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摘要 

無線與可攜式裝置在近年來成為越來越普遍的應用。因此，低功率電路的設

計已經成為一項重要考量。本論文提出一個結合低狀態切換機率與可調變擷取長

度技術的維特比解碼器。在高訊雜比的環境下，低狀態切換機率技術可大幅降低

解碼時的狀態切換率。基於維特比演算法的路徑融合特性，可調變擷取長度技術

可消除殘餘記憶體中不必要的資料搬移。模擬結果顯示，在位元訊雜比大於 4

分貝的環境下，本研究所提出的方法只需 13%的額外硬體，即可省下超過 14%的

解碼器功率消耗與 53%的殘餘記憶體功率消耗。 
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ABSTRACT 

As wireless and portable devices become more and more popular these years, 

low-power design has become an important issue. In this thesis, we propose a 

low-power Viterbi decoder combining scarce state transition and variable truncation 

length schemes. The SST technique reduces the state transition activity significantly 

in high SNR conditions. The variable truncation scheme eliminates unnecessary data 

movement of the survivor memory based on path merging property of Viterbi 

algorithm. According to the simulation results, more than 14% decoder power and 

53% survivor memory power can be reduced as Eb/N0 is large than 4dB, while the 

overhead of 13% gate count is required. 
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Chapter 1  
Introduction 
 
 
1.1 Overview of Channel Coding 

A communication system connects an information source to a destination through 

a channel. The physical channel may be wireline cables, microwave links, and even 

storage media. Figure 1.1 shows a typical digital communication system. The 

transmission end is composed of source encoder, channel encoder, and modulator. 

The receiving end is composed of demodulator, channel decoder, and source decoder. 

Figure 1.1 Block diagram of a digital communication system 

 

A signal will be distorted by some effects such as noise, interference, and fading 

as it passes through the channel. To overcome the channel effects, the channel 

encoder introduces some redundancy in the output of the source encoder, called the 

information sequence. Next, the modulator converts the new sequence with 

redundancy, called the codeword sequence, into analog signals transmitted through 

the channel. In the receiver, the demodulator estimates the transmitted signal and 
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makes some error because of channel noise. The demodulated sequence is called 

received sequence, which may not match the codeword sequence due to the errors. 

The channel decoder uses the redundancy in the codeword to correct the errors in the 

received sequence and produces an estimate of the information sequence. A subject 

dealing with the design of channel encoder and channel decoder, referred to channel 

coding or error control coding, are developed to improve the performance of the 

overall system. 

There are two main types of channel coding, the block code and the convolutional 

code. For the block codes, the encoder transforms a block of k information symbols 

into a block of n symbols called a codeword. These codes are usually referred as (n, k) 

block codes. The (n-k) redundancy symbols, also termed as parity symbols, depend 

only on the corresponding k information symbols and not on other information 

symbols. This means the block code is memoryless. Some of the commonly used 

block codes are Hammimg code, BCH code, Reed-Solomon (RS) code, and 

low-density parity-check (LDPC) code. 

For the Convolutional code, the encoder contains memory elements. The (n, k, m) 

Convolutional encoder has k inputs, n outputs, and m memory elements. 

Convolutional code converts the entire data stream into one single codeword by a 

linear shift-register circuit that performs a convolutional operation on the information 

sequence. The encoded bits depend not only on the current k input bits but also on the 

previous bits. 

The Viterbi algorithm [1] proposed by A.J. Viterbi in 1967 is used to decode 

convolutional code. Forney [2] later proves that the Viterbi algorithm provides a 

maximum likelihood (ML) decoding algorithm. Until now, Viterbi algorithm is still 

the optimal solution for convolutional code and has become an important algorithm in 

communication systems. 
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1.2 Research Motivation 
In the early research of the Viterbi decoder, low complexity and high throughout 

are two important concerns in VLSI design. As modern communication systems are 

required to transmit information at high data rates, the power dissipation has also 

become an important issue. Nowadays, mobile and wireless system applications are 

more and more popular. Therefore, a low power design is the key point of the overall 

system. 

Convolutional code is a common error control code in practical communication 

system. The Viterbi decoder consumes much power in the receiver because of the 

computing complexity. Therefore, applying low-power techniques to the Viterbi 

decoder will effectively reduce the power consumption of the whole system. In this 

thesis, we propose a low-power Viterbi decoder for wireless communication systems. 

 

1.3 Organization of the Thesis 
This thesis is organized as follows. In chapter 2, we describe the fundamentals of 

convolutional code and Viterbi algorithm. The general architectures of Viterbi 

decoder will be introduced in chapter 3. In chapter 4, some low-power schemes for 

Viterbi decoder will be presented. In chapter 5, we proposed a low-power Viterbi 

decoder with reduced state transition and efficient memory access. The 

implementation results and some comparison will also be presented. Finally, the 

conclusions and future work are given in chapter 6. 



 

Chapter 2 
Convolutional Code and Viterbi 
Algorithm 
 
 
2.1 Convolutional Code 

Convolutional code is a widely used error control code in modern communication 

systems such as DVB-T, IEEE 802.11, IEEE 802.16, and MB-OFDM UWB systems. 

To describe a convolutional code, one needs to characterize the encoding process. 

Several methods such as matrix and polynomial representation are used for 

representing the encoding process of convolutional code. In addition, the trellis 

diagram description is a common way for illustrating the codeword sequence with 

timing information. All of them will be introduced in this section. 

 

2.1.1 Encoding of Convolutional Code 

A convolutional encoder generates a coded output data stream from an input data 

stream. As mentioned in previous chapter, a convolutional code is specified in (n, k, m) 

format where (n, k, m) denotes the number of output, the number of input, and the 

number of memory element respectively. The coding rate is k/n which means k input 

bits produce n output bits. The coded bit depends not only on the current input bit but 

also on m previous input bits. A convolutional encoder is composed of several shift 

registers and modulo-2 adders (or the XOR operation). Figure 2.1 shows a (2, 1, 2) 

convolutional encoder with two shift registers and three modulo-2 adders. It produces 

2-bit encoded codeword for 1-bit input information. 
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(2) (2) (2)
2 1 0c c c…

(1) (1) (1)
2 1 0c c c…

2 1 0u u u…

Figure 2.1 The (2, 1, 2) convolutional encoder 
 

The input of this encoder is some binary sequence, 0 1 2( , , , )u u u u= … . The output 

is an interleaved sequence  of the two binary 

sequences  and . For each input bit, the coded symbol  and  are 

generated by the following function 

(1) (2) (1) (2) (1) (2)
0 0 1 1 2 2( , , , , , ,c c c c c c c= …)

2

(1)c (2)c (1)
ic (2)

ic

 (1)
1i i i ic u u u− −= ⊕ ⊕  (2.1) 

 (2)
2i i ic u u −= ⊕  (2.2) 

where  denotes the XOR operation. Next, the input bit is shifted into the leftmost 

register and the bits in the registers are shifted one position to the right. Therefore, the 

codeword sequence c depends on not only the current input bit  but also on the 

two previous input bits  and 

⊕

iu

1iu − 2iu − . Obviously, the interconnection of the encoder 

influences the codeword sequence. In general, these interconnections of a (n, k, m) 

convolutional encoder can be formulized as the generator sequences 

  (2.3) 

(1) (1) (1) (1)
0 1

(2) (2) (2) (2)
0 1

( ) ( ) ( ) ( )
0 1

( , , , )
( , , ,

( , , ,

m

m

n n n n
m

g g g g
g g g g

g g g g

⎧ =
⎪ =⎪
⎨
⎪
⎪ =⎩

…
…

#
…

)

)

)where  represents the interconnections for coded symbol  

from left to right. 

( ) ( ) ( )
0 1( , , ,i i i

mg g g… ( )ic
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For information sequence u, the encoding process can be represented in a matrix 

form as 

 c uG=  (2.4) 

where G is called the generator matrix. For a (n, k, m) convolutional code, the 

generator matrix is made up in the form of 

(1) (2) ( ) (1) (2) ( ) (1) (2) ( ) (1) (2) ( )
0 0 0 1 1 1 2 2 2

(1) (2) ( ) (1) (2) ( ) (1) (2) ( )
0 0 0 1 1 1

n n n n
m m m

n n
m m m

g g g g g g g g g g g g
g g g g g g g g g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

… … … … …
… … … …

…
…
…

n

 

where each row of the matrix is obtained by interleaving the generator sequences. For 

example, the (2, 1, 2) convolutional encoder in Figure 2.1 can be described by 

  (2.5) (1) (111)g =

  (2.6) (2) (101)g =

Assume the input information sequence is 

 1011100u = …  (2.7) 

Then the coded sequence can be analyzed as 

1 1 1 1 0 1 1
0 1 1 1 0 1 1
1 1 1 1 0 1 1
1 1 1 1 0 1 1
1 1 1 1 0 1 1
0 1 1 1 0 1
0 1 1

T

c

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦# … … … … …

1
1 0 1 1

 (2.8) 

Finally, the interleaved codeword sequence can be obtained as 

  (2.9) 11,10,00,01,10,01,11,c = …

In addition to the matrix representation, the encoding process can be described in 

a polynomial form. A (n, k, m) convolutional encoder is often characterized by the 
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generator polynomial. The degree of the generator polynomial is less or equal than m. 

The coefficient of each term is either 1 or 0, depending on whether a connection 

exists between the shift register and the modulo-2 adder. For example, the generator 

polynomial of the (2, 1, 2) convolutional encoder in Figure 2.1 can be written as 

 (1) 2( ) 1g D D D= + +  (2.10) 

 (2) 2( ) 1g D D= +  (2.11) 

where the factor D means the unit delay operation. For information polynomial u(D), 

the encoded polynomials are expressed by 

  (2.12) (1) (1)( ) ( ) ( )c D u D g D=

  (2.13) (2) (2)( ) ( ) ( )c D u D g D=

Assume the information sequence is the same as that of previous example, the input 

polynomial can be represented as 

 2 3( ) 1u D D D D4= + + +  (2.14) 

Then the encoded the encoded polynomials become 

  (2.15) (1) 2 3 4 2 4( ) (1 )(1 ) 1c D D D D D D D D D= + + + + + = + + + 6

6 (2) 2 3 4 2 3 5( ) (1 )(1 ) 1c D D D D D D D D= + + + + = + + +  (2.16) 

Thus the interleaved codeword sequence is 

  (2.17) 11,10,00,01,10,01,11,c = …

which agree with the result from previous example. 

 

2.1.2 Trellis Diagram of convolutional code 

One can regard a convolutional encoder as a finite state machine, where the 

output is a function of the current input and the current state. Thus, the operation of a 

convolutional encoder can be specified by the state diagram. Figure 2.2 shows the 

state diagram of the convolutional encoder in Figure 2.1. As there are two shift 

registers in the encoder circuit, the contents of these shift registers will have four 
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states represented as 00, 01, 10, and 11. A state transition corresponding to an 

information bit “0” is represented by a dotted line. Similarly, a state transition 

corresponding to an information bit “1” is represented by a solid line. The label on the 

line represents the information input and the corresponding codeword symbols 

generated by the state transition. 

 
Figure 2.2 State diagram of the convolutional encoder in Figure 2.1 

 

With the state diagram, it is easy to determine the codeword sequence in the 

encoding process. For example, assume the information sequence is (1011100…). 

The transition starts at state 00 and goes through the state diagram corresponding to a 

solid line if the information bit is “1”, and a dotted line if that is “0”. Following the 

track, the codeword sequence is (11, 10, 00, 01, 10, 01, 11,…). This codeword 

sequence is the same as the result described in section 2.1.1. 

As the length of information sequence is large, it is difficult to trace the codeword 

sequence from the state diagram. Therefore, a representation called a trellis diagram 

is obtained from an extension of the state diagram that shows the dimension of time. 

Figure 2.3 shows encoding process for the information sequence (1011100…) by the 

trellis diagram. With the trellis diagram, it is easy to illustrate the encoding process as 

well as the decoding process described in next section. 
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Figure 2.3 The trellis diagram of the convolutional encoder in Figure 2.1 

 

2.2 Viterbi Algorithm 
The Viterbi algorithm [1] proposed by A.J. Viterbi in 1967 is used to decode 

convolutional code. Forney [2] later proves that the Viterbi algorithm provides a 

maximum likelihood (ML) decoding algorithm. In fact, an optimum solution to 

decode a convolutional code is equivalent to find the maximum likelihood path in the 

trellis diagram. Until now, Viterbi algorithm is still the optimal solution for 

convolutional code and has become an important algorithm in communication 

systems. The maximum likelihood decoding and Viterbi algorithm will be introduced 

in this section. 

 

2.2.1 Maximum Likelihood Decoding 

Figure 2.4 shows a simplified communication system that focuses on the channel 

coding. The encoder transforms the information sequence u into the codeword 

sequence c by adding certain structural redundancy. Then the codeword sequence c is 
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transmitted across the noisy channel. The decoder uses the redundancy to correct the 

errors in the received sequence r and produces an estimate  which is the most 

possible information sequence. 

û

u c r û

Figure 2.4 The system blocks that focuses on the channel coding 

 

The maximum likelihood decoder finds the sequence  that maximizes the 

probability . Considering a rate k/n convolutional code, assume the 

information sequence u is composed of L k-bit blocks. 

ĉ

( | )P r c

(0) (1) ( 1) (0) (1) ( 1) ( 1)
0 0 0 1 1 1 1( , , , , , , , , ,k k

Lu u u u u u u u− −
−= … … … )k−

n−

n−

n−

)

 

The codeword sequence c generated by the convolutional encoder consists of L n-bit 

blocks. 

(0) (1) ( 1) (0) (1) ( 1) ( 1)
0 0 0 1 1 1 1( , , , , , , , , , )n n

Lc c c c c c c c− −
−= … … …  

The decoder receives sequence r and generates the maximum likelihood sequence . 

They have the following form. 

ĉ

(0) (1) ( 1) (0) (1) ( 1) ( 1)
0 0 0 1 1 1 1( , , , , , , , , , )n n

Lr r r r r r r r− −
−= … … …  

(0) (1) ( 1) (0) (1) ( 1) ( 1)
0 0 0 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , , , , , )n n

Lc c c c c c c c− −
−= … … …  

The probability can be expressed as 

   (2.18) 
( )

1
(0) (0) (1) (1) ( 1) ( 1)

0

1 1
( ) ( )

0 0

| ( | ) ( | ) ( |

( | )

L
n n

i i i i i i
i

L n
j j

i i
i j

P r c P r c P r c P r c

P r c

−
− −

=

− −

= =

⎡ ⎤= ⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

∏

∏ ∏

…

From equation (2.18), the maximum likelihood estimation  is ĉ
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 1 1
( ) ( )

0 0

( | )

ˆ arg max ( | )

arg max
L n

j j
i i

i j

c

c

c P r c

P r c
− −

= =

=

⎡ ⎤
⎢ ⎥
⎣ ⎦

= ∏ ∏
 (2.19) 

Taking the logarithm conversion to equation (2.19), the product terms turn into 

summation terms. Thus, the estimation  becomes ĉ

 ( )

1
(0) (0) (1) (1) ( 1) ( 1)

0

1 1
( ) ( )

0 0

2( ) ( )1

2
0
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Equation (2.20) shows that to maximize  is equivalent to minimize 

Euclidean distance of  and . This rule is also the function of Viterbi algorithm 

which will be described in next subsection. 

log ( | )P r c

r c

 

2.2.2 Viterbi Decoding Algorithm 

The goal of Viterbi algorithm is to find codeword that maximize the probability 

. According to the maximum likelihood decoding rule, Viterbi proposed an 

algorithm to compute the minimum Euclidean distance as time goes on. There are two 

basic measures defined in the Viterbi algorithm, which are branch metric 

( | )P r c

x y

t
s sBM →  

and path metric 
y

t
sPM . At each time t, the branch metric and path metric are 

computed as 
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The branch metric is the Euclidean distance between a received symbol and the 

corresponding trellis codeword symbol. 
x y

t
s sBM →  represents the branch metric 

associated with the transition between the state xs  at time t-1 and state ys  at time t. 

The path metric is the minimum Euclidean distance between a received sequence and 

the corresponding trellis codeword sequence. 
y

t
sPM  represents the path metric of the 

state ys  at time t. In other words, the path metric is the accumulation of branch 

metrics that across the corresponding paths. Therefore, the Viterbi algorithm can find 

the minimum path metric at each time instant. Then the maximum likelihood 

sequence can be estimated in trellis diagram along the minimum path metric. 

For a (n, k, m) convolutional code, the steps of the Viterbi algorithm can be 

described as the following. 

 Step 1. 

Initially, set path metrics as 

0 0 0 0
0 1 2 2 1

0, mPM PM PM PM
−

= = = =… = ∞  

 Step 2.  

Increase time index by 1.For each {0,1, ,2 1}m
yS ∈ −… , update path metrics as 

1
,min | {all states merged into }

y x x y

t t t
s s s s xPM PM BM S S−

→
⎡ ⎤= + ∈⎣ ⎦y  

and store the survivor at time t. The survivor means the decision bit corresponding 

to the chosen branch from all branch merged into yS . 

 Step 3.  

If t < L (the length of information sequence), go to step 2. Otherwise, stop. 



 

Figure 2.5 illustrates the Viterbi decoding process over an ideal channel by the 

trellis diagram. Assume the information sequence is the same as the example 

described in Figure 2.3, the codeword sequence (11, 10, 00, 01, 10, 01, 11,…) is 

transmitted through the channel. Based on the assumption of ideal channel, the 

received sequence will be the same as the codeword sequence. The path metric is 

labeled above each state. As previous mentioned, the path metric of state 00 at time 

t=0 is initialized to 0. At each time instant, the path metric is updated and only one of 

branches merged to the current state is preserved. The preserved branches, called the 

survivors, are represented by solid lines. On the other hand, the discarded branches 

are represented by dotted lines. When the computation of survivors and path metrics 

are done, the next step is to decode the information sequence . In Figure 2.5, the 

best state at time t=7 is 00. By performing a trace-back process from the best state, 

one can estimate the source information sequence. In this example, the decoded 

information sequence is (1011100…) where the corresponding survivors are 

highlighted in Figure 2.5. 

û

Figure 2.5 Viterbi decoding over an ideal channel 
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As the codeword sequence is transmitted through a noisy channel, the received 

sequence may not match the original codeword sequence due to the channel noise. 

Figure 2.6 shows the Viterbi decoding process over a noisy channel. Considering the 

same codeword sequence as that of previous example is transmitted through the 

channel, assume the received sequence including two-bit errors is (11, 11, 00, 01, 10, 

00, 11,…) . In Figure 2.6, the errors are represented in boldface. By the process 

mentioned before, one can obtain the decoded information sequence (1011100…) 

which is identical to the source information bits. 

Figure 2.6 Viterbi decoding over a noisy channel 

 

2.2.3 Path Merging Property 

Figure 2.7 shows the survivors in Figure 2.6 and four survivor paths 

corresponding to each state. Figure 2.7 also shows the path merging property of the 

Viterbi algorithm. In this example, all survivor paths will merge to the survivor path 

with the minimum path metric after the merged point. In other words, the decoded 

data is determined after all survivor paths merge, whether the trace-back operation 

starts from the best state or not. 
14 



 

Figure 2.7 Path merging phenomenon in Figure 2.6 

 

The path merging property of the Viterbi algorithm is an important characteristic 

for hardware implementation. In practical application, the length of the information 

sequence may be very large. To reduce the storage requirement and the decoding 

latency, the survivor path should be truncated to a finite length, called the truncation 

length. Figure 2.8 shows the truncated survivor paths while the length of information 

sequence is N. The boldface line means the survivor path with minimum path metric. 

All survivor paths will merge with high probability if the truncation length L is long 

enough. By selecting proper truncation length, the decoded data can be determined 

with L-stage information only. Moreover, it is unnecessary to search for the best state. 

15 
Figure 2.8 Truncated survivor paths 



 

Chapter 3 
Architecture of Viterbi Decoder 
 
 

In this chapter, we will introduce the hardware implementation of the Viterbe 

algorithm. Figure 3.1 shows the main blocks of Viterbi decoder. A Viterbi decoder is 

usually composed of four basic units. They are summarized as following. 

 Branch Metric Unit (BM Unit): 

According to the received sequence, compute the branch metric for different 

branches in trellis diagram. 

 Add-Compare-Select Unit (ACS Unit): 

Accumulate the branch metric recursively and perform comparison operation to 

generate the path metric for each state. Decide the survivor corresponding to each 

state according to the comparison result. 

 Path Metric Unit (PM Unit): 

Store the path metric at each time instant. 

 Survivor Memory: 

Store the survivors from ACS unit. Then use the register-exchange approach or 

trace-back approach to decode the maximum likelihood information sequence. 

Figure3.1 Main blocks of Viter decoder 
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3.1 Branch Metric Unit 
This unit generates all branch metrics from the received symbol. If the receiver 

adopts 1-bit quantization, it is called the hard-decision decoding. On the other hand, 

the soft-decision decoding adopts q-bit quantization when receiving the transmitted 

symbols. Figure 3.2 illustrates the quantization of the received symbol. In fact, 

hard-decision decoding uses a bit to indicate a received bit, while soft-decision 

decoding uses q bits to indicate a received bit. Although soft-decision decoding 

performs better than hard-decision decoding, the complexity of branch metric unit 

and ACS unit with soft-decision decoding is high. In general, 3-bit soft-decision 

decoding is a good choice considering the trade-off between performance and 

complexity. 

 

(a)Hard-decision 

(b) 3-bit soft-decision 

Figure 3.2 Quantization of the received symbol 

 

Taking the (2, 1, 2) convolutional code described before as example, the received 

symbol with q-bit quantization can be represented by (r1 r2). The codeword symbol 

corresponding to each trellis branch may be 00, 01, 10, or 11. The branch metrics are 

defined as 
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q q
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BM r r
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 (3.1) 

Equation (3.1) can be rewritten as a simpler form: 

 

1 2

1 2

1 2

1 2

(00)
(01)
(10)
(11)

BM r r
BM r r
BM r r
BM r r

= +
= +
= +
= +

 (3.2) 

According to equation (3.2), one can easily implement the branch metric unit and 

the result of all branch metrics are delivered to the ACS unit. Figure 3.3 shows the 

architectures of branch metric unit for hard-decision decoding and 3-bit quantization 

soft-decision decoding. 

(a) Branch metric unit for hard-decision decoding 

Received bit 1

Received bit 2
BM(00)

BM(01)

BM(10)

BM(11)

4

4

4

4

3

3

(b) Branch metric unit for 3-bit soft-decision decoding 

Figure 3.3 The architectures of branch metric unit 
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3.2 Add-compare-select Unit 
The trellis diagram of convolutional code can be decomposed in to basic sub 

trellises. Each sub trellis can be implemented as the add-compare-select (ACS) 

module. The ACS module is the key component in the Viterbi decoder to calculate the 

minimum path metric and to estimate the survivor. 

There are many issues in designing an ACS structure. For low complexity 

application, the bit-serial ACS unit is used to save the area even to reduce the power 

consumption. For high speed application, the bit-parallel structure is used by 

duplicating  ACS units for a (n, k, m) convolutional code. As modern 

communication systems are required to transmit information in high data rate, this 

section focuses on the fully parallel architecture. Some ACS structure for different 

applications will be discussed in this section. 

2m

 

3.2.1 Radix-2 ACS Structure 

As previous mentioned, the ACS unit calculate the minimum path metric and 

estimate the survivor. Each ACS unit adds the previous path metric of each 

predecessor state to the corresponding branch metric. Then, it compares the results 

among all partial path metrics to find the minimum partial path metric. And all 

compared results of ACS units, which mean the estimated information, are saved in 

the survivor memory. Moreover, the minimum partial path metric is selected as the 

new path metric. 

Figure 3.4 shows the 4-state radix-2 trellis and the fundamental radix-2 ACS unit 

for state S0. As the trellis diagram illustrated, the state S0 has two predecessor states 

including S0 and S1. First, the corresponding path metric and branch metric are added. 

Then, the two summations are compared to decide which branch is the survivor and 

which path metric is updated. The new path metric will become the predecessor path 
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metric at next time instant. Because of the feed-back characteristic, the main speed 

issue of Viterbi decoder depends on the ACS unit. 
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Figure 3.4 The 4-state radix-2 trellis and the radix-2 ACS unit for state S0

 

3.2.2 High-radix ACS and Two-dimension ACS 

ACS unit is the speed bottleneck of Viterbi decoder due to the feed-back 

characteristic described in previous subsection. For high speed applications, 

decreasing the critical path of ACS unit is the most intuitive idea. High-radix ACS 

structures like radix-4 ACS, radix-8 ACS, radix-16 ACS …, etc. are such strategy. 

The high-radix structures unroll the ACS loop in order to perform multi-step of the 

trellis within a single clock period. These lookahead methods replace the fundamental 

radix-2 trellis with a radix-4 trellis or radix-8 trellis …, etc. For example, a 4-state 

radix-2 trellis and a 4-state radix-4 trellis are shown in Figure 3.5. Note that the 

radix-4 ACS trellis in Figure 3.5(b) is formed by combining a two-stage of radix-2 

trellis in Figure 3.5(a). For the same clock period, it is clear that the data rate of the 

radix-4 ACS is two time faster than that of the radix-2 unit. In a similar manner, one 

can obtain a higher radix trellis diagram. 
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 (a) 4-state radix-2 trellis diagram (b) 4-state radix-4 trellis diagram 

Figure 3.5 The 4-state radix-2 and radix-4 trellis diagrams 

 

Higher radix trellis must be realized by much larger costs of area. Figure 3.6 

shows a radix-4 ACS unit for state S0. This unit computes four sums in parallel 

followed by a four-way comparison. The comparison illustrated in Figure 3.7 is 

realized using six parallel subtractions for minimizing the critical path. Select signal 

(D0(1) and D0(0)) for 4-to-1 multiplexer can be realized by simple logic gates. 

Afterward, the minimum partial path metric is selected as the new path metric. 

Although the critical path increases, the radix-4 architecture achieves two operation 

steps per clock period. Consequently, the effective throughput is improved. 
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Figure 3.6 A radix-4 ACS unit 

21 



 

0_Partial PM
1_Partial PM

2_Partial PM

0_Partial PM

3_Partial PM

0_Partial PM

2_Partial PM

1_Partial PM

3_Partial PM

1_Partial PM

3_Partial PM

2_Partial PM

0(1)D

0(0)D

 

Figure 3.7 The 4-way comparator in Figure 3.6 

 

For the same clock period, the radix-2τ ACS unit achieves τ  times speed up as 

compared to the radix-2 ACS unit. Nevertheless, the number of trellis branches will 

be 2τ-1 times of that in radix-2 trellis, leading to the exponentially increasing 

complexity. The comparison of different radix-2τ ACS structures is shown in Table 

3.1. The high-radix approach that accelerates Viterbi algorithm can also cause large 

critical path due to exponentially increasing branches. Among different radix-2τ ACS 

structures, radix-4 ACS is a popular choice because of the better compromise between 

cost and throughput. 

Table 3.1 Comparison of different radix-2τ ACS structures 

Radix Throughput Complexity 

2 1 1 

4 2 2 

8 3 4 

16 4 8 
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Although high-radix ACS unit performs multi-step of the trellis within a single 

clock period, the exponentially increasing complexity causes the difficulty in VLSI 

implementation. The number of branch metrics generated by the BM unit also 

increases exponentially. Therefore, a radix-2p×2q structure is introduced to achieve the 

throughput equivalent to radix-2τ approach where τ = p + q. The radix-2p×2q ACS 

unit, referred to the two-dimension structure, is similar to the radix-2τ ACS unit, 

except that only smaller radix-2p ACS unit and radix-2q ACS unit are required. Since 

the exponentially increasing hardware cost of a high-radix ACS, the complexity of a 

Viterbi decoder based on radix-2p×2q architecture is much smaller than that based on 

radix-2τ architecture. However, the critical path of the two-dimension ACS unit is 

longer than of radix-2τ ACS unit. Figure 3.8 shows a 4-state radix-2 trellis and a 

4-state radix-2x2 trellis. The structure of radix-2x2 ACS unit for state S0 is shown in 

Figure 3.9. 

 

 

 (a) 4-state radix-2 trellis diagram (b) 4-state radix-2×2 trellis diagram 

Figure 3.8 The 4-state radix-2 and radix-2×2 trellis diagrams 
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Figure 3.9 A radix-2×2 ACS unit 

 

3.3 Path Metric Unit 
The path metric unit is the storage element of the accumulative path metric. In 

VLSI implementation, the path metrics are represented by the memory device with 

finite length fixed-point device. Path metric normalization is required to prevent the 

errors due to the overflow during the increasing path metric. The modular 

normalization technique [3] will be introduced in this section. 

In the modular arithmetic, there is a theorem [4] which can determine the 

magnitude between two values under some constraints. 

 

Theorem Let m1, m2 be the real numbers, and θ is the angle swept out by 

counterclockwise motion from m1 to m2. If they satisfy the condition 

1 2 2
Cm m− <  

then  if and only if 1m m< 2 θ π< . 
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The theorem as shown in Figure 3.10 describes that the large value is always leading 

under the constraint that the difference between the two values is less than half of the 

circumference C. 

θ
1m

2m

 

Figure 3.10 Circular representation of the modular theorem 

 

According to the Viterbi algorithm, it supposes that the maximum likelihood path 

would be merged among the truncation length L. Figure 3.11 illustrates this property. 

In this graph, the  and t m L
aPM + + t m L

bPM + +  can be written as 

 t m L t m
a xPM PM aγ
+ + += +  (3.3) 

 t m L t m
b xPM PM bγ
+ + += +  (3.4) 

Let B denote the maximum difference between two branch metrics which equals to 

the maximum value of the branch metric. Then the difference of two path metrics in 

equation (3.3) and equation (3.4) is 

 t m L t m L
a b a bPM PM BLγ γ+ + + +− = − ≤  (3.5) 

This equation shows that the difference of any two path metrics is upper bounded by a 

sum of branch metrics at most L terms. Therefore, the equation is equivalent to the 

constraint of the modular theorem. According to the modulo theorem, the 
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a bPM PM+ + + +− ≥ . 
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Figure 3.11 The upper bound of path metric difference 

 

According to the descriptions above, the key idea of the modular normalization is 

not to avoid the overflow, but to accommodate the overflow. Consequently, the 

modular normalization is implemented by the 2’s complement adders and subtractors. 

The representation of path metrics requires b bits to satisfy the constraint 

 2
2

b
t m L t m L
a bPM PM BL+ + + +− ≤ =  (3.6) 

 

3.4 Survivor Memory Unit 
There are two well-know survivor memory management approaches. One is the 

register-exchange (RE) method and the other is the trace-back (TB) method. The two 

approaches would be introduced in this section. 
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3.4.1 Register-exchange Approach 

The register-exchange approach is conceptually the simplest used technique 

which assigns a set of registers to each state. The registers record the corresponding 

decoded output sequences named survivor paths. For each new time step, the registers 

may change their contents to update new decoded information. Hence, this approach 

eliminates the need to trace back since the registers have contained the decoded 

information. Intuitively, the approach may reduce latency enormously. However, it is 

not power efficient as a result of the need to shuffle all the registers in a time step to 

the next time step. 

A conventional approach of register-exchange is best state approach [5]. This 

approach finds out the best path among all paths at each time step. Considering the 

example introduced in Section 2.2.2, Figure 3.12 shows the decoding process of the 

best state approach with truncation length 4 over an ideal channel. For each state 

transition, the content of registers is exchanged according to the survivors labeled by 

solid lines. And the corresponding information bit labeled with underline is shifted 

into the leftmost bit of the register. The latency of this example is 4 which equals to 

the truncation length. Then the decoded bit is stored in the rightmost bit of the register 

corresponding to the best state. In Figure 3.12, the decoded bit is represented in 

boldface. For example, the best state at time t=4 is S3. Thus, the decoded bit is ‘1’, 

which is the rightmost bit of the register corresponding to S3. The decoded bit for 

each time instant can be obtained in a similar way. The realization of this approach is 

shown in Figure 3.13. 

 

 

 

 



 

 
Figure 3.12 The best state approach with truncation length 4 

 

Figure 3.13 Realization of the best state approach 

 

When the truncation length is long enough, all survivor paths of states will merge 

together at certain time step. In other words, several rightmost bits of all registers 

contain the same decoded information. In this situation, there is no need to find out 

the best state. Correspondingly, one can choose the rightmost bit of a fixed state as 

decoded bit. The decoding process of fixed state approach with truncation length 4 is 

shown in Figure 3.14. Choosing state S0 to obtain the decoded output, the register 

content of S0 at time t=4 contains 0001. Accordingly, the decoded bit is ‘1’, which is 
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the rightmost bit of the register. Note that at any time step in this example, the 

rightmost bits of each state are the same. The realization of this approach is shown in 

Figure 3.15. This approach doesn’t need to find out the best state. However, more 

registers are required to save longer survivor path. 

 

 
Figure 3.14 The fixed state approach with truncation length 4 

 

 

Figure 3.15 Realization of the fixed state approach 
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A compromising approach between best state approach and fixed state approach is 

labeled as majority vote approach [6]. Compared with the best state approach, this 

approach replaces the find-best-state unit with majority vote circuit. If the number of 

1’s of the rightmost bits is larger than the number of 0’s, the decoded bit is 1. 

Otherwise, the decoded bit is 0. The decoding process of majority vote approach with 

truncation length 4 and its realization are shown in Figure 3.16 and Figure 3.17, 

respectively. 

 
Figure 3.16 The majority vote approach with truncation length 4 

 

 

Figure 3.17 Realization of the majority vote approach 
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3.4.2 Trace-back Approach 

The trace-back approach has been introduced in Section 2.2.2. Unlike 

register-exchange approaches, one does not need to store the information sequence 

but only stores the results of each comparison in memory. After a certain number of 

branches which depends on the truncation length have been processed, these trellis 

connections are recalled in reverse order. The path which is traced back through the 

trellis diagram is used to determine the decoded information bits. This decoding 

process is called the trace-back approach. Although trace-back approach will increase 

overall hardware latency, it consumes less power and suits for portable applications. 

There are three types of operations performed inside a trace-back approach. 

 Write (WR): 

The decisions made by the ACS unit are written into memory locations 

corresponding to each state. The write pointer moves forward as ACS operations 

move from one time step to the next in trellis. 

 Trace-back (TB): 

When the decoding process goes forward with trellis diagram, one must trace back 

the trellis on the best path metric. The pointer values from this operation are not 

the decoded sequence but the maximum likelihood path. Certain iterations are 

needed to ensure that the trace back path reaches merging state with high 

probability so that actual decoding process may come up. According to the Viterbi 

algorithm, the trace-back operation is usually run to a predetermined truncation 

length L before the decoding operation. 

 Decode (DC): 

When the trace-back operation finishes, a merging state is determined. Then, a 

decoding operation begins to generate the decoded bits in a reverse order. This 

operation proceeds in exactly the same fashion as the trace-back operation. Pointer 



 

values from this operation are the decoded values and are temporarily stored in a 

last-in first-out (LIFO) memory, and sent out when decoding operation finishes. 

 

The trace-back approach is called k-pointer approach if there are k read pointers 

operating simultaneously. In the k-point approach, read and write operations proceed 

in parallel using several memory banks. That is, write, trace-back, and decode 

operations are performed in different memory banks at the same time. 

Figure 3.18 shows the memory structure and operation of k-pointer odd approach 

with k=3. There are 2k-1 memory banks, each of size 
1

L N
k

×
−

, where N is the 

number of states and L is the truncation length of trellis. Since the truncation length L 

must be achieved before decoding, two read pointer perform the trace-back operation 

in two memory banks and one more read pointer performs the decode operation in one 

memory bank. First of all, write operation is executed. After write operation is 

completed in the third memory bank, the read pointer starts trace-back operation in 

the third memory bank at the best path metric. At the same time, write operation 

continues in the fourth memory bank. The trace-back operation continues across the 

third and the second banks, while the ACS decisions are written to the fourth and the 

fifth banks. Note that the combined length of the second and the third banks is exactly 

the truncation length L. Hence, a merging state at the first memory bank is determined 

by trace-back operation of length L. Then, the decoding operation starts and the 

decoded bits are generated in reverse order. Furthermore, the new decisions from ACS 

unit can be written to the first memory bank at once. The latency of the k-pointer 

approach is 2
1

k L
k −

, which is the time delay from writing the first column to 

decoding the first symbol. In this example of 3-pointer odd algorithm, the latency is 

3L as shown in Figure 3.18. With this decoding process, one can generate the decoded 

bits sequentially. 
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Figure 3.18 Memory structure and operation of the 3-pointer odd approach 

 

Figure 3.19 shows the memory structure and operation of k-pointer even approach 

with k=3. There are 2k memory banks, each of size 
1

L N
k

×
−

. The decoding process 

of the k-pointer even approach is similar to the k-pointer odd approach. The main 

difference is that the k-pointer even approach needs one more memory banks because 

decoding operation and write operation are divided into two memory banks. 
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Figure 3.19 Memory structure and operation of the 3-pointer even approach 

 

The one-pointer approach differs significantly from the k-pointer approach. This 

approach adopts only one read pointer but needs to speed up the read operation. For 

example, if a k-pointer approach is converted to one-pointer approach, the trace-back 

and decoding operations need to be performed k times faster. However, the number of 

memory banks can be reduced. Figure 3.20 shows the memory structure and operation 

of one-pointer approach with k=3. First, write operation is executed. After write 

operation is completed in the third memory bank, the read pointer starts trace-back 

operation in the third memory bank at the best path metric. At the same time, write 

operation continues in the fourth memory bank. Notice that the read operation is 3 

times faster than the write operation. Therefore, when the write operation finishes in 
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the fourth memory bank, the trace-back and decoding operation must be completed in 

the other three memory banks. By a similar fashion, the decoded bits can be generated 

sequentially. Furthermore, the number of memory banks and latency of this example 

are 4 and 2L respectively, which are smaller than those of the 3-pointer approach. In 

conclusion, if a k-pointer approach is converted to one-pointer approach, k+1 memory 

banks are needed, each of size 
1

L N
k

×
−

, and the latency is 1
1

k L
k
+
−

. 

 

1 L/2 1 L/2 1 L/2 1 L/2

L/2

L
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3L/2

2L

5L/2
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4L

7L/2

: Write : Trace-back : Decode
 

Figure 3.20 Memory structure and operation of the one-pointer even approach 

 

The hybrid trace-back approach combines the k-pointer approach and one-pointer 

approach. That is, the trace-back and decoding operations become k1 times faster to 

determine the merging state and decoded bits, which is like the one-pointer approach. 
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In addition, it uses k2 read pointers simultaneously when trace-back and decoding 

operations are executed, which is like the k-pointer approach. Figure 3.21 shows the 

memory structure and operation of even hybrid approach with k1=2 and k2=2. In this 

approach, the number of memory banks are 2 1( 1)k k + −  and  for the odd 

hybrid approach and the even hybrid approach, respectively. Each memory bank size 

is 

2 1( 1k k + )

1 2 1
L N

k k
×

−
. And the latency is 2 1

1 2

( 1)
1

k k L
k k

+
−

. 

 

 
Figure 3.21 Memory structure and operation of the even hybrid approach 



 

Chapter 4 
Some low-power Schemes for Viterbi 
Decoder 
 
 

In this chapter, we will introduce some low power schemes for Viterbi decoder. 

The first one is scarce-state-transition (SST) algorithm proposed in 1987. As the 

channel noise is not serious, SST technique reduces the switching activity of the input 

sequence significantly. Next, we will describe adaptive Viterbi algorithm, which is a 

popular low-power scheme for Viterbi decoder. Unlike conventional Viterbi algorithm, 

adaptive Viterbi algorithm applies the path-pruning technique to reduce computation 

and storage requirements. Finally, we will propose a modified memory management 

based on path merging property of Viterbi algorithm. This scheme provides variable 

truncation length for register-exchange approach to access the survivor memory 

efficiently. 

 

4.1 Scarce-State-Transition (SST) Algorithm 
The scarce-state-transition (SST) algorithm [7] [8] [9] was first proposed by 

Ishitani et al in 1987. It is a low-power technique for Viterbi decoder to reduce the 

state transition activity significantly under high SNR condition. The decoding process 

of SST algorithm will be introduced in this section. 

Figure 4.1 shows the block diagram and data sequences of convolutional code. In 

this block diagram,  denotes the information sequence,  

is the codeword sequence deriving from the generator polynomial . From the 

( )u D ( ) ( ) ( )C D u D G D= ⋅

( )G D
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received sequence , the Viterbi decoder estimates the decoded information 

sequence . 

( )r D

( )o D

 Figure 4.1 The block diagram of convolutional code 

 

The SST Viterbi decoding model illustrated in Figure 4.2 includes two additional 

blocks: pre-decoder and re-encoder. The re-encoder is the same as the convolutional 

encoder of the transmitter and the pre-decoder provides the inverse function of the 

convolutional encoder. The SST decoding scheme consists of some steps. First, the 

hard decision of the received sequence is pre-decoded by the pre-decoder. Next, the 

output of the pre-decoder is re-encoded by the convolutional encoder. The modulo-2 

addition of the received sequence and the re-encoded sequence is the new input of the 

Viterbi decoder. Finally, the decoded information sequence is the modulo-2 addition 

of the output of Viterbi decoder and the output of the pre-decoder. 

Figure 4.2 The model of SST Viterbi decoding 

 

The relationships between the data sequence in Figure 4.2 are described as 

follows. The received sequence can be expressed as 

  (4.1) ( ) ( ) ( ) ( ) ( ) ( )r D u D G D e D C D e D= ⋅ + = +

where  is the error sequence from a noisy channel. Next, the pre-decoder 

directly decode the information sequence from  by perform the inverse 

( )e D

( )r D
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function of the encoder. The output of pre-decoder is 

  (4.2) 1 ˆ( ) ( ) ( ) ( )i D r D G D u D−= ⋅ =

The re-encoder then encodes  to a new codeword sequence z(D) ( )i D

  (4.3) ˆ( ) ( ) ( ) ( )z D i D G D C D= ⋅ =

The new input sequence of the Viterbi decoder  equals to the modulo-2 

addition of the received sequence and the re-encoded sequence, which is represented 

as 

( )y D

  (4.4) ˆ( ) ( ) ( ) ( ) ( ) ( )y D r D z D C D e D C D= + = + +

The Viterbi decoder then performs maximum likelihood decoding on . From 

equation (4.4), it is obvious that the switching activity of  depends on the 

channel noise. In high SNR condition, the input of the Viterbi decoder  is 

nearly zero as well as the output of the Viterbi decoder . The decoded 

information sequence  equals to the modulo-2 addition of the output of Viterbi 

decoder and the output of the pre-decoder, which can be represented as 

( )y D

( )y D

( )y D

( )n D

( )o D

  (4.5) ˆ( ) ( ) ( ) ( ) ( )o D i D n D u D n D= + = +

Figure 4.3 illustrates the SST decoding process for the (2, 1, 2) convolutional 

code described in Section 2.1.1. Assume the encoder has reset to the 00 state, the 

encoded codeword symbols corresponding to information bit 0 and information bit 1 

are (0,0) and (1,1) respectively. In BPSK modulation, the coded bit ‘0’ is mapped to 

‘+1’ and ‘1’ is mapped to ‘-1’. As the codeword symbols pass through the noisy 

channel, the received symbols may not match the codeword symbols due to the errors 

denoted by e in Figure 4.3. In this example, 3-bit quantization is applied to represent 

the received symbol. Then, the hard decision of the received symbol is processed by 

the pre-decoder and re-encoder. As Figure 4.3 illustrated, the input of the Viterbi 

decoder becomes the error symbol e introduced by channel noise. The output of the 

Viterbi decoder is expected to be zero as the channel noise is not serious. Finally, the 
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decoded information bit which is the same as that in the transmitter is obtained. 

Figure 4.3 The SST Viterbi decoding process 

 

The SST algorithm has the following properties. As the channel noise is not 

serious, most of the decoded bits of the Viterbi decoder are zero. Therefore, the 

survivor path will pass through the zero state at most of the time and the zero state is 

most likely the best state with minimum path metric. Figure 4.4 shows the survivor 

paths of the conventional Viterbi algorithm and the SST algorithm over a noiseless 

channel. For conventional Viterbi algorithm, the maximum likelihood state is 

distributed across all the states. On the other hand, the zero state has a higher 

probability to be the maximum likelihood state than other states as SST algorithm is 

exploited. This property is useful for the modified memory management we proposed, 

which will be described later. 
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(a)Conventional Viterbi algorithm 

 

(b)SST algorithm 

Figure 4.4 The survivor paths over a noiseless channel 

 

The SST algorithm performs a transformation process that converts the origin 

input sequence of the Viterbi decoder into an approximately zero sequence as the 

channel condition is good enough. As a result, the state transition activity is reduced 

and the decoded sequence passes through the zero state with high probability under 

high SNR environment. Therefore, the dynamic power is reduced as the channel 

becomes better. 
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4.2 Adaptive Viterbi Algorithm 
Adaptive Viterbi algorithm [10] [11] combines the Viterbi algorithm with the 

principle of T-algorithm [12]. Unlike conventional Viterbi algorithm which retains all 

survivors of each state at each trellis stage, T-algorithm applies the path-pruning 

technique to reduce computation and storage requirements. Instead of computing and 

retaining all possible paths, only some paths which satisfy certain path-cost 

conditions are retained at each stage. The path retention is based on the following 

criteria 

 A path is retained if its path metric is less than md T+ , where T is a threshold 

value determined by the designer and  is the best path metric among all 

survivor paths at the previous trellis stage. 

md

 The total number of survivor paths per trellis stage is limited to a fixed number 

, which is also determined by the designer and less than the state number. maxN

 

The first criterion allows high-cost paths to be eliminated in the decoding process. 

In the case of many paths with similar cost, the second criterion restricts the number 

of paths to . At each stage, the minimum path metric , threshold T, and 

maximum survivor number  are used to prune the number of survivor paths. 

maxN md

maxN

For adaptive Viterbi algorithm, it is important to select T and  carefully. If 

threshold T is set to a small value, the average number of paths retained at each trellis 

stage will be reduced. However, the bit error rate may increase since the most likely 

path has to be taken from a reduced number of possible paths. Alternatively, if a large 

value of T is selected, the average number of retained paths increases and results in a 

reduced bit error rate. But the computation and the path-storage requirements also 

increase. The maximum number of survivor paths per stage , has a similar effect 

on bit error rate as T. Therefore, an optimal value for T and  should be chosen 

maxN

maxN

maxN
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so that bit error rate is within allowable limits, while matching the resource of the 

hardware. Figure 4.5 shows the ACS unit of adaptive Viterbi decoder. 

 

Adder di<dm+T

Number 
of paths 
= count

Y

N

Discard path

count 
< Nmax

N

Discard path

Y

To survivor 
memory

 Figure 4.5 The ACS unit of adaptive Viterbi decoder 

 

4.3 Variable Truncation Length 
As Section 3.4 mentioned, there are two well-know survivor memory 

management approaches: the register-exchange (RE) approach and the trace-back (TB) 

approach. Register-exchange approach is conceptually the simplest used technique 

and eliminates the need to traceback since the registers have contained the decoded 

information. Compared with trace-back approach, register-exchange approach has the 

advantage of short critical path, short latency, and simple structure. However, 

register-exchange method is not power efficient due to the need to copy the contents 

of all registers in a stage to the next stage. In this Section, we will propose a modified 

memory management based on path merging property of Viterbi algorithm. This 

scheme provides variable truncation length for register-exchange approach to access 

the survivor memory efficiently. Figure 4.6 illustrates a 64-state Viterbi decoder with 

radix-2x2 ACS and RE-based survivor memory. 
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Figure 4.6 A 64-state, radix-2x2 Viterbi decoder with RE-based memory 

 

In Section 2.23, we introduce an important characteristic of Viterbi algorithm, 

namely path merging property. As path merging property mentioned, all survivor 

paths will merge with high probability if the truncation length L is long enough. By 

selecting proper truncation length, the decoded data can be determined with L-stage 

information only. Moreover, it is unnecessary to search for the best state. In fact, the 

decoded data from any state is the same if all survivor paths have merged. Based on 

this characteristic, fixed state approach is a proper choice for a register-exchange 

based survivor memory when the state number is large. 

As all survivor paths merge, it is more efficient to store the merged path rather 

than all paths. Based on this principle, we propose a low-power scheme called 

variable truncation length for Viterbi decoder. Figure 4.7 illustrates a 64-state, 

radix-2x2, RE-based survivor memory with variable truncation length. D0 to D63 are 

the decisions provided by the ACS units for selecting survivor paths. In the decoding 

process, the contents of registers corresponding to 64 states tend to be equivalent 

from the left stages to the right stages. The registers of each stage are connected to the 
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path merging detection unit. The path merging detection unit will find the merged 

stage in the memory and generates clock gating signals of each stage to eliminate 

unnecessary data movement. 

D1

D62

D63

OUT

D2

CLK0 CLK1 CLK2

D0

2'b00

Clock 
Gating

CLK3

Path Merging Detection Unit

Figure 4.7 A RE-based survivor memory with variable truncation length 

 

Figure 4.8 illustrates the survivor memory by trellis diagram. In this example, the 

fixed state approach is applied and the decoded data is obtained from state 0. After 

detecting the merged point, we apply clock gating to the registers in the shadow 

region and directly shift out the value of state 0. The path corresponding to state 0 is 

considered as the correct one, and the others are dropped. Based on the scheme, we 

can adjust truncation length dynamically, depending on the channel. In high SNR 

environments, a shorter truncation length is required and the clock gating can be 
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applied to more registers, resulting in a power efficient survivor memory. 

D0~3 OUT

D4~7

D8~11

D12~15

D52~55

D56~59

D60~63

Merge Point

Routing

Figure 4.8 Trellis diagram representation of variable truncation length 
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Chapter 5  
The Proposed Low-power Viterbi 
Decoder 

 
 

In this chapter, we will propose a low-power Viterbi decoder combining 

scarce-state-transition (SST) algorithm and variable truncation length. The ACS 

computation and the survivor memory are most power critical, consuming about 90% 

power in the Viterbi decoder. Therefore, most low power designs focus on these two 

blocks. The SST algorithm reduces the switching activity of the input sequence to 

lower down the dynamic power. In addition to apply SST, we propose a modified 

register-exchange approach that adjusts the truncation length dynamically. With 

variable truncation length, the access of the survivor memory will become more 

efficient. 

The proposed Viterbi decoder targets for Multi-band OFDM UWB [13] system. 

This system exploits a 64-state convolutional code and has a high throughput 

requirement up to 480Mbps. Figure 5.1 shows the block diagram of MB-OFDM 

UWB system. 

At the beginning of this chapter, we will present the architecture of the proposed 

Viterbi decoder. Next, we will show the simulation and implementation results. 

Finally, the comparison between some different designs will be discussed. 
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 Figure 5.1 The block diagram of MB-OFDM UWB system 

 

5.1 The Design of Proposed Viterbi Decoder 
Figure 5.2 shows the block diagram of proposed low-power Viterbi decoder 

combining SST algorithm and variable truncation length. In this section, we will 

present the implementation of these low-power schemes. The architecture of SST unit 

will be described first. Next, we will introduce the radix-2x2 ACS structure applied in 

the proposed design. Finally, we will show how the modified memory management 

adjusts the truncation length dynamically. 

Radix-2x2
ACS_0

BM Unit

RE-Based 
Survivor
Memory

Path Merging 
Detection Unit

SST Unit

Radix-2x2
ACS_63

Input

Output

Path Metric 

Figure 5.2 The block diagram of proposed Viterbi decoder 
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5.1.1 Implementation of SST 

To apply SST algorithm in the Viterbi decoder, it is necessary to implement the 

pre-decoder and re-encoder. Figure 5.3 shows the convolutional encoder of the 

MB-OFDM UWB system. The corresponding generator polynomial is 
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  (5.1) 

2 3 5

2 4 6

2 3 6

( ) 1

( ) 1

( ) 1

A

B

C

G D D D D D

G D D D D D

G D D D D D

= + + + +

= + + + +

= + + + +

The re-encoder structure is just the same as the convolutional encoder. 

 Figure 5.3 The convolutional encoder of MB-OFDM UWB system 

 

The pre-decoder provides the inverse function of re-encoder. We involved three 

sequences: , , and . The function of pre-decoder can be 

represented as 

( )AS D ( )BS D ( )CS D

  (5.2) ( ) ( ) ( ) ( ) ( ) ( ) 1A A B B C CG D S D G D S D G D S D⋅ + ⋅ + ⋅ =

To solve , , and , these three sequence can be rewritten as 

, , and 

( )AS D ( )BS D ( )CS D

1 2( ) ( )S D S D+ 3 4( ) ( )S D S D+ 5 6( ) ( )S D S D+  respectively. Thus, equation 

(4.7) can be written as 

  (5.3) 
1 3

4 5

2 6

( ) ( ) ( ) ( ) 1
( ) ( ) ( ) ( ) 1
( ) ( ) ( ) ( ) 1

A B

B C

A C

G D S D G D S D
G D S D G D S D
G D S D G D S D

⋅ + ⋅ =
⋅ + ⋅
⋅ + ⋅

=
=

1( )S D  to  can be solved by Euclid’s algorithm [14]. Therefore, we obtain 6 ( )S D
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5  (5.4) 

2 3 4

2 3 4

2 5

( )

( )

( ) 1

A

B

C

S D D D D D

S D D D D D D

S D D D D

= + + +

= + + + +

= + + +

With the three sequences in equation (5.4), one can implement the pre-decoder as 

shown in Figure 5.4. The pre-decoder and the re-encoder both are composed of some 

shifter registers and modulo-2 adders only. Therefore, the hardware overhead of these 

two additional blocks for SST algorithm is small. 

D D D DINA

D D D DINB D

D D D DINC D
OUT

Figure 5.4 The pre-decoder for the convolutional encoder in Figure 5.3 

 

5.1.2 Radix-2x2 ACS Structure 

The throughput requirement of MB-OFDM UWB system is up to 480Mbps. As 

mentioned in Section 3.2.2, ACS unit is the speed bottleneck of Viterbi decoder due to 

a data-dependent feedback loop. For high speed applications, one often applies 

high-radix or multi-dimension ACS to improve the throughput. Radix-4 ACS and 

radix-2x2 ACS both completes the operations of two trellis stages in one clock cycle. 

In 0.13μm CMOS technology, the radix-4 and radix-2x2 ACS structure can achieve 

the throughput requirement. Figure 5.5 shows a 4-state radix-4 trellis and a 4-state 

radix-2x2 trellis. The structures of radix-4 and radix-2x2 ACS unit for state S0 is 

shown in Figure 5.6. 

 



 

 
(a) 4-state radix-4 trellis diagram (b) 4-state radix-2x2 trellis diagram 

Figure 5.5 The 4-state radix-4 and radix-2x2 trellis diagrams 
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(a)Radix-4 ACS unit 
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(b)Radix-2×2 ACS unit 

Figure 5.6 The radix-4 and radix-2x2 ACS units 
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The complexity analysis of radix-4 and radix-2×2 ACS units for a 64-state Viterbi 

decoder is summarized in Table 5.1. The main differences of these two ACS 

structures are the comparator and multiplexer. Table 5.2 lists their gate counts to show 

the hardware costs. Although the critical path is longer, radix-2x2 ACS can achieve 

the throughput requirement with lower complexity. To design a low-power Viterbi 

decoder, we exploit radix-2x2 ACS structure in the proposed design. 

 

Table 5.1 Comparison of complexity between radix-4 and radix-2×2 ACS units 

 
registers adders 

2-way 

comparator

4-way 

comparator

2-to-1 

multiplexer 

4-to-1 

multiplexer

ACS-4 64 4·64 - 64 - 64 

ACS-2×2 64 (2+2)·64 2·64 - 2·64 - 

 

Table 5.2 The gate counts of different comparators and multiplexers 

 2-way 

comparator 

4-way 

comparator 

2-to-1 

multiplexer 

4-to-1 

multiplexer 

Gate count 28 173 17 33 

1 Apply UMC 0.13μm technology 

2 The length of all input and output data are 9-bit 

 

 

 

 

 

 

 



 

53 

5.1.3 Implementation of Variable Truncation Length 

In Section 4.3, we propose variable truncation length scheme based on path 

merging property of Viterbi algorithm. As all survivor paths merge, the survivor 

memory stores the merged path rather than all paths to eliminate unnecessary data 

movement. To implement variable truncation length, it is necessary to find the merged 

stage of the survivor memory. After detecting the merged point, we can shift out the 

data on merged path directly and apply clock gating to the registers corresponding to 

other paths. 

Obviously, all survivor paths merge as the contents of 64 states are equivalent at 

the same stage. However, it is too complex to check the equality of all 64 states 

concurrently. To reduce the hardware complexity, our proposal detects path merging 

by dividing 64 states into several groups that are verified separately. For radix-2x2 

trellis, there are four source states corresponding to each state. Therefore, we divide 

64 states into 16 groups and each group contains 4 states. Figure 5.7 illustrates the 

implementation of variable truncation length. Because we exploit SST algorithm in 

the proposed Viterbi decoder, the decoded data is obtained from state 0, which is most 

likely the best state. As the Figure shown, the equality of each group is checked 

separately. The verified results of each stage are connected to the path merging 

detection unit. The signals Gi and Si generated by the path merging detection unit 

mean the clock gating control of each stage and the selection signal of the state 0 

respectively. With the clock gating control signal Gi, the register clocks in the shadow 

region of Figure 5.7 are gated to reduce the power consumption. The selection signal 

Si controls the content of state 0 to be updated by directly shift or register exchange. 
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 Figure 5.7 The implementation of variable truncation length 

 

Simulation results show that checking each group separately not only reduces the 

hardware complexity but also preserves the error performance. Some simulation 

results are shown in the following section. 
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5.2 Simulation and Implementation Results 
This section will show some simulation and implementation results. The 

performance simulations are performed in AWGN channel and BPSK modulation. We 

adopt the (3, 1, 6) convolutional code for MB-OFDM UWB system with 3-bit 

soft-decision and 1/3 code rate. As the variable truncation length scheme is based on 

the path merging property, it is necessary to choose a proper truncation length to 

ensure all survivor path will merge with high probability. Figure 5.8 shows the 

performance curves under different truncation length. The right upper corner of 

Figure 5.8 highlights the curves in low SNR condition. As these curves shown, the 

performance improvement will reach a limit even the truncation length increases 

continuously. We select 64 as the maximum truncation length in the proposed design. 

 
Figure 5.8 The performance curves under different truncation lengths 
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As described in Section 5.1.3, our proposal detects path merging by dividing 64 

states into several groups that are verified separately. In addition, we analyze the 

performance by verifying only parts of the 64 states. Figure 5.9 shows the 

performance curves as we check the equality of the first 16 states (4 groups), the first 

32 states (8 groups), the first 48 states (12 groups), and all 64 states (16 groups). The 

simulation result shows checking the first 48 states only can achieve the same 

performance as checking all 64 states. Therefore, we verify the first 48 states only to 

reduce the hardware complexity but still preserve the error performance. 

Figure 5.9 The performance curves under different verification conditions 

 

Table 5.3 lists the design parameters of the proposed Viterbi decoder. In order to 

demonstrate the proposed schemes reduce the power consumption, we implement 

three versions of Viterbi decoder including conventional register-exchange structure, 

SST scheme only, and the proposed structure. Table 5.4 lists the gate counts of these 
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three implementations. 

 

Table 5.3 Design parameters of the proposed Viterbi decoder 

Technology UMC 0.13-μm process 

State number 64 

Code rate 1/3 

Soft-decision 8-levels 

BM width 6 bits 

PM width 9 bits 

Truncation length 64 (max) 

ACS structure radix-2x2 

 

Table 5.4 The gate counts of different implementations 

Implementation Gate count 

Conventional RE 57.8k 

SST 58.2k 

Proposed 65.1k 

 

Figure 5.10 shows the power simulation results in different channel conditions. 

The operation frequency is 250MHz and the corresponding data rate is 500Mbps. For 

the conventional structure, the channel conditions are ineffective in the power 

dissipation. In the SST only implementation, the decoder power dissipation is reduced 

in high SNR environments. In the proposed design combining the SST and the 

variable truncation length, the decoder power has a obvious reduction as shown in 

Figure 5.10(a). Figure 5.10(b) shows the survivor memory power only to highlight 

the effect of the dynamic truncation length. 
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(a)The power consumption of whole Viterbi decoder 
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(b)The power consumption of the survivor memory 

Figure 5.10 The power simulation results in different channel conditions 
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Figure 5.11 shows the gate count distribution of the conventional and the 

proposed designs. For the conventional structure, the ratio of ACS and survivor 

memory is more than 90%. In the proposed design, the ratio of the additional circuits 

for implementing low-power schemes is about 9%. 
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(a)Conventional structure 
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(b)Proposed structure 

Figure 5.11 The gate count distribution of conventional and proposed designs 
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Figure 5.12 shows the power profiling of the conventional and the proposed 

designs as Eb/N0 is 4.0 dB. The corresponding bit error rate in this channel condition 

is 1.41e-5. In conventional decoder design, the survivor memory is a power intensive 

block. With SST and variable truncation length schemes, the ratio of survivor 

memory power is reduced significantly. Furthermore, the SST unit and the path 

merging detection unit consume less than 2% of the decoder power. 
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(b)Proposed structure 

Figure 5.12 The power profiling of conventional and proposed designs 
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We implement the proposed Viterbi decoder by the cell-based design flow, and 

exploit 0.13-μm CMOS process. The chip summary is shown in Table 5.5. 

 

Table 5.5 The chip summary 

Technology UMC 0.13-μm process 

Package 48 pins 

Core size 0.56mm2

Core density 83.07% 

Power 63.8mW @250MHz, 500Mbps, Eb/N0=4.0dB 
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Figure 5.13 The layout of the proposed Viterbi decoder 
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5.3 Comparison 
Some of the published Viterbi decoders are listed in Table 5.6. In our 

implementation, the high throughput rate and low power design can be achieved. 

 

Table 5.6 Comparison with other designs 

 F. Sun [15] Intel [16] Proposed 

Technology 0.13-μm 90nm 0.13-μm 90nm 

State NO. 64 64 64 

RE: 49.4k 
Area (mm2) 

TB: 89.4k 

ACS: 0.048 

TB: 0.133 
0.56 0.25 

Soft decision 3-bit - 3-bit 

PM width 6-bit 10-bit 9-bit 

Truncation 

length 
48 96 64 (max) 

100M Clock rate 

(Hz) 
200M 2G 

250M 
250M 

200M Data rate 

(bps) 
200M 500M 

500M 
500M 

RE: 38.49mW 

@SNR=4dB 

25.21 

@Eb/N0=4dB 
Power 

TB: 34.82mW 

@SNR=4dB 

40mW 
63.8 

@Eb/N0=4dB 

28.52 

@Eb/N0=4dB 

 

 

 



 

Chapter 6  
Conclusion and Future Work  
 
 

In this thesis, we propose a low-power Viterbi decoder for MB-OFDM UWB 

system. The proposed design combines SST and variable truncation length schemes. 

SST is a low-power technique which reduces the state transition activity with low 

hardware cost. Based on path merging property of Viterbi algorithm, we propose a 

modified memory management to adjust the truncation length dynamically according 

to the channel conditions. Consequently, the redundant data movement can be 

eliminated. With variable truncation length scheme, the access of the survivor 

memory becomes more efficient. 

Experimental results indicate the power reduction of the whole decoder and the 

survivor memory unit can achieve more than 14% and 53% respectively as Eb/N0 is 

large than 4dB, while the overhead of 13% gate count due to additional control logics 

is required. In addition to reduce power consumption, our proposal still preserves the 

error performance. 

The proposed low-power schemes reduce the power dissipation of the survivor 

memory significantly. However, the ACS unit is still power critical. In the future, we 

would like to replace ACS unit with CSA unit, which has lower computation 

complexity but longer critical path. Furthermore, we will implement full-custom ACS 

and memory cells for low-power designs. 
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