
國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

以低狀態切換機率與可調變擷取長度為基礎之低功率

維特比解碼器

A Low-power Viterbi Decoder Based on Scarce State

Transition and Variable Truncation Length

學生 ： 林 大 嘉

指導教授 ：李鎮宜 教授

中華民國九十六年七月

以低狀態切換機率與可調變擷取長度為基礎之低功率

維特比解碼器

A Low-power Viterbi Decoder Based on Scarce State

Transition and Variable Truncation Length

研 究 生：林大嘉 Student：Dah-Jia Lin

指導教授：李鎮宜 Advisor：Chen-Yi Lee

國 立 交 通 大 學
電子工程學系 電子研究所 碩士班

碩 士 論 文

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in

Electronics Engineering

July 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年七月

以低狀態切換機率與可調變擷取長度為基礎之低功率

維特比解碼器

學生：林大嘉 指導教授：李鎮宜 教授

國立交通大學

電子工程學系 電子研究所碩士班

摘要

無線與可攜式裝置在近年來成為越來越普遍的應用。因此，低功率電路的設

計已經成為一項重要考量。本論文提出一個結合低狀態切換機率與可調變擷取長

度技術的維特比解碼器。在高訊雜比的環境下，低狀態切換機率技術可大幅降低

解碼時的狀態切換率。基於維特比演算法的路徑融合特性，可調變擷取長度技術

可消除殘餘記憶體中不必要的資料搬移。模擬結果顯示，在位元訊雜比大於 4

分貝的環境下，本研究所提出的方法只需 13%的額外硬體，即可省下超過 14%的

解碼器功率消耗與 53%的殘餘記憶體功率消耗。

A Low-power Viterbi Decoder Based on Scarce State

Transition and Variable Truncation Length

Student：Dah-Jia Lin Advisor：Dr. Chen-Yi Lee

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

As wireless and portable devices become more and more popular these years,

low-power design has become an important issue. In this thesis, we propose a

low-power Viterbi decoder combining scarce state transition and variable truncation

length schemes. The SST technique reduces the state transition activity significantly

in high SNR conditions. The variable truncation scheme eliminates unnecessary data

movement of the survivor memory based on path merging property of Viterbi

algorithm. According to the simulation results, more than 14% decoder power and

53% survivor memory power can be reduced as Eb/N0 is large than 4dB, while the

overhead of 13% gate count is required.

誌 謝

在 Si2 實驗室這兩年的時光轉眼到了尾聲，首先要感謝指導教授李鎮宜老師

的指導與教誨，讓我能在良好的研究環境下學習成長。另外我要感謝張錫嘉老師

與 Ocean 團隊的所有學長姐，因為你們的努力與指導，使這個研究團隊得以持續

發展，並且讓所有成員有所發揮。

再來要感謝 Si2 與 Ocean 的所有成員。我有幸成為團隊的ㄧ份子，讓我不僅

在專業知識上獲益良多，更學會了團隊合作。謝謝你們這兩年給我的鼓勵和協

助，陪我走過歡樂與艱難的時刻。

最後要謝謝家人的關心與支持，讓我得以順利地完成研究和論文。

Contents

Chapter 1 Introduction..1

1.1 Overview of Channel Coding..1

1.2 Research Motivation...3

1.3 Organization of the Thesis ...3

Chapter 2 Convolutional Code and Viterbi Algorithm....................................4

2.1 Convolutional Code ...4

2.1.1 Encoding of Convolutional code ...4

2.1.2 Trellis Diagram of Convolutional Code ..7

2.2 Viterbi Algorithm...9

2.2.1 Maximum Likelihood Decoding ...9

2.2.2 Viterbi Decoding Algorithm..11

2.2.3 Path Merging Property..14

Chapter 3 Architecture of Viterbi Decoder ... 16

3.1 Branch Metric Unit..17

3.2 Add-Compare-Select Unit ...19

3.2.1 Radix-2 ACS Structure ..19

3.2.2 High-radix ACS and Two-dimension ACS...20

3.3 Path Metric Unit ..24

3.4 Survivor Memory Unit ..26

I
3.4.1 Register-exchange Approach...27

II

3.4.2 Trace-back Approach...31

Chapter 4 Some low-Power Schemes for Viterbi Decoder............................. 37

4.1 Scarce-State-Transition (SST) Algorithm ..37

4.2 Adative Viterbi Algorithm...42

4.3 Variable Truncation Length..43

Chapter 5 The Proposed Low-power Viterbi Decoder................................... 47

5.1 The Design of Proposed Viterbi Decoder...48

5.1.1 Implementation of SST..49

5.1.2 Radix-2x2 ACS Structure ..50

5.1.3 Implementation of Variable Truncation Length ...53

5.2 Simulation and Implementation Results..55

5.3 Comparison ..62

Chapter 6 Conclusion and Future work.. 63

Bibliography ..64

List of Figures

Figure 1.1 Block diagram of a digital communication system..1

Figure 2.1 The (2, 1, 2) convolutional encoder ...5

Figure 2.2 State diagram of the convolutional encoder in Figure 2.18

Figure 2.3 The trellis diagram of the convolutional encoder in Figure 2.1..........................9

Figure 2.4 The system blocks that focuses on the channel coding......................................10

Figure 2.5 Viterbi decoding over an ideal channel...13

Figure 2.6 Viterbi decoding over a noisy channel ..14

Figure 2.7 Path merging phenomenon ..15

Figure 2.8 Truncated survivor paths...15

Figure 3.1 Main blocks of Viterbi decoder ...16

Figure 3.2 Quantization of the received symbol...17

Figure 3.3 The architectures of branch metric unit...18

Figure 3.4 The 4-state radix-2 trellis and the radix-2 ACS unit for state S0......................20

Figure 3.5 The 4-state radix-2 and radix-4 trellis diagrams ...21

Figure 3.6 A radix-4 ACS unit..21

Figure 3.7 The 4-way comparator in Figure 3.6...22

Figure 3.8 The 4-state radix-2 and radix-2×2 trellis diagrams ...23

Figure 3.9 A radix-2×2 ACS unit ...24

III

IV

Figure 3.10 Circular representation of the modular theorem...25

Figure 3.11 The upper bound of path metric difference..26

Figure 3.12 The best state approach with truncation length 4 ...28

Figure 3.13 Realization of the best state approach ..28

Figure 3.14 The fixed state approach with truncation length 4..29

Figure 3.15 Realization of the fixed state approach...29

Figure 3.16 The majority vote approach with truncation length 430

Figure 3.17 Realization of the majority vote approach ...30

Figure 3.18 Memory structure and operation of the 3-pointer odd approach33

Figure 3.19 Memory structure and operation of the 3-pointer even approach.................34

Figure 3.20 Memory structure and operation of the one-pointer approach35

Figure 3.21 Memory structure and operation of the even hybrid approach.....................36

Figure 4.1 The block diagram of convolutional code...38

Figure 4.2 The model of SST Viterbi decoding...38

Figure 4.3 The SST Viterbi decoding process...40

Figure 4.4 The survivor paths over a noiseless channel ..41

Figure 4.5 The ACS unit of adaptive Viterbi decoder ...43

Figure 4.6 A 64-state, radix-2x2 Viterbi decoder with RE-based memory44

Figure 4.7 A RE-based survivor memory with variable truncation length45

Figure 4.8 Trellis diagram representation of variable truncation length46

Figure 5.1 The block diagram of MB-OFDM UWB system ...48

Figure 5.2 The block diagram of proposed Viterbi decoder ...48

V

Figure 5.3 The convolutional encoder of MB-OFDM UWB system...................................49

Figure 5.4 The pre-decoder for the convolutional encoder in Figure 5.3...........................50

Figure 5.5 The 4-state radix-4 and radix-2x2 trellis diagrams ...51

Figure 5.6 The radix-4 and radix-2x2 ACS units ...51

Figure 5.7 The implementation of variable truncation length..54

Figure 5.8 The performance curves under different truncation lengths55

Figure 5.9 The performance curves under different verification conditions56

Figure 5.10 The power simulation results in different channel conditions........................58

Figure 5.11 The gate count distribution of conventional and proposed designs59

Figure 5.12 The power profiling of conventional and proposed designs............................60

Figure 5.13 The layout of the proposed Viterbi decoder ...61

List of Tables

Table 3.1 Comparison of different radix-2τ ACS structures ..22

Table 5.1 Comparison of complexity between radix-4 and radix-2×2 ACS units52

Table 5.2 The gate counts of different comparators and multiplexers...............................52

Table 5.3 Design parameters of the proposed Viterbi decoder ...57

Table 5.5 The chip summary..61

Table 5.6 Comparison with other designs ...62

VI

Chapter 1
Introduction

1.1 Overview of Channel Coding

A communication system connects an information source to a destination through

a channel. The physical channel may be wireline cables, microwave links, and even

storage media. Figure 1.1 shows a typical digital communication system. The

transmission end is composed of source encoder, channel encoder, and modulator.

The receiving end is composed of demodulator, channel decoder, and source decoder.

Figure 1.1 Block diagram of a digital communication system

A signal will be distorted by some effects such as noise, interference, and fading

as it passes through the channel. To overcome the channel effects, the channel

encoder introduces some redundancy in the output of the source encoder, called the

information sequence. Next, the modulator converts the new sequence with

redundancy, called the codeword sequence, into analog signals transmitted through

the channel. In the receiver, the demodulator estimates the transmitted signal and

1

2

makes some error because of channel noise. The demodulated sequence is called

received sequence, which may not match the codeword sequence due to the errors.

The channel decoder uses the redundancy in the codeword to correct the errors in the

received sequence and produces an estimate of the information sequence. A subject

dealing with the design of channel encoder and channel decoder, referred to channel

coding or error control coding, are developed to improve the performance of the

overall system.

There are two main types of channel coding, the block code and the convolutional

code. For the block codes, the encoder transforms a block of k information symbols

into a block of n symbols called a codeword. These codes are usually referred as (n, k)

block codes. The (n-k) redundancy symbols, also termed as parity symbols, depend

only on the corresponding k information symbols and not on other information

symbols. This means the block code is memoryless. Some of the commonly used

block codes are Hammimg code, BCH code, Reed-Solomon (RS) code, and

low-density parity-check (LDPC) code.

For the Convolutional code, the encoder contains memory elements. The (n, k, m)

Convolutional encoder has k inputs, n outputs, and m memory elements.

Convolutional code converts the entire data stream into one single codeword by a

linear shift-register circuit that performs a convolutional operation on the information

sequence. The encoded bits depend not only on the current k input bits but also on the

previous bits.

The Viterbi algorithm [1] proposed by A.J. Viterbi in 1967 is used to decode

convolutional code. Forney [2] later proves that the Viterbi algorithm provides a

maximum likelihood (ML) decoding algorithm. Until now, Viterbi algorithm is still

the optimal solution for convolutional code and has become an important algorithm in

communication systems.

3

1.2 Research Motivation
In the early research of the Viterbi decoder, low complexity and high throughout

are two important concerns in VLSI design. As modern communication systems are

required to transmit information at high data rates, the power dissipation has also

become an important issue. Nowadays, mobile and wireless system applications are

more and more popular. Therefore, a low power design is the key point of the overall

system.

Convolutional code is a common error control code in practical communication

system. The Viterbi decoder consumes much power in the receiver because of the

computing complexity. Therefore, applying low-power techniques to the Viterbi

decoder will effectively reduce the power consumption of the whole system. In this

thesis, we propose a low-power Viterbi decoder for wireless communication systems.

1.3 Organization of the Thesis
This thesis is organized as follows. In chapter 2, we describe the fundamentals of

convolutional code and Viterbi algorithm. The general architectures of Viterbi

decoder will be introduced in chapter 3. In chapter 4, some low-power schemes for

Viterbi decoder will be presented. In chapter 5, we proposed a low-power Viterbi

decoder with reduced state transition and efficient memory access. The

implementation results and some comparison will also be presented. Finally, the

conclusions and future work are given in chapter 6.

Chapter 2
Convolutional Code and Viterbi
Algorithm

2.1 Convolutional Code

Convolutional code is a widely used error control code in modern communication

systems such as DVB-T, IEEE 802.11, IEEE 802.16, and MB-OFDM UWB systems.

To describe a convolutional code, one needs to characterize the encoding process.

Several methods such as matrix and polynomial representation are used for

representing the encoding process of convolutional code. In addition, the trellis

diagram description is a common way for illustrating the codeword sequence with

timing information. All of them will be introduced in this section.

2.1.1 Encoding of Convolutional Code

A convolutional encoder generates a coded output data stream from an input data

stream. As mentioned in previous chapter, a convolutional code is specified in (n, k, m)

format where (n, k, m) denotes the number of output, the number of input, and the

number of memory element respectively. The coding rate is k/n which means k input

bits produce n output bits. The coded bit depends not only on the current input bit but

also on m previous input bits. A convolutional encoder is composed of several shift

registers and modulo-2 adders (or the XOR operation). Figure 2.1 shows a (2, 1, 2)

convolutional encoder with two shift registers and three modulo-2 adders. It produces

2-bit encoded codeword for 1-bit input information.

4

(2) (2) (2)
2 1 0c c c…

(1) (1) (1)
2 1 0c c c…

2 1 0u u u…

Figure 2.1 The (2, 1, 2) convolutional encoder

The input of this encoder is some binary sequence, 0 1 2(, , ,)u u u u= … . The output

is an interleaved sequence of the two binary

sequences and . For each input bit, the coded symbol and are

generated by the following function

(1) (2) (1) (2) (1) (2)
0 0 1 1 2 2(, , , , , ,c c c c c c c= …)

2

(1)c (2)c (1)
ic (2)

ic

 (1)
1i i i ic u u u− −= ⊕ ⊕ (2.1)

 (2)
2i i ic u u −= ⊕ (2.2)

where denotes the XOR operation. Next, the input bit is shifted into the leftmost

register and the bits in the registers are shifted one position to the right. Therefore, the

codeword sequence c depends on not only the current input bit but also on the

two previous input bits and

⊕

iu

1iu − 2iu − . Obviously, the interconnection of the encoder

influences the codeword sequence. In general, these interconnections of a (n, k, m)

convolutional encoder can be formulized as the generator sequences

 (2.3)

(1) (1) (1) (1)
0 1

(2) (2) (2) (2)
0 1

() () () ()
0 1

(, , ,)
(, , ,

(, , ,

m

m

n n n n
m

g g g g
g g g g

g g g g

⎧ =
⎪ =⎪
⎨
⎪
⎪ =⎩

…
…

#
…

)

)

)where represents the interconnections for coded symbol

from left to right.

() () ()
0 1(, , ,i i i

mg g g… ()ic

5

For information sequence u, the encoding process can be represented in a matrix

form as

 c uG= (2.4)

where G is called the generator matrix. For a (n, k, m) convolutional code, the

generator matrix is made up in the form of

(1) (2) () (1) (2) () (1) (2) () (1) (2) ()
0 0 0 1 1 1 2 2 2

(1) (2) () (1) (2) () (1) (2) ()
0 0 0 1 1 1

n n n n
m m m

n n
m m m

g g g g g g g g g g g g
g g g g g g g g g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

… … … … …
… … … …

…
…
…

n

where each row of the matrix is obtained by interleaving the generator sequences. For

example, the (2, 1, 2) convolutional encoder in Figure 2.1 can be described by

 (2.5) (1) (111)g =

 (2.6) (2) (101)g =

Assume the input information sequence is

 1011100u = … (2.7)

Then the coded sequence can be analyzed as

1 1 1 1 0 1 1
0 1 1 1 0 1 1
1 1 1 1 0 1 1
1 1 1 1 0 1 1
1 1 1 1 0 1 1
0 1 1 1 0 1
0 1 1

T

c

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦# … … … … …

1
1 0 1 1

 (2.8)

Finally, the interleaved codeword sequence can be obtained as

 (2.9) 11,10,00,01,10,01,11,c = …

In addition to the matrix representation, the encoding process can be described in

a polynomial form. A (n, k, m) convolutional encoder is often characterized by the

6

generator polynomial. The degree of the generator polynomial is less or equal than m.

The coefficient of each term is either 1 or 0, depending on whether a connection

exists between the shift register and the modulo-2 adder. For example, the generator

polynomial of the (2, 1, 2) convolutional encoder in Figure 2.1 can be written as

 (1) 2() 1g D D D= + + (2.10)

 (2) 2() 1g D D= + (2.11)

where the factor D means the unit delay operation. For information polynomial u(D),

the encoded polynomials are expressed by

 (2.12) (1) (1)() () ()c D u D g D=

 (2.13) (2) (2)() () ()c D u D g D=

Assume the information sequence is the same as that of previous example, the input

polynomial can be represented as

 2 3() 1u D D D D4= + + + (2.14)

Then the encoded the encoded polynomials become

 (2.15) (1) 2 3 4 2 4() (1)(1) 1c D D D D D D D D D= + + + + + = + + + 6

6 (2) 2 3 4 2 3 5() (1)(1) 1c D D D D D D D D= + + + + = + + + (2.16)

Thus the interleaved codeword sequence is

 (2.17) 11,10,00,01,10,01,11,c = …

which agree with the result from previous example.

2.1.2 Trellis Diagram of convolutional code

One can regard a convolutional encoder as a finite state machine, where the

output is a function of the current input and the current state. Thus, the operation of a

convolutional encoder can be specified by the state diagram. Figure 2.2 shows the

state diagram of the convolutional encoder in Figure 2.1. As there are two shift

registers in the encoder circuit, the contents of these shift registers will have four

7

states represented as 00, 01, 10, and 11. A state transition corresponding to an

information bit “0” is represented by a dotted line. Similarly, a state transition

corresponding to an information bit “1” is represented by a solid line. The label on the

line represents the information input and the corresponding codeword symbols

generated by the state transition.

Figure 2.2 State diagram of the convolutional encoder in Figure 2.1

With the state diagram, it is easy to determine the codeword sequence in the

encoding process. For example, assume the information sequence is (1011100…).

The transition starts at state 00 and goes through the state diagram corresponding to a

solid line if the information bit is “1”, and a dotted line if that is “0”. Following the

track, the codeword sequence is (11, 10, 00, 01, 10, 01, 11,…). This codeword

sequence is the same as the result described in section 2.1.1.

As the length of information sequence is large, it is difficult to trace the codeword

sequence from the state diagram. Therefore, a representation called a trellis diagram

is obtained from an extension of the state diagram that shows the dimension of time.

Figure 2.3 shows encoding process for the information sequence (1011100…) by the

trellis diagram. With the trellis diagram, it is easy to illustrate the encoding process as

well as the decoding process described in next section.

8

Figure 2.3 The trellis diagram of the convolutional encoder in Figure 2.1

2.2 Viterbi Algorithm
The Viterbi algorithm [1] proposed by A.J. Viterbi in 1967 is used to decode

convolutional code. Forney [2] later proves that the Viterbi algorithm provides a

maximum likelihood (ML) decoding algorithm. In fact, an optimum solution to

decode a convolutional code is equivalent to find the maximum likelihood path in the

trellis diagram. Until now, Viterbi algorithm is still the optimal solution for

convolutional code and has become an important algorithm in communication

systems. The maximum likelihood decoding and Viterbi algorithm will be introduced

in this section.

2.2.1 Maximum Likelihood Decoding

Figure 2.4 shows a simplified communication system that focuses on the channel

coding. The encoder transforms the information sequence u into the codeword

sequence c by adding certain structural redundancy. Then the codeword sequence c is

9

transmitted across the noisy channel. The decoder uses the redundancy to correct the

errors in the received sequence r and produces an estimate which is the most

possible information sequence.

û

u c r û

Figure 2.4 The system blocks that focuses on the channel coding

The maximum likelihood decoder finds the sequence that maximizes the

probability . Considering a rate k/n convolutional code, assume the

information sequence u is composed of L k-bit blocks.

ĉ

(|)P r c

(0) (1) (1) (0) (1) (1) (1)
0 0 0 1 1 1 1(, , , , , , , , ,k k

Lu u u u u u u u− −
−= … … …)k−

n−

n−

n−

)

The codeword sequence c generated by the convolutional encoder consists of L n-bit

blocks.

(0) (1) (1) (0) (1) (1) (1)
0 0 0 1 1 1 1(, , , , , , , , ,)n n

Lc c c c c c c c− −
−= … … …

The decoder receives sequence r and generates the maximum likelihood sequence .

They have the following form.

ĉ

(0) (1) (1) (0) (1) (1) (1)
0 0 0 1 1 1 1(, , , , , , , , ,)n n

Lr r r r r r r r− −
−= … … …

(0) (1) (1) (0) (1) (1) (1)
0 0 0 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(, , , , , , , , ,)n n

Lc c c c c c c c− −
−= … … …

The probability can be expressed as

 (2.18)
()

1
(0) (0) (1) (1) (1) (1)

0

1 1
() ()

0 0

| (|) (|) (|

(|)

L
n n

i i i i i i
i

L n
j j

i i
i j

P r c P r c P r c P r c

P r c

−
− −

=

− −

= =

⎡ ⎤= ⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

∏

∏ ∏

…

From equation (2.18), the maximum likelihood estimation is ĉ

10

 1 1
() ()

0 0

(|)

ˆ arg max (|)

arg max
L n

j j
i i

i j

c

c

c P r c

P r c
− −

= =

=

⎡ ⎤
⎢ ⎥
⎣ ⎦

= ∏ ∏
 (2.19)

Taking the logarithm conversion to equation (2.19), the product terms turn into

summation terms. Thus, the estimation becomes ĉ

 ()

1
(0) (0) (1) (1) (1) (1)

0

1 1
() ()

0 0

2() ()1

2
0

ˆ arg max log (|)

arg max log (|) (|) (|)

arg max log (|)

1arg max log exp
22

c
L

n n
i i i i i ic i

L n
j j

i ic i j

j jn
i i

c i j

c P r c

P r c P r c P r c

P r c

r c
σπσ

−
− −

=

− −

= =

−

= =

=

⎡ ⎤= ⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
⎡ ⎤⎡ ⎤−⎢ ⎢ ⎥= −
⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦

∏

∑ ∑

∑

…

⎥

()

()

1

0

2() ()1 1

2
0 0

1 1 2() ()

0 0

1arg max log
22

arg min

L

j jL n
i i

c i j

L n
j j

i ic i j

r c

r c

σπσ

−

− −

= =

− −

= =

⎡ ⎤⎡ ⎤−⎢ ⎥⎢ ⎥= −
⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

∑

∑ ∑

∑ ∑

 (2.20)

Equation (2.20) shows that to maximize is equivalent to minimize

Euclidean distance of and . This rule is also the function of Viterbi algorithm

which will be described in next subsection.

log (|)P r c

r c

2.2.2 Viterbi Decoding Algorithm

The goal of Viterbi algorithm is to find codeword that maximize the probability

. According to the maximum likelihood decoding rule, Viterbi proposed an

algorithm to compute the minimum Euclidean distance as time goes on. There are two

basic measures defined in the Viterbi algorithm, which are branch metric

(|)P r c

x y

t
s sBM →

and path metric
y

t
sPM . At each time t, the branch metric and path metric are

computed as

11

12

x y

t
s s

 (2.21)
()

()

1 2
() ()

,
0

1
,min

x y x y

y x

n
t j j
s s t t s s

j

t t
s s

BM r c

PM PM BM

−

→ →
=

−
→

= −

= +

∑

The branch metric is the Euclidean distance between a received symbol and the

corresponding trellis codeword symbol.
x y

t
s sBM → represents the branch metric

associated with the transition between the state xs at time t-1 and state ys at time t.

The path metric is the minimum Euclidean distance between a received sequence and

the corresponding trellis codeword sequence.
y

t
sPM represents the path metric of the

state ys at time t. In other words, the path metric is the accumulation of branch

metrics that across the corresponding paths. Therefore, the Viterbi algorithm can find

the minimum path metric at each time instant. Then the maximum likelihood

sequence can be estimated in trellis diagram along the minimum path metric.

For a (n, k, m) convolutional code, the steps of the Viterbi algorithm can be

described as the following.

 Step 1.

Initially, set path metrics as

0 0 0 0
0 1 2 2 1

0, mPM PM PM PM
−

= = = =… = ∞

 Step 2.

Increase time index by 1.For each {0,1, ,2 1}m
yS ∈ −… , update path metrics as

1
,min | {all states merged into }

y x x y

t t t
s s s s xPM PM BM S S−

→
⎡ ⎤= + ∈⎣ ⎦y

and store the survivor at time t. The survivor means the decision bit corresponding

to the chosen branch from all branch merged into yS .

 Step 3.

If t < L (the length of information sequence), go to step 2. Otherwise, stop.

Figure 2.5 illustrates the Viterbi decoding process over an ideal channel by the

trellis diagram. Assume the information sequence is the same as the example

described in Figure 2.3, the codeword sequence (11, 10, 00, 01, 10, 01, 11,…) is

transmitted through the channel. Based on the assumption of ideal channel, the

received sequence will be the same as the codeword sequence. The path metric is

labeled above each state. As previous mentioned, the path metric of state 00 at time

t=0 is initialized to 0. At each time instant, the path metric is updated and only one of

branches merged to the current state is preserved. The preserved branches, called the

survivors, are represented by solid lines. On the other hand, the discarded branches

are represented by dotted lines. When the computation of survivors and path metrics

are done, the next step is to decode the information sequence . In Figure 2.5, the

best state at time t=7 is 00. By performing a trace-back process from the best state,

one can estimate the source information sequence. In this example, the decoded

information sequence is (1011100…) where the corresponding survivors are

highlighted in Figure 2.5.

û

Figure 2.5 Viterbi decoding over an ideal channel

13

As the codeword sequence is transmitted through a noisy channel, the received

sequence may not match the original codeword sequence due to the channel noise.

Figure 2.6 shows the Viterbi decoding process over a noisy channel. Considering the

same codeword sequence as that of previous example is transmitted through the

channel, assume the received sequence including two-bit errors is (11, 11, 00, 01, 10,

00, 11,…) . In Figure 2.6, the errors are represented in boldface. By the process

mentioned before, one can obtain the decoded information sequence (1011100…)

which is identical to the source information bits.

Figure 2.6 Viterbi decoding over a noisy channel

2.2.3 Path Merging Property

Figure 2.7 shows the survivors in Figure 2.6 and four survivor paths

corresponding to each state. Figure 2.7 also shows the path merging property of the

Viterbi algorithm. In this example, all survivor paths will merge to the survivor path

with the minimum path metric after the merged point. In other words, the decoded

data is determined after all survivor paths merge, whether the trace-back operation

starts from the best state or not.
14

Figure 2.7 Path merging phenomenon in Figure 2.6

The path merging property of the Viterbi algorithm is an important characteristic

for hardware implementation. In practical application, the length of the information

sequence may be very large. To reduce the storage requirement and the decoding

latency, the survivor path should be truncated to a finite length, called the truncation

length. Figure 2.8 shows the truncated survivor paths while the length of information

sequence is N. The boldface line means the survivor path with minimum path metric.

All survivor paths will merge with high probability if the truncation length L is long

enough. By selecting proper truncation length, the decoded data can be determined

with L-stage information only. Moreover, it is unnecessary to search for the best state.

15
Figure 2.8 Truncated survivor paths

Chapter 3
Architecture of Viterbi Decoder

In this chapter, we will introduce the hardware implementation of the Viterbe

algorithm. Figure 3.1 shows the main blocks of Viterbi decoder. A Viterbi decoder is

usually composed of four basic units. They are summarized as following.

 Branch Metric Unit (BM Unit):

According to the received sequence, compute the branch metric for different

branches in trellis diagram.

 Add-Compare-Select Unit (ACS Unit):

Accumulate the branch metric recursively and perform comparison operation to

generate the path metric for each state. Decide the survivor corresponding to each

state according to the comparison result.

 Path Metric Unit (PM Unit):

Store the path metric at each time instant.

 Survivor Memory:

Store the survivors from ACS unit. Then use the register-exchange approach or

trace-back approach to decode the maximum likelihood information sequence.

Figure3.1 Main blocks of Viter decoder
16

3.1 Branch Metric Unit
This unit generates all branch metrics from the received symbol. If the receiver

adopts 1-bit quantization, it is called the hard-decision decoding. On the other hand,

the soft-decision decoding adopts q-bit quantization when receiving the transmitted

symbols. Figure 3.2 illustrates the quantization of the received symbol. In fact,

hard-decision decoding uses a bit to indicate a received bit, while soft-decision

decoding uses q bits to indicate a received bit. Although soft-decision decoding

performs better than hard-decision decoding, the complexity of branch metric unit

and ACS unit with soft-decision decoding is high. In general, 3-bit soft-decision

decoding is a good choice considering the trade-off between performance and

complexity.

(a)Hard-decision

(b) 3-bit soft-decision

Figure 3.2 Quantization of the received symbol

Taking the (2, 1, 2) convolutional code described before as example, the received

symbol with q-bit quantization can be represented by (r1 r2). The codeword symbol

corresponding to each trellis branch may be 00, 01, 10, or 11. The branch metrics are

defined as

17

1 2

1 2

1 2

1 2

(00) 0 0

(01) 0 (2 1)

(10) (2 1) 0

(11) (2 1) (2 1)

q

q

q q

BM r r

BM r r

BM r r

BM r r

= − + −

= − + − −

= − − + −

= − − + − −

 (3.1)

Equation (3.1) can be rewritten as a simpler form:

1 2

1 2

1 2

1 2

(00)
(01)
(10)
(11)

BM r r
BM r r
BM r r
BM r r

= +
= +
= +
= +

 (3.2)

According to equation (3.2), one can easily implement the branch metric unit and

the result of all branch metrics are delivered to the ACS unit. Figure 3.3 shows the

architectures of branch metric unit for hard-decision decoding and 3-bit quantization

soft-decision decoding.

(a) Branch metric unit for hard-decision decoding

Received bit 1

Received bit 2
BM(00)

BM(01)

BM(10)

BM(11)

4

4

4

4

3

3

(b) Branch metric unit for 3-bit soft-decision decoding

Figure 3.3 The architectures of branch metric unit
18

3.2 Add-compare-select Unit
The trellis diagram of convolutional code can be decomposed in to basic sub

trellises. Each sub trellis can be implemented as the add-compare-select (ACS)

module. The ACS module is the key component in the Viterbi decoder to calculate the

minimum path metric and to estimate the survivor.

There are many issues in designing an ACS structure. For low complexity

application, the bit-serial ACS unit is used to save the area even to reduce the power

consumption. For high speed application, the bit-parallel structure is used by

duplicating ACS units for a (n, k, m) convolutional code. As modern

communication systems are required to transmit information in high data rate, this

section focuses on the fully parallel architecture. Some ACS structure for different

applications will be discussed in this section.

2m

3.2.1 Radix-2 ACS Structure

As previous mentioned, the ACS unit calculate the minimum path metric and

estimate the survivor. Each ACS unit adds the previous path metric of each

predecessor state to the corresponding branch metric. Then, it compares the results

among all partial path metrics to find the minimum partial path metric. And all

compared results of ACS units, which mean the estimated information, are saved in

the survivor memory. Moreover, the minimum partial path metric is selected as the

new path metric.

Figure 3.4 shows the 4-state radix-2 trellis and the fundamental radix-2 ACS unit

for state S0. As the trellis diagram illustrated, the state S0 has two predecessor states

including S0 and S1. First, the corresponding path metric and branch metric are added.

Then, the two summations are compared to decide which branch is the survivor and

which path metric is updated. The new path metric will become the predecessor path
19

metric at next time instant. Because of the feed-back characteristic, the main speed

issue of Viterbi decoder depends on the ACS unit.

1
0 0
tBM −
→

1
1 0
tBM −
→

1
0
tPM −

1
1
tPM −

0
tPM

0D

0
tPM1

0
tPM −

1
1
tPM −

1
0 0
tBM −
→

1
1 0
tBM −
→

Figure 3.4 The 4-state radix-2 trellis and the radix-2 ACS unit for state S0

3.2.2 High-radix ACS and Two-dimension ACS

ACS unit is the speed bottleneck of Viterbi decoder due to the feed-back

characteristic described in previous subsection. For high speed applications,

decreasing the critical path of ACS unit is the most intuitive idea. High-radix ACS

structures like radix-4 ACS, radix-8 ACS, radix-16 ACS …, etc. are such strategy.

The high-radix structures unroll the ACS loop in order to perform multi-step of the

trellis within a single clock period. These lookahead methods replace the fundamental

radix-2 trellis with a radix-4 trellis or radix-8 trellis …, etc. For example, a 4-state

radix-2 trellis and a 4-state radix-4 trellis are shown in Figure 3.5. Note that the

radix-4 ACS trellis in Figure 3.5(b) is formed by combining a two-stage of radix-2

trellis in Figure 3.5(a). For the same clock period, it is clear that the data rate of the

radix-4 ACS is two time faster than that of the radix-2 unit. In a similar manner, one

can obtain a higher radix trellis diagram.

20

t-1
S0

S1

S2

S3

tt-2 t
S0

S1

S2

S3

t-2

 (a) 4-state radix-2 trellis diagram (b) 4-state radix-4 trellis diagram

Figure 3.5 The 4-state radix-2 and radix-4 trellis diagrams

Higher radix trellis must be realized by much larger costs of area. Figure 3.6

shows a radix-4 ACS unit for state S0. This unit computes four sums in parallel

followed by a four-way comparison. The comparison illustrated in Figure 3.7 is

realized using six parallel subtractions for minimizing the critical path. Select signal

(D0(1) and D0(0)) for 4-to-1 multiplexer can be realized by simple logic gates.

Afterward, the minimum partial path metric is selected as the new path metric.

Although the critical path increases, the radix-4 architecture achieves two operation

steps per clock period. Consequently, the effective throughput is improved.

2
0 0,0 0
tBM −
→ →

2
1 0,0 0
tBM −
→ →

2
0
tPM −

2
1
tPM −

0
tPM

0D

2
2 1,1 0
tBM −
→ →

2
3 1,1 0
tBM −
→ →

2
2
tPM −

2
3
tPM −

Figure 3.6 A radix-4 ACS unit

21

0_Partial PM
1_Partial PM

2_Partial PM

0_Partial PM

3_Partial PM

0_Partial PM

2_Partial PM

1_Partial PM

3_Partial PM

1_Partial PM

3_Partial PM

2_Partial PM

0(1)D

0(0)D

Figure 3.7 The 4-way comparator in Figure 3.6

For the same clock period, the radix-2τ ACS unit achieves τ times speed up as

compared to the radix-2 ACS unit. Nevertheless, the number of trellis branches will

be 2τ-1 times of that in radix-2 trellis, leading to the exponentially increasing

complexity. The comparison of different radix-2τ ACS structures is shown in Table

3.1. The high-radix approach that accelerates Viterbi algorithm can also cause large

critical path due to exponentially increasing branches. Among different radix-2τ ACS

structures, radix-4 ACS is a popular choice because of the better compromise between

cost and throughput.

Table 3.1 Comparison of different radix-2τ ACS structures

Radix Throughput Complexity

2 1 1

4 2 2

8 3 4

16 4 8

22

Although high-radix ACS unit performs multi-step of the trellis within a single

clock period, the exponentially increasing complexity causes the difficulty in VLSI

implementation. The number of branch metrics generated by the BM unit also

increases exponentially. Therefore, a radix-2p×2q structure is introduced to achieve the

throughput equivalent to radix-2τ approach where τ = p + q. The radix-2p×2q ACS

unit, referred to the two-dimension structure, is similar to the radix-2τ ACS unit,

except that only smaller radix-2p ACS unit and radix-2q ACS unit are required. Since

the exponentially increasing hardware cost of a high-radix ACS, the complexity of a

Viterbi decoder based on radix-2p×2q architecture is much smaller than that based on

radix-2τ architecture. However, the critical path of the two-dimension ACS unit is

longer than of radix-2τ ACS unit. Figure 3.8 shows a 4-state radix-2 trellis and a

4-state radix-2x2 trellis. The structure of radix-2x2 ACS unit for state S0 is shown in

Figure 3.9.

 (a) 4-state radix-2 trellis diagram (b) 4-state radix-2×2 trellis diagram

Figure 3.8 The 4-state radix-2 and radix-2×2 trellis diagrams

23

2
0 0
tBM −
→

2
1 0
tBM −
→

2
0
tPM −

2
1
tPM −

0
tPM

2
2 1
tBM −
→

2
3 1
tBM −
→

2
2
tPM −

2
3
tPM −

1
1 0
tBM −
→

1
0 0
tBM −
→

Figure 3.9 A radix-2×2 ACS unit

3.3 Path Metric Unit
The path metric unit is the storage element of the accumulative path metric. In

VLSI implementation, the path metrics are represented by the memory device with

finite length fixed-point device. Path metric normalization is required to prevent the

errors due to the overflow during the increasing path metric. The modular

normalization technique [3] will be introduced in this section.

In the modular arithmetic, there is a theorem [4] which can determine the

magnitude between two values under some constraints.

Theorem Let m1, m2 be the real numbers, and θ is the angle swept out by

counterclockwise motion from m1 to m2. If they satisfy the condition

1 2 2
Cm m− <

then if and only if 1m m< 2 θ π< .

24

The theorem as shown in Figure 3.10 describes that the large value is always leading

under the constraint that the difference between the two values is less than half of the

circumference C.

θ
1m

2m

Figure 3.10 Circular representation of the modular theorem

According to the Viterbi algorithm, it supposes that the maximum likelihood path

would be merged among the truncation length L. Figure 3.11 illustrates this property.

In this graph, the and t m L
aPM + + t m L

bPM + + can be written as

 t m L t m
a xPM PM aγ
+ + += + (3.3)

 t m L t m
b xPM PM bγ
+ + += + (3.4)

Let B denote the maximum difference between two branch metrics which equals to

the maximum value of the branch metric. Then the difference of two path metrics in

equation (3.3) and equation (3.4) is

 t m L t m L
a b a bPM PM BLγ γ+ + + +− = − ≤ (3.5)

This equation shows that the difference of any two path metrics is upper bounded by a

sum of branch metrics at most L terms. Therefore, the equation is equivalent to the

constraint of the modular theorem. According to the modulo theorem, the

25

26

b
t m L t m L
aPM PM+ + + +≥ is always satisfied if 0t m L t m L

a bPM PM+ + + +− ≥ .

t m L
aP M + +

t m L
bP M + +

t m
xPM +

aγ

bγ

Figure 3.11 The upper bound of path metric difference

According to the descriptions above, the key idea of the modular normalization is

not to avoid the overflow, but to accommodate the overflow. Consequently, the

modular normalization is implemented by the 2’s complement adders and subtractors.

The representation of path metrics requires b bits to satisfy the constraint

 2
2

b
t m L t m L
a bPM PM BL+ + + +− ≤ = (3.6)

3.4 Survivor Memory Unit
There are two well-know survivor memory management approaches. One is the

register-exchange (RE) method and the other is the trace-back (TB) method. The two

approaches would be introduced in this section.

27

3.4.1 Register-exchange Approach

The register-exchange approach is conceptually the simplest used technique

which assigns a set of registers to each state. The registers record the corresponding

decoded output sequences named survivor paths. For each new time step, the registers

may change their contents to update new decoded information. Hence, this approach

eliminates the need to trace back since the registers have contained the decoded

information. Intuitively, the approach may reduce latency enormously. However, it is

not power efficient as a result of the need to shuffle all the registers in a time step to

the next time step.

A conventional approach of register-exchange is best state approach [5]. This

approach finds out the best path among all paths at each time step. Considering the

example introduced in Section 2.2.2, Figure 3.12 shows the decoding process of the

best state approach with truncation length 4 over an ideal channel. For each state

transition, the content of registers is exchanged according to the survivors labeled by

solid lines. And the corresponding information bit labeled with underline is shifted

into the leftmost bit of the register. The latency of this example is 4 which equals to

the truncation length. Then the decoded bit is stored in the rightmost bit of the register

corresponding to the best state. In Figure 3.12, the decoded bit is represented in

boldface. For example, the best state at time t=4 is S3. Thus, the decoded bit is ‘1’,

which is the rightmost bit of the register corresponding to S3. The decoded bit for

each time instant can be obtained in a similar way. The realization of this approach is

shown in Figure 3.13.

Figure 3.12 The best state approach with truncation length 4

Figure 3.13 Realization of the best state approach

When the truncation length is long enough, all survivor paths of states will merge

together at certain time step. In other words, several rightmost bits of all registers

contain the same decoded information. In this situation, there is no need to find out

the best state. Correspondingly, one can choose the rightmost bit of a fixed state as

decoded bit. The decoding process of fixed state approach with truncation length 4 is

shown in Figure 3.14. Choosing state S0 to obtain the decoded output, the register

content of S0 at time t=4 contains 0001. Accordingly, the decoded bit is ‘1’, which is
28

the rightmost bit of the register. Note that at any time step in this example, the

rightmost bits of each state are the same. The realization of this approach is shown in

Figure 3.15. This approach doesn’t need to find out the best state. However, more

registers are required to save longer survivor path.

Figure 3.14 The fixed state approach with truncation length 4

Figure 3.15 Realization of the fixed state approach

29

A compromising approach between best state approach and fixed state approach is

labeled as majority vote approach [6]. Compared with the best state approach, this

approach replaces the find-best-state unit with majority vote circuit. If the number of

1’s of the rightmost bits is larger than the number of 0’s, the decoded bit is 1.

Otherwise, the decoded bit is 0. The decoding process of majority vote approach with

truncation length 4 and its realization are shown in Figure 3.16 and Figure 3.17,

respectively.

Figure 3.16 The majority vote approach with truncation length 4

Figure 3.17 Realization of the majority vote approach
30

31

3.4.2 Trace-back Approach

The trace-back approach has been introduced in Section 2.2.2. Unlike

register-exchange approaches, one does not need to store the information sequence

but only stores the results of each comparison in memory. After a certain number of

branches which depends on the truncation length have been processed, these trellis

connections are recalled in reverse order. The path which is traced back through the

trellis diagram is used to determine the decoded information bits. This decoding

process is called the trace-back approach. Although trace-back approach will increase

overall hardware latency, it consumes less power and suits for portable applications.

There are three types of operations performed inside a trace-back approach.

 Write (WR):

The decisions made by the ACS unit are written into memory locations

corresponding to each state. The write pointer moves forward as ACS operations

move from one time step to the next in trellis.

 Trace-back (TB):

When the decoding process goes forward with trellis diagram, one must trace back

the trellis on the best path metric. The pointer values from this operation are not

the decoded sequence but the maximum likelihood path. Certain iterations are

needed to ensure that the trace back path reaches merging state with high

probability so that actual decoding process may come up. According to the Viterbi

algorithm, the trace-back operation is usually run to a predetermined truncation

length L before the decoding operation.

 Decode (DC):

When the trace-back operation finishes, a merging state is determined. Then, a

decoding operation begins to generate the decoded bits in a reverse order. This

operation proceeds in exactly the same fashion as the trace-back operation. Pointer

values from this operation are the decoded values and are temporarily stored in a

last-in first-out (LIFO) memory, and sent out when decoding operation finishes.

The trace-back approach is called k-pointer approach if there are k read pointers

operating simultaneously. In the k-point approach, read and write operations proceed

in parallel using several memory banks. That is, write, trace-back, and decode

operations are performed in different memory banks at the same time.

Figure 3.18 shows the memory structure and operation of k-pointer odd approach

with k=3. There are 2k-1 memory banks, each of size
1

L N
k

×
−

, where N is the

number of states and L is the truncation length of trellis. Since the truncation length L

must be achieved before decoding, two read pointer perform the trace-back operation

in two memory banks and one more read pointer performs the decode operation in one

memory bank. First of all, write operation is executed. After write operation is

completed in the third memory bank, the read pointer starts trace-back operation in

the third memory bank at the best path metric. At the same time, write operation

continues in the fourth memory bank. The trace-back operation continues across the

third and the second banks, while the ACS decisions are written to the fourth and the

fifth banks. Note that the combined length of the second and the third banks is exactly

the truncation length L. Hence, a merging state at the first memory bank is determined

by trace-back operation of length L. Then, the decoding operation starts and the

decoded bits are generated in reverse order. Furthermore, the new decisions from ACS

unit can be written to the first memory bank at once. The latency of the k-pointer

approach is 2
1

k L
k −

, which is the time delay from writing the first column to

decoding the first symbol. In this example of 3-pointer odd algorithm, the latency is

3L as shown in Figure 3.18. With this decoding process, one can generate the decoded

bits sequentially.
32

Figure 3.18 Memory structure and operation of the 3-pointer odd approach

Figure 3.19 shows the memory structure and operation of k-pointer even approach

with k=3. There are 2k memory banks, each of size
1

L N
k

×
−

. The decoding process

of the k-pointer even approach is similar to the k-pointer odd approach. The main

difference is that the k-pointer even approach needs one more memory banks because

decoding operation and write operation are divided into two memory banks.

33

Figure 3.19 Memory structure and operation of the 3-pointer even approach

The one-pointer approach differs significantly from the k-pointer approach. This

approach adopts only one read pointer but needs to speed up the read operation. For

example, if a k-pointer approach is converted to one-pointer approach, the trace-back

and decoding operations need to be performed k times faster. However, the number of

memory banks can be reduced. Figure 3.20 shows the memory structure and operation

of one-pointer approach with k=3. First, write operation is executed. After write

operation is completed in the third memory bank, the read pointer starts trace-back

operation in the third memory bank at the best path metric. At the same time, write

operation continues in the fourth memory bank. Notice that the read operation is 3

times faster than the write operation. Therefore, when the write operation finishes in

34

the fourth memory bank, the trace-back and decoding operation must be completed in

the other three memory banks. By a similar fashion, the decoded bits can be generated

sequentially. Furthermore, the number of memory banks and latency of this example

are 4 and 2L respectively, which are smaller than those of the 3-pointer approach. In

conclusion, if a k-pointer approach is converted to one-pointer approach, k+1 memory

banks are needed, each of size
1

L N
k

×
−

, and the latency is 1
1

k L
k
+
−

.

1 L/2 1 L/2 1 L/2 1 L/2

L/2

L

Time

3L/2

2L

5L/2

3L

4L

7L/2

: Write : Trace-back : Decode

Figure 3.20 Memory structure and operation of the one-pointer even approach

The hybrid trace-back approach combines the k-pointer approach and one-pointer

approach. That is, the trace-back and decoding operations become k1 times faster to

determine the merging state and decoded bits, which is like the one-pointer approach.

35

36

1

In addition, it uses k2 read pointers simultaneously when trace-back and decoding

operations are executed, which is like the k-pointer approach. Figure 3.21 shows the

memory structure and operation of even hybrid approach with k1=2 and k2=2. In this

approach, the number of memory banks are 2 1(1)k k + − and for the odd

hybrid approach and the even hybrid approach, respectively. Each memory bank size

is

2 1(1k k +)

1 2 1
L N

k k
×

−
. And the latency is 2 1

1 2

(1)
1

k k L
k k

+
−

.

Figure 3.21 Memory structure and operation of the even hybrid approach

Chapter 4
Some low-power Schemes for Viterbi
Decoder

In this chapter, we will introduce some low power schemes for Viterbi decoder.

The first one is scarce-state-transition (SST) algorithm proposed in 1987. As the

channel noise is not serious, SST technique reduces the switching activity of the input

sequence significantly. Next, we will describe adaptive Viterbi algorithm, which is a

popular low-power scheme for Viterbi decoder. Unlike conventional Viterbi algorithm,

adaptive Viterbi algorithm applies the path-pruning technique to reduce computation

and storage requirements. Finally, we will propose a modified memory management

based on path merging property of Viterbi algorithm. This scheme provides variable

truncation length for register-exchange approach to access the survivor memory

efficiently.

4.1 Scarce-State-Transition (SST) Algorithm
The scarce-state-transition (SST) algorithm [7] [8] [9] was first proposed by

Ishitani et al in 1987. It is a low-power technique for Viterbi decoder to reduce the

state transition activity significantly under high SNR condition. The decoding process

of SST algorithm will be introduced in this section.

Figure 4.1 shows the block diagram and data sequences of convolutional code. In

this block diagram, denotes the information sequence,

is the codeword sequence deriving from the generator polynomial . From the

()u D () () ()C D u D G D= ⋅

()G D

37

received sequence , the Viterbi decoder estimates the decoded information

sequence .

()r D

()o D

 Figure 4.1 The block diagram of convolutional code

The SST Viterbi decoding model illustrated in Figure 4.2 includes two additional

blocks: pre-decoder and re-encoder. The re-encoder is the same as the convolutional

encoder of the transmitter and the pre-decoder provides the inverse function of the

convolutional encoder. The SST decoding scheme consists of some steps. First, the

hard decision of the received sequence is pre-decoded by the pre-decoder. Next, the

output of the pre-decoder is re-encoded by the convolutional encoder. The modulo-2

addition of the received sequence and the re-encoded sequence is the new input of the

Viterbi decoder. Finally, the decoded information sequence is the modulo-2 addition

of the output of Viterbi decoder and the output of the pre-decoder.

Figure 4.2 The model of SST Viterbi decoding

The relationships between the data sequence in Figure 4.2 are described as

follows. The received sequence can be expressed as

 (4.1) () () () () () ()r D u D G D e D C D e D= ⋅ + = +

where is the error sequence from a noisy channel. Next, the pre-decoder

directly decode the information sequence from by perform the inverse

()e D

()r D
38

function of the encoder. The output of pre-decoder is

 (4.2) 1 ˆ() () () ()i D r D G D u D−= ⋅ =

The re-encoder then encodes to a new codeword sequence z(D) ()i D

 (4.3) ˆ() () () ()z D i D G D C D= ⋅ =

The new input sequence of the Viterbi decoder equals to the modulo-2

addition of the received sequence and the re-encoded sequence, which is represented

as

()y D

 (4.4) ˆ() () () () () ()y D r D z D C D e D C D= + = + +

The Viterbi decoder then performs maximum likelihood decoding on . From

equation (4.4), it is obvious that the switching activity of depends on the

channel noise. In high SNR condition, the input of the Viterbi decoder is

nearly zero as well as the output of the Viterbi decoder . The decoded

information sequence equals to the modulo-2 addition of the output of Viterbi

decoder and the output of the pre-decoder, which can be represented as

()y D

()y D

()y D

()n D

()o D

 (4.5) ˆ() () () () ()o D i D n D u D n D= + = +

Figure 4.3 illustrates the SST decoding process for the (2, 1, 2) convolutional

code described in Section 2.1.1. Assume the encoder has reset to the 00 state, the

encoded codeword symbols corresponding to information bit 0 and information bit 1

are (0,0) and (1,1) respectively. In BPSK modulation, the coded bit ‘0’ is mapped to

‘+1’ and ‘1’ is mapped to ‘-1’. As the codeword symbols pass through the noisy

channel, the received symbols may not match the codeword symbols due to the errors

denoted by e in Figure 4.3. In this example, 3-bit quantization is applied to represent

the received symbol. Then, the hard decision of the received symbol is processed by

the pre-decoder and re-encoder. As Figure 4.3 illustrated, the input of the Viterbi

decoder becomes the error symbol e introduced by channel noise. The output of the

Viterbi decoder is expected to be zero as the channel noise is not serious. Finally, the
39

decoded information bit which is the same as that in the transmitter is obtained.

Figure 4.3 The SST Viterbi decoding process

The SST algorithm has the following properties. As the channel noise is not

serious, most of the decoded bits of the Viterbi decoder are zero. Therefore, the

survivor path will pass through the zero state at most of the time and the zero state is

most likely the best state with minimum path metric. Figure 4.4 shows the survivor

paths of the conventional Viterbi algorithm and the SST algorithm over a noiseless

channel. For conventional Viterbi algorithm, the maximum likelihood state is

distributed across all the states. On the other hand, the zero state has a higher

probability to be the maximum likelihood state than other states as SST algorithm is

exploited. This property is useful for the modified memory management we proposed,

which will be described later.

40

(a)Conventional Viterbi algorithm

(b)SST algorithm

Figure 4.4 The survivor paths over a noiseless channel

The SST algorithm performs a transformation process that converts the origin

input sequence of the Viterbi decoder into an approximately zero sequence as the

channel condition is good enough. As a result, the state transition activity is reduced

and the decoded sequence passes through the zero state with high probability under

high SNR environment. Therefore, the dynamic power is reduced as the channel

becomes better.

41

4.2 Adaptive Viterbi Algorithm
Adaptive Viterbi algorithm [10] [11] combines the Viterbi algorithm with the

principle of T-algorithm [12]. Unlike conventional Viterbi algorithm which retains all

survivors of each state at each trellis stage, T-algorithm applies the path-pruning

technique to reduce computation and storage requirements. Instead of computing and

retaining all possible paths, only some paths which satisfy certain path-cost

conditions are retained at each stage. The path retention is based on the following

criteria

 A path is retained if its path metric is less than md T+ , where T is a threshold

value determined by the designer and is the best path metric among all

survivor paths at the previous trellis stage.

md

 The total number of survivor paths per trellis stage is limited to a fixed number

, which is also determined by the designer and less than the state number. maxN

The first criterion allows high-cost paths to be eliminated in the decoding process.

In the case of many paths with similar cost, the second criterion restricts the number

of paths to . At each stage, the minimum path metric , threshold T, and

maximum survivor number are used to prune the number of survivor paths.

maxN md

maxN

For adaptive Viterbi algorithm, it is important to select T and carefully. If

threshold T is set to a small value, the average number of paths retained at each trellis

stage will be reduced. However, the bit error rate may increase since the most likely

path has to be taken from a reduced number of possible paths. Alternatively, if a large

value of T is selected, the average number of retained paths increases and results in a

reduced bit error rate. But the computation and the path-storage requirements also

increase. The maximum number of survivor paths per stage , has a similar effect

on bit error rate as T. Therefore, an optimal value for T and should be chosen

maxN

maxN

maxN

42

so that bit error rate is within allowable limits, while matching the resource of the

hardware. Figure 4.5 shows the ACS unit of adaptive Viterbi decoder.

Adder di<dm+T

Number
of paths
= count

Y

N

Discard path

count
< Nmax

N

Discard path

Y

To survivor
memory

 Figure 4.5 The ACS unit of adaptive Viterbi decoder

4.3 Variable Truncation Length
As Section 3.4 mentioned, there are two well-know survivor memory

management approaches: the register-exchange (RE) approach and the trace-back (TB)

approach. Register-exchange approach is conceptually the simplest used technique

and eliminates the need to traceback since the registers have contained the decoded

information. Compared with trace-back approach, register-exchange approach has the

advantage of short critical path, short latency, and simple structure. However,

register-exchange method is not power efficient due to the need to copy the contents

of all registers in a stage to the next stage. In this Section, we will propose a modified

memory management based on path merging property of Viterbi algorithm. This

scheme provides variable truncation length for register-exchange approach to access

the survivor memory efficiently. Figure 4.6 illustrates a 64-state Viterbi decoder with

radix-2x2 ACS and RE-based survivor memory.

43

Ro
ut

in
g

Ro
ut

in
g

Ro
ut

in
g

Figure 4.6 A 64-state, radix-2x2 Viterbi decoder with RE-based memory

In Section 2.23, we introduce an important characteristic of Viterbi algorithm,

namely path merging property. As path merging property mentioned, all survivor

paths will merge with high probability if the truncation length L is long enough. By

selecting proper truncation length, the decoded data can be determined with L-stage

information only. Moreover, it is unnecessary to search for the best state. In fact, the

decoded data from any state is the same if all survivor paths have merged. Based on

this characteristic, fixed state approach is a proper choice for a register-exchange

based survivor memory when the state number is large.

As all survivor paths merge, it is more efficient to store the merged path rather

than all paths. Based on this principle, we propose a low-power scheme called

variable truncation length for Viterbi decoder. Figure 4.7 illustrates a 64-state,

radix-2x2, RE-based survivor memory with variable truncation length. D0 to D63 are

the decisions provided by the ACS units for selecting survivor paths. In the decoding

process, the contents of registers corresponding to 64 states tend to be equivalent

from the left stages to the right stages. The registers of each stage are connected to the

44

path merging detection unit. The path merging detection unit will find the merged

stage in the memory and generates clock gating signals of each stage to eliminate

unnecessary data movement.

D1

D62

D63

OUT

D2

CLK0 CLK1 CLK2

D0

2'b00

Clock
Gating

CLK3

Path Merging Detection Unit

Figure 4.7 A RE-based survivor memory with variable truncation length

Figure 4.8 illustrates the survivor memory by trellis diagram. In this example, the

fixed state approach is applied and the decoded data is obtained from state 0. After

detecting the merged point, we apply clock gating to the registers in the shadow

region and directly shift out the value of state 0. The path corresponding to state 0 is

considered as the correct one, and the others are dropped. Based on the scheme, we

can adjust truncation length dynamically, depending on the channel. In high SNR

environments, a shorter truncation length is required and the clock gating can be

45

applied to more registers, resulting in a power efficient survivor memory.

D0~3 OUT

D4~7

D8~11

D12~15

D52~55

D56~59

D60~63

Merge Point

Routing

Figure 4.8 Trellis diagram representation of variable truncation length

46

Chapter 5
The Proposed Low-power Viterbi
Decoder

In this chapter, we will propose a low-power Viterbi decoder combining

scarce-state-transition (SST) algorithm and variable truncation length. The ACS

computation and the survivor memory are most power critical, consuming about 90%

power in the Viterbi decoder. Therefore, most low power designs focus on these two

blocks. The SST algorithm reduces the switching activity of the input sequence to

lower down the dynamic power. In addition to apply SST, we propose a modified

register-exchange approach that adjusts the truncation length dynamically. With

variable truncation length, the access of the survivor memory will become more

efficient.

The proposed Viterbi decoder targets for Multi-band OFDM UWB [13] system.

This system exploits a 64-state convolutional code and has a high throughput

requirement up to 480Mbps. Figure 5.1 shows the block diagram of MB-OFDM

UWB system.

At the beginning of this chapter, we will present the architecture of the proposed

Viterbi decoder. Next, we will show the simulation and implementation results.

Finally, the comparison between some different designs will be discussed.

47

Convolutional
EncoderScrembler

De-Scrembler

Interleaver

De-interleaver

OFDM
MODEM

OFDM
MODEM

DAC

ADC

RF

RF

Tx
Data

Rx
Data

Viterbi
Decoder

Convolutional
Encoder

 Figure 5.1 The block diagram of MB-OFDM UWB system

5.1 The Design of Proposed Viterbi Decoder
Figure 5.2 shows the block diagram of proposed low-power Viterbi decoder

combining SST algorithm and variable truncation length. In this section, we will

present the implementation of these low-power schemes. The architecture of SST unit

will be described first. Next, we will introduce the radix-2x2 ACS structure applied in

the proposed design. Finally, we will show how the modified memory management

adjusts the truncation length dynamically.

Radix-2x2
ACS_0

BM Unit

RE-Based
Survivor
Memory

Path Merging
Detection Unit

SST Unit

Radix-2x2
ACS_63

Input

Output

Path Metric

Figure 5.2 The block diagram of proposed Viterbi decoder

48

5.1.1 Implementation of SST

To apply SST algorithm in the Viterbi decoder, it is necessary to implement the

pre-decoder and re-encoder. Figure 5.3 shows the convolutional encoder of the

MB-OFDM UWB system. The corresponding generator polynomial is

49

6

 (5.1)

2 3 5

2 4 6

2 3 6

() 1

() 1

() 1

A

B

C

G D D D D D

G D D D D D

G D D D D D

= + + + +

= + + + +

= + + + +

The re-encoder structure is just the same as the convolutional encoder.

 Figure 5.3 The convolutional encoder of MB-OFDM UWB system

The pre-decoder provides the inverse function of re-encoder. We involved three

sequences: , , and . The function of pre-decoder can be

represented as

()AS D ()BS D ()CS D

 (5.2) () () () () () () 1A A B B C CG D S D G D S D G D S D⋅ + ⋅ + ⋅ =

To solve , , and , these three sequence can be rewritten as

, , and

()AS D ()BS D ()CS D

1 2() ()S D S D+ 3 4() ()S D S D+ 5 6() ()S D S D+ respectively. Thus, equation

(4.7) can be written as

 (5.3)
1 3

4 5

2 6

() () () () 1
() () () () 1
() () () () 1

A B

B C

A C

G D S D G D S D
G D S D G D S D
G D S D G D S D

⋅ + ⋅ =
⋅ + ⋅
⋅ + ⋅

=
=

1()S D to can be solved by Euclid’s algorithm [14]. Therefore, we obtain 6 ()S D

50

5 (5.4)

2 3 4

2 3 4

2 5

()

()

() 1

A

B

C

S D D D D D

S D D D D D D

S D D D D

= + + +

= + + + +

= + + +

With the three sequences in equation (5.4), one can implement the pre-decoder as

shown in Figure 5.4. The pre-decoder and the re-encoder both are composed of some

shifter registers and modulo-2 adders only. Therefore, the hardware overhead of these

two additional blocks for SST algorithm is small.

D D D DINA

D D D DINB D

D D D DINC D
OUT

Figure 5.4 The pre-decoder for the convolutional encoder in Figure 5.3

5.1.2 Radix-2x2 ACS Structure

The throughput requirement of MB-OFDM UWB system is up to 480Mbps. As

mentioned in Section 3.2.2, ACS unit is the speed bottleneck of Viterbi decoder due to

a data-dependent feedback loop. For high speed applications, one often applies

high-radix or multi-dimension ACS to improve the throughput. Radix-4 ACS and

radix-2x2 ACS both completes the operations of two trellis stages in one clock cycle.

In 0.13μm CMOS technology, the radix-4 and radix-2x2 ACS structure can achieve

the throughput requirement. Figure 5.5 shows a 4-state radix-4 trellis and a 4-state

radix-2x2 trellis. The structures of radix-4 and radix-2x2 ACS unit for state S0 is

shown in Figure 5.6.

(a) 4-state radix-4 trellis diagram (b) 4-state radix-2x2 trellis diagram

Figure 5.5 The 4-state radix-4 and radix-2x2 trellis diagrams

2
0 0,0 0
tBM −
→ →

2
1 0,0 0
tBM −
→ →

2
0
tPM −

2
1
tPM −

0
tPM2

2 1,1 0
tBM −
→ →

2
3 1,1 0
tBM −
→ →

2
2
tPM −

2
3
tPM −

(a)Radix-4 ACS unit

2
0 0
tBM −
→

2
1 0
tBM −
→

2
0
tPM −

2
1
tPM −

0
tPM

2
2 1
tBM −
→

2
3 1
tBM −
→

2
2
tPM −

2
3
tPM −

1
1 0
tBM −
→

1
0 0
tBM −
→

(b)Radix-2×2 ACS unit

Figure 5.6 The radix-4 and radix-2x2 ACS units
51

52

The complexity analysis of radix-4 and radix-2×2 ACS units for a 64-state Viterbi

decoder is summarized in Table 5.1. The main differences of these two ACS

structures are the comparator and multiplexer. Table 5.2 lists their gate counts to show

the hardware costs. Although the critical path is longer, radix-2x2 ACS can achieve

the throughput requirement with lower complexity. To design a low-power Viterbi

decoder, we exploit radix-2x2 ACS structure in the proposed design.

Table 5.1 Comparison of complexity between radix-4 and radix-2×2 ACS units

registers adders

2-way

comparator

4-way

comparator

2-to-1

multiplexer

4-to-1

multiplexer

ACS-4 64 4·64 - 64 - 64

ACS-2×2 64 (2+2)·64 2·64 - 2·64 -

Table 5.2 The gate counts of different comparators and multiplexers

 2-way

comparator

4-way

comparator

2-to-1

multiplexer

4-to-1

multiplexer

Gate count 28 173 17 33

1 Apply UMC 0.13μm technology

2 The length of all input and output data are 9-bit

53

5.1.3 Implementation of Variable Truncation Length

In Section 4.3, we propose variable truncation length scheme based on path

merging property of Viterbi algorithm. As all survivor paths merge, the survivor

memory stores the merged path rather than all paths to eliminate unnecessary data

movement. To implement variable truncation length, it is necessary to find the merged

stage of the survivor memory. After detecting the merged point, we can shift out the

data on merged path directly and apply clock gating to the registers corresponding to

other paths.

Obviously, all survivor paths merge as the contents of 64 states are equivalent at

the same stage. However, it is too complex to check the equality of all 64 states

concurrently. To reduce the hardware complexity, our proposal detects path merging

by dividing 64 states into several groups that are verified separately. For radix-2x2

trellis, there are four source states corresponding to each state. Therefore, we divide

64 states into 16 groups and each group contains 4 states. Figure 5.7 illustrates the

implementation of variable truncation length. Because we exploit SST algorithm in

the proposed Viterbi decoder, the decoded data is obtained from state 0, which is most

likely the best state. As the Figure shown, the equality of each group is checked

separately. The verified results of each stage are connected to the path merging

detection unit. The signals Gi and Si generated by the path merging detection unit

mean the clock gating control of each stage and the selection signal of the state 0

respectively. With the clock gating control signal Gi, the register clocks in the shadow

region of Figure 5.7 are gated to reduce the power consumption. The selection signal

Si controls the content of state 0 to be updated by directly shift or register exchange.

Clock
Gating

G2

G3

G4

G0

G1

1'b0

S0 S1 S2 S3

OUT
D0~3

D4~7

D8~11

D60~63

Merge Stage

Path Merging Detection Unit

 Figure 5.7 The implementation of variable truncation length

Simulation results show that checking each group separately not only reduces the

hardware complexity but also preserves the error performance. Some simulation

results are shown in the following section.

54

5.2 Simulation and Implementation Results
This section will show some simulation and implementation results. The

performance simulations are performed in AWGN channel and BPSK modulation. We

adopt the (3, 1, 6) convolutional code for MB-OFDM UWB system with 3-bit

soft-decision and 1/3 code rate. As the variable truncation length scheme is based on

the path merging property, it is necessary to choose a proper truncation length to

ensure all survivor path will merge with high probability. Figure 5.8 shows the

performance curves under different truncation length. The right upper corner of

Figure 5.8 highlights the curves in low SNR condition. As these curves shown, the

performance improvement will reach a limit even the truncation length increases

continuously. We select 64 as the maximum truncation length in the proposed design.

Figure 5.8 The performance curves under different truncation lengths

55

As described in Section 5.1.3, our proposal detects path merging by dividing 64

states into several groups that are verified separately. In addition, we analyze the

performance by verifying only parts of the 64 states. Figure 5.9 shows the

performance curves as we check the equality of the first 16 states (4 groups), the first

32 states (8 groups), the first 48 states (12 groups), and all 64 states (16 groups). The

simulation result shows checking the first 48 states only can achieve the same

performance as checking all 64 states. Therefore, we verify the first 48 states only to

reduce the hardware complexity but still preserve the error performance.

Figure 5.9 The performance curves under different verification conditions

Table 5.3 lists the design parameters of the proposed Viterbi decoder. In order to

demonstrate the proposed schemes reduce the power consumption, we implement

three versions of Viterbi decoder including conventional register-exchange structure,

SST scheme only, and the proposed structure. Table 5.4 lists the gate counts of these

56

57

three implementations.

Table 5.3 Design parameters of the proposed Viterbi decoder

Technology UMC 0.13-μm process

State number 64

Code rate 1/3

Soft-decision 8-levels

BM width 6 bits

PM width 9 bits

Truncation length 64 (max)

ACS structure radix-2x2

Table 5.4 The gate counts of different implementations

Implementation Gate count

Conventional RE 57.8k

SST 58.2k

Proposed 65.1k

Figure 5.10 shows the power simulation results in different channel conditions.

The operation frequency is 250MHz and the corresponding data rate is 500Mbps. For

the conventional structure, the channel conditions are ineffective in the power

dissipation. In the SST only implementation, the decoder power dissipation is reduced

in high SNR environments. In the proposed design combining the SST and the

variable truncation length, the decoder power has a obvious reduction as shown in

Figure 5.10(a). Figure 5.10(b) shows the survivor memory power only to highlight

the effect of the dynamic truncation length.

0

10

20

30

40

50

60

70

80

90

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Eb/N0 (dB)

Po
w

er
 (

m
W

)

Conventional
SST
Proposed

(a)The power consumption of whole Viterbi decoder

0

5

10

15

20

25

30

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Eb/N0 (dB)

Po
w

er
 (

m
W

)

Conventional
SST
Proposed

(b)The power consumption of the survivor memory

Figure 5.10 The power simulation results in different channel conditions

58

Figure 5.11 shows the gate count distribution of the conventional and the

proposed designs. For the conventional structure, the ratio of ACS and survivor

memory is more than 90%. In the proposed design, the ratio of the additional circuits

for implementing low-power schemes is about 9%.

PM Unit
5%

ACS
50%

Survivor
Memory

44%

Others
0%

BM Unit
1%

(a)Conventional structure

PM Unit
4%

ACS
46%

BM Unit
1%

Others
1%

Path Merging
Detector

9%
SST Unit

0%

Survivor
Memory

39%

(b)Proposed structure

Figure 5.11 The gate count distribution of conventional and proposed designs

59

Figure 5.12 shows the power profiling of the conventional and the proposed

designs as Eb/N0 is 4.0 dB. The corresponding bit error rate in this channel condition

is 1.41e-5. In conventional decoder design, the survivor memory is a power intensive

block. With SST and variable truncation length schemes, the ratio of survivor

memory power is reduced significantly. Furthermore, the SST unit and the path

merging detection unit consume less than 2% of the decoder power.

Survivor
Memory

36%

Others
0%

BM Unit
2%

PM Unit
7%

ACS
55%

(a)Conventional structure

Survivor
Memory

17%

Reduced
14%

SST Unit
0%

BM Unit
2%

ACS
56%

Others
3%

Path Merging
Detector

1%

PM Unit
7%

(b)Proposed structure

Figure 5.12 The power profiling of conventional and proposed designs

60

We implement the proposed Viterbi decoder by the cell-based design flow, and

exploit 0.13-μm CMOS process. The chip summary is shown in Table 5.5.

Table 5.5 The chip summary

Technology UMC 0.13-μm process

Package 48 pins

Core size 0.56mm2

Core density 83.07%

Power 63.8mW @250MHz, 500Mbps, Eb/N0=4.0dB

ACS

PM
Unit

BM

Survivor
Memory

P
ath

 M
ergin

g D
etector

Figure 5.13 The layout of the proposed Viterbi decoder

61

62

5.3 Comparison
Some of the published Viterbi decoders are listed in Table 5.6. In our

implementation, the high throughput rate and low power design can be achieved.

Table 5.6 Comparison with other designs

 F. Sun [15] Intel [16] Proposed

Technology 0.13-μm 90nm 0.13-μm 90nm

State NO. 64 64 64

RE: 49.4k
Area (mm2)

TB: 89.4k

ACS: 0.048

TB: 0.133
0.56 0.25

Soft decision 3-bit - 3-bit

PM width 6-bit 10-bit 9-bit

Truncation

length
48 96 64 (max)

100M Clock rate

(Hz)
200M 2G

250M
250M

200M Data rate

(bps)
200M 500M

500M
500M

RE: 38.49mW

@SNR=4dB

25.21

@Eb/N0=4dB
Power

TB: 34.82mW

@SNR=4dB

40mW
63.8

@Eb/N0=4dB

28.52

@Eb/N0=4dB

Chapter 6
Conclusion and Future Work

In this thesis, we propose a low-power Viterbi decoder for MB-OFDM UWB

system. The proposed design combines SST and variable truncation length schemes.

SST is a low-power technique which reduces the state transition activity with low

hardware cost. Based on path merging property of Viterbi algorithm, we propose a

modified memory management to adjust the truncation length dynamically according

to the channel conditions. Consequently, the redundant data movement can be

eliminated. With variable truncation length scheme, the access of the survivor

memory becomes more efficient.

Experimental results indicate the power reduction of the whole decoder and the

survivor memory unit can achieve more than 14% and 53% respectively as Eb/N0 is

large than 4dB, while the overhead of 13% gate count due to additional control logics

is required. In addition to reduce power consumption, our proposal still preserves the

error performance.

The proposed low-power schemes reduce the power dissipation of the survivor

memory significantly. However, the ACS unit is still power critical. In the future, we

would like to replace ACS unit with CSA unit, which has lower computation

complexity but longer critical path. Furthermore, we will implement full-custom ACS

and memory cells for low-power designs.

63

64

Bibliography

[1] A. J. Viterbi, “Error bounds for convolutional codes and asymptotically optimal

decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, no. 2, pp. 206-269,

Apr. 1967.

[2] G. D. Forney JR., “The Viterbi algorithm,” Proc. IEEE, vol. 61, no. 3, pp.

268-278, Mar. 1973.

[3] C. B. Shung, P. H. Siegel, G. Ungerboeck and H. K. Thapar, “VLSI architectures

for metric normalization in the Viterbi algorithm,” SUPERCOMM/ICC ’90.

Conference Recoder., IEEE, vol. 4, pp. 1723-1728, Apr. 1990.

[4] A. P. Hekstra, “An Alternative to Metric Rescaling in Viterbi Decoders,” IEEE

Trans. Commun., vol. 37, no. 11, pp. 1220-1222, Nov. 1989.

[5] S. B. Wicker, Error Control Systems for Digital Communication and Storage,

Prentice Hall, 1995.

[6] A. M. Obeid, A. Garcia, M. Petrov, and M. Glesner, “A Multi-path High Speed

Viterbi Decoder,” ICECS 2003. Proceeding of the 2003 10th IEEE International

Conference on Electronics. Circuit and Systems, vol. 3, pp. 1160-1163, Dec. 2003.

[7] T. Ishitani, K. Tansho, N. Miyahara, S. Kubota and S. Kato, “A

scarce-state-transition Viterbi decoder VLSI for bit error correction,” IEEE

Journal of Solid-State Circuits, Aug. 1987.

[8] S. Kubota and S. Kato, “Novel Viterbi Decoder VLSI Implementation and its

Performance,” IEEE Trans. Commun., vol. 41, no. 8, pp. 1170-1178, Aug. 1993.

[9] L. H. C. Lee, D. J. Tait, and P. G. Farrell, “Scarce-State-Transition

Syndrome-Former Error-Trellis Decoding of (n, n-1) Convolutional Codes,”

IEEE Trans. Commun., vol. 44, no. 1, pp. 7-9, Jan. 1996.

65

[10] R. Henning and C. Chakrabarti, “An approach for adaptively approximating the

Viterbi algorithm to reduce power consumption while decoding convolutional

codes,” Transactions on Signal Processing, vol. 52, pp. 1443-1451, May 2004..

[11] M. H. Chan, W. T. Lee, M. C. Lin, and L. G. Chen, “IC design of an adaptive

Viterbi decoder,” IEEE Transactions on Consumer Electronics, vol. 42, pp.

52-62, Feb. 1996.

[12] S. J. Simmons, “Breadth-first trellis decoding with adaptive effort,” IEEE

Transactions on Communications, vol. 38, pp. 3-12, Jan. 1990.

[13] A. Batra et al, “Multi-band OFDM physical layer proposal for IEEE 802.15 task

group 3a,” submitted to IEEE P802.15 working group for WPANs, Sept. 2004.

[14] R. J. McEliece, Finite field for computer scientists and engineers. Boston:

Kluwer Academic, 1987.

[15] F. Sun and T. Zhang, “Low-power State Parallel Relaxed Adaptive Viterbi

Decoder,” IEEE Trans. Circuits and Syst. I, vol. 54, no. 5, pp. 1060-1068, May

2007.

[16] M. Anders, S. Mathew, R. Krishnamurthy, and S. Borker, “A 64-state 2GHz

500Mbps 40mW Viterbi Accelerator in 90nm CMOS,” in Sympo. VLSI Circuits

Dig. Tech. Papers, 2004, pp.174-175.

	摘要
	ABSTRACT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

