port input 

of the right switch, and two physical channels with different directions, forward and 

backward, are built across the two switches.  Each physical channel includes 

Address-line, Data-line, and Ack-line.  Address-line is used to transmit destination 

address, Data-line is used to transmit data, and Ack-line is responsible for transmitting 

the acknowledge signal. 

 

 

Figure 2.9: Expression of the buffer-id. 

The buffer at the output of a port is partitioned into four buffer banks that only 

receive data from other four corresponding ports.  The detail buffer configuration has 

been shown in Figure 2.7.  A switch transmits data to the next switch according to the 

address in the address mapping table.  The expression of the buffer-id is shown in 

Figure 2.9.  For example, the buffer-id S1.E-W2 means that the buffer belongs to the 

second buffer in W-bank of E-port of SW1. 

As mentioned in section 2.2.2, a physical channel can be divided into several 

virtual channels.  We use a factor, channel width factor, to indicate the maximum 

allowable number of the virtual channels in each buffer bank in a port of a switch.  For 

example shown in Figure 2.7, there are four virtual channels in each buffer bank.  The 
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channel width factor is four, where a buffer bank can be assigned at most four virtual 

channels.  In other words, there are at most sixteen virtual channels for a physical 

channel. 

The traditional architecture is described in this chapter.  However, when the 

application is complex and the communication loading is heavy, long distance 

transmission is necessary.  We need an improved architecture to support these 

applications.  In the next chapter, the proposed hierarchical architecture will be 

discussed. 
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Chapter 3                      

Hierarchical NoC Architecture 

In this chapter, the proposed hierarchical architecture for NoC platform is presented, 

where the task binding method is applied to this platform.  Using the hierarchical 

architecture for complex applications, the overall performance can be improved.  The 

communication contention-aware methodology for the task binding method including 

task mapping and path assignment is discussed particularly. 
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3.1 Hierarchical Architecture 

 

 

Figure 3.1: Hierarchical 2-D mesh NoC platform. 

Figure 3.1 shows the proposed hierarchical 2-D mesh NoC platform.  In this 

hierarchical architecture, two 2-D mesh switch networks are connected by using 

interchange switches (SW_I).  We define the added network as network level-2 (L2) 

including SW_I and SW_L2; the traditional part is defined as network level-1 (L1).  

Every three PEs in x-direction and y-direction, the PE is replaced by SW_I and SW_L2.  

The port names of a SW_I are shown in Figure 3.1.  Some vertical or horizontal 

physical channels are disconnected in order to release switch ports to connect to SW_I.  

As shown in Figure 3.1, we assume that the coordinate of a SW_I is (x, y).  If the sum 

of x and y is odd, the horizontal physical channels will be disconnected; if the sum is 

even, the vertical ones will be disconnected.  The buffers between two SW_L2 are 

relay stations without switches, and they transmit data forward directly in the next clock 
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cycle.  A parameter named the physical channel width ratio, R, is used to characterize 

the hierarchical architecture, and is defined as 

 L2

L1

Physical channel width
Physical channel width

R =  (3.1)

The physical channel width means the available size of the transmission data.  If the 

size of L1 transmission data is equal to one-word, and that of L2 data is equal to 

four-word, R will be given by four. 

 

 

Figure 3.2: Data transmission between two L2 switches. 

In this hierarchical architecture, the data transmission between two L2 switches 

requires eight clock cycles.  The detail timing diagram and the address mapping table 

of the connections of a SW_L2 are shown in Figure 3.2.  This address mapping table 
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records the destination buffer address of each buffer in this switch.  In Figure 3.2, the 

corresponding buffer is labeled in the table.  For example, the E1, SW1 buffer has a 

connection to the E1, SW2 buffer.  In the first clock cycle, the requested buffer E1, SW1 

gets the grant from the scheduler, and E1, SW1 is allowed to transmit the data in the next 

cycle.  From the second clock cycle to the fourth clock cycle, E1, SW1 sends the address 

of the destination buffer, E1, SW2, to SW2 through the Address-line.  In the fifth clock 

cycle, the address arrives at SW2, and notifies SW2 that the following data should be 

reserved in E1, SW2.  From the fifth clock cycle to the seventh clock cycle, E1, SW2 sends 

an acknowledge signal back to E1, SW1 through the Ack-line.  At the same clock cycles, 

E1, SW1 continuously sends three four-word data to E1, SW2 through the Data-line.  If E1, 

SW2 does not have enough buffer space to save the three coming data, the acknowledge 

signal will be false.  On the contrary, if E1, SW2 is available, the acknowledge signal will 

be true.  In the eighth clock cycle, the three data in E1, SW1 that has been transmitted 

should be reserved or released according to the acknowledge signal received from E1, 

SW2.  If the acknowledge signal is false, this means the transaction is fail, and the data 

should be reserved and will be transmitted again in the next round.  If the acknowledge 

signal is true, the transaction is succeeded. 
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Figure 3.3: Example of data transmission passing through hierarchy. 

For the L1 network, the width of the physical channel is one-word width.  On the 

other hand, for the L2 network, the width is four-word width.  Consider an example of 

a connection path shown in Figure 3.3, the source PE transmits data to the sink PE 

through L2.  A four-word data can be transmitted from SW2 to SW3 when the four 

one-word data from SW1 is available.  SW4 makes transactions to SW5 until the three 

four-word data from SW3 is available, because a SW_L2 transmits three four-word data 

continuously.  Hence, for the SW_L2 buffers connected to another SW_L2, the weights 

of the round-robin scheduling are assigned at least three or six. 

 

 

Figure 3.4: Buffer architecture of SW_1I. 
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Figure 3.5: Buffer architecture of SW_I. 

Since the transmission data size of L2 is four-word, some allocated buffer size 

should be adjusted.  Taking Figure 3.3 for example, if a buffer bank is divided into 16 

two-word buffers for SW_L1, we use this queue length, two-word, as a unit.  While a 

buffer receives or sends one four-word data, the queue length should be adjusted to four 

times the unit.  For example, bank-N of S-port of SW2, band-W of L-port of SW3, or 

bank-W of E-port of SW7, some queue lengths will be adjusted to eight-word.  Figure 

3.4 shows the buffer architecture of SW7 (SW_1I).  The W-port connects to L2, and 

the queue length of the buffer banks are all eight-word.  Since the bank-W of E-port 

receives data from L2, the queue length is also eight-word.  In other words, in Figure 

3.4, Q is the product of q and R.  Figure 3.5 shows the buffer architecture of SW3 

(SW_I), and the queue lengths of all buffer banks are allocated eight-word (Q).  While 
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a buffer receives or sends three four-word data, the queue length should be adjusted to 

twelve times the unit.  For example, bank-L of E-port of SW4, or bank-W of L-port of 

SW5, the queue length will be adjusted to 24-word.  The buffer architecture of SW_L2 

is similar to Figure 3.4.  The queue length of L-port is Q; the queue lengths of other 

ports are 3Q.  The buffer between two SW_L2 is allocated four-word because the 

buffer is a relay station instead of a switch buffer queue.  The large buffer allocation 

needs a large space and it responds to the discard of the current PE. 

3.2 Problem Formulation 

 

 

Figure 3.6: Task graph of MPEG-4 encoder. 

We employ a directed-acyclic task graph to model an application and assume that 

the application can be partitioned into many communicated tasks due to parallelism.  

An example shown in Figure 3.6 is a task graph of MPEG-4 encoder [16].  A vertex 

and an edge denote a task and a data transmission between the tasks, respectively.  For 

example, task C labeled MVMVD performs the motion vector to motion vector 

difference calculation.  After task C is finished, it will transmit C3 unit data to task D.  

A task can not be executed until the whole computation data is available.  For example, 
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task H can not be executed until the C4 unit data from task D and C8 unit data from task 

G is available. 

The task binding problem can be formulated as follows. 

Given: 

1. A directed-acyclic task graph G (V, E) that models an application.  For 

each vertex v ∈  V is defined as a task and the weight is defined as the 

computation amount.  For each directive edge e ∈  E is defined as the 

data transmission between the tasks and the weight is defined as the 

communication amount. 

2. A NoC platform P (PE, SW) that described before. 

Goal: 

1. To map each task v onto each PE. 

2. To assign the communication path between PEs mapping to each edge e. 

3. To find the most suitable task mapping and path assignment for maximizing 

the system overall performance. 
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Figure 3.7: Example of task binding problem. 

Figure 3.7 shows an example of the task binding problem and illustrates that the 

tasks S, W, X, Y, Z, T are mapped onto PEs and the edges A, B, C, D, E, F, G and H are 

established as communication paths on the NoC platform.  Path A and path D are 

overlapped, and it means that they will contend in the spatial domain. 
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3.3 Design Methodology 

  

 

Figure 3.8: Design methodology. 

To solve the task binding problem, we use an improved design methodology shown 

in Figure 3.8.  It uses a new cost function that will be described later to obtain a better 

task binding solution.  The NoC platform and the task graph provide the necessary in 

formation for solving the task binding problem.  The task mapping method employs the 

placement techniques to map each task onto PE.  A task is mapped to a PE, so that the 

number of PEs must be larger than the number of tasks.  After task mapping procedure, 
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the connection path assignment method employs the routing techniques to establish the 

connection paths for the connection edges.  Then, the performance analysis is 

performed to obtain the communication profile in time domain and calculates the 

contention affected parameters that will be described later.  Finally, the feedback 

mechanism will feed the communication profiles back to the path assignment procedure.  

The path assignment including the profile information will produce a better path 

assignment result.  The profile referred to as profile-driven optimization provides the 

more accurate contention information than the system simulation without routing 

information.  The design flow can be proceeded iteratively to enhance the system 

overall performance. 

3.4 Task Mapping 

3.4.1 Cost Function 

In this work, the goal of task mapping is to minimize the overall communication 

resource usage.  The main idea is that any pair of connected tasks with heavy traffic 

loading should be allocated as next to each other as possible.  A cost function ξ′ is 

proposed to express the criterion as following. 

 amount, X

pair of processors, X amount, MAX

' 1
C

D
C

ξ
⎛ ⎞

= × +⎜ ⎟⎜ ⎟
⎝ ⎠

∑  (3.2)

Here, D and Camount, X denote the Manhattan distance between the source PE and the 



 

 

 

 

32

destination PE, and the communication amount between a pair of connected processors, 

respectively.  The first term, (D × 1), of the cost function indicates the resource usage 

of the virtual channels.  It is also the conventional cost used in the FPGA placement 

algorithm.  Not only the distance between a pair of connected PE but also the 

communication amounts between a pair of connected tasks will affect the system 

performance.  The second term, (D × Camount, X / Camount, MAX), of the cost function 

represents the normalized value that indicates the communication effect of the physical 

channels, where Camount, MAX is the maximum value of all Camount, X. 

3.4.2 Simulated Annealing 

  

 

Figure 3.9: Example of task mapping. 

Three major placers commonly used are min-cut, simulated annealing and analytic 
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based placers.  The task mapping uses the simulated annealing technique because that 

the technique is simple and suitable for various architectures developed in the on-chip 

networks.  Moreover, it can be easily adapted to different cost requirements for 

optimization.  We take the example of Figure 3.7 as an example of the task mapping 

shown in Figure 3.9.  Assume that the curve of Figure 3.9(b) expresses all the task 

mapping solutions.  At first, map tasks onto PEs randomly as an initial solution, as 

shown in Figure 3.9(a).  Then, a large number of swaps gradually improves the 

solution and decrease the cost calculated through the cost function list in (3.2), as shown 

in Figure 3.9(b).  Finally, the procedure terminates until finding the local optimal or 

the global optimal solution, as shown in Figure 3.9(c).  Since the detail of simulated 

annealing is not the focus of this thesis, the detail of the annealing schedule is omitted. 

3.5 Connection Path Assignment 

3.5.1 Routing Resource Graph 

Before describing the connection path assignment procedure, we describe routing 

resource graph used to represent architecture internally first.  In routing resource graph 

representation, PEs and buffers over virtual channels become nodes; virtual channels 

become directed edges that indicate data flows unidirectionally.  For each node, two 

factors, capacity and occupancy, denote the maximum number of paths that can use this 

node and the number of paths currently using this node.  Since the NoC platform is 

represented as a routing resource graph with all possible connections, the path 
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assignment is equivalent to find a path in the routing resource graph starting from a 

SOURCE node to a SINK node. 

  

 

Figure 3.10: Routing resource graph between PE and local switch. 

Figure 3.10 shows the routing resource graph between a PE and its local switch.  

Data flow out from SOURCE node and flow to the OUT node then choose one of the 

four SW_IN nodes.  The label in each SW_IN node indicates that this node will 

connect to the corresponding SW_OUT node in the local switch; in other words, it 

denotes the direction that data will flow to.  For example, if SW_IN labeled W is 

chosen, the data will flow to the W port of this local switch.  Furthermore, data flow 

into PE from one of the four SW_OUT nodes that correspond to the four sides of the 
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local switch.  Then, data flow into IN node and SINK node, the data transmission is 

finished. 

  

 

Figure 3.11: Routing resource graph of a switch. 

Figure 3.11 shows the routing resource graph of a switch.  It only shows edges 

connected to the local port.  Each port has four SW_IN nodes that connect to the 

corresponding SW_OUT nodes of the other four ports.  And, each port has four 

SW_OUT nodes that receive from the corresponding SW_IN nodes of the other four 

ports.  For example, data flow from the local PE, and it can choose to go to any of the 

adjacent switches; data from any of the adjacent switches can flow into the local PE. 
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Figure 3.12: Routing resource graph across a physical channel. 

Figure 3.12 shows the routing resource graph across a physical channel.  Only 

one direction, right to left in x-direction, is illustrated.  Data transmitting from any of 

the four SW_OUT nodes at W port of the right switch are routed to CHAN_X node.  

Data then go to any of the four SW_IN nodes at E port of the left switch.  If the SW_IN 

node labeled S is chosen, data will go to the corresponding SW_OUT node at S port of 

the left switch.  In other words, data will flow into the left switch and turn south to the 

next adjacent switch. 

In the routing resource graph, the capacity of each SW_IN and SW_OUT node is 

set to be equal to the channel width factor that was described in section 2.2.3.  If the 

channel width factor is four, for example, each of these nodes allows at most four 

connection paths passing through.  Since SOURCE, OUT, IN, SINK, CHAN_X, and 

CHAN_Y nodes all have four different direction data flowing into or out, the capacity of 

each these nodes should be set four times the channel width factor. 
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3.5.2 Cost Function 

The connection path assignment cost function ξ is proposed as following. 

 data, A A
penalty, A

each path, X each channel, A of X amount, MAX

 1+
N

B
C

ρ
ξ

⎛ ⎞+
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  (3.3)

To contrast with (3.2), the distance of the path assignment is the real physical channel 

number passed by rather than the Manhattan distance used in the task mapping.  

Furthermore, the transmission data number Ndata, A, the contention factor ρA and 

bandwidth penalty Bpenalty, A are included to describe the transmission data number of a 

path through a physical channel, the total effect of communication contention on a 

physical channel and the bandwidth constraint of a physical channel introduced by other 

paths. 

The detailed expression of Ndata, A, ρA and Bpenalty, A are revealed in the following. 

 
amount, X

data, A amount, X

 , if A  L1

, if A  L2

C
N C

R

∈⎧
⎪= ⎨

∈⎪⎩

 (3.4)

where Camount, X is the communication amount of a path X; R is the physical channel 

width ratio described in section 3.1.  Because of the difference between the physical 

channel width of L1 and that of L2, transmission data number of a physical channel is 

calculated according to whether this physical channel belongs to. 
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Figure 3.13: Contention occurrence in time domain. 

 A data, B
B  other paths
in the channel

B ANρ →
∈

= ×Γ∑  
(3.5)

where Ndata, B and ΓB→A denote the transmission data number of other paths through 

this physical channel, and the contention density.  The calculation of Ndata, B is 

mentioned above, and the contention density is formulated as followed. 

 overlap, (A, B)
B A

commun, B

t
t→Γ =  (3.6)

The contention density of each communication path pair can be derived from the 

communication profile in time domain as shown in Figure 3.13.  The arrow means that 

the path transmits data in a time period, and the time period without an arrow means that 

there is no data transmission on the path.  For example shown in Figure 3.13, the 

arrows of Path X and Path Y overlap in time domain.  If there are physical channels 

both Path X and Path Y passed through, the two paths overlap in spatial domain.  When 

the overlap both occurred in time domain and spatial domain, the contention occurred.  
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Therefore, to calculate the contention factor of Path X for a physical channel, pick up 

other paths in this physical channel from the communication profile and calculate the 

overlapped transmission data number through the functions above.  To contrast with 

the design methodology described in section 3.3, the communication profile is obtained 

and the contention affected parameters are calculated after the performance analysis.  

Therefore, the contention factor, ρA, is zero during the connection path assignment 

procedure of the first iteration. 

 
demanded, A provided, A

demanded, A provided, A
provided, Apenalty, A

demanded, A provided, A

 , if 

0                                      , if 

B B
B B

BB
B B

α
−⎧

× >⎪= ⎨
⎪ ≤⎩

 (3.7)

where α, Bdemanded, A and Bprovided, A denote the penalty weight, the demanded bandwidth 

used by communication paths in a physical channel, and the provided bandwidth of a 

physical channel, respectively.  The demanded bandwidth is decided by the 

performance constraint of the application.  If the bandwidth usage of a physical channel 

exceeds the provided bandwidth, the performance constraint will be violated. 

The connection path assignment cost function proposed in (3.3) indicates that the 

efficiency of a communication path is dominated by the distance of the connection path, 

the selection of the hierarchical or plane physical channels, the path number to share the 

physical channel and the bandwidth usage. 
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3.5.3 The Path Assignment Algorithm Considering Contention 

After finishing the task mapping, the connection path assignment procedure is 

performed to assign the connection paths between any pair of interconnected processors.   

Since the connection path assignment procedure is required to consider the 

communication contention, there exists no algorithm that allows for this cost 

consideration.  Therefore, we attempt to enhance the algorithm proposed in [17], where 

it was applied to solve the traditional routing problem in FPGA domain. 

  

 

Figure 3.14: Procedure of connection path assignment algorithm. 

Figure 3.14 shows the procedure of the connection path assignment algorithm.  In 

the first step, the all shortest path algorithm is applied to all nets, and no matter that 

there exists resources overuse or not.  To apply the all shortest path algorithm, the maze 

router is applied.  The router is essentially a variant of the maze router [18], where 
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Dijkstra’s algorithm [19] is applied to find the path with the lowest cost between the 

source node and the sink node in the routing resource graph. 

In the second step, the overused virtual channels are solved.  So that all the paths 

are routed uniformly and the resource usage will also be uniform.  However, the 

overused bandwidth of some physical channels does not be resolved in this step.  To 

solve the overused virtual channels, the Pathfinder algorithm is applied.  The 

Pathfinder algorithm [17] performs multiple routing iterations in which some or all of 

the nets are ripped-up and rerouted by different paths to resolve competition for routing 

resources that makes the routing illegal.  Note that ripping-up and rerouting these nets 

only affect the net ordering, and these nets are all routed by the same maze routing 

algorithm. 

  

 

Figure 3.15: Pseudo-code of the Pathfinder algorithm. 

The pseudo-code for the Pathfinder algorithm is shown in Figure 3.15.  The 

Pathfinder algorithm repeatedly rips-up and reroutes every net until all congestion is 
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resolved.  Ripping-up and rerouting every net once is called a routing iteration.  

During the first routing iteration, every connection path is routed for minimum cost, 

even if this leads to congestion, or overuse, of some routing resources.  A routing in 

which some routing resources are overused is not a legal routing.  Consequently, when 

overuse exists at the end of a routing iteration, more routing iteration must be performed 

to resolve this congestion.  After each routing iteration, the cost of overusing a routing 

resource is increased, so that the probability of resolving all congestion increases. 

The cost of using a routing resource node, n, is related to the multiple of h(n) and 

p(n).  Where h(n) is the historical congestion of node n; it is increased after every 

routing iteration in which node n is overused and gives the router congestion memory.  

p(n) is the present congestion cost of node n; it is 1 if using this node to route the current 

connection will not cause any overuse, and increases with the amount of overuse of the 

node.  The router runs Dijkstra’s algorithm according to the cost of using routing 

resource node to assign the connection paths.  The present congestion penalty is 

updated whenever any net is ripped-up and rerouted according to 

 ( ) 1 max(0,[ ( ) 1 ( )] )facp n occupancy n capacity n p= + + − ⋅  (3.8)

where occupancy(n) is the number of nets currently using routing resource n, and 

capacity(n) is the maximum number of nets that can legally use node n.  The historical 

congestion penalty, h(n), is updated only after an entire routing iteration.  Its value 

during routing iteration i is: 
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 1

1,  i=1
( )

( ) max(0,[ ( ) ( )] ),  i >1
i

i
fac

h n
h n occupancy n capacity n h−

⎧⎪= ⎨ + − ⋅⎪⎩
 (3.9)

The values of hfac is kept constant for all routing iterations; the fact that h(n) is 

incremented after every iteration in which node n is overused provides sufficient 

increase in the historical congestion penalty.  To achieve a higher quality results, pfac 

should initially be small, allowing congestion with little penalty, and gradually increase 

from iteration to iteration. 
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Figure 3.16: Example of solving overuse problem. 

Here, we should note that the cost of routing resource described in this section is 

used to solve the overuse problem, and it is independent of the cost function described in 

section 3.5.2.  The router algorithm will solve congestion problem while maintaining 

all connection path costs as small as possible.  We follow the example of Figure 3.7, 
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and it has finished task mapping procedure described in section 3.4.2, as shown in 

Figure 3.16 and Figure 3.17.  At first, all nets are assigned the shortest path, and 

assume that the result is as in Figure 3.16.  If the channel width factor is set to two, the 

four gray path lines cause the illegal routing.  The cost of the overused channel will be 

larger than other channels.  Then, rip-up and reroute all nets will prevent from routing 

through the overused channel according to the cost, the multiple of p(n) and h(n).  

Figure 3.17 shows the result of solving overuse problem.  If finishing Step 2, the 

overuse problem still can not be solved, that means the channel width factor is too small.  

The channel width factor should be adjusted larger.  In other words, Step 2 is executed 

for routablility and to find the suitable channel width factor. 

  

 

Figure 3.17: Solution of overuse problem. 

From Step 3 to Step 7, the communication paths that have been routed in Step 1 and 
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Step 2 are redistributed to solve the bandwidth overuse and reduce the contention.  At 

first, sort all the connection paths by the communication cost function, (3.3).  Then, 

rip-up and reroute all the paths in order to reduce the total cost.  The router runs 

Dijkstra’s algorithm according to the cost calculated by the parentheses term of the 

communication cost function.  Because the routing resource overuse problem has been 

solved, occupancy must be less than or equal to capacity for all routing resource node.  

When rerouting, the cost of the routing resource nodes that occupancy equals to capacity 

will be added to a large constant.  Therefore, the full capacity routing resource nodes 

will not be chosen during running Dijkstra’s algorithm since the virtual channel 

un-overuse situation can not be broken.  Sorting paths and rerouting all paths in order 

once is called a routing iteration.  The routing algorithm performs multiple routing 

iterations until total cost reduction is saturated. 

  

 

Figure 3.18: Solution of optimizing contention. 
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After solving the overused virtual channels, Step 3 to Step 7 are performed and 

shown in Figure 3.18.  To run the Dijkstra’s algorithm, the edge weight is allocated the 

parentheses term in (3.3).  At first, sort all nets according to the communication cost 

function (3.3).  Path D and path E are rerouted to choose another solution to reduce the 

total cost.  Figure 3.18 is the final connection path assignment result with the lowest 

communication cost. 
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Chapter 4                  

Experimental results 

In this chapter, we use some CAD tools to analyze the system performance when 

applying applications onto the NoC platform.  At first, we propose an experimental 

flow mapping to the design methodology.  Then, we provide the comparison between 

the hierarchical and the traditional architecture through the experimental results.  It 

turns out that the proposed architecture has better performance than the traditional one. 
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4.1 Experimental Flow 

  

 

Figure 4.1: Experimental environment mapping to design methodology. 

The experimental flow shown in Figure 4.2 is mapped to the design methodology, 

as shown in Figure 4.1.  The Task Graph For Free (TGFF) [20], a user-controllable, 

general-purpose, pseudo-random task graph generator, is employed to generate the task 

graphs randomly.  A generated graph is composed of many nodes and arcs.  A node 

represents a task that can be mapped onto a processor.  An arc from one node to 

another represents that there exists communication between the two nodes from the 

former to the latter.  TGFF also randomly generates the computation amount of a node 
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and the communication amount of an arc.  To match up the hierarchical architecture 

with different bandwidth of network level one and two, the generated communication 

amount will be adjusted to the multiple of R.  In other words, we do not consider the 

condition that the last few data stacks in buffers, because of insufficient transmission 

data for hierarchy network. 

The Versatile Place and Route (VPR) [21] is employed to run task mapping and 

path assignment where the algorithm is described in chapter 3.  Besides, the routing 

resource graph in VPR is built as the NoC platform; the task mapping and path 

assignment algorithm with the communication cost function are also included in VPR. 

The simulation kernel is composed of the processor model and the switch model in 

cycle-accurate C++ used for system design and the performance evaluation.  For the 

processor model, we assume that a processor begins to operate only when all input data 

is available and the output buffer size is large enough for data generated later.  For the 

switch model, it models the transmission behavior of the network including physical 

channels and buffers of virtual channels.  In other words, the environment of the 

simulation kernel is built as all connection of using physical channels and buffers 

according to the path assignment result.  After finishing task mapping and path 

assignment, the simulation kernel will run simulation and evaluate the system 

performance. 
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Figure 4.2: Experimental environment. 

In Figure 4.2, after generating task graphs, the task graph including net list and 

communication information will be the inputs of VPR.  The contention information is 

empty for the first iteration and will be generated by simulation kernel.  After mapping 

each task onto processors and assigning all connection paths, the placement and routing 

results will be generated.  Then, the routing result becomes the input of the simulation 

kernel and the simulation is run.  After running simulation, the contention information 

is calculated and fed back to VPR in the next iteration.  The timing information of each 

data transaction in simulation is recorded.  It is used for system performance 

calculation.  For system design automation, the interface of TGFF, VPR, simulation 
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kernel, and performance calculation is packed in Perl.  Designers just give the task 

graph of the application without any manual control, and then find out the most suitable 

architecture through the final simulation result. 

4.2 Experimental Results 

4.2.1 Hierarchical Bandwidth Scalability Analysis 
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Figure 4.3: Latency versus different R. 



 

 

 

 

52

 

22

23

24

25

26

27

28

29

30

31

0 1 2 3 4 5 6 7 8 9

R

T
hr

ou
gh

pu
t

Traditional Architecture

Hierarchical Architecture

 

Figure 4.4: Throughput versus different R. 

Compared with the description of the hierarchical architecture in chapter 3, the 

physical channel width of L2 is larger than that of L1.  A factor, R, has been defined as 

that the ratio of the physical channel width of L2 over that of L1.  Figure 4.3 and 

Figure 4.4 shows the relationship of the latency and the throughput versus R.  In this 

experiment, 100 task graphs are generated from TGFF randomly for each case where 

each task graph has at least 210 to 250 tasks and the maximum input/output of each task 

ranges from 7 to 10.  The other simulation environment settings are the communication 

factor of four and buffer size of two.  The R of hierarchical architecture is set to 1, 2, 4, 

and 8.  In Figure 4.3, the single node on y-axis denotes the latency of the traditional 

architecture with R of zero.  The curve denotes the relationship between the latency 
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and R.  The latency decreases as R increases and is saturate at approximately 320 clock 

cycles.  In Figure 4.4, the single node on y-axis denotes the throughput of the 

traditional architecture with R of zero.  The curve denotes the relationship between the 

throughput and R.  The throughput increases and tends to saturate while the increasing 

of R.  Through these simulation results, the designer can get trade-off between the 

physical channel width of L2 and the system performance. 

4.2.2 Performance Analysis 

100 task graphs generated from TGFF randomly are used for each case, and each 

task graph has at least 210 to 250 tasks.  The maximum inputs/outputs of each task is 7 

to 10 which indicates that there are many communication paths between tasks.  The 

communication amount is modified by multiplying the communication factor.  In other 

words, the communication factor is the ratio of the communication amount to the 

computation amount.  The magnitude of the communication factor indicates the 

communication loading degree of a communication path.  In other views, the 

communication factor also indicates the provided physical bandwidth.  Larger 

communication factor, smaller physical bandwidth can be obtained. 

In this experiment, the communication factor is set to 0.25, 0.5, 1, 2, and 4.  The 

task graph with the communication factor less than one implies that the application is 

computation intensive.  On the other hand, the communication factor larger than one 

means that the application is communication intensive.  Fail rate is defined as the 
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number of failed transactions over the number of the total transactions.  Since a failed 

transaction needs to transmit the same data again, unnecessary power consumption will 

be resulted in.  Higher fail rate, more power consumption used for useless transactions; 

thus, the total power consumption increases.  The relationship between the fail rate and 

the communication factor by comparing the traditional architecture with the proposed 

hierarchical one is shown in Figure 4.5.  The fail rate increases with the increasing of 

the communication factor and saturates at approximately 22% for traditional architecture 

and 17% for hierarchical one.  The trend of the curve means that the fail rate would be 

under controlled even under communication intensive conditions.  Then, the proposed 

hierarchical architecture improves the fail rate of 28.5% with communication factor of 

one and 21.8% for communication factor of four. 
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Figure 4.5: Fail rate versus different communication factor. 
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Figure 4.6: Fail rate versus different buffer size. 

The transaction is failed when the buffer of the next switch is full.  Hence, a larger 

buffer size makes the lower fail probability.  In order to reduce the fail rate, the buffer 

size is increased.  In this experiment, the buffer size is increased from 2 to 4, 8, 16, and 

32.  The relationship between the fail rate and the buffer size is shown in Figure 4.6 

and the fail rate decreases with the increased buffer size.  Comparing with the 

traditional architecture, the hierarchical one provides about 37.6% improvement for the 

buffer size of four. 
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Figure 4.7: Latency versus different communication factor. 

Figure 4.7 shows the communication latency versus the communication factor.  

The latency is defined as the elapsed time spent for one data transmitted from the source 

PE to the destination PE.  The latency rises linearly following the increasing of the 

communication factor.  To compare with the traditional architecture, the hierarchical 

one improves the latency by 14.4% under the communication factor of four. 
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Figure 4.8: Latency versus different buffer size. 

For the relationship of the latency and the buffer size, the latency decreases when 

the buffer size increases, as shown in Figure 4.8.  That also implies that a lower fail 

rate makes the latency smaller.  Compared with the traditional architecture, 15.5% 

latency improvement under the buffer size of four for the hierarchical architecture is 

obtained. 
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Figure 4.9: Throughput versus different communication factor. 

Figure 4.9 shows the system throughput versus the communication factor.  The 

system throughput is defined as the executed application times during a fixed period 

time.  In this experiment, the fixed period time is 50000 clock cycles.  It can be 

detected that the throughput is improved by the hierarchical architecture under 

communication intensive applications; nevertheless, the throughput decreases under 

computation intensive applications.  For this phenomenon, it can be explained as the 

different using time between computation and communication.  For computation 

intensive applications, the total spending time for computation is more than that for 

communication.  On the other hand, for communication intensive applications, the total 

spending time for communication is more than that for computation.  The hierarchical 
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architecture can improve the communication efficiency indeed but for computation 

intensive applications, it still spends lots of time for computation.  That is why the 

hierarchical architecture used for computation intensive applications can improve the 

fail rate and the latency except the throughput.  Under the communication factor of four, 

communication intensive application, 27% throughput improvement is obtained.  

Undoubtedly, for communication intensive applications, the hierarchical architecture can 

attain better system performance.  On the other hand, if the latency has higher priority 

than the throughput under computation intensive applications, the hierarchical 

architecture would also be a better choice. 
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Figure 4.10: Network usage versus different communication factor. 

Figure 4.10 shows the network usage of I and L2 versus different communication 
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factor.  The usage of L2 is defined as that the total communication amount on L2 over 

the total communication amount on the whole network.  The usage of L2 increases 

following the increasing of the communication factor. 

Table 4.1: Comparison between traditional and hierarchical architecture at 

communication factor = 4 and buffer size = 2. 

 Fail Rate Latency Throughput 

Traditional 0.2285 380.9 (cycles) 23.29 

Hierarchical 0.1788 326 (cycles) 29.57 

Improvement 21.75% 14.41% 26.96% 

 

Table 4.1 shows the comparison between the hierarchical and the traditional 

architecture under the communication factor of four and the buffer size of two.  We can 

see that the hierarchical architecture improves the system performance in fail rate, 

latency and throughput under the computation intensive applications. 

4.2.3 Task Graph Complexity Analysis 

The complexity of a task graph is defined by two factors including task number and 

the maximum inputs/outputs of each task.  In this experiment, the maximum 

inputs/outputs of each task ranges from 7 to 10.  To analyze the influence of the task 
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graph complexity to the system performance between the hierarchical and the traditional 

architecture, we only consider the task number.  In this experiment, the task number is 

set from 60 to 400 where every 50 tasks is an interval.  100 task graphs generated form 

TGFF randomly are used for each interval case.  The buffer size and the 

communication factor are set to 2 and 4. 
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Figure 4.11: Fail rate versus different task number. 
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Figure 4.12: Latency versus different task number. 
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Figure 4.13: Throughput versus different task number. 



 

 

 

 

63

Figure 4.11, Figure 4.12 and Figure 4.13 show the fail rate, the latency and the 

throughput versus the task number, respectively.  Obviously, the hierarchical 

architecture provides at least 8% fail rate, 7.5% latency, and 9% throughput 

improvement.  It is important to note that the larger number of tasks, the larger 

improvement can be achieved.  We can see that the fail rate, the latency, and the 

throughput all tend to saturate when the task number increases.  The application 

complexity is not the bottleneck of the system performance anymore.  When the task 

graph is much complex, the proposed hierarchical network will be more useful. 
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Figure 4.14: Network usage versus different task number. 

Figure 4.14 shows the network usage of I and L2 versus different task number.  

Obviously, the usage of L2 increases following the increasing of task number.  The 
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larger number of tasks, the larger improvement can be achieved.  Figure 4.14 can 

explain this phenomenon. 

Through the above simulation results running at the hierarchical architecture, it is 

true that the proposed architecture outperforms the traditional one, especially for the 

communication intensive or complex applications.  The hierarchical architecture can 

provide higher-throughput, latency-insensitive, bandwidth guarantee, and higher 

communication resource utilization compared with the conventional design. 
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Chapter 5                   

Conclusions and Future Work 

This thesis proposes a new hierarchical switch-based network platform design that 

possesses the latency-insensitive concept, virtual-circuit switching, request-oriented 

weighted round-robin scheduling and pipeline bus.  The task mapping and path 

assignment methodology employs not only new cost functions but also an iterative 

profile-driven optimization technique to reduce the effect of the communication amount 

and the communication contentions to obtain better system throughput.  Furthermore, 

the hierarchical 2-D mesh architecture even supports the more complex or heavy 

communication applications.  For the traditional 2-D mesh architecture, the 

performance of these applications will become bad inevitably.  Oppositely, the 
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hierarchical architecture will improve the performance no matters the application is 

much complex.  Actually, even there is no such complex application which has 

hundreds of tasks nowadays.  As technology advances rapidly, we believe that the 

hierarchical architecture will be applied to corresponding cases some day.  The 

experimental results indicate that the cost functions and our hierarchical architecture not 

only increase the system utilization and effectively improves the network throughput but 

also provide the features of high bandwidth utilization and small latency.  Comparing 

to these results with the traditional 2-D mesh architecture, the following improvements 

are observed: the overall system throughput and the latency are improved by 27% and 

14.4% under the communication dominated system; the saving of redundant transaction 

and the latency are improved by 37.6% and 15.5% with the same buffer size; the saving 

of redundant transaction goes up by 28.5% and 21.8% under the normal situation and 

communication dominated situation; the overall system throughput is improved by 9% 

to 42.8% and the latency is improved by 7.5% to 19.6% under the task number from 60 

to 400; respectively. 

This thesis proposes a powerful architecture for NoC platform.  No matter the 

applications are getting more complex, designers can get great performance.  There is 

an idea that makes any application as more parallel as possible and applies on the 

hierarchical platform to get the better performance.  If the task partition optimization is 

well done, it is expected that the performance of all current applications will be 

enhanced. 
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