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a b s t r a c t

Assume that m, n and s are integers with m ≥ 2, n ≥ 4, 0 ≤ s < n and s is of the
same parity of m. The generalized honeycomb tori GHT(m, n, s) have been recognized
as an attractive architecture to existing torus interconnection networks in parallel and
distributed applications. A bipartite graphG is bipancyclic if it contains a cycle of every even
length from 4 to |V (G)| inclusive. G is vertex-bipancyclic if for any vertex v ∈ V (G), there
exists a cycle of every even length from4 to |V (G)| that passes v. A bipartite graphG is called
k-vertex-bipancyclic if every vertex lies on a cycle of every even length from k to |V (G)|.
In this article, we prove that GHT(m, n, s) is 6-bipancyclic, and is bipancyclic for some
special cases. Since GHT(m, n, s) is vertex-transitive, the result implies that any vertex of
GHT(m, n, s) lies on a cycle of length l, where l ≥ 6 and is even. Besides, GHT(m, n, s) is
vertex-bipancyclic in some special cases. The result is optimal in the sense that the absence
of cycles of certain lengths on some GHT(m, n, s)’s is inevitable due to their hexagonal
structure.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Network topology is a crucial factor for an interconnection network since it determines the performance of the
network [1]. Stojmenovic [2] proposed variations of honeycomb tori and those honeycomb tori have been recognized as
an attractive architecture to existing torus interconnection networks in parallel and distributed applications [2–6]. Cho
and Hsu [7] proved that all these honeycomb torus networks can be characterized in a unified way, called the generalized
honeycomb torus. Recently, there have been many studies about honeycomb networks [8–13].
The cycle-embedding problem is one of the most popular research problems [14]. From the applicational point of view,

efficient algorithms and execution methods are required for communication patterns in networks. The study of certain
topological structures on network designs provides a systematic and logical analysis for the desired performance. Since
cycles in networks are useful in embedding linear arrays and rings, the existence of cycles with various lengths on networks
has been largely investigated. (See [15–18] and their references.) A graphG is pancyclic if it contains cycles of all lengths from
3 to |V (G)|. A graph G is k-pancyclic if it contains cycles of all lengths from k to |V (G)|. A graph G is called vertex-pancyclic
(resp. edge-pancyclic) if every vertex (resp. edge) lies on a cycle of every length from 3 to |V (G)|. Moreover, G is called k-
vertex-pancyclic if every vertex lies on a cycle of every length from k to |V (G)|. These concepts are defined for bipartite graphs
similarly. Let H = (B ∪W , E) be a bipartite graph, where B ∪W = V (H) and E ⊆ {(u, v) | u ∈ B and v ∈ W }. Obviously,
H has no odd cycles. We say that H is bipancyclic if it has cycles of all even lengths from 4 to |V (G)|. H is k-bipancyclic if
it contains cycles of all even lengths from k to |V (G)|. H is called vertex-bipancyclic (resp. edge-bipancyclic) if every vertex
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Fig. 1. The graphGHT(8, 10, 4). Notice that the dotted lines are crossing edges. For example, the edges ((1, 0), (2, 0)) and ((5, 0), (6, 0)) are the horizontal
edges while the edges ((0, 0), (7, 4)) and ((0, 8), (7, 2)) are crossing edges.

(resp. edge) lies on a cycle of every even length from 4 to |V (G)|. Also, H is called k-vertex-bipancyclic if every vertex lies on
a cycle of every even length from k to |V (G)|. There are numerous studies about the pancyclicity of hypercubes and their
variants [19,20], products of graphs [21–23], and some classes of graphs [24,25]. Vertex-pancyclicity and edge-pancyclicity
were discussed in [26–29], and many related studies were published recently [30–36].
In this article, we prove that the generalized honeycomb tori are vertex-bipancyclic in some special cases and contain

cycles of length l, where l ≥ 6 is an even integer, in most cases. More specifically, let GHT(m, n, s) be a generalized
honeycomb torus, where m ≥ 3 is an integer, n ≥ 6 is an even integer, and s ≥ 0 is an integer with m + s even. We
study the existence of cycles of different lengths in GHT(m, n, s) with various combinations of m, n, and s. The result is
optimal in the sense that the absence of cycles of certain lengths on some GHT(m, n, s)’s is inevitable due to their hexagonal
structure.

2. Preliminaries

An interconnection network is represented by a graph with vertices and edges symbolizing the processors and
communication links between processors, respectively. In this paper, a network is represented as an undirected graph.
For the graph definition and notation we follow [37]. G = (V , E) is a graph if V is a finite set and E is a subset of
{(u, v) | (u, v) is an unordered pair of V }. We say that V is the vertex set and E is the edge set of G. Two vertices u and
v are adjacent if (u, v) ∈ E. A path is represented by 〈v0, v1, v2, . . . , vk〉. We also write the path 〈v0, v1, v2, . . . , vk〉 as
〈v0, P1, vi, vi+1, . . . , vj, P2, vt , . . . , vk〉, where P1 is the path 〈v0, v1, . . . , vi−1, vi〉 and P2 is the path 〈vj, vj+1, . . . , vt−1, vt〉.
Hence, it is possible to write a path 〈v0, v1, P, v1, v2, . . . , vk〉 if the length of P is zero. If a path Q = 〈v0, v1, v2, . . . , vk〉,
then Q−1 denotes the path 〈vk, vk−1, . . . , v1, v0〉. A cycle is a path of at least three vertices such that the first vertex and the
last vertex are identical. Let C be a cycle and P a path. We use |C | to denote the total number of distinct vertices/edges on C
and |P| the total number of distinct edges of P .
Throughout this paper, we use the following notations. For any two positive integers r and d, [r]d denotes r (mod d). Let

m, n and s be positive integers with m ≥ 2, n ≥ 4, n and m + s are even. The generalized honeycomb torus GHT(m, n, s) is
the graph with the vertex set {(i, j) | 0 ≤ i < m, 0 ≤ j < n} such that (i, j) and (k, l) with i ≤ k are adjacent if they satisfy
one of the following conditions:

1. (k, l) = (i, [j± 1]n);
2. 0 ≤ i ≤ m− 2, i+ j is odd and (k, l) = (i+ 1, j);
3. i = 0, j is even, and (k, l) = (m− 1, [j+ s]n).

Any edge satisfying the second condition is called a horizontal edge, and any edge satisfying the third condition is called a
crossing edge. Fig. 1 gives an illustration of the graph GHT(8, 10, 4). For example, the edges ((1, 0), (2, 0)) and ((5, 0), (6, 0))
are the horizontal edges while the edges ((0, 0), (7, 4)) and ((0, 8), (7, 2)) are crossing edges. Fig. 2 shows that crossing
edges can become horizontal edges in different layouts for the same graph. Obviously, any generalized honeycomb torus is
a 3-regular bipartite graph. Moreover, any generalized honeycomb torus is vertex-transitive [7].

3. Bipancyclicity of GHT(m, n, s)

Let Ci denote a cycle in GHT(m, n, s) with |Ci| = i, where i ∈ {4, 6 + 2t | 0 ≤ t ≤ mn
2 − 3}. Since GHT(m, n, s) consists

of hexagons, the existence of C4 is missed in all cases except for n = 4. In addition, GHT(m, n, s) contains mn vertices, so
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Fig. 2. The graph GHT(3, 8, 3). Notice that crossing edges in (a) can become horizontal edges in (b).

we should construct cycles of even lengths from 6 tomn. Yang et al. [13] proved that every generalized honeycomb torus is
Hamiltonian. Therefore, we only need to construct cycles of even lengths from 6 to mn− 2. That is, we should construct Ci
in GHT(m, n, s), where i = 6+2t for 0 ≤ t ≤ mn

2 −4. Obviously, {2t : 0 ≤ t ≤
mn
2 −4} = {4t : 0 ≤ t ≤

mn
4 −2}

⋃
{4t+2 :

0 ≤ t ≤ mn
4 −3}. Thus, it suffices to construct C6+4t for 0 ≤ t ≤

mn
4 −2 and C8+4t for 0 ≤ t ≤

mn
4 −3 for the 6-bipancyclicity

of GHT(m, n, s). In the following, some path patterns in generalized honeycomb tori are defined in order to construct Ci with
various i.

I t(i, j) = 〈(i, j), (i, [j+ 1]n), (i, [j+ 2]n), . . . , (i, [j+ t − 1]n), (i, [j+ t]n)〉, t ∈ Z;
Q0,t(i, j) = 〈(i, j), I t(i, j), (i, [j+ t]n), (i+ 1, [j+ t]n), I−t(i+ 1, [j+ t]n), (i+ 1, j)〉, t ∈ Z;
Q1(i, j) = 〈(i, j), (i, [j− 1]n), (i− 1, [j− 1]n), (i− 1, j), (i− 2, j)〉;
Q2(i, j) = 〈(i, j), (i, [j− 1]n), (i− 1, [j− 1]n)〉;
P0,t(i, j) = 〈(i, j),Q0,2t+1(i, j), (i+ 1, j),Q2(i+ 1, j), (i, j− 1)〉, t ∈ N;
P1,t(i, j) = 〈(i, j),Q0,2t+1(i, j), (i+ 1, j), (i+ 2, j)〉, t ∈ Z;
P2,t(i, j) = 〈(i, j), P1,t(i, j), (i+ 2, j), (i+ 2, j− 1)〉, t ∈ N.

3.1. m is even

Lemma 1. GHT(4, 4, s) is bipancyclic.

Proof. By brute force, we construct cycles with different lengths in GHT(4, 4, s) below.

C4 = 〈(0, 1), I4(0, 1), (0, 1)〉;
C6 = 〈(0, 1), (0, 2), P0,0(0, 2), (0, 1)〉;
C8 = 〈(0, 0), P1,0(0, 0), (2, 0),Q0,1(2, 0), (3, 0), (0, 0)〉, if s = 0;
or C8 = 〈(0, 1), (0, 2), (3, 0), (3, 1), (2, 1),Q1(2, 1), (0, 1)〉, if s = 2;
C10 = 〈(0, 1), (0, 2), P2,0(0, 2), (2, 1),Q1(2, 1), (0, 1)〉;

C12 = 〈(0, 0),Q0,3(0, 0), (1, 0), (Q1(1, 0))−1 , (3, 0), (0, 0)〉, if s = 0;
or C12 = 〈(0, 0), P1,1(0, 0), (2, 0), (2, 1), (3, 1), (3, 2), (0, 0)〉, if s = 2;
C14 = 〈(0, 1), (0, 2), P1,0(0, 2), (2, 2), P0,0(2, 2), (2, 1),Q1(2, 1), (0, 1)〉.

The lemma is proved. �

Lemma 2. GHT(m, 4, s) contains Cl for l ∈ {4, 2m+ 4t|0 ≤ t ≤ m
2 − 1} ∪ {6+ 4t|0 ≤ t ≤ m− 2}, if m ≥ 6.

Proof. It is obvious that GHT(m, n, s) consists of many hexagons and any two adjacent hexagons have two vertices in
common. This structure implies the usage of a crossing edge in C4+4t of GHT(m, 4, s). The smallest size of Cl with [l]4 ≡ 0 is
2m. By brute force, we construct cycles with various lengths in GHT(m, 4, s) as follows.
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C4 = 〈(0, 0), I4(0, 0), (0, 0)〉;

C2m+4t =
〈
(0, 0),

(
P1,1(0, 0)

)t
, (2t, 0),

(
P1,0(2t, 0)

)m
2 −1−t , (m− 2, 0),Q0,1(m− 2, 0), (m− 1, 0), (0, 0)

〉
for s = 0;

C2m+4t =
〈
(0, 0),

(
P1,1(0, 0)

)t
, (2t, 0),

(
P1,0(2t, 0)

)m
2 −1−t , (m− 2, 0), (m− 2, 1), (m− 1, 1), (m− 1, 2), (0, 0)

〉
for s = 2;

C6+4t =

〈
(0, 1), (0, 2),

(
P1,0(0, 2)

)b t2c ,(2⌊ t
2

⌋
, 2
)

, P2[t]2,0

(
2
⌊
t
2

⌋
, 2
)

,

(
2
⌊
t
2

⌋
+ 2[t]2, 1

)
,

Q1

(
2
⌊
t
2

⌋
+ 2[t]2, 1

)b t2 c+[t]2
, (0, 1)

〉
.

This proves the lemma. �

Lemma 3. GHT(m, n, s) is 6-bipancyclic for m ≥ 4, n ∈ {6, 8}.

Proof. By brute force, we construct cycles with various lengths in GHT(m, n, s) for n ∈ {6, 8} as follows.
Case 1. For GHT(m, 6, s).
Case 1.1. C6+4t for 0 ≤ t ≤ 3

2m− 2:

C6+4t = 〈(0, 1), (0, 2),
(
P1,1(0, 2)

)b t+13 c , (2b t+13 c, 2),4, (2b t+13 c, 1),
(
Q1(2b t+13 c, 1)

)b t+13 c , (0, 1)〉, where 4 is
P0,[t]3(2b

t+1
3 c, 2) if [t + 1]3 6≡ 0 and is empty otherwise.

Case 1.2. C8+4t for 0 ≤ t ≤ 3
2m− 3:

t = 0 〈(0, 5), I4(0, 5), (0, 3), (1, 3), (1, 4), (1, 5), (0, 5)〉

t = {1, 2, 3} 〈(0, 5), I4(0, 5), (0, 3), (1, 3), (1, 2), (2, 2),4, (2, 1), (Q2(2, 1))2 , (0, 5)〉, where4 is
empty if t = 1 and is P0,t−1(2, 2) otherwise.

4 ≤ t ≤ 3
2m− 3 〈(0, 5), I4(0, 5), (0, 3), (1, 3), (1, 2), (2, 2),

(
P1,1(2, 2)

)b t−13 c , (2+ 2b t−13 c, 2),4, (2+

2b t−13 c, 1),
(
Q1(2+ 2b t−13 c, 1)

)b t−13 c , (2, 1), (Q2(2, 1))2 , (0, 5)〉, where
4 = P0,[t−2]3(2+ 2b

t−1
3 c, 2) if [t − 1]3 6≡ 0 and is empty otherwise.

Case 2. For GHT(m, 8, s).
Case 2.1. C6+4t for 0 ≤ t ≤ 2m− 2:

C6+4t = 〈(0, 1), (0, 2),
(
P1,2(0, 2)

)b t+14 c , (2b t+14 c, 2),4, (2b t+14 c, 1),
(
Q1(2b t+14 c, 1)

)b t+14 c , (0, 1)〉, where 4 =

P0,[t]4(2b
t+1
4 c, 2) if [t + 1]4 6≡ 0 and is empty otherwise.

Case 2.2. C8+4t for 0 ≤ t ≤ 2m− 3:

t = 0 〈(0, 1), I8, (0, 1)〉

t = 1 〈(0, 7), I4(0, 7), (0, 3), (1, 3), (1, 2), (2, 2), (2, 1), (Q2(2, 1))2 , (0, 7)〉

t = {2, 3, 4, 5} 〈(0, 7), I6(0, 7), (0, 5), (1, 5), I−3(1, 5), (1, 2), (2, 2),4, (2, 1), (Q2(2, 1))2 , (0, 7)〉, where
4 is empty if t = 2 and is P0,t−3(2, 2) otherwise.

6 ≤ t ≤ 2m− 3 〈(0, 7), I6(0, 7), (0, 5), (1, 5), I−3(1, 5), (1, 2), (2, 2),
(
P1,2(2, 2)

)b t−24 c ,
(2+ 2b t−24 c, 2),4, (2+ 2b t−24 c, 1),

(
Q1(2+ 2b t−24 c, 1)

)b t−24 c , (2, 1), (Q2(2, 1))2 , (0, 7)〉,
where4 is P0,[t−3]4(2+ 2b

t−2
4 c, 2) if [t − 2]4 6≡ 0 and is empty otherwise.

�

Theorem 1. Let n ≥ 10 and s ≥ 0 be even integers. GHT(4, n, s) is 6-bipancyclic if s ∈ {0, 2, 4}. And GHT(4, n, s) contains any
cycle with length l for l ∈ {6, 10+ 2t|0 ≤ t ≤ 2n− 6} if s ≥ 6. Moreover, there exists no 8-cycle in GHT(4, n, s) for s ≥ 6.

Proof. The corresponding cycles are constructed below.
Case 1. s ∈ {0, 2, 4}.
Case 1.1. C6+4t for 0 ≤ t ≤ n− 2:
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0 ≤ t ≤ n
2 − 2 〈(0, 1), (0, 2), P0,t(0, 2), (0, 1)〉

t = n
2 − 1 〈(0, 1), (0, 2), P2, n2−2(0, 2), (2, 1),Q1(2, 1), (0, 1)〉

n
2 ≤ t ≤ n− 2 〈(0, 1), (0, 2), P1, n2−2(0, 2), (2, 2), P0,[t] n2

(2, 2), (2, 1),Q1(2, 1), (0, 1)〉

Case 1.2. C8+4t for 0 ≤ t ≤ n− 3:

t = 0 for s = 0 〈(0, 0), (3, 0),
(
Q0,1(3, 0)

)−1
, (2, 0),

(
P1,0(2, 0)

)−1
, (0, 0)〉

t = 0 for s = 2 〈(0, 0), (3, 2), (Q2(3, 2))2 , (1, 0),
(
Q0,1(1, 0)

)−1
, (0, 0)〉

t = 0 for s = 4 〈(0, 0), (3, 4), (Q2(3, 4))3 , (0, 1), (0, 0)〉

1 ≤ t ≤ n
2 − 2 〈(0, n− 1), I2+2t(0, n− 1), (0, 1+ 2t), (1, 1+ 2t), I−(2t−1)(1, 1+ 2t), (1, 2), (2, 2), (2, 1),

(Q2(2, 1))2 , (0, n− 1)〉
n
2 − 1 ≤ t ≤ n− 3 〈(0, n− 1), In−2(0, n− 1), (0, n− 3), (1, n− 3), I−(n−5)(1, n− 3), (1, 2), (2, 2),

P0,[t+1] n
2
(2, 2), (2, 1), (Q2(2, 1))2 , (0, n− 1)〉

Notice that the construction of all Cl’s except for C8 in Case 1 contains no crossing edge of GHT(4, n, s) for s ∈ {0, 2, 4}.
Case 2. s ≥ 6.
It is obvious that GHT(m, n, s) consists of many hexagons and any two adjacent hexagons have two vertices in common.

Therefore, construction of cycles without crossing edges results in cycles with length 6 + 4t , 0 ≤ t ≤ n − 2, only. This
implies that the usage of a crossing edge in C8 is necessary. However, when s ≥ 6, the smallest size of Cl with [l]4 ≡ 0 is
s + 4 + [s]4 ≥ 12, as shown in Fig. 3. Thus it is impossible to have C8 in GHT(4, n, s) for s ≥ 6. On the other hand, we can
construct Cl for l ∈ {6, 10+ 2t|0 ≤ t ≤ 2n− 6} the same as in Case 1. �

Definition 1. Let fe be a function that maps ((m− 1, 2), (m− 1, 1)) in Cmn−4 of GHT(m, n, s) to 〈(m− 1, 2), (m, 2), (m, 1),
(Q0,−1(m, 1))−1, (m − 1, 1)〉 in Cmn of GHT(m + 2, n, s) and maps ((m − 1, 2), (m − 1, 1)) in Cmn−2 of GHT(m, n, s) to
〈(m−1, 2), (m, 2), (m, 1), (Q0,−1(m, 1))−1, (m−1, 1)〉 in Cmn+2 of GHT(m+2, n, s). We give an illustration in Figs. 4 and 5.

Definition 2. Let ge(k) be a function that maps ((m− 1, 2), (m− 1, 1)) in Cmn−4 of GHT(m, n, s) to 〈(m −
1, 2), (m, 2), P0,k(m, 2), (m, 1),

(
Q0,−1(m, 1)

)−1
, (m− 1, 1)〉 in Cmn+4+4k of GHT(m+ 2, n, s) and maps ((m− 1, 2), (m−

1, 1)) in Cmn−2 of GHT(m, n, s) to 〈(m − 1, 2), (m, 2), P0,k(m, 2), (m, 1),
(
Q0,−1(m, 1)

)−1
, (m − 1, 1)〉 in Cmn+6+4k of

GHT(m+ 2, n, s) for 0 ≤ k ≤ n
2 − 2. Examples are shown in Figs. 6–9.

Theorem 2. Let m ≥ 6, n ≥ 10 and s ≥ 0 be even integers. GHT(m, n, s) contains 6-cycle and all cycles with lengths l for
l ∈ {10+ 2t|0 ≤ t ≤ mn

2 − 6}. Moreover, there exists no 8-cycle in GHT(m, n, s).

Proof. We prove the theorem by the mathematical induction. For GHT(6, n, s), we can construct Cl for l ∈ {6, 10+ 2t|0 ≤
t ≤ 2n − 6} the same as in Case 1 of Theorem 1 because there involves no crossing edge in those cycles. Then with
Definitions 1 and 2, we construct Ck of GHT(6, n, s) for k ∈ {10 + 2t|2n − 5 ≤ t ≤ 3n − 6} by using fe and ge. Using the
induction hypothesis,we assumeGHT(m, n, s) contains any cyclewith length l for l ∈ {6, 10+2t|0 ≤ t ≤ mn

2 −6}. Obviously,
GHT(m+2, n, s) contains the same C6, C10, C12, . . . , Cmn−4, Cmn−2 as in GHT(m, n, s) since Cl, l ∈ {6, 10+2t|0 ≤ t ≤ mn

2 −6},
contains no crossing edge in GHT(m, n, s). Then with Definitions 1 and 2, we construct Cmn+2t of GHT(m + 2, n, s) for
0 ≤ t ≤ n− 1 by using fe and ge.
By induction, we know that GHT(m, n, s) contains any cycle with length l for l ∈ {6, 10+ 2t|0 ≤ t ≤ mn

2 − 6}. Moreover,
for the same reason as in Case 2 of Theorem 1, there exists no 8-cycle in GHT(m, n, s) for evenm ≥ 6, even n ≥ 10 and even
s ≥ 0. �

3.2. m is odd

Lemma 4. GHT(3, 4, s) is bipancyclic.

Proof. By brute force, we construct cycles with different lengths in GHT(3, 4, s) below.

C4 = 〈(0, 1), I4(0, 1), (0, 1)〉;
C6 = 〈(0, 1), (0, 2), P0,0(0, 2), (0, 1)〉;

C8 = 〈(0, 0), I3(0, 0), (0, 3), (1, 3), (1, 2), (2, 2), (2, 1), (0, 0)〉;
C10 = 〈(0, 1), (0, 2), P2,0(0, 2), (2, 1),Q1(2, 1), (0, 1)〉. �
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Fig. 3. The smallest cycle with a crossing edge in GHT(4, 12, 6) for [l]4 = 0 is C12 .

Fig. 4. Cmn−4 of GHT(m, n, s)maps to Cmn of GHT(m+ 2, n, s) in Definition 1 form is even. Example: (a) C44 in GHT(4, 12, s); (b) C48 in GHT(6, 12, s). Note
that the crossing edges are omitted in this figure, and the edges in C44 (C48 , resp.) are plotted by thick lines.

Fig. 5. Cmn−2 of GHT(m, n, s)maps to Cmn+2 of GHT(m + 2, n, s) in Definition 1 for m is even. Example: (a) C46 in GHT(4, 12, s); (b) C50 in GHT(6, 12, s).
Note that the crossing edges are omitted in this figure, and the edges in C46 (C50 , resp.) are plotted by thick lines.

Lemma 5. GHT(m, 4, s) contains Cl for l ∈ {4, 2m+ 2+ 4t|0 ≤ t ≤ m−3
2 } ∪ {6+ 4t|0 ≤ t ≤ m− 2}, if m ≥ 5.
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Fig. 6. Cmn−4 of GHT(m, n, s)maps to Cmn+4 of GHT(m + 2, n, s) in Definition 2 for m is even. Example: (a) C44 in GHT(4, 12, s); (b) C52 in GHT(6, 12, s).
Note that the crossing edges are omitted in this figure, and the edges in C44 (C52 , resp.) are plotted by thick lines.

Fig. 7. Cmn−4 of GHT(m, n, s)maps to Cmn+8 of GHT(m + 2, n, s) in Definition 2 for m is even. Example: (a) C44 in GHT(4, 12, s); (b) C56 in GHT(6, 12, s).
Note that the crossing edges are omitted in this figure, and the edges in C44 (C56 , resp.) are plotted by thick lines.

Fig. 8. Cmn−2 of GHT(m, n, s)maps to Cmn+6 of GHT(m + 2, n, s) in Definition 2 for m is even. Example: (a) C46 in GHT(4, 12, s); (b) C54 in GHT(6, 12, s).
Note that the crossing edges are omitted in this figure, and the edges in C46 (C54 , resp.) are plotted by thick lines.

Proof. It is obvious that GHT(m, n, s) consists of many hexagons and any two adjacent hexagons have two vertices in
common. This structure implies the usage of a crossing edge in C4+4t of GHT(m, 4, s). The smallest size of Cl with [l]4 ≡ 0 is
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Fig. 9. Cmn−2 of GHT(m, n, s)maps to Cmn+10 of GHT(m+ 2, n, s) in Definition 2 form is even. Example: (a) C46 in GHT(4, 12, s); (b) C58 in GHT(6, 12, s).
Note that the crossing edges are omitted in this figure, and the edges in C46 (C58 , resp.) are plotted by thick lines.

2m+ 2. By brute force, we construct cycles with various lengths in GHT(m, 4, s) as follows.

C4 = 〈(0, 0), I4(0, 0), (0, 0)〉;

C2m+2+4t =
〈
(0, 0),

(
P1,1(0, 0)

)t
, (2t, 0),

(
P1,0(2t, 0)

)m−1
2 −t , (m− 1, 0), I−3(m− 1, 0), (m− 1, 1), (0, 0)

〉
;

C6+4t =

〈
(0, 1), (0, 2),

(
P1,0(0, 2)

)b t2 c ,(2⌊ t
2

⌋
, 2
)

, P2[t]2,0

(
2
⌊
t
2

⌋
, 2
)

,

(
2
⌊
t
2

⌋
+ 2[t]2, 1

)
,

Q1

(
2
⌊
t
2

⌋
+ 2[t]2, 1

)b t2 c+[t]2
, (0, 1)

〉
.

The lemma is proved. �

Lemma 6. GHT(m, n, s) is 6-bipancyclic for m ≥ 3, n ∈ {6, 8}.

Proof. By brute force, we construct cycles with various lengths in GHT(m, n, s) for n ∈ {6, 8} as follows.
Case 1. For GHT(m, 6, s).
Case 1.1. C6+4t for 0 ≤ t ≤ 3

2m−
5
2 :

C6+4t = 〈(0, 1), (0, 2),
(
P1,1(0, 2)

)b t+13 c , (2b t+13 c, 2),4, (2b t+13 c, 1),
(
Q1(2b t+13 c, 1)

)b t+13 c , (0, 1)〉, where 4 is
P0,[t]3(2b

t+1
3 c, 2) if [t + 1]3 6≡ 0 and is empty otherwise.

Case 1.2. C8+4t for 0 ≤ t ≤ 3
2m−

5
2 :

t = 0 〈(0, 0), (0, 5), (1, 5), (1, 4), (1, 3), (0, 3), I−3(0, 3), (0, 0)〉

1 ≤ t ≤ 3
2m−

5
2 〈(0, 0), (0, 5), (Q1(0, 5))−b

t
3 c , (2b t3c, 5), (2b

t
3c + 1, 5), (2b

t
3c + 1, 4),4, (2b t3c + 1, 3),(

P1,−2(2b t3c + 1, 3)
)−b t3 c , (1, 3), (0, 3), I−3(0, 3), (0, 0)〉, where4 is

(2b t3c + 2, 4), (2b
t
3c + 2, 3),

(
Q0,−2[t]3+1(2b

t
3c + 2, 3)

)−1 if [t]3 6≡ 0 and is empty
otherwise.

Case 2. For GHT(m, 8, s).
Case 2.1. C6+4t for 0 ≤ t ≤ 2m− 2:

t = {0, 1} 〈(0, 1), (0, 2), P0,t(0, 2), (0, 1)〉

2 ≤ t ≤ 2m− 2 〈(0, 0), (0, 7), (Q1(0, 7))−b
t−1
4 c , (2b t−14 c, 7), (2b

t−1
4 c + 1, 7), (2b

t−1
4 c + 1, 6),4,

(2b t−14 c + 1, 5),
(
P1,−3(2b t−14 c + 1, 5)

)−b t−14 c , (1, 5), (0, 5), I−5(0, 5), (0, 0)〉, where4 is
(2b t−14 c + 2, 6), (2b

t−1
4 c + 2, 5),(

Q0,−2[t−1]4+1(2b
t−1
4 c + 2, 5)

)−1
if [t − 1]4 6≡ 0 and is empty otherwise.
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Case 2.2. C8+4t for 0 ≤ t ≤ 2m− 3:

t = 0 〈(0, 1), I8(0, 1), (0, 1)〉

t = {1, 2} 〈(0, 1), I3(0, 1), (0, 4), P2,t−1(0, 4), (2, 3), (Q2(2, 3))2 , (0, 1)〉

t = 3 〈(0, 1), (0, 0), (0, 7), (1, 7), (1, 6), (2, 6), (2, 5),Q1(2, 5), (0, 5), (0, 4), (0, 3), (1, 3),
(1, 2), (2, 2), (2, 1),Q1(2, 1), (0, 1)〉

4 ≤ t ≤ 2m− 3 〈(0, 1), (0, 0), (0, 7), (Q1(0, 7))−b
t
4 c , (2b t4c, 7), (1+ 2b

t
4c, 7), (1+ 2b

t
4c, 6),4,

(1+ 2b t4c, 5),
(
P1,−3(1+ 2b t4c, 5)

)−(b k4 c−1) , (3, 5), (2, 5),Q1(2, 5), (0, 5), (0, 4), (0, 3),
(1, 3), (1, 2), (2, 2), (2, 1),Q1(2, 1), (0, 1)〉, where4 is
(2+ 2b t4c, 6), (2+ 2b

t
4c, 5),

(
Q0,−2[t]4+1(2+ 2b

t
4c, 5)

)−1 if [t]4 6≡ 0 and is empty
otherwise.

�

Theorem 3. Let n ≥ 10 be an even integer and s ≥ 1 be an odd integer. GHT(3, n, s) is 6-bipancyclic if s ∈ {1, 3, 5}. And
GHT(3, n, s) contains any cycle with length l for l ∈ {6, 10+ 2t|0 ≤ t ≤ 3

2n− 6} if s ≥ 7. Moreover, there exists no 8-cycle in
GHT(3, n, s) for s ≥ 7.

Proof. The corresponding cycles are constructed below. Cl1 of GHT(3, n, s) for l1 ∈ {6, 10+ 2t|0 ≤ t ≤
n
2 − 5} is the same

as in GHT(4, n, s). And Cl2 of GHT(3, n, s) for l2 ∈ {n+ 2+ 2t|0 ≤ t ≤ n− 2} is constructed as follows.

Case 1. s ∈ {1, 3, 5}.

Case 1.1. C8:

C8 = 〈(0, 0), I3(0, 0), (0, 3), (1, 3), (1, 2), (2, 2), (2, 1), (0, 0)〉, if s = 1;

C8 =
〈
(0, 0), I3(0, 0), (0, 3),

(
Q s−1

2
(0, 3)

)− s−12
, (2, s), (0, 0)

〉
, if s = {3, 5}.

Case 1.2. Cn+2+4t for 0 ≤ t ≤ n
2 − 1:

t = 0 〈(0, 0), (0, n− 1), (1, n− 1), (1, n− 2), (1, n− 3), (0, n− 3), I−(n−3)(0, n− 3), (0, 0)〉

1 ≤ t ≤ n
2 − 1 〈(0, 0), (0, n− 1), (1, n− 1), (1, n− 2), (2, n− 2), (2, n− 3),(

Q0,−2[t] n
2
+1(2, n− 3)

)−1
, (1, n− 3), (0, n− 3), I−(n−3)(0, n− 3), (0, 0)〉

Case 1.3. Cn+4+4t for 0 ≤ t ≤ n
2 − 2:

t = 0 〈(0, 0), (0, n− 1), (1, n− 1), (1, n− 2), (1, n− 3), (0, n− 3), (0, n− 4), (0, n− 5),
(1, n− 5), (1, n− 6), (1, n− 7), (0, n− 7), I−(n−7)(0, n− 7), (0, 0)〉

1 ≤ t ≤ n
2 − 2 〈(0, 0), (0, n− 1), (1, n− 1), (1, n− 2), (2, n− 2), (2, n− 3),Q1(2, n− 3), (0, n− 3),

(0, n−4), (0, n−5), (1, n−5), (1, n−6),4, (1, n−7), (0, n−7), I−(n−7)(0, n−7), (0, 0)〉,

where4 is (2, n− 6), (2, n− 7),
(
Q0,−2[t−1] n

2
+1(2, n− 7)

)−1
if t 6= 1 and is empty

otherwise.

Notice that the construction of all Cl’s except for C8 in Case 1 contains no crossing edge of GHT(3, n, s) for s ∈ {1, 3, 5}.

Case 2. s ≥ 7.
It is obvious that GHT(m, n, s) consists of many hexagons and any two adjacent hexagons have two vertices in common.

Therefore, construction of cycles without crossing edges result in cycles with length 6 + 4t , 0 ≤ t ≤ 3
2n − 2, only. This

implies that the usage of a crossing edge in C8 is necessary. However, when s ≥ 7, the smallest size of Cl with [l]4 ≡ 0 is
s+ 3+ [s+ 3]4 ≥ 12, as shown in Fig. 10. Thus it is impossible to have C8 in GHT(3, n, s) for s ≥ 7. On the other hand, we
can construct Cl for l ∈ {6, 10+ 2t|0 ≤ t ≤ 3

2n− 6} the same as in Case 1. �

Definition 3. Let fo be a function that maps ((m− 1, n− 2), (m− 1, n− 3)) in Cmn−4 of GHT(m, n, s) to 〈(m −
1, n − 2),Q0,1(m − 1, n − 2), (m, n − 2), (m, n − 3), (m − 1, n − 3)〉 in Cmn of GHT(m + 2, n, s) and maps
((m− 1, n− 2), (m− 1, n− 3)) in Cmn−2 of GHT(m, n, s) to 〈(m−1, n−2),Q0,1(m−1, n−2), (m, n−2), (m, n−3), (m−
1, n− 3)〉 in Cmn+2 of GHT(m+ 2, n, s). Examples are given in Figs. 11 and 12.
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Fig. 10. The smallest cycle with a crossing edge in GHT(3, 14, 7) for [l]4 = 0 is C12 .

Fig. 11. Cmn−4 of GHT(m, n, s)maps to Cmn of GHT(m+2, n, s) in Definition 3 form is odd. Example: (a) C32 in GHT(3, 12, s); (b) C36 in GHT(5, 12, s). Note
that the crossing edges are omitted in this figure, and the edges in C32 (C36 , resp.) are plotted by thick lines.

Fig. 12. Cmn−2 of GHT(m, n, s)maps to Cmn+2 of GHT(m + 2, n, s) in Definition 3 for m is odd. Example: (a) C34 in GHT(3, 12, s); (b) C38 in GHT(5, 12, s).
Note that the crossing edges are omitted in this figure, and the edges in C34 (C38 , resp.) are plotted by thick lines.

Definition 4. Let go(k) be a function that maps ((m− 1, n− 2), (m− 1, n− 3)) in Cmn−4 of GHT(m, n, s) to 〈(m − 1, n −
2),Q0,1(m−1, n−2), (m, n−2), (m+1, n−2), (m+1, n−3),

(
Q0,−(2k+1)(m+ 1, n− 3)

)−1
, (m, n−3), (m−1, n−3)〉 in

Cmn+4+4k of GHT(m+2, n, s) andmaps ((m− 1, n− 2), (m− 1, n− 3)) in Cmn−2 of GHT(m, n, s) to 〈(m−1, n−2),Q0,1(m−
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Fig. 13. Cmn−4 of GHT(m, n, s)maps to Cmn+4 of GHT(m + 2, n, s) in Definition 4 for m is odd. Example: (a) C32 in GHT(3, 12, s); (b) C40 in GHT(5, 12, s).
Note that the crossing edges are omitted in this figure, and the edges in C32 (C40 , resp.) are plotted by thick lines.

Fig. 14. Cmn−4 of GHT(m, n, s)maps to Cmn+8 of GHT(m + 2, n, s) in Definition 4 for m is odd. Example: (a) C32 in GHT(3, 12, s); (b) C44 in GHT(5, 12, s).
Note that the crossing edges are omitted in this figure, and the edges in C32 (C44 , resp.) are plotted by thick lines.

1, n− 2), (m, n− 2), (m+ 1, n− 2), (m+ 1, n− 3),
(
Q0,−(2k+1)(m+ 1, n− 3)

)−1
, (m, n− 3), (m− 1, n− 3)〉 in Cmn+6+4k

of GHT(m+ 2, n, s) for 0 ≤ k ≤ n
2 − 2. We give illustrations in Figs. 13–16.

Theorem 4. Let m ≥ 5 and s ≥ 1 be odd integers and n ≥ 10 be an even integer. GHT(m, n, s) contains 6-cycle and all cycles
with lengths l where l = 10+ 2t for 0 ≤ t ≤ mn

2 − 6. Moreover, there exists no 8-cycle in GHT(m, n, s).

Proof. Weprove the theoremby themathematical induction. For GHT(5, n, s)wecan construct Cl for l ∈ {6, 10+2t|0 ≤ t ≤
3
2n− 6} the same as in Case 1 of Theorem 3 because there involves no crossing edge in those cycles. Then with Definitions 3
and4,we constructCk ofGHT(5, n, s) for k ∈ {10+2t| 32n−5 ≤ t ≤

5
2n−6}byusing fo and go. Using the induction hypothesis,

we assume that GHT(m, n, s) contains any cyclewith length l for l ∈ {6, 10+2t|0 ≤ t ≤ mn
2 −6}. Obviously, GHT(m+2, n, s)

contains the same C6, C10, C12, . . . , Cmn−4, Cmn−2 as in GHT(m, n, s) since Cl, l ∈ {6, 10 + 2t|0 ≤ t ≤ mn
2 − 6}, contains no

crossing edge in GHT(m, n, s). Then with Definitions 3 and 4, we construct Cmn+2t of GHT(m+ 2, n, s) for 0 ≤ t ≤ n− 1 by
using fo, go.
By induction, we know that GHT(m, n, s) contains 6-cycle and all cycles with lengths l for l ∈ {10+ 2t|0 ≤ t ≤ mn

2 − 6}.
Moreover, for the same reason as in Case 2 of Theorem 3, there exists no 8-cycle in GHT(m, n, s) for oddm ≥ 5, even n ≥ 10
and odd s ≥ 1. �

4. Conclusion

In this article, we study the vertex-bipancyclicity of the generalized honeycomb tori. In Section 3, we prove that
GHT(m, n, s) is 6-bipancyclic, and is bipancyclic for some special cases. Moreover, some GHT(m, n, s) contains cycles with
length l for any even integer l ≥ 6 except 8 due to its hexagonal structure. Since GHT(m, n, s) is vertex-transitive, our
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Fig. 15. Cmn−2 of GHT(m, n, s)maps to Cmn+6 of GHT(m + 2, n, s) in Definition 4 for m is odd. Example: (a) C34 in GHT(3, 12, s); (b) C42 in GHT(5, 12, s).
Note that the crossing edges are omitted in this figure, and the edges in C34 (C42 , resp.) are plotted by thick lines.

Fig. 16. Cmn−2 of GHT(m, n, s)maps to Cmn+10 of GHT(m+ 2, n, s) in Definition 4 form is odd. Example: (a) C34 in GHT(3, 12, s); (b) C46 in GHT(5, 12, s).
Note that the crossing edges are omitted in this figure, and the edges in C34 (C46 , resp.) are plotted by thick lines.

theorems in Section 3 imply that given any vertex v of GHT(m, n, s), there exists a cycle with the required lengths that
contains v. The results are summarized in the following tables and are shown to be optimal in the sense that the absence of
cycles of certain lengths on some GHT(m, n, s)’s is inevitable due to their hexagonal structure. Let G be GHT(m, n, s).
Whenm is even:

n \m m = 4 m ≥ 6
n = 4 Lemma 1. G is vertex-bipancyclic. Lemma 2. G contains Cl for

l ∈ {4, 2m+ 4t, 6+ 4t|t ∈ N}.
n = {6, 8} Lemma 3. G is 6-vertex-bipancyclic. Lemma 3. G is 6-vertex-bipancyclic.
n ≥ 10 Theorem 1. G is 6-vertex-bipancyclic for

s ∈ {0, 2, 4}; G contains a 6-cycle and is
10-vertex-bipancyclic for s ≥ 6.

Theorem 2. G contains a 6-cycle and is
10-vertex-bipancyclic.

Whenm is odd:

n \m m = 3 m ≥ 5
n = 4 Lemma 4. G is vertex-bipancyclic. Lemma 5. G contains Cl for

l ∈ {4, 2m+ 2+ 4t, 6+ 4t|t ∈ N}.
n = {6, 8} Lemma 6. G is 6-vertex-bipancyclic. Lemma 6. G is 6-vertex-bipancyclic.
n ≥ 10 Theorem 3. G is 6-vertex-bipancyclic for

s ∈ {1, 3, 5}; G contains a 6-cycle and is
10-vertex-bipancyclic for s ≥ 7.

Theorem 4. G contains a 6-cycle and is
10-vertex-bipancyclic.
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