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摘摘摘摘    要要要要    

 

 

針對正交時空區塊碼應用於多輸入多輸出之擇頻通道上的問題，吾人於本文中提出了一

個嶄新且完整的推導方式；另著墨於此架構下所能達到的最大之多重增益－包括來自於

天線以及多重路徑所貢獻者。藉由多次的模擬實驗結果發現，吾人可以得到一個於實際

考量下為合理的假設，進而由此推導錯誤率分析。錯誤率分析的推導結果證實了吾人所

提出之架構確實是有能力達到完整的多重增益。另一方面，藉由接收端的頻域等化機制

以及所提出之傳輸架構，吾人可以進一步找到基於訓練機制時最佳的通道估測所需之相

對應的訊號設計模式。本論文之結果為線性等化器能否達到完整的多重增益提供了一個

正面的佐證。 
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Estimation for Orthogonal Space-Time Block Coded System via MIMO 
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Abstract 

 

We propose an instructive derivation for the generalized block-level orthogonal 

space-time block encoder, capable of achieving full spatial diversity via frequency- 

selective fading environment provided that channel order is known. Instead of dealing 

with special case and then extending the results intuitively, we provide an alternative by 

starting with the general signal model with multiple transmit and multiple receive 

antennas, from which a general form of block-level orthogonality is established. In 

particular, transmit diversity with more than two transmit antennas can be achieved 

without compromise by means of frequency-domain equalization, in contrast to the 

QO-STBC-based approach. Pairwise error probability analysis is derived, under certain 

assumption which is numerically supported by simulation results, for analytical 

verifications of our claim on full diversity, inclusive of transmit-receive diversity and the 

multipath one. Moreover, the encoder structure enables us to generalize a 

training-based channel estimation technique, originally proposed for flat-fading scenario, 

to the frequency-selective fading scenario. Surprisingly we even obtain similar 

optimality criteria for optimal training block design which in our case, the signal block 

are fixed as OSTBC-based and the design derivation reduces to derive optimal power 

constraint over the training blocks. The optimality criteria for the training blocks are 

easy to satisfy when randomness of signal constellation is not a concern. Simulation 

results validate our discussion of the behaviors of the least-squares and linear MMSE 

channel estimates. 
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Chapter 1 

 

Introduction 

 

 

1.1 Motivation and Background 

 

Orthogonal space-time block code (OSTBC) was introduced in [1] for combating 

channel fading by exploiting diversities in multiple-input-multiple-output (MIMO) 

antenna configuration. By virtue of orthogonal design, the symbol decoding relies on 

only linear processing with relatively lower computational complexity than its trellis 

counterpart, provided that the channel state information is available. Hence both blind 

channel estimation and joint symbol detection using OSTBC architecture are well 

studied in flat-fading scenario. 

 

Various transmission schemes and algorithms based on suitably manipulated 

orthogonality conditions have been proposed for flat-fading environment[19],[20]. In [19], 

joint signal detection for a flat-fading MIMO communication under OSTBC scheme was 

studied, where the exponent, embedded with OSTBC structure, of the closed-form 

log-likelihood was to be minimized in the maximum likelihood (ML) sense. A 

non-polynomial time (NP-hard) ML exhaustive search was cleverly reformulated and 

relaxed as a convex optimization problem which had been well studied theoretically and 

numerically. The relaxation is known as semidefinite relaxation (SDR) with 

corresponding numerical algorithm tailored in [21]. The resultant SDR-ML proposed by 

Ma et al. performs substantially better than the cyclic ML method[22]. It is noteworthy 

that the reformulation itself exploited the orthogonality of OSTBC, by which a near 

optimum signal detection with relatively lower computational cost than the optimal 

ML/sphere decoding was achieved. In [20], a closed-form channel estimation technique 

based on a variant of the generic orthogonality of OSTBC was developed. This variant 

was first derived by Alex B. Gershman et al. in [23], where real parts and imaginary 

parts of the received signal model were separated with discretion. The closed-form 

channel estimation, unlike the other approaches such as subspace method, suffers from 

sign ambiguity only due to its special real-valued formulation of signal models. Several 
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sufficient antenna configurations for unique channel estimate were studied numerically. 

The uniqueness of the channel estimate was determined by the discrepancy between the 

eigenvectors of a certain objective which was formed by exploiting the orthogonality. 

For those configurations where uniqueness failed, i.e., algebraic multiplicity of 

eigenvectors greater than 1, the authors proposed a diagonal precoder to alienate the 

eigenvectors. Benefited from the orthogonality, this can be surprisingly easily done by 

assigning the power weighting coefficients with sufficient discrepancy in an ad-hoc 

manner.  

 

However, it remains challenging for the above mentioned methods to be effectively 

extended to frequency-selective fading environment which is a more practical 

consideration. By effective extension we mean the algorithm on which the estimation or 

decoding is based should enjoy either full or partial diversity due to orthogonal nature 

of the coding itself. To apply the OSTBC structure to frequency- selective case without 

compromising the code orthogonality, E. Lindskog and A. Paulraj [7] cleverly combine 

the cyclic-prefix (CP) mechanism with time-reversal operation on symbol blocks, 

bringing the space-time concept to “block-level”. It was then incorporated with 

Alamouti scheme[8] and known as time-reversed Alamouti-like (TR-Alamouti) 

scheme[9]. The TR-Alamouti scheme is unique in that it enjoys full 2-fold transmit 

diversity and nearly full transmission rate, when neglecting the CP overheads, at the 

same time. A general block-level orthogonal space-time block code was first proposed by 

Z. Liu et al.[14] for consideration regarding preserving orthogonality over frequency- 

selective channels with more than two transmit antennas, where the generalized 

complex orthogonal design (GOSTBC) [1] was adopted with ZP assistance for 

mitigating channel distortion. On the other hand, there have been extensive studies 

based on the 2-fold diversity scheme with frequency-domain equalization (FDE), such 

as [11],[12] and [13]. As for a general FDE scheme having more than 2 transmit antennas, 

a compromising method based on quasi-orthogonal STBC (QO-STBC) [10] was 

proposed in [2], where the nearly full rate was preserved at the cost of achieving only 

partial spatial diversity. Achieving full spatial diversity, particularly based on FDE and 

cast into the general structure in [14], was reported in [26]. However, the derivation in 

[26] is based on the 2-fold structure as a start and then generalized to multiple-antenna 

scenario intuitively by introducing the block-level concept in [14]. It is as instructive as 

important to build up the signal model with multiple transmit and multiple receive 

antennas, from which a general form of block-level orthogonality will be established. 
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Aside from the derivation issue, we will counterbalance the deduction in [26] that the 

“CP-only” scheme cannot exploit full multipath diversity, by giving a PEP analysis. 

Although a premise which is numerically supported by simulations must be met for 

justification of our PEP analysis, it does shade some light on extending the discussions 

in [17] to a more general scheme. 

 

Also, optimal training design for MIMO communications in either flat-fading or 

frequency-selective fading environments is an important topic in practice. A pilot 

symbol-aided linear MMSE-based training scheme with optimal/orthogonal training is 

considered in [15]. In [16], the discussion in [15] was generalized to take advantage of 

space-time diversity. Nonetheless, none of which particularly considered the OSTBC 

class, and hence the optimal designs were quite involved. It will be shown that with the 

structure of training blocks fixed as OSTBC, the optimal training design can be 

simplified to optimal power allocation design. 

 

1.2 Thesis Overview 

 

In this thesis, we introduce a generalized FDE technique based on structure of [14] and 

by extending the training-based channel estimation approach in [3] we arrive at similar 

design criteria for optimal/orthogonal training as those obtained in [3] which considers 

flat-fading scenario. We propose an extended block-level OSTBC scheme capable of 

achieving full spatial and multipath diversities over frequency-selective fading channels 

when more than two transmit antennas involved by using FDE. What differs from [26] 

is that instead of starting from the 2-fold special case, we provide a new and instructive 

derivation based on general multiple-antenna signal model. The proposed scheme has 

nearly 1/2 symbol rate when discarding CP overheads. Pairwise error probability (PEP) 

analysis for demonstrating full spatial and full multipath diversities will be given. It will 

also be shown that since the signal model resembles that in flat-fading scenario, the 

optimal training designs such as those developed by M. Biguesh et al.[3] can be 

generalized to the frequency-selective fading scenario in a straightforward manner. The 

extended training-based channel estimation is optimal in least-squares (LS) sense in 

frequency-domain under a given power constraint, provided that a power criterion is 

satisfied. Also a time-domain linear MMSE channel estimation technique can be 

developed in a similar fashion as [3]. Adopting the Alamouti scheme for the construction 
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of the proposed encoder with proper changes in dimension and scalar factor makes the 

2-fold diversity scheme a special case. 

 

In the next chapter, we will propose a transmission scheme and outline that entire 

system model. Post-processing including the subsequent FDE for data transmission and 

the training-based channel estimation for training mode will be introduced in chapter 3 

and 5, respectively. Also, the optimality conditions for achieving lowest possible NMSE 

will be derived accordingly. In chapter 4, we will derive our PEP analysis. Simulation 

results of NMSE vs. SNR for training-based channel estimation are discussed in chapter 

6. 

 

1.3 Notations 

 

The following notations are adopted throughout the thesis: P*, PT and PH denote 

conjugate, transpose and conjugate-transpose of matrix P, respectively. A⊗B stands for 

the kronecker product of matrix A and B. Let Re{P} and Im{P} stand for the real and 

imaginary parts of matrix P, respectively. Let Tr{P} and vec(P) denote the trace and 

the vectorization of matrix P, respectively. For N∈y � , Diag(y) N N×∈ �  stands for an N 

by N diagonal matrix with y on its main diagonal. For N N×∈A � , Diag(A) N N×∈ �  

stands for the vector whose ith entry is the ith diagonal entry of A. For a matrix 
N M×∈A � , [ ]

ij
A  denotes the entry at the ith row-and-jth column position of A .  

P(i:j,m:n) denotes an extracted submatrix consists of from ith to jth rows and from mth to 

nth columns of matrix P. P(:,m:n) indicates that all rows ranging from mth to nth columns 

are referred. Similarly define P(i:j,:). The symbol F  is preserved for N by N 

normalized discrete-time Fourier transform (DFT) matrix, with the (m,n)th entry of F  

being [ ]
2 ( 1)( 1)

1

m n
j

N
mn N

e
π − −

−
=F ,  1 ,m n N≤ ≤ . 
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Chapter 2 

 

System Model 

 

 

In this chapter, we will introduce a transmission scheme based on a block-level 

extension of OSTBC. As a preliminary, we will also review some basic properties of 

orthogonal design of space-time block codes, which are to be employed for introducing 

block-level generalized orthogonal space-time block code (BGOSTBC) encoder as 

depicted in Fig. 2. The mechanism of CP insertion and CP removal for combating 

inter-block interference (IBI) will be reviewed at the bottom of this chapter. 

 

2.1 System Configuration 

 

As depicted in Fig. 1, the overall system consists of a BGOSTBC encoder followed by 

CP insertions at the transmitting end while the receiving end comprises CP removal, 

DFT and the subsequent channel estimation plus FDE. Let Mt and Mr denote the 

number of transmit antennas and receive antennas, respectively. Assume that the 

channel order is L (L+1 taps) for all the subchannels and known a priori. We assume the 

CP length is exactly L. Let N be the block length and 1N L≥ + . The information 

symbol blocks to be transmitted are accumulated over K blocks, each one of which will 

be sent by a certain transmit antenna during a specific time epoch with CP insertion. 

The block ordering is set up according to the proposed BGOSTBC encoder which 

occupies 2K time epochs for transmitting KN symbols. Each time epoch lasts for N+L 

symbol periods, where the redundant L symbol duration accounts for the CP insertion. 

At the receiving end, the received signal blocks over the entire 2K time epochs are 

buffered after CP removals. Then the equivalent IBI-free received blocks are Fourier 

transformed. With the outputs at the DFT system block available, we can either 

acquire channel estimation in training mode or perform FDE on the transmitted 

information symbols. 

 

2.1.1 BGOSTBC Encoder 
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In this subsection, the referred time epoch lasts for N symbol periods only since no CP 

insertion involved. Now suppose we have collected K symbol blocks, 1 2,  ,  ,  Kc c c� . 

Let C = 1 2 K
 
  c c c� , where N

k ∈c �  denotes the kth information symbol block to 

be transmitted, whose nth symbol is denoted by ( )
kc n , 0 1,  1n N k K≤ ≤ − ≤ ≤ . The 

transmission scheme of the BGOSTBC encoder can be regarded as a forward 

transmission mode followed by a reversed transmission mode, each of them occupying 

exactly K epochs. In the latter mode each incoming signal block is time-reversed and 

conjugated prior to transmission, while in the former mode transmission is carried out 

with blocks unmodified.  

 

Now, let us define the encoder output. The encoder has single serial input and parallel 

Mt outputs. Let 
( ) Np
m ∈s �  denote the signal block transmitted from the mth encoder 

output path during the pth time epoch. Collecting encoder output over 2K time epochs 

and across Mt encoder output paths yields a matrix of dimension 2NK by Mt, whose 

((p-1)N+1:pN,m)th block-entry is ( )p
ms  by definition. The so obtained matrix is 

essentially a block-level extension of generalized complex orthogonal design[1]. See also 

[14]. Let us define BG  as the overall output at the BGOSTBC encoder stacking across 

2K epochs and herein list some properties of it: 

 

                t* 2NK M

1

,
k k

K

B A k B k

k

×

=

 ⊗ + ⊗ ∈  ∑G c d� �Χ ΧΧ ΧΧ ΧΧ Χ                    (2.1) 

t2K M

where 

(0) (1) ( 1) .

( ) ((- ) ),  0 1.

,  , 1 .

,  1
        .

,  1

,  1
.

,  1

,

k k

t

k l

l k

t

k l

l k

k l t t

T

k k k k

k k N

A B

M
T

A A T

A A

M
T

B B T

B B

T

A B M M

d d d N

d n c n n N

k K

k l K

k l K

k l K

k l K

×

×

 = −  
= ≤ ≤ −

∈ ≤ ≤

 ≤ = ≤= − ≤ ≠ ≤
 ≤ = ≤= − ≤ ≠ ≤

=

d

I

I

0

�

�Χ ΧΧ ΧΧ ΧΧ Χ

Χ ΧΧ ΧΧ ΧΧ Χ
ΧΧΧΧΧΧΧΧ

Χ ΧΧ ΧΧ ΧΧ Χ
Χ ΧΧ ΧΧ ΧΧ Χ

Χ ΧΧ ΧΧ ΧΧ Χ  1 , .k l K

 ≤ ≤

 

 

Specifically 
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  and k

k k k

t

K K KA

A B A
K K KK M

×

××

     = =       

0 I
X X

I 00
ΧΧΧΧ

G
,                   (2.2) 

 

where tM K

kA

×∈ �G  are generic constituent matrices of certain OSTBC design of 

dimensions depending of choices of K and Mt. See also Appendix A3 and [1] for a 

detailed description about the construction of constituent matrices of OSTBC. The 

time-reversal, ( ) ((- ) )k k Nd n c n= , is carried out via the modulo-N operation defined as 

(- )Nn N n= −  for 1 1n N≤ ≤ −  and (- ) 0Nn =  for n = 0. Note that ,
k kA B ∈Χ ΧΧ ΧΧ ΧΧ Χ  

t2K M×� , 1 k K≤ ≤ , are constituent matrices of a certain GOSTBC determined by 

choice of (K,Mt).  and 
k kA BΧ ΧΧ ΧΧ ΧΧ Χ  are non-overlapping matrices consisting of only ones 

and zeros up to sign changes, and are responsible for designating space-time ordering of 

the forward transmission mode and the reversed one, respectively, i.e., ( )p
ms  takes kc  if 

kA pm

   ΧΧΧΧ  is one, for 1 p K≤ ≤ . Similarly, ( )p
ms  takes *

kd  if 
kB pm

   ΧΧΧΧ  is one, for 

1 2K p K+ ≤ ≤ . 

 

2.1.2 BGOSTBC Encoder (with CP Insertions) 

 

Note that in Fig. 2, (K,Mt) = (4,3) and CP insertions following the encoding have been 

taken into account. The mth encoder output path is followed by a CP insertion whose 

output is connected to the mth transmit antenna, for all values of m. CP is inserted prior 

to the transmission of each symbol block for mitigating the channel distortion. From 

here on each time epoch lasts for N+L symbol periods. Since the constituent matrices 

simply serve as designating the space-time ordering for signal blocks, CP insertions 

directly apply to ( ),  1 2p

m p K≤ ≤s , 1 tm M≤ ≤ . Let M=N+L. Then the signal blocks 

collected at the output of the CP insertions over 2K time epochs and across Mt transmit 

antennas can be represented in matrix from as 

 
�

( )

( ) ( )

2 CP

*
CP CP

1

        

             =
k k

B K B

K

A k B k

k=

⊗

 ⊗ + ⊗  ∑

G I I G

I c I d

�

Χ ΧΧ ΧΧ ΧΧ Χ
 

                    � � t* 2MK M

1

= ,
k k

K

A k B k

k

×

=

 ⊗ + ⊗ ∈  ∑ c d �Χ ΧΧ ΧΧ ΧΧ Χ                    (2.3) 

 

where 



8 

    

�

�

M
CP

* * M
CP

( ) M N
CP

          ;

          ;

           , the CP insertion matrix.

k k

k k

L N L L

N

× − ×

∈

∈

 
  ∈ 
 

c I c

d I d

0 I
I

I

� �

� �

� �

 

 

As a building block, next we review the transmission of a single signal block with CP 

through a frequency-selective fading channel. 

 

2.2 Block Transmission and IBI-free Model upon CP Removal 

 

Let the sequence ( ),  ( 1), ,  ( 1)m m ms pM s pM s pM M+ + −� � �
�  denotes the symbols 

transmitted from mth antenna during pth time epoch. Let [( ) ( )  ( 1)p
m m ms pM s pM +s
� � �
�   

M( 1)
T

ms pM M + − ∈
�

� � . By noticing ( ) ( )
CP

p p
m m=s I s
�

, we know that ( )p
ms
�

 takes kc
�
 if 

kA pm

   ΧΧΧΧ  is one, for 1 p K≤ ≤ . Similarly, ( )p
ms
�

 takes �*kd  if 
kB pm

   ΧΧΧΧ  is one, for 

1K + ≤  2p K≤ . 

 

2.2.1 MIMO Frequency-selective Fading Channel and Noise Model 

 

We consider a frequency-selective channel where the channel impulse response of L+1 

taps between mth transmit antenna and jth receive antenna is defined as jmh �  

L+1(0) (1) ( )
T

jm jm jmh h h L  ∈  � � . Throughout the thesis, we assume independence 

between channel taps for all ,  1 ,  1jm r tj M m M≤ ≤ ≤ ≤h . Assume that jmh  is 

circular symmetric Gaussian distributed, i.e., 2
1( , )jm h Lσ +h 0 I∼ CN . Hence the real and 

imaginary parts of each of the entries of jmh  are i.i.d. zero-mean Gaussian with 

variance 20.5 hσ  each, i.e., 2(0,0.5 )hσN . Assume that the channel remains fixed during 

2K time epochs. Let the sequence ( ),  ( 1), ,  ( 1)j j jpM pM pM Mη η η+ + −�  denotes 

the additive noise samples, circular symmetric Gaussian distributed, at the jth receiver 

during the pth time epoch. Hence, the noise vector defined as ( ) ( )p

j j pMη�η  

M( 1) ( 1)
T

j jpM pM Mη η + + − ∈� �  assumes 2( , )w Mσ0 ICN . 

 

2.2.2 Block Transmission via MIMO Frequency-Selective Fading Channels 
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Let the sequence ( ),  ( 1), ,  ( 1)j j jv pM v pM v pM M+ + −�  denote the received 

symbols at the jth receiver during the pth time epoch. Define ( ) ( ) ( 1)p

j j jv pM v pM= +v   

M( 1)
T

jv pM M + − ∈� � . For 0 1n M≤ ≤ − , 1 rj M≤ ≤ , 

 

1 0

( ) ( ) ( ) ( ).
tM L

mj jm j

m l

v pM n h l s pM n l pM nη
= =

+ + − + +∑∑ �
�  

 

We can write ( )p
jv as 

 

( ) ( )( ) ( 1)

1

tM
p tr IBI pp p

m mj jm jm j

m

−

=

 = + + ∑v H s H s
� �

η , 

where 

(0) 0 0 0

(1) (0) 0 0

(1)
;

( ) 0

(0) 0

0 0 ( ) (1) (0)

0 ( ) (2) (1)

0 0 ( ) (2)

0 0

0 0 0 ( )

0

0 0

jm

jm jm

jm
tr

jm

jm

jm

jm jm jm

jm jm jm

jm jm

IBI

jm

jm

h

h h

h

h L

h

h L h h

h L h h

h L h

h L

                       

H

H

� �

�

� 	 	 �
�

� �

� 	

�

� �

� �

� 	 �
�

�

� � � �

�

.

0 0 0

                       

 

 

After CP removal, we have the IBI-free received signal model, ( ) ( )p p

j N L N j×
 
  y 0 I v� = 

N( ) ( 1) ( 1)
T

j j jy pN y pN y pN N + + − ∈  � � , where ( ),  1jy i pN i pN N≤ ≤ + − , 

are the received symbols at the jth receiver during the pth time epoch after CP removals. 

 

( )

( )

( )( ) ( 1)

1

( ) ( 1) ( 1)

    
t

p

j j j j

M
tr IBI pp p

m mN L N jm N L N jm N L N j

m

v pM L v pM L v pM M

−
× × ×

=

 = + + + + −  

     = + +          ∑

y

0 I H s 0 I H s 0 I

�

� �
η
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( ) ( ) ( )

1

( ) ( )

1

( ) (0) 0 0 0

0 0

0 ( )
    

0 0

0

0 0 0 ( ) (0)

     = ,

t

t

jm jm

M
jm L N L L p p

m j

m N

jm jm

M
p p

jm m j

m

h L h

h L

h L h

× −

=

=

 
 
 
 
 
      = +       
 
 
 
  

+

∑

∑

0 I
s w

I

H s w

� �

	 � �

	 	

� 	 	

� 	 	

� � �

 

 

where ( ) ( )p p

j N L N j×
 
  w 0 I� η  and 

 

(0) 0 0 0 ( ) (1)

(1) (0) 0

(0) 0 ( )
.

( ) ( 1) (0) 0

( ) 0

0 0 0 ( ) ( 1) (0)

jm jm jm

jm jm

jm jm

jm

jm jm jm

jm

jm jm jm

h h L h

h h

h h L

h L h L h

h L

h L h L h

 
 
 
 
 
 
 
 − 
 
 
 
 −  

H

� �

� � 	 	 �

� 	 	
�

� �

� � 	 	 � 	

� �

 

 

Let ( )
N

1 1=
T

T
jm jm N L× − −

  ∈  h h 0 � . We note that jmH  is an N by N circulant matrix with 

its first column being jmh . It follows that, after CP removal, the signal received at the 

jth receive antenna on the pth time epoch is IBI-free and given by, for 1 2p K≤ ≤ , 

 

                   ( ) ( ) ( )

1

 .
tM

p p p

j jm m j

m=

= +∑y H s w                           (2.4) 

 

Let us define the following terms which will be used through out the following 

chapters: 

 

t

t

r t

r t

M (L+1)
1 2

M N
1 2

M M (L+1)
1 2

M M N
1 2

t

t

r

r

T
T T T

j j j jM

TT T T
j j j jM

T
T T T

all M

TT T T
all M

   ∈       ∈      ∈      ∈    

h h h h

h h h h

h h h h

h h h h

� � �

� � �

� � �

� � �

.                  (2.5) 
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Chapter 3 

 

Frequency-Domain Equalization 

 

 

In this chapter, we propose a generalized FDE scheme based on block-level extension of 

generalized complex orthogonal designs (GOSTBC). The extended block-level OSTBC 

scheme with more than two transmit antenna is capable of achieving full transmit- 

receive diversity using FDE over frequency-selective channels. This shows an alternative 

to the block-level extension resorting to QO-STBC[2], which can indeed achieve perfect 

FDE in more-than-two transmit antenna scenario but at the cost of additional hardware 

complexity accounting for adders. Aside from this complexity drawback, its spatial 

diversity is halved. 

 

3.1 Overall Frequency-Domain Received Signal Model 

 

In the subsequent discussion, we will only derive the received signal model at the jth 

receive antenna as all receivers have the same signal model except for different channel 

impulse responses. First recall that ( )p
ms  in (2.4) takes kc  if 

kA pm

   ΧΧΧΧ  is one, for 

1 p K≤ ≤  and takes *
kd  if 

kB pm

   ΧΧΧΧ  is one, for 1 2K p K+ ≤ ≤ . With the above 

observations, we have the following received signal model after collecting the IBI-free 

received signal blocks over 2K time epochs (Without loss of generality, we have assumed 

the transmission started from time epoch index 1 and collect the received blocks all the 

way up to index 2K) 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

' (1) (2) ( ) ( 1) (2 )

(1) (2) ( ) ( 1) (2 ) '
2

1

t

T
T T T T TK K K

j j j j j j

M T
T T T T TK K K

K jm m m m m m j

m

+

+

=

 
  

 = ⊗ +  ∑

y y y y y y

I H s s s s s w

� � �

� �   

 

( ) '
2

1

(:, ) ,
tM

K jm B j

m

m
=

= ⊗ +∑ I H G w                                     (3.1) 

 

where ( ) ( ) ( )' (1) (2) (2 )
TT T TK

j j j j
 =   

w w w w�  denotes the stacked white noises over 2K 
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time epochs.  

 

3.1.1 Space-Time Combining Using Signal DFT’s 

 

Define ( ) ( ),  1 2p p

j j p K≤ ≤y�Y F , ( )' '
2j K j⊗I y�Y F  and ( )' '

2j K j⊗I w�W F . So 

performing block-wise DFT on '
jy  in (3.1) leads to 

 

( ) ( ) ( ) ( ) ( )

( )( ) ( )

' (1) (2) ( ) ( 1) (2 )

'
2 2 2

1

   (:, )
t

T
T T T T TK K K

j j j j j j

M

K K jm B K j

m

m

+

=

 =   

= ⊗ ⊗ + ⊗∑ I I H G I w

� �Y Y Y Y Y Y

F F

 

( )( ) '
2

1

(:, ) .
tM

K jm B j

m

m
=

= ⊗ +∑ I H GF W                           (3.2) 

 

See the tailored version for 2-fold diversity in [9],[26]. Since jmH  is circulant, we can 

decompose it by the DFT matrix as follows: ( ),  ,H
jmjm jm jm Diag N= Λ Λ =H hF F F  

for all values of j and m. Let k kc�X F . Since kd  is obtained from kc  by conjugated 

time reversal, we have[24, pp. 123-124], * *
kk =d XF , 1 k K≤ ≤ . Hence we can rewrite 

(3.2) as 

 

( )( )

( )( )( )

( ) ( ){ }

( ) ( ){ }

' '
2

1

* '
2

1 1

* '

1 1

'*

1 1

 (:, )

    (:, ) (:, )

    (:, ) (:, )

    (:, ) (:, ) .

t

t

k k

t

k k

t

k k

M

j K jm B j

m

MK

K jm A k B k j

k m

MK

A jm k B jm k j

k m

MK

k kA jm B jm j

k m

m

m m

m m

m m

=

= =

= =

= =

= ⊗ Λ +

= ⊗ Λ ⊗ + ⊗ +

= ⊗ Λ + ⊗ Λ +

= ⊗ Λ + ⊗ Λ +

∑

∑∑

∑∑

∑∑

I G

I c d

c d

Χ ΧΧ ΧΧ ΧΧ Χ

Χ ΧΧ ΧΧ ΧΧ Χ

Χ ΧΧ ΧΧ ΧΧ Χ

Y F W

F W

F F W

WX X

 

 

Based on (2.2), we have 

 

( )
( )

' '1

*
1 1 1

(:, )
.

(:, )

t

k

k

MK
kA jm NK

j j

k m NK kA jm

m

m

×

= = ×

    ⊗ Λ    = + +       ⊗ Λ      
∑∑ 0

0

G
Y W

G

X

X
    (3.3) 

 

  Define ( ) ( )' '* 2KN(0 : 1) ( : 2 1) ,
T

TT

j j jKN KN KN
 − − ∈  

� �Y Y Y  then we have 
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( )
( )
1

*
1 1 1

(:, )

(:, )

t

k

k

MK
kA jm NK

j j

k m NK kA jm

m

m

×

= = ×

    ⊗ Λ    = + +    ⊗ Λ       
∑∑ 0

0

G
Y W

G

X

X
 

        *1

1 1 1

(:, )
   .

(:, )

t

k

k

MK
A K

kjm jm j

k m K A

m

m
×

= = ×

           = ⊗ Λ + ⊗ Λ +                
∑ ∑ 0

0
X

G
W

G
        (3.4) 

 

Note that the definition of jY  follows from the reversed transmission mode by virtue of 

GOSTBC. Let ( ) ( )1

1

(:, ) *
(:, )

1

t
Ak K

K Ak

M
m

jk jm jmm
m

×

×
=

 ⊗ Λ + ⊗ Λ  ∑ 0
0O �
G

G
, 1 2

T
T T T

K
 
  � �X X X X  

and 2KN KN
1 2j j j jK

× Λ ∈  O O O� � � . We can then rewrite (3.4) more compactly as, 

for 1 rj M≤ ≤ , 

 

j j j= Λ +Y WX .                               (3.5) 

 

Equation (3.5) represents the frequency-domain input-output relation between the jth 

receive antenna and the transmit antennas, where ,   and j jΛ X W  are embedded with 

knowledge of channel state information (CSI), of transmitted signal blocks and of 

channel noise at the jth receive antenna, respectively. Let 1 2 r

T
T T T

M
 =   �Y Y Y Y  

r2KNM∈ � . By stacking the received signals in (3.5) across Mr receive antennas, we arrive 

at the following MIMO channel model in frequency domain 

 

= Λ +Y WX ,                                (3.6) 

 

where 1 2 r

T
T T T

M
 =   �W W W W  and r2KNM KN

1 2 r

T
T T T

M

× Λ Λ Λ Λ ∈  � � �  is 

the equivalent frequency-domain MIMO channel matrix for block transmission. 

 

3.1.2 Frequency-Domain Equalization with Perfect CSI 

 

Let 
 �and + += Λ = ΛY W WX  and assume that ( )rank KNΛ = . Hence HΛ Λ  is 

invertible, and the Moore-Penrose pseudo-inverse of Λ  can be written as +Λ = 

( ) r
1 KN 2KNMH H− ×Λ Λ Λ ∈ � . So by pre-multiplying both sides of (3.6) by the linear 

equalizer +Λ , we have 
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 �= +WX X ,                                  (3.7) 

 

where 
X  contains the decoded DFT’s of the transmitted signal blocks. Therefore the 

transmitted blocks can be recovered through FDE. It is seen from (3.7) that by 

nonsingularity of HΛ Λ , FDE can be achieved up to a zero-mean equalization error term 

�W  when perfect CSI is available. The proposed BGOSTBC achieves block-level 

orthogonality in frequency domain, that is, HΛ Λ  is a diagonal matrix and diagonally 

loaded with diversity weightings. More precisely, we have the following results. 

 

Theorem 3.1 
1 1

2
r tM M

H H

K jm jm

j m= =

  Λ Λ = ⊗ Λ Λ   
∑∑I .  

(Proof: See Appendix A1.) 

       �  

 

Remark 3.1  With perfect CSI, the FDE can be carried out efficiently. By 

efficiency we mean the involved computation for matrix inverse ( ) 1H −
Λ Λ  reduces 

to merely computing the reciprocals of each of the diagonal entries of HΛ Λ . This 

can be seen from Theorem 3.1 that HΛ Λ  is diagonal. 

 

Remark 3.2  The double summation of the elementary square block of HΛ Λ  

implicitly indicates that the full MrMt-fold spatial diversity is achieved through the 

proposed FDE scheme (See also chapter 5 for an explicit validation of full diversity 

via PEP analysis). Notice that had the encoder been realized with QO-STBC, the 

system would enjoy halved spatial diversity by carefully decoupling the received 

signals upon DFT transform[2]. The QO-STBC is more redundant than OSTBC in 

nature by inspection and relies on additional arithmetic operations for exploiting 

quasi-orthogonality at the receiving end, with approximately full transmission rate 

though. 

 

Remark 3.3  Equation (3.3) is hereby regarded as a building block as we will 

exploit more of it towards the discussion of training-based channel estimation in 

chapter 5. Such discussion is as practical as essential to applying the OSTBC to the 

frequency-selective fading environment. Our proposed scheme can be adopted to 

generalize the channel estimation techniques in [3] to the frequency-selective fading 
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scenario in a quite straightforward manner, in contrast to [16], with similar 

conclusion on optimal training design obtained in [3]. 

 

Remark 3.4  By adopting the Alamouti scheme for the construction of BG  with 

proper changes in dimension and scalar scaling factor makes the 2-fold diversity 

FDE (Alamouti-like) scheme a special case. 

 

Remark 3.5  Notice that the FDE behind (3.7) is based on the premise that 

( )rank KNΛ = , and hence ( )Hrank KNΛ Λ = . This in turn requires that 

1 1

r tM M
H

jm jm

j m

rank N
= =

  Λ Λ =   
∑∑  be satisfied as we can see from Remark 3.1. Notice 

that each of the diagonal entries of H

jm jmΛ Λ  is nonnegative. To proceed further, let 

us define ( ) ( ) ( ) N0 0 1
T

jm jm jm jm jmh h h N = − ∈  
h h
 
 
 
� � �F , where ( )jmh n
  

is the thn  entry of the DFT, 0 1n N≤ ≤ − , 1 rj M≤ ≤  and 1 tm M≤ ≤ . 

   

Theorem 3.2  If there exist at least one pair of values ( )* *,j m , *1 rj M≤ ≤ , 

*1 m≤ ≤Mt, such that ( )* *

2

0j mh n >
 , 0 1n N≤ ≤ − , then ( )rank KNΛ =  holds. 

                                                                     �  

   

Let us denote the sufficient condition in Theorem 3.2 as (c1.R). That is, if 

there is a subchannel whose transfer function is free from zeros at the frequencies 
2 n
Nj

e
π

, 0 1n N≤ ≤ − , then HΛ Λ  is nonsingular. The condition is very weak and is 

generically satisfied. It is interesting to consider the following special case. Suppose 

( )* *

2

0j mh n >
 , for 0 1n N≤ ≤ −  while *
1,  for 1jm N rj j M×= ≤ ≠ ≤h 0
 , 1≤  

*
tm m M≠ ≤ . Consequently equation (3.4) becomes 

 

{ }
1

K

kj jk j

k=

= +∑ OY WX  with ( ) ( )*
1

* * * **
1

(:, )

(:, )

Ak K

K Ak

m H

jk j m j mm

×

×

 ⊗ Λ + ⊗ Λ 
 

0
0O �

G

G
. 

   

By stacking across all Mr receive antennas, we have Λ  with the block-level 

orthogonality that ( )* * * *2H H

K j m j m
Λ Λ = ⊗ Λ ΛI , which clearly lacks of spatial 

diversity, compared to (3.6) whose subchannels are all active. Intuitively, the 

decoded signal 
 += Λ YX  becomes much more erroneous without the spatial 
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diversity than with any. The above scenario arises when our MIMO channel model 

degenerates to a single-input-single-output (SISO) frequency-domain equivalent. 

So far, even though we consider a scenario which is more likely than (c1.R) to occur, 

such situation is far from common, not to mention that only one pair of values 

( )* * * *, ,  1  and 1r tj m j M m M≤ ≤ ≤ ≤  such that ( )* *

2

0j mh n >
 , 0 1n N≤ ≤ − . 

This is why we call (c1.R) a weak condition as it can be easily satisfied in practice. 

 

Notice that the reason why we are able to recover the transmitted symbols even 

under the above mentioned harsh situations lies in that the space-time redundancy 

transmitted a signal block through every transmit antennas over different time 

epochs. Even though the MIMO channels degenerates to an SISO channel, all the 

transmitted blocks can still manage to the single receiver, provided that the 

reception lasts for 2K time epochs. 
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Chapter 4 

 

Pairwise Error Probability Analysis 

 

 

In this chapter, we will derive upper bounds for the average pairwise error probability 

(PEP) for the FDE-based scheme. The essential assumption under which the derivation 

is justified would be stated with numerical support. Our perspective reveals that at high 

SNR, the proposed system dose have the potential of delivering maximum possible 

spatial as well as multipath diversity. 

 

4.1 PEP Analysis for Suboptimal Detection Problem 

 

First, we derive an upper bound for the average PEP, assuming that the decoding 

consists of a linear equalization followed by an symbol-wise quantization into the signal 

constellation A . See also [11] and [17]. To see that, let us formulate the detection 

problem as follows. Based on (3.6), we have = +cY WΩ  with the matrix �Ω  

( ) r2KNM KN
K

×Λ ⊗ ∈I �F  being responsible for yielding the frequency-domain output of 

the time-domain input signal blocks KN
1 2

T
T T T

K
  ∈  c c c c� � � . Hence we can 

address the ML-detection problem as follows: 

 

                     
KN

2
argmin  ML

∈
= −

c

c c�
A

Y Ω ,                         (4.1) 

 

where MLc�  is the optimal decoded symbol block in ML sense. However, this ML 

exhaustive search yields infeasible computational cost of order 
KN

A  for practical 

values of K and N, where A  denotes size of the employed constellation. So we seek a 

suboptimal linear equalization approach. Note that W  is a white Gaussian vector 

since DFT serves as a unitary operation only. Let us define KNHΛ ∈� �Z Y , 

� KNHΛ ∈� �W W  and KN KNH ×Λ ∈� �Θ Ω . Then we can rewrite (3.6) as 

 

                            �= +cZ WΘ .                             (4.2) 
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We assume ( )rank KNΛ = . Since K ⊗I F  is of full rank, ( )rank KN=Θ  by 

definition of Θ . Hence the inverse 1−
Θ  exists and can be used as a linear equalizer. 

Let � 1−=Z ZΘ  denote the output of the linear equalizer 1−
Θ , then from (4.2) we 

readily arrive at 

 

                           � �1−= +cZ WΘ .                             (4.3) 

 

Notice that the diversity gain weighting has been normalized at the output of 1−
Θ  and 

hence the detection problem can be formulated with respect to the employed 

constellation. Based on signal model of (4.3), we obtain an suboptimal detection 

problem: 

 

�
KN 2

argmin  ,
∈

= −
c

c c�
A

Z                           (4.4) 

 

where c� is an estimate of c  after equalization. Note that the so obtained estimate 

minimizing the metric in (4.4) is suboptimal since the underlying noise is no longer 

white and its covariance depends on the matrix 1 H− ΛΘ . We see that minimizing the 

metric in (4.4) amounts to a symbol-wise hard-decision into A  since �
2

− cZ  is the 

sum of KN nonnegative terms and each of which can be minimized with respect to an 

entry of c , i.e., minimization on symbol-level. Therefore, using 1−
Θ  as an equalizer 

and (4.4) as the detector amounts to having a linear equalization scheme followed by a 

hard decision on each entry of �Z  into the constellation A . It is noteworthy that the 

computational cost of (4.4) is linear in composite block length KN, which is 

computationally cheaper than that of (4.1). 

 

  The PEP analysis considers the probability that a symbol block KN∈c A  is 

transmitted while another c
  is detected in the minimum-distance perspective. Given 

the channel realization allh , and hence the matrix Λ , the conditional PEP is defined as 

 

[ ] � �
2 2

Pr Pr - -all
 → = < Λ  

c c h c c
 
 Z Z .                   (4.5) 

 

Note that proving that the average PEP has maximum diversity is equivalent to proving 

that the error rate performance exhibits maximum diversity, by virtue of the union 

bound[9]. For this purpose, let us define 
2−c c
�D  and ( )

2− −e c c c c
�


 
�  to be 
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the Euclidean distance between c  and c
 , as well as the corresponding normalized 

difference, respectively. Let �( ){ }1Re
H

ξ − e
�

� WΘ [18, pp. 508], then (4.5) becomes 

 

[ ]Pr Pr .
2

all ξ
 
 → = > Λ
  

c c h

D

                      (4.6) 

 

As the variable ξ , when conditioned on channel realizations, is a zero-mean Gaussian 

random variable, the error probability in (4.6) is completely determined by the variance 
2
ξσ . To compute 2

ξσ , first let us write ( )2 rKM= ⊗IW F w  for notational purpose, 

where w  is related to the white noise '
jw  in (3.1) by ( )' 0 : 1

T
T T

j KN = −  w w��w , 

( )*'

mod
: 2 1j N

KN KN −= −w w�� . Then we can factorize �( )1 H− e
�

WΘ  as H e�w , where 

( )( )1
2 r

H
H

KM

− Λ ⊗e I e
�

� � FΘ . The variance is computed as follows: 

 

{ } �( ){ }
{ }{ }
{ } { }{ }
{ } { }{ }
{ } { }( ) { } { }( ){ }

2
2 2 1

2

2

2

Re

                  Re

                  Re Re

  Im Im

2 Re Re Im Im .

H

H

T

T

T T

E E

E

E

E

E

ξσ ξ −   = Λ = Λ    

= Λ

 = Λ +  

  Λ +  

Λ

e

e

e

e

e e

�

�

�

�

� �

WΘ

w

w

w

w w

 

 

Notice that since w  is white, the entries of w  are i.i.d. circular symmetric Gaussian, 

with real part and imaginary part of each of the entries being 2(0, 0.5 )wσN  distributed. 

Also notice that { } { }Re Re
T

e�w  and { } { }Im Im
T

e�w  are statistically independent of 

each other by virtue of the circular nature of w . For notational purpose, let [ ]
i

y  

denotes the ith entry of a vector y . So we can rewrite the above equation as 

 

{ } { }{ } { } { }{ }
{ }[ ] { } { }[ ] { }

{ } { }[ ]{ } { } { }[ ]{ }

2 22

2 22 2

1 1

2 2
2 22 2

1 1

Re Re Im Im

   Re Re Im Im

   Re Re Im Im

r r

r r

T T

KNM KNM

i ii i
i i

KNM KNM

i ii i
i i

E E

E

E E

ξσ

= =

= =

   = Λ + Λ      

             = + Λ              

   = Λ + Λ   

∑ ∑

∑ ∑

e e

e e

e e

� �

� �

� �

w w

w w

w w
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{ } { }

( )

( ) ( )

2 2
2 22

1 1

22

2

2
2 1

2
2

2
2

2
2

1
   Re Im

2

1
   

2

1
   

2

1
   ,

2

r r

r

r

KNM KNM

w i i
i i

w

H
H

w KM

H
H

w K KM

σ

σ

σ

σ

= =

−

+

        = +         
 =   

 = Λ ⊗  

 = ⊗ Λ ⊗  

∑ ∑e e

e

I e

I I e

� �

�

�

�

F

F F

Θ

 

 

where we have used independence between each of the entries of { }Re w  due to w  

being white and zero-mean. Notice that ( )1 H H

K

− +Λ = ⊗ ΛI FΘ . Similar reasoning 

applies to { }Im w . We know that the PEP in (4.6) can be expressed in terms of the 

Q-function, ( )
2
21

2

t

Q e dt
π

α
α

∞
−∫� , as 

 

[ ]

( ) ( )

( ) ( )

2

2
2

2
2

2
2

2

Pr
4

                 

2

                 ,

2

r

r

all

H
H

w K KM

H

w K KM
F

Q

Q

Q

ξσ

σ

σ

+

+

   → =    
     =      ⊗ Λ ⊗     

    ≤    ⊗ Λ ⊗  

c c h

I I e

I I




�
F F

F F

D

D

D

 

 

where we have invoked the inequality that 
22 F F

≤ =Ae A e A
� �

for any matrix A  

and a unit vector e
�
. Since multiplication by unitary matrix dose not change Frobenius 

norm, we arrive at 

 

[ ]
22

Pr .
2

all

w F

Q
σ +

   → ≤   Λ  
c c h


D
 

 

Then by using ( )
21

2 2exp( )Q αα ≤ − , we have the PEP of interest upper bounded as 

 

[ ]
2

22

1
Pr exp

2 4
all

w F
σ +

  → ≤ −   Λ  
c c h


D
.                      (4.7) 
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Let us define the following terms: 

 

( ) ( ) ( )

( )

1

( )
1

(1) (2) ( )

(1) (2) ( )

1 1 1

2 1 2 2 2

2 1

(:, )
;

;
(:, )

;

;

;

k

k

t

t

t

T

m A
jk N

K

T
m

K
jk N

A

M

jk jk jk jk

M

jk jk jk jk

T
H H H H H H

j K j K j K jM

j K j

m

m

×

×

− − −

   ⊗   

   ⊗  

 
  
 
   
 ⊗ Λ Λ Λ ⊗ Λ Λ Λ ⊗ Λ Λ Λ  

⊗ Λ Λ

A I
0

0
A I

A A A A

A A A A

I I I

I

�

�

� �

� �

� �

�

G

G

ϒ

ϒ ( ) ( ) ( )1 1 1

2 2 2 .
t

T
H H H

K j K jM

− − −

   Λ ⊗ Λ Λ Λ ⊗ Λ Λ Λ    
I I�

    (4.8) 

 

  From (4.8), ( ) 1H H−+Λ Λ Λ Λ�  can be rewritten as 

 

         ,+
 
  Λ =        

A A
ϒ

ϒ
                                   (4.9) 

11 1 11 1

1 1

1 1

where 

;  ;

       

;     .

r r

r t r t

r r

M M

K M M K M M

M M

                                                          

A A A A

A A

A A A A

� �

� � 	 � � � 	 �

� �

� 	 � 	

ϒ ϒ

ϒ ϒ

ϒ ϒ

 

 

Hence, 
2 222

F F FF

+    Λ ≤ +      
A A ϒ ϒ . Notice that  

  
A A  is solely determined by 

the encoder structure, and by (4.8) it can be easily verified that 
22

F F
=ϒ ϒ  and 
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2

1 1 1 1

2 .
r t r tM M M M

H H

jm jm jmF
j m j m

F

K

−

= = = =

  = ⋅ Λ Λ Λ   
∑∑ ∑∑ϒ                (4.10) 
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With the definition of jmh
  in Remark 3.5, (4.10) can be rewritten as  

 

( )

( )

2

1
2

2
21 1 0

1 1

2
r t

r t

M M N jm

F M M
j m n

jm

j m

h n
K

N h n

−

= = =

= =

       = ⋅              

∑∑ ∑
∑∑







ϒ  

( )

1
1 2

0 1 1

2
.

r tM MN

jm

n j m

K
h n

N

−
−

= = =

  = ⋅    
∑ ∑∑ 
                       (4.11) 

 

Now, let us define an N by N matrix psD  as 

 

( )

( )

( )

2

1 1

2

1 1

2

1 1

0

1

1

r t

r t

r t

M M

jm

j m

M M

jm

j mps

M M

jm

j m

h

h

h N

= =

= =

= =

 
 
 
 
 
 
 
 =  
 
 
 
 
 − 
  

∑∑

∑∑

∑∑

D







	




.      (4.12) 

 

We assume ( )rank KNΛ = , or equivalently 
1 1

r tM M
H

jm jm

j m

rank N
= =

  Λ Λ =   
∑∑ . Hence, we see 

that psD  is invertible. Hence, by defining 
2

E
F

C  
  
A A�  and from (4.9) up to (4.12) 

we arrive at 

 

22 14
E psF F

K
C

N

+ −Λ ≤ ⋅ ⋅ D .                         (4.13) 

 

Before we proceed further, let us make one more assumption deduced from the rank 

premise: condition number of psD , denoted as ( )psDK , is upper bounded by a finite 

real number u ∈ �K  for all possible channel realizations, i.e., 

 

( )  for all .ps u ps≤D DK K                            (4.14) 

 

Notice that by orthogonality, 
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( )
max

1 11 1

min

1 1 1 1

max

min

r tr t

r t r t

M MM M
HH
jm jmjm jm

j mj m

M M M M
H H
jm jm jm jm

j m j m

Diag

Diag

λ

λ

= == =

= = = =

         Λ ΛΛ Λ            Λ = =
       Λ Λ  Λ Λ          

∑∑∑∑

∑∑ ∑∑
K , 

 

where ( ) ( )max min and λ λΛ Λ  denote the maximal and minimal eigenvalues of matrix Λ  

respectively. Hence ( ) ( )ps = ΛDK K . By regarding the simulation results from Fig. 3-1. 

to Fig. 3-5, we see that 

 

i) For all possible system configurations (N,Mr,Mt,L,K), the probability of singular 

occurrence ( )rank KNΛ <  is very low in practice. As one can perform as many 

simulations as possible to find the above highly plausible, our rank premise is 

reasonable. Hence ( )ps <∞DK . 

ii) Given known channel order L and desired transmission rate, selecting high values 

for Mt and Mr can effectively suppress ( )psDK . 

iii) It agrees with the intuition that as N increases, the probability of ( )ps → ∞DK  

drops. This is because each of the diagonal entries, which are correlated, of psD  

is sum of nonnegative terms. 

 

From the above three observations we deduce that ( )psDK  can be universally upper 

bounded by a finite real number in practice. 

 

On the other hand, suppose n n×∈B �  is a nonsingular diagonal matrix, then for any 

full rank n m×∈A � , m<n, such that ( )( )
2

1
m

F n n+≤
B

A
K

, ( )
221

F F

+− ≤B BA . 

Proof: 

 

[ ] [ ] ( )( )
( )

1 1
2 2

221 0 0
2 2 22

1
.

n n

ii ii
i i

F F
F F F F

n n m

− −
−

+− = =

⋅
+

= ≤ ≤ ≤
∑ ∑B B

B
B BA

B B B A

K
     (4.15) 

�  

 

Therefore, by assuming (4.14) and along with (4.15), there exist infinitely many full 

rank { } ( )N N L

1i i

∞ × −
=

∈ �Ψ  satisfying ( )
2

1 u

m
i n nF +≤Ψ

K
 such that ( )

221
ps ps iF F

+− ≤D D Ψ  for 
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all channel realizations. Now let us find such a matrix Ψ  among these possible 

candidates so that any (N-L) of the rows of Ψ  are linearly independent. Note that this 

additional constraint can be very easily satisfied and hence does not in any way 

contradict (4.14). Then, (4.13) can be written as 

 

( )
22 4

E psF F

K
C

N

+Λ ≤ ⋅ ⋅ D
+

Ψ .                        (4.16) 

 

Let { }0 1 1, , , Ln n nβ −� �  be the set of indexes corresponding to the smallest L 

composite frequency responses such that 

 

( ) ( )

( ) ( ) ( )

2 2

1 1 1 1

2 2 2

0 1 1
1 1 1 1 1 1

 for  and 

,

r t r t

r t r t r t

M M M M

jm jmp q p q

j m j m

M M M M M M

jm jm jm L

j m j m j m

h n h n n n

h n h n h n

β β
= = = =

−
= = = = = =

 ≤ ∈ ∈ ≤ ≤ ≤

∑∑ ∑∑

∑∑ ∑∑ ∑∑


 



 
 
�

        (4.17) 

 

where 0 1 and 0 1.in N i L≤ ≤ − ≤ ≤ −  Define βD  as an N by N diagonal matrix 

whose entries are given by 

 

( )
2

1 1

1
,  if 

.

0                    ,  if 

r tnn M M

jm

j m

nn

n

h n

n

β

β

β

β

= =

  = ∈   = ∈ 

∑∑
D

D



                  (4.18) 

 

Then we construct an (N-L) by N matrix βΨ  by the following two-fold step: 

 

i) Remove all the rows, whose row indexes belong to set β , of Ψ  to obtain an 

(N-L) by (N-L) matrix Ψ . 

ii) Insert L zero columns to 
1−

Ψ  so that after the insertion, the inserted columns 

have indexes belong to set β . Let βΨ  denote the so obtained matrix. Note that 

the constraint on linear independence of any (N-L) of rows of Ψ  ensures 

existence of 
1−

Ψ . 

 

From (4.17) up to the definition of βΨ , it can be verified that 
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( )( )ps N Lβ β −=D D IΨ Ψ .                            (4.19) 

 

By the basic property of the pseudo-inverse we know that ( )ps FF
β β≤D D

+

Ψ Ψ  due 

to (4.19)[27, pp. 257]. Hence, (4.16) becomes 

 

2 2 22 4 4
E EF F F F

K K
C C

N N
β β β β

+Λ ≤ ⋅ ⋅ ≤ ⋅ ⋅D DΨ Ψ .             (4.20) 

 

Let 
2

1 max
F

C β
β

� Ψ , where the maximization is taken over all subsets of 

{ }0,1, , 1N −� . Now, let us define ( )
2

1 1

argmin
r tM M

jmL
n j m

n h n
β∈ = =

= ∑∑ 
 . Then from (4.18) and 

(4.20), we have 

 

( )
1

22

1
1 1

4
( )

r tM M

jmE LF
j m

K
C C N L h n

N

−

+

= =

  Λ ≤ ⋅ ⋅ −    
∑∑ 
 .            (4.21) 

 

Define ( ) ( ) ( )11 0 1,  where 
r t

TT
T T

jm jm jmM M jm Lh n h n h n  
     

h h h h 
 
 
� � � � . From 

(4.17) and the definition of Ln , we see that 

 

( )
2

2

2
1 1

( 1)
r tM M

jm L

j m

L h n
= =

≤ + ∑∑h 
 .                    (4.22) 

 

Note that all=h Vh , where V  is a MrMt(L+1) by MrMt(L+1) Vandermonde matrix 

with nonzero smallest singular value, ( )min
Hλ V V . Since ( ) 2 2

min 22

H

allλ ⋅ ≤V V h h , 

along with (4.22) we have 

 

( )
( )

22

2
1 1min

( 1) r tM M

jmall LH
j m

L
h n

λ = =

+
≤ ∑∑h

V V

 .                  (4.23) 

 

Hence, from (4.23), we can rewrite (4.21) as 

 

( )2 2min

2
14 ( )( 1)

H

allF
E

N

K N L L C C

λ−+
⋅

Λ ≥
− +

V V
h .                (4.24) 
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Let 
( ) 2

min

116 ( )( 1)

H

E

N

K N L L C C

λ
κ

⋅ ⋅

− +=
V V D

 and 2
1SNR=

wσ
. Then we see that the upper bound in (4.7) can 

be expressed as 

 

[ ] ( )22
1

Pr exp SNR
2

all allκ→ ≤ − ×c c h h
 .                 (4.25) 

 

Let ( 1)r tm M M L= +  and write 1 2

T

all mα α α =   h � . We assume that all the 

MIMO multipaths, jmh , are statistically independent of each other. The distribution of 

the channel vector allh  can then be expressed as a multi-dimensional Gaussian pdf[18, 

pp. 502], 

 

( )
( ) ( ) r t

r t

2

M M (L+1) 2 22M M (L+1)

1 1
exp

all all all

hh

f
σπ σ

  = −   
h h h  

2

2 2
1

1
exp

m
i

i h h

α

πσ σ=

  = −   
∏ .                            (4.26) 

 

Now we can average the upper bound with respect to the channel pdf: 
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∫

∏∫

hh
c c h h h h


 

 

Note that the integrand is to be integrated with respect to a complex variable, iα , 

which is essentially a circular symmetric Gaussian random variable. Let { }Rei iq α= , 

and { }Imi iq α= . Therefore by symmetry between the real part and imaginary part of 

iα , we can further factorize the integration as 
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( ) ( )
( 1)

( 1) 12 2

1

1
SNR .

2

r t
r t

M M L
M M L

h h

i

σ σ κ
+

− + −−

=

= + ×∏               

 

Hence, at high SNR region, we can expect the PEP be bounded by 

 

          [ ]{ } ( ) ( )
( 1) ( 1)21

Pr SNR .
2

r t r t
M M L M M L

all hE σ κ
− + − +→ ≤ ×

h
c c h
            (4.27) 

 

It is seen from (4.27) that at high SNR, full spatial (transmit-receive) diversity gain of 

order MrMt and full multipath diversity of order L+1 are achieved. Note that the above 

results counterbalance the deduction in [26] that the “CP-only” scheme with extended 

GOSTBC cannot achieve full multipath diversity. 

 

  It is noteworthy that the derivation from (4.7) to (4.25) really relies on the structure 

of GOSTBC. From the perspective in [17], the particular relation 
2 2

2allF
C

−+Λ ≥ h  for 

some real constant C in (4.24) requires certain precoder design, whose purpose is to 

compensate the detrimental effect due to channel zeros/nulls. However, as we see from 

the above derivation, the precoding mechanism could be not necessary. Note that Ψ  

can be regarded as a virtual precoder introduced for the purpose of deriving PEP. 

 

Remark 4.1  By noting the slope change at relatively higher SNR region within 

Fig. 5, we see that the possibility of delivering full multipath diversity under the 

proposed scheme is evidently noticeable even with small numbers of antennas, i.e., 

as the number of taps (L+1) increases by 1.5 times, so does the slope of error 

probability above 4 dB. This in turn justifies the deduction behind (4.16) upon 

which our PEP analysis is built. For simulations in Fig. 5, we set N=250 and QPSK 

for 1000 consecutive transmission during which the channel remains fixed. The 

channel taps of each of them assume power delay profiles whose sum are 

normalized to 2 for a fair comparison. Other details for simulations are stated in 

Chapter 6. 
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Chapter 5 

 

Training-Based Channel Estimation 

 

 

In this chapter, the training-based channel estimation by M. Biguesh[3] will be 

generalized to frequency-selective fading scenario by exploiting the structure in (3.3). 

Optimality criteria for the frequency-domain channel estimation in LS sense and under 

a given power constraint will be derived. Also, conditions under which the training 

blocks are designed so as to apply a linear MMSE approach for time-domain channel 

estimation are derived. First, let us denote the training matrix as 1 2t K
 Π =   t t t� , 

where N
k ∈t �  is the kth training block. For simplicity, we reuse the notations adopted 

in chapter 3 for the subsequent discussion on channel estimation. Hence the encoder 

output becomes 

 

t* 2NK M

1

          ,

where 

(0) (1) ( 1) .

        (0) (1) ( 1) .

( ) ((- ) ),  0 1.

k k

K

B A k B k

k

T

k k k k k

T

k k k k

k k N

c c c N

d d d N

d n c n n N

×

=

 ⊗ + ⊗ ∈  

  = = −      = −    = ≤ ≤ −

∑G c d

c t

d

� �

�

�

Χ ΧΧ ΧΧ ΧΧ Χ

 

 

Since the channel estimation is processed on a per receiver basis, we consider MISO in 

the subsequent sections of this chapter, i.e., the index j equals one and one only, and will 

hence be discarded. 

 

5.1 Least-Squares Channel Estimate 

 

With the training matrix tΠ  being transmitted, the received signal block in (3.1) 

becomes, for 1 2p K≤ ≤ , 
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( ) ( ) ( ) N

1

,
tM

p p p

m m

m=

= + ∈∑y H s w �  

 

where ( )p
ms  takes kt  if 

kA pm

   ΧΧΧΧ  is one, for 1 p K≤ ≤ . Similarly, ( )p
ms  takes *

kd  if 

kB pm

   ΧΧΧΧ  is one, for 1 2K p K+ ≤ ≤ . Following the same derivations as those from (3.1) 

to (3.3), we have the following frequency-domain received signal model 
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        = ⊗ Λ + ⊗ Λ +          
∑∑ 0

0

G
W

G
X X        (5.1) 

 

Notice that ( )( ) ( )( )m mkm k kDiag N NDiagΛ = =h c c hF F F FX . So if we define 

k
Λ
X
 as ( )kDiag cF , then we have ( )

k
mkm NΛ = Λ hF

X
X [4]. Since ( )**

k k=d cF F , we 

have ( )*
k

H

kDiag = ΛdF
X
. So 'Y  in (5.1) can be rewritten as 
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m
×

= = ×

               = ⊗ Λ + ⊗ Λ +                        
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h
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G
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G
X X

      (5.2) 

 

Let ( ) ( ){ }1 t

1

(:, ) 2KN M N
1 2(:, )

1

 and Ak K

K tk kAk

K
m H

m T Mm

k

×

×

×

=

 ⊗ Λ + ⊗ Λ Λ ∈  ∑ 0
0O O O O� � � �
G

GX X
. 

Since tM N
1 2 t

TT T T
M

 = ∈  h h h h� �  by (2.5), we define h
 �  ( ) tM N

tM ⊗ ∈I h �F . 

Then (5.2) becomes 

 

' '
TN= Λ +h
Y W ,                            (5.3) 

 

Given training signal blocks, and hence TΛ , it is seen from (5.3) that if tΠ  is designed 

such that ( )T trank M NΛ = , then by nonsingularity of H

T TΛ Λ  we can obtain an 

estimate for the channel DFT by using the pseudo-inverse ( ) 1H H

T T T T

−+Λ Λ Λ Λ� . Note 

that for generalized complex orthogonal design, 2 tK M≥ . Define '1
TN

+Λh
�
 � Y  to be 



30 

an estimate of h
 , which contains the subchannel DFT’s and let �
' '1

TN

+= ΛW W . Then 

we have, from (5.3), 

 

� '
= +h h
�
 
 W .                               (5.4) 

 

Hence, h
  can be estimated up to an zero-mean estimation error term �
'

W . Note that 

equation (5.4) can be regarded as a consequence from FDE as well. The only difference 

lies in that during the training mode, we take vectorized channel DFT h
  as input 

block into the system constructed by training signal DFT’s along with GOSTBC 

constituent matrices. More precisely, we have the following results. 

 

Theorem 5.1 ( )
1

2
t k k

K
H H

T T M

k=

Λ Λ = ⊗ Λ Λ∑ I
X X

.  

(Proof: See Appendix A2.) 

 �  

   

Remark 5.1  With known training blocks, this FDE-based channel estimation 

can be carried out efficiently. By efficiency we mean the involved computation for 

matrix inverse ( ) 1H

T T

−
Λ Λ  reduces to merely computing the reciprocals of each of 

the diagonal entries of H

T TΛ Λ . This can be seen from Theorem 5.1 that H

T TΛ Λ = 

( )
1

2
t k k

K
H

M

k=

⊗ Λ Λ∑ I
X X

 is diagonal. 

 

Remark 5.2  Notice that the FDE behind (5.4) is based on the premise that 

( )T trank M NΛ = , and hence ( )H

T T trank M NΛ Λ = . This in turn require that 

1
k k

K
H

k

rank N
=

  Λ Λ =  ∑ X X
 must be satisfied as we can see from Remark 5.1. Notice 

that each of the diagonal entries of H

T TΛ Λ  is nonnegative. To proceed further, let 

us first define ( )k nX  as the thn  entry of kX , where 1 n N≤ ≤  and 1 k K≤ ≤ . 

As long as there is at least one value * *,  1k k K≤ ≤  such that ( )*

2
0k n >X  

among all the thn  entries, the premise holds. Let us denote this sufficient 

condition as (c2.R). However, unlike the conclusion we obtained in Remark 3.5, 

(c2.R) could fail hadn’t the training blocks been properly chosen, e.g., the 

arbitrary training we adopted for simulations in chapter 6. We will elaborate the 
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meaning of arbitrariness at the end of this subsection. For the simulations in 

chapter 6, we simply bypass it with programming. 

 

5.1.1 Optimality Criterion for LS Estimate under a Power Constraint 

 

We use (5.3) to derive optimality criterion for optimal frequency-domain least-squares 

(LS) channel estimation under a power constraint. To this end, let us define TΛP � , 

N
m m ∈h h
 � �F  and tM N

1 2 tM
  ∈  
h h h
 
 
� � �H . Hence ( )vec=h
 H . Then we 

can rewrite (5.3) as 

 

( )' 'vecN= +PY H W .                         (5.5) 

 

From (5.5), the LS estimate of ( )vec H  is �( )( )
( )

( )
2'

2vec

vec argmin  vec
LS

N −P�
H

H H Y . 

The solution is known as, from (5.4), 

 

�( )( ) ( ) ( ) � ''1vec vec
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+= = +PH Y H W ,                 (5.6) 

 

where �( )( )vec
LS

H  is equal to h
�
  in (5.4) by definition. Now suppose we are given a 

power constraint,  
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This means that the total transmitted signal block power per transmit antenna shall be 

fixed, by virtue of GOSTBC structure. Note that 
22 2 kk k= =t c X . We can 

transform the power constraint into frequency domain, by Theorem 5.1, 

 

( )

{ }

2

2
1

1

2

   2Tr

   Tr

t k k

K

ko t

k

K
H

M

k

H

M
=

=

=

   = ⊗ Λ Λ    
=

∑

∑ I

P P

X X

XP

 

2
   

F
= P ,                                     (5.8) 
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where 
F

P  denotes the Frobenius norm of the matrix P . From (5.6) and (5.8), we 

wish to find the optimality condition for training design to achieve lowest LS estimation 

error. This amounts to the following optimization problem: 

 

�( ){ }2
2

min   subject to oFLS F

E − =
P

P PH H ,                 (5.9) 

 

where o +∈ �P  is a positive constant. With (5.6), we can rewrite the mean-square 

error in (5.9) as 

 

�( ){ } ( ) �( )( )
�{ }

22

2

2'

2

vec vec

                      

LS LSF

E E

E

   − = −    

=

H H H H

W

 

( ){ }2'1
2 2

.KN
E += ⊗P I wF              (5.10) 

 

For simplicity, let us define 2K K ⊗I�F F . By noting that { }' ' 2
2

H

w KNE σ=w w I , 

H

N= IFF  and ( ) 1H H−+ =P P P P , we can rewrite (5.10) as 

 

�( ){ } ( ) { } ( ){ }

( ) ( ){ }

2
' '

2

2

1
Tr

                       Tr

HH H

K K
LS F

HHw
K KN K

E E
N

N

σ

+ +

+ +

− =

=

P w w P

P I P

H H F F

F F

 

( ){ }
2

1
Tr Hw

N

σ −
= P P .                         (5.11) 

 

Hence the optimization problem in (5.9) becomes 

 

( ){ } { }
2

1
min  Tr  subject to TrH Hw

o
N

σ −
=

P
P P P P P .           (5.12) 

 

Since HP P  is Hermitian and positive semi-definite (p.s.d.), we can decompose it into 

H H= ∆P P Q Q , where ( )1 2 tM NDiag λ λ λ∆ = � , 
t

H H

M N= =Q Q QQ I  and iλ , 

1 ti M N≤ ≤  are the eigenvalues of the matrix HP P . Therefore, (5.12) becomes 

minimizing 1

1

t

i

M N

i

λ

=
∑  under the constraint that 

1

tM N

i o

i

λ
=

=∑ P . By the arithmetic-geometric 
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mean inequality[25, pp. 75], we know that 

( )1/

1 1

11

t
t t

i i

M NM N M N

t

ii

M Nλ λ

==

 ≥    ∑ ∏ , where equality 

holds when all iλ  are identical. Hence, 

 

,  1o
i t

t

i M N
M N

λ = ≤ ≤
P

,                         (5.13) 

 

is the solution to (5.12). From (5.13), we have 

 

                        
t

H o
M N

tM N
=P P I
P

.                             (5.14) 

 

Notice that for any matrix P, regardless of its structure, which satisfies (5.14) is an 

optimal solution to (5.12), and hence optimal to (5.9). However, the structure of matrix 

P under consideration here is determined by the BGOSTBC encoder as well according 

to Theorem 5.1. We summarize what we have so far. 

 

(i) For a given training matrix tΠ , which completely determines T= ΛP , the LS 

estimate of the channel vector h
  is given by ( ) '1
N

+=h P
�
 Y , where 'Y  is 

defined in (5.3). 

(ii) If the training matrix tΠ  is chosen such that ( )
1

2o

t t t k k

K
H

M N M N M

k=

= ⊗ Λ Λ∑I IP

X X
, 

then the training blocks satisfies the power constraint in (5.7) and minimizes 

the average channel estimation error 
2

2

E
   −    
h h
�
 
 . 

(iii) In particular, the lowest LS channel estimation cost is given by 

 

( )
12 2 2

Tr .
t

w o w t
M NLS

t o

N M
J

N M N

σ σ
−      = =       

I
P

P
              (5.15) 

 

From (5.15) we can see that the LS objective per transmit antenna is 

proportional to Mt. Therefore, as number of transmit antennas increases, the 

performance of LS channel estimate deteriorates. 

 

5.1.2 Selection of training signal blocks for optimal LS channel estimate 
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Notice that the power criterion, ( )
1

2o

t t t k k

K
H

M N M N M

k=

= ⊗ Λ Λ∑I IP

X X
, can be rephrased as 

follows: 

 

( )
1

2 ( ),  0 1,  where 
k k

K
Ho

k k

kt

a n n N Diag
M N =

= ≤ ≤ − = Λ Λ∑ a
P

X X
.       (5.16) 

 

If we allow the employed symbol constellation to be arbitrary, the choices for training 

blocks which satisfy (5.16) are simply any matrix *t
Π  satisfying 

2

22
o

tM Nn =b P , where 

* 0 1 1

T
H T T T

Nt −
 Π =   b b b�F  and ( ) ( ) ( ) 1 K1 2n n n nb b b K × = ∈  b � � . This is 

true because (5.16) can be rephrased as: 
2

2 2
,  0 1o

tM N n n N= ≤ ≤ −bP , where the 

relation between kX  and nb  is given by ( ) ( ) ( )0 1 1

T

k Nb k b k b k−
 =   �X . In 

particular, when N K= , (5.16) can be easily satisfied by letting ( )2 :,o

t

H
M Nk k=t F
P , 

1 k K N≤ ≤ = , which is essentially a general PSK constellation. 

 

In chapter 6, we will use ( )2 :,o

t

H
M Nk k=t F
P , 1 k K N≤ ≤ = , for comparing the 

performances of optimal/orthogonal training and arbitrary training. By optimality we 

mean that (5.8) along with (5.16) must be satisfied a priori, and by arbitrariness the 

simulation subjects to (5.8) only. Though both of them must guarantee that TΛ  is full 

rank. Note that the word “orthogonal” we adopted here is to underline (5.14). 

 

5.2 Linear Minimum-Mean-Square Error Estimate 

 

In this subsection, we are interested in finding the time-domain linear MMSE channel 

estimate. Suppose allh  is zero-mean for simplicity. Before we proceed further, let us 

define a ZP removal matrix ( ) ( )1 1 1L L N L+ + × − −
 
  I 0�M . Note that 1

T

L+= IMM . Hence 

t(L+1) M
1 2 1 2t

t

H
M M

×   = = ∈      h h h h h h� � �F HM M  and ( )vec H = hF HM  

by definition. Let h�  be an estimate of h . Now we define the mean-square error to be 

minimized as, 

 

{ } ( ){ }2 2

2 2
vec HE Eε − = −h h h� �� MF H .              (5.17) 
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From (5.17) and by definition, the linear MMSE estimate of h  is ( ) argmin  
MMSE

ε
h

h
��

� � . 

Let Φ  be a linear channel estimator such that the input-output relation between the 

received signal blocks and the estimate is given by '= Φh� Y . Then we turn to find 

( ) argmin  
opt

ε
Φ

Φ =  and 

 

                  ( ) ( ) '= .
optMMSE

Φh� Y                            (5.18) 

 

Now, for notational purpose, let us define TNΛP �  and 
tM M ⊗I�F F . Hence, 

M=h h
 F  by definition. We know ( )
t

T

M= ⊗h I hM . Rewrite (5.17) as, from (5.3), 

 

{ }
( )( ){ }{ }
{ }{ { }
{ } { }

{ } }

2'

2

' '

' '

 Tr

 Tr

  

  .

H

HH H H H

M

H H H H
K K M

H H H H
M M

E

E

E E

E E

E

ε = −Φ

= −Φ −Φ

= − Φ +

Φ Φ −Φ +

Φ Φ

h

h h

hh hh P

w w P hh

P hh P

Y

Y Y

F

F F F

F F

 

 

By defining { }HER hh�H  and using the identity { }' ' 2
2

H

w KNE σ=w w I  along with 

( )
t

T

M= ⊗h I hM , we have the following equation: 

 

{ } ( ){ }{ ( ){ }Tr Tr Tr
t t

H H H T

M Mε = − ⊗ Φ − Φ ⊗ +R R I P P I RH H HM MF F  

( ) ( )( ){ }}2
2Tr .

t t

T H H H
w KN M MσΦ + ⊗ ⊗ ΦI P I R I PHM MF F   (5.19) 

 

Note that RH  is nonsingular since h  is not zero-padded. We have assumed that both 

h  and 'w  are zero-mean and they are statistically independent of each other, that is, 

{ }'
( 1) 2t

H

M L KNE + ×=hw 0  and { }'
2 ( 1)t

H

KN M LE × +=w h 0 . In the subsequent discussion 

regarding linear MMSE approach, we assume perfect knowledge of 2 and wσRH . Now 

we let ε∂
∂Φ ≡ 0 [5],[6] to find ( )

opt
Φ : 

 

( ){ 2
t

H H

M

ε∂
= − ⊗ +

∂Φ
0 R I PH MF  

( ) ( )( )}
( )

2
2           2 0

t t

opt

T H H
w KN M Mσ

Φ= Φ
Φ + ⊗ ⊗ ≡I P I R I PHM MF F     (5.20) 
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For brevity, let ( )
t

T
M M ⊗I� MF F . Notice that ( )

t

H H T
M M M= ⊗I M MF F F F = 

( 1)tM L+I  by definition of M . Define � MP P� F . Hence, from (5.20), we have 

 

( ) � � �
1

2
2

H H

w KNopt
σ

− Φ = +  
R P I PR PH H .                     (5.21) 

 

Hence, with ( )
opt

Φ  in (5.21), we can rewrite (5.18) as 

 

( ) � � �
1

2 '
2 ,

H H

w KN
MMSE

σ
− = +  

h R P I PR P�
H H Y                 (5.22) 

 

with the corresponding lowest linear MMSE cost denoted as ( ) ( )optMMSEε ε Φ= Φ= . By 

substituting (5.22) into (5.17), we arrive at 

 

( ) � � �

{ } � � � �{ }
1

2
2

1
2

2         Tr Tr

H H
w KNMMSE

H H

w KN

σε ε

σ

− Φ= +  

−

=

 = − +  

R P I PR P

R R P I PR P PR

H H

H H H H

 

� �

1

1

2

1
Tr .

H

wσ

−

−
      = +       
R P PH                              (5.23) 

 

5.2.1 Optimality Criterion for Linear MMSE Estimate under a Power 

Constraint 

 

First, we need to specify a reasonable power constraint at our disposal. The given power 

constraint in section 5.1.1, i.e., 
2

22
1

o

t

K

Mk

k=

=∑ t P , can be transformed into 
2

oF
N=P P  

with TNΛP �  for linear MMSE derivation. Notice that the matrix HP P  subjects 

to Theorem 5.1 and hence it is diagonal. It can be verified that for any diagonal matrix 

t tM N M N×∈A � , the matrix ( )
t

T H

M M M⊗IF FM M  serves as spreading the power of A 

only, hence the following equality holds: 

 

( ){ } { }
1

Tr Tr
t

T H

M M M

L

N

+
⊗ =A I AF FM M .             (5.24) 

 

With (5.8) and (5.24), we herein define a reasonable power constraint for our linear 
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MMSE estimate as 

 

� ( ) ( ){ }
{ }

2
Tr

1
     Tr

t

H T H

M M MF

HL

N

= ⊗

+
=

P P P I

P P

M MF F

 

( )     1 oL= + P .                                   (5.25) 

 

Therefore, given � ( )
2

1 oF
L= +P P , we are to find optimality conditions over the 

training matrix minimizing ( )MMSEε  in (5.23). The optimization problem can be 

formulated as 

 

�
( ) � ( )

2
min   subject to 1MMSE oF

Lε = +
P

P P .                (5.26) 

 

Define the Lagrangian �( ) ( ) � �{ } ( ),  Tr 1
H

MMSE oLµ ε µ  + − +  
P P P� PL , where µ ∈  

+�  is a Lagrangian multiplier. Let 
�( )
� �( )
, 

H

µ∂

∂
≡

P

P P
0

L

[5],[6]: 
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� �
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� �

� �
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2
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11 TrTr

             
1
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t
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H
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H H H

HH
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M N H
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w
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µ ε
µ

σσ
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σ

µ
σ

−

−−

−

−

 ∂∂  ∂
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 ∂ ∂ ∂  
            ∂ + ∂ +              = +
 ∂  ∂ +   
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P PP

P P P P P P

R P PR P P

I
P P R P P

I I R

HH

H

H

L

� �

2

2

1 H

wσ

− 
 + ≡  

P P 0

 

� �

2

1

2 2

1 1
t

H

M N

w w

µ
σ σ

−

−
 
 ⇒ = +  

I R P PH .                        (5.27) 

 

Since � �
2

1 1

w

H

σ

− +R P PH  is Hermitian, we can decompose it into � �
2

1 1

w

H H

σ

− + = Ψ∆ΨR P PH , 

where 
t

H H

M NΨ Ψ = ΨΨ = I  and ∆  is a diagonal matrix with the eigenvalues of 

� �
2

1 1

w

H

σ

− +R P PH  on its diagonal. Substituting this decomposition into (5.27), we have 

2 2 
t

H

w M Nσ µ−Ψ∆ Ψ = I . Hence 1

w tM Nσ µ∆ = I , and the decomposition becomes 
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� �1

2

1 1
t

H

M N

w wσ σ µ

− + =R P P IH                        (5.28) 

 

Imposing � �{ } ( )Tr 1
H

oL= +P P P  on (5.28), we have 
( ) { }( )2

1 11 1 Tro

tw w

L

M Nσ µ σ

+ −= + RH
P

, 

which in turn can be substituted back into (5.28) to obtain 

 

� � { }
2 2

1 11
Tr

t

H o w t w
M N

t o o

L M

M N N

σ σ− −
   +   = + −      

P P R I RH H

P

P P
.        (5.29) 

 

Note that the left-hand side of (5.29) is p.s.d., which in turn requires the right-hand side 

to be p.s.d. as well. So (5.29) is much more plausible at high SNR. That is, when 
2

0w

o

σ →
P

, 

 

� � 1
t

H o
M N

t

L

N M

+
=P P I

P
                         (5.30) 

 

is generically true. Since (L+1)<N, there is no way we can recover HP P  from (5.30) 

with the identities that � � ( )H H H
M M=P P P PF F  and ( 1)t

H

M M M L+= IF F . However, if 

we relax the condition of (5.30) into � � o

t t

H

M M N=P P IP , it can be easily verified that the 

following choice satisfies both � � ( )H H H
M M=P P P PF F  and 

2

oF
N=P P : 

 

.
t

H o
M N

tM
=P P I
P

                           (5.31) 

 

Hence, we can say that (5.31) is an optimal solution to (5.26) at high SNR. Surprisingly, 

at high SNR, the optimal training design for linear MMSE estimate converges to that of 

the LS estimate. Hence, subsequent discussions similar to those for the LS estimate 

follow accordingly. We give the following summary. 

 

(i) For a given training matrix tΠ , which completely determines TN= ΛP , the 

linear MMSE estimate of the channel vector h  is given by ( ) ( ) '

optMMSE
= Φh� Y , 

where '
Y  is defined in (5.3) and ( ) � � �

1
2

2

H H

w KNopt
σ

− Φ = +  
R P I PR PH H  with 

� ( )
t

T

M ⊗P P I� MF  and ( ) ( )1 1 1L L N L+ + × − −
 
  I 0�M . 
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(ii) If the training matrix tΠ  is chosen such that ( )
1

2o

t t t k k

K
H

M N M N M

k=

= ⊗ Λ Λ∑I IP

X X
, 

then the training blocks satisfies the power constraint in (5.7) and minimizes 

the average channel estimation error ( ){ }2
2MMSE

E −h h�  at high SNR. In 

chapter 6, through simulation we will show that the choice in (5.31) for the 

linear MMSE estimate yields good performance to our expectation, though we 

can only approximate the solution to (5.30) by (5.31). 

(iii) In particular, the lowest linear MMSE channel estimation cost is given by 
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1 1 2 1
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min Tr Tr
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ε σ
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−
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( ) { }

2 2

1

2

.
1 Tr

t

o

w

M N

L
σ

−
=

+ + RH
P

                             (5.32) 

 

From (5.32) we can see that the linear MMSE objective per transmit antenna 

is proportional to Mt. Therefore, as number of transmit antennas increases, 

the performance of linear MMSE channel estimate deteriorates. 

 

Remark 5.3  The channel estimation techniques in [3] include scaled-LS (SLS) 

estimate and relaxed-MMSE (RMMSE) estimate. Just as what we have done to 

generalize the results for LS and MMSE scenarios in [3] to the frequency- selective 

fading environment, we can do the same for SLS and RMMSE channel estimates by 

following similar routine derivations. However we choose to omit these two 

generalizations since our primary goal is to validate that the channel estimation 

techniques in [3] can indeed be generalized and to obtain the optimal training 

design counterpart for frequency-selective fading under the proposed scheme. 
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Chapter 6 

 

Simulation Results 

 

 

In this chapter, the performances of LS and linear MMSE channel estimators are 

compared through numerical simulations for both arbitrary training and optimal/ 

orthogonal training. By optimality, we mean that (5.8) along with (5.16) must be 

satisfied a priori, and by arbitrariness the simulation subjects to (5.8) only. Though 

both of them must guarantee that TΛ  is full rank. 

 

6.1 Assumptions for Numerical Simulation Runs 

 

As we know from previous discussion that when N K= , the power condition in (5.16), 

can be easily satisfied by letting ( )2 :,o

t

H

M Nk k=t F
P , 1 k K N≤ ≤ = . It can be 

verified that adopting the above scaled DFT blocks for optimal training always satisfies 

the sufficient condition (c2.R) in Remark 5.2. Throughout our simulations, the 

channel coefficients and the additive channel noise are assumed to be circular 

symmetric complex Gaussian distributed, as we assumed in section 2.2.1, which are 

randomly generated for each of the following simulations with 1000 independent runs. 

The channel noise is assumed to be white. We assume that the channel noise variance 

and 
j

RH  are known a priori or have been somehow accurately estimated for the linear 

MMSE estimate, while the LS estimate utilizes the received signal only. QPSK 

constellation is employed for all the following simulations. 

 

6.2 Result Overview and Discussion 

 

In Fig. 3, the performances of frequency-domain LS and time-domain linear MMSE 

channel estimates, both with arbitrary training, are compared in terms of NMSE. Let 

SNR= 2
o wσP . The performances of arbitrary training and its optimal/orthogonal 

training counterpart is compared in Fig. 4. The FDE on which the symbol decoding is 

based relies on the channel estimates acquired from training blocks prior to data 
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transmission, during which the channel state remains static. Denote the trio (Mt, Mr, K) 

as the system configuration referred to. The normalized MSE (NMSE) of channel 

estimate is given by 

 

2

2
1

2

2

NMSE

rM

jj

j

j

=

−∑ e e

e

�

� , 

 

where =e h
  for calculating the frequency-domain LS channel estimation error while 

=e h  for the time-domain linear MMSE counterpart. 

 

6.2.1 Arbitrary Training: NMSE Performance 

 

As shown in Fig. 3, the time-domain linear MMSE estimate delivers substantially lower 

NMSE than that of frequency-domain LS estimate as the former exploits more CSI. The 

examples can be divided into two major groups depending on value of K. The group 

with K=4 consists of (3, 2, 4) and (4, 2, 4) configurations while another one consists of 

(5, 2, 8), (6, 2, 8) and (7, 2, 8). For both of the groups, simulation results validate the 

summaries that the higher the value of Mt is, the worst the NMSE of channel estimate 

becomes as we expected. We used N=10 and L=5 for simulations in Fig. 3. 

 

6.2.2 Optimal/Orthogonal Training: NMSE Performance 

 

As depicted in Fig. 4, the performances of channel estimates based on optimal/ 

orthogonal training outperform those based on arbitrary training in terms of NMSE 

generally. The minor inconsistency for linear MMSE at larger antenna numbers is due to 

the fact that the FDE-based trainings already enjoy high diversity plus partial channel 

information and that (5.31) is a rough approximation. In general, the results verify the 

summaries in chapter 5. Here we simply make N=K for simulations in Fig. 4 due to the 

fact that (5.16) can be easily satisfied in this situation, as we explained in the previous 

chapters. Note that we set L=2 for both (3, 2, 4) and (6, 2, 8) system configurations. 
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Chapter 7 

 

Conclusion 

 

 

In this thesis, we propose an instructive derivation for the generalized block-level 

orthogonal space-time block encoder, capable of achieving full spatial diversity via 

frequency-selective fading environment, provided that channel order is known. Instead 

of dealing with special case and then extending the results intuitively, we provide an 

alternative by starting with the general signal model with multiple transmit and 

multiple receive antennas, from which a general form of block-level orthogonality is 

established. In particular, transmit diversity with more than two transmit antennas can 

be achieved without compromise by means of frequency-domain equalization, in 

contrast to the QO-STBC-based approach. However, the cost is that the proposed 

scheme only has nearly 1/2 symbol rate when discarding CP overheads. Pairwise error 

probability analysis are derived, under certain assumption which is numerically 

supported by simulation results, for analytical verifications of our claim on full diversity, 

inclusive of transmit-receive diversity and the multipath one. Hence, we are able to 

counterbalance the deduction[26] that the “CP-only” scheme based on the GOSTBC 

extension cannot exploit full multipath diversity. It is seen from the simulation results 

that the proposed scheme does stand a big chance of delivering full multipath diversity. 

Moreover, the encoder structure enables us to generalize a training-based channel 

estimation technique, originally proposed for flat-fading scenario, to the frequency- 

selective fading scenario. Surprisingly we even obtain similar optimality criteria for 

optimal training block design which in our case, the signal block are fixed as 

OSTBC-based and the design derivation reduces to derive optimal power constraint 

over the training blocks. The optimality criteria for the training blocks are easy to 

satisfy when randomness of signal constellation is not a concern. Simulation results 

validate our discussion of the behaviors of the least-squares and linear MMSE channel 

estimates. In contrast to the involved derivations provided in [16], which considers 

general training blocks for MIMO frequency-selective fading, we provide an alternative 

by generalizing the work in [3] to achieve the same purpose in a straightforward manner 

by fixing training block structure as BGOSTBC. 
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Appendix 

 

 

A1. Proof of Block-Level Orthogonality part I 
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A2. Proof of block-level orthogonality part II 
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A3. OSTBC construction 

 

  To be self-contained, we hereby review some basics about orthogonal design. Recall 

the OSTBC proposed by V. Tarokh [1]. 
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=∑x x IG G . As stated in [1], OSTBC exists in 

various dimensions smaller than or equal to 8, so does its complex counterpart, 

GOSTBC. Therefore the subsequent block-level discussion applies whenever the 

corresponding symbol-level GOSTBC design exists. The construction of GOSTBC is as 

follows: 
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Again it is easy to verify the orthogonality, 
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Fig. 1 Transmission scheme based on BGOSTBC encoder and the associated FDE 

based on training-based channel estimation. 
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Fig. 2 A BGOSTBC encoder employing K=4, Mt=3 configuration. 
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Fig. 3-1 Condition numbers generated for 106 independent simulation runs under 

(N,Mr,Mt,L,K)=(10,1,3,1,4). 
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Fig. 3-2 Condition numbers generated for 106 independent simulation runs under 

(N,Mr,Mt,L,K)=(16,1,3,1,4). 
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Fig. 3-3 Condition numbers generated for 106 independent simulation runs under 

(N,Mr,Mt,L,K)=(16,1,3,2,4). 

 

0 1 2 3 4 5 6 7 8 9 10

x 10
5

1

1.5

2

2.5

3

3.5

Condition number K(D
ps

) over 106 runs

iterations

K
(D

p
s
)

Number of singular occurrence = 0

  
Fig. 3-4 Condition numbers generated for 106 independent simulation runs under 

(N,Mr,Mt,L,K)=(10,2,6,1,8). 
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Fig. 3-5 Condition numbers generated for 106 independent simulation runs under 

(N,Mr,Mt,L,K)=(10,2,6,3,8). 
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Fig. 3 Compare NMSE of LS and linear MMSE estimates, with arbitrary training. 
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Fig. 4 Compare NMSE of arbitrary training and optimal/orthogonal training. 
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Fig. 5 Demonstration of full multipath diversity at high SNR region, averaged over 100 

independent runs. 
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