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Abstract

We propose an instructive derivation for the generalized block-level orthogonal
space-time block encoder, capable_of jachieving full spatial diversity via frequency-
selective fading environment provided that chammel order is known. Instead of dealing
with special case and then extending the results.intuitively, we provide an alternative by
starting with the general signal model“with multiple transmit and multiple receive
antennas, from which a general formi of block-level orthogonality is established. In
particular, transmit diversity withimore than two transmit antennas can be achieved
without compromise by means of frequency-domain equalization, in contrast to the
QO-STBC-based approach. Pairwise error probability analysis is derived, under certain
assumption which is numerically supported by simulation results, for analytical
verifications of our claim on full diversity, inclusive of transmit-receive diversity and the
multipath one. Moreover, the encoder structure enables us to generalize a
training-based channel estimation technique, originally proposed for flat-fading scenario,
to the frequency-selective fading scenario. Surprisingly we even obtain similar
optimality criteria for optimal training block design which in our case, the signal block
are fixed as OSTBC-based and the design derivation reduces to derive optimal power
constraint over the training blocks. The optimality criteria for the training blocks are
easy to satisfy when randomness of signal constellation is not a concern. Simulation
results validate our discussion of the behaviors of the least-squares and linear MMSE

channel estimates.
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Chapter 1

Introduction

1.1 Motivation and Background

Orthogonal space-time block code (OSTBC) was introduced in [1] for combating
channel fading by exploiting diversities in multiple-input-multiple-output (MIMO)
antenna configuration. By virtue of orthogonal design, the symbol decoding relies on
only linear processing with relatively lower computational complexity than its trellis
counterpart, provided that the channel state information is available. Hence both blind
channel estimation and joint symbol detection using OSTBC architecture are well

studied in flat-fading scenario.

Various transmission schémes and algorithms based on suitably manipulated
orthogonality conditions havesbeen proposed for flat-fading environment[19],[20]. In [19],
joint signal detection for a flat-fading MIMO communication under OSTBC scheme was
studied, where the exponent, embedded with OSTBC structure, of the closed-form
log-likelihood was to be minimized in the maximum likelihood (ML) sense. A
non-polynomial time (NP-hard) ML exhaustive search was cleverly reformulated and
relaxed as a convex optimization problem which had been well studied theoretically and
numerically. The relaxation is known as semidefinite relaxation (SDR) with
corresponding numerical algorithm tailored in [21]. The resultant SDR-ML proposed by
Ma et al. performs substantially better than the cyclic ML method[22]. It is noteworthy
that the reformulation itself exploited the orthogonality of OSTBC, by which a near
optimum signal detection with relatively lower computational cost than the optimal
ML /sphere decoding was achieved. In [20], a closed-form channel estimation technique
based on a variant of the generic orthogonality of OSTBC was developed. This variant
was first derived by Alex B. Gershman et al. in [23], where real parts and imaginary
parts of the received signal model were separated with discretion. The closed-form
channel estimation, unlike the other approaches such as subspace method, suffers from

sign ambiguity only due to its special real-valued formulation of signal models. Several



sufficient antenna configurations for unique channel estimate were studied numerically.
The uniqueness of the channel estimate was determined by the discrepancy between the
eigenvectors of a certain objective which was formed by exploiting the orthogonality.
For those configurations where uniqueness failed, i.e., algebraic multiplicity of
eigenvectors greater than 1, the authors proposed a diagonal precoder to alienate the
eigenvectors. Benefited from the orthogonality, this can be surprisingly easily done by
assigning the power weighting coefficients with sufficient discrepancy in an ad-hoc

manner.

However, it remains challenging for the above mentioned methods to be effectively
extended to frequency-selective fading environment which is a more practical
consideration. By effective extension we mean the algorithm on which the estimation or
decoding is based should enjoy either full or partial diversity due to orthogonal nature
of the coding itself. To apply the OSTBC structure to frequency- selective case without
compromising the code orthogonality, E. Lindskog and A. Paulraj [7] cleverly combine
the cyclic-prefix (CP) mechanism with timesteversal operation on symbol blocks,
bringing the space-time congept| tol|block-level”. It was then incorporated with
Alamouti scheme[8] and known as time-reversed Alamouti-like (TR-Alamouti)
scheme[9]. The TR-Alamoutitschemeésisrunique in that it enjoys full 2-fold transmit
diversity and nearly full transmission rate, when neglecting the CP overheads, at the
same time. A general block-level orthogonal space-time block code was first proposed by
Z. Liu et al.[14] for consideration regarding preserving orthogonality over frequency-
selective channels with more than two transmit antennas, where the generalized
complex orthogonal design (GOSTBC) [1] was adopted with ZP assistance for
mitigating channel distortion. On the other hand, there have been extensive studies
based on the 2-fold diversity scheme with frequency-domain equalization (FDE), such
as [11],[12] and [13]. As for a general FDE scheme having more than 2 transmit antennas,
a compromising method based on quasi-orthogonal STBC (QO-STBC) [10] was
proposed in [2], where the nearly full rate was preserved at the cost of achieving only
partial spatial diversity. Achieving full spatial diversity, particularly based on FDE and
cast into the general structure in [14], was reported in [26]. However, the derivation in
[26] is based on the 2-fold structure as a start and then generalized to multiple-antenna
scenario intuitively by introducing the block-level concept in [14]. Tt is as instructive as
important to build up the signal model with multiple transmit and multiple receive

antennas, from which a general form of block-level orthogonality will be established.



Aside from the derivation issue, we will counterbalance the deduction in [26] that the
“CP-only” scheme cannot exploit full multipath diversity, by giving a PEP analysis.
Although a premise which is numerically supported by simulations must be met for
justification of our PEP analysis, it does shade some light on extending the discussions

in [17] to a more general scheme.

Also, optimal training design for MIMO communications in either flat-fading or
frequency-selective fading environments is an important topic in practice. A pilot
symbol-aided linear MMSE-based training scheme with optimal/orthogonal training is
considered in [15]. In [16], the discussion in [15] was generalized to take advantage of
space-time diversity. Nonetheless, none of which particularly considered the OSTBC
class, and hence the optimal designs were quite involved. It will be shown that with the
structure of training blocks fixed as OSTBC, the optimal training design can be

simplified to optimal power allocation design.

1.2 Thesis Overview

In this thesis, we introduce a generalized FDE technique based on structure of [14] and
by extending the training-baséd channel'estimation approach in [3] we arrive at similar
design criteria for optimal /orthogonal training ‘as those obtained in [3] which considers
flat-fading scenario. We propose an extended block-level OSTBC scheme capable of
achieving full spatial and multipath diversities over frequency-selective fading channels
when more than two transmit antennas involved by using FDE. What differs from [26]
is that instead of starting from the 2-fold special case, we provide a new and instructive
derivation based on general multiple-antenna signal model. The proposed scheme has
nearly 1/2 symbol rate when discarding CP overheads. Pairwise error probability (PEP)
analysis for demonstrating full spatial and full multipath diversities will be given. It will
also be shown that since the signal model resembles that in flat-fading scenario, the
optimal training designs such as those developed by M. Biguesh et al.[3] can be
generalized to the frequency-selective fading scenario in a straightforward manner. The
extended training-based channel estimation is optimal in least-squares (LS) sense in
frequency-domain under a given power constraint, provided that a power criterion is
satisfied. Also a time-domain linear MMSE channel estimation technique can be

developed in a similar fashion as [3]. Adopting the Alamouti scheme for the construction



of the proposed encoder with proper changes in dimension and scalar factor makes the

2-fold diversity scheme a special case.

In the next chapter, we will propose a transmission scheme and outline that entire
system model. Post-processing including the subsequent FDE for data transmission and
the training-based channel estimation for training mode will be introduced in chapter 3
and 5, respectively. Also, the optimality conditions for achieving lowest possible NMSE
will be derived accordingly. In chapter 4, we will derive our PEP analysis. Simulation
results of NMSE vs. SNR for training-based channel estimation are discussed in chapter

6.
1.3 Notations

The following notations are adopted throughout the thesis: P, P” and P” denote
conjugate, transpose and conjugate-trfanspose of matrix P, respectively. A ® B stands for
the kronecker product of matrix-A andiBuLét Re{P} and Im{P} stand for the real and
imaginary parts of matrix P, respectively. liet Tr{P} and vec(P) denote the trace and
the vectorization of matrix P,Tespectively. For y €C", Diag(y)€ C™" stands for an N
by N diagonal matrix with y"on its main diagonal. For A € C™", Diag(A)c C™"
stands for the vector whose i entryris'the i diagonal entry of A. For a matrix

AcC¥M, [A]ij denotes the entry at the i row-and-j* column position of A .

P(i:j,m:n) denotes an extracted submatrix consists of from # to 7 rows and from m" to

n™ columns of matrix P. P(:,m:n) indicates that all rows ranging from m™ to n” columns

are referred. Similarly define P(i:j:). The symbol F is preserved for N by N

normalized discrete-time Fourier transform (DFT) matrix, with the (m,n)" entry of F
2m(m—1)(n—1)
—J

being [F| = N , 1<mn<N.

1
mn — IN



Chapter 2

System Model

In this chapter, we will introduce a transmission scheme based on a block-level
extension of OSTBC. As a preliminary, we will also review some basic properties of
orthogonal design of space-time block codes, which are to be employed for introducing
block-level generalized orthogonal space-time block code (BGOSTBC) encoder as
depicted in Fig. 2. The mechanism of CP insertion and CP removal for combating

inter-block interference (IBI) will be reviewed at the bottom of this chapter.

2.1 System Configuration

As depicted in Fig. 1, the overall systemicofisists.of a BGOSTBC encoder followed by
CP insertions at the transmitting end while the receiving end comprises CP removal,
DFT and the subsequent channel estimation plus FDE. Let M, and M, denote the
number of transmit antennas’and'.receive~antennas, respectively. Assume that the
channel order is L (L+1 taps) for all the subchannels and known a priori. We assume the
CP length is exactly L. Let N be the block length and N > L 4+ 1. The information
symbol blocks to be transmitted are accumulated over K blocks, each one of which will
be sent by a certain transmit antenna during a specific time epoch with CP insertion.
The block ordering is set up according to the proposed BGOSTBC encoder which
occupies 2K time epochs for transmitting KN symbols. Each time epoch lasts for N+ L
symbol periods, where the redundant L symbol duration accounts for the CP insertion.
At the receiving end, the received signal blocks over the entire 2K time epochs are
buffered after CP removals. Then the equivalent IBI-free received blocks are Fourier
transformed. With the outputs at the DFT system block available, we can either
acquire channel estimation in training mode or perform FDE on the transmitted

information symbols.

2.1.1 BGOSTBC Encoder



In this subsection, the referred time epoch lasts for N symbol periods only since no CP
insertion involved. Now suppose we have collected K symbol blocks, ¢, ¢,, -+, c,.
Let C= |e, ¢, -+ c,|,where ¢, € C" denotes the k& information symbol block to
be transmitted, whose n” symbol is denoted by ¢, (n), 0<n <N -1, 1<k < K. The
transmission scheme of the BGOSTBC encoder can be regarded as a forward
transmission mode followed by a reversed transmission mode, each of them occupying
exactly K epochs. In the latter mode each incoming signal block is time-reversed and
conjugated prior to transmission, while in the former mode transmission is carried out

with blocks unmodified.

Now, let us define the encoder output. The encoder has single serial input and parallel

M, outputs. Let s € C¥ denote the signal block transmitted from the m? encoder

m

output path during the p? time epoch. Collecting encoder output over 2K time epochs
and across M, encoder output paths yields a matrix of dimension 2NK by M,, whose

((p-1)N+1:pN,m)™ block-entry is _sZhyby, definition. The so obtained matrix is

m

essentially a block-level extension of generalized.complex orthogonal design[1]. See also
[14]. Let us define G, as theoverall output at.the BGOSTBC encoder stacking across

2K epochs and herein list sorme properties of it:

K
G, 2 [X, Dot Xy ®d,| e OV (2.1)
k=1

where

( T
d, =[d,(0) (1) - d(N-1) .
d(n) = ¢,((-n)y), 0<n <N —1,
XAm XBL, e R™M 1<k <K.
I, 1<k=I<K
1XiX, =1 .
k XX, 1<k=I<K
I,,1<k=I1<K
XIX, = , )
XX, 1<k =<K

sz XB, = 01\

[, <M,

1<kil<K.

Specifically



A (2.2)

KxM,

where G, € CM*® are generic constituent matrices of certain OSTBC design of
dimensions depending of choices of K and M, See also Appendix A3 and [1] for a
detailed description about the construction of constituent matrices of OSTBC. The
time-reversal, d,(n)=c¢,((-n)y), is carried out via the modulo- N operation defined as
(n)y =N-n for 1<n<N-1 and (-n)y =0 for n = 0. Note that X, X, €
R*M 1<k <K, are constituent matrices of a certain GOSTBC determined by
choice of (K,M,). X, and X, are non-overlapping matrices consisting of only ones
and zeros up to sign changes, and are responsible for designating space-time ordering of
()

the forward transmission mode and the reversed one, respectively, i.e., s,” takes ¢, if

is one, for

is one, for 1<p<K . Similarly, s takes dz if MXB]

m A

pm

K+1<p<2K.
2.1.2 BGOSTBC Encoder.(with;CP. Insertions)

Note that in Fig. 2, (K,M,) =4,3)rand CP insertions following the encoding have been
taken into account. The m” entoder output path is followed by a CP insertion whose
output is connected to the m!” transmit antenna, for all values of m. CP is inserted prior
to the transmission of each symbol block for mitigating the channel distortion. From
here on each time epoch lasts for N+ L symbol periods. Since the constituent matrices
simply serve as designating the space-time ordering for signal blocks, CP insertions
directly apply to s%’), 1<p<2K, 1<m<M,. Let M=N+L. Then the signal blocks
collected at the output of the CP insertions over 2K time epochs and across M, transmit

antennas can be represented in matrix from as

Gs = (I, ®1,)G,

K
:Z{XAK ® (ICPck> + XBk ® (Icpdz )]
=1
K

g2

X, 96 +X, ©d] e, (2.3)

where



~ A

¢, = 1Ic, €CY;
d, £1,d, € C";

OLx(N—L) I

= € R™¥N, the CP insertion matrix.

N

As a building block, next we review the transmission of a single signal block with CP

through a frequency-selective fading channel.

2.2 Block Transmission and IBI-free Model upon CP Removal

Let the sequence Sw(pM), sw(pM +1),---, Su(pM + M —1) denotes the symbols
th (» A

transmitted from m" antenna during p" time epoch. Let s’ £ [su(pM) su(pM +1)

T
Sn(pM + M — l)l € C". By noticing s’ =I5, we know that s/’ takes c: if

HXAA ]p'rn

K+1< p<2K.

~

is one, for 1< p <K . Similarly, s takes d, if “XBA‘] is one, for

pm

2.2.1 MIMO Frequency-selective Fading Channel and Noise Model

We consider a frequency-selective channel where the channel impulse response of L+1

. . . . VAN
taps between mf transmit antenna and j* receive antenna is defined as h,_ =

jm

T
{hjm(()) b, (1) - hjm(L)} € C""'. Throughout the thesis, we assume independence

between channel taps for all h, , 1<j< M, 1<m <M, . Assume that h  is

Jm? Jm

circular symmetric Gaussian distributed, i.e., h, ~ CN(0,0;1,,,). Hence the real and

Jm

imaginary parts of each of the entries of h_  are i.i.d. zero-mean Gaussian with

Jm
variance 0.50; each, i.e., N(0,0.507). Assume that the channel remains fixed during

2K time epochs. Let the sequence n.(pM), n,(pM +1),---, n,(pM + M —1) denotes

i
the additive noise samples, circular symmetric Gaussian distributed, at the 7 receiver

th

during the p® time epoch. Hence, the noise vector defined as 772.”> é[77].(;0M)

T
n,(pM +1) - nj(pM—l—M—l)} € C" assumes CN(0,0°1,,).

» T w
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Let the sequence wv,(pM), v,(pM +1),---, v,(pM + M —1) denote the received

4

symbols at the j* receiver during the p® time epoch. Define v = [vj(pM) v,(pM +1)

o(pM +M—1)| €C" For 0<n<M-1,1<j<M,

M, L
pM+n = th Sm pM—i—n—l)—knj(pM—i—n)
m=1 [=0
We can write v;p )as
M,
v = D [HG S+ B
m=1
where
b, (0) 0 0 0
h’jrn (1) h’jm (0) 0 0
Hﬁ é i .
™ b, (D) 0 ’
im
h.,.(0) 0
O 0 jm (L) h’jm (]‘) h’jrn (0)
0 h’jm (L) h’]m (2) h’jm (1)
0 0 hjm (L) h’jm (2)
H A 0 0 :
jm T . .
0 : 0 0 h,(L)
0
0 0 0 0 0

After CP removal, we have the IBI-free received signal model, yf’> = [0 N | N}vfjp )=

[yj(pN) y,(pN +1) - yj(pNJrN—l)} € C", where y,(i), pN <i<pN +N -1,
are the received symbols at the ” receiver during the p™ time epoch after CP removals.
y' = [v,(pM +L) v,(pM +L+1) - vj(pM—i—M—l)]

_Z({ NxI ]Htjm”l)) [ONXL 1 }ijl[ 57 )+

m=1




hjm (L) h’jm (O) 0 0 0
0 : 0
. 0 (L
_ M, Jm( ) . OLX(NiL) IL Sg":’) —|— W(p)
m=1 O . 0 IN
0
0 0 0 B o B
_f Hjms(yg) + W(P)’
m=1
where w!” £ [ONxL IN]"EP) and
h]m (0) O O O hjm (L) hjm (1)
hjm (1) h’jm (0) 0 .
- s ' jm(0> 0 hjm(L)
" hjm (L) hjm(L - 1) : hjm(o) 0
0 0 0" hutL) h,(L-1) - h,(0)

— T
Let hju=|h}, 0, v iy € C™ We note that H, isan N by N circulant matrix with

its first column being ;. . It follows that, after CP removal, the signal received at the

7 receive antenna on the p® time epoch is IBI-free and given by, for 1< p < 2K ,
)
Z H]msﬂf + W (2.4)

Let us define the following terms which will be used through out the following
chapters:

T

L LT T T M, (L+1)
h]- = h].1 h]_2 tht c C
1. =T =T —7r 17 .
hj L hjl h]2 th,t c CMJ\
AT T r ] MM, (L+1) (2.5)
M, M, (L+
h, ={h hy - hy C
1. T =T —T T o
ha £/h; hy - hM,] € CMMN

10



Chapter 3

Frequency-Domain Equalization

In this chapter, we propose a generalized FDE scheme based on block-level extension of
generalized complex orthogonal designs (GOSTBC). The extended block-level OSTBC
scheme with more than two transmit antenna is capable of achieving full transmit-
receive diversity using FDE over frequency-selective channels. This shows an alternative
to the block-level extension resorting to QO-STBCJ[2], which can indeed achieve perfect
FDE in more-than-two transmit antenna scenario but at the cost of additional hardware
complexity accounting for adders. Aside from this complexity drawback, its spatial

diversity is halved.
3.1 Overall Frequency-Domain Received Signal Model

In the subsequent discussionywe will-6nly derive the received signal model at the j*

receive antenna as all receiversrhave .the same signal model except for different channel

is one, for

m

impulse responses. First recall thaf s in" (2.4) takes ¢, if ‘[X A}
* Ipm

1<p<K and takes d; if MXB] is one, for K +1<p<2K . With the above
% lpm

observations, we have the following received signal model after collecting the IBI-free
received signal blocks over 2K time epochs (Without loss of generality, we have assumed
the transmission started from time epoch index 1 and collect the received blocks all the

way up to index 2K)

Y; A (y(]l))T (y(J?))T (yij))T (ng+1>)T (ngK))T T
S em ) ) W) ) e
m=1
M,
:Z<12K ®Hjm>GB(::m)+W;» (3.1)
m=1
where wj = [(wy))T (w<2))T (W(J,QK)) ] denotes the stacked white noises over 2K

11



time epochs.
3.1.1 Space-Time Combining Using Signal DFT’s

Define y. , 1<p<2K | y. (2K®.'F)y'j and V\@'é(IQK(XJ.’F)W'j. So
performing block—w1se DFTon y ; in (3.1) leads to

) ) - ()

M,
:Z 2K ®F(2K®Hjm)GB(:?m)+<IZK ®'7:>le

yJ:

—

=

f

(L o (FH,, )6y (m) + W, (3.2)

J

See the tailored version for 2-fold diversity in [9],[26]. Since H,, is circulant, we can
decompose it by the DFT matrix agfollowsir H, = F"A, F, A, = Dmg(x/ﬁ ﬂl_jm),
for all values of j and m. Let X, & Fe,. Sifice dg is obtained from ¢, by conjugated
time reversal, we have[24, pp.123-124], .’Fd; = XZ, 1<k < K. Hence we can rewrite
(3.2) as

0NK><1

[%,(am) ® (A, X,)

] +W. (3.3)

0NK><1

M, ® (A
- fgmetun),
Define Y £ [(y].'(o : KN — 1))T‘(y7.'*(KN 1 2KN — 1))Tr € C™, then we have

12



K (G, (:,m)@(A, Xk) 0
y — u Jm + NKx1 . + W
! ; m=1 l[ 01 g, (5,m) ® (AJka> '
K | M, .
k=1 | m=1 Kx1 gAk (Za m) ‘

Note that the definition of Y follows from the reversed transmission mode by virtue of

0 Gy, (:;m)

GOSTBC. Let ojkéi{(g4ﬂ'<:’m>)®Ajm+( s @A, X2[XD X - 5]
m=1

and A; =0, 0, - O'K} € C*™ N 'We can then rewrite (3.4) more compactly as,

J

for 1<j5;<M,,
YV =AX+W. (3.5)

Equation (3.5) represents the frequieney-dothain input-output relation between the
receive antenna and the transmit antennas; where A, X and W are embedded with

knowledge of channel state information (€SI); of transmitted signal blocks and of
T
channel noise at the  receive antenna, respectively. Let Y = 3" W' - 37]5

2KNM, . . : . . .
€ C™™ . By stacking the received signals in (3.5) across M, receive antennas, we arrive

at the following MIMO channel model in*frequency domain
Y=AX+W, (3.6)

T T
where W=W" W' - Wy | and A=A A Al | € CFEE g

the equivalent frequency-domain MIMO channel matrix for block transmission.

3.1.2 Frequency-Domain Equalization with Perfect CSI

Let X=A"Yand W=A"W and assume that rank (A)= KN . Hence A"A is
invertible, and the Moore-Penrose pseudo-inverse of A can be written as A" =

(AHA)_IAH c C*™: 'S0 by pre-multiplying both sides of (3.6) by the linear

equalizer A", we have

13



-~ —

=X+W, (3.7)

[P<

where X contains the decoded DFT’s of the transmitted signal blocks. Therefore the
transmitted blocks can be recovered through FDE. It is seen from (3.7) that by
nonsingularity of A”A, FDE can be achieved up to a zero-mean equalization error term
W when perfect CSI is available. The proposed BGOSTBC achieves block-level
orthogonality in frequency domain, that is, A”A is a diagonal matrix and diagonally

loaded with diversity weightings. More precisely, we have the following results.

Theorem 3.1 AN'A =2

M, M,
h@ZZ%%}

j=1 m=1

(Proof: See Appendix Al.)
U

Remark 3.1 With perfect CSI, the FDE can be carried out efficiently. By
efficiency we mean the involved computationfor matrix inverse (AH A)_l reduces

to merely computing the reciprocals of each of the diagonal entries of A”A . This

can be seen from Theorem=3.1 that A"A is diagonal.

Remark 3.2 The double simmation of the elementary square block of A”A
implicitly indicates that the full M M,-fold spatial diversity is achieved through the
proposed FDE scheme (See also chapter 5 for an explicit validation of full diversity
via PEP analysis). Notice that had the encoder been realized with QO-STBC, the
system would enjoy halved spatial diversity by carefully decoupling the received
signals upon DFT transform[2]. The QO-STBC is more redundant than OSTBC in
nature by inspection and relies on additional arithmetic operations for exploiting
quasi-orthogonality at the receiving end, with approximately full transmission rate

though.

Remark 3.3 Equation (3.3) is hereby regarded as a building block as we will
exploit more of it towards the discussion of training-based channel estimation in
chapter 5. Such discussion is as practical as essential to applying the OSTBC to the
frequency-selective fading environment. Our proposed scheme can be adopted to

generalize the channel estimation techniques in [3] to the frequency-selective fading

14



scenario in a quite straightforward manner, in contrast to [16], with similar

conclusion on optimal training design obtained in [3].

Remark 3.4 By adopting the Alamouti scheme for the construction of G, with
proper changes in dimension and scalar scaling factor makes the 2-fold diversity

FDE (Alamouti-like) scheme a special case.

Remark 3.5 Notice that the FDE behind (3.7) is based on the premise that
rank(A)= KN , and hence rank (AHA) = KN . This in turn requires that

mnk[ZZAm jm] N be satisfied as we can see from Remark 3.1. Notice

j=1m

that each of the diagonal entries of A;A m is nonnegative. To proceed further, let

= pa— = = T =
us define hym 2 Fhy, = [hjm (0) R (0) -+ Tigm (N — 1)} e C", where T (7)
is the n™ entry of the DFT, 0<n <N -1, 1<j<M, and 1<m < M,.

Theorem 3.2 If there exist at least one pair of.values (j*,m*) , 1< <M,

* o 2 e
1<m <M, such that |h;w (ﬁ)‘ >0, 0<n<N=1, then rank(A)= KN holds.

O

Let us denote the sufficient condition in Theorem 3.2 as (c1.R). That is, if
there is a subchannel whose transfer function is free from zeros at the frequencies
e’ , 0<n <N —1,then A”A is nonsingular. The condition is very weak and is

generically satisfied. It is interesting to consider the following special case. Suppose

~ 2 = *
hj*m*(n)‘ >0, for 0<n<N-1 while hju =0,,,, for1<j=j <M , 1<

m = m < M,. Consequently equation (3.4) becomes

K
yj = Z{Oijk}+ VVJ with O].k £

k=1

(%(m )®A +( 051 )®A[£*

050 Gy, (:m ) jm

By stacking across all M, receive antennas, we have A with the block-level

orthogonality that AHA:Z(IK QAT AL ) , which clearly lacks of spatial

jm jm
diversity, compared to (3.6) whose subchannels are all active. Intuitively, the

decoded signal X:Ny becomes much more erroneous without the spatial

15



diversity than with any. The above scenario arises when our MIMO channel model
degenerates to a single-input-single-output (SISO) frequency-domain equivalent.
So far, even though we consider a scenario which is more likely than (c1.R) to occur,

such situation is far from common, not to mention that only one pair of values
~ 2
(j ,m ), 1<j <M, and 1 <m < M, such that ‘hj*m* (ﬁ)‘ >0, 0<mn<N-1.

This is why we call (c1.R) a weak condition as it can be easily satisfied in practice.

Notice that the reason why we are able to recover the transmitted symbols even
under the above mentioned harsh situations lies in that the space-time redundancy
transmitted a signal block through every transmit antennas over different time
epochs. Even though the MIMO channels degenerates to an SISO channel, all the
transmitted blocks can still manage to the single receiver, provided that the

reception lasts for 2K time epochs.
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Chapter 4

Pairwise Error Probability Analysis

In this chapter, we will derive upper bounds for the average pairwise error probability
(PEP) for the FDE-based scheme. The essential assumption under which the derivation
is justified would be stated with numerical support. Our perspective reveals that at high
SNR, the proposed system dose have the potential of delivering maximum possible

spatial as well as multipath diversity.

4.1 PEP Analysis for Suboptimal Detection Problem

First, we derive an upper bound for' the average PEP, assuming that the decoding
consists of a linear equalization‘followed by-an symbol-wise quantization into the signal
constellation A4 . See also [14] and [17]. To see that, let us formulate the detection
problem as follows. Based on (3.6), weé have Y-= Q¢+ W with the matrix Q=
AI, ® F) e C™MEY being responsible for yiélding the frequency-domain output of

T
the time-domain input signal blocks Eé[c]T c; cf(] € C*™" . Hence we can

address the ML-detection problem as follows:

Cur = argmin Y — Qc], (4.1)
ce AN

where €z is the optimal decoded symbol block in ML sense. However, this ML
exhaustive search yields infeasible computational cost of order |A|KN for practical
values of K and N, where |A| denotes size of the employed constellation. So we seek a
suboptimal linear equalization approach. Note that W is a white Gaussian vector
since DFT serves as a unitary operation only. Let us define Z £ A"y e CHY,
WEANWeC™ and © £ A"Q € C*™™ . Then we can rewrite (3.6) as

Z=0c+W. (4.2)
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We assume rank(A)= KN . Since I, ® F is of full rank, rank(®)= KN by
definition of © . Hence the inverse @' exists and can be used as a linear equalizer.
Let Z =©"'Z denote the output of the linear equalizer ®', then from (4.2) we

readily arrive at

Z=¢c+0'W. (4.3)

Notice that the diversity gain weighting has been normalized at the output of @' and
hence the detection problem can be formulated with respect to the employed
constellation. Based on signal model of (4.3), we obtain an suboptimal detection

problem:

¢ = argmin HZ - c”2 , (4.4)

ce AN

where ¢ is an estimate of ¢ after,equalization. Note that the so obtained estimate
minimizing the metric in (4.4).48 subeptimal since the underlying noise is no longer
white and its covariance depénds on the'matrix © 'A”. We see that minimizing the
metric in (4.4) amounts to a symbol-wise hard-decision into .4 since HZ’ — c”2 is the
sum of KN nonnegative terms-and-each-ef-which can be minimized with respect to an
entry of c, i.e., minimization on‘symbol-level. Therefore, using ©' as an equalizer
and (4.4) as the detector amounts to having a linear equalization scheme followed by a
hard decision on each entry of Z into the constellation .4 . It is noteworthy that the
computational cost of (4.4) is linear in composite block length KN, which is

computationally cheaper than that of (4.1).

The PEP analysis considers the probability that a symbol block ¢ e AN is
transmitted while another € is detected in the minimum-distance perspective. Given

the channel realization h ,, and hence the matrix A, the conditional PEP is defined as

all ?
Pr[c — &h,,] = Pr“\e-z\L < HE?MA] (4.5)
Note that proving that the average PEP has maximum diversity is equivalent to proving

that the error rate performance exhibits maximum diversity, by virtue of the union

bound[9]. For this purpose, let us define 2 £ |c—¢|, and e = (¢ — (:)/||E— ¢ll, to be
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the Euclidean distance between ¢ and ¢, as well as the corresponding normalized

difference, respectively. Let ¢ £ Re {(@’IW)H é} [18, pp. 508], then (4.5) becomes

Pr[c — ¢h,|=Pr

£ > % A]. (4.6)

As the variable ¢, when conditioned on channel realizations, is a zero-mean Gaussian
random variable, the error probability in (4.6) is completely determined by the variance

. To compute a , first let us write W = ( o, ® F )E for notational purpose,

Y

, T
where w is related to the white noise w, in (3.1) by w = [wj (0: KN -1)" &'

W=w, (KN :2KN —1). .. Then we can factorize (('-)’117\7’)H e as w'e, where

~ A —1AH H ~ . .
e= (@) A (IZKM ® .7-')) e. The variance is computed as follows:

g

: — p{e } { sf@ )" )
(e o1

E{[Re{w} Re{e}] ‘A}
{[Im{'w} Im{e}] ‘A}

2B {(Re {@})" Re{e})(Im {@}" m {e})|A}.

ER

Notice that since w is white, the entries of w are i.i.d. circular symmetric Gaussian,
with real part and imaginary part of each of the entries being N'(0,0.507) distributed.
Also notice that Re{w}’ Re{e} and Im{w}’ Im{e} are statistically independent of

each other by virtue of the circular nature of w. For notational purpose, let [y],

o; =E {[Re {w}' Re {é}ﬂ A} + E{[Im {w}' Im {é}]

E
i=1

2 2

denotes the # entry of a vector y. So we can rewrite the above equation as
Z [Re {E}L [Re {é}]i

2
A }
2KNM,
A
2KNM, 2KNM,

> [tm {w}] [1m {&}],
= [Re{é}]? {Re{w} ‘A}+ Z Im{e}] {[Im{@}f‘j\}

i=1
i=1
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—

NS efel] + S e

N |~ N

—

2

N~ N

|
N e FMA (L, 0 F)| e

)

2

where we have used independence between each of the entries of Re{w} due to w

being white and zero-mean. Notice that @ 'A" = (IK ® F! )A*. Similar reasoning
applies to Im{w}. We know that the PEP in (4.6) can be expressed in terms of the
Q-function, Q(a) £ fmﬁef{%dt, as

Pr[c — gh,| = Q|2 ]

D

2

(e FIA (L, o F) e

2

\/ 25"
D

oo 70 o7

where we have invoked the inequality that |Ae|, <|A|, |ell, =||A], for any matrix A
and a unit vector e. Since multiplication by unitary matrix dose not change Frobenius

norm, we arrive at

L
7 A

7U

Pr[E - é|hazz] <Q

Then by using Q(a) < Lexp(—4%), we have the PEP of interest upper bounded as

- . 1 0?
PI‘[C — C|ha”] S —exp —m .

: (4.7)
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Let us define the following terms:

—(m G, (:,m !
ij>é[ i ( )] 91,
0K><1
T
=(m) 0
A"k é Kx1 ®I :
7 gAk(:’m) !
Ay 2[AY AT AR, (4.8)
= =1 =2 =(M,)
A £ Ay s Aj }a
— _ 117
Y, 2L, @ AL (ATA) L, @ AL (ATA) L, ® A% (ATA))
— 117
Y, 2L, ®A, (ATA) " L, ®A,(A"A) L, ®A,, (A"A) '] .
From (4.8), A" £ (A"A) A" can be rewritten as
o %
A*:[A A]_, (4.9)
where
Kll KM,,l Xll K}W,_l
KIK KM7~Mt Xu{ XM,.AL
Y T
T2 T2
TM7~ ?M,
— = (= — |2 =
Hence, ||A+||i < H[A A [HTH? + HT J Notice that [A A} is solely determined by
F F
— —|2
the encoder structure, and by (4.8) it can be easily verified that HTHi = HT and
F
. M, M, || M M, -1 :
x| =2K->>" [Z Aj;’nAjm] Al (4.10)
j=1 m=1 ||\ j=1 m=1 -
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With the definition of h,. in Remark 3.5, (4.10) can be rewritten as

N-1

o M, M,
[l =26 3501 —
e [ Z‘hm (n)‘ ]

j=1 m=1

N-1( M, f

:%.Z[ZZM (n)‘] (4.11)

n j=1 m=1

Now, let us define an N by N matrix D, as

(4.12)

2

Tom (N —1)

j=1 m=1

M, M,
We assume rank(A) = KN, or equivalently rank[zz i ]m] N . Hence, we see

1 m

that D, is invertible. Hence, by defining C, = H K K

and from (4.9) up to (4.12)

F

we arrive at

A <o, HD (4.13)

Before we proceed further, let us make one more assumption deduced from the rank

premise: condition number of D, , denoted as K(Dps), is upper bounded by a finite

real number KC, € R for all possible channel realizations, i.e.,
K(D,)<K, foral D, (4.14)

Notice that by orthogonality,
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M, M,
CEEen] e
K(A) = Lol - :

Ain [Z Z Am i ] min [Dz’ag [Z Z Aij]m ]]
1 1

J m= j=1 m=1

M, M,
.DZCLg [ZZ Ajm ]m]}
j m

1
1

where A (A) and A, (A) denote the maximal and minimal eigenvalues of matrix A
respectively. Hence IC (Dm) = IC(A). By regarding the simulation results from Fig. 3-1.
to Fig. 3-5, we see that

i) For all possible system configurations (N,M,,M, L,K), the probability of singular
occurrence rank(A) < KN is very low in practice. As one can perform as many
simulations as possible to find the above highly plausible, our rank premise is
reasonable. Hence K(Dps) < 00.

ii) Given known channel order Lyand'désired transmission rate, selecting high values

for M, and M, can effectively suppress IC(DPS).

iii) It agrees with the intuition that as N-increases, the probability of IC(DPS) — 00

drops. This is because each of the diagonal entries, which are correlated, of D

is sum of nonnegative térms.

From the above three observations we deduce that IC(DPS) can be universally upper

bounded by a finite real number in practice.

On the other hand, suppose B € R™™ is a nonsingular diagonal matrix, then for any
full rank A € R™", m<n, such that [Af}, <2 [B™| <|mBayy .

(1+nK(B
Proof:

n—1 n—1
-2 2

”B—l” _ ;[B]” ;[B]u - n(l + nIC(B)) - m
‘ B T B T IBL(AL

2__HBAH. (4.15)
O

Therefore, by assuming (4.14) and along with (4.15), there exist infinitely many full

+|12

00 Nx(N-L)
rank {¥}" €R . for

" such that ”D;s1 ; < H(Dp v

F — n(l+nk,)
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all channel realizations. Now let us find such a matrix ¥ among these possible
candidates so that any (N-L) of the rows of W are linearly independent. Note that this
additional constraint can be very easily satisfied and hence does not in any way

contradict (4.14). Then, (4.13) can be written as

: 4K
I A

(4.16)

F

Let 0 é{no,nl,-n,nL_l} be the set of indexes corresponding to the smallest L

composite frequency responses such that

M, M, ~ 2 M M, ~ 2
ZZ hjm (np) < N jm (nq>‘ for n, € 8 and n, &

j=1 m=1 7j=1 m=1

S5 () <03 () < < 303

j=1 m=1 j=1 m=1 j=1 m=1

(4.17)

]m TLO Jm n ]m nLl

where 0 <n, <N —-1land 0 <#<L—1 Define, D, as an N by N diagonal matrix

whose entries are given by

ThST) cifn Z B
\/X;Z1 i W‘ : (4.18)

3 =0 ,ifnep

! nn

7”1

Then we construct an (N-L) by N matrix ¥, by the following two-fold step:

i) Remove all the rows, whose row indexes belong to set (3, of ¥ to obtain an
(N-L) by (N-L) matrix .

ii) Insert L zero columns to T so that after the insertion, the inserted columns
have indexes belong to set (. Let ¥, denote the so obtained matrix. Note that
the constraint on linear independence of any (N-L) of rows of W ensures

. —1
existence of ¥

From (4.17) up to the definition of ¥, it can be verified that
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(¥,D,)(D,¥)=1,_, . (4.19)

V], <D, due
o (4.19)[27, pp. 257]. Hence, (4.16) becomes

4K
R o e LA LY (4.20)

Let C, émﬁax”i@”i , where the maximization is taken over all subsets of

M, M, _

2
{0,1,---,N —1} . Now, let us define n, = arg mmZZ‘th (n)‘ . Then from (4.18) and

ngp j=1 m=1

(4.20), we have

AK M, M, _ -1
A < CoCy = (N —1L) [ZZ hm (ny) ] : (4.21)
j=1 m=1
Define h £ |h), - hj, T, where-h:) < [ij (n,) Bim (n,) - B (nL)T. From
(4.17) and the definition of n, , we see that

M, My

Il < (L) ZZ‘th n, ) (4.22)
j=1 m=1

Note that h = Vh,,, where V is a M M,(L+1) by M ,M,(L+1) Vandermonde matrix

with nonzero smallest singular value, /A, <VHV>. Since A, (VHV) all < ||h||27
along with (4.22) we have
L+1 M, M,
| < ‘hm n (4.23)
i lo )\m ( )]ZI; 7 L
Hence, from (4.23), we can rewrite (4.21) as
-2 N')\miu VHV
P > AR 2

~4K(N - L)(L +1)C,C,
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N-dys (v“v) D?

Let Kk = wzm ) (I+00,50,

and SNR= /.. Then we see that the upper bound in (4.7) can

be expressed as

Pr[c — ¢h,| < %exp(—n x SNR ||h

) (4.25)

all

T

Let m =M M,(L+1) and write h . We assume that all the

all:[al Qy o G

MIMO multipaths, h_ . are statistically independent of each other. The distribution of

Jm

the channel vector h,, can then be expressed as a multi-dimensional Gaussian pdf[18,

pp. 502],

1 1 2
fh,,u (hull) = YRR <U;2L )M,M' T XP _U_}% h,, 2]
- 2
= H L - exp @] (4.26)
=1 7T0'h Uh.

Now we can average the upper bound with respect. to the channel pdf:

E; {Pr[é — E|ha”]} < lfjo exp(—/s;XSNR|h

1 1
=51

; ) ﬁl,Lzz (hall ) dhall

all

_.j?++;xSNRha$]da
Uh

Note that the integrand is to be integrated with respect to a complexr variable, «,,
which is essentially a circular symmetric Gaussian random variable. Let ¢, = Re {ai},
and ¢, = Im {%}- Therefore by symmetry between the real part and imaginary part of

«a,;, we can further factorize the integration as

ﬁ‘f +2+rxSNR )p ]ﬁ[ (072 +#xSNR)g? 'dg,

E{Prc—>c|h,,]}§’ ‘

<23
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M, M, (L+1)

1, oM, : B -
:5(02) HeAte) g (O']LZ—FI{XSNR) |

Hence, at high SNR region, we can expect the PEP be bounded by

_ N 1
E. {Pr [c — ¢ hall}} < E(Jz

)—MrMi(Lntl)

(k x SNR) M (4.27)

It is seen from (4.27) that at high SNR, full spatial (transmit-receive) diversity gain of
order M, M, and full multipath diversity of order L+1 are achieved. Note that the above
results counterbalance the deduction in [26] that the “CP-only” scheme with extended

GOSTBC cannot achieve full multipath diversity.

It is noteworthy that the derivation from (4.7) to (4.25) really relies on the structure
hall

2

) for

of GOSTBC. From the perspective in [17], the particular relation ||A+||1;2 > C|
some real constant C'in (4.24) requirés ertain precoder design, whose purpose is to
compensate the detrimental effect due to-ehanneél zeros/nulls. However, as we see from
the above derivation, the precoding mechanism could be not necessary. Note that ¥

can be regarded as a virtual precoder introduced for the purpose of deriving PEP.

Remark 4.1 By noting the slope change at relatively higher SNR region within
Fig. 5, we see that the possibility of delivering full multipath diversity under the
proposed scheme is evidently noticeable even with small numbers of antennas, i.e.,
as the number of taps (L+1) increases by 1.5 times, so does the slope of error
probability above 4 dB. This in turn justifies the deduction behind (4.16) upon
which our PEP analysis is built. For simulations in Fig. 5, we set N=250 and QPSK
for 1000 consecutive transmission during which the channel remains fixed. The
channel taps of each of them assume power delay profiles whose sum are
normalized to 2 for a fair comparison. Other details for simulations are stated in

Chapter 6.
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Chapter 5

Training-Based Channel Estimation

In this chapter, the training-based channel estimation by M. Biguesh[3] will be
generalized to frequency-selective fading scenario by exploiting the structure in (3.3).
Optimality criteria for the frequency-domain channel estimation in LS sense and under
a given power constraint will be derived. Also, conditions under which the training
blocks are designed so as to apply a linear MMSE approach for time-domain channel

estimation are derived. First, let us denote the training matrix as II, =t, t, -+ t.|,

where t, € CY is the 2 training block. For simplicity, we reuse the notations adopted
in chapter 3 for the subsequent discussion on channel estimation. Hence the encoder

output becomes

K
G, 2 MK, ®ef X, ®d;] € CNM,
k=1
where
¢ = b0 ql) - (V-1 .
T
1d, =|d,(0) (1) - d(N-1) .

dy(n)=c,((-n)y), 0<n<N -1

Since the channel estimation is processed on a per receiver basis, we consider MISO in
the subsequent sections of this chapter, i.e., the index j equals one and one only, and will

hence be discarded.
5.1 Least-Squares Channel Estimate

With the training matrix II, being transmitted, the received signal block in (3.1)
becomes, for 1< p <2K,
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Mf
y(P) — EHMSS:) +w? ¢ (CN,

m=1

where s takes t, if ‘[XAJ

MXBk me

to (3.3), we have the following frequency-domain received signal model

is one, for 1< p < K. Similarly, s? takes d, if
pm

is one, for K +1 < p <2K . Following the same derivations as those from (3.1)

Y 2(L,®F)y

(
[y @y @ - ey

0K><1

gAk (:;m)

® (A, X, )’ +W. (5.1)

Notice that A, X, :Diag(\/ﬁfﬁm)<fck):\/NDiag(]:ck)(THm>. So if we define
Ay as Diag(Fe,), then we have A, X, =4/NA, (.’Fﬁm) [4]. Since Fd, = (.’Fck)*, we
have Diag(]-'d:,) = A . So Y in (5.1) can be rewritten as

0K><1

y - ZKJ{ [M]@Q(JNA PG

Kx1

@ (VNAL (fim))] + W

0K><1

® AL
gAk(:vm) =

}(}'ﬁm)’ +W. (5.2)

Let O, = ZK:{(%:TU) @Ay + (gEIEMm)) ® Ag} and A, = [Ol 0, - OM,} € CENALN

— T =~ —
h: - hi| €C™ by (2.5), we define h2 (I, @ F)heC",

Y =JNAh+ W, (5.3)

Given training signal blocks, and hence A, it is seen from (5.3) that if II, is designed
such that rank(A,)= M, , then by nonsingularity of AjA, we can obtain an
estimate for the channel DFT by using the pseudo-inverse A} £ (AJI{ AT)71 Al Note

that for generalized complex orthogonal design, 2K > M, . Define h2 ﬁ/\;y' to be
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an estimate of ﬁ which contains the subchannel DFT’s and let W = N A;W' . Then

we have, from (5.3),

=
I
=

+

(5.4)

Hence, h can be estimated up to an zero-mean estimation error term l//\V . Note that
equation (5.4) can be regarded as a consequence from FDE as well. The only difference
lies in that during the training mode, we take vectorized channel DFT h as input
block into the system constructed by training signal DFT’s along with GOSTBC

constituent matrices. More precisely, we have the following results.

K

Theorem 5.1 AJA, = 2Z(IM, ® AgkAXk).
k=1

(Proof: See Appendix A2.)
[

Remark 5.1 With known training blocks; this FDE-based channel estimation
can be carried out efficiently. By efficiency we mean the involved computation for
matrix inverse (A?/\Tf1 réduices to merely computing the reciprocals of each of

the diagonal entries of AJA,. This.can bé séen from Theorem 5.1 that AJA,=

22( ®AH &-) is diagonal.

Remark 5.2 Notice that the FDE behind (5.4) is based on the premise that
rank(A;) = M,N , and hence rank (AgAT) = M,N . This in turn require that

K
rank [Z Ag Axk] = N must be satisfied as we can see from Remark 5.1. Notice

that each of the diagonal entries of AZA, is nonnegative. To proceed further, let
us first define X, (n) asthe n” entry of X,,where 1<n <N and 1<k <K.
As long as there is at least one value k', 1<k <K such that |X (ﬁ)|2 >0
among all the 7 entries, the premise holds. Let us denote this sufficient
condition as (c2.R). However, unlike the conclusion we obtained in Remark 3.5,
(c2.R) could fail hadn’t the training blocks been properly chosen, e.g., the

arbitrary training we adopted for simulations in chapter 6. We will elaborate the
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meaning of arbitrariness at the end of this subsection. For the simulations in

chapter 6, we simply bypass it with programming.
5.1.1 Optimality Criterion for LS Estimate under a Power Constraint

We use (5.3) to derive optimality criterion for optimal frequency-domain least-squares

(LS) channel estimation under a power constraint. To this end, let us define P £ A,
h, 2 Fh, € C¥ and H 2 [El hy - EM,] € C¥ . Hence h = vec(#H). Then we

can rewrite (5.3) as

'

Y =+JNPvec(H)+W'. (5.5)

From (5.5), the LS estimate of vec(H) is Vec((’ﬁ)m) £ arg

vec|

min Hx/ﬁPvec (H)— y'”2 :
) ?

The solution is known as, from (5.4),

!

Vec((’)/-Z)LS) =[PV = vee(H) + W (5.6)

where Vec(<§-\t)w) is equal to h in (5.4)“by definition. Now suppose we are given a

power constraint,

S = 2o 51)
k=1 H B 2M1‘ ‘ ‘

This means that the total transmitted signal block power per transmit antenna shall be
fixed, by virtue of GOSTBC structure. Note that ||tk||2 = ||c,{||2 =|X,], - We can

transform the power constraint into frequency domain, by Theorem 5.1,

K
F=2M,3 %],
k=1

= 2Tr{ZK: (IM, ®AY Ay )}

k=1
= Tr{PHP}
=[P[, (5.8)
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where |P|, denotes the Frobenius norm of the matrix P. From (5.6) and (5.8), we
wish to find the optimality condition for training design to achieve lowest LS estimation

error. This amounts to the following optimization problem:

. A7 2 . 2 _
min E{H’H - ('H)LSHF} subject to [P|-. = 2, (5.9)

where P € R, is a positive constant. With (5.6), we can rewrite the mean-square

error in (5.9) as

-]

— E{\%P* (L, @ F)w Hz} (5.10)

For simplicity, let us defineZ F /= L@ F » By noting that F {W'W'H } =0’ Ly
FF" =1, and P" = (PHP)_1 P" | we can rewrite (5.10) as

i

= Teme{(p) AL A (P)')

LS

E{H?—L—(?A-L)

Tr {(P+) FE{ww) Al (P*)H}

S =

|2 =]

— Tuy {(PHP)’I}. (5.11)

Hence the optimization problem in (5.9) becomes

2

mPin %Tr {(PHP)A} subject to Tr {PHP} =P. (5.12)

Since P”P is Hermitian and positive semi-definite (p.s.d.), we can decompose it into
P'P =QAQ" , where A= Dz'ag()\l A, e )\M[N) ., Q"Q=QQ" = I,y and A,

1<i< M,N are the eigenvalues of the matrix P”P. Therefore, (5.12) becomes
M,N M,N
minimizing Z% under the constraint that Z)\i = P . By the arithmetic-geometric

i=1 i=1
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mean inequality[25, pp. 75|, we know that Z% > M,N H% , where equality

1=1 i=

—_

M,N [M,N ]1/(MrN)
holds when all ), are identical. Hence,

N =-—2 1<i<MN, (5.13)

is the solution to (5.12). From (5.13), we have

PP = %IW : (5.14)

t

Notice that for any matrix P, regardless of its structure, which satisfies (5.14) is an
optimal solution to (5.12), and hence optimal to (5.9). However, the structure of matrix
P under consideration here is determined by the BGOSTBC encoder as well according

to Theorem 5.1. We summarize what' we have so far.

(i)  For a given training matrix II,, which completely determines P = A, the LS

A~

estimate of the channel veeter h is given by h= (ﬁPJ’)yV, where Y is
defined in (5.3).

=

(ii) If the training matrix II, 1s chosen such that Aj%IMtN = 22 (IMt ® Ag A&)?
k=1

then the training blocks satisfies the power constraint in (5.7) and minimizes

|

(iii) In particular, the lowest LS channel estimation cost is given by

~

h—

the average channel estimation error FE ﬂ

o P Y New?
(J)ys = T k[wlw] ] == (5.15)

0

From (5.15) we can see that the LS objective per transmit antenna is
proportional to M, Therefore, as number of transmit antennas increases, the

performance of LLS channel estimate deteriorates.

5.1.2 Selection of training signal blocks for optimal LS channel estimate
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K

Notice that the power criterion, %IW\, = QZ(IM ® AgA&'), can be rephrased as
k=1

follows:

K
£ _ 22 a,(n), 0 <n <N —1, where a, = Diag (A;Axk). (5.16)
MN & %K

If we allow the employed symbol constellation to be arbitrary, the choices for training
blocks which satisfy (5.16) are simply any matrix IT. satisfying ||bn||z = %, where

T
M, =F"[b; bl - bl | and b, =[5,(1) b(2) - b(K)|eC™ . This is

true because (5.16) can be rephrased as: Jﬁ:”bn”i, 0<n<N-—1, where the
T

relation between X, and b, is given by X, = [bo (k) b (k) - by, (k)l . In

particular, when N = K, (5.16) can be easily satisfied by letting t, = %]—'H (:,k),

1<k <K = N, which is essentially a general PSK constellation.

In chapter 6, we will use t, = MI;:N.’FH (34),21 <k <K = N, for comparing the
performances of optimal /orthogonal training and arbitrary training. By optimality we
mean that (5.8) along with (5.16):must-be-satisfied a priori, and by arbitrariness the
simulation subjects to (5.8) only./ Though both'ef them must guarantee that A, is full
rank. Note that the word “orthogonal” we"adopted here is to underline (5.14).

5.2 Linear Minimum-Mean-Square Error Estimate

In this subsection, we are interested in finding the time-domain linear MMSE channel

estimate. Suppose h, is zero-mean for simplicity. Before we proceed further, let us

define a ZP removal matrix M £ |I . Note that MM’ =1 Hence

L+1°

L+1 0(L+1)><(N7L—1)

MFPH =M|h, hy --- EM:}:[hl h, - hMi

e CUIMe and vec(M]:H’H) =h

by definition. Let h be an estimate of h. Now we define the mean-square error to be

minimized as,

5éE{Hh—ﬁ

= B{fvec(rar 7)1 }. (5.17)
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From (5.17) and by definition, the linear MMSE estimate of h is (ﬁ) = argmin ¢.
h

MMSE
Let ® be a linear channel estimator such that the input-output relation between the
received signal blocks and the estimate is given by h = ®)'. Then we turn to find

(®),, = argmin e and
@

(B), =), (5.18)

Now, for notational purpose, let us define P £ JN. A, and A, = I, ® F . Hence,
h = #,h by definition. We know h = (I,, ®M")h. Rewrite (5.17) as, from (5.3),

R ——
= B{Tr{(h - 2¥)(n - 2)"}}
= Tr{B{bh"} - E{nb" | #/ P 0" +
oA E{ww " L A" =P A E{bh" } +
oP% B{bh"} };JHP%H}.

By defining R, £ E{hhH} and using the identity E{W'W'H} =o0’L,,, along with

w

h= (I u, ® MT)h, we have the following equation:

e = {Tr {Ro} = Tr{R,, (1, @ MA" )P 0"} —Tr {oP(I, © #M' )R, | +

Tr{®(02 L0 + P(L, © FM' )Ry, (I, @ MfH)PH)cpH}}. (5.19)

Note that R,, is nonsingular since h is not zero-padded. We have assumed that both
h and w are zero-mean and they are statistically independent of each other, that is,
E{hW'H} =0y 1 11pexy and E{w'hH} = 0,y,1, 141 - 10 the subsequent discussion
regarding linear MMSE approach, we assume perfect knowledge of R,, and o’. Now

we let 9= =0[5],[6] to find (P)

opt *

38_; ={0—2R, (1, o MA")P" +

20 (0L, + P(I, @ FM" )R, (I, @ Mf'H)PH)}
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For brevity, let Fy £ (IM, ® fMT). Notice that Z 7 i = (IMi ® Mf'Hf'MT):

I, ., by definition of M. Define P £ P\ . Hence, from (5.20), we have
~H ~ ~ng1-1
(¢)o[)[, = R'H,P [O-ZIQKN + PR’H,P ] . (521)

Hence, with (®) in (5.21), we can rewrite (5.18) as

opt

1

(B)  =R,P" [aj,lm + ?RH?H]_ V, (5.22)

with the corresponding lowest linear MMSE cost denoted as (&)yusg = Elo-(@),, - By

substituting (5.22) into (5.17), we arrive at

R ~ . ~ ~g1!
(& mmse = Elo—r,,p" laﬁ‘IZKN-(—PRHPH }

=Tr{R}~ Tr {R,{f’H [ailm + f’RHf)Hr PRH}

:Tr{

5.2.1 Optimality Criterion for' Linear MMSE Estimate under a Power

R, PP

w

4 ] (5.23)

Constraint

First, we need to specify a reasonable power constraint at our disposal. The given power

K
constraint in section 5.1.1, i.e., Z”tk”z = 2%, can be transformed into |P|, = NP,
k=1

with P2 JNA, for linear MMSE derivation. Notice that the matrix P”P subjects

to Theorem 5.1 and hence it is diagonal. It can be verified that for any diagonal matrix
A € CY"VMY U the matrix (IM/ ®MTM).}‘]I4H serves as spreading the power of A

only, hence the following equality holds:

Tr{A7, (I, @ M'M).A/} = %Tr{A}. (5.24)

With (5.8) and (5.24), we herein define a reasonable power constraint for our linear
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MMSE estimate as

Hf)HQ —Tr {(PHP) (1, eM'™) A1}

=(L+1)P. (5.25)
Therefore, given HPH (L+1)P,, we are to find optimality conditions over the

training matrix minimizing (&)ymse in (5.23). The optimization problem can be

formulated as

mm (&)amse subject to HPH (L+1)P. (5.26)

Tr{f)Hf)}—(L%—l)Pf)}, where €

Define the Lagrangian £(l~3, u) £ Oy + 11

R, is a Lagrangian multiplier. Let e B [5],[6]:

+

I O" Oy
= ply v+ ~H~,
8(P P) 8[R1+1213H13}
O-w
1 I B
plyy ——Lyy|Ry + P P =0
w1 1 e
= IUIMN =— R;ll +—2f’Hf) (527)
w O-Il/

Since R;; + = P P is Hermitian, we can decompose it into R, + = P P =UAU",
where \IIH\If:\I/\IfH =1I,, and A is a diagonal matrix with the eigenvalues of
R, + P P on its diagonal. Substituting this decomposition into (5.27), we have

WA~ Q\I’H =o’ul uy - Hence A= -1, and the decomposition becomes
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Iep-1 1,
o o i "

R, + (5.28)

Imposing Tr{?HP}:(L+1)E) on (5.28), we have - :ﬁ((LZ;ﬁ*'Tr{R;E})v

)z

which in turn can be substituted back into (5.28) to obtain

L+1 Mo -
v NP —=Tr{R,, }] o [;D R;}. (5.29)

o

f»f’fa:ﬂ
M

t

Note that the left-hand side of (5.29) is p.s.d., which in turn requires the right-hand side
to be p.s.d. as well. So (5.29) is much more plausible at high SNR. That is, when

(72

7:_)07

P'P="""21,, (5.30)

is generically true. Since (L+1)< N, there is no way we can recover P“P from (5.30)

with the identities that P" P=4Zy (PHP)?M and Fy Fu = L 14y However, if

we relax the condition of (5.30) inte P "P= IM v, it can be easily verified that the
following choice satisfies both PIP.= Zy (P P) Fu and P, =NP:
P
PP = VOIW' (5.31)

t

Hence, we can say that (5.31) is an optimal solution to (5.26) at high SNR. Surprisingly,
at high SNR, the optimal training design for linear MMSE estimate converges to that of
the LS estimate. Hence, subsequent discussions similar to those for the LS estimate

follow accordingly. We give the following summary.

(i)  For a given training matrix II,, which completely determines P = ~/NA,, the

= (q))opt yl )
~ ~ ~ -1

where Y is defined in (5.3) and (@), = RHPH [JzIQKN + PRHPH] with

linear MMSE estimate of the channel vector h is given by (ﬁ)MMSE

13%P<IM[ ®.7"MT) and M £

IL+1 0(L+1)><(N—L—1) l :
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K
(ii) If the training matrix II, is chosen such that ]‘% 7 QZ(IM ® A )
k=1

then the training blocks satisfies the power constraint in (5.7) and minimizes

the average channel estimation error E{Hh—(ﬁ)

2
} at high SNR. In

MMSE ||
chapter 6, through simulation we will show that the choice in (5.31) for the
linear MMSE estimate yields good performance to our expectation, though we
can only approximate the solution to (5.30) by (5.31).

(iii) In particular, the lowest linear MMSE channel estimation cost is given by

-1
. - 1 || L+1 P ol _ -
min (&)yysy = Tri| Ry, + _i{[T M, + N, Tr{Rﬂl}] Loy — O'Z/R,Hl}
-1
1 (L+1 P 1
:TI" M[ N 2 ’H}] M,N ]
2a72
_ purd . (5.32)
(L+1)52 (R}

w,

From (5.32) we can see that the linear MMSE objective per transmit antenna
is proportional t& M,rTherefore, as'number of transmit antennas increases,

the performance of linear MMSE"channel estimate deteriorates.

Remark 5.3 The channel estimation techniques in [3] include scaled-LS (SLS)
estimate and relaxed-MMSE (RMMSE) estimate. Just as what we have done to
generalize the results for LS and MMSE scenarios in [3] to the frequency- selective
fading environment, we can do the same for SLS and RMMSE channel estimates by
following similar routine derivations. However we choose to omit these two
generalizations since our primary goal is to validate that the channel estimation
techniques in [3] can indeed be generalized and to obtain the optimal training

design counterpart for frequency-selective fading under the proposed scheme.
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Chapter 6

Simulation Results

In this chapter, the performances of LS and linear MMSE channel estimators are
compared through numerical simulations for both arbitrary training and optimal/
orthogonal training. By optimality, we mean that (5.8) along with (5.16) must be
satisfied a priori, and by arbitrariness the simulation subjects to (5.8) only. Though

both of them must guarantee that A, is full rank.
6.1 Assumptions for Numerical Simulation Runs

As we know from previous discussion'that whien N = K | the power condition in (5.16),
can be easily satisfied by letfing & == (gwvF" (:,k), 1<k<K=N. It can be
verified that adopting the above 'scaled DET-blocks-for optimal training always satisfies
the sufficient condition (c2.R) in 'Remark 5.2: Throughout our simulations, the
channel coefficients and the “additive channel® noise are assumed to be circular
symmetric complex Gaussian distributed, as we assumed in section 2.2.1, which are
randomly generated for each of the following simulations with 1000 independent runs.
The channel noise is assumed to be white. We assume that the channel noise variance
and R, ~are known a priori or have been somehow accurately estimated for the linear
MMSE estimate, while the LS estimate utilizes the received signal only. QPSK

constellation is employed for all the following simulations.

6.2 Result Overview and Discussion

In Fig. 3, the performances of frequency-domain LS and time-domain linear MMSE
channel estimates, both with arbitrary training, are compared in terms of NMSE. Let
SNR= P, /ai,. The performances of arbitrary training and its optimal/orthogonal
training counterpart is compared in Fig. 4. The FDE on which the symbol decoding is

based relies on the channel estimates acquired from training blocks prior to data
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transmission, during which the channel state remains static. Denote the trio (M,, M,, K)
as the system configuration referred to. The normalized MSE (NMSE) of channel

estimate is given by

where e =h for calculating the frequency-domain LS channel estimation error while

e = h for the time-domain linear MMSE counterpart.
6.2.1 Arbitrary Training: NMSE Performance

As shown in Fig. 3, the time-domain linear MMSE estimate delivers substantially lower
NMSE than that of frequency-domain IiS estimate as the former exploits more CSI. The
examples can be divided into two major groups.depending on value of K. The group
with K=4 consists of (3, 2, 4)-and (4, 2; 4) configurations while another one consists of
(5, 2, 8), (6, 2, 8) and (7, 2, 8). For both of the grgups, simulation results validate the
summaries that the higher the value of M;1s; the worst the NMSE of channel estimate

becomes as we expected. We used N=10 and L=5 for simulations in Fig. 3.
6.2.2 Optimal /Orthogonal Training: NMSE Performance

As depicted in Fig. 4, the performances of channel estimates based on optimal/
orthogonal training outperform those based on arbitrary training in terms of NMSE
generally. The minor inconsistency for linear MMSE at larger antenna numbers is due to
the fact that the FDE-based trainings already enjoy high diversity plus partial channel
information and that (5.31) is a rough approximation. In general, the results verify the
summaries in chapter 5. Here we simply make N=K for simulations in Fig. 4 due to the
fact that (5.16) can be easily satisfied in this situation, as we explained in the previous

chapters. Note that we set L=2 for both (3, 2, 4) and (6, 2, 8) system configurations.
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Chapter 7

Conclusion

In this thesis, we propose an instructive derivation for the generalized block-level
orthogonal space-time block encoder, capable of achieving full spatial diversity via
frequency-selective fading environment, provided that channel order is known. Instead
of dealing with special case and then extending the results intuitively, we provide an
alternative by starting with the general signal model with multiple transmit and
multiple receive antennas, from which a general form of block-level orthogonality is
established. In particular, transmit diversity with more than two transmit antennas can
be achieved without compromise by means of frequency-domain equalization, in
contrast to the QO-STBC-based approach. However, the cost is that the proposed
scheme only has nearly 1/2 symbol rate when discarding CP overheads. Pairwise error
probability analysis are derived, under| certain. assumption which is numerically
supported by simulation results, for analytical verifications of our claim on full diversity,
inclusive of transmit-receive diversity and the multipath one. Hence, we are able to
counterbalance the deduction[26] that the “GP-only” scheme based on the GOSTBC
extension cannot exploit full multipath diversity. It is seen from the simulation results
that the proposed scheme does stand a big chance of delivering full multipath diversity.
Moreover, the encoder structure enables us to generalize a training-based channel
estimation technique, originally proposed for flat-fading scenario, to the frequency-
selective fading scenario. Surprisingly we even obtain similar optimality criteria for
optimal training block design which in our case, the signal block are fixed as
OSTBC-based and the design derivation reduces to derive optimal power constraint
over the training blocks. The optimality criteria for the training blocks are easy to
satisfy when randomness of signal constellation is not a concern. Simulation results
validate our discussion of the behaviors of the least-squares and linear MMSE channel
estimates. In contrast to the involved derivations provided in [16], which considers
general training blocks for MIMO frequency-selective fading, we provide an alternative
by generalizing the work in [3] to achieve the same purpose in a straightforward manner

by fixing training block structure as BGOSTBC.
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Appendix

A1l. Proof of Block-Level Orthogonality part I

Note that the constituent matrices have the following properties:

M, M, M,
ZZXAA => > X, (, 5(n) =0, for 1<k=1<K.
m=1 n=1 m=1 n=1

n=m n=m

X, (;m) X, (:,n) =X, (5,m)' X, (:,n) =1, k=1 and m = n.
X, (;m) X, (5,n) =0, ¥ k,l,m,n.

Ak =N kN = DA (5,1 —1)N : IN —1)
M, M,

:ZZ{(XAk( ) ®A§”+X ( )T®Ajm>

m=1 n=1

(X&(:,n) QA,, +Xp(5n)® A]h:n)}
_ ZZ{(X&(W)TX W) @A, )+
NE )TXB (:,n)) (Afanjfn)
(:,m)TXAI( )) (AMAJm)
(XB,{(:vm)TXB,( )) (A]mAin )}

= QZAW s for 1<k =1<K.

m=1

)
o
3

. A, is a matrix with orthogonal block - wise column, e.g.,
A,(:,(I=1)N :IN —1) is I block-wise column of A,
which is denoted by A?).

(a9)"
)
- i = ) =afn s 3oata, |
. m=1
a0y
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A2. Proof of block-level orthogonality part II

By the same orthogonalities used in Appendix Al.
Ay(sy(m —=1)N :mN —1)"A,(:,(n —1)N : nN —1)

K

ZK: (X, Gom)" @ AL+ X, (m) @ Ay )

k=1 =1

(XA,(:JL) @ Ay, + Xy (5m) @AY )}

—2ZAH % forlsm=n<M,.

= A, is aimatrix with' orthogonal block - wise column, e.g.,
A, (:,(m— )N wmN —1)is/m"™ block-wise column of A,
which is.dentoted by A"

(Y
H (A(;)>H @) (2) (My) - H
= AN, =V AP AP A =2 IM,®;AX1A&.
()’
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A3. OSTBC construction

To be self-contained, we hereby review some basics about orthogonal design. Recall

the OSTBC proposed by V. Tarokh [1].

K
gM, (x) = Zxkxk e R™M,
=1

where
T
X = [xl T, - xK] € R" is real-valued symbol block.
X, € R™™: are the constituent matrices, 1 < k < K.
) I,, 1<k=I<K

X'X, = ’ .

XX, 1<k=I<K
T : the block time length of G, (x).

. = 2
It is easy to verify that Gy, (x)Gy (x) =>_ |2, [k, . As stated in [1], OSTBC exists in
k=1

various dimensions smaller than or equal: to~8,%so does its complex counterpart,
GOSTBC. Therefore the subsequent:block-level discussion applies whenever the
corresponding symbol-level GOSTBE design exists. The construction of GOSTBC is as

follows:

K
GM, (x)= ZXAkxk + XBA x; e C* M,
=1

where

T
€ C* is complex-valued symbol block.

x:[xl Ty v Ty

X, . X, € R*™ are the constituent matrices, 1 <k < K.

- IMt,lgk:lSK
‘Xﬁl,XA: T )
ko —XA[XAk,1§k¢l§K
IMt,lgk:ng
XgXB’: X' X .
-, Bk,lgk:cng

XﬁAXB/ = 0M,><Mt7 1 S kJ S K.
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K
Again it is easy to verify the orthogonmality, G}, (x)G,, (x)= 22|$k|211m- Here, we
k=1

simply adopt the complex orthogonal design introduced in [1], where G, (x)is closely
T
related to G, (x) by G, (x)= [gjﬂr(x) gﬂr(x*)] . Here G, (x) is an OSTBC design

having identical constituent matrices as the aforementioned ones but taking complex
objectives in lieu of real-valued ones. It can be shown that the construction of X 4 18

basically X, concatenated with an all-zero matrix of the same dimension, i.e.,
X, = [Xf 0 MxT]T and X, = [0 M Xf]T Here, for notational purpose we introduce
a notation G, to replace X, such that X, and X, can be expressed as follows:
X, = [gi OM!X],]T and X, = [OMMT gi‘r. By replacing the ordinary multiplication
for the constituent matrices and transmitted symbols with kronecker product and using

index K in lieu of T, we immediately arrive at the BGOSTBC structure. For

illustrational purposes in the following chapters, we give two examples:

ex.l: T=K=4, M, =3

where
0 10
I, A 10 0 G,
9. = o, | *4 = om]’ 9.=10 o o] %« :[04%];
0 01
0 0 1 0 0 0
0 0 0 g, 0 0 —1 g,
9.=|21 o of XAEZ[()M]; ““lo 1 0 th:[om]’
0 -1 0 10 0
XB—%4 . X,,1<i<4
Sl oo [t
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where

T T, T, x @
-z, T, T, —T, I
-r, —T, T, T, I
G- -z, T, —T, T, I G- 95(3?],
A T S A G.(x)
—Ty T, —T, T, —,
—T, Ty Ty T
Ty —T, Ty T, —I,
01 0 0 O
-1 0 0 0 0
0O 0 0 1 0
I ), 0 0 -1.0 O
G :[OM » Xa = ogxs]; 9.=10.0 0 0 0
0.0-0 0 -1
000 0 O
0O 0 6 0 O
X, X, X, can besyisualized as.well and X, =
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’ o 08><5 ’
08><8 IS X 1<i< 8
IS 08><8 A =




(p)* <)
S; B T

Tx. 2
c2lel o - CH BGOSTBC Encoder sy sy ] j
E— K ) +'| CP Insertion .
Z[Xm ®c, +X, ®dx] . *Tx. M,
sy’ s

d.(n) = ¢, ((-n)y),

sdey T+7 yya puuey) YLd

0<n<N-1
Tx. 1
2K (*) 2K
P {y/m}zzx ’ {yV }A:U f ij. 9
{XA }H ={Feal}’, Frequency- j=12,...,M, i=12..M, lll)aots g)udiecr j é
¢ Domain K FFT Matrix [Q e I
Equalization Removal ja}(’
h;1<j<M,
Training-
ped K
Channel
Estimation

Fig. 1 Transmission scheme based on BGOSTBC encoder and the associated FDE

based om training-based:channel estimation.

G Gs Tx ]
S:m’ 51“'\1 Y
Tx 2
Ved N T T (p)” (p)" *
=6 € Gy BGOSTBC Encoder S5 S
E— K « | CP Insertion .
Z[x.ﬁ ®c, + X, ®@d, Tx M,
k=1 p)! <7
siy) Sk
- T Antenna
- T Tx

o Iy , o r ) , ‘ ) o
sV = —d|CP |s\7 =-d|CP [ =-d}JCP [s{" =d] |CP [s!" =—¢]|CP [s{" =—c]|CP [s{ =—c;|CP |s{" =¢ [CP

e

. T
2 5tentry sy
Y
st =—d)|CP |\ =d] |CP [\ =d |CP| s‘j)’ =d |CF |s;”' =—c;|CP sV = |CE |s?" =c" |CP |s) = |CF
T

o o o o o o .
st =4 [CP[s{" =d] |CF |s{ =-dj|CP |s{" =df |CF |s}" =c] |CP[s{" =¢ |CP[sy =—¢]|CP [s{" =¢] |CP

| | | | | | |
| | | | | | |
I I I I I I I
—p= T p="1 T p=6 T p=5 T p=4 T p=3 T p=2 T p=1—"
| | | | | | |
I I I I I I I

Timc cpoch

Total transmission period=2K(N+ L) symbol durations index p

Fig. 2 A BGOSTBC encoder employing K=4, M,=3 configuration.
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Condition number K(D,) over 10° runs
40

Number of singular occurrence = 0

30— =

25— —

0 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
iterations

Fig. 3-1 Condition numbers geheérated for 10° independent simulation runs under

(VMM L K)=(10,1,3,1,4).

Condition number K(Dps) over 108 runs
30

Number of singular occurrence = 0

20~ —

5

0 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10
iterations x 10°

Fig. 3-2 Condition numbers generated for 10° independent simulation runs under

(N,M,,M, L K)=(16,1,3,1,4).
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Condition number K(Dps) over 10° runs
25

Number of singular occurrence = 0

20— —

0 ! ! ! L ! ! ! ! |

0 1 2 3 4 5 6 7 8 9 10
iterations

Fig. 3-3 Condition numbers geférated for 10° independent simulation runs under
(N, M M, L K)=(16,1,3,2,4).

Condition number K(Dps) over 108uns
3.5 T T T

Number of singular occurrence = 0

2.5(+

1 Mﬂ\mﬂm
0 1 2 3 4 5 6 7 8 9 10
iterations x10°

Fig. 3-4 Condition numbers generated for 10° independent simulation runs under

(N,M,, M, L,K)=(10,2,6,1,8).
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Condition number K(D) over 10° runs

Number of singular occurrence = 0

| | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
iterations x10°

Fig. 3-5 Condition numbers gehérated for 10° independent simulation runs under

(N, M M, L, K)=(10,2,6,3,8).

NMSE of channel estimation

T T

‘ ‘ Mt=3, Mr=2, K=4-LS-based(arbitrary training)
Mt=3, Mr=2, K=4-MMSE-based(arbitrary training)

Mt=4, Mr=2, K=4-LS-based(arbitrary training)
= ok rs Mt=4, Mr=2, K=4-MMSE-based(arbitrary training)
== Mt=5, Mr=2, K=8-LS-based(arbitrary training) ,
Mt=5, Mr=2, K=8-MMSE-based(arbitrary training)

Mt=6, Mr=2, K=8-LS-based(arbitrary training)
O Mt=6, Mr=2, K=8-MMSE-based(arbitrary training)

=—— Mt=7, Mr=2, K=8-LS-based(arbitrary training)
—O— Mt=7, , K=8-MMSE-based(arbitrary training) H

20

30

NMSE of channel estimations (dB)

-70
0

SNR (dB)

Fig. 3 Compare NMSE of LS and linear MMSE estimates, with arbitrary training.
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NMSE of channel estimation

f f Mt=3, Mr=2, K=4-LS-based(arbitrary training)
Mt=3, Mr=2, K=4-MMSE-based(arbitrary training)
=== Mt=3, Mr=2, K=4-LS-based(orthogonal training)
== o rs Mt=3, Mr=2, K=4-MMSE-based(orthogonal training)
=i rs Mt=4, Mr=2, K=4-LS-based(arbitrary training)
—O— Mt=4, Mr=2, K=4-MMSE-based(arbitrary training)
~E— Mt=4, Mr=2, K=4-LS-based(orthogonal training)
+ Mt=4, Mr=2, K=4-MMSE-based(orthogonal training)
== Mt=6, Mr=2, K=8-LS-based(arbitrary training)
Mt=6, Mr=2, K=8-MMSE-based(arbitrary training)
= Mi=6, Mr=2, K=8-LS-based(orthogonal training)
K=8-MMSE-based(orthogonal training)

NMSE of channel estimations (dB)

60 | ! | _ | | |
0 at 6 . 8 10 12 14
SNR{(dB) .+

Fig. 4 Compare NMSE of. "arbitrary Vtg‘aining:and optimal/orthogonal training.

o - Y Demnnsltanng Diversities
10 = p— T T
Mt=3, Mr=1, K=4, L=1-Known CSl(arbitrary training)
Mt=3, Mr=1, K=4, L=2-Known CSl(arbitrary training)

SER

10 | | | | |
6 4 2 0 2 4 6

SNR (dB)
Fig. 5 Demonstration of full multipath diversity at high SNR region, averaged over 100

independent runs.
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