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摘要 

 

 

心率變異性源自心臟搏動速率隨時間不斷的在變化。這種不斷變異的

現象主要受人體自主神經系統所控制。在過去二十幾年的研究當中，心率

變異性分析已成為越來越普遍的自主神經系統功能性指標。而日常生活中

舉凡各種內臟功能、血壓、情緒變化乃至生活壓力等等…，都和自主神經

系統的調節息息相關。因此本研究以心率變異性為生理觀測指標，觀察不

同節奏特性之音樂所造成的自主神經系統調變情形。 

 

本研究基於音樂感知、音訊處理和心電訊號分析提出音樂的兩大節奏特

性（節拍速度和節奏複雜度）調變心率變異性之假設。並由實驗結果發現，

擁有節拍速度較快且複雜度較低之特性的節奏樣本，有較明顯的同步能

力。所謂同步能力即音樂節奏促使心跳節奏產生改變並趨於相似之特性。

此外在聆聽完此種特性之節奏樣本後，交感神經系統與副交感神經系統活

性之比值的下降情形最為顯著，達到一種甚至比平常休息時更為放鬆的生

理狀態。在硬體實做方面，本研究在精確度損失極少的前提下，針對所採

用之 QRS 波偵測演算法進行部分簡化以減少硬體設計之複雜度，並透過心

電圖標準資料庫的驗證，實現高準確率且低成本的 QRS 波偵測晶片。 

 

透過系統化的研究方法，了解各種不同特性的音樂對人體自主神經系統

造成的影響，以期藉由音樂調節身心，讓生活更加健康。 
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Abstract 
 

Heart rate variability (HRV) is a measure of variations in the heat rate. 
Over the last 25 years, HRV analysis has became more and more popular as a 
non-invasive research and clinical tool for indirectly investigating both cardiac 
and autonomic nervous system (ANS) function in both health and disease area. 
It is choused as the physiological indicator for observing musical effect on ANS 
modulation. 

 
In this study, the concept of two musical rhythmic features, tempo and 

complexity, modulating human ANS is proposed. The main findings in this work 
are as follows. The rhythm pattern with faster tempo and lower complexity is 
observed to decrease the LF/HF and SDNN measure significantly in the resting 
period after the loop listening rather than the stable resting state. In the hardware 
implementation part, a high accuracy and low cost QRS detector SoC is realized. 

 
By understanding the relationship between music and the function of ANS, 

we can improve our life and health by music – non-invasively and simply. 
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Chapter 1 

 

Introduction 

 
1.1 Motivation 
 

The heartbeat interval in humans is known to exhibit fluctuation which is refereed to as 

heart rate variability (HRV). The clinical relevance of heart rate variability was first noted by 

Hon and Lee [1]. They discovered the fetal distress was preceded by alternations in heartbeat 

intervals before any appreciable change occurred in the heart rate itself. HRV has received a 

tremendous amount of attention since the seminal work of Akselrod et al. [2]. Established 

clinical applications of HRV include risk assessment of patients after myocardial infarction 

and early diagnosis of diabetic autonomic neuropathy [3]. The past researches have witnessed 

a significant relationship between the autonomic nervous system and cardiovascular mortality, 

including sudden cardiac death. HRV represents one of the most promising markers. The easy 

derivation of this measure has popularized its use. 

Our emotion and physiological state can be modulated by listening to different music. A 

variety of studies have reported the musical effect on human psychological and physiological 

states. Through the nervous control mechanisms, a neural coupling into the cardiac canters of 

the brain, it is possible to vary the heart rate of human subjects non- invasively by causing an 

entrainment of the sinus rhythm with external auditory stimuli [4]. Although cardiac 

automaticity is intrinsic to various pacemaker tissues, heart rate and heart rhythm are largely 

under the control of the autonomic nervous system [5]. 

    The autonomic nervous system (ANS) is the part of the peripheral nervous system that 
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acts as a control system, maintaining homeostasis in the body. Its main components are its 

sensory system, motor system (comprised of the parasympathetic nervous system and 

sympathetic nervous system), and the enteric nervous system. Sympathetic and 

parasympathetic divisions typically function in opposition to each other. The sympathetic 

division acts like the accelerator and the parasympathetic division acts like the brake. For 

example, the sympathetic division accelerates the heart rate in the emergency; while the 

parasympathetic division decelerates the heart rate in the resting state. Therefore, it can be 

further inferred that there must be a connection between the musical stimuli and the 

synergistic action of the autonomic nervous system. 

    It is mentioned that the complex bodily rhythms are ubiquitous in living organisms. 

These rhythms arise from stochastic, nonlinear biological mechanisms interacting with a 

fluctuating environment [6]. And experts in the field of music and sound therapy think that 

there is one major ways in which music and sound can affect our lives. It is called that the 

principle of entrainment and refers to the phenomena of being in synchronization [7]. It 

describes a process whereby two rhythmic processes interact with each other in such a way 

that they adjust towards and eventually ‘lock in’ to a common phase and/or periodicity. For 

example, we tap foot and shake body to the beat of a song. In other words, our bodies 

automatically adjust to the pace, rhythm, or pulse of music. And this is why the rhythmic 

characteristic of music is first considered in this work.  

Inspired by these previous researches, this study focuses on exploring the relationship 

between the musical rhythmic characteristics and heart rate variability (a functional indicator 

of autonomic nervous system).  

 

 
 

Fig. 1.1: Human-Based Intelligent Music Playing System 
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1.2 Goal 
 

    Generally, scientific research has four goals: description of behavior, prediction of 

behavior, determination of the causes of behavior and explanations of behavior [8]. Mapping 

to this research, the behavior to be studied in this work is the physiological response induced 

by the music with different rhythmic characteristics. The heart rate variability (HRV) is taken 

as the description of behavior. So the goals of this study are listed below: 

1. The changes of HRV can be predicted when the subject is listening to music with a 

specific rhythmic style. 

2. Finding the specific features of musical rhythm which dominate the changes of HRV. 

3. Explaining how these features results in the changes of HRV. 

The final dream to be realized is to construct a physiology-based intelligent music 

playing system shown in Fig. 1.2. The black box named “Core Research” plays the role to 

link physiological responses and receiving music stimuli and it is what this study wants to 

explore. What dose the system can do? For example, a user who feels lethargic or depressed 

might need to listen to some music and get more vigor. First, the system receives the desired 

physiological or emotional state as input. In this case, being vigorous and energetic is the 

input of the system. Then, the system can automatically pick some moderate music to play. At 

the same time, the user’s real-time physiological information feed back to the system. The 

feedback information not only shows if the automatically choused music works, but also is 

the basis for advanced learning mechanism. Through network transmitting, the physiological 

signals are recorded and analyzed in the remote servers. By the long-term machine learning, 

the system will be highly accurate and personalized for healthcare and goal-driven music 

listening.  

 

 

1.3 The Relating Works and Our Innovation 
 

There were some relating works which discuss the physiological responses induced by 

music in the past. For example, the previous work discussed the changes in the cardiovascular 

and respiratory system induced by music, specifically tempo, rhythm, melodic structure, 

pause, individual preference, habituation, order effect of presentation and previous musical 
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training [9]. They captured the physiological signals and observed the responses induced by 

different music. Our innovation is a “systematical” method to study the physiological changes 

induced by music. 

    Music perception is not straightforward. There are usually several musical elements in 

one song. For constructing a systematical model, various features of music need to be 

extracted from a song first. Then, the changes of biomedical signals induced by these specific 

musical features are studied. How do these changes integrate to the final physiological or 

emotional modulation is another more complex problem. When discussing the relationship 

between music and human cardiovascular system, rhythm is thought as the most important 

music feature because of the principle of entrainment. For excluding other musical features 

except for rhythm, drum loop music with simple and pure rhythmic characteristic is choused 

as the musical stimuli samples in this study. 

The other reason inspires us to focus on the rhythmic characteristics is the similarity 

between heart rhythm and musical rhythm. It can be imagined that how boring it is that one 

piece of song composed of monotone and even-spaced beat. It is in the same condition for the 

heartbeat rhythm. If our heartbeat rhythm follows a regular even a constant rate, it means that 

our body can’t maintain the equilibrium state through the fluctuations resulted from the 

interaction between the external or internal environments and physiological control 

mechanism. 

    One big challenge confronted in this study is how to quantitatively define rhythm. Two 

musical rhythmic features, tempo and complexity, are proposed to quantitatively describe 

rhythm. Sound by its very nature is temporal. So the tempo is the first necessary feature to 

represent the rhythm. The second feature, complexity, is inspired from the observation of 

similarity between the musical rhythm and human heart rhythm. Both of them are not a 

constant or invariable pattern. 

    Another consideration to choose drum loop music as the experimental stimulus is to 

exclude the individual music preferences. The same music maybe results in two kinds of 

absolutely different feeling (emotion or physiological responses) between you and me. The 

drum loop music is easier to exclude the individual music preferences because of its 

simplicity. Besides, the experiment protocol is carefully designed for more stable and 

trustable results. 
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1.4 Application 
 

    Some studies have pointed out that the different music can be used to improve our lives, 

for example, promoting sleep [10], reducing anxiety [11], assisting exercise [12] and even 

increasing brain activity [13]. And these daily activities are all closely related to the 

autonomic nervous system. The HRV is an indicator of the autonomic nervous system. In 

other words, the effect of music on the mentioned activities can be assessed by HRV. Once 

the detail of how music affects human was revealed, people can improve life and health by 

music – non-invasively and simply. 

 

 

1.5 Thesis Organization 
 

The thesis is divided into six chapters. In chapter 2, Background, I review most relevant 

to my research in these fields: “electrophysiology of the heart” and “heart’s hearing”. In 

chapter 3, Approach, I explain more formally the problem I am trying to solve, the signal 

processing flow of HRV, the music analysis algorithms and the arrangement of experiment. In 

chapter 4, Experimental Results, presents the results of experiment and some inferences are 

given. In chapter 5, Implementation, the hardware architecture design for QRS complex 

detection is proposed and a high accuracy and low cost QRS detector chip is implemented. 

Chapter 6, Conclusion, the contributions made in this study and suggesting directions for 

further work are summarized. 
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Chapter 2 

 

Background 

 
2.1   Physiology Background 
 

In this section, some basic physiological knowledge related to this study is introduced 

and the physiological measurement, heart rate variability (HRV), will be explained in detail. 

 

 

2.1.1 Introduction of Electrocardiogram 
 

    An electrocardiogram (ECG or EKG) shown in Fig. 2.1 is a graphic which records the 

electrical activity of the heart over time. The sinoatrial node (abbreviated SA node, also called 

the sinus node) is the electrical impulse generating tissue located in the right atrium of the 

heart. The electrical impulse from the SA node triggers a sequence of electrical events in the 

heart to control the orderly sequence of muscle contractions that pump the blood out of the 

heart. The depolarization and re-polarization of the SA node and the other elements of the 

heart's electrical system produces a strong pattern of voltage change. The voltage change can 

be measured with electrodes on the skin. Therefore, the ECG is a starting point for detecting 

many cardiac problems. It is used routinely in physical examinations and for monitoring the 

patient's condition during and after surgery, as well as during intensive care.  

When a string galvanometer was used, an electrical current passed through electrodes 

connected to two extremities caused deflection of the recording instrument. Passage of current 
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Fig. 2.1: Electrocardiogram 

 

Fig. 2.2: Relationship of current flow to lead 

axis and electrocardiogram deflection 

 

toward the positive end of a bipolar electrode was set to cause a positive deflection of the 

recorder shown in Fig. 2.2. The electrodes are traditionally placed on arms and legs for 

convenience. These connections are called leads. It refers to a combination of electrodes that 

form an imaginary line in the body along which the electrical signals are measured. The 

standard leads are shown in Fig. 2.3.  

There are two main stages of electrical activity in a complete contraction and relaxation 

cycle of a cardiac cell: polarization and depolarization, as shown in Fig. 2.4(a). The detailed 

steps in a complete contraction and relaxation cycle are demonstrated as follows. 

 

(1) Polarization 

In the resting state the membrane resting potential of cardiac cell is about -90mV 

because of the unbalance of ions as shown in Fig. 2.4(b). The cardiac cells are ready to 

receive electrical impulses. 

 

(2) Depolarize (polarization to depolarization) 

When the cardiac cells begin depolarization, the fast sodium channels open and plenty 

sodium ions flow into the cell. The membrane potential increases sharply. 

 

(3) Repolarize (depolarization to polarization) 

The process that the membrane potential returns to membrane resting potential is called 

repolarization. It can be divided into three steps: (3-1) the sodium channels close, (3-2) the 

calcium ions flow into cell slowly and (3-3) the potassium ions flow out cell. The variations 

of membrane potential in each step of a complete contraction and relaxation cycle are shown 

in Fig. 2.5. How the normal sequence of cardiac depolarization and repolarization derivates 
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the ECG is shown in Fig. 2.6. In the next section, the causes of different wave in the 

electrocardiogram will be explained. 

 

 
 

Fig. 2.3: The standard ECG leads

 

 
(a) 

 
(b)

 

Fig. 2.4: (a) A complete cardiac cycle. (b) Membrane resting potential of cardiac cell

 

 

Fig. 2.5: The variation of membrane potential in a complete contraction and relaxation cycle 
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Fig. 2.6: The normal sequence of cardiac depolarization and repolarization and derivation of 

ECG 
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2.1.2 Definition of Electrocardiography Configurations 
 

    As the heart undergoes depolarization and repolarization, the electrical currents that are 

generated spread not only within the heart, but also throughout the body. This electrical 

activity generated by the heart can be measured by an array of electrodes placed on the body 

surface. A typical ECG tracing is shown in Fig. 2.7. The different waves that comprise the 

ECG represent the sequence of depolarization and repolarization of the atria and ventricles. 

P wave: The P wave represents the wave of depolarization that spreads from the SA node 

throughout the atria, and is usually 0.08 to 0.1 seconds (80-100 ms) in duration. The period of 

time from the onset of the P wave to the beginning of the QRS complex is termed the PR 

interval, which normally ranges from 0.12 to 0.20 seconds in duration. This interval 

represents the time between the onset of atrial depolarization and the onset of ventricular 

depolarization. 

QRS complex: The QRS complex represents ventricular depolarization. The duration of 

the QRS complex is normally 0.06 to 0.1 seconds. This relatively short duration indicates that 

ventricular depolarization normally occurs very rapidly. 

T wave: The T wave represents ventricular repolarization and is longer in duration than 

depolarization (i.e., conduction of the repolarization wave is slower than the wave of 

depolarization). 

 

 

 

 

Fig. 2.7: A typical ECG tracing 

 
 

 

Fig. 2.8: Four numbered QRS complex waves 
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Fig. 2.9: The time series of beat-to-beat intervals 
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2.1.3 Determining Heart Rate from the Electrocardiogram 
 

The term "heart rate" normally refers to the rate of ventricular contractions. As shown in 

Fig. 2.8, there are four numbered QRS complex waves, each of which is preceded by a P 

wave. Therefore, the atrial and ventricular rates will be the same because there is a one-to-one 

correspondence. Atrial rate can be determined by measuring the time intervals between P 

waves (P-P intervals). Ventricular rate can be determined by measuring the time intervals 

between the QRS complex waves (R-R intervals). 

 

 

2.1.4 Heart Rate Variability 
 

    Over the last 25 years, HRV analysis has became more and more popular as a 

non-invasive research and clinical tool for indirectly investigating both cardiac and autonomic 

nervous system (ANS) function in both health and disease area. The current methodologies 

used to analyze HRV are based largely on linear techniques to analyze past and present  
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Fig. 2.10: The spectral analysis of HRV. 

 

electrocardiogram (ECG) data in time and frequency domains. 

    HRV is a measure of variations in the heart rate. It is usually calculated by analyzing the 

time series of beat-to-beat intervals from the electrocardiogram. As shown in Fig. 2.9, the top 

curve is a simplified ECG and the corresponding time series of beat-to-beat intervals I(n) is 

calculated as (2.1) and shown in the bottom. Various measures of heart rate variability are all 

based on the time series. The variations of these measures after listening to music are 

expected to be observed and the musical rhythmic effect is discussed in this study. 

 

 

2.1.5 Physiological Correlates of Heart Rate Variability  
 

Measures of heart rate variability are increasingly being employed in applications 

ranging from basic investigations of central regulation of autonomic state to studies of 

fundamental links between psychological processes and physiological functions, to 

evaluations of cognitive development and clinical risk. As psychological correlates and 

physiological mechanisms are being delineated, measures of heart rate variability may offer 

powerful tools for the clarification of relationships between psychological and physiological 

processes. 

Although cardiac automaticity is intrinsic to various pacemaker tissues, heart rate and 

heart rhythm are largely under the control of the autonomic nervous system [14]. An 

understanding of the modulatory effects of neural mechanisms on the sinus node has been 
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enhanced by spectral analysis of HRV shown in Fig. 2.10 [2]. Vagal activity is the major 

contributor to the HF component. Disagreement exists in respect of the LF component. Some 

studies suggest that LF, when expressed in normalized units, is a quantitative marker for 

sympathetic modulations, other studies view LF as reflecting both sympathetic and vagal 

activity. Consequently, the LF/HF ratio is considered by some investigators to mirror 

sympatho/vagal balance. The origins of heart rate variability are discussed deeply in [15]. 

    There were many researches discussing the relationship between human’s physical state 

and HRV in the past. The decline in heart rate variation with increasing age was reported in 

[16]. Endurance exercise increases parasympathetic activity and decreases sympathetic 

activity in the human heart at rest [17]. The changes of heart rate was used as the parameter to 

distinguish between positive and negative emotions [18]. The sympathovagal interaction 

during mental stress was assessed in [19]. Based on these researches, HRV can be taken as an 

indicator of assessing physical and emotional state. The music modulating effect on human 

autonomic nervous system can be inferred indirectly from HRV. 

 

 

2.2   Heart’s Hearing 
 

It is a generally accepted concept that our emotion and physical state change when 

listening to different music. For example, Rock music makes someone feel vigorous and 

increases the heart rate and Jazz music makes someone feel lethargic and slows his breath 

down. Is there any physiological pathway which links the perception of music with the 

responses of ANS? Research has revealed that the heart rate can be controlled by external 

stimuli [4]. However, following several years of research, it was observed that, the heart 

communicates with the brain in ways that significantly affect how we perceive and react to 

the world. Neurophysiologists discovered a neural pathway and mechanism whereby input 

from the heart to the brain could inhibit or facilitate the brain’s electrical activity [20]. From 

these researches the connection and communication between brain and heart are established. 

On the other hand, it is long known that changes in emotions are accompanied by 

predictable changes in physiological state such as heart rate, blood pressure, respiration and 

digestion. When someone is aroused, his sympathetic division of the autonomic nervous 

system energizes him for fight or flight. When someone is in quiet times, the parasympathetic 
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division cools him down. Based on theses researches, it can be sure that there must be some 

connection between the music perception and the physical responses. 
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Chapter 3 

 

Approach 

 
3.1   HRV Signal Processing Flow  
 

The overall HRV signal processing flow is shown in Fig. 3.1. The processing methods of 

each block are detailed in the following subsection.  

 

 

3.1.1 Acquirement of the ECG signals 
 

   The ECG signal is captured by a 3-channel portable device (MSI E3-80, FDA 510(k) 

K071085) at 500Hz sampling rate from the chest surface of body shown in Fig. 3.2(a) (b) [21]. 

Only the channel1 (L1) data were taken to be analyzed. In the previous HRV studies, the 

 

 

 

Fig. 3.1: The block diagram of the overall signal processing flow of HRV analysis 
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Fig. 3.2(a): MSI E3-80 

 
 

Fig. 3.2(b): Electrodes placement

 

duration of recording was dictated by the nature of each investigation. And it is recommended 

that the recording of approximately 1min is needed to assess the HF components of HRV 

while approximately 2min are needed to address the LF component [3]. Therefore, 2min 

duration is taken as the shortest unit to be compared in this study. 

 

 

3.1.2 QRS detection 
 

As the introduction in 2.1.3, the QRS complex is the most notable waveform within the 

electrocardiography (ECG). Since it reflects the electrical activity within the heart during the 

ventricular contraction, the time of its occurrence as well as its shape provides much 

information about the current state of the heart. Due to its characteristic shape it serves as the 

basis for the automated determination of the heart rate. Therefore, QRS detection provides the 

fundamentals for almost all automated ECG analysis algorithms. 

Within the last decade many new approaches to QRS detection have been proposed; for 

example, algorithms from the field of artificial neural networks, genetic algorithms, wavelet 

transforms, filter banks as well as heuristic methods mostly based on nonlinear transforms. 

The detailed review and comparison of these methods were presented [22]. The detection 

algorithm described by Hamilton and Tompkins is adopted in this work because of its high 

reliability and low computational load [23-25]. 

The ECG waveform contains, in addition to the QRS complex, P and T waves, 60-Hz 

noise from power line interference, EMG from muscles, motion artifact from the electrode 
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Fig. 3.3: Relative power spectra of QRS complex, P and T waves, muscle noise and motion 

artifacts based on an average of 150 beats 

 

and skin interface, and possibly other interference from electrosurgery equipment in the 

operating room. Many clinical instruments such as a cardiotachometer and an arrhythmia 

monitor require accurate real-time QRS detection. It is necessary to extract the signal of 

interest, the QRS complex, from the other noise sources such as the P and T waves. Fig. 3.3 

summarizes the relative power spectra of the ECG, QRS complexes, P and T waves, motion 

artifact, and muscle noise based on the previous research [25]. 

The signal processing flow of QRS detection and the corresponding results are shown in 

Fig. 3.4 and Fig. 3.5. There are two main stages in the QRS detection flow. One is the 

preprocessing stage which is composed of various filters for removing noise and acquiring the 

QRS complex information. The other stage, peak detection, makes use of the information 

acquired by the preprocessing stage and some criteria to detect the QRS complex peaks. In the 

beginning of the preprocessing stage, the band-pass filter is used to reduce the influence of 

muscle noise, 60 Hz interference, baseline wander, and T-wave interference. The desirable 

pass-band to maximize the QRS energy is approximately 5-15 Hz [25]. 
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Fig. 3.4: QRS peak detection flow 

 

  
 

Fig. 3.5: Results of each step of Fig. 3.4 

 

The band-pass filter is composed of cascaded low-pass and high-pass filters. Their difference 

equations are listed as (3.1). The performance details of the low-pass filter and high-pass filter 

are shown in Fig. 3.6 and Fig. 3.7. The amplitude response of the band-pass filter which is 

composed of the cascade of the low-pass and high-pass filters is shown in Fig. 3.8. The center 

frequency of the pass-band is at 10 Hz. The amplitude response of this filter is designed to 

approximate the spectrum of the average QRS complex as illustrated in Figure 12.1. Thus this 

filter optimally passes the frequencies characteristic of a QRS complex while attenuating 

lower and higher frequency signals. 

 

( ) ( ) ( ) ( ) ( ) (

( ) ( )

)

( ) ( ) ( )

2 2 2 6

116 32
32

LowPass Filter

HighPass Filter

12y nT y nT T y nT T x nT x nT T x nT T

y nT x nT T y nT T x nT x nT T

= − − − + − − + −

= − − − + − −⎡ ⎤⎣ ⎦

       (3.1) 
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Fig. 3.6(a): Amplitude response of the low-pass filter 

 

 

 

 

Fig. 3.6(b): Phase response of the low-pass filter 
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Fig. 3.7(a): Amplitude response of the high-pass filter 

 

 

 

 

Fig. 3.7(b): Phase response of the high-pass filter 
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Fig. 3.8: Amplitude response of band-pass filter composed of low-pass and high-pass filters 

 

After the signal has been filtered, it is then differentiated to provide information about 

the slope of the QRS complex. This derivative is implemented with the difference equation 

(3.2). The performance characteristics of this derivative implementation are shown as Fig. 3.9. 

The amplitude response approximates a true derivative up to about 20 Hz. This is the 

important frequency range since all higher frequencies are significantly attenuated by the 

band-pass filter. 

After differentiation, the signal is squared point by point. The equation of this operation 

is shown as (3.3). This makes all data points positive and dose nonlinear amplification of the 

output of the derivative emphasizing the higher frequencies. 

 

 

( ) ( ) ( ) ( ) ( ) ( )1 8 2 3 2 4y nT x nT x nT T x nT T

Deriva

x n

tiv

T T

e
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( ) ( ) 2
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y nT x nT

n
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                                            (3.3) 
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Fig. 3.9(a): Amplitude response of the derivative 

 

 

 

 

Fig. 3.9(b): Phase response of the derivative 
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The slope of the R wave alone is not a guaranteed way to detect a QRS event. Many 

abnormal QRS complexes that have large amplitudes and long durations (not very steep 

slopes) might not be detected using information about slope of the R wave only. Thus, we 

need to extract more information from the signal to detect a QRS event. Moving window 

integration extracts features in addition to the slope of the R wave. It is implemented with the 

following difference equation (3.4). For a sample rate of 500 sps, the integration window 

chosen for implementation in the thesis is 64 samples wide (which correspond to 128 ms). 

After the preprocessing stage, the peak detection stage detects peaks in the signals after 

moving window average. The corresponding relation between ECG raw data and the signals 

after moving window average is shown in Fig. 3.10. The detection algorithm stores the 

maximal levels encountered in the signal since the last peak detection like the red dots in Fig. 

3.10. A new peak is defined only after a level is encountered that is less than half the height of 

the maximal level. Detection occurs halfway down the back side of the peak. This approach 

eliminates multiple detections from ripple around the wave peak. The peak detection 

algorithm does not establish that a valid peak has occurred until the middle of the falling slope 

when the level drops below half the distance from the maximal value to the base point. 

Because the time between the middle of the rising slope and the middle of the falling slope is 

equal to the duration of the averaging window, ideally the R peak point representing the peak 

of the R wave is located with fixed delay of one window’s width. Each time a peak is detected 

it is classified as either a QRS complex or noise, or it is saved for later classification. This 

work uses the peak height and peak location to classify peaks. An outline of the basic 

detection rules in the peak detection stage are listed as follows 

 

1. Ignore all peaks that precede or follow larger peaks by less than 200ms. 

2. If the peak is larger than the detection threshold call it a QRS complex, otherwise call 

it noise. 

 

 

( ) ( ) ( ) ( )( ) 1 ( 1) ( 2) ...y nT N x nT N T x nT N T x nT

where N is the number of samples in the width of the integration window

Moving Window Integral

= − − + − − + +⎡ ⎤⎣ ⎦

−

     (3.4) 
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Fig. 3.10: The corresponding relation between ECG raw data and the signals after moving 

window average 

 

 

3.1.3 Evaluating the QRS detection algorithm 
 

 Many algorithm of HRV analysis, such as heart rate calculation, PAV detection, and PVC 

detection, require a very accurate QRS recognition capability. Several standard ECG database 

are available for the evaluation of software QRS detection algorithms. Tests on these 

well-annotated and validated databases provide reproducible and comparable results. 

Furthermore, these databases contain many selected signals representative for the large 

variety observed but clinically important. The MIT-BIH Arrhythmia Database is the most 

frequently used database. It contains 48 half-hour recordings of annotated ECG with sampling 

rate of 360Hz and 11-bit resolution over a 10mV range. Twenty-five recordings with less 

common arrhythmias were selected from over 4000 24-hour ambulatory ECG recordings, and 

the rest was chosen randomly. While some records contain clear R-peaks and few artifacts 

(e.g., records 100-107), for some records the detection of QRS complexes is very difficult due 

to abnormal shapes, noise, and artifacts (e.g., records 108 and 207). 

 The MIT-BIH Arrhythmia Database is acquired from the PhysioNet which offers free 

access via the web to large collections of recorded physiologic signals and related 

open-source software [26]. There are forty-eight recordings in this database. Each recording 

include annotations that indicate the times of occurrence and types of each individual heart 
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beat ("beat-by-beat annotations"). The standard set of annotation codes includes both beat 

annotations and non-beat annotations. Most PhysioBank databases use these codes as 

described as Table A.1 in Appendix A. According to [22], essentially three parameters should 

be used to evaluate the QRS detection algorithm. They are formulated as (3.5) where TP 

denotes the number of true positive detection, FN denotes the number of false negatives, and 

FP denotes the number of false positives. Therefore, TP represents the QRS detector 

successfully detects the beats which are coded by beat annotations, FN represents the QRS 

detector misses the beats which are coded by beat annotations and FP means the QRS 

detector detects the beats which are coded by non-beat annotations or non-existed actually. 

In this study, all the forty-eight recordings in the MIT-BIH Arrhythmia Database are used 

to evaluate the QRS detector algorithm. Each recording records half-hour annotated ECG, but 

just first ten minutes data are used to evaluate the QRS detector performance for simplicity. 

The evaluation result of each recording is listed in Table A.2 of Appendix A and the 

performance measures are listed in Table 3.1. 

 
 
3.1.4 Abnormal Beats Rejection and Compensation 
 

The heart beat is triggered mainly by the sinoatrial (SA) node controlled by the 

sympathetic and parasympathetic neural systems. In addition to the SA node, other latent 

 

( )
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         (3.5) 

 

Table 3.1: The performance of simplified algorithm adopted in this work 

 

Sensitivity Positive Predictivity  Average Time Error(ms) 

95.65% 99.36% 5.33 
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pacemakers exist throughout the heart. Normally, regular conduction of the electrical impulse 

from the SA node and the refractory period of the cells reject any other electrical source 

except those coming from the SA node. However, some of the additional pacemakers may, in 

certain cases, interpose additional electrical impulses that generate ectopic beats. Besides, 

QRS complex misdetections can generate a similar effect to that of ectopic beats in HRV 

analysis [27]. The detector errors can be false positive (FP) when a false beat is detected due 

to noise or a high amplitude T wave or false negative (FN) when a real beat is missed due to a 

low amplitude QRS or noise masking. The abnormal beats make the time associated with 

HRV exhibit a sharp peak and make the power spectral density estimation in the frequency 

domain analysis strongly unstable shown in Fig. 3.10(a). 

In this study, the criterion based on the variation of the instantaneous heart rate is used as 

the abnormal beats detector [27]. The normal heart beat shows a band limited variation of the 

instantaneous heart rate. So, it is possible to impose a threshold TH on the derivative of the 

instantaneous heart rate to screen out the abnormal beats. The criterion is formulated as (3.6).  

The threshold TH is set to 0.2 empirically in this study. When the criterion in (3.6) is not 

met for some peak time instant , it means that some position , , or kt 1kt − kt 1kt +  are 

abnormal. The six conditions which judge whether the anomalies were caused by QRS 

complex misdetections or not is checked all over the recorded data: by removing , 

removing , inserting an intermediate beat between 
kt

1kt + 1kt −  and , inserting an intermediate 

beat between  and , moving  to the intermediate position between  and 
kt

kt 1kt + kt 1kt − 1kt + , 

and moving  to the intermediate position between  and 1kt + kt 2kt + . If the criterion is now 

satisfied when removing, it implies a FP at the removal position; if the criterion is satisfied on 

insertion, this implies a FN and if satisfied when moving it typically implies an ectopic beat. 

It can be found that almost all of the abnormal beats are produced by QRS complex  
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misdetection from the collected data in the experiment. 

    There is a data filtering mechanism existing in this study for data accuracy and stability. 

There are two criteria for each HRV analysis section in one ECG recording. First, the number 

of detected abnormal beats in each HRV analysis section must be lower than 5. Second, it 

must be confirmed that there is not any abnormal beat remaining after the abnormal beat 

processing in each HRV analysis section. If any one criterion is not satisfied in any analysis 

section of one ECG recording, the ECG recording will be looked as the unstable data and be 

abandoned. A simple method for abnormal beats processing is utilized and the detailed 

algorithm is formulated in Appendix B. 

    It can be seen in Fig. 3.10(b) that the more stable and accurate spectrum analysis can be 

obtained after the removing and compensating of these abnormal beats. 

 

 

 

 

 

 

Fig. 3.11(a) Abnor al beats detection 

 

Fig. 3.11(b) Abnorm l beats removement m
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Fig. 3.12: The RR interval time series after 4Hz cubic spline interpolation. 

 

 

3.1.5 Interpolation and De-trending 
 

 

3.1.5.1 Interpolation 
 

The RR interval time series is an irregularly time-sampled signal. This is not an issue in 

time domain analysis, but in the frequency domain analysis it has to be taken into account. If 

the spectrum estimate is calculated from this irregularly time-sampled signal, implicitly 

assuming it to be evenly sampled, additional harmonic components are generated in the 

spectrum. Therefore, the RR interval signal is usually interpolated before the spectral analysis 

to recover an evenly sampled signal from the irregularly sampled event series. The RR 

interval time series after interpolation is shown in Fig. 3.11. The 4Hz cubic spline 

interpolation is used in this study [28]. 

The fundamental idea behind cubic spline interpolation is based on the engineer’s tool 

used to draw smooth curves through a number of points as shown in Fig. 3.12. The 

mathematical spline is similar in principle. The points, in this case, are numerical data. The 

weights are the coefficients on the cubic polynomials used to interpolate the data. These  
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Fig. 3.13: The fundamental idea behind cubic spline interpolation 

 

coefficients ’bend’ the line so that it passes through each of the data points without any erratic 

behavior or breaks in continuity. The essential idea is to fit a piecewise function of the form 

shown as (3.6). And  is a third degree polynomial function defined by (3.7) for 

. 
is

1,2, , 1i n= −…

In this work, “natural splines” which include the stipulation that the second derivative be 

equal to zero at end point is adopted. By the four properties of cubic splines listed in (3.8), the 

weights can be determined by the matrix equation (3.9) and (3.10). The iterative method to 

solving iM  is shown as (3.11) for the future hardware implementation. 
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( ) ( ) ( ) ( )3 2
i i i i i i is x a x x b x x c x x d= − + − + − + i               (3.7) 

 

 

(1)  The piecewise function ( )S x  will interpolate all data points. 

(2)   will be continuous on the interval ( )S x 1[ , ]nx x . 

(3)  will be continuous on the interval ( )'S x 1[ , ]nx x .                   (3.8) 

(4)  ( )''S x  will be continuous on the interval 1[ , ]nx x . 
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Fig. 3.14: The RR interval time series after de-trending. 

 

 

3.1.5.2 Detrending 
 

Heart rate variability (HRV) is widely used quantitative marker of autonomic nervous 

system activity. Various time and frequency domain methods have been applied to HRV 

analysis. A traditional spectral method, power spectral density (PSD) estimation, provides 

information about power distribution as a function of frequency. Spectral estimation 

inherently assumes that the signal is at least weakly stationary. However, real HRV is usually 

non-stationary. Non-stationarities like slow linear or more complex trends in the HRV signal 

can cause distortion to time and frequency domain analysis. Origins for non-stationarities in 

HRV are discussed [15].  The method tries to remove the slow non-stationary trends from the 

HRV signal before analysis is called de-trending. The detrending is usually based on 

first-order or higher order polynomial models. In this thesis, an advanced detrending 

procedure based on smoothness priors approach is adopted [29]. The main advantage of the 

method is its simplicity. The frequency response of the method is adjusted with a single 

parameter. This smoothing parameter should be selected in such a way that the spectral 

components of interest are not significantly affected by the detrending. The RR interval time 

series after de-trending is shown in Fig. 3.13. The detailed processing flow of detrending is 

explained as follows: 

The RR interval time series is denoted as (3.12). The detrended nearly stationary RR 

series can be calculated as (3.13) where the second-order difference matrix ( ) ( )3 1
2

N ND − × −∈\   
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is shown as (3.14). The frequency response of the detrending method is detailed as follows. 

Equation (3.13) can be written as ˆstatz L= , where ( ) 12
2 2
TL I I D Dλ

−
= − +  corresponds to a 

time-varying finite-impulse response high-pass filter. The frequency response of  for each 

discrete time point, obtained as a Fourier transform of its rows, is presented in Fig. 3.14. The 

filtering effect is attenuated for the first and last elements of  and, thus, the distortion of 

end points of data is avoided. The effect of the smoothing parameter 

L

z

λ  on the frequency 

response of the filter is presented in Fig. 3.15. The cutoff frequency of the filter decreases 

when λ  is increased. Besides, the λ  parameter the frequency response naturally depends 

on the sampling rate of signal z . Because each RR series is first interpolated to obtain a 

regularly sampled series with sampling rate of 4Hz, the smoothing parameter λ  is set to 300, 

which equals a cutoff frequency of 0.043 Hz. 

 

 

 

Fig. 3.15: Time-varying frequency response of ( )1 50 10L N and λ− = = . Only the first half 

of the frequency response is presented, since the other half is identical 
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Fig. 3.16 Frequency responses, obtained from the middle row of , for L λ  = 1, 2, 4, 10, 20, 

50, and 300. The corresponding cutoff frequencies are 0.189, 0.132, 0.093, 0.059, 0.041, 

0.025, and 0.011 times the sampling frequency 

 

 

3.1.6 Measures of Heart Rate Variability 
 

    There are many measures and analyzing methods of heart rate variability have been 

proposed such as time domain analysis, frequency domain analysis, linguistic analysis, etc. 

Although many other measures of HRV have been proposed and investigated, those specified 

by the Task Force of the European Society of Cardiology and the North American Society of 

Pacing and Electrophysiology (the Task Force) have been the most widely applied [3]. In this 

study, time and frequency domain analysis are the main methods used to observe the changes 

of physiological responses. The effect of synchronization can be observed by the time domain 

analysis and the modulation of autonomic nervous system can be observed by the frequency 

domain analysis. 

 

 

3.1.6.1 Time domain measures 
 

The Task Force specified many different HRV metrics for both short-term records (5min) 

and long-term records (24h). Taking the reliability and accuracy of heart rate variability 
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measurements into account [30], I choose THB (total heart beats), MRR (mean of RR 

intervals), SDNN (standard deviation of normal to normal) and RMSSD (root mean square of 

successive NN interval differences) as the time domain measurements in this study. The 

detailed calculation formulas are shown by the following equation (3.12). Here, N is the total 

number of the heart beats and ( )I n  is a time series of beat-to-beat intervals which can be 

referred to Fig. 2.9 

 

 

3.1.6.2 Frequency domain measures 
 

While the time domain measures help in assessing the magnitude of the temporal 

variations in the autonomically modulated cardiac rhythm, the frequency domain analysis 

provides the spectral composition of these variations.

    All frequency domain HRV metrics are based on the estimated power spectral density 

(PSD) of the NN (Normal to Normal) intervals. Although the Task Force gave specific 

definitions of these metrics, it did not specify how to estimate the PSD. There are many 

methods of estimating PSD and each generates different HRV metric values. In this section 

we give a complete description of our PSD estimator, as required by the Task Force. Power 

spectral density (PSD) analysis provides the basic information of how power (i.e. variance) 

distributes as a function of frequency. Methods for the calculation of PSD may be generally 

classified as non-parametric and parametric [31]. 

    Due to the simplicity of the algorithm (Fast-Fourier Transform) and high processing 

speed, non-parametric method, Welch method, is chosen to estimate the power spectral 

density [32]. The detailed procedure of power spectral analysis in this study is explained as 
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follows: 

1. The signal is split up into overlapping segments: The original data segment is split up 

into K data segments of length L (zero padding), overlapping by L/2 points (L=1024 

in this study). 

2. The overlapping segments are then windowed by the Hamming window. 

3. After doing the above, the periodogram is calculated by computing the discrete 

Fourier transform, and then computing the squared magnitude of the result. The 

individual periodograms are then time-averaged, which reduces the variance of the 

individual power measurements. The end result is an array of power measurements 

vs. frequency bin. 

Through the use of computationally efficient algorithms such as Fast-Fourier Transform, 

the HRV signal is decomposed into its individual spectral components and their intensities, 

using Power Spectral Density (PSD) analysis. These spectral components are then grouped 

into three distinct bands: very-low frequency (VLF), low frequency (LF) and high frequency 

(HF). The cumulative spectral power in the LF and HF bands and the ratio of these spectral 

powers (LF/HF) has demonstrable physiological relevance in healthy and disease states [33, 

34]. Changes in the LF band spectral power (0.04-0.15Hz frequency range) reflect a  

 

Table 3.2: The HRV measures of time and frequency domain analysis 

 
Variable Units Description 

 Time domain analysis 
THB  Total number of heart beats 
MRR ms Mean of RR interval 

SDNN ms Standard deviation of all RR intervals. 

RMSSD ms 
The square root of the mean of the sum of the 
squares of differences between adjacent NN 

intervals. 
 Frequency domain analysis 

LF 2ms  Power in low frequency range 0·04–0·15 Hz 

HF 2ms  Power in high frequency range 0·15–0·4 Hz 

LF/HF / Ratio LF /HF 
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combination of sympathetic and parasympathetic ANS outflow variations, while changes in 

the HF band spectral power (0.15-0.40Hz range) reflect vagal modulation of cardiac activity. 
The physiological explanation of the VLF component (0.0033-0.04Hz) is much less 

defined and the existence of a specific physiological process attributable to these heart period 

changes might even be questioned. The LF/HF power ratio is used as an index for assessing 

sympatho-vagal balance. The HRV measures of time and frequency domain analysis we want 

to observe are listed in Table 3.2. 
 

 

3.2   Drum loop rhythmic analysis 
 

Sound by its very nature is temporal, and in its most generic sense, the word rhythm is 

used to refer to all of the temporal aspects of a musical work, whether represented in a score, 

measured form a performance, or existing only in the perception of the listener [35]. The 

drum loop music is taken as the stimuli in this study because of its obvious and simple rhythm 

characteristic. Drum loops are prerecorded percussive riffs that are designed to create a 

continuous beat or pattern when played repeatedly. Loops are usually compiled in 

commercially available databases containing several hundreds, or even thousands, of these 

riffs. These collections are widely used in computer music composition and production as a 

means to generate high-quality music tracks in a quick and easy manner. This study utilizes 

the techniques in the field of audio signal processing and music analysis to extract some 

features from the drum loops and discusses their effects on the modulation of autonomic 

nervous system. 

Entrainment describes a process whereby two rhythmic processes interact with each 

other in such a way that they adjust towards and eventually ‘lock in’ to a common phase 

and/or periodicity [7]. For example, we tap foot and shake body to the beat of a song. 

Similarly, there are many naturally occurring rhythms within the human body such as the 

heartbeat, blood circulation, respiration and many others. Therefore, the relationship between 

the musical rhythmic characteristics and heart rhythm is what this study wants to explore. 

So the next problem is how to quantitatively define the musical characteristic, rhythm. 

Intuitively, the first feature of rhythm is its speed. The speed of heart rhythm is called heart 

rate and the speed of musical rhythm is called tempo. Tempo is usually indicated in beats per  
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Fig. 3.17(a): The sound wave of one single 

note 

 

 

Fig. 3.17(b): Onset, attack and transient 

 
minute (BPM) in modern music. The beat means the exact time we nod our head or tap our 

feet to the rhythm. It is one temporal aspects of a musical work existing in the perception of 

the listener and a fundamental unit of the temporal structure of music. Once the beats in one 

piece of music were detected, the tempo could be decided as the unit, beats per minute. 

Is the tempo enough to describe the musical rhythm fully? Through the automatic beat 

tracking algorithm, each onset in a piece of music which probably makes us tap to follow will 

be identified. And it can be found that the intervals between each identified beat are almost 

the same. If the other components of a piece of music were removed except the beats, the 

remains are only the repeated and equal spaced sound pulses. These pulses can’t make us feel 

rhythmic. So it is not enough to represent the musical rhythm by the only one feature, tempo. 

Observing the characteristics of heart rhythm, it can be found the variability of heart rate 

exists in a stable and near constant heart rate. Inspired by the similarity, the second feature, 

complexity, is proposed to be the second quantitative measure to describe the musical rhythm. 

As the tempo is to musical rhythm, so is the average heart rate to the heart rhythm. As the 

complexity is to musical rhythm, so is the heart rate variability to the heart rhythm. That’s 

why the feature, complexity, is chosen. The heart rhythm is just like a piece of music. If it is 

just a monotone pulse, it will be not good to listen, in other words, not a healthy heart rhythm. 

 
 
3.2.1 Tempo 
 

    To find the exact time when we nod our heads or tap our feet is called “beat tracking.” 
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Automatic beat tracking is an essential task for many applications such as musical analysis, 

automatic rhythm alignment of multiple musical instruments, cut and paste operations in 

audio editing, beat driven special effects. 

Music is expressed by the successive notes. These notes record the relating temporal 

information. Identifying and characterizing these notes is an important aspect of the following 

steps of music analysis. Here some nouns must be explained first. In the Fig. 3.14 (a), the 

sound wave of one single note is shown. The definitions of onset, attack and transient are 

shown in Fig. 3.14(b) and were explained in [36]. An onset can be defined as the instant when 

the attack transient begins, thus marking the beginning of the note. So the first step of music 

analysis is to detect the onset. In the general case of a polyphonic signal, where multiple 

sound objects may be present at a given time, the onset detection is not easy. The procedure 

employed in the majority of onset detection algorithms is illustrated in Fig. 3.15: from the 

original audio signal, which can be pre-processed to improve the performance of subsequent 

stages, a detection function is derived at a lower sampling rate, to which a peak-picking 

algorithm is applied to locate the onsets.  

 Once the rhythmic events (the onsets) have been determined, the beat tracking algorithm 

will be applied. The beat tracking algorithm adopted in this work is developed by Simon 

Dixon [37]. First, the time intervals between pairs of events are determined. These data are  

 

 
 

Fig. 3.18: Flowchart of a standard onset detection algorithm 
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clustered to generate a ranked list of tempo hypotheses. The top ranked clusters represent a set 

of hypotheses as to the basic tempo of the music. The processing mentioned above is called 

tempo induction. The tempo induction algorithm computes the approximate inter-beat interval, 

but not calculates the beat times. In order to calculate beat times, a multiple hypothesis search 

is employed, with an evaluation function selecting the hypothesis that fits the data best. In this 

work, the interactive beat tracking and visualization system developed by Simon Dixon is 

used to determine the drum loop tempo. 

 

 

3.2.2 Complexity 
 

As mentioned above, the sound with a fixed tempo doesn’t make people feel rhythmic at 

all. Therefore, the musical complexity is proposed to be another important feature to describe 

the musical rhythm. The notion of complexity has generally been studied in the context of 

information theory and is closely connected with concepts such as randomness, information, 

regularity, and coding. Some measures of complexity that corresponds to a high degree with a 

human’s subjective notion of complexity have been discussed [38-39]. Because these 

measures are made to fit the human perception on temporal pattern complexity, the 

questionnaires are used to collect the subjects’ opinions about musical complexity directly in 

this study. When the relationship between the musical rhythmic characteristics (tempo and 

complexity in this study) and human heart rhythm is understood, the beat tracking algorithm 

and the complexity measure can be served as the automatic musical rhythmic characteristics 

extractor and the corresponding effect on human heart rhythm can also be conducted 

automatically. 

 

 

3.3   Arrangement of Experiment 
 

 

3.3.1 Subject and Environment 
 

There were all 22 healthy subjects, 15 males and 7 females, engaged in the experiment. 
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The average age is 23. None of them are professionally trained in music before. All tests were 

carried out in moderate temperature, humidity and light with subjects sitting and wearing 

headphones (eyes closed) in a quiet place 

 

 

3.3.2 Music Stimuli 
 

    There are four drum loops in this study (L1 to L4). They are downloaded from internet 

based on the different tempo characteristic. The two musical rhythmic characteristics that we 

think most important, tempo and complexity are extracted from each loop as follows. The 

beat means the exact time we nod our head or tap our feet to the rhythm. Once the beats in 

one piece of music were detected, the tempo could be decided as the unit, beats per minute 

(bpm). The other characteristic, complexity, is rated by each subject with four ratings 1, 2, 3 

and 4 (1 is represented to most simple one and 4 is represented to most complex one). The 

complexity of each loop is represented by the average of the total 22 subjects’ ratings. The 

rhythmic characteristics, tempo and complexity, of the four drum loop patterns chosen for 

experiment (L1 to L4) are shown in Fig. 3.16 and the detailed quantized number is shown in 

Table 3.3. 

    From the right plot of Fig. 3.16, it is shown that the tempo is increasing from L1 to L2. 

From the left plot of Fig. 3.16, it can be seen that there are cognitive agreement among the 

total 22 subjects in the L3 and L4 loops. The L3 loop is thought as the lowest complex one 
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Fig. 3.19: The rhythmic characteristics, tempo and complexity, of the four drum loop patterns 
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Table 3.3: Two rhythmic characteristics of the four testing drum loop samples 

 
 L1 L2 L3 L4 

Tempo 
(bpm) 

89.6 105.3 139.5 176.5 

Complexity 
(avg rating) 

2.73 2.27 1.14 3.86 

 

and the L4 loop is thought as the highest complex one. But there are some disagreement 

existing between L1 and L2 loop. 

 

 

3.3.1 Study Protocol 
 

    There are four testing rhythm patterns in the experiment (L1-L4), resulting in four trials 

for each subjects at less. For avoiding the uncertainty of the interaction between different 

loops, the subjects are arranged to take each trial at the same time but in different days. The 

shortest duration of the comparison is 2min because it is reported that the recording of 

approximately 1min is needed to assess the HF components of HRV while approximately 

2min are needed to address the LF component [3]. The overall experimental flow of one trial 

is shown in Fig 3.17. In the beginning, the subject is asked to take a 5 minute rest and read the 

experiment manual shown in Fig. 3.18 at the same time. Then, the ECG signals are 

continuously recorded for the subsequent 10 minutes. Between 5-10 minutes, there is no 

sound emitted from the headphones and the recorded data are used as the control. The 

headphones return to silence in the final 2 minutes. Two comparisons, C1 and C2, are 

 

 

5 8 10 13 150 (min)

C1

C2
resting

 

Fig. 3.20: The overall experimental flow of one trial
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discussed in this study. The comparison C1 presents the differences of the HRV measures 

between 10-13 and 5-8 minutes. The comparison C2 presents the differences of the HRV 

measures between 13-15 and 8-10 minutes. The physiological responses after listening the 

drum loop music is observed by the C1 comparison. The aftereffect of rhythm pattern 

listening is observed by the C2 comparison. 

 

  

 

Fig 3.21: The experiment manual 
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Chapter 4 

 

Experimental Results 

 
4.1 Data Presentation 
 

The comparison C1 calculates the differences of each HRV measure between 10-13 and 

5-8 minutes. Through C1, the HRV measures in the listening condition are compared to the 

HRV measures in the resting condition. The comparison C2 calculates the differences of the 

HRV measures between 13-15 and 8-10 minutes. Through C2, the HRV measures in the 

after-listening resting condition are compared to the HRV measures in the resting condition. 

Data are presented as the mean and the standard deviation are marked. 

 

 

4.2 Main Finding 
 

There are two notable findings in this study. First, the drum loop with faster tempo and 

lower complexity reduces the LF/HF measure most after drum loop listening. The reduction 

of the LF/HF after listening to the drum loop is shown in Fig. 4.1.  

From Fig. 4.1, it can be observed that the value of LF/HF in 13-15 minutes (resting after 

drum loop listening) is lower than in 8-10 minutes (baseline resting). This phenomenon is 

particularly obvious in the L3 loop. According to the Section 2.1.5, the LF measure stands for 

sympathetic activity, the HF measure stands for parasympathetic activity and the LF/HF ratio 

is used to observe the balance between the sympathetic and parasympathetic systems. 
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Fig. 4.1: The C2 comparison of LF/HF measure 

 

Observing the C2 comparison of LF/HF shown in Fig. 4.1, it is inferred that the subjects feel 

even more relaxing after drum loop listening than in the baseline resting state. 

The similar result is also found in the previous study that a randomly inserted short pause 

during the continued music listening experiment decrease blood pressure, heart rate, and the 

LF/HF in the subjects. The relaxation effect is even greater than the quiet relaxation at 

baseline [9]. Being different from the previous study, the drum loop music is adopted rather 

than the general music and two musical rhythmic features are proposed to be the key 

component of music-regulating human autonomic nerve system in the thesis. By the 

systematic method, the experimental results are not only the observed phenomena, but also 

can be used to construct a model for predicting the physiological responses after music 

listening. The new finding in this study is that the relaxation aftereffect is stronger in the drum 

loop with faster tempo and lower complexity. 

Second, the entrainment phenomena can be observed in Fig. 4.2. The L3 loop with the 

lowest complexity synchronizes the heart rhythm and results in the reducing SDNN (HRV) in 

the resting period rather than the listening condition. Recalling the principle of entrainment 

mentioned in the Section 3.2, it could be expected that the lowest complex loop (L3) can 

synchronize the listener’s heart rhythm to a simpler structure than the other loops can do. As 

shown in Fig. 4.3, it is interesting that the synchronization effect is more significant in the 

resting period after the drum loop listening than in the listening period. The detailed 

numerical expression of experimental results is listed in Table 4.1. The C1 and C2 

comparisons of all HRV measures obtained in the thesis are shown in Fig. 4.4 to Fig. 4.10. 
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Fig. 4.2: The C2 comparison of SDNN measure 

 

 
 

Fig. 4.3: The C1 comparison of SDNN measure 

 

Table 4.1: The numerical expression of two notable findings in the experimental results 
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Fig. 4.4: The C1 and C2 comparisons of LF/HF measure 
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Fig. 4.5: The C1 and C2 comparisons of SDNN measure 
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Fig. 4.6: The C1 and C2 comparisons of THB measure
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Fig. 4.7: The C1 and C2 comparisons of MRR measure 
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Fig. 4.8: The C1 and C2 comparisons of RMSSD measure 
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Fig. 4.9: The C1 and C2 comparisons of LF measure 
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Fig. 4.10: The C1 and C2 comparisons of HF measure 
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Chapter 5 

 

Implementation 

 
5.1   Motivation of HRV Chip 
 

Measurement of HRV provides a non-invasive method to obtain reliable information on 

autonomic modulation of heart rate and has become an important tool for risk assessment to 

millions of patients who suffer from chronic diseases. A compact, high accuracy, real-time 

HRV assessment system could provide a valuable feature for implantable and portable cardiac 

monitoring and intervention devices. The reliable QRS detection is crucial for HRV analysis. 

Reviewing the previous System on Chip implementation of QRS detection, there are little 

information about accuracy and complete standard database testing results for verification 

[40-41]. Therefore, the implementation in this work focuses on the high accuracy QRS 

complex detector.  

 

 
 

Fig. 5.1: The bit-width of each processing block  
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Fig. 5.2: The deviation of detected R peak between the software QRS detector and the 

hardware QRS detector 

 
 
5.2   Accuracy Simulation 
 

For achieving the high accuracy, the bit-width of each processing stage needs to be 

decided carefully. The bit-width of each processing block is shown in Fig. 5.1 where (x.y) 

means the bit-width is composed of x bit integer and y bit decimal fraction. The deviation of 

each processing stage between the software QRS detector and the hardware QRS detector is 

simulated through all the MIT-BIH Arrhythmia Database. The deviation of detected R peak 

between the software QRS detector and the hardware QRS detector is shown in Fig. 5.2. It 

can be seen that the detection results is very close between them. The maximum deviation is 

0.00304 samples, it is just 8.45μs (0.00304/360 = 8.444, 360 Hz sampling rate) differences. 

So the accuracy of the hardware QRS detector is almost the same as the software QRS 

detector. The detailed deviation of each record is listed in Table C.1 of Appendix C.  

 
 
5.3   Hardware Architecture 

 

As mention in section 3.1.2, the QRS detection can be divided into two stages. The 
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preprocessing stage emphasizes the desired components in order to maximize the 

signal-to-noise ratio. The peak detection stage decides if an incoming peak is a true QRS 

complex based on a user-specified threshold. It can be seen that the preprocessing stage of the 

QRS detection algorithm adopted in this study is composed of several digital filters. 

The systolic array architecture for these digital filters is adopted in this work [42]. For 

computing one-dimensional recursive convolution characterized by the transfer function 

shown as (5.1) where ai (for i = 0 to N) and bi (for i = 1 to N) are real coefficients, the array 

structure shown in Fig. 5.3 can be used to achieve an appropriate trade-off between 

throughput and the amount of hardware required. Because these digital filters mentioned in 

(3.1) and (3.2) all can be represented as (5.1), they can be implemented by continuously 

connecting these array structures shown in Fig. 5.4 where the purple blocks represents the 

registers.  

 For reducing the amount of hardware required in the chip, observing the arrangement of 

the registers shown in Fig. 5.3, it can be found that the area closed by the red rectangular can 

be used as a basic processing element (PE) in the array. The basic PE can be reused 

continuously to update the different registers and the same result will be obtained. Observing 

the difference equations listed in (3.1) and (3.2), there are only five possibilities of 

coefficients. They are 0, 1, -1, 2 and -2. So the four multiplication operation in the PE can be  
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Fig. 5.3: The systolic array architecture for digital filters 
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Fig. 5.4 The connecting array architecture of QRS detection preprocessing stage 

 

 
 

Fig. 5.5: The proposed PE reusing architecture 
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simplified to four shifting operation. The proposed PE reusing architecture is shown in Fig. 

5.5. 

 

 

5.3   The Specs 
 

    The final implementation result is shown in Table 5.1 and layout is shown in Fig. 5.6. 

There are two HRV analysis systems in the previous work. The first one measures RR 

intervals from ECG signals, then categorizes and stores HRV measures in an internal memory 

[40]. The second one presents the design of an ECG-processing System-on-Chip (SoC), 

which incorporates an ARM922T hard macrocell as its processor core. This SoC takes the 

ECG signals as inputs, and detects the positions of the QRS complexes [41]. The comparison 

between the previous works and our design is listed in Table. 5.2. According to the 

comparison of the chip specification, the proposed chip is a cost effective solution needing 

only 5.1% chip area of the previous work [41] and it can be easily embedded into the 

biomedical platform solution. 

 

 

Table 5.1: Summary of the high accuracy QRS detector SoC 

 

Input 13 bit digitized ECG Raw Data 

Output 16 bit RR interval 

Technology tsmc 0.18 μm 

Die Size 1288.6 x 1314.7 μm2

Core Size 812.9 x 835.6 μm2

Gate Count 35630 

Max Frequency 50 MHz 

Power 25 mW 

Accuracy ±6ms 
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Table 5.2: Comparison of HRV analysis SoC 

 

 [40] [41] Proposed 

Tech 0.5μm UMC 0.18μm tsmc 0.18μm 

Area 3x3 mm2 4095x3202 μm2 812.9x835.6 μm2

Freq. 1 kHz 112.23 MHz 500 Hz 

Power 1.5 μW N/A 2.21 μW 

Accuracy ± 7 ms N/A ± 6 ms 

Database Verification N/A N/A 
MIT-BIH Arrhythmia 

Database  

 

 

 

 
 

Fig. 5.6: The layout of the high accuracy QRS detector chip 
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Chapter 6 

 

Conclusion 

 
6.1   Discussion 
 

    Based on the notable findings mentioned in section 4.2, some inference is constructed 

and detailed as follows. First, C1 and C2 comparison of the LF/HF measure are discussed and 

shown in Fig 6.1. The changes of the LF/HF measure during drum loop listening is observed 

in C1 comparison shown in Fig. 6.1(a). I infer that the main factor contributing to the changes 

of the LF/HF measure during drum loop listening is the ability of the rhythm pattern to attract 

the subject’s attention, because the LF/HF measure can be used to reflect the degree of arousal. 

When people pay more attention to something or they are aroused by something, their LF/HF 

measure will show a higher value. In other words, the drum loop which makes the subjects  

 

 

 

Fig. 6.1: (a) The C1 comparison of LF/HF measure (b) The C2 comparison of LF/HF measure 
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feel most surprising will result in the most increasing in the LF/HF measure. 

 From Fig. 6.1(a), it can be inferred that the L1 makes the subjects feel most surprising or 

attentive. If the surprising factor of a rhythm pattern can be attributed to two musical rhythmic 

features proposed in the thesis, there should be some relationship between them. Observing 

Fig. 6.1(a), it seems that the rhythm pattern with slower tempo will increase the LF/HF 

measure more. About complexity, the publication by Berlyne (1971) states that an individual’s 

preference for certain piece of music is related to the amount of activity it produces in the 

listener’s brain, to which he refers as the arousal potential [39]. According to this theory, 

which is backed up by a large variety of experimental studies, there is an optimal arousal 

potential that causes the maximum liking, while a too low as well as a too high arousal 

potential results in a decrease of liking. He illustrates this behavior by an inverted U-shaped 

curve (shown in Fig. 6.2) which was originally introduced in the 19th century already by 

Wundt (1874) to display the interrelation between pleasure and stimulus intensity [39]. 

Berlyne identifies three different categories of variables affecting arousal. As the most 

significant he regards the collative variables, containing among others complexity, 

novelty/familiarity, and surprise effect of the stimulus. 

 Mapping to the experimental result shown in Fig. 6.1(a), we can also find an inverted 

U-shaped curve which is shown in Fig. 6.3 if the drum loops are ordered from low to high 

complexity. It makes sense because the LF/HF measure reflects the arousal potential in some  

 

 
 

Fig. 6.2: The Wundt curve for the relation between music complexity and preference 
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Fig. 6.3: The inverted U-shaped curve for the relation between the surprising factor and 

rhythmic complexity 

 

degree. So it is concluded that there is a chance to use two rhythmic characteristics, tempo 

and complexity, to parameterize the subjects’ attention response during drum loop listening. 

 The responses of the LF/HF after drum loop listening is observed in C2 comparison 

shown in Fig. 6.1(b). I infer that the main factor contributing to the responses of the LF/HF 

measure after drum loop listening is the ability of the rhythm pattern to entrain the subjects 

and consume their energy. When people consume more energy after drum loop listening, they 

will be calmer in the immediate rest. Observing Fig. 6.1(b), it can be found that the L3 loop 

with faster tempo and lowest complexity results in most decrease of LF/HF measure after 

drum loop listening. In other words, the L3 loop is easier to entrain the human heart rhythm 

and cause most energy consumption. It could be speculated that that’s why some people relax 

by listening to the electronic dancing music, which is typically featured in faster tempo and  

 

 

 

Fig. 6.4: (a) The C1 comparison of SDNN measure (b) The C2 comparison of SDNN measure 
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lower complexity. 

Another interesting phenomenon is the synchronized SDNN measure (heart rhythm 

complexity) is observed significantly in the resting state after drum loop listening rather than 

drum loop listening state. It is shown in Fig. 6.4(a) that the SDNN measure is not changed 

obviously in the drum loop listening state, but it can be found in Fig. 6.4(b) that the L3 loop 

with the lowest complexity reduces the SDNN measure most and the L4 loop with the most 

complexity increases the SDNN measure most in the resting state after loop listening. 

 

 

6.2   Conclusion 
 

There are many literatures discussing the interaction between music and human 

physiological or psychological responses, but a systematic model is still not constructed 

completely. This work uses a systematic method to study the complex problem. The problem 

is scaled down to the simplified and definite topic first. For more accurate experiment control, 

the simpler auditory stimuli, drum loop pattern which is more suitable to exclude the effect of 

other music features, is choused as the experimental stimuli. This work represents the first try 

to use a systematic method to explore the relationship between music perception and its 

physiological modulation effect. 

In this study, the concept of two musical rhythmic features, tempo and complexity, 

modulating human autonomic nervous system is proposed and the entrainment phenomenon 

is observed. Two important experiment results explain that the rhythm pattern with faster 

tempo and lower complexity is easier to entrain human heart rhythm and result in a more 

relaxing physical state after drum loop listening. Both findings are significant in the resting 

state after drum loop listening rather than the baseline resting state. In other words, the music 

aftereffect is even more influential. Although the physiological responses among the subjects 

sometimes differ largely, the observed results are worthy to study further. The reliability of the 

results will be assessed in the future. 

Besides, the complete software environments for HRV signal processing and musical 

rhythmic characteristics analysis are constructed. In hardware implementation, a high 

accuracy and low cost QRS detection chip is realized. This chip represents the first step to 

construct a single chip solution for a complete HRV analysis.  
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Fig. 6.5: A systematic model which links music perception and relating physiological 

responses 

 

 

6.3   Future Work 
 

Review the initial motivation of this study. Our goal is to construct a systematic model 

which links music perception and relating physiological responses. The model can be shown 

in Fig. 6.5. There are many features in music. Each physiological or psychological response 

(Result1, Result2, etc…) detected by all kinds of biosensors may be resulted from one main 

music feature or the combination of them (Feature1, Feature2, etc…). The final descriptive 

emotional or physical state may be identified by integrating these physiological or 

psychological responses (Result1, Result2, etc…).  

Either music perception or physiological modulation is not straightforward. So this work 

starts from a simplified problem. The musical feature choused is rhythm. The physiological 

and psychological responses are observed by HRV. For completing the physiology based 

intelligent music playing system proposed in Fig. 1.2 further, some future works are suggested 

as follows: 

 

Music Perception Analysis 

 

Two musical rhythmic characteristics, tempo and complexity, are proposed to be two 

 63



main features in modulating the autonomic nervous system. The complexity is judged by each 

subject in this study. Some measures of complexity that corresponds to a high degree with a 

human’s subjective notion of complexity have been discussed [38-39]. The automatic 

algorithm for extracting the complexity of simple rhythm pattern (drum loops) should be 

developed in the future. 

Drum loops are widely used in computer music composition and production as a means 

to generate high-quality music tracks in a quick and easy manner. Most pop music use the 

drum loop music as the background rhythm base. So the drum loop extraction algorithm is 

helpful for the automatic music analysis system [43-44]. These algorithms will be integrated 

to the system for fully automatic musical rhythm analysis in the future. 

 

Bio-signals analysis 

 

Besides the time and frequency domain analysis method, the nonlinear method is also 

important in biomedical signal processing. Nonlinear phenomena are certainly involved in the 

genesis of HRV. They are determined by complex interactions of haemodynamic, 

electrophysiological and humoral variables, as well as by autonomic and central nervous 

regulations. Therefore, the nonlinear method may be another suitable observation window to 

explore the physiological modulation induced by music perception [45-46].  

For more comprehensive physiological signal analysis, more biomedical signal (pulse, 

photoplethysmograph abbreviated as PPG, etc…) will be captured for cross analysis in the 

future. On the other hand, a non-contact optical measurement system for acquiring the HRV 

signal is under developing [47-48]. The HRV signal will be easier to be captured and the 

physiology based intelligent music playing system is more portable in the future. 

 

Emotion recognized by physiological responses 

 

    As describing in the section 1.2, the physiology based intelligent music playing system 

chooses suitable music for user to make them achieve desired physiological or emotional state 

(ex. powerful, active, calm, etc…). I think emotion recognition by physiological responses is 

important and interesting [49-50]. If the music induced emotion can be measured and 

recognized correctly by the physiological signals, the emotional responses for various music 
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can be recorded continuously when user is listening. It is helpful for the system to understand 

the individual preference or emotion response for the specific music type by long term 

machine learning. The experience of music listening will be improved through the interactive 

system. So the emotion recognition should be integrated into the system in the future. 
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Appendix A 
 

    Most PhysioBank databases include one or more sets of annotations for each recording. 

Annotations are labels that point to specific locations within a recording and describe events 

at those locations. For example, many of the recordings that contain ECG signals have 

annotations that indicate the times of occurrence and types of each individual heart beat 

("beat-by-beat annotations"). The standard set of annotation codes was originally defined for 

ECGs, and includes both beat annotations and non-beat annotations. Most PhysioBank 

databases use these codes as described in Table A.1. 

 

Table A.1: PhysioBank Annotations 

 

Beat annotations Non-beat annotations 

N : Normal beat [CS3- : Isolated QRS-like artifact 

L : Left bundle branch block beat ! : Ventricular flutter wave 

R : Right bundle branch block beat ] : End of ventricular flutter/fibrillation 

B : Bundle branch block beat x : Non-conducted P-wave 

A : Atrial premature beat ( : Waveform onset 

a : Aberrated atrial premature beat ) : Waveform end 

J : Nodal (junctional) premature beat p : Peak of P-wave 

S : Supraventricular premature or ectopic beat t : Peak of T-wave 

V : Premature ventricular beat u : Peak of U-wave 

r : R-on-T premature ventricular contraction ` : PQ junction 

F : Fusion of ventricular and normal beat ' : J-point 

e : Atrial escape beat ^ : (Non-captured) pacemaker artifact 

j : Nodal (junctional) escape beat | : Isolated QRS-like artifact 

n : Supraventricular escape beat (atrial or nodal) ~ : Change in signal quality 

E : Ventricular escape beat +: Rhythm change 

/  : Paced beat s : ST segment change 

f : Fusion of paced and normal beat T : T-wave change 
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Q : Unclassifiable beat * : Systole 

? : Beat not classified during learning D : Diastole 

 

 

In this study, all the forty-eight recordings in the MIT-BIH Arrhythmia Database are used 

to evaluate the QRS detector algorithm. Each recording records half-hour annotated ECG, but 

just first ten minutes data are used to evaluate the QRS detector performance for simplicity. 

The evaluation result of each recording is listed in Table A.2. The column named Record lists 

all of the recording names in the MIT-BIH Arrhythmia Database. The column named Total 

annotated lists the number of annotated beats in each recording. The column named Total 

beat-annotated lists the number of beats coded by beat-annotations in each recording. The 

column TP, FP and FN mean true positive, false positive and false negative. 

 

Table A.2: The evaluation results of the simplified QRS detector 

 

Record Total Peaks Total Normal TP FP FN 

100 759 753 753 0 0 

101 653 645 638 5 2 

102 732 728 728 0 0 

103 703 703 703 0 0 

104 812 725 488 27 210 

105 850 832 832 0 0 

106 664 646 577 0 69 

107 705 705 705 0 0 

108 580 561 540 2 19 

109 856 856 788 1 67 

111 701 701 701 0 0 

112 853 853 853 0 0 

113 580 580 580 0 0 

114 559 556 555 0 0 

115 634 634 634 0 0 

 73



116 796 796 792 0 4 

117 504 504 504 0 0 

118 774 768 768 0 0 

119 692 659 657 0 2 

121 610 608 608 0 0 

122 838 836 836 0 0 

123 505 504 504 0 0 

124 529 523 497 0 26 

201 783 760 745 0 15 

202 534 534 738 0 7 

203 1038 998 790 4 204 

205 927 927 920 0 7 

207 831 656 574 10 72 

208 510 510 354 156 0 

209 1032 1022 1021 0 1 

210 889 822 773 2 47 

212 932 932 923 0 9 

213 1112 1098 1042 0 56 

214 783 763 744 1 18 

215 1138 1130 1114 1 15 

217 746 727 725 0 2 

219 763 759 726 1 32 

220 711 700 700 0 0 

221 836 826 691 0 135 

222 750 737 727 0 10 

223 845 838 800 0 8 

228 740 697 245 3 449 

230 819 729 729 0 0 

231 680 506 500 0 6 

232 625 603 595 3 5 

233 1046 1022 1012 0 10 
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234 924 920 910 0 10 

Sum     33339 216 1517 
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Appendix B 
 

    A simple method for removing or compensating these abnormal beats is utilized and the 

detailed algorithm is formulated as follows: 
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Appendix C 
 

The deviation of each processing stage between the software QRS detector and the 

hardware QRS detector is simulated through all the MIT-BIH Arrhythmia Database, but just 

first ten minutes data are used to evaluate the QRS detector performance for simplicity. The 

deviation is represented by averaging the differences of each stage outcomes between the 

hardware and software methods. 

 

Table C.1: The detailed deviation between the hardware and software QRS detector of each 

record 

 

Record LP HP DEV SQR MOV R peak 

100 0 0.015132 0.002901 0.0231 0.004579 0 

101 0 0.015161 0.002899 0.0233 0.004327 0 

102 0 0.015143 0.0029 0.0143 0.002455 0 

103 0 0.015145 0.002886 0.0362 0.006948 0 

104 0 0.015132 0.002903 0.0241 0.00403 0 

105 0 0.015143 0.00289 0.0291 0.004022 0 

106 0 0.015146 0.002899 0.032 0.005572 0 

107 0 0.015091 0.002892 0.0401 0.005895 0 

108 0 0.015162 0.002901 0.0152 0.002293 0 

109 0 0.015124 0.002899 0.0329 0.003702 0 

111 0 0.01511 0.002895 0.0186 0.002974 0.001433 

112 0 0.015146 0.002904 0.0225 0.00378 0 

113 0 0.015142 0.002897 0.0339 0.006682 0 

114 0 0.015136 0.002893 0.0235 0.00404 0 

115 0 0.015141 0.002896 0.0355 0.007272 0 

116 0 0.015146 0.002901 0.0649 0.011549 0 

117 0 0.015141 0.002894 0.0201 0.003554 0 

118 0 0.015138 0.002889 0.0426 0.006408 0 
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119 0 0.015119 0.002898 0.0374 0.006469 0.00304 

121 0 0.015107 0.002884 0.0137 0.00199 0.001642 

122 0 0.015145 0.002893 0.0353 0.005366 0 

123 0 0.015124 0.002899 0.0314 0.005822 0 

124 0 0.015092 0.002909 0.0275 0.004132 0.002008 

201 0 0.015138 0.00289 0.0176 0.002896 0 

202 0 0.015144 0.002894 0.0161 0.002545 0 

203 0 0.015131 0.0029 0.0333 0.004784 0.001261 

205 0 0.015163 0.002896 0.0237 0.004462 0 

207 0 0.015119 0.002896 0.0161 0.00224 0 

208 0 0.015162 0.002905 0.0341 0.005769 0 

209 0 0.015149 0.002893 0.0385 0.007507 0 

210 0 0.015127 0.002893 0.0231 0.003624 0 

212 0 0.01513 0.002895 0.0393 0.007167 0 

213 0 0.015153 0.002903 0.0763 0.011939 0 

214 0 0.015117 0.002899 0.0293 0.004708 0.001339 

215 0 0.015147 0.0029 0.042 0.007304 0 

217 0 0.015107 0.002888 0.0285 0.004027 0 

219 0 0.015129 0.002896 0.0421 0.007012 0 

220 0 0.015123 0.002894 0.0396 0.008065 0 

221 0 0.01512 0.002897 0.0269 0.004786 0 

222 0 0.015149 0.002896 0.0128 0.002546 0 

223 0 0.015153 0.002895 0.0315 0.00517 0.001203 

228 0 0.015135 0.002888 0.0207 0.003165 0 

230 0 0.015131 0.002893 0.0389 0.007318 0 

231 0 0.01517 0.002888 0.0253 0.004656 0.002004 

232 0 0.015147 0.002891 0.016 0.002957 0 

233 0 0.015122 0.002891 0.048 0.007039 0 

234 0 0.015128 0.002901 0.0365 0.006479 0 
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