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Abstract

Heart rate variability (HRV).is;a measure of variations in the heat rate.
Over the last 25 years, HRV.analysis-has hecame more and more popular as a
non-invasive research and clinical tool for indirectly investigating both cardiac
and autonomic nervous system (ANS) function in both health and disease area.
It is choused as the physiological indicator for observing musical effect on ANS
modulation.

In this study, the concept of two musical rhythmic features, tempo and
complexity, modulating human ANS is proposed. The main findings in this work
are as follows. The rhythm pattern with faster tempo and lower complexity is
observed to decrease the LF/HF and SDNN measure significantly in the resting
period after the loop listening rather than the stable resting state. In the hardware
implementation part, a high accuracy and low cost QRS detector SoC is realized.

By understanding the relationship between music and the function of ANS,
we can improve our life and health by music — non-invasively and simply.
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Chapter 1

Introduction

1.1  Motivation

The heartbeat interval in humans is knewn to exhibit fluctuation which is refereed to as
heart rate variability (HRV). The-clinical relevance.of-heart rate variability was first noted by
Hon and Lee [1]. They discovered the fetal distress was preceded by alternations in heartbeat
intervals before any appreciable change occurred.in'the heart rate itself. HRV has received a
tremendous amount of attention since the 'seminal work of Akselrod et al. [2]. Established
clinical applications of HRV include risk assessment of patients after myocardial infarction
and early diagnosis of diabetic autonomic neuropathy [3]. The past researches have witnessed
a significant relationship between the autonomic nervous system and cardiovascular mortality,
including sudden cardiac death. HRV represents one of the most promising markers. The easy
derivation of this measure has popularized its use.

Our emotion and physiological state can be modulated by listening to different music. A
variety of studies have reported the musical effect on human psychological and physiological
states. Through the nervous control mechanisms, a neural coupling into the cardiac canters of
the brain, it is possible to vary the heart rate of human subjects non- invasively by causing an
entrainment of the sinus rhythm with external auditory stimuli [4]. Although cardiac
automaticity is intrinsic to various pacemaker tissues, heart rate and heart rhythm are largely
under the control of the autonomic nervous system [5].

The autonomic nervous system (ANS) is the part of the peripheral nervous system that

1



acts as a control system, maintaining homeostasis in the body. Its main components are its
sensory system, motor system (comprised of the parasympathetic nervous system and
sympathetic nervous system), and the enteric nervous system. Sympathetic and
parasympathetic divisions typically function in opposition to each other. The sympathetic
division acts like the accelerator and the parasympathetic division acts like the brake. For
example, the sympathetic division accelerates the heart rate in the emergency; while the
parasympathetic division decelerates the heart rate in the resting state. Therefore, it can be
further inferred that there must be a connection between the musical stimuli and the
synergistic action of the autonomic nervous system.

It is mentioned that the complex bodily rhythms are ubiquitous in living organisms.
These rhythms arise from stochastic, nonlinear biological mechanisms interacting with a
fluctuating environment [6]. And experts in the field of music and sound therapy think that
there is one major ways in which music and sound can affect our lives. It is called that the
principle of entrainment and refers to.the .phenomena of being in synchronization [7]. It
describes a process whereby two thythmie, proecesses interact with each other in such a way
that they adjust towards and eventually ‘lock.in’ to ‘a-common phase and/or periodicity. For
example, we tap foot and shake body. to the beat of a song. In other words, our bodies
automatically adjust to the pace, thythm, or pulseé-of music. And this is why the rhythmic
characteristic of music is first considered in'this work.

Inspired by these previous researches, this study focuses on exploring the relationship

between the musical rhythmic characteristics and heart rate variability (a functional indicator

of autonomic nervous system).
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Fig. 1.1: Human-Based Intelligent Music Playing System
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1.2 Goal

Generally, scientific research has four goals: description of behavior, prediction of
behavior, determination of the causes of behavior and explanations of behavior [8]. Mapping
to this research, the behavior to be studied in this work is the physiological response induced
by the music with different rhythmic characteristics. The heart rate variability (HRV) is taken
as the description of behavior. So the goals of this study are listed below:

1. The changes of HRV can be predicted when the subject is listening to music with a
specific rhythmic style.

2. Finding the specific features of musical thythm which dominate the changes of HRV.

3. Explaining how these features results in the changes of HRV.

The final dream to be realized is to construct a physiology-based intelligent music
playing system shown in Fig. 1.2. The black box named “Core Research” plays the role to
link physiological responses and receiving: music stimuli and it is what this study wants to
explore. What dose the system can'do? Fer.example, a user who feels lethargic or depressed
might need to listen to some music.and get more vigor. First, the system receives the desired
physiological or emotional state-as input.“In this case, being vigorous and energetic is the
input of the system. Then, the systém can automatically pick some moderate music to play. At
the same time, the user’s real-time physiological information feed back to the system. The
feedback information not only shows if the automatically choused music works, but also is
the basis for advanced learning mechanism. Through network transmitting, the physiological
signals are recorded and analyzed in the remote servers. By the long-term machine learning,
the system will be highly accurate and personalized for healthcare and goal-driven music

listening.

1.3  The Relating Works and Our Innovation

There were some relating works which discuss the physiological responses induced by
music in the past. For example, the previous work discussed the changes in the cardiovascular
and respiratory system induced by music, specifically tempo, rhythm, melodic structure,

pause, individual preference, habituation, order effect of presentation and previous musical
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training [9]. They captured the physiological signals and observed the responses induced by
different music. Our innovation is a “systematical” method to study the physiological changes
induced by music.

Music perception is not straightforward. There are usually several musical elements in
one song. For constructing a systematical model, various features of music need to be
extracted from a song first. Then, the changes of biomedical signals induced by these specific
musical features are studied. How do these changes integrate to the final physiological or
emotional modulation is another more complex problem. When discussing the relationship
between music and human cardiovascular system, rhythm is thought as the most important
music feature because of the principle of entrainment. For excluding other musical features
except for rthythm, drum loop music with simple and pure rhythmic characteristic is choused
as the musical stimuli samples in this study.

The other reason inspires us to focus on the rhythmic characteristics is the similarity
between heart rhythm and musical rhythm. It can be imagined that how boring it is that one
piece of song composed of monotene and,even-spaced beat. It is in the same condition for the
heartbeat rhythm. If our heartbeat rhythm follows a regular even a constant rate, it means that
our body can’t maintain the equilibrium-state- through the fluctuations resulted from the
interaction between the external or internal ‘environments and physiological control
mechanism.

One big challenge confronted in this study is how to quantitatively define rhythm. Two
musical rhythmic features, tempo and complexity, are proposed to quantitatively describe
rhythm. Sound by its very nature is temporal. So the tempo is the first necessary feature to
represent the rhythm. The second feature, complexity, is inspired from the observation of
similarity between the musical rhythm and human heart rhythm. Both of them are not a
constant or invariable pattern.

Another consideration to choose drum loop music as the experimental stimulus is to
exclude the individual music preferences. The same music maybe results in two kinds of
absolutely different feeling (emotion or physiological responses) between you and me. The
drum loop music is easier to exclude the individual music preferences because of its
simplicity. Besides, the experiment protocol is carefully designed for more stable and

trustable results.



1.4 Application

Some studies have pointed out that the different music can be used to improve our lives,
for example, promoting sleep [10], reducing anxiety [11], assisting exercise [12] and even
increasing brain activity [13]. And these daily activities are all closely related to the
autonomic nervous system. The HRV is an indicator of the autonomic nervous system. In
other words, the effect of music on the mentioned activities can be assessed by HRV. Once
the detail of how music affects human was revealed, people can improve life and health by

music — non-invasively and simply.

1.5 Thesis Organization

The thesis is divided into six chapters. In chapter 2, Background, I review most relevant
to my research in these fields: ‘“‘€lectrophysiology: of the heart” and ‘“heart’s hearing”. In
chapter 3, Approach, I explain more formally the. problem I am trying to solve, the signal
processing flow of HRV, the music analysis algorithms and the arrangement of experiment. In
chapter 4, Experimental Results, presents the results of experiment and some inferences are
given. In chapter 5, Implementation, the “hardware architecture design for QRS complex
detection is proposed and a high accuracy and low cost QRS detector chip is implemented.
Chapter 6, Conclusion, the contributions made in this study and suggesting directions for

further work are summarized.



Chapter 2

Background

2.1  Physiology Background

In this section, some basic physiological knowledge related to this study is introduced

and the physiological measurement, heart rate variability (HRV), will be explained in detail.

2.1.1 Introduction of Electrocardiogram

An electrocardiogram (ECG or EKG) shown in Fig. 2.1 is a graphic which records the
electrical activity of the heart over time. The sinoatrial node (abbreviated SA node, also called
the sinus node) is the electrical impulse generating tissue located in the right atrium of the
heart. The electrical impulse from the SA node triggers a sequence of electrical events in the
heart to control the orderly sequence of muscle contractions that pump the blood out of the
heart. The depolarization and re-polarization of the SA node and the other elements of the
heart's electrical system produces a strong pattern of voltage change. The voltage change can
be measured with electrodes on the skin. Therefore, the ECG is a starting point for detecting
many cardiac problems. It is used routinely in physical examinations and for monitoring the
patient's condition during and after surgery, as well as during intensive care.

When a string galvanometer was used, an electrical current passed through electrodes

connected to two extremities caused deflection of the recording instrument. Passage of current
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Fig. 2.2: Relationship of current flow to lead

time

Fig. 2.1: Electrocardiogram axis and electrocardiogram deflection

toward the positive end of a bipolar electrode was set to cause a positive deflection of the
recorder shown in Fig. 2.2. The electrodes are traditionally placed on arms and legs for
convenience. These connections are called leads. It refers to a combination of electrodes that
form an imaginary line in the body along which the electrical signals are measured. The
standard leads are shown in Fig. 2.3.

There are two main stages of electrical.activity in a complete contraction and relaxation
cycle of a cardiac cell: polarization'and depelarization, as shown in Fig. 2.4(a). The detailed

steps in a complete contraction and relaxation eycle are demonstrated as follows.

(1) Polarization
In the resting state the membrane Tresting potential of cardiac cell is about -90mV
because of the unbalance of ions as shown in Fig. 2.4(b). The cardiac cells are ready to

receive electrical impulses.

(2) Depolarize (polarization to depolarization)
When the cardiac cells begin depolarization, the fast sodium channels open and plenty

sodium ions flow into the cell. The membrane potential increases sharply.

(3) Repolarize (depolarization to polarization)

The process that the membrane potential returns to membrane resting potential is called
repolarization. It can be divided into three steps: (3-1) the sodium channels close, (3-2) the
calcium ions flow into cell slowly and (3-3) the potassium ions flow out cell. The variations
of membrane potential in each step of a complete contraction and relaxation cycle are shown

in Fig. 2.5. How the normal sequence of cardiac depolarization and repolarization derivates
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the ECG is shown in Fig. 2.6. In the next section, the causes of different wave in the

electrocardiogram will be explained.

Leadll Lead Il

Fig. 2.3: The standard ECG leads

Polarization

depolarize K+ <> K+

cl- €4-» Cl|-

Depolarization Na+ €{--> Na+
repolarize
inside cell outside cell

(a) (b)

Fig. 2.4: (a) A complete cardiac cycle. (b) Membrane resting potential of cardiac cell

membrane potential

T T 1T 1T o

Na+ Ca++ K+ HNa+K+
Ca++

Fig. 2.5: The variation of membrane potential in a complete contraction and relaxation cycle
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2.1.2 Definition of Electrocardiography Configurations

As the heart undergoes depolarization and repolarization, the electrical currents that are
generated spread not only within the heart, but also throughout the body. This electrical
activity generated by the heart can be measured by an array of electrodes placed on the body
surface. A typical ECG tracing is shown in Fig. 2.7. The different waves that comprise the
ECG represent the sequence of depolarization and repolarization of the atria and ventricles.

P wave: The P wave represents the wave of depolarization that spreads from the SA node
throughout the atria, and is usually 0.08 to 0.1 seconds (80-100 ms) in duration. The period of
time from the onset of the P wave to the beginning of the QRS complex is termed the PR
interval, which normally ranges from 0.12 to 0.20 seconds in duration. This interval
represents the time between the onset of atrial depolarization and the onset of ventricular
depolarization.

QRS complex: The QRS complex represents ventricular depolarization. The duration of
the QRS complex is normally 0.06:t0 0.1 seconds. This relatively short duration indicates that
ventricular depolarization normally,occurs very rapidly.

T wave: The T wave represents ventricular repolarization and is longer in duration than

depolarization (i.e., conduction of the repolarization wave is slower than the wave of

depolarization).
1 2 3 4
R
F
S : TT
E | M EE B
- | |
] l]
E ]
E . | P o e |
= - - 7| ~E J ] = 7 ~E
g s i i lb
0 02 04 06 08
Time (sec)
Fig. 2.7: A typical ECG tracing Fig. 2.8: Four numbered QRS complex waves
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Fig. 2.9: The time series of beat-to-beat intervals

t(n) forne{l,..,N}

I(n+1)=t(n+1)—t(n) ne{l,..,N-1} (21)

2.1.3 Determining Heart Rate-from the Electrocardiogram

The term "heart rate" normally refers'to the rate of ventricular contractions. As shown in
Fig. 2.8, there are four numbered QRS complex waves, each of which is preceded by a P
wave. Therefore, the atrial and ventricular rates will be the same because there is a one-to-one
correspondence. Atrial rate can be determined by measuring the time intervals between P
waves (P-P intervals). Ventricular rate can be determined by measuring the time intervals

between the QRS complex waves (R-R intervals).

2.1.4 Heart Rate Variability

Over the last 25 years, HRV analysis has became more and more popular as a
non-invasive research and clinical tool for indirectly investigating both cardiac and autonomic
nervous system (ANS) function in both health and disease area. The current methodologies

used to analyze HRV are based largely on linear techniques to analyze past and present
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Fig. 2.10: The spectral analysis of HRV.

electrocardiogram (ECG) data in time and frequency domains.

HRYV is a measure of variations in the heart rate. It is usually calculated by analyzing the
time series of beat-to-beat intervals from the.electrocardiogram. As shown in Fig. 2.9, the top
curve is a simplified ECG and the corresponding time series of beat-to-beat intervals I(n) is
calculated as (2.1) and shown in-the bottom. Various measures of heart rate variability are all
based on the time series. The=variations” of these measures after listening to music are

expected to be observed and the musical rhythmic effect is discussed in this study.

2.1.5 Physiological Correlates of Heart Rate Variability

Measures of heart rate variability are increasingly being employed in applications
ranging from basic investigations of central regulation of autonomic state to studies of
fundamental links between psychological processes and physiological functions, to
evaluations of cognitive development and clinical risk. As psychological correlates and
physiological mechanisms are being delineated, measures of heart rate variability may offer
powerful tools for the clarification of relationships between psychological and physiological
processes.

Although cardiac automaticity is intrinsic to various pacemaker tissues, heart rate and
heart rhythm are largely under the control of the autonomic nervous system [14]. An

understanding of the modulatory effects of neural mechanisms on the sinus node has been
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enhanced by spectral analysis of HRV shown in Fig. 2.10 [2]. Vagal activity is the major
contributor to the HF component. Disagreement exists in respect of the LF component. Some
studies suggest that LF, when expressed in normalized units, is a quantitative marker for
sympathetic modulations, other studies view LF as reflecting both sympathetic and vagal
activity. Consequently, the LF/HF ratio is considered by some investigators to mirror
sympatho/vagal balance. The origins of heart rate variability are discussed deeply in [15].
There were many researches discussing the relationship between human’s physical state
and HRYV in the past. The decline in heart rate variation with increasing age was reported in
[16]. Endurance exercise increases parasympathetic activity and decreases sympathetic
activity in the human heart at rest [17]. The changes of heart rate was used as the parameter to
distinguish between positive and negative emotions [18]. The sympathovagal interaction
during mental stress was assessed in [19]. Based on these researches, HRV can be taken as an
indicator of assessing physical and emotional state. The music modulating effect on human

autonomic nervous system can be inferred indirectly from HRV.

2.2  Heart’s Hearing

It is a generally accepted concept that"our emotion and physical state change when
listening to different music. For example, Rock music makes someone feel vigorous and
increases the heart rate and Jazz music makes someone feel lethargic and slows his breath
down. Is there any physiological pathway which links the perception of music with the
responses of ANS? Research has revealed that the heart rate can be controlled by external
stimuli [4]. However, following several years of research, it was observed that, the heart
communicates with the brain in ways that significantly affect how we perceive and react to
the world. Neurophysiologists discovered a neural pathway and mechanism whereby input
from the heart to the brain could inhibit or facilitate the brain’s electrical activity [20]. From
these researches the connection and communication between brain and heart are established.

On the other hand, it is long known that changes in emotions are accompanied by
predictable changes in physiological state such as heart rate, blood pressure, respiration and
digestion. When someone is aroused, his sympathetic division of the autonomic nervous

system energizes him for fight or flight. When someone is in quiet times, the parasympathetic

13



division cools him down. Based on theses researches, it can be sure that there must be some

connection between the music perception and the physical responses.
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Chapter 3

Approach

3.1 HRV Signal Processing Flow

The overall HRV signal processing flow-is.shown in Fig. 3.1. The processing methods of

each block are detailed in the following subsection.

3.1.1 Acquirement of the ECG signals

The ECG signal is captured by a 3-channel portable device (MSI E3-80, FDA 510(k)
K071085) at 500Hz sampling rate from the chest surface of body shown in Fig. 3.2(a) (b) [21].
Only the channell (L1) data were taken to be analyzed. In the previous HRV studies, the

ORS Detection Abfmn:qal leterpolatlF}n &
Rejection Detrending
ECG Data Time t:lonjmin Frequency r.l_ﬂmain
Analysis Analysis

Fig. 3.1: The block diagram of the overall signal processing flow of HRV analysis
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Fig. 3.2(a): MSI E3-80 Fig. 3.2(b): Electrodes placement

duration of recording was dictated by the nature of each investigation. And it is recommended
that the recording of approximately 1min is needed to assess the HF components of HRV
while approximately 2min are needed to address the LF component [3]. Therefore, 2min

duration is taken as the shortest unit to be,compared in this study.

3.1.2 QRS detection

As the introduction in 2.1.3, the QRS ‘complex is the most notable waveform within the
electrocardiography (ECQ). Since it reflects the electrical activity within the heart during the
ventricular contraction, the time of its occurrence as well as its shape provides much
information about the current state of the heart. Due to its characteristic shape it serves as the
basis for the automated determination of the heart rate. Therefore, QRS detection provides the
fundamentals for almost all automated ECG analysis algorithms.

Within the last decade many new approaches to QRS detection have been proposed; for
example, algorithms from the field of artificial neural networks, genetic algorithms, wavelet
transforms, filter banks as well as heuristic methods mostly based on nonlinear transforms.
The detailed review and comparison of these methods were presented [22]. The detection
algorithm described by Hamilton and Tompkins is adopted in this work because of its high
reliability and low computational load [23-25].

The ECG waveform contains, in addition to the QRS complex, P and T waves, 60-Hz

noise from power line interference, EMG from muscles, motion artifact from the electrode
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and skin interface, and possibly other ‘interference from electrosurgery equipment in the
operating room. Many clinical instruments such as a cardiotachometer and an arrhythmia
monitor require accurate real-time QRS detection. It is necessary to extract the signal of
interest, the QRS complex, from the other noise sources such as the P and T waves. Fig. 3.3
summarizes the relative power spectra of the ECG, QRS complexes, P and T waves, motion
artifact, and muscle noise based on the previous research [25].

The signal processing flow of QRS detection and the corresponding results are shown in
Fig. 3.4 and Fig. 3.5. There are two main stages in the QRS detection flow. One is the
preprocessing stage which is composed of various filters for removing noise and acquiring the
QRS complex information. The other stage, peak detection, makes use of the information
acquired by the preprocessing stage and some criteria to detect the QRS complex peaks. In the
beginning of the preprocessing stage, the band-pass filter is used to reduce the influence of
muscle noise, 60 Hz interference, baseline wander, and T-wave interference. The desirable

pass-band to maximize the QRS energy is approximately 5-15 Hz [25].
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The band-pass filter is composed of cascaded low-pass and high-pass filters. Their difference
equations are listed as (3.1). The performance details of the low-pass filter and high-pass filter
are shown in Fig. 3.6 and Fig. 3.7. The amplitude response of the band-pass filter which is
composed of the cascade of the low-pass and high-pass filters is shown in Fig. 3.8. The center
frequency of the pass-band is at 10 Hz. The amplitude response of this filter is designed to
approximate the spectrum of the average QRS complex as illustrated in Figure 12.1. Thus this
filter optimally passes the frequencies characteristic of a QRS complex while attenuating

lower and higher frequency signals.

LowPass Filter
y(nT)=2y(nT -T)-y(nT —2T)+x(nT)—2x(nT —6T )+ x(nT —12T)

(3.1)
HighPass Filter

y(nT)=x(nT —16T)—3L2[y(nT ~T)+x(nT)—x(nT -32T)]
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Fig. 3.8: Amplitude response of band-passfilter composed of low-pass and high-pass filters

After the signal has been filtered, it is then differentiated to provide information about
the slope of the QRS complex. This derivative-is implemented with the difference equation
(3.2). The performance characteristics. of this derivative implementation are shown as Fig. 3.9.
The amplitude response approximates a" true derivative up to about 20 Hz. This is the
important frequency range since all higher frequencies are significantly attenuated by the
band-pass filter.

After differentiation, the signal is squared point by point. The equation of this operation
is shown as (3.3). This makes all data points positive and dose nonlinear amplification of the

output of the derivative emphasizing the higher frequencies.

Derivative
y(nT):(l/s)[zx(nT)+ x(nT =T)-x(nT =3T)-2x(nT —4T)] (3-2)
Squaring Function

(3.3)

y(nT)=[x(nT)]
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The slope of the R wave alone is not a guaranteed way to detect a QRS event. Many
abnormal QRS complexes that have large amplitudes and long durations (not very steep
slopes) might not be detected using information about slope of the R wave only. Thus, we
need to extract more information from the signal to detect a QRS event. Moving window
integration extracts features in addition to the slope of the R wave. It is implemented with the
following difference equation (3.4). For a sample rate of 500 sps, the integration window
chosen for implementation in the thesis is 64 samples wide (which correspond to 128 ms).

After the preprocessing stage, the peak detection stage detects peaks in the signals after
moving window average. The corresponding relation between ECG raw data and the signals
after moving window average is shown in Fig. 3.10. The detection algorithm stores the
maximal levels encountered in the signal since the last peak detection like the red dots in Fig.
3.10. A new peak is defined only after a level is encountered that is less than half the height of
the maximal level. Detection occurs halfway down the back side of the peak. This approach
eliminates multiple detections from ripple.around the wave peak. The peak detection
algorithm does not establish that awalid peak-has oceurred until the middle of the falling slope
when the level drops below half the distance from-the maximal value to the base point.
Because the time between the middle of the rising slope and the middle of the falling slope is
equal to the duration of the averaging window, ideally the R peak point representing the peak
of the R wave is located with fixed delay of one window’s width. Each time a peak is detected
it is classified as either a QRS complex or noise, or it is saved for later classification. This
work uses the peak height and peak location to classify peaks. An outline of the basic

detection rules in the peak detection stage are listed as follows

1. Ignore all peaks that precede or follow larger peaks by less than 200ms.
2. If the peak is larger than the detection threshold call it a QRS complex, otherwise call

it noise.

Moving —Window Integral
y(nT) =(1/N)[x(nT = (N =DT )+ x(nT = (N =2)T ) +...+ x(nT) ] (3.4)
where N is the number of samples in the width of the integration window
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Fig. 3.10: The corresponding relation between ECG raw data and the signals after moving
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3.1.3 Evaluating the QRS detection algorithm

Many algorithm of HRV analysis, such as heart rate calculation, PAV detection, and PVC
detection, require a very accurate QRS recognition capability. Several standard ECG database
are available for the evaluation of software QRS detection algorithms. Tests on these
well-annotated and validated databases provide reproducible and comparable results.
Furthermore, these databases contain many selected signals representative for the large
variety observed but clinically important. The MIT-BIH Arrhythmia Database is the most
frequently used database. It contains 48 half-hour recordings of annotated ECG with sampling
rate of 360Hz and 11-bit resolution over a 10mV range. Twenty-five recordings with less
common arrhythmias were selected from over 4000 24-hour ambulatory ECG recordings, and
the rest was chosen randomly. While some records contain clear R-peaks and few artifacts
(e.g., records 100-107), for some records the detection of QRS complexes is very difficult due
to abnormal shapes, noise, and artifacts (e.g., records 108 and 207).

The MIT-BIH Arrhythmia Database is acquired from the PhysioNet which offers free
access via the web to large collections of recorded physiologic signals and related
open-source software [26]. There are forty-eight recordings in this database. Each recording

include annotations that indicate the times of occurrence and types of each individual heart
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beat ("beat-by-beat annotations"). The standard set of annotation codes includes both beat
annotations and non-beat annotations. Most PhysioBank databases use these codes as
described as Table A.1 in Appendix A. According to [22], essentially three parameters should
be used to evaluate the QRS detection algorithm. They are formulated as (3.5) where TP
denotes the number of true positive detection, FN denotes the number of false negatives, and
FP denotes the number of false positives. Therefore, TP represents the QRS detector
successfully detects the beats which are coded by beat annotations, FN represents the QRS
detector misses the beats which are coded by beat annotations and FP means the QRS
detector detects the beats which are coded by non-beat annotations or non-existed actually.

In this study, all the forty-eight recordings in the MIT-BIH Arrhythmia Database are used
to evaluate the QRS detector algorithm. Each recording records half-hour annotated ECG, but
just first ten minutes data are used to evaluate the QRS detector performance for simplicity.
The evaluation result of each recording is listed in Table A.2 of Appendix A and the

performance measures are listed in Table 3.1+

3.1.4 Abnormal Beats Rejection and Compensation

The heart beat is triggered mainly by the sinoatrial (SA) node controlled by the

sympathetic and parasympathetic neural systems. In addition to the SA node, other latent

Sensitivity = ———
TP +FN
Positive predictivity = L (3.5)
TP +FP
| Detected QRS time — Actual QRS time|

Average Time error(ms) =

TP

Table 3.1: The performance of simplified algorithm adopted in this work

Sensitivity Positive Predictivity Average Time Error(ms)

95.65% 99.36% 5.33
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pacemakers exist throughout the heart. Normally, regular conduction of the electrical impulse
from the SA node and the refractory period of the cells reject any other electrical source
except those coming from the SA node. However, some of the additional pacemakers may, in
certain cases, interpose additional electrical impulses that generate ectopic beats. Besides,
QRS complex misdetections can generate a similar effect to that of ectopic beats in HRV
analysis [27]. The detector errors can be false positive (FP) when a false beat is detected due
to noise or a high amplitude T wave or false negative (FN) when a real beat is missed due to a
low amplitude QRS or noise masking. The abnormal beats make the time associated with
HRYV exhibit a sharp peak and make the power spectral density estimation in the frequency
domain analysis strongly unstable shown in Fig. 3.10(a).

In this study, the criterion based on the variation of the instantaneous heart rate is used as
the abnormal beats detector [27]. The normal heart beat shows a band limited variation of the
instantaneous heart rate. So, it is possible to impose a threshold TH on the derivative of the
instantaneous heart rate to screen out the abnormal beats. The criterion is formulated as (3.6).

The threshold TH is set to 0.2 empirically.in this study. When the criterion in (3.6) is not
met for some peak time instant_t,, it means ‘that some position t,_,, t, or t., are
abnormal. The six conditions which judge whether the anomalies were caused by QRS
complex misdetections or not is,checked all over the recorded data: by removing t,,
removing t,,,, inserting an intermediate beat between t,_, and t,, inserting an intermediate
beat between t, and t, ,, moving t  to the intermediate position between t_, and t, .,
and moving t , to the intermediate position between t, and t, ,. If the criterion is now
satisfied when removing, it implies a FP at the removal position; if the criterion is satisfied on
insertion, this implies a FN and if satisfied when moving it typically implies an ectopic beat.

It can be found that almost all of the abnormal beats are produced by QRS complex

1 1
t|<+1 _tk tk _tk 1

t|<71 B 2tk + tk+1

(tk—l _tk )(tk—l _tk+1 )(tk _tk+1)

~!

T

<TH

tk+1 _tk—l
(3.6)

unit : ms3: Lo b L

(ms)”  (ms)’ (3*10—3)2 S
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misdetection from the collected data in the experiment.

There is a data filtering mechanism existing in this study for data accuracy and stability.
There are two criteria for each HRV analysis section in one ECG recording. First, the number
of detected abnormal beats in each HRV analysis section must be lower than 5. Second, it
must be confirmed that there is not any abnormal beat remaining after the abnormal beat
processing in each HRV analysis section. If any one criterion is not satisfied in any analysis
section of one ECG recording, the ECG recording will be looked as the unstable data and be
abandoned. A simple method for abnormal beats processing is utilized and the detailed

algorithm is formulated in Appendix B.

It can be seen in Fig. 3.10(b) that the more stable and accurate spectrum analysis can be

obtained after the removing and compensating of these abnormal beats.
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RR interval time series
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Fig. 3.12: The RR interval time series after 4Hz cubic spline interpolation.

3.1.5 Interpolation and:-De-trending

3.1.5.1 Interpolation

The RR interval time series is an irregularly time-sampled signal. This is not an issue in
time domain analysis, but in the frequency domain analysis it has to be taken into account. If
the spectrum estimate is calculated from this irregularly time-sampled signal, implicitly
assuming it to be evenly sampled, additional harmonic components are generated in the
spectrum. Therefore, the RR interval signal is usually interpolated before the spectral analysis
to recover an evenly sampled signal from the irregularly sampled event series. The RR
interval time series after interpolation is shown in Fig. 3.11. The 4Hz cubic spline
interpolation is used in this study [28].

The fundamental idea behind cubic spline interpolation is based on the engineer’s tool
used to draw smooth curves through a number of points as shown in Fig. 3.12. The
mathematical spline is similar in principle. The points, in this case, are numerical data. The

weights are the coefficients on the cubic polynomials used to interpolate the data. These
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Fig. 3.13: The fundamental idea behind cubic spline interpolation

coefficients ’bend’ the line so that it passes through each of the data points without any erratic
behavior or breaks in continuity. The essential idea is to fit a piecewise function of the form
shown as (3.6). And s, is a third degree polynomial function defined by (3.7) for
i=L2,...,n-1.

In this work, “natural splines” which include the stipulation that the second derivative be
equal to zero at end point is adopted. By the four properties of cubic splines listed in (3.8), the
weights can be determined by the matrix equation (3:9) and (3.10). The iterative method to

solving M, is shown as (3.11) for the future hardware implementation.

s(x) if x <x<x,
5(x) = s,(x) if :x23x<x3 (3.6)

Sop(X) if X, <x<X,

n-1 —

s(X)=a (x=x) +b (x=x) +c (x—x)+d, (3.7)
(1)  The piecewise function S(x) will interpolate all data points.
(2)  S(x) will be continuous on the interval [x;,X,].
(3) S (x) will be continuous on the interval [X,X,]. (3.8)

(4)  S'(x) will be continuous on the interval [x,X,].
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Fig. 3.14: The RR interval time series after de-trending.

3.1.5.2 Detrending

Heart rate variability (HRV).is widely-used quantitative marker of autonomic nervous
system activity. Various time and frequency-domain methods have been applied to HRV
analysis. A traditional spectral method,power-spectral density (PSD) estimation, provides
information about power distribution as a funetion of frequency. Spectral estimation
inherently assumes that the signal is at least weakly stationary. However, real HRV is usually
non-stationary. Non-stationarities like slow linear or more complex trends in the HRV signal
can cause distortion to time and frequency domain analysis. Origins for non-stationarities in
HRYV are discussed [15]. The method tries to remove the slow non-stationary trends from the
HRV signal before analysis is called de-trending. The detrending is usually based on
first-order or higher order polynomial models. In this thesis, an advanced detrending
procedure based on smoothness priors approach is adopted [29]. The main advantage of the
method is its simplicity. The frequency response of the method is adjusted with a single
parameter. This smoothing parameter should be selected in such a way that the spectral
components of interest are not significantly affected by the detrending. The RR interval time
series after de-trending is shown in Fig. 3.13. The detailed processing flow of detrending is
explained as follows:

The RR interval time series is denoted as (3.12). The detrended nearly stationary RR

series can be calculated as (3.13) where the second-order difference matrix D, e RONFHND
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2=(R,~R,R,~R,,...Ry —Ry,) R (3.12)

2stat=(l—(l+/12D2TD2)l)z (3.13)
1 2 1 0 0
0 1 2 1 "

D,={. . . . . (3.14)
)
0 0 1 -2 1

is shown as (3.14). The frequency response of the detrending method is detailed as follows.

Equation (3.13) can be written as 7, = Lz, where L= —(I +4’D; D, )71 corresponds to a

time-varying finite-impulse response high-pass filter. The frequency response of L for each
discrete time point, obtained as a Fourier; transform of its rows, is presented in Fig. 3.14. The
filtering effect is attenuated for th¢ first and.last elements of z and, thus, the distortion of
end points of data is avoided. The. effect of the smoothing parameter A4 on the frequency
response of the filter is presented in Fig:3.15.-The eutoff frequency of the filter decreases
when A is increased. Besides, the A parameter the frequency response naturally depends
on the sampling rate of signal z. Because'each RR series is first interpolated to obtain a
regularly sampled series with sampling rate of 4Hz, the smoothing parameter A is set to 300,

which equals a cutoff frequency of 0.043 Hz.

Mormmalized frequency 9 0 Discrete time

Fig. 3.15: Time-varying frequency response of L ( N-1=50and 4 = 10) . Only the first half

of the frequency response is presented, since the other half is identical
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Fig. 3.16 Frequency responses, obtained from the middle row of L, for 4 =1, 2,4, 10, 20,
50, and 300. The corresponding cutoff frequencies are 0.189, 0.132, 0.093, 0.059, 0.041,
0.025, and 0.011 times the sampling frequency

3.1.6 Measures of Heart Rate Variability

There are many measures and analyzing methods of heart rate variability have been
proposed such as time domain analysis, frequency domain analysis, linguistic analysis, etc.
Although many other measures of HRV have been proposed and investigated, those specified
by the Task Force of the European Society of Cardiology and the North American Society of
Pacing and Electrophysiology (the Task Force) have been the most widely applied [3]. In this
study, time and frequency domain analysis are the main methods used to observe the changes
of physiological responses. The effect of synchronization can be observed by the time domain
analysis and the modulation of autonomic nervous system can be observed by the frequency

domain analysis.

3.1.6.1 Time domain measures

The Task Force specified many different HRV metrics for both short-term records (Smin)

and long-term records (24h). Taking the reliability and accuracy of heart rate variability
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measurements into account [30], I choose THB (total heart beats), MRR (mean of RR
intervals), SDNN (standard deviation of normal to normal) and RMSSD (root mean square of
successive NN interval differences) as the time domain measurements in this study. The
detailed calculation formulas are shown by the following equation (3.12). Here, N is the total

number of the heart beats and | (n) 1S a time series of beat-to-beat intervals which can be

referred to Fig. 2.9

3.1.6.2 Frequency domain measures

While the time domain measures help in assessing the magnitude of the temporal
variations in the autonomically modulated cardiac rhythm, the frequency domain analysis
provides the spectral composition of these variations.

All frequency domain HRV metrics are;based on the estimated power spectral density
(PSD) of the NN (Normal to Nermal) ;intervals;-Although the Task Force gave specific
definitions of these metrics, it did.not specify how-to estimate the PSD. There are many
methods of estimating PSD and-each. generates-different HRV metric values. In this section
we give a complete description of.our PSD estimator, as required by the Task Force. Power
spectral density (PSD) analysis provides the basic information of how power (i.e. variance)
distributes as a function of frequency. Methods for the calculation of PSD may be generally
classified as non-parametric and parametric [31].

Due to the simplicity of the algorithm (Fast-Fourier Transform) and high processing
speed, non-parametric method, Welch method, is chosen to estimate the power spectral

density [32]. The detailed procedure of power spectral analysis in this study is explained as

THB=N

1 N
MRR=——-> I(n
N—lnzzz: (n)

R N (3.12)
SDNN—\/—N_znz_z:(I(n) 1) |_—N_1n§|(n)

|- 2
RMSSD = \/EZ;[ 1(n)—1(n-1)]
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follows:

1. The signal is split up into overlapping segments: The original data segment is split up
into K data segments of length L (zero padding), overlapping by L/2 points (L=1024
in this study).

2. The overlapping segments are then windowed by the Hamming window.

3. After doing the above, the periodogram is calculated by computing the discrete
Fourier transform, and then computing the squared magnitude of the result. The
individual periodograms are then time-averaged, which reduces the variance of the
individual power measurements. The end result is an array of power measurements
vs. frequency bin.

Through the use of computationally efficient algorithms such as Fast-Fourier Transform,
the HRV signal is decomposed into its individual spectral components and their intensities,
using Power Spectral Density (PSD) analysis. These spectral components are then grouped
into three distinct bands: very-low frequeney.(VLF), low frequency (LF) and high frequency
(HF). The cumulative spectral power in the.LE and:HF bands and the ratio of these spectral
powers (LF/HF) has demonstrable physiological relevance in healthy and disease states [33,

34]. Changes in the LF band=spectral“power (0.04-0.15Hz frequency range) reflect a

Table 3.2: The HRV measures of time and frequency domain analysis

Variable | Units Description
Time domain analysis
THB Total number of heart beats
MRR ms Mean of RR interval
SDNN ms Standard deviation of all RR intervals.

The square root of the mean of the sum of the
RMSSD ms squares of differences between adjacent NN
intervals.

Frequency domain analysis

LF ms? Power in low frequency range 0-04—0-15 Hz
HF ms’ Power in high frequency range 0-15-0-4 Hz
LF/HF / Ratio LF /HF
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combination of sympathetic and parasympathetic ANS outflow variations, while changes in
the HF band spectral power (0.15-0.40Hz range) reflect vagal modulation of cardiac activity.
The physiological explanation of the VLF component (0.0033-0.04Hz) is much less
defined and the existence of a specific physiological process attributable to these heart period
changes might even be questioned. The LF/HF power ratio is used as an index for assessing
sympatho-vagal balance. The HRV measures of time and frequency domain analysis we want

to observe are listed in Table 3.2.

3.2  Drum loop rhythmic analysis

Sound by its very nature is temporal, and in its most generic sense, the word rhythm is
used to refer to all of the temporal aspects of a musical work, whether represented in a score,
measured form a performance, or existing only in the perception of the listener [35]. The
drum loop music is taken as the stimuli in,this. study because of its obvious and simple rhythm
characteristic. Drum loops are prerecorded percussive riffs that are designed to create a
continuous beat or pattern when played repeatedly. Loops are usually compiled in
commercially available databases”containing several hundreds, or even thousands, of these
riffs. These collections are widely used in ‘computer music composition and production as a
means to generate high-quality music tracks in a quick and easy manner. This study utilizes
the techniques in the field of audio signal processing and music analysis to extract some
features from the drum loops and discusses their effects on the modulation of autonomic
nervous system.

Entrainment describes a process whereby two rhythmic processes interact with each
other in such a way that they adjust towards and eventually ‘lock in’ to a common phase
and/or periodicity [7]. For example, we tap foot and shake body to the beat of a song.
Similarly, there are many naturally occurring rhythms within the human body such as the
heartbeat, blood circulation, respiration and many others. Therefore, the relationship between
the musical rhythmic characteristics and heart rhythm is what this study wants to explore.

So the next problem is how to quantitatively define the musical characteristic, rhythm.
Intuitively, the first feature of rhythm is its speed. The speed of heart rhythm is called heart

rate and the speed of musical rhythm is called tempo. Tempo is usually indicated in beats per
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attack

transient

Fig. 3.17(a): The sound wave of one single Fig. 3.17(b): Onset, attack and transient

note

minute (BPM) in modern music. The beat means the exact time we nod our head or tap our
feet to the rhythm. It is one temporal aspects of a musical work existing in the perception of
the listener and a fundamental unit of the temporal structure of music. Once the beats in one
piece of music were detected, the tempo.could be decided as the unit, beats per minute.

Is the tempo enough to describe the musieal thythm fully? Through the automatic beat
tracking algorithm, each onset in-a piece of music which probably makes us tap to follow will
be identified. And it can be found that the intervals between each identified beat are almost
the same. If the other components. of a piece of music were removed except the beats, the
remains are only the repeated and equal spaced sound pulses. These pulses can’t make us feel
rhythmic. So it is not enough to represent the musical rhythm by the only one feature, tempo.
Observing the characteristics of heart rhythm, it can be found the variability of heart rate
exists in a stable and near constant heart rate. Inspired by the similarity, the second feature,
complexity, is proposed to be the second quantitative measure to describe the musical rhythm.
As the tempo is to musical rhythm, so is the average heart rate to the heart rhythm. As the
complexity is to musical thythm, so is the heart rate variability to the heart rhythm. That’s
why the feature, complexity, is chosen. The heart rhythm is just like a piece of music. If it is

just a monotone pulse, it will be not good to listen, in other words, not a healthy heart rhythm.

3.2.1 Tempo

To find the exact time when we nod our heads or tap our feet is called “beat tracking.”
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Automatic beat tracking is an essential task for many applications such as musical analysis,
automatic rhythm alignment of multiple musical instruments, cut and paste operations in
audio editing, beat driven special effects.

Music is expressed by the successive notes. These notes record the relating temporal
information. Identifying and characterizing these notes is an important aspect of the following
steps of music analysis. Here some nouns must be explained first. In the Fig. 3.14 (a), the
sound wave of one single note is shown. The definitions of onset, attack and transient are
shown in Fig. 3.14(b) and were explained in [36]. An onset can be defined as the instant when
the attack transient begins, thus marking the beginning of the note. So the first step of music
analysis is to detect the onset. In the general case of a polyphonic signal, where multiple
sound objects may be present at a given time, the onset detection is not easy. The procedure
employed in the majority of onset detection algorithms is illustrated in Fig. 3.15: from the
original audio signal, which can be pre-processed to improve the performance of subsequent
stages, a detection function is derived,.at.a Jower sampling rate, to which a peak-picking
algorithm is applied to locate the onsets.

Once the rhythmic events (the onsets) have been-determined, the beat tracking algorithm
will be applied. The beat tracking algorithm adopted in this work is developed by Simon

Dixon [37]. First, the time intervals between pairs -of events are determined. These data are

ripme

Detection i ] I l I\ |
function e, L# [L- l'!.-. [m |,A A 1 |
bl AN '-.J W RV

(W
(PR AV,
Hme

Peak - picking

Onset

T d* & ok 2 ok B £ * *
localization T

Fig. 3.18: Flowchart of a standard onset detection algorithm
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clustered to generate a ranked list of tempo hypotheses. The top ranked clusters represent a set
of hypotheses as to the basic tempo of the music. The processing mentioned above is called
tempo induction. The tempo induction algorithm computes the approximate inter-beat interval,
but not calculates the beat times. In order to calculate beat times, a multiple hypothesis search
is employed, with an evaluation function selecting the hypothesis that fits the data best. In this
work, the interactive beat tracking and visualization system developed by Simon Dixon is

used to determine the drum loop tempo.

3.2.2 Complexity

As mentioned above, the sound with a fixed tempo doesn’t make people feel rhythmic at
all. Therefore, the musical complexity is proposed to be another important feature to describe
the musical rthythm. The notion of complexity has generally been studied in the context of
information theory and is closely ¢onnected.with concepts such as randomness, information,
regularity, and coding. Some measures of complexity that corresponds to a high degree with a
human’s subjective notion of -complexity have been discussed [38-39]. Because these
measures are made to fit the human perception on temporal pattern complexity, the
questionnaires are used to collect the subjects’ opinions about musical complexity directly in
this study. When the relationship between the musical rhythmic characteristics (tempo and
complexity in this study) and human heart rhythm is understood, the beat tracking algorithm
and the complexity measure can be served as the automatic musical rhythmic characteristics
extractor and the corresponding effect on human heart rhythm can also be conducted

automatically.

3.3  Arrangement of Experiment

3.3.1 Subject and Environment

There were all 22 healthy subjects, 15 males and 7 females, engaged in the experiment.
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The average age is 23. None of them are professionally trained in music before. All tests were
carried out in moderate temperature, humidity and light with subjects sitting and wearing

headphones (eyes closed) in a quiet place

3.3.2 Music Stimuli

There are four drum loops in this study (L1 to L4). They are downloaded from internet
based on the different tempo characteristic. The two musical rhythmic characteristics that we
think most important, tempo and complexity are extracted from each loop as follows. The
beat means the exact time we nod our head or tap our feet to the rhythm. Once the beats in
one piece of music were detected, the tempo could be decided as the unit, beats per minute
(bpm). The other characteristic, complexity, is rated by each subject with four ratings 1, 2, 3
and 4 (1 is represented to most simple one and 4 is represented to most complex one). The
complexity of each loop is represented by, the-avetage of the total 22 subjects’ ratings. The
rhythmic characteristics, tempo -and.complexity, of the four drum loop patterns chosen for
experiment (L1 to L4) are shown in Eig,/3:16 and the-detailed quantized number is shown in
Table 3.3.

From the right plot of Fig. 3.16, it"is"shown that the tempo is increasing from L1 to L2.
From the left plot of Fig. 3.16, it can be seen that there are cognitive agreement among the

total 22 subjects in the L3 and L4 loops. The L3 loop is thought as the lowest complex one

Complexity Tempo
5 200
4t [
l 150 —
£
S 3 ||
&
) £ 100 —
52— ||
z
T L |
1 T 50
0 0
L1 L2 L3 L4 L1 L2 L3 14
Loop Loop

Fig. 3.19: The rhythmic characteristics, tempo and complexity, of the four drum loop patterns
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Table 3.3: Two rhythmic characteristics of the four testing drum loop samples

L1 L2 L3 L4
Tempo
89.6 105.3 139.5 176.5
(bpm)
Complexity
) 2.73 2.27 1.14 3.86
(avg rating)

and the L4 loop is thought as the highest complex one. But there are some disagreement

existing between L1 and L2 loop.

3.3.1 Study Protocol

There are four testing rhythm patternstin the experiment (L1-L4), resulting in four trials
for each subjects at less. For avoiding thesunecertainty of the interaction between different
loops, the subjects are arranged to take each trial at the same time but in different days. The
shortest duration of the compatisonis“2min because it is reported that the recording of
approximately Imin is needed to"assess the HE ‘components of HRV while approximately
2min are needed to address the LF component [3]. The overall experimental flow of one trial
is shown in Fig 3.17. In the beginning, the subject is asked to take a 5 minute rest and read the
experiment manual shown in Fig. 3.18 at the same time. Then, the ECG signals are
continuously recorded for the subsequent 10 minutes. Between 5-10 minutes, there is no
sound emitted from the headphones and the recorded data are used as the control. The

headphones return to silence in the final 2 minutes. Two comparisons, C1 and C2, are

5 min n 3 min u 3 min
) 2] (2} 1 2}
| ol e o 4
L festng LY a8 vy _ .
0 5 8 10 13 15 (min) 5@2 ma W @,z.m'”

c2

Fig. 3.20: The overall experimental flow of one trial

41



discussed in this study. The comparison C1 presents the differences of the HRV measures
between 10-13 and 5-8 minutes. The comparison C2 presents the differences of the HRV
measures between 13-15 and 8-10 minutes. The physiological responses after listening the
drum loop music is observed by the C1 comparison. The aftereffect of rhythm pattern

listening is observed by the C2 comparison.
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Fig 3.21: The experiment manual
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Chapter 4

Experimental Results

4.1 Data Presentation

The comparison C1 calculates'the differences of each HRV measure between 10-13 and
5-8 minutes. Through C1, the HRV..measures.an the listening condition are compared to the
HRV measures in the resting condition. The comparison C2 calculates the differences of the
HRV measures between 13-15 and 8-10 minutes.- Through C2, the HRV measures in the
after-listening resting condition are compared to the HRV measures in the resting condition.

Data are presented as the mean and the standard deviation are marked.

4.2  Main Finding

There are two notable findings in this study. First, the drum loop with faster tempo and
lower complexity reduces the LF/HF measure most after drum loop listening. The reduction
of the LF/HF after listening to the drum loop is shown in Fig. 4.1.

From Fig. 4.1, it can be observed that the value of LF/HF in 13-15 minutes (resting after
drum loop listening) is lower than in 8-10 minutes (baseline resting). This phenomenon is
particularly obvious in the L3 loop. According to the Section 2.1.5, the LF measure stands for
sympathetic activity, the HF measure stands for parasympathetic activity and the LF/HF ratio

is used to observe the balance between the sympathetic and parasympathetic systems.
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Fig. 4.1: The C2 comparison of LF/HF measure

Observing the C2 comparison of LF/HF shown in Fig. 4.1, it is inferred that the subjects feel
even more relaxing after drum loop listening than in the baseline resting state.

The similar result is also found in theprevious study that a randomly inserted short pause
during the continued music listening experiment décrease blood pressure, heart rate, and the
LF/HF in the subjects. The relaxation effect.is even greater than the quiet relaxation at
baseline [9]. Being different from the previous:study, the drum loop music is adopted rather
than the general music and two’.musical rhythmic features are proposed to be the key
component of music-regulating human "autonomic nerve system in the thesis. By the
systematic method, the experimental results are not only the observed phenomena, but also
can be used to construct a model for predicting the physiological responses after music
listening. The new finding in this study is that the relaxation aftereffect is stronger in the drum
loop with faster tempo and lower complexity.

Second, the entrainment phenomena can be observed in Fig. 4.2. The L3 loop with the
lowest complexity synchronizes the heart rhythm and results in the reducing SDNN (HRV) in
the resting period rather than the listening condition. Recalling the principle of entrainment
mentioned in the Section 3.2, it could be expected that the lowest complex loop (L3) can
synchronize the listener’s heart rhythm to a simpler structure than the other loops can do. As
shown in Fig. 4.3, it is interesting that the synchronization effect is more significant in the
resting period after the drum loop listening than in the listening period. The detailed
numerical expression of experimental results is listed in Table 4.1. The Cl1 and C2

comparisons of all HRV measures obtained in the thesis are shown in Fig. 4.4 to Fig. 4.10.
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Fig. 4.2: The C2 comparison of SDNN measure
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Fig. 4.3: The C1 comparison of SDNN measure
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tempo
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Table 4.1: The numerical expression of two notable findings in the experimental results

SDNN 1 ™
tempo

61D 2016 0,156
1053 (L) 279 4,713
1385(L3) N 4,753
1785 (L4 0763 4,952

~ SDNN g 2

complexity

L14(L3) N 4,753
2 i (L2 2.9 4,713
2731 2016 0,19
356 (L4 0763 4,952
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Chapter 5

Implementation

5.1  Motivation of HRV Chip

Measurement of HRV provides a non-invasive method to obtain reliable information on
autonomic modulation of heart rate.and has become an important tool for risk assessment to
millions of patients who suffer from chronic diseases. A compact, high accuracy, real-time
HRYV assessment system could provide a valuable feature for implantable and portable cardiac
monitoring and intervention devices. The reliable QRS detection is crucial for HRV analysis.
Reviewing the previous System on Chip implementation of QRS detection, there are little
information about accuracy and complete standard database testing results for verification
[40-41]. Therefore, the implementation in this work focuses on the high accuracy QRS

complex detector.
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Fig. 5.1: The bit-width of each processing block

53



0.0035

0.003

0.0025

0.002

0.0015 1 .

0.001 r

Average Deviation (samples)

0.0005

0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
o o QA W Q
L O EEIIIPR DTN PP P
Record

Fig. 5.2: The deviation of detected R peak between the software QRS detector and the
hardware QRS detector

5.2  Accuracy Simulation

For achieving the high accutacy, the bit-width of each processing stage needs to be
decided carefully. The bit-width of each processing block is shown in Fig. 5.1 where (x.y)
means the bit-width is composed of x bit integer and y bit decimal fraction. The deviation of
each processing stage between the software QRS detector and the hardware QRS detector is
simulated through all the MIT-BIH Arrhythmia Database. The deviation of detected R peak
between the software QRS detector and the hardware QRS detector is shown in Fig. 5.2. It
can be seen that the detection results is very close between them. The maximum deviation is
0.00304 samples, it is just 8.45us (0.00304/360 = 8.444, 360 Hz sampling rate) differences.
So the accuracy of the hardware QRS detector is almost the same as the software QRS

detector. The detailed deviation of each record is listed in Table C.1 of Appendix C.

5.3  Hardware Architecture

As mention in section 3.1.2, the QRS detection can be divided into two stages. The
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preprocessing stage emphasizes the desired components in order to maximize the
signal-to-noise ratio. The peak detection stage decides if an incoming peak is a true QRS
complex based on a user-specified threshold. It can be seen that the preprocessing stage of the
QRS detection algorithm adopted in this study is composed of several digital filters.

The systolic array architecture for these digital filters is adopted in this work [42]. For
computing one-dimensional recursive convolution characterized by the transfer function
shown as (5.1) where a; (for i = 0 to N) and b; (for i = 1 to N) are real coefficients, the array
structure shown in Fig. 5.3 can be used to achieve an appropriate trade-off between
throughput and the amount of hardware required. Because these digital filters mentioned in
(3.1) and (3.2) all can be represented as (5.1), they can be implemented by continuously
connecting these array structures shown in Fig. 5.4 where the purple blocks represents the
registers.

For reducing the amount of hardware required in the chip, observing the arrangement of
the registers shown in Fig. 5.3, it can be found that the area closed by the red rectangular can
be used as a basic processing element (PE).in ‘the array. The basic PE can be reused
continuously to update the different registers and the same result will be obtained. Observing
the difference equations listed” in (3.1)“and-(3.2); there are only five possibilities of

coefficients. They are 0, 1, -1, 2 and -2. So the four-multiplication operation in the PE can be

H(z")=—"2%— | (5.1)

output

Fig. 5.3: The systolic array architecture for digital filters
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simplified to four shifting operation. The proposed PE reusing architecture is shown in Fig.

5.5.

5.3  The Specs

The final implementation result is shown in Table 5.1 and layout is shown in Fig. 5.6.
There are two HRV analysis systems in the previous work. The first one measures RR
intervals from ECG signals, then categorizes and stores HRV measures in an internal memory
[40]. The second one presents the design of an ECG-processing System-on-Chip (SoC),
which incorporates an ARM922T hard macrocell as its processor core. This SoC takes the
ECG signals as inputs, and detects the positions of the QRS complexes [41]. The comparison
between the previous works and our design is listed in Table. 5.2. According to the
comparison of the chip specification, the proposed chip is a cost effective solution needing
only 5.1% chip area of the previous werk.[41] and it can be easily embedded into the

biomedical platform solution.

Table 5.1: Summary of the high accuracy QRS detector SoC

Input 13 bit digitized ECG Raw Data
Output 16 bit RR interval
Technology tsmc 0.18 um
Die Size 1288.6 x 1314.7 um’
Core Size 812.9 x 835.6 um’
Gate Count 35630
Max Frequency 50 MHz
Power 25 mW
Accuracy T6ms
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Table 5.2: Comparison of HRV analysis SoC

[40] [41] Proposed
Tech 0.5um UMC 0.18um tsmc 0.18um
Area 3x3 mm’> | 4095x3202 pm’ 812.9x835.6 um’
Freq. 1 kHz 112.23 MHz 500 Hz
Power 1.5 pW N/A 221 uW
Accuracy t 7 ms N/A T 6ms
MIT-BIH Arrhythmia
Database Verification N/A N/A
Database

Fig. 5.6: The layout of the high accuracy QRS detector chip
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Chapter 6

Conclusion

6.1  Discussion

Based on the notable findings' mentioned-in section 4.2, some inference is constructed
and detailed as follows. First, Cl-and €2 comparison of the LF/HF measure are discussed and
shown in Fig 6.1. The changes of the [LE/HF measure-during drum loop listening is observed
in C1 comparison shown in Fig. 6:1(a). T infer that'the main factor contributing to the changes
of the LF/HF measure during drum loop listening is the ability of the rhythm pattern to attract
the subject’s attention, because the LF/HF measure can be used to reflect the degree of arousal.
When people pay more attention to something or they are aroused by something, their LF/HF

measure will show a higher value. In other words, the drum loop which makes the subjects

c1 c2
1 1
os | 05 |
- e A
3 ' 1 1 [ 5 J
05 | o5 | 1
1 -1
L1 L2 L3 L4 L1 L2 L3 L4
tempo 89.6 1053 1395 176.5 tempo 89.6 1053 1395 1765
complexity 273 227 1.14 3.86 complexity 2.73 2.27 1.14 3.88
(@ (b)

Fig. 6.1: (a) The C1 comparison of LF/HF measure (b) The C2 comparison of LF/HF measure
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feel most surprising will result in the most increasing in the LF/HF measure.

From Fig. 6.1(a), it can be inferred that the L1 makes the subjects feel most surprising or
attentive. If the surprising factor of a rhythm pattern can be attributed to two musical rhythmic
features proposed in the thesis, there should be some relationship between them. Observing
Fig. 6.1(a), it seems that the rhythm pattern with slower tempo will increase the LF/HF
measure more. About complexity, the publication by Berlyne (1971) states that an individual’s
preference for certain piece of music is related to the amount of activity it produces in the
listener’s brain, to which he refers as the arousal potential [39]. According to this theory,
which is backed up by a large variety of experimental studies, there is an optimal arousal
potential that causes the maximum liking, while a too low as well as a too high arousal
potential results in a decrease of liking. He illustrates this behavior by an inverted U-shaped
curve (shown in Fig. 6.2) which was originally introduced in the 19th century already by
Wundt (1874) to display the interrelation between pleasure and stimulus intensity [39].
Berlyne identifies three different categories .of variables affecting arousal. As the most
significant he regards the collative wvariables, s containing among others complexity,
novelty/familiarity, and surprise effect of the stimulus.

Mapping to the experimental result“shown. in Fig. 6.1(a), we can also find an inverted
U-shaped curve which is shown 1 Fig. 6.3 if the drum loops are ordered from low to high

complexity. It makes sense because the LF/HF measure reflects the arousal potential in some

Complexity

¥

Preference

Fig. 6.2: The Wundt curve for the relation between music complexity and preference
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Fig. 6.3: The inverted U-shaped curve for the relation between the surprising factor and

rhythmic complexity

degree. So it is concluded that there is a chance to use two rhythmic characteristics, tempo
and complexity, to parameterize the subjects’ attention response during drum loop listening.
The responses of the LF/HF after, drum_loop listening is observed in C2 comparison
shown in Fig. 6.1(b). I infer that the main-factor contributing to the responses of the LF/HF
measure after drum loop listening is.the ability of.the rhythm pattern to entrain the subjects
and consume their energy. When-people consume more energy after drum loop listening, they
will be calmer in the immediate rést. Observing Fig. 6.1(b), it can be found that the L3 loop
with faster tempo and lowest complexity results in most decrease of LF/HF measure after
drum loop listening. In other words, the L3 loop is easier to entrain the human heart rhythm
and cause most energy consumption. It could be speculated that that’s why some people relax

by listening to the electronic dancing music, which is typically featured in faster tempo and

C1 c2
20 20
;7:_- 10 B 10 |
= 0 T T T I :E,l’ 0 T . [ X T I
z i 1 Ii I = T s \
2 a0} g2 o |
20 20
L1 L2 L3 L4 Ll L2 L3 L4
tempo 89.6 105.3 1395 176.5 tempo 89.6 105.3 139.5 176.5
complexity 273 227 1.14 3.86 complexity 273 2.27 1.14 3.86

(@ )

Fig. 6.4: (a) The C1 comparison of SDNN measure (b) The C2 comparison of SDNN measure
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lower complexity.

Another interesting phenomenon is the synchronized SDNN measure (heart rhythm
complexity) is observed significantly in the resting state after drum loop listening rather than
drum loop listening state. It is shown in Fig. 6.4(a) that the SDNN measure is not changed
obviously in the drum loop listening state, but it can be found in Fig. 6.4(b) that the L3 loop
with the lowest complexity reduces the SDNN measure most and the L4 loop with the most

complexity increases the SDNN measure most in the resting state after loop listening.

6.2 Conclusion

There are many literatures discussing the interaction between music and human
physiological or psychological responses, but a systematic model is still not constructed
completely. This work uses a systematic method to study the complex problem. The problem
is scaled down to the simplified and definite.topic first. For more accurate experiment control,
the simpler auditory stimuli, drum loop pattern-whichis more suitable to exclude the effect of
other music features, is choused as the experimental stimuli. This work represents the first try
to use a systematic method to explore the relationship between music perception and its
physiological modulation effect.

In this study, the concept of two musical rhythmic features, tempo and complexity,
modulating human autonomic nervous system is proposed and the entrainment phenomenon
is observed. Two important experiment results explain that the rhythm pattern with faster
tempo and lower complexity is easier to entrain human heart rhythm and result in a more
relaxing physical state after drum loop listening. Both findings are significant in the resting
state after drum loop listening rather than the baseline resting state. In other words, the music
aftereffect is even more influential. Although the physiological responses among the subjects
sometimes differ largely, the observed results are worthy to study further. The reliability of the
results will be assessed in the future.

Besides, the complete software environments for HRV signal processing and musical
rhythmic characteristics analysis are constructed. In hardware implementation, a high
accuracy and low cost QRS detection chip is realized. This chip represents the first step to

construct a single chip solution for a complete HRV analysis.
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Fig. 6.5: A systematic model which links music perception and relating physiological

responses

6.3  Future Work

Review the initial motivation of,this-study. Our goal is to construct a systematic model
which links music perception and“elating physiological responses. The model can be shown
in Fig. 6.5. There are many features in music. Each physiological or psychological response
(Resultl, Result2, etc...) detected by all kinds of biosensors may be resulted from one main
music feature or the combination of them (Featurel, Feature2, etc...). The final descriptive
emotional or physical state may be identified by integrating these physiological or
psychological responses (Resultl, Result2, etc...).

Either music perception or physiological modulation is not straightforward. So this work
starts from a simplified problem. The musical feature choused is rhythm. The physiological
and psychological responses are observed by HRV. For completing the physiology based
intelligent music playing system proposed in Fig. 1.2 further, some future works are suggested

as follows:

Music Perception Analysis

Two musical rhythmic characteristics, tempo and complexity, are proposed to be two
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main features in modulating the autonomic nervous system. The complexity is judged by each
subject in this study. Some measures of complexity that corresponds to a high degree with a
human’s subjective notion of complexity have been discussed [38-39]. The automatic
algorithm for extracting the complexity of simple rhythm pattern (drum loops) should be
developed in the future.

Drum loops are widely used in computer music composition and production as a means
to generate high-quality music tracks in a quick and easy manner. Most pop music use the
drum loop music as the background rhythm base. So the drum loop extraction algorithm is
helpful for the automatic music analysis system [43-44]. These algorithms will be integrated

to the system for fully automatic musical rhythm analysis in the future.

Bio-signals analysis

Besides the time and frequency domain: analysis method, the nonlinear method is also
important in biomedical signal processing:=INonlinear phenomena are certainly involved in the
genesis of HRV. They are determined by complex interactions of haemodynamic,
electrophysiological and humoral variables, as- well=as by autonomic and central nervous
regulations. Therefore, the nonlinear. method may be another suitable observation window to
explore the physiological modulation induced'by music perception [45-46].

For more comprehensive physiological signal analysis, more biomedical signal (pulse,
photoplethysmograph abbreviated as PPG, etc...) will be captured for cross analysis in the
future. On the other hand, a non-contact optical measurement system for acquiring the HRV
signal is under developing [47-48]. The HRV signal will be easier to be captured and the

physiology based intelligent music playing system is more portable in the future.

Emotion recognized by physiological responses

As describing in the section 1.2, the physiology based intelligent music playing system
chooses suitable music for user to make them achieve desired physiological or emotional state
(ex. powerful, active, calm, etc...). I think emotion recognition by physiological responses is
important and interesting [49-50]. If the music induced emotion can be measured and

recognized correctly by the physiological signals, the emotional responses for various music
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can be recorded continuously when user is listening. It is helpful for the system to understand
the individual preference or emotion response for the specific music type by long term
machine learning. The experience of music listening will be improved through the interactive

system. So the emotion recognition should be integrated into the system in the future.
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Appendix A

Most PhysioBank databases include one or more sets of annotations for each recording.
Annotations are labels that point to specific locations within a recording and describe events
at those locations. For example, many of the recordings that contain ECG signals have
annotations that indicate the times of occurrence and types of each individual heart beat
("beat-by-beat annotations"). The standard set of annotation codes was originally defined for
ECGs, and includes both beat annotations and non-beat annotations. Most PhysioBank

databases use these codes as described in Table A.1.

Table A.1: PhysioBank Annotations

Beat annotations Non-beat annotations
N : Normal beat [CS3- : Isolated QRS-like artifact
L : Left bundle branch block beat I: Ventricular flutter wave
R : Right bundle branch block beat ] # End of ventricular flutter/fibrillation
B : Bundle branch block beat x : Non-conducted P-wave
A : Atrial premature beat (: Waveform onset
a : Aberrated atrial premature beat ) : Waveform end
J : Nodal (junctional) premature beat p : Peak of P-wave
S : Supraventricular premature or ectopic beat |t : Peak of T-wave
V : Premature ventricular beat u : Peak of U-wave
r : R-on-T premature ventricular contraction " : PQ junction
F : Fusion of ventricular and normal beat ": J-point
e : Atrial escape beat ~ . (Non-captured) pacemaker artifact
j : Nodal (junctional) escape beat | : Isolated QRS-like artifact

n : Supraventricular escape beat (atrial or nodal) |~ : Change in signal quality

E : Ventricular escape beat +: Rhythm change
| : Paced beat s : ST segment change
f : Fusion of paced and normal beat T : T-wave change
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Q : Unclassifiable beat * : Systole

? : Beat not classified during learning D : Diastole

In this study, all the forty-eight recordings in the MIT-BIH Arrhythmia Database are used
to evaluate the QRS detector algorithm. Each recording records half-hour annotated ECG, but
just first ten minutes data are used to evaluate the QRS detector performance for simplicity.
The evaluation result of each recording is listed in Table A.2. The column named Record lists
all of the recording names in the MIT-BIH Arrhythmia Database. The column named Total
annotated lists the number of annotated beats in each recording. The column named Total
beat-annotated lists the number of beats coded by beat-annotations in each recording. The

column TP, FP and FN mean true positive, false positive and false negative.

Table A.2: The evaluation results of the simplified QRS detector

Record Total Peaks Total Normal TP FP FN
100 759 753 753 0 0
101 653 645 638 5 2
102 732 728 728 0 0
103 703 703 703 0 0
104 812 725 488 27 210
105 850 832 832 0 0
106 664 646 577 0 69
107 705 705 705 0 0
108 580 561 540 2 19
109 856 856 788 1 67
111 701 701 701 0 0
112 853 853 853 0 0
113 580 580 580 0 0
114 559 556 555 0 0
115 634 634 634 0 0
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_ 796 796 792 0 4
117 504 504 504 0 0
_ 774 768 768 0 0
119 692 659 657 0 2
_ 610 608 608 0 0
122 838 836 836 0 0
_ 505 504 504 0 0
124 529 523 497 0 26
_ 783 760 745 0 15
202 534 534 738 0 7
_ 1038 998 790 4 204
205 927 927 920 0 7
_ 831 656 574 10 72
208 510 354 156 0

1032 = 1021 0 1

210 889 773 2 47
_ 932 2 e 923 0 9
213 1112 : 1042 0 56
_ 783 763 744 1 18
215 1138 1130 1114 1 15
_ 746 727 725 0 2
219 763 759 726 1 32
_ 711 700 700 0 0
221 836 826 691 0 135
_ 750 737 727 0 10
223 845 838 800 0 8
_ 740 697 245 3 449
230 819 729 729 0 0
_ 680 506 500 0 6
232 625 603 595 3 5
_ 1046 1022 1012 0 10




234

924

920

910

10

Sum

33339

216

1517
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Appendix B

A simple method for removing or compensating these abnormal beats is utilized and the

detailed algorithm is formulated as follows:

At some peak time instant t,, criterion is not met

t -2t +t
bt )(tk—l _tk+1)(tk _tk+1)
TH =0.2(1/s*) inthis study

>TH

ie.

a1
rk

=f (tk—lﬂtk’tkﬂ): 2§(

// False Positive Beats Detection
it (f(t.t..t,,)<TH)
it (f(t bt ) <TH)and (f(t_.t..t.,)<TH)
t. is a false positive peak, remove it
elseif  f (t.t.,.t,,)>TH
if  f(t .t .t )<TH
t is a false positive peak, remove it
elseif  ( f(t,.t,,,,t5)< TH)and-(f(t st ..t ) <TH)
it (f(to.tot.,) <TH)and (f (.t ,.t,,)<TH)
t.., is a false positive peak, remove it
end

// False Negative Beats Detection

if ( f (tk_z,tk_l,tk—l A ) < THj and ( f (tk_] 7 ,tM) < THJ

= +t% is a false negative peak, interpolate it
elseif  f (t,.t.,.t,,)<TH

b+t 5 is a false negative peak, interpolate it

elseif (tk_l,tk,tk A )s TH
b+ by 5 is a false negative peak, interpolate it

end
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// Ectopic Beats Detection
it f(t.t..t.,)<TH

If ( f (tk—Zatk_latkl +tk+1 2 j < THJ and ( f (tkl +tk+1 2 ,tk+19tk+2) = THJ

t, is a ectopic beat, move it to b+l

elseif  f (t.t.,.t,,)>TH
it f (tk_z,tk_l,tk-l A ) <TH

t, is a ectopic beat, move it to b+ iy

elseif  (f (t.t,.t.,)<TH)and (f(t.,.t.,.t.,5)<TH)

if ( f (tkl,tk,tk Tl ) j < TH) and ( f (tk Tl 5 ,tk+2,tk+3) < TH)

t.., is a ectopic beat, move it to b+l 5

end
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Appendix C

The deviation of each processing stage between the software QRS detector and the
hardware QRS detector is simulated through all the MIT-BIH Arrhythmia Database, but just
first ten minutes data are used to evaluate the QRS detector performance for simplicity. The
deviation is represented by averaging the differences of each stage outcomes between the

hardware and software methods.

Table C.1: The detailed deviation between the hardware and software QRS detector of each

record
Record LP HP DEV SQR MOV R peak
100 0 0.015132242:0.002901 | 0.0231 | 0.004579 0
101 0 0.015161_spr0.002899 | 0.0233 | 0.004327 0
102 0 0.015143 0.0029 0.0143 | 0.002455 0
103 0 0.015145 1 0.002886~ | 0.0362 | 0.006948 0
104 0 0.015132 | 0.002903 | 0.0241 | 0.00403 0
105 0 0.015143 0.00289 0.0291 | 0.004022 0
106 0 0.015146 | 0.002899 0.032 | 0.005572 0
107 0 0.015091 | 0.002892 | 0.0401 | 0.005895 0
108 0 0.015162 | 0.002901 | 0.0152 | 0.002293 0
109 0 0.015124 | 0.002899 | 0.0329 | 0.003702 0
111 0 0.01511 0.002895 | 0.0186 | 0.002974 | 0.001433
112 0 0.015146 | 0.002904 | 0.0225 | 0.00378 0
113 0 0.015142 | 0.002897 | 0.0339 | 0.006682 0
114 0 0.015136 | 0.002893 | 0.0235 | 0.00404 0
115 0 0.015141 | 0.002896 | 0.0355 | 0.007272 0
116 0 0.015146 | 0.002901 | 0.0649 | 0.011549 0
117 0 0.015141 | 0.002894 | 0.0201 | 0.003554 0
118 0 0.015138 | 0.002889 | 0.0426 | 0.006408 0
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119 0 0.015119 | 0.002898 | 0.0374 | 0.006469 | 0.00304
121 0 0.015107 | 0.002884 | 0.0137 | 0.00199 | 0.001642
122 0 0.015145 | 0.002893 | 0.0353 | 0.005366 0
123 0 0.015124 | 0.002899 | 0.0314 | 0.005822 0
124 0 0.015092 | 0.002909 | 0.0275 | 0.004132 | 0.002008
201 0 0.015138 | 0.00289 | 0.0176 | 0.002896 0
202 0 0.015144 | 0.002894 | 0.0161 | 0.002545 0
203 0 0.015131 0.0029 0.0333 | 0.004784 | 0.001261
205 0 0.015163 | 0.00289% | 0.0237 | 0.004462 0
207 0 0.015119 | 0.00289 | 0.0161 | 0.00224 0
208 0 0.015162 | 0.002905 | 0.0341 | 0.005769 0
209 0 0.015149 | 0.002893 | 0.0385 | 0.007507 0
210 0 0.015127 | 0.002893 | 0.0231 | 0.003624 0
212 0 0.015434-0.002895 | 0.0393 | 0.007167 0
213 0 0.015153¢ 1 0:002903. | 0.0763 | 0.011939 0
214 0 0.015117 | 0.002899= | 0.0293 | 0.004708 | 0.001339
215 0 0.015147 0:0029 0.042 | 0.007304 0
217 0 0.015107 [ 0.002888 | 0.0285 | 0.004027 0
219 0 0.015129 | 0.00289 | 0.0421 | 0.007012 0
220 0 0.015123 | 0.002894 | 0.0396 | 0.008065 0
221 0 0.01512 | 0.002897 | 0.0269 | 0.004786 0
222 0 0.015149 | 0.00289% | 0.0128 | 0.002546 0
223 0 0.015153 | 0.002895 | 0.0315 | 0.00517 | 0.001203
228 0 0.015135 | 0.002888 | 0.0207 | 0.003165 0
230 0 0.015131 | 0.002893 | 0.0389 | 0.007318 0
231 0 0.01517 | 0.002888 | 0.0253 | 0.004656 | 0.002004
232 0 0.015147 | 0.002891 0.016 | 0.002957 0
233 0 0.015122 | 0.002891 0.048 | 0.007039 0
234 0 0.015128 | 0.002901 | 0.0365 | 0.006479 0
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