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Chapter 1

Introduction

Spin-orbit interaction on the 2D electron gas system with zero magnetic field

has drawn significant interest. It’s proved that the polarization of electrons

can be manipulated via the applied gate voltage which can alter spin orbit

interaction originating from the lack of inversion symmetry in macroscopic

confining potential called Rashba term. The discussion on such a phenomena

on an electronic device based on semiconductor was pushed forward by Datta

and Das in 1990[1]. The source and drain are both ferromagnetic metals

with the same alignment of electron spin. Electrons will be injected into the

source which will align the spin orientation of the electrons the same way

as those in the source. Besides,resonant double-barrier tunneling structures

have attracted considerable attention since the pioneering work of Tsu and

Esaki[2]. But almost all theoretical calculations are done by one-dimensional

approach for determining tunneling transmission probability. Recently a few

papers have called attention to some peculiarities in the dependence of the

tunneling transmission probability on the parallel electron wave-vector for

symmetric tunnel hetrostructures[3, 4, 5]. It was found that for structures

with an electronic effective mass dependent on space position, and the in-
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plane wave-vector can be the key point in the transmission process.

The charge degree of freedom of electrons is a key point to the success

of semiconductor electronics. The spin degree of freedom had always been

neglected in semiconductors largely due to the almost degenerate energies of

two spin states of electrons. But, with the improvement of semiconductor

process, the working dimension of semiconductor electronic devices has been

reduced to a nano-scale, so spin-orbit interaction among electrons has to be

taken into consideration. As time past, there has been a rapid development

of semiconductor spin devices. In general, spintronics includes not only semi-

conductor materials but many other systems. However, it could leads to a

widespread application only cooperating with modern semiconductor tech-

nology. Moreover, spin degree of freedom is perhaps more advantageous than

charge because unlike charge spin is not coupled to electromagnetic noise and

therefore has much longer coherent time[6]. Furthermore, adding spin degree

of freedom to conventional charge-based electronic devices has the potential

advantages of non-volatility, increased data processing speed, and decreased

electric power consumption.

The utilization of the spin-orbit interaction has played the main role on

semiconductor spintronics. However, there are some challenges existing in

semiconductor technology, like efficient injection, transport control, manipu-

lation, and detection of spin polarization. A natural starting point to tackle

those problems would be to pass electrons through strongly magnetized met-

als and then inject them back to semiconductor. But the conductivity mis-

match between metal and semiconductor impedes the electron transport and

makes this approach seem inefficient, as Schmidt pointed out[20]. And a

most elementary issue, an efficient means to obtain spin polarized currents

in semiconductor structures, has not been resolved yet. The inefficiency of
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spin-injection back from magnetized metal electrodes sparks interest in all

semiconductor alternatives. The spin-orbit interaction of electrons in III-V

semiconductor junctions, which thus provides a possible way. The spin-orbit

interaction in III-V semiconductor materials is usually described by two con-

tributions to the effective one-band spin dependent Hamiltonian. One is the

Rashba term induced by the inversion asymmtry of the macroscopic poten-

tial, which can be controlled by an external electric field or material growth

techniques. The other is the Dresselhaus term[21] due to the inversion asym-

metry of the zinc-blende lattice. The interplay between these two terms has

been studied by de Andrada Silva[21], showing that, for narrow gap semicon-

ductors, the contribution from the Rashba term to the spin- orbit interaction

dominates over that from the Dresselhaus term.

The spin-orbit interaction in semiconductor hetrostructures can be caused

by an electric field perpendicular to the two-dimensional electron gas system.

Riding on an electron, this electric field will be felt as an effective magnetic

field lying in the plane of the 2DEG, perpendicular to wave vector k of the

electron. The effective Zeeman interaction of the electron spin with the field

lifts the spin degeneracy(internal Zeeman effect). This is usually referred

to in the literature as the Bychkov-Rashba mechanism. This results in an

isotropic spin splitting energy ∆so at B=0 proportional to k[7]. For electrons

moving along the shortest way from the source to drain, the energies of the

two spin states are

E± =
~2k2

2m∗ ± αk. (1.1)

α is a material dependent coefficient which can be altered by the external

electric field. For a given Fermi energy EF there are two wave vectors k+ and

k− corresponding to the solution of the equation E± = EF . The Fermi level

is a pair of concentric circles with radii k+ and k−. Experimentally observed
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values of the spin orbit coupling strength α lie in the range of 0.5 ∼ 4.5

10−11eV ·m[8, 9]. Calculation based on the Rashba spin-orbit interaction in

III-V semiconductor heterostructures have been performed[10, 11, 12, 13, 14,

15], showing the entire semiconductor tunneling structures can be a feasible

means to obtain electronic spin-polarized currents.

In this report, we propose a device made of GaAS/InAs/GaAs shown in

Fig. 1.1. The channel is along the z axis, and there is a double symmetric

potential barrier shown in Fig. 1.2 induced by the double metallic gates which

is used to form the confining barrier, and the wave vector in y direction is

continuous. When an electron is injected into the source, it will be accelerated

by the voltage drop across the source and drain. But it wouldn’t always

arrive at the drain because of the double barrier. In Eq. (1.1), we can

demonstrate that any two electrons with opposite spin-orbit orientations will

be in different energies even with the same wave vector if we take the spin

orbit interaction into consideration. That’s the reason why we can get spin

polarized current. Furthermore, we could get a recognizable magnitude of

polarization with the well defined potential barrier and Fermi energy.

This report is organized as follows: in chapter 2, we present the essential

formalism for our study and the numerical approach we use to calculate the

tunneling transmission probability. The calculation results and discussions

are shown in chapter 3. Finally, we summarize our work in chapter 4.
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Figure 1.1: A schematic illustration of the proposed spin-filter device. The

channel length on the InAs layer is 200nm along the z axis, the distance

between the two gates is 100nm, and the in-plane wave vector is parallel to

the y axis.
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Figure 1.2: A symmetric resonant barrier induced by the double gates is

along the z axis and extended to 200nm.
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Chapter 2

Theory

We have investigated the spin-dependent tunneling process through a spin

filtering system shown in Fig. 1.1. This is a two dimensional electron gas

system. There the double metallic gates will induce a double potential barrier

on the InAs channel between the source and drain, and the barrier with a

voltage drop is shown in Fig. 2.1. In x direction, there is a traditional

quantum well based on GaAs/InAs/GaAs, so we could take Rashba spin

orbit interaction into consideration in the tunneling process under nonzero

average electric filed providing by the double gates. The electron motion

direction is on y-z plane, and the in-plane wave vector is denoted by ky.

Our calculation is performed in the base of the effective electronic one

band Halmiltonian[10, 11], energy- and position- dependent electron effective

mass approximation, the Ben Daniel-Dike boundary conditions[20], and the

multi-step approximation[17] with cutting the barrier into a sequence of N

small segments. On the basis of the above assumptions the electronic wave

function[16] in the lth segment can be interpreted as

Φl(z, y) = Ψl(z) exp(iky · y), (2.1)
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where Ψl(z) satisfies the z-component of the Schrödinger equation

ĤlΨl(z) = EΨl(z), (2.2)

with the spin-dependent Halmiltonian in each region[22]

Ĥl = Ĥl0 + Ĥlso. (2.3)

Where Ĥl0 is the Hamiltonian of the system without spin-orbit interaction

Ĥl0 = −~2

2

∂

∂z

1

ml(E)

∂

∂z
+

~2k2
y

2ml(E)
+ Ec + eV (z), (2.4)

and

1

ml(E)
=

P 2

~2
[

2

E − Ec + Eg + eVl

+
1

E − Ec + Eg + ∆ + eVl

], (2.5)

presents the energy and position dependent reciprocal effective mass. E

denotes electron energy in the conduction band, and Vl is the double barrier

potential function induced by the double metallic electrodes in lth region.

The momentum matrix element P does not rely on z,[16] and Ec, Eg and ∆

stand for the corresponding the bottom of conduction-band, the band gap,

and the spin-orbit splitting in the valence band, and e is an absolute value

of an electron charge. When the kinetic energy of electrons is substantially

smaller than the barrier’s height we can present this term as the following

Ĥlso = α(σzk̂y − σyk̂z), (2.6)

where σz and σy are correspondingly z and y components of the vector of the

Pauli matrices σ̂ = {σx , σy , σz} and α is a material dependent constant.

The boundary conditions for the solution Ψl(z) at the interface between

l and l + 1 regions have been introduced in Ref.[16]
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1

ml(E)

{
d

dz
Ψl(z)

}
z=zl

=
1

ml+1(E)

{
d

dz
Ψl+1(z)

}
z=zl

,

Ψl(zl) = Ψl+1(zl).

Ψl(z) = Al(z) exp(ikzlz) + Bl(z) exp(−ikzlz). (2.7)

The above is the general solution of Eq. (2.2) in the lth region. And

exp(± i kzl z) is a pair of linear independent solutions of Eq. (2.2) within

that region. Inside the linear independent solutions

kzl =

√
2ml(E)(E − Ul(E, ky))]

~
. (2.8)

Ul(E, ky) =
~2k2

y

2ml(E)
+ Ec + Vl,

where V is the confining potential,

Vl = V (
zl−1 + zl

2
),

and m is energy and position dependent effective mass,

ml(E) = m(E,
zl−1 + zl

2
),

and

Sl(E, ky) =
ml+1(E)

ml(E)

kzl(E, ky)

kzl+1
(E, ky)

.

The coefficients {Al(z), Bl(z)} are to be determined from the boundary

conditions, Eq. (2.7). The sets of coefficient in neighboring regions are

related by the transfer matrix M [23]:

 Al

Bl

 = Ml

 Al+1

Bl+1


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M =

 M11 M12

M21 M22

 =
N∏

l=0

Ml, (2.9)

where

Ml =
1

2

 (1 + Sl(E, ky)) exp[−i(kzl+1
(E, ky)− kzl

(E, ky))zl]

(1− Sl(E, ky)) exp[i(kzl+1
(E, ky) + kzl

(E, ky))zl]

(1− Sl(E, ky)) exp[−i(kzl+1
(E, ky) + kzl

(E, ky))zl]

(1 + Sl(E, ky)) exp[i(kzl+1
(E, ky)− kzl

(E, ky))zl]

 . (2.10)

Moreover, we calculate the tunneling transmission probability and the

spin polarized currents as following

T (E, ky) =
m0(E)

mN+1(E)

kzN+1(E, ky)

kz0(E, ky)
|AN+1|2, (2.11)

where

AN+1 =
mN+1(E)

m0(E)
+

kz0(E, ky)

kzN+1(E, ky)

1

M22

,

where M22 is a factor of the transfer matrix M in Eq. (2.9).

The total electron energy with the consideration of the spin-orbit inter-

action, E can be regarded as

E = Ec +
~2(k2

y + k2
z)

2m(E, z)
+ σ α

√
k2

y + k2
z , (2.12)

where σ = ±1 refers to spin polarization, α denotes the Bychkov-Rashba

spin-orbit interaction parameter, and we set the bottom of the conduction

band as a reference, 0 eV . Next, we calculate spin polarized currents as

follows:[13] the total current is

J = J+ + J−,
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Jσ =
e

2π2

∫ ∞

0

dkz

∫ ∞

0

dky T (E, ky)[fsource(ky ,kz)−fdrain(ky ,kz)]uzσ , (2.13)

where e is an absolute value of an electron charge. fsource and fdrain are the

electron distribution functions represented as following

fsource(ky, kz) =
1

exp(E−EF

kBT
) + 1

,

fdrain(ky, kz) =
1

exp(E−EF−∆V
kBT

) + 1
.

fsource(ky, kz) and fdrain(ky, kz) are presented by Fermi-Dirac distribution.

EF denotes the Fermi energy and could be controlled by the doping concen-

tration nF , ∆V is the voltage drop between the source and drain controlled

by the external electric field Fz, and uzσ is the longitudinal velocity depending

on the spin-orbit orientations[7] in the source and can be written as

uzσ =
1

~
∂E

∂kz

. (2.14)

Finally, the polarization is defined as

P =
J+ − J−
J+ + J−

. (2.15)
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Figure 2.1: The barrier with an external electric field adding is 200 nm long.

∆V is the voltage drop.
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Chapter 3

Results and discussions

The tunneling transmission probability is a function of electron energy and

in-plane wave vector ky, and shown in Figs. (3.1, 3.2 and 3.3) calculated

by Eq. (2.11). Here we suppose Ec = 0 eV , and the other parameters are

obtained from Refs.19: Eg = 0.42 eV , ∆ = 0.38 eV , m = 0.023m0 (m0 is

a free electron mass.). Based on the above results, we could demonstrate

that the double potential barrier could be regarded as a bowl shape resonant

quantum well. Therefore every peak could be interpreted as a quantum state,

and the in-plane wave vector, ky, is just to lift up the energy level. From our

assumption, we could get equations as follows:

~2(k2
z + k2

y0
)

2m∗ = E10

~2(k2
z + k2

y1
)

2m∗ = E11

~2(k2
z + k2

y2
)

2m∗ = E12 . (3.1)

There we assign ky0 = 0 m−1, ky1 = 0.5 × 108 m−1, ky2 = 1 × 108 m−1,

E10 = 0.0034eV , E11 = 0.0075eV , andE12 = 0.0198eV according to Figs.(3.1,

3.2 and 3.3), so we solve any two equations among Eq. (3.1) and get roughly
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m∗ = 0.023m0 and kz1 = 4.55× 107m−1. With a microscopic point of view,

the effective mass is energy and space dependent, but we could suppose an

equivalent mass in the tunneling process with a macroscopic point of view and

get discrete longitudinal wave vectors, kz. As a result, only certain electrons

which match the energy levels with longitudinal energy could tunnel through

the potential barrier no matter the in-plane wave vector, ky. In addition, in

the presence of spin-orbit interaction originating from the structure inversion

asymmetry controlled by the double gates electrons with opposite spin orbit

orientation will be in different energies because of non-parabolic dispersion

relation, and that is the reason why there exists spin polarized currents. And

the spin polarization is not meaningless because of the difference between

these two currents(J+,J−) in Eq. (2.13). Moreover, we will demonstrate what

have influences on the spin polarization in Figs. (3.4, 3.5 and 3.6). From

the above results, it can be clarified that spin polarization is linear with the

external electric field Fz and the Rashba spin-orbit interaction parameter α

shown in Eqs. (2.13) and (2.15). In addition we can get different straight lines

with setting different Fermi levels in Fig. 3.4 and the lower Fermi level the

higher polarization. As we can see, the quantum effect is more apparent in the

low energy region. Moreover, the difference between these two lines(nF1,nF2)

is proportional to α. Furthermore, in Fig. 3.5 we show the relation between

polarization and the external electric field Fz based on different spin-orbit

interaction parameters, α. Here we can see spin polarization appears with the

external electric field Fz adding. That’s because there are three energy states

lower than the Fermi level. And even a little electric field is added, there

are empty states under the Fermi level EF in the drain, so some electrons

whose longitudinal energies match these three levels will tunnel the barrier

immediately, and then spin polarization appears because of the difference
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between the different spin polarized currents. In Fig. 3.5, we demonstrate

that spin polarization only survive in the low temperature region because a

quantum effect is disappeared at high temperatures.

The I-V curve is shown in Fig. 3.7. The current is nearly linear with

the external electric field, Fz in the low bias region. Then the first energy

state E1 is disappeared at bias point A because the first energy state con-

tinues lowering as the electric field raising. When the first energy state is

lower than the lowest energy of the electron in the source, the state will be

disappeared. The second energy state E2 is disappeared at bias B, but the

forth state appears at the same time. Consequently, which state appears or

not is controlled by the external electric field. That’s to say in principle we

can control any states we desire in the allowable region with the well defined

doping concentration and the external field. Then every energy state under

different various bias points are shown in Table 3.1.

Furthermore, we present the next work based on the above idea. If we

consider spin-orbit interaction in the source and drain, electrons with op-

posite spin-orbit orientations will be in different energies. And the lowest

longitudinal energy for opposite spin polarized electrons which could tunnel

the barrier are E± = ~2k2
z

2m
± αkz, where kz is a discrete longitudinal wave

vector parallel to the z axis because of the double barrier on the way to the

drain. So, we could control Fermi level and makes

E− < EF < E+. (3.2)

Consequently, spin ”up” electrons’ energies will be never lower than Fermi

level and only spin ”down” electrons have possibility to tunnel through the

barrier. Here we need to shorten the length between the double gates to 40

nm, then the first energy state will be lifted up because (En+1 −En) ∝ 1/d2

18



Table 3.1: Energy states depend on various bias points with zero in-plane

wave vector.

Fz(V/m) E1(eV ) E2(eV ) E3(eV ) E4(eV )

0 0.0033 0.0094 0.0179 0.0304

6867 0.0027 0.0087 0.0173 0.0297

13734 0.0019 0.008 0.0167 0.0291

20601 0.0012 0.0074 0.0165 0.0284

24721 0.0007 0.007 0.0156 0.02795

27468(A) X 0.0067 0.0154 0.0263

41202 X 0.0065 0.0152 0.0251

54936 X 0.0042 0.0128 0.0238

75537 X 0.0024 0.0112 0.023

96138 X 0.0006 0.0092 0.0202

109872(B) X X 0.008 0.0195

123606 X X 0.0068 0.018
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where d is the distance between the centers of these two gates. And the

barrier with bias is shown in Fig. 3.8. The energy level is more reasonable for

us to set up the doping concentration. Then the new tunneling transmission

probability is shown in Fig. 3.9 based on Eq. (2.11). Consequently, we set

up Fermi energy 0.0164eV , and we get 100% spin polarization shown in Figs.

(3.10 and 3.11) based on Eqs. (2.13) and (2.15). One is the relation between

spin polarization and temperature, and the other is the relation between the

external field and spin polarization. These two plots are both based on the

same doping concentration, nF = 1.72 × 1011cm−2, and Rashba spin-orbit

interaction parameter, α = 1.5× 10−11 eV ·m. The fist one shows that 100%

polarization remains in a very low temperature region and very sensitive

to the temperature. The second one shows that 100% remains only in a

low bias region because the discrete wave vector kz will be lowering as the

external electric field increasing. When E+ is lower than EF the spin ”up”

current appears in Eq. (2.13) and we would lose 100% spin polarization.

Furthermore, the I-V curve at zero temperature is shown in Fig. 3.12,and

this is only for a spin down current.

Then, we consider the condition about the mismatch of the double gates

in advanced. If the barrier is like Fig. 3.13, the tunneling transmission

probability in Eq. (2.11) is shown in Fig. 3.14, but the energy states still

survive. So, we could calculate the transmission probability, spin polarized

currents, and spin polarization in the same way (Eqs. (2.11), (2.13) and

(2.15)) and get a recognizable magnitude about 20%. That’s to say we can

calculate arbitrary shape of potential barrier in principle.

20



Figure 3.1: Tunneling transmission probability based on logarithm scale

varies with energy. (ky = 0 m−1)
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Figure 3.2: Tunneling transmission probability based on logarithm scale is

energy dependent. (ky = 0.5× 108 m−1)
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Figure 3.3: Tunneling transmission probability based on logarithm scale de-

pends on electron energy. (ky = 1× 108 m−1) .
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Figure 3.4: Spin polarization depends on spin-orbit interaction parameter

linearly at zero temperature and voltage drop(0.00137 V ) based on the two

doping concentrations. (nF1 = 1.93× 1011 cm−2, nF2 = 2.42× 1011cm−2)
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Figure 3.5: Spin polarization is a function of the external electric

field, Fz ,under three different spin-orbit interaction parameters.(nF = 1.93×

1011cm−2, T = 0 K)
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Figure 3.6: Spin polarization depends on temperature based on three different

bias values.(nF = 1.72× 1011 cm−2, α = 1.5× 10−11 eV ·m)
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Figure 3.7: J+ represents spin-up current, and J− represents spin-down cur-

rent. And the bias points(A and B) mean the different energy states appear

or disappear.(nF = 1.93× 1011 cm−2,α = 1.5× 10−11 eV ·m,T = 0 K)
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Figure 3.8: The distance between the centers of the double gates is shorten

to 40 nm, and ∆V represents the voltage drop.
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Figure 3.9: The first energy state in the short barrier have been lifted up to

0.018eV.
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Figure 3.10: Spin polarization remains 100% in a low temperature region

and decays fast as the temperature increasing.(nF = 1.72 × 1011cm−2, α =

1.5× 10−11 eV ·m)
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Figure 3.11: 100% polarization remains in a short bias region.( nF = 1.72×

1011cm−2,α = 1.5× 10−11 eV ·m,T = 0 K)
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Figure 3.12: The current is only for a spin-down current and nearly

linear with the external electric field in the low bias region at zero

temperature.(nF = 1.72× 1011 cm−2,α = 1.5× 10−11 eV ·m)
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Figure 3.13: The two barriers induced by the mismatch gates along the z

axis have different heights(0.1V and 0.2V) and half width(17nm, 9nm).
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Figure 3.14: The tunneling transmission probability based on logarithm scale

is calculated from the asymmetric barrier, and there are still energy states

here.
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Chapter 4

Conclusions

Research and applications of spin-dependent transport in semiconductor of-

ten require spin-polarized electronic current.[18] From this perspective, and

active search for new opportunities to obtain spin-polarized current in quan-

tum semiconductor structure is essential. An approach to control the spin-

dependent transport in the structures without magnetic field can be a po-

tential advantage and it is worth investigating.

From the work shown in chapter 3, we obtain some details in this gate

control potential barrier system. Firstly, the multi-step approximation is fea-

sible to the calculation of this system regardless of the shape of the potential

barrier. Then, an electron could penetrate the barrier with a low energy only

when the longitudinal energy matches the energy level of the quantum well

along the z direction. Rashba term is a key point to the spin polarization

especially in this system. And we also get a recognizable magnitude of spin

polarization up to 20%. Moreover, with a good control in the doping concen-

tration and the distance between the double gates, we could get 100% spin

polarization. It might paves a way for future spin electronic filter. As for the

I-V curve, we explain every bias point on the plot. And this idea makes the
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spin filer come true.

Moreover, we ensure that this gate control potential system is another

way to get a large spin polarization without magnetic field except for the

discontinuous parameters for the confined potential in the hetrostructures.

Finally, we want to point out that the calculation presented uses a sim-

ple model of a simple effective quasi-one dimensional one-electronic-band

Hamiltonian and non-parabolic approximation. The structures have realistic

parameters, but the proposed estimate of the total polarized current is only a

starting point for the investigations of this new effect. Further experimental

investigations of the effect are really needed.
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