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Abstract

Thisthesis proposes a new and fast adaptive ESPRIT algorithm using orthonormal
proj ection approximation subspace tracking(OPA ST) technique. The estimation of signal
parameters viarotational invariance techniques(ESPRIT) is an attractive subspace-based
algorithm for estimating signal parameters; particularly the directions of arrival (DOA)
of a set of » narrowband signal Sources collected by an array composed of N sensor
doublets, where N > r. The ESPRIT agorithm, originally designed in a batch signal
processing, requires large amounts of computations to implement eigenvalue decompo-
sition. Recently, the adaptive ESPRIT agorithm is realized normally by combining an
adaptive subspace tracker with classical ESPRIT to reduce the arithmetic operation com-
plexity. In this thesis, we describe the classical ESPRIT algorithm and the data model
for DOA estimation first. Then, we present some simple introductions for two adap-
tive ESPRIT algorithms proposed by Peter Strobach. Peter Strobach uses the concepts
of QR-reduction, sequential orthogonal iteration, and Givens plane rotation to develop
two subspace trackers, called LORAF2 and LORAF3, then further proposes two adap-
tive ESPRIT algorithms. Further we propose a fast adaptive ESPRIT technique utilizing
the OPAST method to implement works for real-time processing. This technique is very
simple and intuitive in no need of many complex concepts in numerical analysis, and re-

quiresonly about 11 N7+ 10N +O(r3?) computational complexity every update. Compare



with the adaptive ESPRIT algorithms proposed by Peter Strobach, our method indeed ef-
fectively saves the costs of computations and storage sizes. By computer simulations of
DOA estimations, we also demonstrate that it has the good performance identical to the
adaptive ESPRIT algorithms proposed by Peter Strobach.
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Chapter 1

INTRODUCTION

1.1 Background

In many practical signa processing-applications, the super-resolution algorithms of sig-
nal parameters estimation are very significant.  Suchr.applications include the temporal
problem of estimating the frequencies of complex sinusoids in additive receiver noise,
and the spatial problem of estimating the directions—of-arrival (DOA) of incident plane
waves corrupted by additive sensor noise.-The simplest and statistically optimal solution
for frequency or DOA estimations s the classical Fourier-based method. Another satis-
factory approach is the subspace-based super-resolution technique. The better technique
has become attractive method for frequency or DOA estimation in the signal processing
since it gives us the precise algebraic structures of signals and noises. The signal sub-
space is the space spanned by the eigenvectors corresponding to the larger components
of eigenvalues of the input data autocorrelation matrix, and the noise subspace spanned
by the eigenvectors corresponding to the smaller ones. The signal and noise subspaces
usually represent the statistics of the signal and the additive noise respectively, and they
are always mutually orthogonal.

Most of these approaches require the extraction of one of the two subspaces, so it
would not be necessary to calculate the full eigenvalue decomposition (ED). The multiple
signal classification (MUSIC) algorithm [10]-[11],[16] and the minimum-norm method

[12],[16] utilize the noise subspace, while the estimation of signal parameters via rota-



tional invariance techniques (ESPRIT) agorithm [1],[8]-[9] utilizes the signal subspace.
From the computational viewpoint, the significant advantage of ESPRIT isthat it produces
signal parameter estimation directly in terms of ED without implementing the search pro-
cedure inherent in other methods like as MUSIC and the minimum-norm method. Al-
though ESPRIT attractively reduces the computation and storage costs, it also has been
based on batch ED of the signal correlation matrix or on singular value decomposition
(SVD) of the data matrix in implemention. This method is inadvisable for real-time pro-
cessing because it requires repeated ED or SVD on every updating which is very time
consuming. Thus, the development of the adaptive ESPRIT algorithm is necessary for
real-time frequency or DOA estimations.

1.2 Motiveand Literatures Review

ESPRIT algorithm is a class of subspace-based super-resol ution techniques, thus ED of
the signal correlation matrix or SVD of the data matrix plays an important role to split
a signal into one desired signal subspace-and-the other unwanted noise subspace. The
ESPRIT isfirst introduced on block-and off-line processing, and the required decompo-
sition is computationally expensive. In order to overcome computational complexity and
be suitable for on-line processing, many adaptive algorithms for subspace tracking have
been researched in resent years. A class of high efficient adaptive subspace tracker based
on sequential orthogonal iteration [13] is presented by Peter Strobach [5]; LORAFL1 is
based on QR decomposition [15] and requires O(Nr?) complex arithmetic operations at
each time step, where the number of sensors /V is much larger than the number of sig-
nal sources r. LORAF2 uses the operation of Givens plane rotations [15] to replace the
QR decomposition and also needs O(Nr?) computation complexity. Only the O(Nr)
computational complexity is necessary for LORAF3, which utilizes some approximation
and requires only (2r — 1) operations of a Givens plane rotation. Furthermore, Peter
Strobach also presents Bi-SVD1 O(Nr?) and Bi-SVD2 O(Nr) [6] based on bi-iteration
SVD concept. In reference [2], Bin Yang proposes PAST subspace tracker with O(Nr)

computation complexity. It relies on adifferent interpretation of the signal subspace asthe



resolution of an unconstrained minimization problem, and usesthe recursive least squares
(RLS) methods [16] to track the signal subspace. Orthonormal PAST (OPAST) O(Nr)
algorithm [3] consists of PAST a gorithm plus an orthonormalization step proposed by K.
Abed-Meraim. It promises that the columns of the signal subspace are exact orthonormal
per iteration. Note that the necessary operations for each formula are calculated in terms
of multiply-accumulate ‘Mac’ operations.

The adaptive ESPRIT algorithm is realized normally by combining an adaptive sub-
space tracker with classical ESPRIT to reduce the arithmetic operation complexity. Peter
Strobach presentstwo adaptive ESPRIT algorithms[4] which used a special QR-reduction
[15]. One adaptive ESPRIT needs O(Nr?) + O(r3) computation complexity for reaiza-
tion; this algorithm exploits the subspace trackers of O(Nr?) category such as LORAF2
or Bi-SVD1. The other adaptive ESPRIT needs O(Nr) + O(r?) ; it uses the ‘triangular
plusrank one’' category as LORAF3 with- O(N+#:).computational complexity for subspace
tracking.

In thisthesis, we devel op afast adaptive ESPRIT algorithm based on OPAST subspace
tracking. Thistechnique can reduce the total-computation complexity to O(Nr) + O(r?),
and represents the advantage of saving.computations and storage sizes. The simulation
performance of this approach is also the same as the adaptive ESPRIT agorithms with
LORAF2 or Bi-SVD1 subspace tracker presented by Peter Strobach.

1.3 Organization of the Thesis

The remainder of thisthesisis divided into five chapters including conclusions. Chapter
2 reviews the major data model for DOA estimation and the classical ESPRIT agorithm.
Chapter 3 introduces four kinds of subspace trackers, LORAF2, LORAF3, PAST, and
OPAST. Chapter 4 exhibits an introduction of the adaptive ESPRIT algorithms using L O-
RAF2 and LORAF3 subspace trackers and proposes the fast adaptive ESPRIT algorithm
utilizing OPAST subspace tracking. Chapter 5 demonstrates the computer simulations
and illustrates comparisons with other adaptive ESPRIT agorithms. The final chapter is

the conclusions.



Chapter 2

REVIEW OF ESPRIT ALGORITHM

In order to develop an adaptive ESPRIT algorithm for real-time DOA estimation, the
fundamental understanding of the basic ESPRIT agorithm [1] is necessary. A simple
introduction of ESPRIT background isdescribed first. Then we present the datamodel for
the DOA estimation based on the-Spatial sensors array. Subsequently, the basic principle
of ESPRIT approach is elaborated in Section 3. Finally, there is a simple summary for a
class of ESPRIT algorithm, total least squares ESPRIT(TLSESPRIT).

2.1 Background of ESPRIT Algorithm

The DOA estimation is one of the array processing problems which relied on the spatial
properties of the signalsimpinging on the array of sensors. Until the mid-1970's, the di-
rection finding (DF) methods required the knowledge of the array directional sensitivity
pattern in investigativeform, and the antenna designer would have to construct an array of
antennae according to a prespecified sensitivity pattern. It was a difficult task to analyze
the array directional sensitivity pattern, because it was usually an intricately nonlinear
problem. Schmidt presented the MUSIC algorithm [10]-[11] based on subspace tech-
nique by taking a geometric view of the signal parameters estimation problem in 1977,
then developed it continually. One of the significant breakthroughs contributed by the
MUSIC algorithm was the ability to treat the problems with arbitrary arrays of sensors.

Schmidt’s research mainly hel ped the designer out of such constraints by reducing the an-



alytical complexity that could be realized by calibrating the array. Thus, the highly non-
linear problem of analyzing the array response to a signal from a given direction could
be reduced to that of measuring and storing the response. The major disadvantage of
MUSIC isthat it was achieved at a considerable cost in computation for searching over
parameter space and storage of array calibration information. However, although MUSIC
did not reduce the computational complexity of solution to the DF problem, it did extend
the applicability of super-resolution DOA estimation to arbitrary arrays of antennae.
MUSIC was the first of the super-resolution algorithms to precisely exploit the un-
derlying data model of narrow-band signals corrupted by additive sensor noise, but the
algorithm has several restrictions including the fact that complete information of the ar-
ray manifold is necessary, and that the search over parameter space is computationally
very expensive. ESPRIT [1] is a good subspace-based super-resolution approach to the
signal parameters estimation problem:that uses the invariance properties of a sensor ar-
ray, and it is similar to MUSIC in that it precisely exploits the underlying data model.
MUSIC exploits the orthogonal -properties of the noise subspace, but ESPRIT utilizes
the rotational invariance structure of the signal-subspace. The ESPRIT super-resolution
method also exhibits significant virtues.over MUSIC, because it does not need to search
the peaks over parameter space and dramatically reduces these computational complex-
ity and storage costs. In the topic of DOA estimation, the reductions are achieved by
requiring that the sensor array possess a displacement invariance, i.e., sSensors occur in
matched pairs with identical displacement. Thus, ESPRIT just needs to know the con-
stant displacement between two antennae of each antenna pairs, and does not require the
complete information of the array manifold. For simplification, we will only represent the
description of the basic ideas behind ESPRIT for the problem of multiple sources DOA
estimation from data collected by an array of sensors. In order to simplify the discussions,
we deal only with single dimensional parameter spaces, e.g., azimuth-only direction find-
ing (DF) of far-field point sources, since the basic concepts are most easily understood
in such spaces. Narrow-band signals of known center frequency will be assumed for the
DOA/DF estimation problem. It is worth to note that a DOA/DF estimation problem is

classified as narrow-band if the signal bandwidth is small compared to the inverse of the



transit time of a wavefront across the array, and the array response is not a function of

frequency over the signal bandwidth.

2.2 DataModd

ESPRIT algorithm can process the spatial problem of estimating the DOA of incident
plane waves corrupted by additive sensor noise, and the temporal problem of estimat-
ing the frequencies of complex sinusoids in additive receiver noise. The main difference
between the two problems by utilizing ESPRIT algorithm is that their data models have
some different sets. The DOA estimation is based on the spatial antennae array and the
data are collected by an array of sensors. But the frequency estimation utilizes the tem-
poral sampling concepts and the data are collected by only one antenna with different
sample snapshots. To simplify the descriptioniin this thesis, all the ensuing discussion
is focused on the problem of DOA: estimation, @and the data model of DOA estimation is
presented on the following context.

A basic assumption in the ESPRITitechnigueis that there is a planar array of arbitrary
geometry comprised of N matched Sensor doublets, so thereare 2V sensor componentsin
thisarray. The sensorsin each doublet are trandlationally separated by a known constant
displacement § and have the same sensitivity patterns. The sensor characteristics such
as phase, gain, and polarization sensitivity of the elements in the doublet are arbitrary as
long as the sensors are pairwise-identical, and there is a manifest requirement that each
element has nonzero sensitivity in all interesting directions.

Further, assume that there are a number of » < N independent narrow-band signals
located sufficiently far from the array such that the wavefronts impinging on the array
are planar in homogeneous isotropic transmission media. These sources have known
central frequency w, and may be concerned to be stationary zero-mean random processes
or deterministic signals. Additive independent white noise is assumed to be a stationary
zero-mean random process and present at all 2NV sensors. There is an illustration shown
in Figure 2.1.

In order to describe the effect of the trandational invariance of the sensor array by
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Figure 2.1: Sensor array for DOA estimation utilizing ESPRIT

mathematics, it is convenient to represent the array as being composed of two subarrays,
Zx and Zy, the same in every consideration even though physically displaced (not ro-

tated) from each other by a known:displac
=

ent FEurther, we can present the received
sgnalsat theithdoubletas. = | o i o

zi(t) = Z&v(t)awﬁ_"r’nm(t) 2.1)
%(t) = zr: Sk (t.)éjwodsinekl/cai(ew + Ty, (t) (22)
k=1

where s, (t) is the kth wavefront source signal, ¢;, is the direction-of-arrival of the kth
source, a;(6y,) istheith sensor of either subarray complex response for the kth wavefront
source impinging on the array from direction 6y, c is the propagative speed, n,, (t) and
n,, (t) arethe additivewhite noisein theith doublet for subarrays Zx and Zy, respectively.

In order to present the procedure of ESPRIT conventionally, we will combine the
outputs of each of the sensorsin the two subarrays and rewrite the received datain matrix

notation as follows:

2(t) = As(l) + nall) 23
y(t) = ADs(t) + ny (1) (2.9)

Where z(t) isan N x 1 vector as:

2(t) = [21() - an(1)]" (2.5)



where the superscript 7 denotes the transpose operation, and y(t), n(t), and n,(t) are
similarly defined N x 1 vectors. A isthe N x r steering matrix whose columns a(6;) =
[a1(0;) - - - an(0;,)]" are composed of the array directional responses for the r wavefront

sources, and is presented as below:
A2 A@0) =[a(6r) - a(6,)] (2.6)

s(t) isther x 1 vector of impinging signals as observed at the reference sensor of subarray
Zx,andisgiven by:
s(t) = [s1(8) - s,()]" (2.7)

The ® isadiagonal r x r matrix of the phase delays between the doublet sensors for the

r sources, and is described as;
P = dz'ag{ej«?l7 ejm, a0 ’ej%’r} (2.8

where ¢, = wyd sin(fx)/c. It isworth to note that ¢ is.a unitary matrix relating the mea-
surements from subarray Z x to those fromsubarray Zy. ® isasimple scaling operator in
the complex field. However, it isisomorphic tothe réal two dimensional rotation operator
and is, therefore, referred to as a rotation operator.

Further, we will combine the two subarray output vectors, and define the total array

output as z(t), like as:

REC.
z(t) = = As(t) + n,(t) (2.9
| y(t)
[ a }
A= (2.10)
A9
oty = | ™= ] 2.11)
i ny (1)

In the next section, we will describe how to exploit the structure of A to obtain the esti-

mation of the diagonal elements of ¢ without having to know A.



2.3 ESPRIT-Thelnvariance Approach

The primary concept behind the ESPRIT a gorithm relies on taking advantage of the un-
derlying rotational invariance of the signal subspace induced by the trandlational invari-
ance of the sensor array. The relevant signal subspace is the one composed of the outputs
from the two pairwise-matched subarrays described before, Zx and Zy. Synchronous
sampling of the output data of the two subarrays induces to two sets of vectors, Fx and
Ey, which span the same signal subspace. Theoreticaly, the relevant signal subspace
spanned by the columns of A. The derivation of the ESPRIT algorithm is based on the
following operationsfor the case in which the underlying 2 N dimensional signal subspace
consisted of the total array output data. The relevant signal subspace can be induced by
accumulating a sufficient number of measurement information and determining any set of
r linearly independent vectors when the noise.is absent. There is a major method to find
the applicable signal subspace by utilizing the information of the covariance matrix for
the measurement data that compased of 7 uncorrelated zero-mean complex sinusoids and

an additive zero mean white noise process of variance 2, as.
Ry = E{za"} = ARsA" + Ry (2.12)

Where Rs = E{ss”}, and Ry = E{n.n’} = o¢*I. The superscript # denotes the
Hermitian transposition, and E{-} denotesthe expection. After doing the eigendecompo-
sition of Rz, we obtain:

Ry = EsAsEY + ENANEY (2.13)

Obvioudly, the eigenvalues are arranged in a decreasing order and denoted as follow:
Al > o> X > Mg1 = - = My = 02, The signal subspace is spanned by Ej,
the eigenvectors of R, corresponding to the r first eigenvalues; and the noise subspace
is spanned by FE\, the eigenvectors corresponding to the remaining 2N — r smallest
eigenvalues. Clearly, span{Es} = span{A}, and it is the same as R{Es} = R{A},
where the R denotes the range space.

Because R{Es} = R{A}, we can find an unique nonsingular matrix 7" such that

Es = AT (2.14)

9



Then the invariance structure of the array indicates that £ can be divided into Ex €
CN*" and By € CV*" such that

Eg = = (2.15)
By A®T

Obviously, the subspace spanned by the steering matrix A is equivalent to E'x and Ey,
and it iseasily seen that

R{Ex}=R{Ey} = R{4} (2.16)
We rearrange Ex and £y to anew matrix Exy € CV*?" as
Exy 2| Bx Ey | 2.17)

Therank of Exy isr because E'x and Ey share acommon column space. Thus, it implies
that we can get an unique rank r matrix £ € €2 spanned by the null space of Eyy such
that

0=| Bx By |F= b B [ ];X]EXFX+EYFY (2.18)
' Y.
— ATFx + A®TFy (2.19)
Further define
U2 —Fy[Fy]™ (2.20)
Then we can rearrange equation (2.19) to
ATV = ADT = ATUT ' = AD (2.21)
If we assumethat A isfull rank, we can get
TV ' =& (2.22)

Therefore, the diagonal matrix which is composed of the eigenvalues of W is equiva-
lent to . Once the rotational invariance matrix ¥ obtained, the DOA estimation is also
accomplished by implementing the eigendecomposition of ¥. In ESPRIT agorithm, the

signal parameters are obtained as nonlinear functions of the eigenvalues of the operator ¥
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that maps one set of vectors E'y that span a N dimensional signal subspace into another
Ey. Inother words, ExV = Ey (substituting (2.21) for (2.15)) reflects the rotational in-

variance property of the received signal data subspace of the two subarrays, Zx and Zy.

Thisrelationshipisthekey in the development of ESPRIT and itsimportant characteristic.

24 Summary of the TLSESPRIT Covariance Algorithm

For the sake of understanding the procedure of the ESPRIT a gorithm further, a ssmple

instance about the TLS ESPRIT algorithm which is a basic class of ESPRIT to be pre-

sented. The summary of the TLS ESPRIT algorithm based on a covariance is formulated

asfollows.

1.

2.

Get an estimation of R, denoted }?Z, from the measurement data ~.
Implement the ei gendecomposition of #2.;

Ry =EME
Estimate the number of signal‘sources 7.
Obtain E5 which contains 7 eigenvectorsin E corresponding to the 7 largest eigen-
Ex
By |

Rearrange the two submatrices Fy and Ey,

values, and denote £ =

EXY £ [ EX EY ]
Calculate the eilgendecomposition,
B Exy = ENyEY

and separate F into four 7 x 7 submatrices,

E 2
E21 E22

En Eu ]

11



7. Setthematrix ¥ = —E, ).

8. Find the eigenvalues of U,
or = M\(W), VE=1,... 7

9. Estimated), = f~(¢x) ; for DOA estimation, 6, = sin~'{carg(¢x)/ (wod)}-

12



Chapter 3

SUBSPACE TRACKING
ALGORITHM

Signal subspace-based high-resolution techniques.have become attractive methods for
both spatial and temporal domain spectral -analysis, and have been successfully applied
to many problems for signal processing. These applications widely contain many areas
such as DOA estimation, frequeney. estimation, bearing estimation, digital beamforming,
data compression, system identification, data filtering, pattern recognition, and moving
target indication. Most of these subspace methods are based on the principle of extracting
a low dimensional subspace from the estimated autocorrelation matrix of input signal.
The subspace spanned by the eigenvectors corresponding to the larger eigenvalues of the
covariance matrix of observationsis referred to as the signal subspace, because it usually
expresses the statistics of the signal. Respectively, the noise subspace usually represents
the statistics of the additive noise and is spanned by the elgenvectors corresponding to
the smaller eigenvalues of the covariance matrix of observations. This thesis is focused
on the spatial problem of DOA estimation of plane waves impinging on an antenna array
solved by ESPRIT algorithm, and it mainly utilizes the properties of the signal subspace.

However, implementations of these subspace-based approaches have been carried out
by using batch eigenvalue decomposition (ED) of the sample covariance matrix or singu-
lar value decomposition (SVD) of the datamatrix. In the application of real-time process-

ing, this method is unacceptable since it is necessary to process repeated ED/SVD, which
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is very time consuming and computation costly. If these subspaces are extracted without
calculating the associated eigenvalues or eigenvectors, a significant computational effort
can berealized. In order to achieve this purpose, anumber of adaptive algorithmsfor sub-
space tracking has been proposed, and subspace tracker has become an important tool in
real-time signal processing recently. There are several approaches for tracking the signal
subspace in [2]-[3], [5]-[6]. Thisthesisis based on the orthonormal projection approx-
imation subspace tracking (OPAST) and we compare it with the method based on the
low-rank adaptive filter (LORAF) subspace tracker. Hence we review the two subspace

tracking algorithms in this chapter.

3.1 LORAF Subspace Tracking

The low rank adaptive filters (LORAF) technique proposed by Peter Strobach [5] is a
class of fast subspace tracking approaches. The principal concept of this subspace tracker
is based on sequential orthogonal-iteration. Assume X (¢) isan L x N data matrix, where
L isafinite number of time snapshotsand-/V-isthe number of array sensors. Define I'(¢)

asthe N x N sample covariance matrix of the datamatrix X (t).
() = X7 ()X (1) (3.1

Then consider an N x r recursion matrix )(¢) composed of orthonormal column vectors,

where r isthe number of the signal sources. Subsequently, we set the equation as:

QR(t) =TH)Q(t - 1) (3.2)

where Q(¢) and R(t) are the factor components of a QR-decomposition of the matrix

product A(t) = T'(¢t)Q(t — 1). So we have the following recursion as
At) =T(H)Q(t — 1) (33)
A(t) = Q) R(1) (34)

Thisideaisan important concept known as simultaneous orthogonal iteration [13]. If T'(¢)

does not vary with time, the sequence of recursive matrix () created by the recursion (3.3)
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and (3.4) will converge to the subspace consisted of the principal eigenvectors of I'(%).
Furthermore, the sequence of triangular matrix R will converge to the diagonal matrix
composed of the dominant eigenvalues of T'(t).

The representation above isthe basic concept of the development of LORAF subspace
tracker. We just divide it into two class algorithms, LORAF2 and LORAF3, according
to their computational complexity. The complexity for implementing subspace tracking
by LORAR2 is O(Nr?) at each time step. LORAF3 just requires O(Nr) per iteration by
modifying LORAF2 with some assumption of approximation. Since these algorithms are

not the priority of thisthesis, we just smply describe them in following sections.

3.1.1 LORAF2Algorithm

In the first, we present the major important structural componentsthat are usually relative
to the most proposed fast subspace tracking techniques. The development of LORAF2
algorithm based on sequential orthogonal iteration utilizes these concepts naturally.

The so called ‘initial data compaction’ procedure-is the fundamental implementing
process in all fast subspace tracking techniques. Consider al operations occurred in the
condition that the localizations of signal sources or the characteristics of data change
dightly with time. Then, assume Q(t — 1) € CV*" be an estimate of the delayed basis
matrix. Thus, we can utilize Q(¢t — 1) as a ‘data compressor’ on real input signal vector
as:

h(t) = Q" (t — 1)z(t) (35)

Obviously, al information about the relative signal in z(¢) is exactly mapped into the
much smaller vector h(t), which has the dimension r equal to the rank supplied by the
number of independently active signal sources. After this compaction, principal matrix
updating or recursion is achieved in the dimension » which is the rank of signal subspace.
This operation demands a quantification component of the innovation in input data vector
z(t). Thisinnovation is indicated from the complement of the orthogonal projection of

z(t) onto the delayed subspace spanned by Q(¢ — 1) when implementing the algorithms
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of fast subspace tracking. So we can define this complement vector as:

z.(t) = z(t) = Q(t — 1)h(1) (36)

Further, we can obtain the updated estimate )(t) of the actual basis matrix by utilizing

the operation of subspace rotation as:

o a) | =[au-1) =@ 6" (37

wherez, (t) = ||z.(t)||5 2L (t) isthe normalized complement vector, G(t) € C(r+1)x(r+1)
is asubspace rotor, and g(t) is acomponent of unweighted quantity. Note that the || - || is
the Euclidean vector norm. Deduce from (3.7) that we can write the subspace rotor in a

partitioned form as:

G - | @D QD)
G0 zl(t)q(t)
_ | BC= (3.8)
E i

where ‘%’ indicates that they are‘uninteresti ng guantities. Consequently, replacing the
G (t) in (3.7) by (3.8) leads to an equivalent expression form as:

Qt) = Q(t —1)e(t) + = () f(t) (39

The main difference between the various methods is how to find this subspace rotor. The
major task of the sequence of unitary plane rotations G(t) is to triangularize the matrix

R(t) € CUr+Vx7 with full rank as:

R(t)
0---0

= G()R() (3.10)

where R(t) is specified as an upper-right triangular matrix usually. R(t) has the different
structure according to the particular type of algorithm. For subspace tracking in LORAF2
agorithm here, R(t) has the form as:

R(t) = (3.11)

aR(t—1)0(t) + (1 — a)h(t)h" (t)
(1= )|z (®)llh™ ()
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where 0 < o < 1 iswell known a exponential forgetting factor.

Fortunately, the diagonal elements of R(¢) converge to the principa eigenvalues of
the underlying data covariance matrix when implementing subspace tracking by LORAF2
algorithm or the other algorithms using the concepts of eigenval ue decomposition and or-
thogonal iteration. We can find that R(t) has the same structure in the case of subspace
tracking utilizing singular value decomposition concept [15], and the diagonal elements
of R(t) converge to the dominant singular values of the underlying data matrix. The
LORAF2 agorithm requires O(Nr?) complex arithmetic operations per iteration to im-
plement subspace tracking. All the steps of the LORAF2 algorithm for subspace tracking
issummarized in Table 3.1. Note that we will do some comparisons of the computation
costs and storage sizes by implementing DOA estimation in Chapter 5, so theinput vector
z(t) shownin the Table 3.1 must be set the dimension as C2"*!. The dimensions of other
matricesin Table 3.1 must be adjusted.to match the input vector.

Note that the way to reduce R(t) shown in(3.11)-to triangular form R(t) (3.10) isto
utilize afull set of Givens planerotations herein. All elementary rotations required here
are of the ‘annihilate bottom component-by-cemplex circular plane rotation’ type. The

elementary planerotation is given as.

x) | e s* T (312)
0 —s ¢ Ty
””;1” isarea variable,

s = c2 isacomplex varigble, and p = (27 + 23)'/*. Note taht the superscript * de-

where x; , zo, and 2z} are complex numbers. In the rotor, ¢ =

notes the complex conjugation. The elaboration of utilizing the Givens plane rotations to

triangularize R(t) is shown in [4]-[5].

3.1.2 LORAF3Algorithm

The LORAF3 agorithm for subspace tracking is next devel oped by requiring an assump-
tion of approximation to modify the LORAF2 method. Consider that ©(t) = Q¥ (t —
1)Q(t) shownin (3.8) can be regarded as a matrix of cosines of angles between the basis

vectors of successive subspaces, Q(t — 1) and Q(t). Usually, we require the exponential
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forgetting factor « close to 1 in practice, then the angles between the associated basis
vectors in two consecutive subspaces must be very small. Thus, it is reasonable to sub-
stitute O(¢) in (3.11) for the identity matrix with slight or no performance penalty. This

approximation resultsin that R(¢) has anew form as:

Bt) = aR(t —1)+ (1 —a)h(t)h" (t) (3.13)

(1= a)llzL ()R ()

Obvioudly, this R(t) has a formation of the ‘triangular plus rank one’. This operation
reaches the purpose of saving computation since we utilize a succession of only 2r — 1
unitary Givens plane rotationsto reduce R(t) to atriangular form R(t).

However, the computational complexity for doing subspace tracking by the LORAF3
algorithmisonly O(Nr) per time update. Thereisacomplete elaboration of the LORAF
algorithm shown in [5], and is summarized in, Table 3.2. The input vector z(¢) shown in
the Table 3.2 must be set the dimension as C2¥*! for,implementing the DOA estimation.

The dimensions of other matricesin Table 3.2 must be adjusted to match the input vector.

3.2 PAST Subspace Tracking

The projection approximation subspace tracking (PAST) algorithm proposed by Bin Yang
[2] is a technique for tracking the signal subspace. The different interpretation of the
signal subspace as the solution of an unconstrained minimization problem is the major
concept of PAST agorithm. This minimization work can simplify to the exponentialy
weighted least squares problem successfully by introducing the idea of appropriate pro-
jection approximation. Therefore, the Recursive least squares (RLS) technique can be
utilized to track the signal subspace efficiently, and thisis the basis of PAST algorithm.
Consequently, the PAST algorithm can help us obtain the signal subspace by a computa-
tional complexity O(Nr).

The PAST approach is a robust and efficient method to find the signal subspace, and
quickly converges to an orthonormal matrix spanning the signal subspace in most case.
But the PAST method is unable to ensure the orthonormality of the weight matrix at each

iteration, and probably oscillates without convergence in some case. In order to assure
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Table 3.1: LORAF2 SUBSPACE TRACKING ALGORITHM

Equation Computations  Storage Sizes
Initialize: Q(0) = [ T ] . R(0) = 0,r
ON—r)xr
0(0) =0, ; 0 <1 2N7r +2r2 +1
Input:  =2(t) t=1,2,--- 2N
h(t) = QU (t — 1)=(1) 2N r
2. (1) = 2(t) - Qt — Dh(t) | 2T
lzL(®)]l2 = V21 (t)zL(¢) _ . 2N 1
2t = |z Oeze(t) O - 2N
) - [ QR(t—1)O(t — 1) + (1 ~ YRR (1) Searen e,
(1 —a)|zL(t)ll2h" (t)
R(t) r(r41)(2r41) (r+1)
’ (forG(t))
|: o) extract o(t) ; ft)
fH(t) *
Qit — 1O +ZHt) f (1) 2Nr? 4+ 2Nr
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Table 3.2: LORAF3 SUBSPACE TRACKING ALGORITHM

Equation Computations Storage Sizes
Initialize: Q(0) = { I ‘ . R(0) = 0,y
0(2N77“)><7“
0<a<l1 2Nr +r2+1
Input:  =z(t) t=1,2,--- 2N
h(t) = Q" (t—1)z(t) 2N r
z,(t) = z(t) — Q(t — 1)h(t) 2Nr
IzL @)z = V21 (t)zL(t) 2N 1
ZL(t) = lzL()ll2zL(2) 2N
Ry(t) = aR(t—1) + (1 — a)h(t)h" (1) w5 2,
(1-a)|zL ()R (1)
o = G(t)R(t) 3rt —r (r+ 1)
0 (forG(t))
Q) + | =] Qu-1 =z EiE 8NT — 4N

the orthonormality per iteration andto.guarantee aglobal convergence characteristic, the
orthonormal PAST (OPAST) algorithm ispresented by K. Abed-Meraim [3]. Attractively,
the OPA ST algorithm has the same computational complexity asthe PAST algorithm, and
the advantages of orthonormality and global convergence. We shortly review the PAST
and OPAST algorithmsin the following subsections subsequently.

3.2.1 PAST Algorithm

Assume that & € C» is a random vector process with the correlation matrix C =
E{zx"}. We consider the following scalar function
JW) = E{|z - Ww" x|}
= tr(C) — 2tr(WHCW) + tr(WHCOW - WHW) (3.14)
Where W € CV*"(r < N) isamatrix argument, and it is assumed to have full rank r.
The symbol tr(-) denotes the trace operator. It isworth to note that there is no constraint
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on WW. Particularly, we do not set any restriction on the norm of 1. Thus, it isimpossible
to maximize J(W) since J (W) isunbounded if the elements of 1V is close to infinity. So
we are focused on the minimum of .J(1/). There are two important theorems are proposed
in[2]

Theorem 1 : W isastationary point of J(W) if and only if W = U,Qwhere U, € CV*"
contains any r distinct eigenvectors of C' and Q € C™*" is an arbitrary unitary
matrix. At each stationary point, .J(1/) equals the sum of eigenvalues whose eigen-

vectors are not involved in U,..

Theorem 2 : All stationary pointsof J (1) are saddle points except when U, containsthe

r dominant eigenvectors of C'. In this case, J (1) attains the global minimum.
Some important comments are presented to remark on the theorems as follow.

1. If we find the signal subspace of Cbysminimizing J (1) through iterative tech-
niques, the guarantee of a‘global convergence is promised. Because J(1V) has a
global minimum at which the column span of 13~ equal s the signal subspace and no

other local minima.

2. There are not any restrictions on the orthonormality of the columns of W. The
two theorems demonstrate that a solution ¥ with orthonormal columns will auto-
matically result from minimizing J(W) in (3.14). This signal subspace property
does a different exposition from those in the literature where the orthonormality

WHW = I isaways required exactly in terms of an optimization constraint.

Then we further describe the development of the so called projection approximation
subspace tracking (PAST) agorithm based on the expression above. The first step isto
replace the expectation in (3.14) with the exponentially weighted sum, yielding

t

JW () = 87 lz(i) = WOW! (D)2

= tr[C(t)] — 2tr[WH () C)W ()] + tr[WH)C )W ()W ()W ()]
(3.15)
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The task of estimating the signal subspace at the time instant is affected by all input data
vectors obtainable in the timeinterval 1 < ¢ < ¢. Theintroducing of the forgetting factor
0 < < 1 ismeant to guarantee that input datain the distant past are down-weighted in
order to afford the tracking capability when the system works in a nonstationary environ-
ment.

Apparently, J(W (t)) in (3.15) isthesameas J(W) in (3.14) excluding the utilization
of the exponentially weighted sample correlation matrix

t

C(t) =Y _ B 'z(i)a" (i) = BC(t — 1) + x(i)z" (i) (3.16)

=1
inplaceof C' = F{xx"}.

Consequently, both theorems presented before also apply to J(W (¢)). On the other
hand, an orthonormal basis of the signal subspace spanned by the » dominant eigenvectors
of C(t) isconstructed by the set of column vectorsof 17 (¢) which minimizes J(W (¢)).

Unfortunately, J(1 (t)) is a fourth-order function-of the elements of 1/ (¢) such that
it is necessary to minimize J(1W{t)) by iterative approaches. The major key point of the
PAST algorithm is approximating W/ % (¢)x()-in'(3:15), the unknown projection of x (i)
onto the column vectors of 1V (¢) by the expression y (i) = W (i — 1)x(i), which can be
computed for 1 < ¢ < t at thetimeinstant ¢. Thisidea produces a modified cost function

t

JW(t) =) 6 =) - Wty (3.17)

=1
which is quadratic in the elements of W (¢).

This concept of projection approximation is the reason of the name PAST, and it mod-
ifies the error performance surface of J(1W(¢)). Nevertheless, W (t)x(i) is different
from WH (i — 1)z (i) dlightly in the environment for stationary or slowly varying signals,
particularly when i is intended to ¢. Perhaps this dissimilarity is significant in the dis-
tant past with i < ¢. But the effect of past input data to the cost function is decreasing
for increasing ¢. Thus, it is predictable that .J'(17(t)) is a satisfactory approximation for
J(W(t)) and the matrix W (t) minimizing J'(W (t)) is also a suitable estimate for the
signal subspace of C'(t).
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The principal advantage of the PAST algorithm is the exponentially weighted least
squares criterion (3.17), which is well studied in the topic of adaptive filter. J'(W (t)) is

minimized if
W (t) = Cay(t)C,,) (1) (3.18)
Cay(t) = Z:ﬂt"'w(i)y’{(i) = BCa(t — 1) + =(t)y" () (3.19)
Cyy(t) = Zt;ﬁt‘iy(i)yH (i) = BCyy(t — 1) + y(t)y" (1) (3.20)

A recursive computational operation of the N x r matrix C,,(t) and the » x r matrix
Cy,(t) just needs the computational complexity with only O(Nr) and O(r?). But the
computational complexity of calculation 1V (¢) from C,,,(t) and C,, (t) requires additional
O(N7?) + O(r?). In order to implement a more efficient and more robust computation,
the RLS algorithm must be introduced.

The quasicode listing of the PAST algorithm for tracking the signal subspace is sum-
marized in the Table 3.3. Note that we Set the dimension of input vector z(¢) shownin the
Table 3.3 as C*V*! in order to implement the DOA estimation. The other matricesin Ta-
ble 3.3 must be adjusted their dimensionsta match the input vector. The operator 7ri{-}
expressesthat only the upper (or lower) triangular part of P(t) = C, ' (t) is computed and
its Hermitian transposed version is copied to the another lower (or upper) triangular part.
This RLS method can decrease the computational complexity and retain the Hermitian
symmetry of P(¢) in occurrence of rounding errors.

Some conditions for the choice of P(0) and 17 (0) asthat P(0) must be a Hermitian
positive definite matrix and 17/ (0) should contain r orthonormal vectors. Both matrices
can be computed from arbitrary initial data. However, the simplest choice is to define
P(0) to the r x r identity matrix and the column vectors of 1/ (0) to the r leading unit
vectors of the N x N identity matrix. Interestingly, these initial values merely affect the
transient behavior but not the steady state performance.

Note that this PAST algorithm also has two disadvantages. We minimize J'(WW (t)) in
place of J(W (t)), so we can not obtain the exact signal subspace of C'(t). Second, there

is no promise that orthonormality of the columns of 1 (¢) exists each recursion.
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Table 3.3: PAST SUBSPACE TRACKING ALGORITHM

Equation Computations Storage Sizes
Initialize: W (0) = { I ‘ ; P(0) =1,
0N —r)xr

0<pg<1 2Nr+ 12 +1
Input: z(t) t=1,2,--- 2N
y(t) = WH({t —1)z(t) 2Nr r
h(t) = P(t— 1)y(t) r? r
g(t) = ﬁg)h@ 2r r
P(t) = §Tri{P(t — 1) — g(t)h" (1)} 2r?
e(t) =z(t) — W(t—1)y(t) 2Nr
Wt)=W(t—1)+e(t)gh(t) 2N

3.2.2 OPAST Algorithm

The orthonormal PAST (OPAST) agorithm{3] i1s a modification of the PAST algorithm.
The principal purpose of this algerithm 1Sto ensure the column vectors of W (t) are ex-
actly orthonormal per iterative step. - However, it has the advantages of orthonormality
and global convergence with the same computational complexity as the PAST algorithm.
Since this agorithm is developed from the PAST technique, undoubtedly, the two both
theorems presented by PAST algorithm also hold herein.

The OPAST algorithm iscomposed of the PAST algorithm and an additional orthonor-
malization procedure of the weight matrix per updating step

Wolt) 2 W(H[W" ()W (£)] /2 (3.21)

Where Wy, (t) means that orthonromalized W (¢), and (W ()W (t))~'/? indicates an in-
verse square root of (W*# (¢)W (t)). This updating equation of W (¢) is utilized to imple-
ment the following computation. Noting that Wy (¢ — 1) is an orthonormal matrix now,
we obtain

WHOW () =1+ p(t)|*a(t)a"(t) = I +vv"

where W (t) = Wo(t — 1) + p(t)q*(t), and p(t), and g(¢) are shown in the Table 3.4.
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Thefact that W} (t — 1)p(t) = 0 isused in this computation. We define v = ||p(t)]|q(t),
and [ istheidentity matrix. Thus, we get

H —1/2 _ 1 1 ~ oo
OO Rt e Y
~ 14 7(0)a)g" () 322
where
1 1

T(t) = -1
KO PGV o T
Utilizing the equations (3.21),(3.22), and the updating equation of 1V (), we have a new

recursive version of Wy (t) as

Wo(t) = (Wolt — 1)+ p(t)g" (1)) (I + 7(t)q(t)q" (1))
= Wo(t — 1) +p\(H)g" (1) (3.23)

where

p'(t) = ()Wolt =Dal)+ (T+ ()| a()[*)p(t) (3:24)
The summary of the OPAST algorithmis expressed in Table 3.4. Note that the input
vector z(t) shown in the Table 3.4 has the dimension with C*¥*! for implementing the
DOA estimation. The dimensions of other matrices in Table 3.4 must be also adjusted to
match the input vector.

The OPAST algorithm ensures exactly the orthonormality of the weight matrix Wy (¢)
per iteration, whilethe PAST algorithm merely convergesto an orthonormal matrix asymp-
totically. There is asimulation in [3] to demonstrate that the OPAST agorithm and the
PAST algorithm have the identical asymptotic performance for the tracking the subspace.
In the discussion of computational complexity, the OPAST costs dlightly more than the
PAST, but the order of operations are both identical to O(Nr) + O(r?). Furthermore,
an example [14] is exhibited next to demonstrate that the OPAST ensure having a global
convergence characteristic. Implement the eigendecomposition of C' as

s, o || on 229
0o >

C:[Ul U2:| UH
2
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where the signal subspace has a subscript with 1 and the noise subspace has a subscript

with 2. Set anovel coordinate system for the weight matrix ()

[ U U } Wi(t) = = (3.26)
UEW (t) Mo (1)

Consider this new coordinate system (3.26), the equation W (t) = CW (t — 1)(WH(t —
1)CW (t — 1))~ shownin [3] is equivalent to

M (t—1) 1" ¥ 0 M(t—=1) |
,([ { ] ! ]) (3.27)
My(t — 1) 1)

(3.28)

Thisresult indicatesthat the matrix A/, (#) oscillates between two matrix values M (t — 1)
and ((M,(t — 1))#)~1. The advantage of 'the OPAST algorithm is having the ability to
prevent this oscillation since the matrix M, (¢t — 1) becomes unitary. In other words,

My(t —1) = ((My(t = 1))7)~ %
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Table 3.4: OPAST SUBSPACE TRACKING ALGORITHM

Equation Computations  Storage Sizes
Initialize: W (0) = [ I : P(0) = Iy,
ON—r)xr
0<pB<1 2Nr + 12 4+ 1

Input:  =2(t) t=1,2,--- 2N

y(t) = Wit —1)2(1) _ 2Nr r
g(t) = LP(t — Dy(1) ' P24 ,
v(t) = W _ r 1
p(t) = 7(t)[=(t) = Wolt — 1)y(t)] - 2NT +2N
(1) = ¢" (a(t) | ’ !
(1) = p" (t)p(t) 2N 1
T(t) = =z [———1] 2

() 1471 ()72 ()
P(t) = r(OWo(t — Dg(t) + [+ 7(t)n)]p(t)  2Nr +4N +1

Q.() = qlt)g" (1 2 g
P(t) = LP(t— 1) = 1(1Q. (1) 0
Wo(t) =Wol(t —1) +p'(t)g” (t) INy
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Chapter 4

ADAPTIVE ESPRIT ALGORITHM

In the practical applications, the characteristic parameters of signal sources usually are
not stationary but vary with time, such as the frequency or the position of signal source.
Therefore the direction of arrival (DOA) of signal, source is usually different each unit
time. However, it is an important-and necessary task-to acquire the instantaneous infor-
mation of signal source in many-communication signal processing applications. In order
to satisfy this requirement, the development of adaptivé ESPRIT agorithm for DOA esti-
mation is needed.

In al the adaptive ESPRIT agorithms, they usually utilize the real-time subspace
tracking to replace the elgenvalue decomposition of the data correlation matrix first, and
then process the following procedure by the batch methods or the adaptive techniques.
The subspace tracking algorithms have been described in Chapter 3, so we develop the
following adaptive ESPRIT techniques using the given signal subspace in this chapter.
The least-square (LS) based description of ESPRIT algorithm is represented in order to
suit the ensuing presentation. Then thereisasimpleintroduction for the adaptive ESPRIT
algorithms using LORAF subspace tracking. Finally we develop an adaptive ESPRIT
algorithm utilizing OPA ST subspace tracking technique. Our method has the performance
equivalent to other techniques and just requires only O(Nr) computational complexity

per iteration.
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4.1 TheDescription of ESPRIT Using L S Concpet

In order to develop the following adaptive ESPRIT agorithms, a different description
of ESPRIT utilizing least-square (LS) concept is represented [1],[4]. Assumethat V, €
C2NV> isthe signal subspace which is estimated from the subspace tracking. The defini-
tionsof NV and r areidentical to the datamodal described in Section 2.2. From the presen-
tation of the Section 2.3, thefact that span{V,} = span{A} thesameasR{V,} = R{A}
is existed exactly. Thus, undoubtedly, there must exist an unique nonsingular matrix
T, € C™*" such that

A=V, (4.1)

This equation has equivalent significance as (2.14) , but with different form. By con-
sidering the equation (2.10) and (4.1), it is reasonable to separate V, into the two * split

subspace’ matrices V,, € CV*" and V,, e C¥*ias

A=V. T 4.2
A=V T, _ 4.3

Apparently, the fact that
RV} = R{V,; = R{A} (4.4)

which similar to (2.16) is also held here. Further, the next step isreplacing A in (4.3) by
(4.2) such that
V. @ =V,T, (4.5)

However, this equation is an attractive form since the array steering matrix A is absent
here. The nonsingular subspace rotor matrix 7, is invertible, so we can apply 77! to
obtain

VT, 0T =V, (4.6)

The matrix V. is multiplied on the left of (4.6) in both sides, yielding
VAV (T,eT ') = VIV, 4.7)

Note that the fact from (4.4), the subspace spanned by the steering matrix A assumed full
rank in Section 2.3 isequivalent to V,, so V, isfull rank with rank r. Obviously, VAV, is
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also nonsingular, thus

T,oT ' = (VEV,)'VHEV, = U, (4.8)

Finally, the diagonal matrix ¢ can be expressed as
o =T710,T, (4.9)

Thus, we can find the phase delay matrix ¢ to accomplish the DOA estimation by im-
plementing the eigenval ue decomposition or diagonalization of W,.. The principal task in
this chapter is to develop an adaptive technique to obtain W, requiring the given signal
subspace estimated from the subspace tracking approaches.

However, this LS based description of the ESPRIT agorithm which is slightly differ-
ent from the expression in Chapter 2. It is worth to note that A and A® reflect the rota-
tional invariance property because the signal subspaces of the two subarrays areidentical.

Thisisthe reason of that the ESPRIT algorithm called ‘ rotational invariance techniques'.

4.2 Adaptive ESPRIT Algorithms Using L ORAF Sub-
space Tracking

A class of fast recursive adaptive ESPRIT algorithms based on LORAF subspace tracking
is proposed by Peter Strobach [4]. These algorithms are developed by utilizing an espe-
cial QR-reduction that connects with the requirements of the recursive concept, and are
declared that they are extremely fast, well-structured, reliable, and unconditionally stable.
Because these algorithms are not our focuses, we only present simple introductions about

two approaches with O(Nr?) and O(Nr) complexity respectively in this section.

4.2.1 QR-Reduction Concept

In this subsection, we introduce the basic idea of QR-reduction for the ESPRIT agorithm.

Utilize 7 VH to multiply both sides of (4.5) as

THVEV,T,.® = THVIV,T, (4.10)
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Designate the subspace rotor 7, to satisfy that 77 VAV, T, = I,, then we can get & =
THAVHV,T,.. Assumethat V, = Q,R,, where Q, € CV*" is a matrix composed of
orthonormal columns, and R, € C™*" is an upper triangular matrix. Find amatrix Q €
C™*" such that
Q = R,T, (4.11)
It is obviously seenthat Q¥ Q = T RY R, T, = THVHV,T, = I,. Replace V, in (4.5)
by V, = Q. R, to get
Q.R.T,® = V,R'R,T, (4.12)

and consider (4.11) and (4.12) to procure
Q.Q® = V,R;'Q (4.13)
=Q® = Q;'V,R;'Q (4.14)
Then, we can find the diagona matrix ® as
®=Q"Vv,Q (4.15)

where ¥, € C"™*" is

=0l vR" (4.16)
However, the basic concepts of the recursive adaptive ESPRIT approaches would describe
in the following subsection composed of (4.15), (4.16), and the QR-factorization form

4.2.2 Adaptive ESPRIT Algorithmswith O(Nr?) Complexity

According to the conclusion described above, we obtain a simple idea to do parameters
estimation. Assume that we obtain the signal subspace Q(t) estimated from subspace

tracker, we can divide it into two submatrices as

Va(t)
= (4.17)
Vy(t)
Then implement the QR-factorization of V,(¢) such as
Va(t) = Qu(t) Ra(t) (4.18)
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From (4.16), the ¥, (¢) isgiven as
Uy (t) = Q7 ()V, (1) R (1) (4.19)

Thus, we can solve this problem by implementing the eigenvalue decomposition. How-

ever, thisis aconcept of batch processing and required alot of computations.
Subsequently, we introduce an adaptive ESPRIT algorithm using the LORAF2 sub-

space tracking. Thefirst step is to separate z, (t) defined in Section 3.1.1 into two sub-

- [ (1)

zy(t)
Then apply (3.9), (4.17), and (4.20) to develop the time-update recursions for the split-

Vectors as

(4.20)

subspace as

Vi(t) = Valt — DO(t) 4z, () F7 (1) (4.21)
V,(t) 2V, (t = 1)O(L) + z,) £ (t) (4.22)

Furthermore, replace V,.(¢) in (4.21) by the QR=factori zation formin (4.18) to get
Qu(H)Re(t) = Qu(t — VYRt = 1)O(t) + 2, (t) £ (1) (4.23)

The next step isto specify

ha(t) = QY (t — 1)z, (t) (4.24)
Zr(t) = 2,(t) — Qu(t — 1hy(t) (4.25)
zZo(t) = |lzz ()5 22 (1) (4.26)

and to use these equation to represent z,,(¢) in the form as
z.(t) = |2z (1) 1525 () + Qu(t — Dhu(?) (4.27)
Replace z,(t) in (4.23) with (4.27) and rearrange the form to obtain

Q.m0 = [ Q-1 =] | _ufii?ffzﬁ?f NI
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Now, introduce a complex multiple Givens plane rotation matrix G (t) and apply it to

transform (4.28) into two updated forms as

R | _ ( R.(t = 1)O(t) + ho (1) £ (¢) (4.29)
0---0 Iz @®)]2£" (1)
Q) @) | =] Q-1 =) |Gl (4.30)

For the purpose of finding the pure updated form of Q). (t), we extract two components

©.(t) and f,(t) from therotor G (

Gy = | ¢ o ]
e @ru—na.0 s
£ F ) <>

Thus, we can obtain the pure updated formrof R (¢) shown in (4.29) and the pure updated
formof Q. (t) as

Qu(t) =Q, (=)0t} + Z5 (1) f (1) (4.32)
These are two important componehts of this algorithm based on the concept of QR reduc-
tion. From the equation (4.19), an idea that directly update the matrix product H,,(t) as

theform
H,(t) = Qi (t)V,(#) (4.33)
is presented. Substitute (4.22) and (4.32) into (4.33) to obtain the new representation for

H, (t) and deduce it to the recursive form as

H,(t) = [0 () Ho(t = 1) + fo(Dhi (D]O(1)
+ 107 (t)hay (8) + 7ay (1) £ (D] (2) (4.34)

where b, (t), hy,(t), and v,,(t) are defined as that

Bua(t) = V(¢ — 1)Z2(1) (435
hyy(t) = Qf(t — 1)z, (t) (4.36)
Yay(t) = (25 (1)) 2, (1) (4.37)
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Finally, we can find the desired matrix ¥, by
W, (t) = H,(t) R, (t) (4.38)

The remained procedure for parameter estimation is to solve the eigenvalue decomposi-
tion of W,.

Although this approach requires O(Nr?) computational complexity per time update,
it exhibits the useful adaptive processing for parameters estimation, and its quasicode is
listed in Tabel 4.1.

4.2.3 Adaptive ESPRIT Algorithmswith O(Nr) Complexity

In this subsection, we will introduce another adaptive ESPRIT algorithm also proposed
in [4]. Thismethod utilizing the LORAF 3 subspace tracking has the same basic concept
as the one described in the last subsection. The difference from the last one with O(Nr?)
complexity is the approximation.of O(¢) == £ and.the" triangular plus rank one’ form of
R(t) in (3.13) which are both presented in LORAF3 su_bspace tracking .

We use the similar procedure i (4.21) and-(4.22) to directly divide (3.7) into two split

form as

V) vt | = [ -1 =0 | 6T (4.39)
G v | = ve-1 =0 |6 (4.40)
Toreplace V,(t) and V,.(t — 1) by their QR factors to obtain
| QOR() v.() |
= [ Qu(t = DRy (t = 1) |lz2 ()25 (1) + Qult — Dhy(t) | G7 (1) (4.42)

Then rewrite (4.41) by product form of partitioned matrices as
Q.0 4.0 | [

_ [ Qu(t—1) Z:(1) } GH (1) (4.42)




Table 4.1: ADAPTIVE ESPRIT ALGORITHM O(Nr?) USING LORAF 2 SUBSPACE

TRACKING

Equation

Computations  Storage Sizes

Initiaize: Q..(0)

Hw<0) = 07"><r
Input from Subspace Tracker:

Partitions:

T

Ere—
extract

w(t) = VIt = 1)Z; (1)

Rxl (t) -

Ro(t) |

. =

Gy (t) =
h Y
hqy(t) = Q' (
Vay(t) = (E@%(
Qx(t) = Qx(t -

] ; Rr<0):Ir><r

= 2(t) — Qu(t — 1)hy(#)

2z (t)]l2 = [z (1)]

Z(t) = ||zr (Ol =0 (¢ _

aR,(t — 1)O(t) + h,(O)F (1)
Iz ()]l (t)

G (t) R (t)

O,(t) Q7 (t—1)g,(t)

£ (Z 1) e, )

—_

(t—1)+ f.(ORIL(D)]O)
(t) + 7y (t) FL(O1F7 ()

r3 2 3r
74‘27’ +7

r(r+1)(2r41)
3

Nr + 2r?




where v, (t) = Q.(t)r.(t) + g, (t)r.(t). Further, from (4.42), we can use the Givens

planerotation G, (t) to structure the updating form as

0.0 ) 00 =)l
Q. a0 ] =] Q-1 =0 |60 (4.44)

This case is the same as the LORAF3 subspace tracking, so requires only 2r — 1 unitary
Givens plane rotations to reduce the R, (¢t — 1) to R.(¢). In order to find the matrix
H,(t) = Q7 (t)V,(t), we previous consider the conjugated transposed form of (4.44) to
get

(4.45)

QI (t)
ql(t)

Thus, the recursive form of H,,(¢) can be deduce as follow

[ H,(t) @f(t)vyu)] 01 @)

= G,(1)

QI (t—1) ]

(Z (1)

T

N v, 0 |

a; (V1) ai (t)vy(t) | a.(?)
Qxlt — /1)
=Gt V,(t—1) z,(t) |G"(t)
(Z ()" [ ey ()}
= G, (1) Hut=1) hoy(0) GH(t) (4.46)
R (1) (1)

Thefinal step is equivalent to the last approach above.
The complete implementing procedure is summarized in Table 4.2. Attractively, this
technique utilizes only O(Nr) computational complexity each update in time, so it is

faster than the last one.

4.3 Fast Adaptive ESPRIT Algorithm with O(Nr) Com-
plexity Using OPAST Subspace Tracking

The adaptive ESPRIT algorithms described above can help us to handle many problems
about signal parameters estimation exactly, particularly for the spatial problem of estimat-
ing the DOA of signals. Since the techniques of adaptive signal processing are applied,
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Table 4.2: FAST ADAPTIVE ESPRIT ALGORITHM O(Nr) USING LORAF 3 SUB-

SPACE TRACKING

Equation Computations  Storage Sizes
Initialize: Q,(0) = [ T i Ro(0) = Lr
O(N—T’)XT
Hy(0) = 0,y N7+ 212
Input from Subspace Tracker:  Q(t—1) G(t)
z, (t)
Vit —1) ]
Partitions:  Q(t — 1)
V,(t—1)
Zo(t)
2y (1)
h.(t) = QE(t — 1)z,(t) Nr r
2, (t) = z(t) — Qu(t — Dhy(f) Nr
lzz ()2 = [z2 (1)) 2 (t) N 1
Z; () = llzz (D2 "2z (1) N
[ Rt —1) ) ] .
R (t) = GH (1) 24434l (r+1)?
0 [zL(B)]]2
ho(t) = VIt — 1)z, (1) Nr r
hyy(t) = QI (t — 1)z,(t) Nr r
Yoo (1) = (2 (1) 2, (1) N 1
Ro(t) ma(t) | _ Go(t) Rt (2) 32 _ (r+1)
[ 0-:0 () (forGa()
Qut) a,(0) | =] Qut—1) =) |GH@®)  aNr—2N
Hy(t) Qi (H)vy(t)
a; )V, (1) az (t)vy(t)
Hy(t = 1) hgy(t)
= G,(t) GH(t) 2(r +1)3
hi(t) ’ny(t) ]
U, (t) = Ho(t) R, () e r2
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the computational complexity can be low down successfully. It was proved that the per-
formances of these two approaches are satisfactory [4]. Especially, the second technique
reduce the computational complexity to O(Nr) at each time step, so the cost of compu-
tation is saving very much.

In this section, we propose a new adaptive ESPRIT technique utilizing the OPAST
subspace tracking. This method is very ssmple and is developed intuitively without any
complex principle. We only consider the description presented in Section 4.1, and repre-
sent the processing of our technique in the following text.

The first step is the same as other approaches. When we obtain the signal subspace
Wo(t) € C*¥*" from the OPAST subspace tracking, we divideit into two split submatri-

cesV,(t) € CN*mand V,(t) € CNV*"as

% ] (4.47)

Simultaneously, we separate theveetor p/(t) € C*'*! given from (3.24) into two split

Py [p = 4 ] (4.48)

P, (1)
where p/, (¢) and p),(t) both have the same dimension (¢ CV*!). Consider (3.23), (4.47),

subvectors as

and (4.48) together, we can get two updating recursions as

Vo(t) = Vot — 1) + pl(t)g" (t) (4.49)
V,(t) =V, (t = 1) + pl,(t)g" (¢) (4.50)

where g(t) € C™! is come from the OPAST algorithm. Obviously, (4.49), and (4.50)
can be regarded as the update form of the split signal subspaces respectively effected by
the subarrays, Zx and Zy. Review the basic concept described in Section 4.1, it is not
difficult to find the effort shown in (4.8). There is an instinctive idea about that we can
obtain an adaptive processing form with low complexity by directly updating the matrix

products V.7V, and V'V, . For the purpose of implementing the idea, we define two
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matrix products H,(t) € C™" and Hy(t) € C"*" as
Hy(t) = VA (H)Va(2) (451)
Hy(t) = VE (£)V, (1) (4.52)

Then we substitute the equation (4.49) into (4.51) to obtain the form as

Hi(t) = [Vo(t — 1) + pl(t)g" ()] [Va(t — 1) + pl(t)g" (1))
)

+aq(t)[pu ()] Va(t — 1)
+ (D)@ (1) (4.53)

where p,(t) € Cand Q,.(r) € C"™*" are defined as
pi(t) =[P Pi(t) (4.54)
Q- S aaa™t) E (4.55)

It issuccessful that we find an updati ng Fecursion of the matrix product H;(t). We further
apply (4.49), (4.50) and (4.52) to do the similar'work to obtain the form as

Hy(t) = [Vo(t — 1) +p()g" ()] [V (t = 1) + py(H)g" (1))
= Hy(t — 1)
+ V(= 1)y (g™ (t)
+q(t)[p,(1)]"V,(t - 1)
+ po(t)Q, (1) (4.56)

where py(t) € R hastherelation as
pa(t) = [p,(D)]"P), (1) (4.57)

Consequently, the purpose for finding the direct updating recursionsis achieved. Thefina
step isthat utilize (4.53) and (4.56) to find the matrix product ¥, (¢) € C"™*" as

Wy (t) = [Hi(t)] " Ha(t) (4.58)
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Thus, the desired phase delay or wanted signal parameters can be estimated by imple-
menting the eigenval ue decomposition of W, (¢). It isworth to note that the initial values
of H;(0) and H,(0) must be set suitably. Since theinitial value of signal subspace matrix
Wo(0) has been set in the OPAST algorithm, we must compute the matched H,(0) and
H,(0) as

| IN><N ]
Hl(o) = W{;’(o) [ Inyn Onxn ] WO<O) (4-59)
| Ovxn |
]N><N
H(0) = WO | " [ 0w Do | Wol0) (4.60)

However, our techniqueis very simple and intuitive without introducing any complex
concepts of ‘QR-reduction’ and * Givens plane rotation’. Although this approach is also
required O(Nr) computational complexity per time update, the amounts of computations
of thistechnique is practically lessthan the'approaches described in the last section. The
effort of computation costs saving is more obvious when the signal source number r is
more large. Thisiswhy we call it *fast adaptive ESPRIT’. Furthermore, our simulations
demonstrate the fact that the performance of our approach isidentical to thefirst presented
method with O(Nr?) complexity above. 1nthe next chapter, we will show the results of
simulations and do a discussion of comparing the amounts of computations and storage
sizes with three techniques. We will also exhibit the summary of our adaptive ESPRIT
approach in Table 4.3.

Of course, our technique is also suitable to apply the PAST subspace tracking. The
amounts of computations are slightly less than our technique using the OPAST subspace
tracking since the inherent property in the algorithm for subspace tracking. However, it
lacks the advantages of the OPAST subspace tracking. Thus, we will do not consider our

technique utilizing the PAST subspace tracking in next chapter.
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Table 4.3: FAST ADAPTIVE ESPRIT ALGORITHM O(Nr) USING OPAST SUB-
SPACE TRACKING

Equation Computations Storage Sizes
Initialize:
Inxn
H,(0) = W&(0) " [ Inxn Onxn } Wo(0)
| Ovxn |
]N N
Hy(0) = WHO) | | [ Oyan Iwvaw | Wo(0) 2?2
| Ovxn |
Input from Subspace Tracker:

Wot—1) ; p(t) ; Q.(t)

Partitions:
Wot—1)— | Y ]
Vy(t=1)
- [ P!
p,(t)

pi(t) = [P, (0] P (t) N 1
p2(t) = [P (1) P, (1) N 1
Hy(t) = Hi(t—1)

+VI(t = Dp (g (t) Nr+7°

+q(t) [P, ()] Va(t — 1)

+p1 (1) Q- (1) r’
Hao(t) = Hat — 1)

+VI(t = 1)pl (t)g" (¢) Nr+7?

+q(t) [P, ()]"V, (t — 1) Nr +1r?

+p2(t)Qr (¢) r?
U(t) = (Hi(t)) ' Ho(t) i r?
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Chapter 5

SIMULATION RESULTSAND
COMPARISON

In this chapter, computer simulationsfor DOA estimation by Matlab program demonstrate
the applicability and the performance of the adaptive ESPRIT algorithm utilizing OPAST
subspace tracking which we propose in Section 4.3. Simultaneously, we also simulate the
two adaptive ESPRIT algorithms:using LORAE subspéce trackers described in Section
4.2 for comparison. For simplicity, the discussed three adaptive ESPRIT algorithms are
called ESPRIT-OPAST, ESPRIT-LORAF2, and ESPRIT-LORAF3 respectively. Simula-
tion results show that ESPRIT-OPAST has the tracking performance aimost identical to
ESPRIT-LORAF2 and ESPRIT-LORAF3. Then we aso compare the required computa-
tional complexity and memory sizesto realize each adaptive ESPRIT algorithm.

5.1 Simulation Results

Consider the desired parameters ¢, = wyd sin(6y)/c for DOA estimation shown in Sec-
tion 2.2, the ¢ is the speed of light obvioudly. If we assume that the frequency f, =
wo/(2m) is 150M H z and the displacement § is equal to 2m, we can obtain a relation
or = 2msin(fy) = 27, Hence, for simplicity in our simulations, our task isto estimate
v, = sin(fy) instead of 0. The received data is generated according to the data model
described in Section 2.2 ((2.1) to (2.9)), when the number of source » and the SNR are
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given. Furthermore, the forgetting factors o and 5 in al algorithms are set equal to 0.98
in the overall simulations here.

In the first experiment, the signal sources with constant v, are observed. Consider
three cases, one signal sources collected by 6 sensor doublets, two signal sources collected
by 10 sensor doublets, and four signal sources collected by 50 sensor doublets. Each case
issimulated in both conditions, 3d B SNR and 0d B SNR. The simulation results are show
in Figure 5.1 to Figure 5.6. We can find that the tracking curves of three algorithms are
very close.

In the second experiment, we compare the performance of the algorithms in tracking
two signals with crossed phase delay v, by 10 sensor doublets. Figure 5.7 and Figure 5.8
show that the signal sources with the larger slope and the shorter snapshots in two kinds
of environments,3d B SNR and —3d B SNR respectively. Then observe the signal sources
with the smaller slope and the longer.snhapshots: All three algorithms are simulated in
both 3dB SNR and —3dB SNR, and exhibit their results in Figure 5.9 and Figure 5.14.
The results show that three algorithms have almost the same performance as each other.

Finally, We now consider two-casesfor-that-feur signal sourcesimpinging on the array
composed of 50 sensor pairs. One'case is tracking the suddenly varied phase delay v,
and the other one istracking the smoothly varied one. Both two kinds of noise conditions,
3dB SNR and —3dB SNR, are set in each case for three agorithms. Figure 5.15 to Figure
5.26 display the simulation results. From the figures, we can find that three approaches
almost have the same performance since the tracking curves of three algorithms are almost
overlapped.

However, ESPRIT-OPAST has the performance nearly identical to ESPRIT-LORAF2
and ESPRIT-LORAF3.

5.2 Computational Complexity

In the comparison of the computational complexity, we have knownthat ESPRIT-LORAF2
requires O(Nr?) complexity per time updating, but ESPRIT-OPAST and ESPRIT-LORAF3

both only need O(Nr) complexity each time step. Now we want to know the amounts
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Table 5.1: COMPARISON IN COMPUTATIONAL COMPLEXITY
computations

ESPRIT-LORAF2  3N72 4 11N7 4 TN + 2% 4 g2 4 1Tr
ESPRIT-LORAF3  20N7 + N + 3r® + 16r? + 1L + 3
ESPRIT-OPAST ~ 11N7 + 10N + % 4+ 972 4 37 + 1

Table5.2: COMPARISON IN STORAGE
storage sizes

ESPRIT-LORAF2 3Nr+2N +9r2 +10r + 6
ESPRIT-LORAF3 3Nr+2N 4+ 82+ 11r+7
ESPRIT-OPAST 2N7r 4+ 2N +5r2 +2r +6

of computations per time recursion for three kinds of techniques respectively. The com-
putations of every operation are shown in the Tables which are the summaries of the
algorithms. We now calculate the sum of al the procedures for each of the three a-
gorithms, ESPRIT-LORAF2, ESPRIT-LORAF3 and ESPRIT—OPAST , and show in the
Table 5.1. While one ‘givens plane rotor’ operation is equal to two ‘mac’ operationsin
the two approaches, LORAF2 and L ORAF3: However, the effects of the O(r?) and O(r)
are dlight since the fact N > r exists exactly in the most practical applications. The
required amounts of computations for ESPRIT-LORAF3 are about 20Nr + N + O(r?),
but for ESPRIT-OPAST are only about 11N7 + 10N + O(r*). Thus, It is obviously that
ESPRIT-OPAST requires the least amounts of computations each time updating.

5.3 Storage Size

In the discussion of the amounts of the storage sizes, we attempt to understand that which
one of these algorithms requires the least amounts of storage spaces. We also list the
storage spaces required in every operation in the Tables. The sum of all necessary storage
sizes for each agorithm is show in the Table 5.2. ESPRIT-OPAST needs 2Nr + 2N +
512 + 2r + 6 storage sizes which are smaller than others. Undoubtedly, ESPRIT-OPAST

saves the storage sizes most.
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Figure 5.8: DOA estimation for two signal sources with the crossed phase delays, N = 10

, SNR =-3dB

0.5

0.45

©
~

o
w
a

o
w

0.25

o
)

0.15

]

*

A

ESPRIT
ESPRIT
ESPRIT

Ideal

OPAST

LORAF2

LORAF3

40

60

Time Snapshot

80

0.5

0.45

o
~

o
w
a

o
w

0.251

o
(V)

0.15
A

0.1

0.05

o

*

A

ESPRIT
ESPRIT,
ESPRIT,

OPAST

LORAF2

LORAF3

Ideal

100

40

60

Time Snapshot

48

80

100



0.5 T T

ESPRIT o aqr
0.45} _
0.4 [, »
S o _ 7
~ 0.35} >l Al
S ~ ,_
= < N~
n03r I W / .
~ \
=< - \'\,ﬂ
> 025¢ p <_,<( -
®
D \\
o 02r - ,-/’, |
© P —
M -
o 015t /.,/_/’/ ~ o \\\ _
& /‘;./—' \t\\
01" ~
0.05 _
0 1 1 1 1 1
0 100 200 300 400 500 600

Time Snapshot

Figure 5.9: DOA estimation for-two signal ‘sources 'with the crossed phase delays via
ESPRIT-OPAST, N =10, SNR =3dB

0.5 T T
ESPRITLORAFz
0.451 A
0.4 :'c\/:, A
S -
~ 0.35f RS -
D ~ ,.-.
?:_/ S \"\“
“0.3F I W / g
1 ~ \
> ST
> 0.25f > <_x~C’ 1
©
o P / \\
§ 0.2 -7
< Phe \.
T 015k /‘//_/// > \\\ _
A ~ T
01" ~
0.05F A
0 1 1 1 1 1
0 100 200 300 400 500 600

Time Snapshot
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Figure5.17: DOA estimationfor four signal sourcaawith the phase delays varies suddenly
viaESPRIT-LORAF3, N =50, SNR=3dB
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Figure5.18: DOA estimation for four signal sourceswith the phase delays varies suddenly
viaESPRIT-OPAST, N =50, SNR = -3dB
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Figure5.19: DOA estimationfor four signal sourcaawith the phase delays varies suddenly
viaESPRIT-LORAF2, N =50, SNR=-3dB
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Figure5.20: DOA estimation for four signal sourceswith the phase delays varies suddenly
viaESPRIT-LORAF3, N =50, SNR =-3dB
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Figure 5.21: DOA estimation for four signal solrces with the phase delays varies
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Figure 5.22: DOA estimation for four signal sources with the phase delays varies
smoothly via ESPRIT-LORAF2, N =50, SNR = 3dB
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Figure 5.24: DOA estimation for four signal sources with the phase delays varies
smoothly via ESPRIT-OPAST, N =50, SNR =-3dB
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Chapter 6

CONCLUSIONS

In thisthesis, the OPAST subspace tracking is employed to develop a new and fast adap-
tive ESPRIT algorithm with O(Nr) computational complexity. The derived approach
is straightforward simple and intuitive in no need of QR-reduction, sequential orthogo-
nal iteration, and Givens plane rotation which are used in developing adaptive ESPRIT
algorithms existing in literature. -Our method requires only about 11 N7 + 10N + O(r?)
computational complexity every update and savesthe more amounts of computationsthan
ESPRIT-LORAF2 and ESPRIT-LORAFRS. It.is@aso examined that this method requires
the least storage spaces compared with ESPRIT-LORAF2 and ESPRIT-LORAF3. Com-
puter simulations further demonstrate that for DOA estimation our algorithm manifests

nearly the same performance as both ESPRIT-LORAF2 and ESPRIT-LORAFS3.
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