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Abstract

Auto-Focus is one of the most significant resieassues in the recent digital image
enhancement technology. Its importance increasesraunly to the widespread use of digital
video/imaging devices in this new millennium. Thati®nary image auto-focusing system is
a long-standing research topic. Insthis thesis,,m@dify and improve the conventional
auto-focusing algorithms and integrate them intty@amic-auto-focusing algorithm.

The major difference between a still-image-and deweiauto-focusing system is the
search algorithm. Still image search algorithmsmtiave specific start and end, but the video
application urges a continuous searching routimest,Fve study the digital camera system
and the feedback control theory. Through theseiesudve understand how the system
structure limits the auto-focusing result and thegples of designing a good auto-focusing
system, which is a special type of control system.

Since the search algorithm is critical, we imprdle climbing search algorithm for
particularly the dynamic environments such as sadraage, local object motion, and zoom
tracking. This proposed search algorithm working the video is the core of our
auto-focusing algorithm. Then, we develop our deaigorithm using a finite state machine
structure. We design specific transition conditiarsl state transition table to match the
requirements of dynamic auto-focusing applicatignkiminance-based metric helps to detect
the scene change. We adopt a threshold climbinglsedgorithm to solve the local motion

problem. And the zoom tracking processing is acagte with the assistance of a



well-designed linear prediction model. Finally, wieow that this algorithm is reliable and

efficient by a series of software simulations.
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Chapter 1

Introduction

A digital image capture device is an essempat of today’s high-tech products. To see is
to believe. Today, not only digital cameras bubaisbile phones and laptops have a lens to
make a shot or produce a live video conversati@opke can store what they see and share
images with the others. The most important aspeat¥eryone is the quality of the images or
video sequence. Therefore, clarity is an essend@lirement. In order to take a focused
photograph, everyone traditionally needs to adjustcamera lens. Auto-focusing technique
helps customers to take a clear picture withouttengg a complex focusing process.

Auto-focusing algorithm has been a long-stagdasearch subject. Since the 1970s, the
traditional camera producers hiave made products peissive auto-focusing systems. In order
to achieve accurate auto-focusing it varies necgdsameasure the differences of reflected
light between two CCD sensors. This technique heshhused widely on instamatic devices
until recently. The source of light is the maintéacthat controls the performance of passive
auto-focusing system. Due to the dependence ofivgaasito-focus systems on luminance,
image quality has rapidly deteriorated in the dmrionments. Due to this major drawback,
only inexpensive cameras now use only passive fagtgsing systems today.

Clearly, the development of a better auto-fouysystem was urgently needed. As a
result, camera producers developed a new activefaatising system in the early 1980s. An
additional device that generates an infrared ragstist in focusing in the dim light was added.
In order to achieve accurate auto-focus it is nesxgsto measure the difference in time
between when the infrared ray is sent and whenfdbesed subject reflects it. While the
development of technology to overcome insufficikgitt represents great progress, the focus
performance still suffers from the uncertainty lo¢ tobject reflection. Therefore, an external

focal point of reference is not reliable and hamsdimprove. Perhaps the solution to this



problem is to be found within the device itself, mgpecifically in the digital image data.

This idea began in the mid 1980s and was first usdde conventional camera; however,
the core concept is same in today’s digital camedtash lens has a control motor and sensor
that allows the lens to change its focus untisgasor achieves maximum signal energy. The
sharpness of the image object boundary is useceterrdine the quality of image focus.
Unlike the previous auto-focus techniques, using ¢hrrent image information makes the
new auto-focus process much faster and more prdtibas been gradually applied to most
cameras and is a basic function of modern digédaiera products.

However, the auto-focusing algorithm still lelabong way to go. First, the huge number
of sensors in current digital imaging devices nmske a large amount of computations in
order to process the received signals which constonsiderable time and power, and more
importantly, the existing algorithm is unable topeowith this volume. As more accurate
auto-focus results require more computation. Tikesta balance between performance and
efficiency is the top priority of the auto-focusiatgorithm. However, at present there is still
no generally acknowledged measurementto determiigher an algorithm is better or not.
Second, the dynamic auto-focusing application @y vital issue. Consumers today are not
satisfied with just taking a photograph, but thégoavant to be able to do video recording.
This requirement urges the development of new cesgion techniques and reveals that the

auto-focusing algorithm should put more emphasidysramic issue.

The thesis is organized as follows. In Chapter &idbackground of general digital
camera system will be described. It is in structufeedback control system. In Chapter 3, we
introduce the basic auto-focusing algorithms. Thmaghic auto-focusing algorithm we
develop is discussed in Chapter 4. We will showsanulation result in Chapter 5. Chapter 6

is the conclusion.



Chapter 2

Overview of Digital Camera Systems

Digital cameras dominate today’s camera markktdigital camera stores photographs
in a digital format, instead of on conventional fdgyaphic film. The digital image format,
which is easier to store and share with othergspde important role in the modern E-society.
Since the digital image format is becoming more amate popular, almost all high-tech
electronic products contain a digital camera systencustoms to capture images anytime
they wish. Modern compact digital cameras are amdtifunctional, with some devices
capable of recording video and seund. Digital camean be classified into many categories:
video cameras, webcams, live-preview digital camenad compact digital cameras. Video
cameras are defined as devices whose main purposedrding moving images; all functions
are dynamic and operate in ‘real-time. Live-previemmeras are cameras that generate
live-preview digital image on an electronic screleefore taking the photograph. Many
modern digital cameras have a movie mode, and wiggonumber of camcorders can take
still pictures. Nevertheless, the cheapest digitaheras may take better still image quality
than a mid-range video cameras, and mid-range \Whd®e much lower video quality than a
mid range video cameras. Different preprocessiggrahms and processor commands leads
to a great diversity of digital (video) camerast loonost of them have similar hardware

architectures.

2.1 Architecture of General Digital Camera Systems

There are many types of digital cameras, beibtsic architecture is common to all. A

general digital camera system is shown in Figut§l?.
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Figure 2.1 Block diagramsef digital camera system.

The camera receives signal (light) gets. via itdcapiens motors and sensors [12]. A
camera lens consists of a set of lenses that qustad with the use of motors. Motors can
change the focal length of a lens set, which caactdy impact on focus and zoom. Light
coming through the lens is finally caught by theBDZCMOS sensors that convert light into
electronic pulse. Due to the fact that the camgsses is digital, an A/D is used to convert
analog signals into digital formats. However, thasv digital data needs further refinement.
This digital raw data could not transform to staddamage formats yet, because current
consumer digital cameras use Bayer color filterprtomote color image’s resolutions and
gualities which makes data spilt in discrete RGEndim. The process to refine raw data with
hardware is called image pre-processing, a congrarsth image post-preprocessing which
is aimed at refining images with software. The vkelbwn 3A algorithms are also parts of
image pre-processing. Each digital camera has #aligignal processor to handle this
complex pre-process and store raw data into stdndaage formats, such as JPEG. There is

also a robust connection between digital signakeseor and a control processor, which



receives outside user instructions and inside systquirements. A protocol is like blood
vessels cascade all control units together. Diffecamera systems have different protocol for
internal system control to fulfill hardware requirent. Motor controllers inside camera’s lens
adjust specific function, like zoom value and foowsue, precisely under control. The

following sections may describe more detail foroaiatcusing application.

2.1.1Lens

A photograph lens is an optical mechanism to makages of objects. In principle, a
lens used for a camera, a microscope, a telesampether apparatus is similar, but the
detailed design and construction are different.récpical camera lens often incorporates an
adjustable aperture mechanism to regulate the amaiutights that may exposure on a
camera film. The main optical parameter of a canhema is focal length, which determines
the angle of view, and the magnification ‘of .the esnsystem. Another widely usable
aperture of a lens is specified as the focal ratié--number, which is defined by the focal
length divided by the effective aperture diametethie same units. When the f-number gets
lower, there are more lights delivered to the fq@ahe. The focal length of a lens is constant.
In order to adjust suitable focal length, the siesphari-focal lens, shown as Figure 2-2 [3], is
a set of lenses that is composed of two convertgnges outside and one diverging lens

inside.



Figure 2.2 A simple, vari-local lens set. [3]

For auto-focusing purpose, this:set ofjlensgsps electric motor to vary its focal length,
which is also called zoom lenses. A vari-focal lemsy zoom from moderate wide angle to
extreme telephoto. The zoom rangé-is constraineshdyimum aperture of a camera lens. In
optical physics theory, zoom is closely connectéth ¥ocus process and can be compute to a
formula. Commercial camera lens has more detaiésigd than the simplest vari-focal lens,

which is composed of more than 9 lenses and takiea patent.

2.1.2 CCD/CMOS Sensors

A charged-coupled device (CCD) is an image sengbich consists of an integrated
circuit containing arrays of linked light-sensitivapacitors. The material of CCD image
sensor is semi-conductor, mostly used silicon. Aappopular image sensor is called CMOS
sensor, which has similar manufacturing with theDCithage sensor. The main difference
between a CCD sensor and a CMOS sensor is thegsrafeimage recording. The CCD
image sensor stores the light signal into arrayasedtrons, and the electrons can only be read

out array-to-array that’s mean if an electron &t ,lothe data of the total array will be crushed.



In order to get correct data, each CCD sensor dhmeilmanufacture carefully. Therefore, the
CCD manufacturing is more complex and expansiva tiigical semi-conductor. The CMOS

image sensor benefits by its cheap manufacturidgregular process, which is important for
integration of image sensors and other electroeicog. The detail block diagrams of a CCD

and a CMOS sensor are shown as followings.

ccb  —+ C
A/D
Sensor T >
i C L
TG ||+ FPGA
clk —
sync —
SPI / |

Figure 2.3 Bloek-diagram of CCD sensor.
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Figure 2.4 Block diagram of CMOS sensor.

Table 2.1 A comparison between CCD and CMOS sensor.

CCD Advantages CCD Disadvantages

Low noise, high sensitivity, simple angl Large power, cannot randomly read ahy

mature process. pixel and high requirement.

CMOS Advantages CMOS Disadvantages




Low cost, low power, randomly read apidigh noise, weak sensitivity and compfex

pixel and SoC implementation. circuits.

2.1.3 Mosaics, Interpolation, and Aliasing

The standard RGB color model requires threensity values for each pixel: one each
for red, green, and blue. A single sensor elemanhat record these three intensities at the
same time, and so a color filter array is usuafigdito selectively filter a particular color for
each pixel. Most consumer digital cameras use B#@yer mosaic (Figure2-2) in combination
with an optical anti-aliasing filter to decreasee thliasing effect due to up sampling of
different primary-color images. The Bayer filtertigan is a repeating 2*2 mosaic pattern of
RGB color filters, with a red one at right-up carna blue one at left-down side, and green
ones in the other two positions. The high, propartaf green filters takes advantages of

properties of human visual system,-which determibiéaghtness mostly from green and is

=

much more sensitive to brightness than to huetora#on.-Sometimes a 4-color filter pattern

is used, often involving two different"hue's.,'éﬁgteé‘his ﬁrovides potentially more accurate

color, but requires a slightly more compiicatedaipblat”ibn process.

Figure 2.5 Bayer filter. [3]

A demosaicing algorithm is used to interpoledéor information to create a full array of
RGB image data. The simplest is the bilinear ird&fion method. In this method, the red
value of non-red pixel is computed as the averddbeoadjacent green pixels, and similar for

green and blue. Some algorithms not only compunealily but also adapt their method of



estimation on features of the area surroundingpilkels of interests. These up sampling
algorithms all encounter the critical aliasing desb on high frequency detail, which is lost
through the Bayer filter process. The huge numbggsxels in today’s digital cameras make
the fast algorithm more and more urgent. Many cororak products develop its own
algorithm about which is little publicly known anday be much different with known

algorithm.

2.2 Feedback Control System

The camera system mentioned before is also a fekdlaatrol system [5], which can be
simplified as the following graph Figure 2.6. Comceith auto-focus application, the topic of
this thesis, the system input signaly,Yis the correct focus point of object in theory. A
feedback controller gets this information and tlsemds control signals to system process,
which is noised by disturbance,"D. Under this femitbsystem, the system output Y will
finally be as same as the input,YHowever, the feedback control in real world ig as

perfect as mentioned.

Ysp U " Y
Feedback

controller

- Process +—— 5

A

Figure 2.6 Block Diagram of feedback control systésh

Feedback control is an important technique thatigely used in the process industries.
Its main advantages are as follows.
1. Corrective action occurs simultaneously as thatrolled variable deviates form the set
point, regardless of the noise and type of source.

2. The requirement of system knowledge is mininhalparticular, a mathematic model of



3.

the process is not required.

The ubiquitous PID controller is both versatled robust. Whether process conditions

changes, re-tuning the controller usually prodwsasfactory control.

However, feedback control also has certain intcinlssadvantages:

1. Perfect control is theoretically impossible. Morrective action is taken until after a
deviation in the controlled variable occurs, evée et point changes or is during
disturbance.

2. No predictive control action is provided. It cah compensate for the effects of known or
measurable disturbances.

3. It may not be satisfactory for process with ¢éatgne constants or large time delays. If
large and frequent disturbances occur, the pratessoperate continuously in a transient
state and never reach the desired steady state.

4. Sometimes, the controlled variable cannot be.soreal consequently, and feedback
control is not feasible.

We will present some enhanced loop_control stratemi this section.

2.2.1 Cascade Control

The first disadvantage of conventional feedbemhktrol is no corrective action is taken

until after a deviation in the controlled variabbecurs. The cascade control employs a

secondary measurement point and a secondary fdedbatroller to improve the dynamic

response to disturbances. The cascade controllauséedul when the disturbances are

associated with specific variables or when thel foatrol elements are nonlinear.

The cascade control loop structure, shownguié 2.7, has two distinguish features:
The output signal of master controller{Gletermines the set point for the slave
controller.

The two feedback control loops are nested, thighsecondary control loop located inside

the primary control loop.
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Figure 2.7 Block diagram of cascade control sys{éin.

Cascade control can enhance the sensitivity tpaat change. However, it should
be designed properly to improve its performanc@presence of disturbance. Considering

the block diagram algebra:

L = G (1)
DZ 1+ GCZG p2 + (Bcl(BCZG'plG p2
By similar analysis, the set-point transfer functdor the inner and outer loops are:
Y1 — GCIGCZG plG p2 (2)
Yspl 1+ GCZGpZ + GCIGCZGpIG p2
Y, GG
Y2 :l+C; Cp:‘-2 ®)
sp2 c2="p2
For disturbance in D1, the closed-loop transfectiam is
Y, _ 1+G,G,, (4)

D1 1+ GczG p2 + GchCZGpleZ

Observing this equation realize when the slave lesponds faster than the master loop,
the cascade control system will have improved BtabiCascade control also makes the

closed-loop process less sensitive to disturbaneerors.
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2.2.2 Time Delay Compensation

In this section we present an advanced controlnigole, time-delay compensation,
which deals with a common problem in process coni@mely, the occurrence of significant
time delays. From a frequency response perspecivime delay adds phase lag to the
feedback loop, which adversely affects closed-letability. Therefore, the controller gain
must be reduced below the value that could be ifsedl time delay were present, and the
response of the closed-loop system will be inedfiticompared to the control loop with no
time delay.

In order to improve the performance of system writie delays, special control
strategies have been developed that provide signifitime delay compensation. The Smith
predictor technique is the best strategy that @akn A block diagram of the smith predictor

controller structure is shown in Figure 2.8.

06— e

g O o ey Y(s) _
. GE,'[SJ YQ!S} h- -fm{ﬂ@
Yi(s) Qf@_

Figure 2.8 Block diagram of Smith predictor.

N

After some computation, the closed loop set poartdfer function is:

Y GG*e®

Yo , 5
Y, 1+GG* ©)

where G, (S) = e ®is estimation of process delay. By contrast, famentional feedback

control

_ G G*e™®

Y
R 6
Y, 1+GG*e™® ©)

Compared with conventional feedback control, theitlsnpredictor has theoretical
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advantages of eliminating the time delay from tlharacteristic the time delay from the
characteristic equation. But it has a serious digathge, the advantage is lost if the process
model is inaccurate. Fortunately, the delay in gansgstem is usually constant and not large,
which is caused by processor computation and CCI¥SMapture. Another disadvantage of
the Smith predictor approach is that it is modedduh that is a dynamic model of the process

is required.
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Chapter 3

Principles of Auto-Focusing System

This chapter describes the auto-focusing profress the perspectives of both digital
image processing and signal processing. Auto-fesws important pre-process of a digital
camera system, which adjusts the focus positionedeives and processes the raw data
obtained from the image sensors. The auto-focusietes, unlike the other pre-processes,
does not directly alter the raw data, but it doesvide feedback. In other words, an
auto-focusing system cannot be an instant or need-system. It needs a little bit of time to
complete the auto-focusing process. How to exti@etfocus value from the image data and
how to reduce the time of focusing process arecthieal issues in the development of a

robust and practical auto-focusing algorithm.

Processor
5 O 1\." ! |.'- o
Optical lens [—»| Raw Data Focus i = designed by
Metric Search
A Algorithm

Focus Motor
Controller

Figure 3.1 Block diagram of an auto-focusing system

Figure 3.1 shows a block diagram of an autadoty system, which is simplifies from
the model of a digital camera system. The majorspairthe auto-focusing algorithm are the
focus value metric and the search algorithm. We imgoduce the window selection, which is

a common function in the modern auto-focusing syste
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3.1 Focus value and Focus curve

The first step in the development of a robusb-docusing system is to determine a good
focus value metric. This step is classified as feaextraction, which compresses a large
amount of data into a simple form with sufficiemcaracy. So the focus value is defined as
the focus measurement of an image data. A goodfealwe model should have the following
properties: First, its process should be indepetnaletme received data and its measurement is
universal for all types of image structures. Secandhould be a decreasing function with
respect to the true focus of the target. If thegen&s sharper, the focus value gets higher.
Third, it can tolerate disturbance and noise. Evenigh the camera system is disturbed by
noise and delay, its variation is small and predile. In theory, a blurred image is the output
of a focused image convolved with a band-limited-fmass filter. Therefore, a simple focus

value model is detecting the high-frequency comptsef an image.

2ih T T

151 =

Focus value

05+ i

Focus position

Figure 3.2 A general focus curve.
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Figure 3.2 shows an example of focus curveckviplots the focus position against the
focus value derived using a Sobel operator. A faause, which shows the focus values at
different positions (locations), is a result of sl factors. Its shape depends on the image,
the optical system, the lighting condition, and thetrics (operator). The general shape of
many published focus curves is similar. They oftameha peak with a sharp tip and two steep
slopes. The tip of the focus curve shows the optioals position of the scene. A close-up of
such a focus curve reveals small magnitude dishedoghat are due to thermal noises. Many
research and published papers assume that focus isuthe basis in designing and evaluating
an auto-focusing system. An auto-focusing systen \stable focus curves indicates its
system design is more robust, because the stablgs fourves shows that exceptional
condition is very rare in this auto-focusing systé&tthough many commercial devices have
good auto-focusing systems, there still lacks & lpgrformance focus value model in the
literature. Certain types of frequency:transformsneage operators are widely used as the

focus value model as describe below.

3.1.1 Sobel Operator (First Derivative)

The Sobel operator is a first-derivative operdtost derivatives in image processing are
implemented using the magnitude of the gradients T$ialso an image enhancement in the
spatial domain, which convolves a designed filtersknwith the original image. Masks of

even size are awkward to implement. The smalldst fthask is a mask of size 3*3.

-1 0 41 F1 42 +1
Gx=|-2 0 42| *A and G,=|0 0 0 ]=*A
-1 0 41 -1 =2 -1

Figure 3.3 Sobel masks and equations.

The mask of the sobel operators/filters showrrigure 3.3 can be used for the edge
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enhancement. In Figure 3.3, A is the original imagel G and G are derivatives along the

horizontal and the vertical axes. The resulting igmratdapproximation G is the square root of
Gx and G. A weight value of 2 at the center is giving margortance to the center point.

Note that the coefficients in the masks shown iguFé. 3.3 sum to O, indicating that they
would give a response of 0 in an area of constael| as expected of a derivative operator.
Mathematically, the Sobel operator is not a lineagerator because of the square root
calculation. Figure 3.4 illustrates the computatainthe Sobel operators on the image of

Lena.

R

Figure 3.4 Original image and Sobel gradient.

3.1.2 Laplacian of Gaussian (Second Derivative)

The Laplacian of Gaussian filter (LoG) is a conviontof a 29 derivative filter. The
LoG value of an image region of rapid intensityoiten used as an edge detector. This

approach is a specific spatial filter with imputesponse related to Gaussian signal shape.
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Figure 3.5 Laplacian masks.

Because the Laplacian kernels are approximatingcansl derivative metrics on the
image, they are very sensitive to the noise. Taatpnoise, the image often smoothed by a
Gaussian low-pass filter that reduces the highueqy noise components prior to the
differentiation step Laplacian filter. Therefor@ce the convolution operation is associative,
we can convolve the Gaussian smoothing filter il Laplacian filter first of all, the LoG
filter, and then convolve this hybrid filter withé image to achieve the required result. The
function of Laplacian of Gaussian is
Xt +y? Je'i?
20°

2

1
LoG(x,y) == (1— )

8 S 0=L|-2]-t| o
Tl

Figure 3.6 LoG 3-D plot and mask. [17]

Figure 3.6 shows a 3-D plot of the functiontted LoG function. Also shownisa 5 * 5
mask that approximates Eq. (7), which is not thejumiexpression. The coefficients must
sum to zero, so that the response of the maskris ipetaking gradient of a constant.
Therefore, the LoG is a linear operation and tmedr property gives its implementation
more flexibility that it can be decomposed intoagpe linear filters. Employing the functions

separately often has advantages over using a stogiposite mask. The size of masks can be
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smaller and the function can be easier to implem&milar to the LoG, difference of
Gaussian (DoG) approximates the LoG filter with bomation of two different Gaussian
filters. The result of the DoG filter is similar that of the LoG filter, but it has the advantage
of computation complexity.

Figureure 3.7 illustrates the output of th&sLidter on the image of Lena compared to

the original image. Note that the noise componamntsmuch higher than Figure 3.4 shows,

which is the serious side effect df 2lerivative based technique.

Figure 3.7 Original image and LoG result.

3.1.3Wavelet Transform (Frequency Domain)

Wavelet transform [14] is a spatial decompositihat is done along the horizontal and
the vertical directions. Wavelet transform also taors frequency information in each
sub-band. Therefore, the transform coefficiententfthe energy distribution of the source
image in both space and frequency domains. Watrelesforms are broadly classified into
the discrete wavelet transform (DWT) and the comtirsuwavelet transform (CWT) ,and

we briefly describe the DWT.
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Figure 3.8 A 3 level filter bank. [3]

The decomposition of wavelet transform is repedab further increase the frequency

resolution and the wavelet coefficients are produmgthe high-pass and low-pass filters and

then down-sampled. This is represented as a binegywith nodes representing a sub-space

with a different time-frequency localization. FiguB.8 [3] shows a 3-level filter bank The

same process can generate an N-level DWT decorgosit
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i
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fn
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Figure 3.9 3 level decomposition in spatial andjfiency domain. [3]
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Figure 3.9 [3] shows a 3 level wavelet decontms Because the DWT's scalable
kernels are used as lowpass and highpass filterst Rourier-based filtering techniques have
an equivalent wavelet domain approach. So the wawensform benefits greatly from the
filtering techniques that reduces noise effect.ufeég3.10 illustrates the result of 2 level
wavelet transform on the image of Lena. The highdemcy bands may be use used for edge

detection and thus representing focus value.

Figure 3.10 Original image and its wavelet transfor

3.2 Search Algorithms

In section 3.1, the definitions and usage of theugsovalue and the focus curve are
introduced. It seems that an auto-focusing protespiite simple. It simply finds out the
global maximum points of a focus curve. The onlyghio do is to choose an efficient search
or sort algorithm and implement it. However, a ®curve can only be acquired using offline
simulation or a full scan operation. Typically, tHecus curve is used to train the
auto-focusing system in advance. An apparatus r@agives or detects a single focus value at
a time, not the entire focus curve at one time. @loee, we need a search algorithm that

identifies the best focus position with one by sequential focus values.
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Figure 3.11 Ideal output respense-of an auto-fogusystem.

Before introducing of practical algorithms; let emnsider a fundamental problem first,
the ideal system response of an auto-focusingsystéhat the auto-focusing system does is
adjusting the focus position to the location ' whiire image looks sharp. It is reasonable to
conclude that the best response of an auto-focssisigm is near a step function response, as
shown in Figure 3.11. But this is impossible fgpractical auto-focusing system because of
the following reasons.

1. An auto-focusing system is a feedback contrstesy. A feedback control system cannot
produce an instantaneous response without progesklay. There must be a system
delay that tilts the slope of response curve.

2. The input is not the correct focus position. Tiqgut of an auto-focusing system is not the
correct focus position but the focus values, wraoh clued of the correct focus position
indirectly. Since the input is indirectly, it isfigato design a linear auto-focusing system to
match the optimal response.

3. There are always delays and noise in a pradystém, which causes the system response
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Figure 3.12 A general output response of an autading system.

Figure 3.12 contains a general'model .of outpsponse, plots of focus position versus
time, for a practical auto-focusing;system. Thedsoiie, a step function response, indicates
the ideal auto-focusing result;and the dot lihe, general output response, shows the various
stages in the search algorithm: The dot'line staedlthe dot line state2 are the main search
process. The state 1 limited by the speed of theemsysesponse is a process of moving
current focus position quickly to the near optirpakition or, in other words, to the position
with a high focus value. The state 2 is a procesdarttifying the position with the maximum
focus value, the optimal focus position. Usualhg system goes beyond the focus position
due to delay and needs to come back. The statea3pi®cess of re-adjusting the focus
position from the overshoot position to the optifeaus position found at state 2. The state 4
is a process of locking the current focus positonl detecting whether the image object is
changing its location and then a new auto-focupimgess needs to execute again. Compare
to the ideal step function response that contaimg two line segments or states, state 2 and
state 3 represent the imperfection of a practiogtd-focusing system. The state 2 and state 3,
also called over-focus, is one main indicator tdgg the efficiency of a search algorithm.

Therefore, the correctness (for the given data)her gerformance (in real environment)
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determines whether a search algorithm is usefulobr A robust auto-focusing algorithm is
better than a fast one, although a fast algorithmare and more desirable for today’s digital

camera system.

3.2.1 Full Search algorithm

The full search is the simplest and most rolsestrch algorithm. Scan all the focus
positions from far to near and choose the posiiath the maximum focus value for the
correct solution. Full search algorithm providegl@al maximum focus value, even though

the system has serious noise and with a distudigsfcurve.

Full Search
30 T T

251+ 5

20+ =

15

Focus position

101 .

Time

Figure 3.13 Output response of the full searchrélyn. The best focus position is 14.

The full search algorithm is very robust bufficeent in time. The full search algorithm
has a serious over-focus, the long line segmenttadé 2 and state 3. It is also difficult to

implement a full search algorithm for the curreamera apparatus because of the large
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amounts of data. For example, there are 33792 fpos#ions in the SONY EVI-D100
camera. The modified full search algorithms, sucfabenacci search, reduce the number of
search points and accelerate search process amdhtheutput response has a steeper slope.
The full search algorithm is not a mainstream in éesting auto-focusing system, but it

provides a reference for solving difficult cases.

3.3.2 Climbing Search Algorithm

The climbing search algorithm [18] is a fastrskaalgorithm with an adaptive step size.
This algorithm is developed based on the shapeeomibuntain-like focus curve, and finding
out the optimal focus position at the maximum foematue is similar to climbing to the
summit of a mountain. The climbing search algoritteduces the necessary search steps to

increase search efficiency that but suffers fronoae noise and with a disturbed focus curve.

FOCUS MEASURE

6x10’
3 In Focus
7' Nearl Over
4!1 0 -'-‘ Out of focus 4 jbcuseyd 5 E focused
2x107
0 50 100 150 200

FOCUS POSITION

Figure 3.14 The four states of the climbing seaftgbrahm.

A basic climbing search algorithm contains fougs&[5]: out-of-focus, nearly focused,
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over-focused, and in-focus. Figure 3.14 shows stage on the focus curve. The out-of-focus
stage means the current focus position is far dveay the optimal focus position. The nearly
focused stage means the focus position is closeéhéo optimal focus position. The
over-focused stage means the focus position gogmtehe optimal position and becomes
less focused. The in-focus case means the focusigposs esteemed as the optimal focus
position and the auto-focusing process termindiggire3.15 shows the state diagram model

of the mountain climbing algorithm, which is widelgopted in electronic circuit design.

Close to the peak

Out-of-
focus

Nearly

>
focused

aet lenses near or
fur Peak arrived
Move and lock to v
The optimal
< position Over-
focued

Figure 3.15 The state diagram of the climbing athaomi

In order to identify the four stages, espegidiie out-of-focus and the nearly focused
cases, we need a measurement typically uses ttezedifes between previous and current
focus values or equivalently calculates the sldp®aus curve between two focus positions.
A positive value indicates the out-of-focus statéhen the value gradually moves to 1, it
indicates the nearly focused state. A negativeeyauhe current focus value is lower than the
previous focus value, indicates the out-of-focutu&aThe accuracy of this measurement
correlates highly to the performance of the focaki®. In other words, the performance of a
mountain climbing algorithm depends on the foculuefaurve and may be disturbed or

corrupted by serious noise and delay.
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Figure 3.16 Output response:of the'mountain climlalgorithm. The best focus position is

14.
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3.3Window Selection

Window selection [4] is a common additional funatiowhat is a spatial domain
enhancement method in an auto-focusing systenelisithe auto-focusing system to locate
the focusing target and improves the curve shapeddW selection has simple computation

but powerful results.

Wil Wi w2 Wi

W4 W5 Wh W7

WE W W0 Wil

Wiz W3 W4 Wis

Figure 3.17 The original screen and the 16 focusiows.

Figure 3.17 shows the 16 focus windows model. W&dithe original screen into 16
rectangles. The number of windows depends on-thgmdetthe auto-focusing system. Fewer
windows require fewer memories but also'lose sopagia information. Figure 3.18 shows
the image “Scarecrow” and the Sobel operator reiutiearly shows that the edge feature

(focus cue) is not uniformly distributed but clustat certain regions. How to locate these hot

regions?

Figure 3.18 The picture and its edge feature. (fooes
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Of course, the best solution is to identify theefmound or the targets, such as faces or
people, and filter out the background that may gsafthe auto-focusing system. This
approach is an object recognition problem and atithallenge to the real time hardware
implementation. Hence, simple window selection feasible solution from the viewpoint of
hardware design. A good window selection adaptiaeliysts the weightings of each window

to locate the hot regions.

2500 T T T T T T
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Figure 3.19 The focus curves of each window.

Figure 3.19 shows 16 different focus curves dasedt with 16 windows. It is apparent
that the focus values of different windows behawWke@ntly at the same focus position. The
overall focus value is a weighted sum of these amgalues.
wiv=">" w(i) fv(i) 1)
The main purpose of window selection is to seleetiimdow weighting coefficient for each

window.
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In general, the center windows have higherghtsi because most people put their
attention on the center of an image. Another appros that the window with the maximum
focus value has the highest weight or choosestit@$ocus window. The overall focus value

comes from the focus window only.
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Figure 3.20 The normalized focus curve comparisawden no window selection (solid line)

and maximum value selection (dot line).

Figure 3.20 shows the normalized focus value commparbetween no window selection
(solid line) and maximum value selection (dot lif@) scarecrow using sobel operator. The

dot line expresses the maximum value selectionghwvhas shaper curve.
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3.4 Conclusion

Window Selection and
Compute Focus Value

Adjust Focus Search Algorithm
Position :

k4
! Best Focus

End

Figure 3.21 Flowchart of an auto-focusing algorittumstill image.

Figure 3.21 shows flowchart of an auto-focusing teys for still image. The
auto-focusing process begins when the start signaceived and the system gets the focus
value with the metrics and window the selection huodt setting in advance. The
auto-focusing will run the search loop continuouslytil the search algorithm finds the

optimal focus position. Thus the system terminahesauto-focusing process and locks the

focus position.

Although our purpose is to design a dynamic autms$ing algorithm, there are parts of
algorithms working well no matter for still image wideo, such as the focus value metrics

and the window selection method. We choose the |ISygdsrator as our focus value metrics
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because it is well known and is less sensitivedisen We also divide our focus window into
16 rectangles and adapt the maximum value seleti@mhance our focus curve. The only
but core problem is that the search algorithm isigieed for a single process and cannot
support operating continuously. In the next chaptee will introduce our dynamic
auto-focusing algorithm that revises based on thebing search algorithm, which is the

popular and efficiency search algorithm today.
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Chapter 4

Dynamic Auto-focusing System

This chapter proposes a few algorithms for theadhic auto-focusing system. The
dynamic system, such as a video camera, has sdfeedi properties comparing to the still
image digital camera. One problem is the (vide@nscchange that the background and
foreground are both changed significantly. Whendbene change happens, the focus value
and focus curve have a large variation. The autadiong system must restart to match the
characteristic of the new scene. Another problembject motion that parts of the scene are
changing. This problem seems to:be similar to tle@esachange but it is in fact different. The
auto-focusing process should:continue rather teatart. The last problem is zoom tracking
that adjusting the focus position with the givemmoinformation. Although we can treat this
problem as the scene change, finding out the phaysiationship between zoom and focus
can lead to a good focus prediction. There is oneersection discussing the delay effects.
Although it is not a dynamic issue, it is a comnmmoblem in a practical auto-focusing
system. We will describe these problems in detdi® basic auto-focusing algorithm of our

system is the climbing search algorithm that déscrin Chapter 3.
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4.1 Experiment Set-up

Our auto-focusing simulation environment is aateal-time system. In this section we
verify that our experiment really carries conviatioThe detail simulation steps are shown
below:

Step 1. Control the focus position and the zoonitipos

We write a program to control the focus/zoom positdf the video cam EVI-D100. The
EVI-D100 technical manual provides the commandfaistcontrolling the focus position and
the zoom position. The control command is transihitte the EVI-D100 by RS232 cable.

This program helps us to assign the focus posisonewish.

Step 2. Capture the image/focus value:

We modify the StillCap sample code of the directsliitter provided by DirectX9.0. We
combine the sample code with both the focus vale&immand window selection method. This
program can read image data from.the EVI-D100 ariid\wown the focus value information.
We repeat Stepl and Step2 to construct-a“databaseecords useful information at each

focus position.

Step 3. Matlab simulation:

We write a matlab program to verify our auto-foagsalgorithm with the database.

A detail block diagram is shown as Figure 4.1.
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Figure 4.1 Block diagram of our auto-focusing syste
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4.2 Scene Change Detection
The existing auto-focusing algorithms usually fheir emphasis on processing a still

image. This section we will discuss a basic dynaimitising problem: Scene change. Scene

change means that the foreground and backgrourtzb#inechanged.

Figure 4.2 Two different scenes. The left is “Sceec and the right is “Bookshelf".

5

The Focus Curve of People
10000

9000

8000

7000

6000

5000

Focus Value

4000

3000

2000

1000 |-

T T 1 1 Il I [ T =
0 10 20 30 40 50 60 70 80 90 100
Focus Position (From Near to Far)

Figure 4.3 The Focus Curve of “Scarecrow”.
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The Focus Curve of Bookshelf
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Figure 4.4 The Focus Curve of “Bookshelf”.

Figure 4.2 shows two sample scenes: It is intuitheg the samples “Scarecrow” and
“Bookshelf” are definitely different..But ‘could thauto-focusing system detect their
differences too and do the proper processing? €igLd and Figure 4.4 show the focus curves
of “Scarecrow” and “Bookshelf’. Considering a stioa that the camera is focusing on the
sample "Scarecrow” and the focus position is atS&ddenly, the camera makes a turn and
the scene changes to the sample “Bookshelf’. Alghaihe scene is changed, the focus value
of “Bookshelf” is similar with “Scarecrow” at focugosition 35. Hence, the auto-focusing
system cannot detect this scene change and may aakeng decision judging the focus
position of 35 is the best focus position. It seetinat the focus value is not a good
measurement for the scene change detection. The f@iue varies at every focus position
and cannot use to specify a scene. A good scemgelmeasurement must have the following
properties: First, it is consistent (has similalueq or nearly consistent at all focus positions

of a scene. Second, when the scene change hapgEdr®ys an impulse.
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Figure 4.5 The-Luminance Curve of “Scarecrow”.
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Figure 4.6 The Luminance Curve of “Bookshelf”.

In theory, the blur image is ra.clearimage oves with a low-pass filter. Hence,
moving the focus position is equivalent to convotyihe scene with different low-pass filters.
The focus value is mostly composed of high frequesmyponents, so it varies at different
focus positions. However, the luminance value isstigocomposed of low frequency
components. The luminance-based method can be asgeod change measurement. Figures
4.5 and 4.6 show the luminance curves of “Scaretramd “Bookshelf’. The luminance
curve plots the luminance value against the focositipn. This metric can also adapts
window selection methods in order to preserve faial information. The luminance curve
is much more smooth than the focus curve.

Based on the luminance value, we proposed @escleange detector: the mean square
error of current and previous luminance values. iflean square error is very sensitive to the
difference and is also a popular estimator to chieeldifference of two images.

SCn = E[(Iumn _Iumn—l)z] ' (8)
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where Lum means the luminance value at cycle n and Lumeans the luminance value at

cycle n-1.

Scene Change Measurement
(%]
T
L

0 | | | | L
0 10 20 30 40 50 60

Time (Focus Cycle)

Figure 4.7 The scene change measurement.

Figure 4.7 shows a simulation result of the scemenge detection. First, the system
focuses on the scene “Scarecrow”. The scene charegsurement has a small variation but
can be treated as noise. At cycle 40, we changeddee “Scarecrow” to “Bookshelf’. There
is an impulse at cycle 40, which means a scenegehan

We adapt this scene change measurement into oowf@uising algorithm. If a scene
change happens, the auto-focusing process wilebetivated. Figure 4.8 shows the output
response of our auto-focusing algorithm. First, ghistem focuses on the scene “Scarecrow”
and then sets the focus position on 63 at timelégy0. Compared with Figure 4.3, this focus
position has the maximum focus value in the sce®eafecrow”. At cycle 40, the scene

“Scarecrow” is changed to “Bookshelf’ and the fo@asition varies too. The auto-focusing
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algorithm starts to find the new focus position. last the focus position arrives at 13.
Compared with Figure 4.8, this focus position Has tmaximum focus value in the scene
“Bookshelf”. This simulation confirms that our atftecusing algorithm can detect the scene

change well when a scene change happens.
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Figure 4.8 The focus result of scene change ajtarsed.
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The previous test proves that our auto-focusingesyscan be automatically activated
when the scene is focused. But we also need tof tbss measurement still works when the
scene change happens during the auto-focusing ggasen progress. Figure 4.8 shows that
the auto-focusing process of the scene “Scarecrewiore than 20 cycle. Hence, we change
the scene “Scarecrow” to “Bookshelf” at cycle 18emhthe focus position of the scene
“Scarecrow” is still not found. Figure 4.9 showe thutput response under this situation. The
auto-focusing system finally sets the focus positad 10. Figure 4.10 shows the focused
images at the focus positions 13 and 10 and ifigerour algorithm works well under scene

change.
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Figure 4.9 The focus result of the scene changeappn the middle of an auto-focusing

process.

Figure 4.11 shows the block diagram of the scerma@h detection algorithm. There are two

separate blocks to handle different scene charggsca
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Figure 4.10 The auto-focused images.
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Figure 4.11 The block diagram of scene change tietec
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4.3 Local Object Motion

Object motion is a typical dynamic auto-focusinglgem. We handle a more restricted
case here. The definition of motion here is thatsgpaf a scene moves, rotates, or vibrates
regularly and regionally. For example, a working fatates. The motion may change the
focus value although the object location is notngjesl. The general auto-focusing system that

relies on the difference of focus value usuallysfainder this situation. Most algorithms shift

to a transient state and the focus position igidgf

Figure 4.12 The rotating fan.

Figure 4.12 shows four frames of a rotating, fatnich is fixed on the ceiling. The
texture of the fan has a significant change undféerdnt angle. Therefore, the focus curve of
each scene may be very different because the f@ius metric is usually strongly related to
the texture. When measuring on the motion obj&etiet are noticeable changes on the focus
value even the focus position is fixed. This pheanan seems to bring new uncertainty that

the focus curve is not sufficient in deciding tlogrect focus position.
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Figure 4:13-3D-Focus surface.

Figure 4.13 shows the 3D focus surface thatoimposed of focus curves at different
frame or time. We take nine different samples far $cene of a rotating fan. From the focus
surface, we like to find a clue to solve the motmnoblem. Previously the focus position is
the only parameter that changes the focus valuendw the motion object also changes its
focus value along the time axis. However, the focalse change caused by motion is fixed
but blind. In general, a focus position is ass@datvith multiple a focus value that is
one-to-one. But now a focus position correspondf$otus values, i.e. one-to-many. The
motion auto-focusing is to find the optimal focussjion (a line) on the 3D surface with 1D
search algorithm.

There are several issues:
1. The ordinary search algorithm fails. The focusface is not always convex but

somewhere concave. The motion changes may trapdhech algorithm into a local
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maximum point.

2. Unstoppable auto-focusing process. The focusevelhanges at a fix focus position. Thus
the auto-focusing system continuous the searchepsowithout ending. The auto-focusing
system stays in a transient state and never stops.

3. False alarms of scene change. Sometimes thelagubetween motion and scene change
is blurred. In section 4.2, we introduce our scehange detection measurement, a MSE
based method that allows a large margin of thresfaml a static scene. But Figure 4.14

shows the luminance surface of the rotating fanahamich larger variation than the static

scene.
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Figure 4.14 The luminance surface.

In order to solve the above problems, we myothk search algorithm. We propose a
new focus decision criterion to solve the first fasue caused by the uneven focus surface.

The general focus difference based value is fortadlas
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fvnow - fVbefore
fs_slope= : (9)
| fpnow - fpbefore |

where fv means focus value and fp means focusiposit

The search generally ends when a negative fs_slopérs after a series of continuous
positive ones. But this accounts the failure beedhse focus surface has local maximum. Our
motion search algorithm now has to endure the aotad negative cases before reaching the
global maximum value. We introduce new parametsrsidw, fs_pos, and fs_neg that are
accumulated metrics of fs_slope. Table 4.1 showsdifinitions of these three parameters.
Fs_now is an accumulation of fs_slope of the saigre $Vhen the sign of fs_slope changes,
we reset the fs_now value to zero. Fs_pos is senwh now is bigger than the threshold
value T. fs_pos replaces fs_slope to determine hveneihe slope of the move is positive.

Fs_neg is similarly to defined for negative slopes.

Table 4.1 The threshold parameter.

Symbol Definition
An_accumulation of fs_slope. Reset to 2
fs_now
when the sign of fs_slope changes.
fs_pos Setwhenfs now>T
fs_neg Set when fs_now < -T

Here, we use the values of fs_pos and fs_netpaty out our search algorithm. The
procedure is very similar to the general climbiegreh algorithm introduced in section 3.2.
The new parameters can still use the hard threshwthod that eliminates the large
fluctuation on the focus surface/curve. The drawhachis approach is that it may not reach
the optimal solution. The difference of focus valud the rotating fans at different angle
magnifies when the focus position is close to tp@neal focus position. This fluctuation
difference is too big to be eliminated with a threlsl. Although the result is not the best, the
focus position determined by this search algorittmasually good enough to produce a clear

image.
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Now consider the next two issues due to motibject. In order to reduce the transient
problem, we design a sleep mode for our algorithn@ search algorithm enters into the sleep
mode after finding the focus position. The autodfging function is frozen in the sleep mode.
Scene change is the only event that can awake uteefacusing system. Thus, the focus
position is fixed in the sleep mode. Figure 4.16veh the focus results of the rotating fan.
The focus position will finally be fixed at a cartdocus position and the focus process is as
same as that for still images. The optimal focusitmmn detected at the static image is 40,

compared to the result 44.
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Figure 4.15 The focus result for the rotating feonf near to far.

This design relies on the accuracy of the seargbrithm and scene change detection.
Hence, the false alarm of scene change sometinpgeeha and the final focus position is not
the optimal one. Our system cannot solve thesept@blems entirely but often the results are

satisfactory. Figure 4.16 shows another focus tekat we search for the focus position from
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the inverse side. The search algorithm awakens thensleep mode because of a false alarm
of scene change. The focus position moves clogee@ptimal focus position. Figure 4.17
show the image results at focus positions 33 andsdgarately the final focus position in
Figures 4.15 and 4.16. Although our algorithm cdrsudve the motion problem perfectly, its

performance and stability are still acceptable.
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Figure 4.16 Another focus result of the rotating fiteom far to near.
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Figure 4.17 Focus results at focus position 334hd
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4.4 Zoom

Zooming is another common case in the dynamic tadosing system. Unlike the scene
change detection, detecting the zoom change isasyjeb because the system provides this
information. Compared to the focus position, thiera parameter called zoom position that
shows the lens is in tele or wide mode. The imdge has great changes at different zoom
position. Although it seems that we can solve thenzing problem and the scene change
problem in the same way, the relationship betweeonz and focus provides a clue in
handling it.

Zooming unlike other dynamic cases is related &ftitus position. From the viewpoint
of physics, a tele lens magnifies the image likis itloser and a wide lens shrinks the image
like it is farther. For example, when the zoom pogsi becomes wider, the focus position
should become farer. What we want to do is if wevkra focus position under a specific

S RAARIE A,
%é* cus ‘ @wthe zoom position is changed.

= Elsavt

zoom position, we can predict t

Figure 4.18 The scenes at different zoom position.
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Figure 4.19 A trace curve.

Figure 4.19 shows the trace curve [7] obtained ftbm scene shown in Figure 4.18,
which plots the zoom position from wide to telestes the in-focus focus position from near
to far. Unlike the other data, this set of datgiscessed by the SONY EVI-D100 built-in
auto-focusing system, which means that we do nattexknow its auto-focusing algorithm
in detail. Although the image looks like closer aidser, the in-focus focus position is not

decreasing smoothly and uniformly.

Optical Zoom Digital Zoom

[
L |
&
|

0 16384 28672
(4000h) (7000h)

Figure 4.20 The EVI-D100 zoom zone.
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One reason is that there are two types of zoortisisrcamera system. The optical zoom
actually changes the focal length of the lenses Hmangs the image closer physically.
Compared to the optical zoom, the digital zoom nifeggthe image by the digital image-
processing algorithm such as interpolation. In otherds, the digital zoom cannot provide
new focus information and it has little impact te tauto-focusing system. Figure 4.20 shows
the zoom zone and boundary between optical zoondagithl zoom positions. This type of
system operation is generally adopted by nearlyyegamera system, too. The digital zoom
with no additional information has very little in#nce on the focus position and Figure 4.19
supports this assumption that the focus positionoischanging much on the digital zoom
zone. But, the focus position does not decrease®thity even in the optical zoom zone. In
order to predict the focus position, we need td fine relationship between zoom and focus.
This is the so-called zoom tracking problem.

One solution is the table look-up method [8]. Tieee curves at different object distance
are all stored in the memory. The drawback of #ipisroach is the expensive of large memory
and sometimes it encounters'the ene-to-many mappwigem. Another approach is storing
a few the trace curves and do interpolation sucbemsnetric zoom tracking (GZT) [9] and
adaptive zoom tracking (AZT) [10]. But our tracenms are not as smooth as their
experimental results and the device is not the sdihe complexity of the background and
the percentage of the foreground limit the perfarogaof zoom tracking. Our purpose is
estimating the new focus position approximatelyt ttem speed up the auto-focusing process.

Therefore, we collect some trace curves and thezudee fitting.
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Figure 4.21 Data and:the curve fitting.

The optical zoom actually changing the lenses faranore near is the only predictable
zone. Hence, we only select the changes in theapoom for the curve fitting. Figure 4.22
shows the fitting results for three different scenkne fitting function we use is a linear one.
Y=aX+b (20)
Then we can predict the new focus position as

I:pnew = a(anew - Zplni ) + I:pini (11)

Table 4.2 The curve fitting results

Scene a B

1 -1.597 2.944E4
2 -1.284 2.438E4
3 -1.187 2.671E4

Table 4.2 shows our experimental result of thedineurve fitting. We add the zoom
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tracking method into our auto-focusing system aachgare with the system without this
function. Figure 4.22 shows the in-focus sceneswat different zoom positions. We first
focus on the closer image and zoom wide at cycleTB@ zoom tracking algorithm predicts
the focus position. We also simulate the same fngosing algorithm without zoom tracking

under the same condition.

100 T T T T T

90

80

50

Focus Position

401

30

101

| | | | |
0 5 10 15 20 25 30 35 40 45 50
Time (Focus Cycle)

0 | | 1 1

Figure 4.23 The focus result without zoom tracking
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Figure 4.24 The focusresult-with zoom tracking.

Figure 4.24 shows the focus result'without zdaoking. The zoom position is changed
at cycle 30 and it spends 12 cycles to arrive #we focus position. Figure 4.25 shows the
focus result with zoom tracking. The zoom positisrchanged at cycle 30 and predicts the
focus position first. The new algorithm spends dlgycles to arrive the new focus position,
saving 1/3 cycle. These results verify that theesyswith zoom tracking spends fewer cycles
than the system without zoom tracking in finding thcus position. Zoom tracking algorithm
helps in saving the in-focus time. Figure 4.26 shole block diagram of the zoom tracking

algorithm.
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Figure 4.25 Block diagram of the zoom tracking aldon.
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4.5 Delay Compensation

Delay is a common phenomenon in the control sysiEme. cause of delay is reading
data or making a complex computation. Delay seenggdduce a fixed time shift in the data
stream. Hence, delay mainly degrades the searohithly performance but has slight impact
on the focus value metric. Fortunately, delay tiadurs in the auto-focusing system is usually
a fixed small value.

In general, the search algorithm moves the focs#tipa depending on the difference of
the focus value between the current and the previocus positions. But it is impossible in
the real world to obtain the new focus value imraggly after moving the focus position. In
other words, the search algorithm moves the foasstipn depending on the information
related to the previous focus positions not theesdrposition information. This delay effect
is only a fixed latency that all system command# & most cases. However, the climbing
search algorithm typically ends with.'detecting aateve slope and fixes the near focus
position as the optimal focus position. Hence,dbky causes the climbing search algorithm
to stop at an over-focused position that is awamfthe optimal focus position.

We add a linear prediction method-to help our seatgorithm in finding the optimal
focus position. If there is no delay, locating tfoeus position is done as soon as the
over-focused case is detected. However, the detzhyigm makes the over-focused case more
serious and thus we design a linear predictiorotate the focus position. The prediction is

formulated as:

_ fp, fv, + fp, fv,
fv, + fv,

fp , (12)

where fp and fp are the two focus positions with two focus valubg,and fw. This
interpolation has a side effect that the predidisrlis position does not exactly have the

maximum focus value.
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Figure 4.26 Simulated-results under different deklyes.

Figure 4.26 shows the simulation: results of a@earch algorithm with delay
compensation. The different initial time indicatkee different curve has different delay value.
The auto-focusing system with a longer delay hasoae serious over-focus situation that
takes additional time to focus. The linear predittsolves the error problem brought by delay
and is independent to the length of delay. Howavstill cannot reduce the extra time caused
by serious over-focused phenomenon. Although olaydeompensation algorithm can work
under variable length of delay, the performancewfsearch algorithm suffers severely with

long delay.

59



4.6 Finite Sate M achine Approach

In the previous section, we describe each elenie our dynamic auto-focusing
algorithms separately and then integrate all ofrtivto a system. The finite state machine is

a popular model for running a software simulatiom thardware implementation.

Table 4.3 State transition table

1(F) 2 3(F) 4 5(F) 6 7(F) 8 S
1 |00xOx |10xOx | 11xOx | ---- 01x0x | ---- XXXIX| ----
2 |10x0x | 00x0x | ---- 11x0x | ---- 01XOx | XXXIX| ----
3 |[XXxX1 |---- 0xx00 | ---- 10x00
4 |----- XXXxX1 | ---- 0xx00 | ---- ---- ---- 10x00
5 |[xxx01 |---- 1xx00 | Oxx00 | ---- XXXIX | ===
6 [--—-- xxx01 |1xx00 | ---- == 0xx00 | XXXIX | ----
7 IXXXX1 |---- XXIX0! | -=-- XX0x0 | ----
8 |- XXXX1 | ---- o e XX1X0 | ---- xxX0x0 | ----
S XXXX1 |- [ |- T S | eeee | e XXX0

Table 4.3 shows the state transition table wf auto-focusing system, which the row
means the current state and the column means ttiestades. The transition condition is
composed of six parameters: [fs_ neg fs _pos fs_msawut fs cha fs_idl]. 0 means the
parameter is not set, 1 means set, and x meansadwa. The parameter setting is as follow:
fs_neg: Set when the focus value is decreasingdétaal is discussed in section 4.3.
fs_pos: Set when the focus value is increasing.detail is discussed in section 4.3.
fs_max: Set when the current focus value is theimaix.
fs_out: Set when the focus position is overflow.
fs_cha: Set when the scene change or zoom chapgers All the parameter and data will

be reset when it is set. The detail is discussegdation 4.2.
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The focus position increases (far) when the stateber is odd. The focus position decreases
when the state number is even. The state S is @afmtate that means the auto-focusing

process is done tentatively. The initial stateatednined to state 1.

Compute paramtets (Focus
— Value, Scene Change
Measurement, Zoom Position ---.)

l

Compute The
Adjust Focus 1 ranistion
Position as State Condition

Action l
A

Y
Adjust The State Scene Change?
N
X t
If State is S Losk T el
Position

Figure 4.27 Flowchart of our auto-focusing systeitha finite state machine approach.

Fig 4.27 shows flowchart of our auto-focusing systeith a finite state machine
approach. The original part of search algorithmeaced with the state machines that each
state has a unique action for adjusting the foastipn. In order to handle the dynamic
issues, the system computes much more parametergaslates these parameters into the
state condition form. A new state S that locksfthais position helps the system to maintain
the focus position temporarily, which allows ougaithm works as well as the traditional
ones for the still image. If the algorithm cannetdatisfied, we can revise the state transition

table with a more complex state condition form dd aew states.
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Figure 4.28 The state‘di"ag_ram for our auto-focusiysiem.

Figure 4.28 shows the state diagram deriveth fi@ble 4.6. The states are designed
based on the basic climbing algorithm logics with €nhance transition conditions. Here we
can understand our algorithm more clearly. For edanfocusing a still image from a near
initial position works as moving state 1 -> 5 ->%4 S sequentially. Considering a scene
change case, the state moves as state 1 -> 5>$4>(scene change happens) 1 ->2 ->6 ->
3 ->S. The robust state table maintains the sealgbrithm working under the dynamic

situations.
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Chapter 5

Simulation Results

In this chapter, we provide the experimental reswolit our proposed algorithm. We
roughly examine our dynamic auto-focusing algoritimhe previous chapter. For checking
the robustness of our algorithms, we give a sedésexperiments with our overall
auto-focusing system. We choose the Sobel opeaatour focus value metrics and divide our
focus window into 16 rectangles with maximum vakedection. The search algorithm is
integrated with a finite state machine approacte Géptured image data type is 24-bit BMP
and the size is 720x480. Because ‘we only computalgarithm in gray level, we do a color
transform in our algorithm first:

In the previous chapter, we mainly ‘analyze the wiutpsponse to show the efficiency of
our auto-focusing algorithm. In<order to help. umst@nding our algorithm performance and

results, the following section will show the cagtiimages at certain process segment.

5.1 Simulation for Sill Image

The still image is the basic and common auta$mg case. It is merited that our
auto-focusing system can handle this problem. Egub.l, 5.2, and 5.3 show our
auto-focusing algorithm is capable of focusing $ti# image under different situation. The
initial point is set at the most far focus posititiat makes the picture very blur. We can see
that the initial pictures (a) are very blurred @he focused results (b) are quite clear. The time

it costs is average 16 cycles.
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(a) The initial picture.

(b) The focused picture after 13 cycles.

Figure 5.1 The test image “scarecrow.”
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(a) The initial picture

(b) The focused picture after 17 cycles.

Figure 5.2 The test image “paper.”
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(a) The initial picture

(b) The focused picture after 17 cycles.

Figure 5.3 The test image “fan.”
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5.2 Simulation for Scene Change:

The scene change is a dynamic auto-focusing. dagure 5.4 shows a simulation
procedure. We simulate the scene change by swgcthe reading database. It takes two

kinds of image data to simulate the scene change ca

(b) The focused picture.
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(c) The new picture with the same focus position.

(d) The new focused picture after 7 cycles.

Figure 5.4 The four test frames for a scene chamgelation

The first two pictures (a) and (b) are the famsegment as the still image simulation.
When the scene change happens, the new pictuseeémys a little blur. Our auto-focusing
algorithm detects this change and corrects themgdb a focused one. The final picture (d) is
still clear after the scene change occurs. It ctesier cycles to focus the changed picture

because the default initial focus position is therst/case.
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5.3 Simulation for Local Object Motion

The object motion is a critical dynamic autedsing problem. Figure 5.5 shows a
simulation procedure. We capture every motion sepbr and build them up into a motion
database. We simulate the local object motion hickhwng the motion database with a regular

routine.

(b) The picture at cycle 5.
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(c) The picture at cycle 10.

(d) The focused picture at cycle 17

Figure 5.5 The four test frames for a local objaction simulation.

We can see the pictures shown in Figure 5.6rbeanore and more clear even the fan is
rotating. Our algorithm does not take extra timeféusing a motion object but costs nearly
the same time as focusing the still one. The reasdhat the search algorithm handles the
motion problem and the still image the same. Owediold search algorithm is reliable and

efficiency for a local object motion case.
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5.4 Simulation for Zoom Tracking

The zoom tracking is a prediction method. Fegbil6 shows a zoom tracking procedures.
The simulation for zoom tracking case is very samtlo the scene change case but it adds a

prediction step when the zoom change occurs.

(b) The focused picture at cycle 22.
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(d) The focused zoom-in picture at cycle 36.

Figure 5.6 The four test frames for zoom tracking.

Our algorithm predicts the new focus positiomwugtaneously when the zoom position
changes. Although it is not very accurate, theypecshown in figure 5.6 (c) is quite clear. The
zoom tracking method spends less time on focusieghanged picture than the scene change
approach. It also has better performance at the-factising process. Figure 5.7 shows the
comparison between the zoom tracking and no zoaokittrg. The zoom tracking keeps the

picture much clearer than without it.
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Figure 5.7 The comparison of the zoom changed i@diatween no zoom tracking and zoom

tracking.
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Chapter 6

Conclusions

6.1 Conclusions

In this thesis, we design a dynamic auto-famgislgorithm for digital camera systems.
Our algorithm is an extension of the existing afatoasing algorithm for still image cameras.
The mainly modify the search algorithm to match thgamic requirements. Instead of
calculating the focus value metric, the search rédlym plays a more important role in
dynamic auto-focusing. A good focus value metrickesasearch algorithm easy but the
research on focus value is quite extensive. Hemge focus is to construct a robust search
algorithm for a dynamic auto-focusing system.

We choose the Sobel operator as our focus vaheSobel operator is well known and
less sensitive to the noise. Although the Sobelraipe is not a very robust focus value
metrics, it is acceptable in our auto-focusing'aystWe also test a few window selection
methods to enhance the focus value.

The search algorithm is the most important padur dynamic auto-focusing algorithm.
We implement our search algorithm using a finigestmachine, which is flexible to insert
new function states or update the current ones. f\gt propose a luminance-based
measurement for detecting scene changes. It eesaluie mean value of the picture
luminance and is quite reliable. Next, we consttierlocal object motion problem, where the
pictures change the contents somewhat but notatwesfposition. We propose new metrics
and thresholds to solve this local motion probld@ime results are reasonably successful. Yet
the third problem is the zoom tracking. We desig@ toom tracking table that predicts the
focus position with the zoom position. We also edesthe delay effect in the system. Finally,

we construct an overall system that integratethalbbove into it. We take some experimental
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results to verify our algorithm. Our dynamic autmdising algorithm can handle these

problems pretty well.

6.2 Future Work

There are still many research topics for futurekwor

Real-time implementation

Our experiment is only an offline simulation becaws$ the simulation environment limit. A
real-time system can easily verify the algorithmedily and helps adjusting the algorithms.
Robust focus value metrics

In chapter 3, we introduce a few metrics and tloigid is quite popular in the current
auto-focusing research literature. Although we db put emphasis on this part, it still plays
an important role in the auto-focusing system.

A complete 3A system

Auto-focus is a part of the 3Atalgorithm. Both Awtdnite balance and auto exposure have a
certain amount of impact on auto-focusing. Themfdris desirable to design a complete 3A

system for digital cameras.
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