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奈米尺寸金氧半場效電晶體通道背向散射: 

蒙地卡羅模擬與物理模型 

 研究生：呂立方       指導教授：陳明哲博士 

 

國立交通大學 

電子工程學系電子研究所 

 

摘 要 

  藉由散射矩陣的方法，可以推導出背向散射係數，再利用蒙地卡

羅模擬証明。組成背向散射係數的兩個重要的參數─ 0λ 和 ─也在論

文中有進一步地討論； 的物理解析式模型建立在源極到通道上假設

的拋物線能障上，也藉由實驗以及蒙地卡羅模擬得到驗證。藉由蒙地

卡羅模擬得到在入射處的速度分佈推斷平均自由路徑的縮短源自於

載子熱效應，然而在拋物線能障的情況下因為沒有熱載子效應，使得

平均自由路徑維持定值。 
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Nanoscale MOSFETs Channel Backscattering:  

Monte Carlo Simulation and Physical Model 

 

Student：Li-Fang Lu       Advisor：Prof. Ming-Jer Chen 

 

Department of Electronics Engineering 

Institute of Electronics 

National Chiao Tung University 

 

Abstract 

  Through the scattering matrix approach, the backscattering 

coefficient is derived and it is verified by Monte Carlo simulations. Two 

important parameters, 0λ  and , constituting the channel backscattering 

have been taken into account. A parabolic barrier oriented compact model 

has been physically derived for . The validity of this compact model 

has been corroborated experimentally and by Monte Carlo simulation 

results. As for 0λ , the carrier heating as the origin of reduced 

mean-free-path is inferred on the basis of the simulated carrier velocity 

distribution at the injection point. Strikingly, for the parabolic potential 

case, the mean-free-paths remain consistent: λ’ = λo. This indicates the 

absence or weakening of the carrier heating in the layer of interest, valid 

only for a parabolic potential barrier 

 

 



 iii

致 謝 

 感謝陳明哲教授，在這兩年的教導之下，充分地感受與學習到老師對做學問

的嚴謹態度，再加上跟老師不時的討論並指點我正確的方向，讓我得在做研究的

路途上一步一步地順利完成每一個階段的任務。在此我要由衷地向老師表達我的

感謝之意。 

 非常感謝博士班學長們給的許多指導和意見，謝振宇學長給予的專業方面的

指點，李建志學長在體育方面的競技，許智育、李韋漢學長在休閒、課業方面的

討論，以及實驗室碩二的同伴們的互相鼓勵。 

  這幾段話是沒辦法一一謝過所有關心我的人，故以此感言獻給每一位關心我

的人，感謝你們，謝謝！ 

                        呂立方 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv

Contents 

 

Abstract (Chinese) ....................................................................................................... i 

Abstract(English) ........................................................................................................ ii 

Acknowledgement .....................................................................................................iii 

Contents........................................................................................................................ iv 

List of Captions ..........................................................................................................vi 

 

Chapter 1 Introduction.........................................................................1 

 

Chapter 2 Backscattering Coefficient and Monte Carlo 

Simulation .................................................................................................4 

2.1 Backscattering Coefficient rc ...........................................................4 

2.2 Monte Carlo Simulation...................................................................5 

   2.2.1 Monte Carlo Simulation..........................................................6 

   2.2.2 Determination of rc .................................................................6 

   2.2.3 Mean-Free-Path for Backscattering........................................7 

2.3 Results and Verification ...................................................................8 

 

Chapter 3 A Parabolic Barrier Oriented Compact Model for 

the kBT Layer’s Width ........................................................................10 

3.1 Discrepancy in Temperature Dependency.....................................10 

3.2 Parabolic Barrier Profile ................................................................ 11 



 v

   3.2.1 Temperature Effect................................................................12 

   3.2.2 Gate Voltage Effect ...............................................................13 

   3.2.3 Drain Voltage Effect..............................................................13 

   3.2.4 Combination of Temperature and Bias Effects.....................14 

3.3 Model Verification.........................................................................14 

   3.3.1 Experimental Validation........................................................15 

   3.3.2 Simulation Validation............................................................15 

3.4 Temperature Power Exponent Clarification ..................................16 

3.5 Results ............................................................................................17 

 

Chapter 4 Re-examination of Mean-Free-Path for 

Backscattering .......................................................................................18 

4.1 Apparent Mean-Free-Path..............................................................18 

   4.1.1 Mean-Free-Path Extraction in Linear Potential....................19 

   4.1.2 Mean-Free-Path Extraction in Parabolic Potential ...............19 

4.2 Evidence for Carrier Heating.........................................................20 

   4.2.1 Velocity Distribution at the Injection Point ..........................21 

   4.2.2 Flux Ratio at the End of kBT Layer ......................................21 

4.3 Results ............................................................................................22 

 

Chapter 5 Conclusion..........................................................................23 

References ...............................................................................................24 

 

 



 vi

List of Captions 

Table. 3.1 The corresponding key parameters extracted from open 

literature simulation data, including channel length, Vtho, DIBL, 

VG, VD, and temperature……………...…….………………...…28 

 

Fig. 1.1 Schematic diagram of channel backscattering theory. F is the 

incident flux from the source, l  is the critical length over which 

a kBT/q drop is developed,  rC is the channel backscattering 

coefficient, and L is the conductor length………………………29 

 

Fig. 2.1 Schematic diagram of a simulation picture. There are source side 

contact on the left and drain side on the right. The conductor 

length is L. Carriers are injected from the left contact with the 

Hemi-Maxwellian Distribution…………………………………30 

 

Fig. 2.2 Schematic diagram of two kinds of potential profile we adopted 

in the simulations. linearl  and parabolicl  are the kBT/q layer 

width for linear potential and parabolic potential, respectively. Va 

is the applied voltage…..……………………………………..…31 

 

Fig. 2.3 Velocity distribution at the top of the barrier, x=0 for L=100 nm , 

T=300 K and Va = 0.6V in linear potential profile. The underlying 

rC is equal to the area ratio of deep grey one to light grey 

one.……………………………………………………...............32 

 



 vii

Fig. 2.4 Extracted mean-free-path for backscattering under near - 

equilibrium long channel conditions. The bar represents the range 

of simulated rc values…….....………………………………..…33 

 

Fig. 2.5 Simulated rC (symbols) and calculation from (10) (dotted lines) 

under linear potential profile………….………………...………34 

 

Fig. 2.6 Simulated rC (symbols) and calculation from (10) (dotted lines) 

under parabolic potential profile………………………………..35 

 

Fig. 3.1 Schematic diagram of a parabolic potential profile near the 

source. l represents the kBT/q layer width. L%  represents the 

imaginary channel length corresponding to a certain position 

where the parabolic potential drop from the top of the barrier is 

equal to VD………………………………………………………36 

 

Fig. 3.2 Comparison of calculation from (23) and experimental l  

versus VG. Data are created from 55-nm bulk n-MOSFETs by 

means of a parameter extraction process. VD=0.5 V and 1.0 V…37 

 

Fig. 3.3 Comparison of calculation from (22) and experimental L%  versus 

VG. Here L%  is obtained directly from (23) with known T and VD. 

These two figures are for VD=0.5 V and 1.0 V……...….….........38 

 

Fig. 3.4 Scatter plot of experimental and simulated l  versus the 



 viii

quantity of the functional expression 
1 1 1

0.25 2 2 2( ) ( / ) ( / )D G th B B DLV V V k T q k T qV
−

− . The slope of the line furnishes 

η  with a value of 4.1V-0.25…..………………………….………39 

 

Fig. 4.1 The underlying 'λ  extracted through (25) with simulated rC as 

input in linear potential profile…..…………………………...…40 

 

Fig. 4.2 Carrier velocity distribution at the injection point, x=0, for L=25 

nm at Va=0.8 V and T=300 K in linear and parabolic potential 

profile………………..………………………….………………41 

 

Fig. 4.3 Carrier velocity distribution at the injection point, x=0, for L=50 

nm at Va=1.0 V and T=150 K in linear and parabolic potential 

profile………………..………………………….………………42 

 

Fig. 4.4 Velocity distribution at the top of the barrier, x =  for L=50 

nm, T=200 K and Va = 0.2V in linear potential profile. The 

underlying ( ) / ( )b a  is equal to the area ratio of deep grey one 

to light grey one….……………………………………...............43 

 

Fig. 4.5 Ratio of the negatively-directed flux ( )b  to the positively - 

directed flux ( )a  for the linear potential case. The dotted lines 

are straightforwardly calculated by substituting (10) into (26) 

while accounting for the conservation of the current. The symbols 



 ix

represent simulation results……………………….....................44 

 



 1

 

Chapter 1 

Introduction 

 

 The scaling down of silicon MOSFETs has promisingly moved from 180nm to 

65nm node in the past decade. The ITRS also predicts that this scaling trend will 

reach 22nm technology node in the coming decade. This amazing evolution of silicon 

technology leads to challenges about how carriers transport in nanoscale devices, 

specially the losing efficiency of some classical-based carrier transport models such 

as drift-diffusion transport model. In the beginning of this promising decade, another 

aspect of carrier transport theory, named “Backscattering Theory”, was proposed by 

Mark Lundstrom [1]-[2]. This theory is different from drift-diffusion based model. 

Instead, current-voltage (I-V) characteristics are expressed in terms of the elementary 

parameters without depending on the carrier mobility. These parameters, such as 

carrier injection velocity and inversion carrier density at the virtual source, control the 

device performance. In other words, device performance can no longer be considered 

only by the channel itself. 

 In the Backscattering theory, we distinguish the carrier transport in the channel 

as a wave-like flux traveling from source to drain. According to the theory, the key 

region controls the flux ratio passing through the channel named l , which is the 

distance over which the channel potential drops by Bk T
q

(kB is the Boltzmann’s 

constant and T is the temperature). Multiple backscattering events occur in this critical 

zone. Thus, a certain fraction rc of the injecting flux F is reflected and returns to the 

source, and the remaining flux (1-rc)F transmits to the drain. Figure 1-1 demonstrates 
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scattering events and returning flux schematically. Backscattering theory relates the 

steady-state current to transmission and reflection coefficients. Consequently, the 

drain current per unit channel width, which is critically determined by l , can be 

expressed as  

(1 )
(1 )

c
D inv inj

c

rI Q v
r

−
=

+
             (1) 

where Qinv is the inversion-layer charge density per unit area at the top of the virtual 

source, vinj is the thermal injection velocity at the top of the virtual source, and rc is 

the channel backscattering coefficient through this critical layer. Backscattering 

theory also relates to both the near-equilibrium mean-free-path 0λ  (or called 

momentum relaxation length) and the critical length of the kBT layer: 

0
cr λ
=

+
l

l
              (2) 

Eq.(2) is valid only for drain voltage much larger than kBT/q. Here, rc can be 

extracted experimentally by current-voltage (I-V) fitting [3] or by a temperature 

dependent method [4]. The temperature dependencies of the kBT layer’s width also 

are clarified by methods of temperature oriented experiment and simulation [5]. 

However, these two important parameters in (2) must be discussed more clearly. First, 

expression of l  used in the open lecture is in lack of gate voltage effect, and, we 

usually assume l  as a function of lattice temperature, channel length and applied 

voltage (VD). Besides, the temperature dependent power order of l  range from 0.5 

to 1 [3]-[8]. Second, the usage of 0λ , called near-equilibrium mean-free-path for 

backscattering, must be clarified. 

 In this thesis, we present a new compact model for l on the basis of a parabolic 

potential barrier profile assumption around the source-channel junction. This compact 

model is physically derived and can elucidate the effects of channel length, gate 
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overdrive, drain voltage and the temperature on l . Additionally, 1-D Monte Carlo 

particle simulation [13] is performed to explore the backscattering coefficient rc, 

which is related to the mean-free-path 0λ . Evidence about carrier heating can be 

found accordingly. 

 This thesis is organized as follows. In Chapter 2, we derive the backscattering 

coefficient through scattering matrix approach and Monte Carlo simulations are 

executed to verify the validity of the derivation. In Chapter 3, a parabolic barrier 

oriented compact model is physically derived and verified by experimental data and 

simulation results. In Chapter 4, another important parameter 0λ  is discussed. 

Finally, a conclusion of the work will be drawn in Chapter 5. 
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Chapter 2 

Backscattering Coefficient  

and Monte Carlo Simulation 

 

In this chapter, the origin of the backscattering coefficient rc, under both low 

applied voltage (Va <<kBT/q) and high applied voltage (Va >> kBT/q) conditions, is 

derived using the scattering matrix approach [9]. Then, we will employ the existing 

particle-based Monte Carlo simulator to deal with the velocity distributions that are 

relevant to the desired backscattering coefficient rc.  

 

Section 2.1 Backscattering Coefficient 

 The underlying carrier transport from the top of the source-channel barrier, or 

called the virtual source, down to the drain contact can be treated using the scattering 

matrix approach [9]. However, there are some assumptions that must be introduced. 

First, we assume that the flux is only emitted from the virtual source; in other words, 

there is no flux emitted from the drain contact. Second, we assume that the flux 

traveling from the top of the virtual source down the potential drop is not affected by 

the electric field. Third, we assume steady-state conditions, which means 

right-directed flux a(x) and left-directed flux b(x) are position dependent, while being 

independent of time. The recombination-generation processes are also neglected. 

Under these assumptions, the change of the positive-directed flux a and 

negative-directed flux b due to the backscattering event over the dx path interval at 

the position x can be described as 
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0 0

1( )
B

db a qb
dx k T

ε
λ λ

= − + + l              (8) 

where ε l  is the electric field and 0λ  is the mean-free-path for backscattering. We 

know that the net flux a – b, as a result of the flux conservation through all sections, 

has to be kept constant. To solve (8) in the zone of interest where: Bk T
q

ε ≈l
l

[1], we 

have 

0

0 0

1 exp( ) 1(0) (0) ( )
1 exp( ) (1 )exp( )

x

b a b xx xλ
λ λ

− −
= +

+ − − + −

l
l l

l l l

       (9) 

From the second assumption, we can know that the left-directed flux b at the drain 

contact is equal to zero, b(L)=0. Thus, the complete expression of the rc can be 

written as 

0

1 exp( / )

1 exp( / )
c

Lr
Lλ

− −
=

+ − −

l

l
l

              (10) 

Apparently, for applied voltage Va >> kBT/q, also L>> l , (10) reduces to (2). For Va 

<<kBT/q or L<< l , opposite to the former case, (10) reduces to the near-equilibrium 

case prevailing over the entire channel [11] 

0
c

Lr
L λ

=
+

                      (11) 

In the citation [1], reproduction of the simulation results in the transition region 

between the low and high field limits can be conducted via the product of (11) and (2), 

and is some what empirical. Here, (10) can be readily used for not only high Va and 

low bias but also the transition region. In the citation [10], the same expression is 

solved from the Boltzmann transport equation in the framework of a “relaxation 

length” approximation. 
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Section 2.2 Monte Carlo Simulation 

 In order to verify (10), we adopt the Monte Carlo simulation. This particle-based 

Monte Carlo technique is recognized as a powerful method for accurately describing 

the carrier transport in semiconductor materials and devices within the semi-classical 

approximation. Here, we use Monte Carlo simulation program to solve the 

complicated scattering events in a silicon bulk conductor. This program named 

Demons [13] can provide the rich information regarding the carrier velocity 

distributions at any positions in the conductor. Furthermore, the positively-directed 

flux and the negatively-directed flux can be separately determined, which means the 

flux ratio at any position can be easily obtained. 

 

Section 2.2.1 Simulation Methodology 

Before performing Monte Carlo simulation, some assumptions and boundary 

conditions must be clarified: (i) carriers are only injected one by one at the origin x=0 

in the steady state from the left contact and are of hemi-Maxwellian distribution; (ii) 

termination condition: at the origin x=0, left contact absorbs backscattered carriers 

without further reflections, and at the end of the conductor, x=L, the 

positively-directed carriers are absorbed; (iii) the potential profile in the conductor is 

not self-consistent but frozen, just like other group adopted [10],[12]; and (iv) the 

conductor is divided into 100 grids, as shown in Fig.2-1, to analyze the 

positive-directed flux and negatively-directed flux in each grid. Figure 2-1 

schematically depicts this simulation picture. 

 In this work, we perform Monte Carlo simulation at three different lattice 

temperatures, (150, 200 and 300 K), four different conductor lengths, (15, 25, 50 and 

100 nm). Moreover, these simulations are executed in two potential profile cases: 

linear and parabolic potential, which are displayed in Fig.2-2. In our group previous 

work [5], linear potential profile case has been performed on 80-nm silicon conductor 
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of 1012 cm-3 doping to examine the temperature dependencies of the width spanned by 

. However, parabolic potential case is the significant augmentation. It has been 

experimentally shown to be a good approximation to build near –source channel 

conduction-band profile of MOSFET in saturation [7]. Besides, by using the basis of 

parabolic potential profile around the source-channel junction barrier of nanoscale 

MOSFETs, a compact new model of kBT-layer width is physically derived [14]. We 

will discuss this compact model in the subsequent chapter.  

 

Section 2.2.2 Determination of rc 

 From the definition of backscattering coefficient, we have 

C
( )
( )

flux n vr
flux n v

− −

+ +

−
= =

+
             (12) 

where 

0

0

0

0

( )
   

( )

( )
    

( )

f v vdv

f v dvv
v f v vdv

f v dv

−∞

−
−∞
∞+

∞

=

∫
∫
∫
∫

,  

and  

0

0

( )
  

( )

f v dvn
n f v dv

−
−∞
∞+ =
∫
∫

. 

n±  is the electron density for positively-directed / negatively-directed flux on the top 

of the barrier, and v±  is the average velocity for positively-directed and 

negatively-directed flux on the top of the barrier. Figure 2-3 shows the simulated 

velocity distribution of conductor length 100 nm with 1012 cm-3 doping, 300K 

temperature and 0.6 V applied voltage in linear potential case at the x=0. Here, the 

backscattering coefficient rc is just equal to the area ratio of deep gray one to light 

gray one. Likewise, we can see that the injected carriers still retains hemi-Maxwellian 

distribution but is split into two distinct components: one of the longitudinal effective 
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mass and one of the transverse effective mass. 

 

Section 2.2.3 Mean-Free-Path for Backscattering 

 If we want to use (10) to evaluate the simulation rc data, we need  information 

for two important parameters: mean-free-path for backscattering 0λ  and 

corresponding kBT-layer’s width . However, according to the backscattering 

framework [1-2],  can be explicitly expressed as a function of the thermal energy 

kBT, the conductor length L, and the applied voltage Va. For this reason, we have 

B

a

k TL
qV

=  for the linear potential profile and B

a

k TL
qV

=  for the parabolic one. 

 Since the kBT-layer’s width is clearly defined, in order for calculations from (10) 

to have good agreement with simulated rc, mean-free-path for backscattering 0λ  

should be obtained accurately. We can extract 0λ  via (11) on the longest conductor 

(L = 100 nm) in the low electric filed, Va <<kBT/q, that is to say, L>> l . Figure 2-4 

shows the extracted results for three different temperatures of 150, 200 and 300 K. In 

the figure, the bar represents the range of simulated rc values. The average rc of a 

linear potential profile is close to that of the parabolic one, which indicates 0λ  is 

essentially independent of the potential profile we adopted in the low field regime. 

The average rc over these two potential profiles leads to the average 0λ  of 56, 105, 

and 155 nm for 300, 200 and 150 K, respectively. The extracted average value of 0λ  

at 300 K is identical to that of our group previous work [5]. 

 

Section 2.3 Result and Verification 
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 Since the mean-free-path for backscattering is extracted via (11) in the low 

electric field or near-equilibrium condition. The corresponding  is B

a

k TL
qV

=  for 

the linear potential profile and B

a

k TL
qV

=  for the parabolic one. Figure 2-5 and 2-6 

show the simulated rc in symbols and (10) in dotted lines. Comparison between linear 

potential profile and parabolic one, it is easy to find out that there is discrepancy in 

the linear potential profile between calculations and simulation values. This deviation 

increases with decreasing conductor length and decreasing lattice temperature. 

However, Figure 2-6 shows good agreement between the simulated rc and that of (10). 

In order to discuss this discrepancy, we have to investigate two important parameters, 

 and 0λ , in (10). First, according to the open literature [1-2], when Va is much 

larger than kBT/q, the definitions of the kBT-layer’s width in both potential profiles 

have been defined. Second, the other parameter 0λ  is called near-equilibrium 

mean-free-path for backscattering. We extracted 0λ  via (11) in the low electric field 

or near-equilibrium condition, and it is the only mean-free-path used for all operating 

conditions. In [10], the similar expression of (10) is also derived via Boltzmann 

transport equation in the framework of a “relaxation length” approximation, and 

within that approximation, mean-free-path 0λ  must be independent of carrier energy. 

In other words, 0λ  has to be constant no matter how large the applied voltage is. 

However, Monte Carlo simulation results at room temperature in linear potential 

profile show that 0λ  should change. Certain relationship, 0' /λ λ γ=  with γ =1.5 to 

2.0, is discovered [15]. We will discuss this issue later. 
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Chapter 3 

A Parabolic Barrier Oriented Compact Model  

for the kBT Layer’s Width 

 

 The channel backscattering theory [1-2] establishes a connection between the 

kBT-layer’s width, which locates in the beginning of the conductive channel near the 

source, and the drive performance of the device. However, the ability to quantitatively 

determine the width of this critical zone is necessary. We have discussed the 

backscattering coefficient through scattering matrix approach and performed Monte 

Carlo simulation in Chapter 2. Although l  can be explicitly expressed as a function 

of the conductor length L, the thermal energy kBT, and the applied voltage Va, this 

expression can not elucidate the effect of gate voltage on l . Moreover, the influence 

of temperature on l  should be discussed more clearly. In this chapter, a parabolic 

potential barrier oriented compact model for kBT-layer’s width in nano-MOSFETs is 

derived, and will be verified by experiment and simulation. 

 

Section 3.1 Discrepancy in Temperature Dependency 

Mostly adopted model of l  can be quoted in the literature [6],  

( )B

a

k TL
qV

α=l                      (13) 

where l  is the kBT-layer’s width and L is the conductor channel length. In the 

previous chapter, we can easily define l  in both linear and parabolic potential 

profile with 1α =  and 0.5α = , respectively. However, some division among the 

magnitude of the temperature exponent α  should be clarified. In the first place, the 

I-V characteristics of a simulation double-gate MOSFET at room temperature can be 
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best fitted by 0.57α =  [6]. In addition, comparable 0.5α =  has been produced on 

experimental bulk n-MOSFETs in a temperature range of 233 to 298 K [5], [7]. 

Besides, 0.75α = , which covers the same range as the former case, has been 

experimentally determined [3]. Still, 1α =  has already been adopted in a 

temperature dependent backscattering coefficient extraction method [4]. Another open 

literature [8] also shows that l  is approximately proportional to the temperature 

form 100 to 500 K, which means 1α = . Apparently, the issue of widely-ranged α  

values must be addressed. Furthermore, it is difficult for (13) to elucidate the 

effect of gate voltage. We will make a simple approach by assuming a parabolic 

potential near the source-channel junction. Then a compact model with the 

channel, gate overdrive, drain voltage, and temperature as input parameters will 

be physically derived. 

 

Section 3.2 Parabolic Barrier Profile  

 A parabolic potential profile close to the source is schematically plotted in Figure 

3-1. This potential profile that extends to the remaining channel can be described as 

2( ) ( / )DV x V x L= %              (14) 

The origin x=0 is the peak of the barrier. L%  indicates the imaginary channel length 

corresponding to a certain position where the parabolic potential drop from the top of 

the barrier is equal to DV . At the other side, we neglect the barrier height with respect 

to the source side because of the large drain voltage. Then, by substituting x = l   

and ( ) /BV x k T q=  into (14), which means a local potential drop being equal to 

thermal energy, the l  expressed in terms of imaginary L% , applied voltage DV , and 

thermal energy Bk T  can be obtained: 
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1
2( )B

D

k TL
qV

= %l                     (15) 

Obviously, once L%  can be expressed as a function of channel length, gate voltage, 

drain voltage and temperature, the expression of l  in terms of these parameters can 

be obtained. 

There exists a set of specific drain voltage 0DV  and gate voltage 0GV , at a given 

temperature 0T , which can ensure L L=% : 

0 0 0( , , )D D G GL T T V V V V L= = = =%                 (16) 

That is to say, this imaginary L%  just locates on the real channel length. Then, we 

will discuss each component in later sections. 

 

Section 3.2.1 Temperature Effect 

 First of all, the thermal energy layer width, corresponding to L L→% , 0T T→ , 

and 0D DV V→ , is denoted as 0l . 0l  can be expressed as 

1
0 2

0 ( )B

Do

k TL
qV

=l                           (17) 

Then only the temperature changes individually from 0T  to T . By dividing (15) by 

(17), a power-law relation can be found: 

 
1
2

0( / )L L T T=%                           (18) 

Here, we have assumed that the potential profile does not change with temperature. In 

other words, the local electric field from the peak of the barrier to the end of kBT-layer 

is approximately the same in these two temperatures. According to the backscattering 
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theory [1], the local electric fields across this section are equal to 0 0/Bk T ql  and 

/Bk T ql at 0T  and T , respectively. 

 

Section 3.2.2 Gate Voltage Effect 

 Once the potential profile is assumed, we can easily differentiate (14) twice with 

respect to position x, which leads to  

2

2 2

( ) 2 Dd V x V
dx L

=
%

                     (19) 

Under the same DV , and according to Poisson’s equation, (19) relates to the charge 

density. From [6], we can know that (19) also can be linearly related to the underlying 

inversion-layer density, which is proportional to the gate overdrive. It turns out that  

1
2

0( )
( )

G th

G th

V VL L
V V

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

%                       (20) 

Here, the term, 0( )G thV V−  represents the specific gate overdrive that ensures (16). 

 

Section 3.2.3 Drain Voltage Effect 

 The local electric field can be obtained by differentiating (14) once. Thus, if the 

drain voltage increases from 0DV  to DV , local electric field, 2

2 DV x
L%

, must be larger 

that 0
2

2 DV x
L

. If the local electric fields were equal, we could know that 

0.5
0( / )D DL L V V=% . Because 0D DV V> , the electric field is increased. Thus the power 

exponent must be no more than 0.5. As a result, one obtains 

0.25
0( / )D DL L V V ν ==%                           (21) 
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The power exponent ν , which is equal to 0.25, has been experimentally determined 

in the previous work of our group [7]. For 0D DV V< , the same expression as (21) can 

be obtained. 

 

Section 3.2.4 Combination of Temperature and Bias Effects 

 Through the combination of (18), (20), and (21), these power-law relationships 

establish a unique expression for L% : 

0.50.25

0.5( )
D B

G th

V k TL L
V V q

η ⎛ ⎞
= ⎜ ⎟− ⎝ ⎠

%             (22) 

Combining (15) and (22) can further lead to 

0.50.50.25

0.5( )
D B B

G th D

V k T k TL
V V q qV

η
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠
l           (23) 

where 
0.50.5

0 0
0.25

0

( )G th B

D

V V k T
V q

η
−

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
. Furthermore, η  is fixed and also the only 

fitting parameter in this expression. Indeed, it is supposed that η  is a constant value 

over the channel length, gate and drain voltage, and temperature. Thus, the capability 

of this parabolic potential barrier oriented compact model will be more general. 

 

Section 3.3 Model Verification 

On the one hand, the experimental l  in this section was obtained from 55-nm 

bulk n-MOSFETs by means of a parameter extraction process proposed by our group, 

and the details can be found in [3], [5], [7]. On the other hand, we quoted the rich 

literature [8],[19], in which Monte Carlo simulations including quantum corrections to 

the potential and calibrated scattering models are used to study carrier transport in 

bulk and double-gate silicon-on-insulator MOSFETs. Also cited are those of the open 
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literature [2], [6], [16], [17], [18]. 

 

Section 3.3.1 Experimental Validation 

Figure 3-2 shows the experimental l , which is obtained from 55-nm bulk 

n-MOSFETs with tox=1.65nm, Npoly=1x1020cm-3, and NA=7x1017 cm-3, versus gate 

voltage for two drain voltages of 0.5 and 1.0 V and three different temperatures of 233, 

263, and 298 K. With these experimental l  values, temperature T, and applied drain 

voltage VD, we can obtain the corresponding L~  using (15). These results are shown 

in Figure 3-3 for two drain voltages versus gate voltage. The corresponding 

near-equilibrium threshold voltage, denoted thoV  for 233, 263, and 298K are 0.360, 

0.345, and 0.328 V, respectively. The drain-induced barrier lowering (DIBL) 

magnitude for 233, 263, and 298K are 120, 123, and 130 mV/V, respectively. 

Throughout this work, the threshold voltage Vth at higher drain voltages is equal to 

tho DV DIBL V− × .  

 

Section 3.3.2 Simulation Validation 

First, in Ref. [8], the extracted l  at VD = VG = 1 V is available in a wide range 

of the channel length from 14 to 37 nm and also a wide range of the temperature from 

100 to 500 K. The underlying threshold voltage Vtho and DIBL are reasonably 0.3 V 

and 110 mV/V, respectively. Second, the citation [19] can further provide the relevant 

information at room temperature: l  from 2.0 to 7.0 nm, L from 14 to 65 nm, VD (= 

VG) from 1.0 to 1.2 V, and DIBL from 11 to 230mV/V. The above information is listed 

in Table 3-1. Moreover, we have also extracted l  from the published literature [6], 

[8], [16-18], on double-gate device simulation and l  can be extracted directly from 

the channel potential profiles. The corresponding key parameters are: (i) L = 10 nm, 

Vtho ≈ 0.33 V, DIBL ≈140 mV/V, VD = 0.6 V, VG = 0.6 V, and T = 300 K [2]; (ii) L = 20 
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nm, Vtho ≈ 0.33 V, DIBL ≈ 25 mV/V, VD = 0.2 V, VG = 0.55 V, and T = 300 K [6]; (iii) 

L = 25 nm, Vtho ≈ 0.3 V, DIBL ≈100 mV/V, VD = 0.8 V, VG = 0.5, 0.8, and 1.0 V, and T 

= 300 K [16]; (iv) L = 15 nm, Vtho ≈ 0.2 V, DIBL ≈120 mV/V, VD = 0.7 V, VG = 0.7 V, 

and T = 300 K [17]; and (v) L = 15 nm, Vtho ≈ 0.3 V, DIBL ≈ 77 mV/V, VD = 0.7 V, VG 

= 0.7 V, and T = 300 K [18]. The above key parameters are also listed in Table 3-1. 

With all these key parameters, a scatter plot can be created as shown in Figure 3-4 in 

terms of the experimental and simulated l  versus the quantity of the functional 

expression 0.25 -0.5 0.5 0.5
D G th B B DLV (V -V ) (k T/q) (k T/qV ) . Apparently, all data seem to 

fall on or around a straight line. The slope of this line furnishes η  with a value of  

0.254.1V − . Still, η  remains constant, regardless of the channel length, gate and drain 

voltage, and temperature. 

 

Section 3.4 Temperature Power Exponent Clarification 

Some remarks can now be made to clarify the confusing α  values in the open 

literature [3]-[8]. First of all, it is noticed that in case of bulk n-MOSFET two 

different values of α  were produced: one of 0.5 [5], [7] and one of 0.75 [3]. This 

difference can be attributed to the different subband treatments during the parameter 

extraction process: Schrödinger-Poisson equations are numerically solved in [5], [7] 

whereas in [3] this was done by a triangular potential approximation [20]. Therefore, 

different subband levels can lead to different average thermal injection velocities, 

which in turn give rise to different l  values.  Secondly, according to (22) a 

temperature range of 233 to 298 K in case of 55-nm bulk device [5], [7] is not large 

enough to affect the calculated L~ . In other words, L~  is considerably insensitive to 

such a narrow temperature range. Consequently, the resulting apparent temperature 

power exponent was limited to 0.5 as reported in the previous work [4], [5]. Indeed, 

with the known η as input, fairly good reproduction can be achieved as depicted in 

Figure 3-4, without adjusting any parameters. The same interpretations also apply to 



 17

the α ≈ 0.57 case [6]: since the room temperature of operation was involved alone, the 

temperature effect of L~  can no longer be examined. Only in a wide temperature 

range as done in the comprehensive study of [8], [19] can the linear relationship of 

T∝l  as shown in Figure 3-4 actually occur. Thus, from the aspect of temperature 

dependencies, excellent coincidence with the data as shown in Figure 3-4 stresses that 

the existing backscattering coefficient extraction method [4] is valid. 

 

Section 3.5 Results 

This new compact kBT-layer’s width model, which links the width of thermal 

energy kBT layer to the geometrical and bias parameters of the devices, is physically 

derived on the basis of a parabolic potential profile around the source-channel 

junction barrier of nanoscale-MOSFETs. Moreover, this proposed model is supported 

not only by experimental data, but also by various simulation works presented in the 

open literature. Only one fitting parameter remains constant in a wide range of 

channel length (10 to 65 nm), gate voltage (0.4 to 1.2 V), drain voltage (0.2 to 1.2 V), 

and temperature (100 to 500 K), which means that the capability of this compact 

model is universal. 
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Chapter 4 

Re-examination of Mean-Free-path for Backscattering  

 

 When applying (1) to nanoscale MOSFETs to predict relevant current-voltage 

characteristic, we need to quantify the key backscattering coefficient rc. However, 

there are two important parameters needed in rc calculation. We have discussed the l  

on the basis of a parabolic potential profile around the source-channel junction barrier 

and obtained a compact model of l  with the channel length, gate overdrive, drain 

voltage and temperature as input parameters. On the other hand, another parameter 

0λ  has not been discussed yet. In Section 2.2.3, we extracted this information under 

near-equilibrium low field condition. When comparing (10) to compare with Monte 

Carlo results, it seems to have some differences between calculated and simulated rc 

in the linear potential profile. In parabolic case, Figure 2-6 shows good agreement 

between calculation and simulation results. In this chapter, we will discuss the 

near-equilibrium mean-free-path for backscattering. 

 

Section 4.1 Apparent Mean-Free-Path 

At the end of Chapter 2, we pointed out that in the citation [12], the Monte 

Carlo simulations at room temperature in case of non-degenerate statistics on a 

linear channel potential profile have exhibited certain relationship: 0' /λ λ γ=  

with γ =1.5 to 2.0. Here 'λ  is the apparent mean-free-path that constitutes the 

following expression in the high field case: 

'cr λ
=

+
l

l
               (24) 
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Thus, some clarifications are demanded. 

 In order to achieve this goal, we perform Monte Carlo particle-based simulation 

on a silicon bulk conductor like what we have done in Chapter 2, but pay more 

attention on the velocity distribution on the top of the barrier and flux ration at the end 

of the kBT layer. 

 

Section 4.1.1 Mean-Free-Path Extraction in Linear Potential 

First of all, we extract the mean free path from the simulated rc using (25), 

instead of (10): 

1 exp( / )
' 1 exp( / )

c
Lr

Lλ
− −

=
+ − −

l

l
l

                            (25) 

We denote the apparent mean free path as 'λ . The validity of (25) has been 

proven in Chapter 2. By substituting the simulated rc into (25), the underlying 'λ  

can be obtained as depicted in Figure 4-1 versus applied voltage. From Figure 4-1, we 

can see that: (i) 'λ  falls below 0λ , and decreases with increasing applied voltage, 

leading to 0' /λ λ γ=  with γ = 1.5 to 2.5; and (ii) on average, 'λ  decreases with 

decreasing conductor length. However, it is supposed that the upper limit of λ0 can be 

recovered only with increasing conductor length or decreasing applied voltage. On the 

other hand, the ratio of 'λ  to 0λ  appears to be a weak function of the lattice 

temperature. The same argument has been produced by the recent Monte Carlo 

simulations [12] devoted to a linear potential profile at lattice temperature of 300 K as 

we mentioned at the end of Chapter 2. 

 

Section 4.1.2 Mean-Free-Path Extraction in Parabolic Potential 
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 For a parabolic potential profile, the corresponding simulated rc is 

displayed in Figure. 2-6. Here, the lines are calculated from (25) with 'λ  of 56, 

105, and 155 nm for 300, 200, and 150 K, respectively. Good reproduction of the data 

for different conductor lengths, different temperatures, and, especially, different 

applied voltages can be gotten. Moreover, the reproduction can all be achieved with 

simply 0'λ λ= , without adjusting any parameters. This means no matter how the 

quasi-ballistic transport prevails in the kBT layer ( 'λ > ), the quasi-equilibrium 

conditions still govern the backscattered carriers. 

  

Section 4.2 Evidence for Carrier Heating  

 In Section 4.1, we see that the discrepancy in the mean-free-path in linear 

potential profile. This inconsistency can be contributed to the presence of the carrier 

heating. In citation [10], all the derivations are carried on the basis of the “relaxation 

length” approximation, which means that the mean-free-path is a constant, and is 

independent of the carrier energy or carrier temperature. However, as carriers 

transport under applied electric field, their energy should be changed, especially in the 

linear potential profile. Because of the lack of weak field regime near the injection 

point, the carriers experience a larger electric field in the linear one, and thus the 

deviation between the lattice temperature and carrier temperature would be possible. 

On the other hand, for a parabolic potential profile, as showing Figure 2-2, there is 

significant fraction of the kBT layer, which can be determined as the weak field 

regime. Take this into consideration, although the deviations from the lattice 

temperature would be possible as entering into the remainder, the overall carrier 

heating in the kBT layer should be weakened. Consequently, when the carriers are 

injected into the channel at the beginning of the kBT layer, they immediately undergo 

the strong acceleration. Also, owing to the quasi-ballistic transport, the carrier 

temperature is expected to be higher than the lattice temperature and the 
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mean-free-path is therefore no longer independent of the carrier energy. 

 

Section 4.2.1 Velocity Distribution at the Injection point 

 Concerning the difference between the lattice temperature and carrier 

temperature, the carrier velocity at the injection point is helpful as demonstrated in 

Figure 4-2 and 4-3. Figure 4-2 shows the velocity distribution of L=25nm at Va=0.8 V 

and 300 K for two potential profiles. Figure 4-2 clearly shows that two significant 

differences between the potential profiles. First, the injected single hemi-Maxwellian 

velocity distribution is retained in the positively-directed carriers with the parabolic 

one, but it is split into two distinct components in the linear one: One of the 

longitudinal effective mass and one of the transverse effective mass. Second, the 

distribution of the negatively-directed or backscattered carriers appears to be wider in 

the linear potential profile than the parabolic one. The same result can be seen in 

Figure 4-3 for L=50nm at Va=1.0 V and 150 K. This is evidence of carrier heating. 

 

Section 4.2.2 Flux Ratio at the End of kBT Layer 

 Carrier heating evidence also can be found at the end of kBT layer ( x = ). First 

of all, we replace x  with  in (9), leading to 

1

1 10

0 0

1 1(0) (0) ( )
1 (1 )

eb a b
e eλ

λ λ

−

−

−
= +

+ − + −
l

l l

l

             (26) 

where (0)a  and (0)b  represent the incident and reflected flux at the origin, 

respectively, and ( )b l  is the negatively-directed flux at the end of the kBT layer. (26) 

also can be cited in the literature [10], which was derived on the basis of a Maxwillien 

shape distribution in both the forward and backward directions with in the context of 

the relaxation length approximation. In order to get the ratio of negatively-directed 

flux to positively-directed flux, we substitute (10) into (26) for (0) / (0)cr a b= . Then, 



 22

accounting for the conservation of the current, the ratio ( ) / ( )b al l  can be 

straightforwardly calculated. Monte Carlo simulation program can provide the 

velocity distribution at the end of the kBT layer. For example, Figure 4-4 shows 

velocity distribution of L=50 nm, T=200 K, and Va=0.2 V at x = . The velocity 

distribution also is split into two components, and velocity distribution of 

backscattered carrier is wider. The ( ) / ( )b al l  is the ratio of deep grey area to light 

grey area, like what we did to determine rc at the injection point in Section 2.2.2. The 

calculated lines from (26) are shown in Figure 4-4 for linear potential profile. Also 

plotted in the figure are those of the Monte Carlo simulation. However, the calculated 

values are seen to fall below the simulation ones. This reveals the fact that the 

reflected flux at the end of kBT layer can be enhanced in the presence of carrier 

heating. Only with decreasing applied voltage can the deviation between the 

simulation and model calculation be shortened. 

 

Section 4.3 Results  

We executed Monte Carlo simulations on a silicon bulk conductor to re-examine 

the channel backscattering theory in bulk nano-MOSFETs. Through these simulations, 

some important points can be addressed again: 

(i) The near-equilibrium mean-free-path for backscattering 0λ , is independent of the 

potential profile. 

(ii) 'λ  in a linear potential profile is lower than 0λ  of parabolic one due to the 

presence of the carrier heating. Evidence is highlighted by both the velocity 

distribution at the injection point and the flux ratio at the end of the kBT layer. 
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Chapter 5 

Conclusion 

 

 The backscattering coefficient is derived through the scattering matrix approach 

and verified by Monte Carlo simulations. Two important parameters, 0λ  and , 

constituting the channel backscattering coefficient have been taken into account. A 

parabolic barrier oriented compact model has been physically derived for . The 

validity of this compact model has been corroborated experimentally and by Monte 

Carlo simulation results. As for 0λ , the carrier heating as the origin of reduced 

mean-free-path is inferred on the basis of the simulated carrier velocity distribution at 

the injection point. Strikingly, for the parabolic potential case, the mean-free-paths 

remain consistent: λ’ = λo. This indicates the absence or weakening of the carrier 

heating in the layer of interest, valid only for a parabolic potential barrier 
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  L (nm) Vtho (V) DIBL (mV/V) VD (V) VG (V) T (K) 

M. S. Lundstrom, et al. [2] 10 0.33 140 0.6 0.6 300 

A. Rahman, et al. [6] 20 0.33 25 0.2 0.55 300 

P. Palestri, et al. [8] 14~37 0.3 110 1 1 100~500

E. Fuchs, et al. [16] 25 0.3 100 0.8 0.5~1.0 300 

J. Saint-Martin, et al. [17] 15 0.2 120 0.7 0.7 300 

D. Querlioz, et al. [18] 15 0.3 77 0.7 0.7 300 

S. Eminente, et al. [19] 14~65 0.3 11~230 1.0~1.2 1.0~1.2 300 
 
 

Table. 3-1 
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