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使用正交投影近似子空間追蹤技術之快速

適應性 ESPRIT方法

研究生:蘇衍禎 指導教授: 鄭木火博士

國立交通大學電機與控制工程學系

摘要

本論文提出一種新的使用正交投影近似子空間追蹤技術之快速適應性ESPRIT 方

法。 ESPRIT是一項以子空間法為基礎的演算法,其主要的功用在於進行信號參數的估測,

尤其是應用在利用由N對感應器所組成之陣列的輸出資料來進行r個信號源的方位估測

(N必須大於r)。 這套演算法在最初設計時, 即是以批次式信號處理為基礎, 因此需要繁雜

的計算量來處理特徵值分解的問題。 目前適應性 ESPRIT 演算法的實現, 即是結合子空

間追蹤技術以及傳統 ESPRIT 方法去降低運算複雜度。 在本論文中, 我們先針對古典的

ESPRIT演算法以及適用於信號源方位估測的資料模型作一簡單的描述,然後介紹由 Pe-

ter Strobach 所提出的兩種適應性 ESPRIT 方法; Peter Strobach 利用 QR 化簡、 時序正

交疊代、Given plane rotation的概念提出 LORAF2、LORAF3兩種子空間追蹤技術, 再進

一步發展出兩套適應性 ESPRIT 演算法。 我們在論文中提出一種使用正交投影近似子空

間追蹤技術的快速適應性 ESPRIT方法,本方法相當簡單且直觀,不需引入任何複雜的數

值分析概念,且在每一次的更新處理中, 只需要約11Nr + 10N + O(r3)的計算量,和 Pe-

ter Strobach 的兩種方法相比較,本技術的確有效降低了計算量和記憶量的需求成本。我

們同時也藉由電腦模擬證實,本論文所提出的技術在信號源方位估測的應用上,的確擁有

與 Peter Strobach的方法相同的效能。

關鍵詞: 適應性信號處理,正交投影近似子空間追蹤技術,方位估測,子空間
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Student: Yan-Jhen Su Advisor: Dr. Mu-Huo Cheng

Institute of Electrical and Control Engineering

National Chiao-Tung University

Abstract

This thesis proposes a new and fast adaptive ESPRIT algorithm using orthonormal

projection approximation subspace tracking (OPAST) technique. The estimation of signal

parameters via rotational invariance techniques (ESPRIT) is an attractive subspace-based

algorithm for estimating signal parameters, particularly the directions of arrival (DOA)

of a set of r narrowband signal sources collected by an array composed of N sensor

doublets, where N > r. The ESPRIT algorithm, originally designed in a batch signal

processing, requires large amounts of computations to implement eigenvalue decompo-

sition. Recently, the adaptive ESPRIT algorithm is realized normally by combining an

adaptive subspace tracker with classical ESPRIT to reduce the arithmetic operation com-

plexity. In this thesis, we describe the classical ESPRIT algorithm and the data model

for DOA estimation first. Then, we present some simple introductions for two adap-

tive ESPRIT algorithms proposed by Peter Strobach. Peter Strobach uses the concepts

of QR-reduction, sequential orthogonal iteration, and Givens plane rotation to develop

two subspace trackers, called LORAF2 and LORAF3, then further proposes two adap-

tive ESPRIT algorithms. Further we propose a fast adaptive ESPRIT technique utilizing

the OPAST method to implement works for real-time processing. This technique is very

simple and intuitive in no need of many complex concepts in numerical analysis, and re-

quires only about 11Nr+10N+O(r3) computational complexity every update. Compare

II



with the adaptive ESPRIT algorithms proposed by Peter Strobach, our method indeed ef-

fectively saves the costs of computations and storage sizes. By computer simulations of

DOA estimations, we also demonstrate that it has the good performance identical to the

adaptive ESPRIT algorithms proposed by Peter Strobach.

Keywords:ESPRIT, Adaptive signal processing, OPAST, DOA estimation, Subspace
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Chapter 1

INTRODUCTION

1.1 Background

In many practical signal processing applications, the super-resolution algorithms of sig-

nal parameters estimation are very significant. Such applications include the temporal

problem of estimating the frequencies of complex sinusoids in additive receiver noise,

and the spatial problem of estimating the directions-of-arrival (DOA) of incident plane

waves corrupted by additive sensor noise. The simplest and statistically optimal solution

for frequency or DOA estimations is the classical Fourier-based method. Another satis-

factory approach is the subspace-based super-resolution technique. The better technique

has become attractive method for frequency or DOA estimation in the signal processing

since it gives us the precise algebraic structures of signals and noises. The signal sub-

space is the space spanned by the eigenvectors corresponding to the larger components

of eigenvalues of the input data autocorrelation matrix, and the noise subspace spanned

by the eigenvectors corresponding to the smaller ones. The signal and noise subspaces

usually represent the statistics of the signal and the additive noise respectively, and they

are always mutually orthogonal.

Most of these approaches require the extraction of one of the two subspaces, so it

would not be necessary to calculate the full eigenvalue decomposition (ED). The multiple

signal classification (MUSIC) algorithm [10]-[11],[16] and the minimum-norm method

[12],[16] utilize the noise subspace, while the estimation of signal parameters via rota-
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tional invariance techniques (ESPRIT) algorithm [1],[8]-[9] utilizes the signal subspace.

From the computational viewpoint, the significant advantage of ESPRIT is that it produces

signal parameter estimation directly in terms of ED without implementing the search pro-

cedure inherent in other methods like as MUSIC and the minimum-norm method. Al-

though ESPRIT attractively reduces the computation and storage costs, it also has been

based on batch ED of the signal correlation matrix or on singular value decomposition

(SVD) of the data matrix in implemention. This method is inadvisable for real-time pro-

cessing because it requires repeated ED or SVD on every updating which is very time

consuming. Thus, the development of the adaptive ESPRIT algorithm is necessary for

real-time frequency or DOA estimations.

1.2 Motive and Literatures Review

ESPRIT algorithm is a class of subspace-based super-resolution techniques, thus ED of

the signal correlation matrix or SVD of the data matrix plays an important role to split

a signal into one desired signal subspace and the other unwanted noise subspace. The

ESPRIT is first introduced on block and off-line processing, and the required decompo-

sition is computationally expensive. In order to overcome computational complexity and

be suitable for on-line processing, many adaptive algorithms for subspace tracking have

been researched in resent years. A class of high efficient adaptive subspace tracker based

on sequential orthogonal iteration [13] is presented by Peter Strobach [5]; LORAF1 is

based on QR decomposition [15] and requires O(Nr2) complex arithmetic operations at

each time step, where the number of sensors N is much larger than the number of sig-

nal sources r. LORAF2 uses the operation of Givens plane rotations [15] to replace the

QR decomposition and also needs O(Nr2) computation complexity. Only the O(Nr)

computational complexity is necessary for LORAF3, which utilizes some approximation

and requires only (2r − 1) operations of a Givens plane rotation. Furthermore, Peter

Strobach also presents Bi-SVD1 O(Nr2) and Bi-SVD2 O(Nr) [6] based on bi-iteration

SVD concept. In reference [2], Bin Yang proposes PAST subspace tracker with O(Nr)

computation complexity. It relies on a different interpretation of the signal subspace as the

2



resolution of an unconstrained minimization problem, and uses the recursive least squares

(RLS) methods [16] to track the signal subspace. Orthonormal PAST (OPAST) O(Nr)

algorithm [3] consists of PAST algorithm plus an orthonormalization step proposed by K.

Abed-Meraim. It promises that the columns of the signal subspace are exact orthonormal

per iteration. Note that the necessary operations for each formula are calculated in terms

of multiply-accumulate ‘Mac’ operations.

The adaptive ESPRIT algorithm is realized normally by combining an adaptive sub-

space tracker with classical ESPRIT to reduce the arithmetic operation complexity. Peter

Strobach presents two adaptive ESPRIT algorithms [4] which used a special QR-reduction

[15]. One adaptive ESPRIT needs O(Nr2) + O(r3) computation complexity for realiza-

tion; this algorithm exploits the subspace trackers of O(Nr2) category such as LORAF2

or Bi-SVD1. The other adaptive ESPRIT needs O(Nr) + O(r3) ; it uses the ‘triangular

plus rank one’ category as LORAF3 with O(Nr) computational complexity for subspace

tracking.

In this thesis, we develop a fast adaptive ESPRIT algorithm based on OPAST subspace

tracking. This technique can reduce the total computation complexity to O(Nr)+O(r3),

and represents the advantage of saving computations and storage sizes. The simulation

performance of this approach is also the same as the adaptive ESPRIT algorithms with

LORAF2 or Bi-SVD1 subspace tracker presented by Peter Strobach.

1.3 Organization of the Thesis

The remainder of this thesis is divided into five chapters including conclusions. Chapter

2 reviews the major data model for DOA estimation and the classical ESPRIT algorithm.

Chapter 3 introduces four kinds of subspace trackers, LORAF2, LORAF3, PAST, and

OPAST. Chapter 4 exhibits an introduction of the adaptive ESPRIT algorithms using LO-

RAF2 and LORAF3 subspace trackers and proposes the fast adaptive ESPRIT algorithm

utilizing OPAST subspace tracking. Chapter 5 demonstrates the computer simulations

and illustrates comparisons with other adaptive ESPRIT algorithms. The final chapter is

the conclusions.
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Chapter 2

REVIEW OF ESPRIT ALGORITHM

In order to develop an adaptive ESPRIT algorithm for real-time DOA estimation, the

fundamental understanding of the basic ESPRIT algorithm [1] is necessary. A simple

introduction of ESPRIT background is described first. Then we present the data model for

the DOA estimation based on the spatial sensors array. Subsequently, the basic principle

of ESPRIT approach is elaborated in Section 3. Finally, there is a simple summary for a

class of ESPRIT algorithm, total least squares ESPRIT(TLS-ESPRIT).

2.1 Background of ESPRIT Algorithm

The DOA estimation is one of the array processing problems which relied on the spatial

properties of the signals impinging on the array of sensors. Until the mid-1970’s, the di-

rection finding (DF) methods required the knowledge of the array directional sensitivity

pattern in investigative form, and the antenna designer would have to construct an array of

antennae according to a prespecified sensitivity pattern. It was a difficult task to analyze

the array directional sensitivity pattern, because it was usually an intricately nonlinear

problem. Schmidt presented the MUSIC algorithm [10]-[11] based on subspace tech-

nique by taking a geometric view of the signal parameters estimation problem in 1977,

then developed it continually. One of the significant breakthroughs contributed by the

MUSIC algorithm was the ability to treat the problems with arbitrary arrays of sensors.

Schmidt’s research mainly helped the designer out of such constraints by reducing the an-
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alytical complexity that could be realized by calibrating the array. Thus, the highly non-

linear problem of analyzing the array response to a signal from a given direction could

be reduced to that of measuring and storing the response. The major disadvantage of

MUSIC is that it was achieved at a considerable cost in computation for searching over

parameter space and storage of array calibration information. However, although MUSIC

did not reduce the computational complexity of solution to the DF problem, it did extend

the applicability of super-resolution DOA estimation to arbitrary arrays of antennae.

MUSIC was the first of the super-resolution algorithms to precisely exploit the un-

derlying data model of narrow-band signals corrupted by additive sensor noise, but the

algorithm has several restrictions including the fact that complete information of the ar-

ray manifold is necessary, and that the search over parameter space is computationally

very expensive. ESPRIT [1] is a good subspace-based super-resolution approach to the

signal parameters estimation problem that uses the invariance properties of a sensor ar-

ray, and it is similar to MUSIC in that it precisely exploits the underlying data model.

MUSIC exploits the orthogonal properties of the noise subspace, but ESPRIT utilizes

the rotational invariance structure of the signal subspace. The ESPRIT super-resolution

method also exhibits significant virtues over MUSIC, because it does not need to search

the peaks over parameter space and dramatically reduces these computational complex-

ity and storage costs. In the topic of DOA estimation, the reductions are achieved by

requiring that the sensor array possess a displacement invariance, i.e., sensors occur in

matched pairs with identical displacement. Thus, ESPRIT just needs to know the con-

stant displacement between two antennae of each antenna pairs, and does not require the

complete information of the array manifold. For simplification, we will only represent the

description of the basic ideas behind ESPRIT for the problem of multiple sources DOA

estimation from data collected by an array of sensors. In order to simplify the discussions,

we deal only with single dimensional parameter spaces, e.g., azimuth-only direction find-

ing (DF) of far-field point sources, since the basic concepts are most easily understood

in such spaces. Narrow-band signals of known center frequency will be assumed for the

DOA/DF estimation problem. It is worth to note that a DOA/DF estimation problem is

classified as narrow-band if the signal bandwidth is small compared to the inverse of the
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transit time of a wavefront across the array, and the array response is not a function of

frequency over the signal bandwidth.

2.2 Data Model

ESPRIT algorithm can process the spatial problem of estimating the DOA of incident

plane waves corrupted by additive sensor noise, and the temporal problem of estimat-

ing the frequencies of complex sinusoids in additive receiver noise. The main difference

between the two problems by utilizing ESPRIT algorithm is that their data models have

some different sets. The DOA estimation is based on the spatial antennae array and the

data are collected by an array of sensors. But the frequency estimation utilizes the tem-

poral sampling concepts and the data are collected by only one antenna with different

sample snapshots. To simplify the description in this thesis, all the ensuing discussion

is focused on the problem of DOA estimation, and the data model of DOA estimation is

presented on the following context.

A basic assumption in the ESPRIT technique is that there is a planar array of arbitrary

geometry comprised of N matched sensor doublets, so there are 2N sensor components in

this array. The sensors in each doublet are translationally separated by a known constant

displacement δ and have the same sensitivity patterns. The sensor characteristics such

as phase, gain, and polarization sensitivity of the elements in the doublet are arbitrary as

long as the sensors are pairwise-identical, and there is a manifest requirement that each

element has nonzero sensitivity in all interesting directions.

Further, assume that there are a number of r ≤ N independent narrow-band signals

located sufficiently far from the array such that the wavefronts impinging on the array

are planar in homogeneous isotropic transmission media. These sources have known

central frequency ω0 and may be concerned to be stationary zero-mean random processes

or deterministic signals. Additive independent white noise is assumed to be a stationary

zero-mean random process and present at all 2N sensors. There is an illustration shown

in Figure 2.1.

In order to describe the effect of the translational invariance of the sensor array by
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Figure 2.1: Sensor array for DOA estimation utilizing ESPRIT

mathematics, it is convenient to represent the array as being composed of two subarrays,

ZX and ZY , the same in every consideration even though physically displaced (not ro-

tated) from each other by a known displacement. Further, we can present the received

signals at the ith doublet as:

xi(t) =

r∑
k=1

sk(t)ai(θk) + nxi
(t) (2.1)

yi(t) =
r∑

k=1

sk(t)e
jω0δ sin θk/cai(θk) + nyi

(t) (2.2)

where sk(t) is the kth wavefront source signal, θk is the direction-of-arrival of the kth

source, ai(θk) is the ith sensor of either subarray complex response for the kth wavefront

source impinging on the array from direction θk, c is the propagative speed, nxi
(t) and

nyi
(t) are the additive white noise in the ith doublet for subarrays ZX and ZY , respectively.

In order to present the procedure of ESPRIT conventionally, we will combine the

outputs of each of the sensors in the two subarrays and rewrite the received data in matrix

notation as follows:

x(t) = As(t) + nx(t) (2.3)

y(t) = AΦs(t) + ny(t) (2.4)

Where x(t) is an N × 1 vector as:

x(t) = [x1(t) · · ·xN(t)]T (2.5)
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where the superscript T denotes the transpose operation, and y(t), nx(t), and ny(t) are

similarly defined N × 1 vectors. A is the N × r steering matrix whose columns a(θk) =

[a1(θk) · · ·aN(θk)]
T are composed of the array directional responses for the r wavefront

sources, and is presented as below:

A � A(θ) = [a(θ1) · · ·a(θr)] (2.6)

s(t) is the r×1 vector of impinging signals as observed at the reference sensor of subarray

ZX , and is given by:

s(t) = [s1(t) · · · sr(t)]
T (2.7)

The Φ is a diagonal r × r matrix of the phase delays between the doublet sensors for the

r sources, and is described as:

Φ = diag{ejϕ1, ejϕ2, · · · , ejϕr} (2.8)

where ϕk = ω0δ sin(θk)/c. It is worth to note that Φ is a unitary matrix relating the mea-

surements from subarray ZX to those from subarray ZY . Φ is a simple scaling operator in

the complex field. However, it is isomorphic to the real two dimensional rotation operator

and is, therefore, referred to as a rotation operator.

Further, we will combine the two subarray output vectors, and define the total array

output as z(t), like as:

z(t) =

⎡
⎣ x(t)

y(t)

⎤
⎦ = As(t) + nz(t) (2.9)

A =

⎡
⎣ A

AΦ

⎤
⎦ (2.10)

nz(t) =

⎡
⎣ nx(t)

ny(t)

⎤
⎦ (2.11)

In the next section, we will describe how to exploit the structure of A to obtain the esti-

mation of the diagonal elements of Φ without having to know A.
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2.3 ESPRIT-The Invariance Approach

The primary concept behind the ESPRIT algorithm relies on taking advantage of the un-

derlying rotational invariance of the signal subspace induced by the translational invari-

ance of the sensor array. The relevant signal subspace is the one composed of the outputs

from the two pairwise-matched subarrays described before, ZX and ZY . Synchronous

sampling of the output data of the two subarrays induces to two sets of vectors, EX and

EY , which span the same signal subspace. Theoretically, the relevant signal subspace

spanned by the columns of A. The derivation of the ESPRIT algorithm is based on the

following operations for the case in which the underlying 2N dimensional signal subspace

consisted of the total array output data. The relevant signal subspace can be induced by

accumulating a sufficient number of measurement information and determining any set of

r linearly independent vectors when the noise is absent. There is a major method to find

the applicable signal subspace by utilizing the information of the covariance matrix for

the measurement data that composed of r uncorrelated zero-mean complex sinusoids and

an additive zero mean white noise process of variance σ2, as:

RZ = E{zzH} = ARSA
H

+ RN (2.12)

Where RS = E{ssH}, and RN = E{nzn
H
z } = σ2I . The superscript H denotes the

Hermitian transposition, and E{·} denotes the expection. After doing the eigendecompo-

sition of RZ , we obtain:

RZ = ESΛSEH
S + ENΛNEH

N (2.13)

Obviously, the eigenvalues are arranged in a decreasing order and denoted as follow:

λ1 ≥ · · · ≥ λr > λr+1 = · · · = λ2N = σ2. The signal subspace is spanned by ES ,

the eigenvectors of RZ corresponding to the r first eigenvalues; and the noise subspace

is spanned by EN , the eigenvectors corresponding to the remaining 2N − r smallest

eigenvalues. Clearly, span{ES} = span{A}, and it is the same as R{ES} = R{A},

where the R denotes the range space.

Because R{ES} = R{A}, we can find an unique nonsingular matrix T such that

ES = AT (2.14)
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Then the invariance structure of the array indicates that ES can be divided into EX ∈
CN×r and EY ∈ CN×r such that

ES =

⎡
⎣ EX

EY

⎤
⎦ =

⎡
⎣ AT

AΦT

⎤
⎦ (2.15)

Obviously, the subspace spanned by the steering matrix A is equivalent to EX and EY ,

and it is easily seen that

R{EX} = R{EY } = R{A} (2.16)

We rearrange EX and EY to a new matrix EXY ∈ CN×2r as

EXY �
[

EX EY

]
(2.17)

The rank of EXY is r because EX and EY share a common column space. Thus, it implies

that we can get an unique rank r matrix F ∈ C2r×r spanned by the null space of EXY such

that

0 =
[

EX EY

]
F =

[
EX EY

]⎡
⎣ FX

FY

⎤
⎦ = EXFX + EY FY (2.18)

= ATFX + AΦTFY (2.19)

Further define

Ψ � −FX [FY ]−1 (2.20)

Then we can rearrange equation (2.19) to

ATΨ = AΦT � ATΨT−1 = AΦ (2.21)

If we assume that A is full rank, we can get

TΨT−1 = Φ (2.22)

Therefore, the diagonal matrix which is composed of the eigenvalues of Ψ is equiva-

lent to Φ. Once the rotational invariance matrix Ψ obtained, the DOA estimation is also

accomplished by implementing the eigendecomposition of Ψ. In ESPRIT algorithm, the

signal parameters are obtained as nonlinear functions of the eigenvalues of the operator Ψ
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that maps one set of vectors EX that span a N dimensional signal subspace into another

EY . In other words, EXΨ = EY (substituting (2.21) for (2.15)) reflects the rotational in-

variance property of the received signal data subspace of the two subarrays, ZX and ZY .

This relationship is the key in the development of ESPRIT and its important characteristic.

2.4 Summary of the TLS ESPRIT Covariance Algorithm

For the sake of understanding the procedure of the ESPRIT algorithm further, a simple

instance about the TLS ESPRIT algorithm which is a basic class of ESPRIT to be pre-

sented. The summary of the TLS ESPRIT algorithm based on a covariance is formulated

as follows.

1. Get an estimation of RZ , denoted R̂Z , from the measurement data Z.

2. Implement the eigendecomposition of R̂Z ,

R̂Z = EΛ1E
H

3. Estimate the number of signal sources r̂.

4. Obtain ES which contains r̂ eigenvectors in E corresponding to the r̂ largest eigen-

values, and denote ES =

⎡
⎣ EX

EY

⎤
⎦.

5. Rearrange the two submatrices EY and EY ,

EXY �
[

EX EY

]

6. Calculate the eigendecomposition,

EH
XY EXY = EΛ2E

H

and separate E into four r̂ × r̂ submatrices,

E �

⎡
⎣ E11 E12

E21 E22

⎤
⎦
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7. Set the matrix Ψ = −E12E
−1
22 .

8. Find the eigenvalues of Ψ,

φ̂k = λk(Ψ), ∀k = 1, . . . , r̂

9. Estimate θ̂k = f−1(φ̂k) ; for DOA estimation, θ̂k = sin−1{c arg(φ̂k)/(ω0δ)}.
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Chapter 3

SUBSPACE TRACKING

ALGORITHM

Signal subspace-based high-resolution techniques have become attractive methods for

both spatial and temporal domain spectral analysis, and have been successfully applied

to many problems for signal processing. These applications widely contain many areas

such as DOA estimation, frequency estimation, bearing estimation, digital beamforming,

data compression, system identification, data filtering, pattern recognition, and moving

target indication. Most of these subspace methods are based on the principle of extracting

a low dimensional subspace from the estimated autocorrelation matrix of input signal.

The subspace spanned by the eigenvectors corresponding to the larger eigenvalues of the

covariance matrix of observations is referred to as the signal subspace, because it usually

expresses the statistics of the signal. Respectively, the noise subspace usually represents

the statistics of the additive noise and is spanned by the eigenvectors corresponding to

the smaller eigenvalues of the covariance matrix of observations. This thesis is focused

on the spatial problem of DOA estimation of plane waves impinging on an antenna array

solved by ESPRIT algorithm, and it mainly utilizes the properties of the signal subspace.

However, implementations of these subspace-based approaches have been carried out

by using batch eigenvalue decomposition (ED) of the sample covariance matrix or singu-

lar value decomposition (SVD) of the data matrix. In the application of real-time process-

ing, this method is unacceptable since it is necessary to process repeated ED/SVD, which
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is very time consuming and computation costly. If these subspaces are extracted without

calculating the associated eigenvalues or eigenvectors, a significant computational effort

can be realized. In order to achieve this purpose, a number of adaptive algorithms for sub-

space tracking has been proposed, and subspace tracker has become an important tool in

real-time signal processing recently. There are several approaches for tracking the signal

subspace in [2]-[3], [5]-[6]. This thesis is based on the orthonormal projection approx-

imation subspace tracking (OPAST) and we compare it with the method based on the

low-rank adaptive filter (LORAF) subspace tracker. Hence we review the two subspace

tracking algorithms in this chapter.

3.1 LORAF Subspace Tracking

The low rank adaptive filters (LORAF) technique proposed by Peter Strobach [5] is a

class of fast subspace tracking approaches. The principal concept of this subspace tracker

is based on sequential orthogonal iteration. Assume X(t) is an L×N data matrix, where

L is a finite number of time snapshots and N is the number of array sensors. Define Γ(t)

as the N × N sample covariance matrix of the data matrix X(t).

Γ(t) = XH(t)X(t) (3.1)

Then consider an N × r recursion matrix Q(t) composed of orthonormal column vectors,

where r is the number of the signal sources. Subsequently, we set the equation as:

Q(t)R(t) = Γ(t)Q(t − 1) (3.2)

where Q(t) and R(t) are the factor components of a QR-decomposition of the matrix

product A(t) = Γ(t)Q(t − 1). So we have the following recursion as

A(t) = Γ(t)Q(t − 1) (3.3)

A(t) = Q(t)R(t) (3.4)

This idea is an important concept known as simultaneous orthogonal iteration [13]. If Γ(t)

does not vary with time, the sequence of recursive matrix Q created by the recursion (3.3)
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and (3.4) will converge to the subspace consisted of the principal eigenvectors of Γ(t).

Furthermore, the sequence of triangular matrix R will converge to the diagonal matrix

composed of the dominant eigenvalues of Γ(t).

The representation above is the basic concept of the development of LORAF subspace

tracker. We just divide it into two class algorithms, LORAF2 and LORAF3, according

to their computational complexity. The complexity for implementing subspace tracking

by LORAF2 is O(Nr2) at each time step. LORAF3 just requires O(Nr) per iteration by

modifying LORAF2 with some assumption of approximation. Since these algorithms are

not the priority of this thesis, we just simply describe them in following sections.

3.1.1 LORAF2 Algorithm

In the first, we present the major important structural components that are usually relative

to the most proposed fast subspace tracking techniques. The development of LORAF2

algorithm based on sequential orthogonal iteration utilizes these concepts naturally.

The so called ‘initial data compaction’ procedure is the fundamental implementing

process in all fast subspace tracking techniques. Consider all operations occurred in the

condition that the localizations of signal sources or the characteristics of data change

slightly with time. Then, assume Q(t − 1) ∈ CN×r be an estimate of the delayed basis

matrix. Thus, we can utilize Q(t − 1) as a ‘data compressor’ on real input signal vector

as:

h(t) = QH(t − 1)z(t) (3.5)

Obviously, all information about the relative signal in z(t) is exactly mapped into the

much smaller vector h(t), which has the dimension r equal to the rank supplied by the

number of independently active signal sources. After this compaction, principal matrix

updating or recursion is achieved in the dimension r which is the rank of signal subspace.

This operation demands a quantification component of the innovation in input data vector

z(t). This innovation is indicated from the complement of the orthogonal projection of

z(t) onto the delayed subspace spanned by Q(t − 1) when implementing the algorithms
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of fast subspace tracking. So we can define this complement vector as:

z⊥(t) = z(t) − Q(t − 1)h(t) (3.6)

Further, we can obtain the updated estimate Q(t) of the actual basis matrix by utilizing

the operation of subspace rotation as:

[
Q(t) q(t)

]
=

[
Q(t − 1) z⊥(t)

]
GH(t) (3.7)

where z⊥(t) = ‖z⊥(t)‖−1
2 z⊥(t) is the normalized complement vector, G(t) ∈ C(r+1)×(r+1)

is a subspace rotor, and q(t) is a component of unweighted quantity. Note that the ‖ · ‖ is

the Euclidean vector norm. Deduce from (3.7) that we can write the subspace rotor in a

partitioned form as:

GH(t) =

⎡
⎣ QH(t − 1)Q(t) QH(t − 1)q(t)

zH
⊥ (t)Q(t) zH

⊥ (t)q(t)

⎤
⎦

=

⎡
⎣ Θ(t) �

fH(t) �

⎤
⎦ (3.8)

where ‘�’ indicates that they are uninteresting quantities. Consequently, replacing the

GH(t) in (3.7) by (3.8) leads to an equivalent expression form as:

Q(t) = Q(t − 1)Θ(t) + zH
⊥ (t)fH(t) (3.9)

The main difference between the various methods is how to find this subspace rotor. The

major task of the sequence of unitary plane rotations G(t) is to triangularize the matrix

R(t) ∈ C(r+1)×r with full rank as:
⎡
⎣ R(t)

0 · · ·0

⎤
⎦ = G(t)R(t) (3.10)

where R(t) is specified as an upper-right triangular matrix usually. R(t) has the different

structure according to the particular type of algorithm. For subspace tracking in LORAF2

algorithm here, R(t) has the form as:

R(t) =

⎡
⎣ αR(t − 1)Θ(t) + (1 − α)h(t)hH(t)

(1 − α)‖z⊥(t)‖2h
H(t)

⎤
⎦ (3.11)
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where 0 ≤ α ≤ 1 is well known a exponential forgetting factor.

Fortunately, the diagonal elements of R(t) converge to the principal eigenvalues of

the underlying data covariance matrix when implementing subspace tracking by LORAF2

algorithm or the other algorithms using the concepts of eigenvalue decomposition and or-

thogonal iteration. We can find that R(t) has the same structure in the case of subspace

tracking utilizing singular value decomposition concept [15], and the diagonal elements

of R(t) converge to the dominant singular values of the underlying data matrix. The

LORAF2 algorithm requires O(Nr2) complex arithmetic operations per iteration to im-

plement subspace tracking. All the steps of the LORAF2 algorithm for subspace tracking

is summarized in Table 3.1. Note that we will do some comparisons of the computation

costs and storage sizes by implementing DOA estimation in Chapter 5, so the input vector

z(t) shown in the Table 3.1 must be set the dimension as C2N×1. The dimensions of other

matrices in Table 3.1 must be adjusted to match the input vector.

Note that the way to reduce R(t) shown in (3.11) to triangular form R(t) (3.10) is to

utilize a full set of Givens plane rotations herein. All elementary rotations required here

are of the ‘annihilate bottom component by complex circular plane rotation’ type. The

elementary plane rotation is given as:
⎡
⎣ x′

1

0

⎤
⎦ =

⎡
⎣ c s∗

−s c

⎤
⎦

⎡
⎣ x1

x2

⎤
⎦ (3.12)

where x1 , x2, and x′
1 are complex numbers. In the rotor, c = ‖x1‖

ρ
is a real variable,

s = cx2

x1

is a complex variable, and ρ = (x2
1 + x2

2)
1/2. Note taht the superscript ∗ de-

notes the complex conjugation. The elaboration of utilizing the Givens plane rotations to

triangularize R(t) is shown in [4]-[5].

3.1.2 LORAF3 Algorithm

The LORAF3 algorithm for subspace tracking is next developed by requiring an assump-

tion of approximation to modify the LORAF2 method. Consider that Θ(t) = QH(t −
1)Q(t) shown in (3.8) can be regarded as a matrix of cosines of angles between the basis

vectors of successive subspaces, Q(t − 1) and Q(t). Usually, we require the exponential
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forgetting factor α close to 1 in practice, then the angles between the associated basis

vectors in two consecutive subspaces must be very small. Thus, it is reasonable to sub-

stitute Θ(t) in (3.11) for the identity matrix with slight or no performance penalty. This

approximation results in that R(t) has a new form as:

R(t) =

⎡
⎣ αR(t − 1) + (1 − α)h(t)hH(t)

(1 − α)‖z⊥(t)‖2h
H(t)

⎤
⎦ (3.13)

Obviously, this R(t) has a formation of the ‘triangular plus rank one’. This operation

reaches the purpose of saving computation since we utilize a succession of only 2r − 1

unitary Givens plane rotations to reduce R(t) to a triangular form R(t).

However, the computational complexity for doing subspace tracking by the LORAF3

algorithm is only O(Nr) per time update. There is a complete elaboration of the LORAF

algorithm shown in [5], and is summarized in Table 3.2. The input vector z(t) shown in

the Table 3.2 must be set the dimension as C2N×1 for implementing the DOA estimation.

The dimensions of other matrices in Table 3.2 must be adjusted to match the input vector.

3.2 PAST Subspace Tracking

The projection approximation subspace tracking (PAST) algorithm proposed by Bin Yang

[2] is a technique for tracking the signal subspace. The different interpretation of the

signal subspace as the solution of an unconstrained minimization problem is the major

concept of PAST algorithm. This minimization work can simplify to the exponentially

weighted least squares problem successfully by introducing the idea of appropriate pro-

jection approximation. Therefore, the Recursive least squares (RLS) technique can be

utilized to track the signal subspace efficiently, and this is the basis of PAST algorithm.

Consequently, the PAST algorithm can help us obtain the signal subspace by a computa-

tional complexity O(Nr).

The PAST approach is a robust and efficient method to find the signal subspace, and

quickly converges to an orthonormal matrix spanning the signal subspace in most case.

But the PAST method is unable to ensure the orthonormality of the weight matrix at each

iteration, and probably oscillates without convergence in some case. In order to assure
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Table 3.1: LORAF2 SUBSPACE TRACKING ALGORITHM

Equation Computations Storage Sizes

Initialize: Q(0) =

⎡
⎣ Ir×r

0(2N−r)×r

⎤
⎦ ; R(0) = 0r×r

Θ(0) = 0r×r ; 0 ≤ α ≤ 1 2Nr + 2r2 + 1

Input: z(t) t = 1, 2, · · · 2N

h(t) = QH(t − 1)z(t) 2Nr r

z⊥(t) = z(t) − Q(t − 1)h(t) 2Nr

‖z⊥(t)‖2 =
√

zH
⊥ (t)z⊥(t) 2N 1

z⊥(t) = ‖z⊥(t)‖2z⊥(t) 2N

R1(t) =

⎡
⎣ αR(t − 1)Θ(t − 1) + (1 − α)h(t)hH(t)

(1 − α)‖z⊥(t)‖2h
H(t)

⎤
⎦r3

2
+ 2r2 + 5r

2
r2 + r

⎡
⎣ R(t)

0

⎤
⎦ = G(t)R1(t)

r(r+1)(2r+1)
3

(r + 1)2

(forG(t))

GH(t) =

⎡
⎣ Θ(t) ∗

fH(t) ∗

⎤
⎦ −−−−→

extract Θ(t) ; f (t)

Q(t) = Q(t − 1)Θ(t) + zH
⊥ (t)fH(t) 2Nr2 + 2Nr
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Table 3.2: LORAF3 SUBSPACE TRACKING ALGORITHM

Equation Computations Storage Sizes

Initialize: Q(0) =

⎡
⎣ Ir×r

0(2N−r)×r

⎤
⎦ ; R(0) = 0r×r

0 ≤ α ≤ 1 2Nr + r2 + 1

Input: z(t) t = 1, 2, · · · 2N

h(t) = QH(t − 1)z(t) 2Nr r

z⊥(t) = z(t) − Q(t − 1)h(t) 2Nr

‖z⊥(t)‖2 =
√

zH
⊥ (t)z⊥(t) 2N 1

z⊥(t) = ‖z⊥(t)‖2z⊥(t) 2N

R1(t) =

⎡
⎣ αR(t − 1) + (1 − α)h(t)hH(t)

(1 − α)‖z⊥(t)‖2h
H(t)

⎤
⎦ 3r2

2
+ 5r

2
r2 + r

⎡
⎣ R(t)

0

⎤
⎦ = G(t)R1(t) 3r2 − r

(r + 1)2

(forG(t))[
Q(t) ∗

]
=

[
Q(t − 1) z⊥(t)

]
GH(t) 8Nr − 4N

the orthonormality per iteration and to guarantee a global convergence characteristic, the

orthonormal PAST (OPAST) algorithm is presented by K. Abed-Meraim [3]. Attractively,

the OPAST algorithm has the same computational complexity as the PAST algorithm, and

the advantages of orthonormality and global convergence. We shortly review the PAST

and OPAST algorithms in the following subsections subsequently.

3.2.1 PAST Algorithm

Assume that x ∈ CN is a random vector process with the correlation matrix C =

E{xxH}. We consider the following scalar function

J(W ) = E{‖x − WW Hx‖2}
= tr(C) − 2tr(W HCW ) + tr(W HCW · W HW ) (3.14)

Where W ∈ CN×r(r < N) is a matrix argument, and it is assumed to have full rank r.

The symbol tr(·) denotes the trace operator. It is worth to note that there is no constraint
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on W . Particularly, we do not set any restriction on the norm of W . Thus, it is impossible

to maximize J(W ) since J(W ) is unbounded if the elements of W is close to infinity. So

we are focused on the minimum of J(W ). There are two important theorems are proposed

in [2]

Theorem 1 : W is a stationary point of J(W ) if and only if W = UrQwhere Ur ∈ CN×r

contains any r distinct eigenvectors of C and Q ∈ Cr×r is an arbitrary unitary

matrix. At each stationary point, J(W ) equals the sum of eigenvalues whose eigen-

vectors are not involved in Ur.

Theorem 2 : All stationary points of J(W ) are saddle points except when Ur contains the

r dominant eigenvectors of C. In this case, J(W ) attains the global minimum.

Some important comments are presented to remark on the theorems as follow.

1. If we find the signal subspace of C by minimizing J(W ) through iterative tech-

niques, the guarantee of a global convergence is promised. Because J(W ) has a

global minimum at which the column span of W equals the signal subspace and no

other local minima.

2. There are not any restrictions on the orthonormality of the columns of W . The

two theorems demonstrate that a solution W with orthonormal columns will auto-

matically result from minimizing J(W ) in (3.14). This signal subspace property

does a different exposition from those in the literature where the orthonormality

W HW = I is always required exactly in terms of an optimization constraint.

Then we further describe the development of the so called projection approximation

subspace tracking (PAST) algorithm based on the expression above. The first step is to

replace the expectation in (3.14) with the exponentially weighted sum, yielding

J(W (t)) =
t∑

i=1

βt−i‖x(i) − W (t)W H(t)x(i)‖2

= tr[C(t)] − 2tr[W H(t)C(t)W (t)] + tr[W H(t)C(t)W (t)W H(t)W (t)]

(3.15)
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The task of estimating the signal subspace at the time instant is affected by all input data

vectors obtainable in the time interval 1 ≤ i ≤ t. The introducing of the forgetting factor

0 < β ≤ 1 is meant to guarantee that input data in the distant past are down-weighted in

order to afford the tracking capability when the system works in a nonstationary environ-

ment.

Apparently, J(W (t)) in (3.15) is the same as J(W ) in (3.14) excluding the utilization

of the exponentially weighted sample correlation matrix

C(t) =

t∑
i=1

βt−ix(i)xH(i) = βC(t − 1) + x(i)xH(i) (3.16)

in place of C = E{xxH}.

Consequently, both theorems presented before also apply to J(W (t)). On the other

hand, an orthonormal basis of the signal subspace spanned by the r dominant eigenvectors

of C(t) is constructed by the set of column vectors of W (t) which minimizes J(W (t)).

Unfortunately, J(W (t)) is a fourth-order function of the elements of W (t) such that

it is necessary to minimize J(W (t)) by iterative approaches. The major key point of the

PAST algorithm is approximating W H(t)x(i) in (3.15), the unknown projection of x(i)

onto the column vectors of W (t) by the expression y(i) = W H(i− 1)x(i), which can be

computed for 1 ≤ i ≤ t at the time instant t. This idea produces a modified cost function

J ′(W (t)) =
t∑

i=1

βt−i‖x(i) − W (t)y(i)‖2 (3.17)

which is quadratic in the elements of W (t).

This concept of projection approximation is the reason of the name PAST, and it mod-

ifies the error performance surface of J(W (t)). Nevertheless, W H(t)x(i) is different

from W H(i− 1)x(i) slightly in the environment for stationary or slowly varying signals,

particularly when i is intended to t. Perhaps this dissimilarity is significant in the dis-

tant past with i 	 t. But the effect of past input data to the cost function is decreasing

for increasing t. Thus, it is predictable that J ′(W (t)) is a satisfactory approximation for

J(W (t)) and the matrix W (t) minimizing J ′(W (t)) is also a suitable estimate for the

signal subspace of C(t).
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The principal advantage of the PAST algorithm is the exponentially weighted least

squares criterion (3.17), which is well studied in the topic of adaptive filter. J ′(W (t)) is

minimized if

W (t) = Cxy(t)C
−1
yy (t) (3.18)

Cxy(t) =

t∑
i=1

βt−ix(i)yH(i) = βCxy(t − 1) + x(t)yH(t) (3.19)

Cyy(t) =
t∑

i=1

βt−iy(i)yH(i) = βCyy(t − 1) + y(t)yH(t) (3.20)

A recursive computational operation of the N × r matrix Cxy(t) and the r × r matrix

Cyy(t) just needs the computational complexity with only O(Nr) and O(r2). But the

computational complexity of calculation W (t) from Cxy(t) and Cyy(t) requires additional

O(Nr2) + O(r3). In order to implement a more efficient and more robust computation,

the RLS algorithm must be introduced.

The quasicode listing of the PAST algorithm for tracking the signal subspace is sum-

marized in the Table 3.3. Note that we set the dimension of input vector z(t) shown in the

Table 3.3 as C2N×1 in order to implement the DOA estimation. The other matrices in Ta-

ble 3.3 must be adjusted their dimensions to match the input vector. The operator Tri{·}
expresses that only the upper (or lower) triangular part of P (t) = C−1

yy (t) is computed and

its Hermitian transposed version is copied to the another lower (or upper) triangular part.

This RLS method can decrease the computational complexity and retain the Hermitian

symmetry of P (t) in occurrence of rounding errors.

Some conditions for the choice of P (0) and W (0) as that P (0) must be a Hermitian

positive definite matrix and W (0) should contain r orthonormal vectors. Both matrices

can be computed from arbitrary initial data. However, the simplest choice is to define

P (0) to the r × r identity matrix and the column vectors of W (0) to the r leading unit

vectors of the N × N identity matrix. Interestingly, these initial values merely affect the

transient behavior but not the steady state performance.

Note that this PAST algorithm also has two disadvantages. We minimize J ′(W (t)) in

place of J(W (t)), so we can not obtain the exact signal subspace of C(t). Second, there

is no promise that orthonormality of the columns of W (t) exists each recursion.
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Table 3.3: PAST SUBSPACE TRACKING ALGORITHM

Equation Computations Storage Sizes

Initialize: W (0) =

⎡
⎣ Ir×r

0(2N−r)×r

⎤
⎦ ; P (0) = Ir×r

0 ≤ β ≤ 1 2Nr + r2 + 1

Input: z(t) t = 1, 2, · · · 2N

y(t) = W H(t − 1)z(t) 2Nr r

h(t) = P (t− 1)y(t) r2 r

g(t) = h(t)
β+yH(t)h(t)

2r r

P (t) = 1
β
Tri{P (t − 1) − g(t)hH(t)} 2r2

e(t) = z(t) − W (t − 1)y(t) 2Nr

W (t) = W (t − 1) + e(t)gH(t) 2Nr

3.2.2 OPAST Algorithm

The orthonormal PAST (OPAST) algorithm [3] is a modification of the PAST algorithm.

The principal purpose of this algorithm is to ensure the column vectors of W (t) are ex-

actly orthonormal per iterative step. However, it has the advantages of orthonormality

and global convergence with the same computational complexity as the PAST algorithm.

Since this algorithm is developed from the PAST technique, undoubtedly, the two both

theorems presented by PAST algorithm also hold herein.

The OPAST algorithm is composed of the PAST algorithm and an additional orthonor-

malization procedure of the weight matrix per updating step

WO(t) � W (t)[W H(t)W (t)]−1/2 (3.21)

Where WO(t) means that orthonromalized W (t), and (W H(t)W (t))−1/2 indicates an in-

verse square root of (W H(t)W (t)). This updating equation of W (t) is utilized to imple-

ment the following computation. Noting that WO(t − 1) is an orthonormal matrix now,

we obtain

W H(t)W (t) = I + ‖p(t)‖2q(t)qH(t) = I + vvH

where W (t) = WO(t − 1) + p(t)qH(t), and p(t), and q(t) are shown in the Table 3.4.
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The fact that W H
O (t− 1)p(t) = 0 is used in this computation. We define v � ‖p(t)‖q(t),

and I is the identity matrix. Thus, we get

[W H(t)W (t)]−1/2 = I +
1

‖v‖2
(

1√
1 + ‖v‖2

− 1)vvH

= I + τ(t)q(t)qH(t) (3.22)

where

τ(t) �
1

‖q(t)‖2
(

1√
1 + ‖p(t)‖2‖q(t)‖2

− 1)

Utilizing the equations (3.21),(3.22), and the updating equation of W (t), we have a new

recursive version of WO(t) as

WO(t) = (WO(t − 1) + p(t)qH(t))(I + τ(t)q(t)qH(t))

= WO(t − 1) + p′(t)qH(t) (3.23)

where

p′(t) = τ(t)WO(t − 1)q(t) + (1 + τ(t)‖q(t)‖2)p(t) (3.24)

The summary of the OPAST algorithm is expressed in Table 3.4. Note that the input

vector z(t) shown in the Table 3.4 has the dimension with C2N×1 for implementing the

DOA estimation. The dimensions of other matrices in Table 3.4 must be also adjusted to

match the input vector.

The OPAST algorithm ensures exactly the orthonormality of the weight matrix WO(t)

per iteration, while the PAST algorithm merely converges to an orthonormal matrix asymp-

totically. There is a simulation in [3] to demonstrate that the OPAST algorithm and the

PAST algorithm have the identical asymptotic performance for the tracking the subspace.

In the discussion of computational complexity, the OPAST costs slightly more than the

PAST, but the order of operations are both identical to O(Nr) + O(r2). Furthermore,

an example [14] is exhibited next to demonstrate that the OPAST ensure having a global

convergence characteristic. Implement the eigendecomposition of C as

C =
[

U1 U2

] ⎡
⎣ Σ1 0

0 Σ2

⎤
⎦

⎡
⎣ UH

1

UH
2

⎤
⎦ (3.25)
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where the signal subspace has a subscript with 1 and the noise subspace has a subscript

with 2. Set a novel coordinate system for the weight matrix W (t)

[
U1 U2

]H

W (t) =

⎡
⎣ UH

1 W (t)

UH
2 W (t)

⎤
⎦ =

⎡
⎣ M1(t)

M2(t)

⎤
⎦ (3.26)

Consider this new coordinate system (3.26), the equation W (t) = CW (t − 1)(W H(t −
1)CW (t− 1))−1 shown in [3] is equivalent to

⎡
⎣ M1(t)

M2(t)

⎤
⎦ =

⎡
⎣ Σ1 0

0 Σ2

⎤
⎦

⎡
⎣ M1(t − 1)

M2(t − 1)

⎤
⎦

· (
⎡
⎣ M1(t − 1)

M2(t − 1)

⎤
⎦

H ⎡
⎣ Σ1 0

0 Σ2

⎤
⎦

⎡
⎣ M1(t − 1)

M2(t − 1)

⎤
⎦)−1 (3.27)

In the condition of Σ2 = 0, the equation result in
⎧⎨
⎩

M1(t) = ((M1(t − 1))H)−1

M2(t) = 0

(3.28)

This result indicates that the matrix M1(t) oscillates between two matrix values M1(t−1)

and ((M1(t − 1))H)−1. The advantage of the OPAST algorithm is having the ability to

prevent this oscillation since the matrix M1(t − 1) becomes unitary. In other words,

M1(t − 1) = ((M1(t − 1))H)−1.
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Table 3.4: OPAST SUBSPACE TRACKING ALGORITHM

Equation Computations Storage Sizes

Initialize: WO(0) =

⎡
⎣ Ir×r

0(2N−r)×r

⎤
⎦ ; P (0) = Ir×r

0 ≤ β ≤ 1 2Nr + r2 + 1

Input: z(t) t = 1, 2, · · · 2N

y(t) = W H
O (t − 1)z(t) 2Nr r

q(t) = 1
β
P (t − 1)y(t) r2 + r r

γ(t) = 1
1+yH(t)q(t)

r 1

p(t) = γ(t)[z(t) − WO(t − 1)y(t)] 2Nr + 2N

τ1(t) = qH(t)q(t) r 1

τ2(t) = pH(t)p(t) 2N 1

τ(t) = 1
τ1(t)

[ 1√
1+τ1(t)τ2(t)

− 1] 2

p′(t) = τ(t)WO(t − 1)q(t) + [1 + τ(t)τ1(t)]p(t) 2Nr + 4N + 1

Qr(t) = q(t)qH(t) r2 r2

P (t) = 1
β
P (t − 1) − γ(t)Qr(t) 2r2

WO(t) = WO(t − 1) + p′(t)qH(t) 2Nr
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Chapter 4

ADAPTIVE ESPRIT ALGORITHM

In the practical applications, the characteristic parameters of signal sources usually are

not stationary but vary with time, such as the frequency or the position of signal source.

Therefore the direction of arrival (DOA) of signal source is usually different each unit

time. However, it is an important and necessary task to acquire the instantaneous infor-

mation of signal source in many communication signal processing applications. In order

to satisfy this requirement, the development of adaptive ESPRIT algorithm for DOA esti-

mation is needed.

In all the adaptive ESPRIT algorithms, they usually utilize the real-time subspace

tracking to replace the eigenvalue decomposition of the data correlation matrix first, and

then process the following procedure by the batch methods or the adaptive techniques.

The subspace tracking algorithms have been described in Chapter 3, so we develop the

following adaptive ESPRIT techniques using the given signal subspace in this chapter.

The least-square (LS) based description of ESPRIT algorithm is represented in order to

suit the ensuing presentation. Then there is a simple introduction for the adaptive ESPRIT

algorithms using LORAF subspace tracking. Finally we develop an adaptive ESPRIT

algorithm utilizing OPAST subspace tracking technique. Our method has the performance

equivalent to other techniques and just requires only O(Nr) computational complexity

per iteration.
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4.1 The Description of ESPRIT Using LS Concpet

In order to develop the following adaptive ESPRIT algorithms, a different description

of ESPRIT utilizing least-square (LS) concept is represented [1],[4]. Assume that Vs ∈
C2N×r is the signal subspace which is estimated from the subspace tracking. The defini-

tions of N and r are identical to the data modal described in Section 2.2. From the presen-

tation of the Section 2.3, the fact that span{Vs} = span{A} the same as R{Vs} = R{A}
is existed exactly. Thus, undoubtedly, there must exist an unique nonsingular matrix

Tr ∈ Cr×r such that

A = VsTr (4.1)

This equation has equivalent significance as (2.14) , but with different form. By con-

sidering the equation (2.10) and (4.1), it is reasonable to separate Vs into the two ‘split

subspace’ matrices Vx ∈ CN×r and Vy ∈ CN×r as

A = VxTr (4.2)

AΦ = VyTr (4.3)

Apparently, the fact that

R{Vx} = R{Vy} = R{A} (4.4)

which similar to (2.16) is also held here. Further, the next step is replacing A in (4.3) by

(4.2) such that

VxTrΦ = VyTr (4.5)

However, this equation is an attractive form since the array steering matrix A is absent

here. The nonsingular subspace rotor matrix Tr is invertible, so we can apply T−1
r to

obtain

VxTrΦT−1
r = Vy (4.6)

The matrix V H
x is multiplied on the left of (4.6) in both sides, yielding

V H
x Vx(TrΦT−1

r ) = V H
x Vy (4.7)

Note that the fact from (4.4), the subspace spanned by the steering matrix A assumed full

rank in Section 2.3 is equivalent to Vx, so Vx is full rank with rank r. Obviously, V H
x Vx is
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also nonsingular, thus

TrΦT−1
r = (V H

x Vx)
−1V H

x Vy = Ψr (4.8)

Finally, the diagonal matrix Φ can be expressed as

Φ = T−1
r ΨrTr (4.9)

Thus, we can find the phase delay matrix Φ to accomplish the DOA estimation by im-

plementing the eigenvalue decomposition or diagonalization of Ψr. The principal task in

this chapter is to develop an adaptive technique to obtain Ψr requiring the given signal

subspace estimated from the subspace tracking approaches.

However, this LS based description of the ESPRIT algorithm which is slightly differ-

ent from the expression in Chapter 2. It is worth to note that A and AΦ reflect the rota-

tional invariance property because the signal subspaces of the two subarrays are identical.

This is the reason of that the ESPRIT algorithm called ‘rotational invariance techniques’.

4.2 Adaptive ESPRIT Algorithms Using LORAF Sub-

space Tracking

A class of fast recursive adaptive ESPRIT algorithms based on LORAF subspace tracking

is proposed by Peter Strobach [4]. These algorithms are developed by utilizing an espe-

cial QR-reduction that connects with the requirements of the recursive concept, and are

declared that they are extremely fast, well-structured, reliable, and unconditionally stable.

Because these algorithms are not our focuses, we only present simple introductions about

two approaches with O(Nr2) and O(Nr) complexity respectively in this section.

4.2.1 QR-Reduction Concept

In this subsection, we introduce the basic idea of QR-reduction for the ESPRIT algorithm.

Utilize TH
r V H

x to multiply both sides of (4.5) as

TH
r V H

x VxTrΦ = TH
r V H

x VyTr (4.10)
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Designate the subspace rotor Tr to satisfy that TH
r V H

x VxTr = Ir, then we can get Φ =

TH
r V H

x VyTr. Assume that Vx = QxRx, where Qx ∈ CN×r is a matrix composed of

orthonormal columns, and Rx ∈ Cr×r is an upper triangular matrix. Find a matrix Q ∈
Cr×r such that

Q = RxTr (4.11)

It is obviously seen that QHQ = TH
r RH

x RxTr = TH
r V H

x VxTr = Ir. Replace Vx in (4.5)

by Vx = QxRx to get

QxRxTrΦ = VyR
−1
x RxTr (4.12)

and consider (4.11) and (4.12) to procure

QxQΦ = VyR
−1
x Q (4.13)

⇒QΦ = QH
x VyR

−1
x Q (4.14)

Then, we can find the diagonal matrix Φ as

Φ = QHΨqQ (4.15)

where Ψq ∈ Cr×r is

Ψq = QH
x VyR

−1
x (4.16)

However, the basic concepts of the recursive adaptive ESPRIT approaches would describe

in the following subsection composed of (4.15), (4.16), and the QR-factorization form

Vx = QxRx.

4.2.2 Adaptive ESPRIT Algorithms with O(Nr2) Complexity

According to the conclusion described above, we obtain a simple idea to do parameters

estimation. Assume that we obtain the signal subspace Q(t) estimated from subspace

tracker, we can divide it into two submatrices as

Q(t) =

⎡
⎣ Vx(t)

Vy(t)

⎤
⎦ (4.17)

Then implement the QR-factorization of Vx(t) such as

Vx(t) = Qx(t)Rx(t) (4.18)
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From (4.16), the Ψq(t) is given as

Ψq(t) = QH
x (t)Vy(t)R

−1
x (t) (4.19)

Thus, we can solve this problem by implementing the eigenvalue decomposition. How-

ever, this is a concept of batch processing and required a lot of computations.

Subsequently, we introduce an adaptive ESPRIT algorithm using the LORAF2 sub-

space tracking. The first step is to separate z⊥(t) defined in Section 3.1.1 into two sub-

vectors as

z⊥(t) =

⎡
⎣ zx(t)

zy(t)

⎤
⎦ (4.20)

Then apply (3.9), (4.17), and (4.20) to develop the time-update recursions for the split-

subspace as

Vx(t) = Vx(t − 1)Θ(t) + zx(t)f
H(t) (4.21)

Vy(t) = Vy(t − 1)Θ(t) + zy(t)f
H(t) (4.22)

Furthermore, replace Vx(t) in (4.21) by the QR-factorization form in (4.18) to get

Qx(t)Rx(t) = Qx(t − 1)Rx(t − 1)Θ(t) + zx(t)f
H(t) (4.23)

The next step is to specify

hx(t) = QH
x (t − 1)zx(t) (4.24)

z⊥
x (t) = zx(t) − Qx(t − 1)hx(t) (4.25)

z⊥
x (t) = ‖z⊥

x (t)‖−1
2 z⊥

x (t) (4.26)

and to use these equation to represent zx(t) in the form as

zx(t) = ‖z⊥
x (t)‖2z

⊥
x (t) + Qx(t − 1)hx(t) (4.27)

Replace zx(t) in (4.23) with (4.27) and rearrange the form to obtain

Qx(t)Rx(t) =
[

Qx(t − 1) z⊥
x (t)

] ⎡
⎣ Rx(t − 1)Θ(t) + hx(t)f

H(t)

‖z⊥
x (t)‖2f

H(t)

⎤
⎦ (4.28)
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Now, introduce a complex multiple Givens plane rotation matrix Gx(t) and apply it to

transform (4.28) into two updated forms as
⎡
⎣ Rx(t)

0 · · ·0

⎤
⎦ = Gx(t)

⎡
⎣ Rx(t − 1)Θ(t) + hx(t)f

H(t)

‖z⊥
x (t)‖2f

H(t)

⎤
⎦ (4.29)

[
Qx(t) qx(t)

]
=

[
Qx(t − 1) z⊥

x (t)
]
GH

x (t) (4.30)

For the purpose of finding the pure updated form of Qx(t), we extract two components

Θx(t) and fx(t) from the rotor Gx(t) as

GH
x (t) =

⎡
⎣ QH

x (t − 1)

(z⊥
x (t))H

⎤
⎦ [

Qx(t) qx(t)
]

=

⎡
⎣ Θx(t) QH

x (t − 1)qx(t)

fH
x (t) (z⊥

x (t))Hqx(t)

⎤
⎦ (4.31)

Thus, we can obtain the pure updated form of Rx(t) shown in (4.29) and the pure updated

form of Qx(t) as

Qx(t) = Qx(t − 1)Θx(t) + z⊥
x (t)fH

x (t) (4.32)

These are two important components of this algorithm based on the concept of QR reduc-

tion. From the equation (4.19), an idea that directly update the matrix product Hw(t) as

the form

Hw(t) = QH
x (t)Vy(t) (4.33)

is presented. Substitute (4.22) and (4.32) into (4.33) to obtain the new representation for

Hw(t) and deduce it to the recursive form as

Hw(t) = [ΘH
x (t)Hw(t − 1) + fx(t)h

H
vx(t)]Θ(t)

+ [ΘH
x (t)hqy(t) + γxy(t)fx(t)]f

H(t) (4.34)

where hvx(t), hqy(t), and γxy(t) are defined as that

hvx(t) = V H
y (t − 1)z⊥

x (t) (4.35)

hqy(t) = QH
x (t − 1)zy(t) (4.36)

γxy(t) = (z⊥
x (t))Hzy(t) (4.37)

33



Finally, we can find the desired matrix Ψq by

Ψq(t) = Hw(t)R−1
x (t) (4.38)

The remained procedure for parameter estimation is to solve the eigenvalue decomposi-

tion of Ψq.

Although this approach requires O(Nr2) computational complexity per time update,

it exhibits the useful adaptive processing for parameters estimation, and its quasicode is

listed in Tabel 4.1.

4.2.3 Adaptive ESPRIT Algorithms with O(Nr) Complexity

In this subsection, we will introduce another adaptive ESPRIT algorithm also proposed

in [4]. This method utilizing the LORAF 3 subspace tracking has the same basic concept

as the one described in the last subsection. The difference from the last one with O(Nr2)

complexity is the approximation of Θ(t) = I and the ‘triangular plus rank one’ form of

R(t) in (3.13) which are both presented in LORAF3 subspace tracking .

We use the similar procedure in (4.21) and (4.22) to directly divide (3.7) into two split

form as

[
Vx(t) vx(t)

]
=

[
Vx(t − 1) zx(t)

]
GH(t) (4.39)

[
Vy(t) vy(t)

]
=

[
Vy(t − 1) zy(t)

]
GH(t) (4.40)

To replace Vx(t) and Vx(t − 1) by their QR factors to obtain

[
Qx(t)Rx(t) vx(t)

]

=
[

Qx(t − 1)Rx(t − 1) ‖z⊥
x (t)‖2z

⊥
x (t) + Qx(t − 1)hx(t)

]
GH(t) (4.41)

Then rewrite (4.41) by product form of partitioned matrices as

[
Qx(t) qx(t)

] ⎡
⎣ Rx(t) rx(t)

0 · · ·0 rx(t)

⎤
⎦

=
[

Qx(t − 1) z⊥
x (t)

] ⎡
⎣ Rx(t − 1) hx(t)

0 · · ·0 ‖z⊥
x (t)‖2

⎤
⎦GH(t) (4.42)
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Table 4.1: ADAPTIVE ESPRIT ALGORITHM O(Nr2) USING LORAF 2 SUBSPACE

TRACKING

Equation Computations Storage Sizes

Initialize: Qx(0) =

⎡
⎣ Ir×r

0(N−r)×r

⎤
⎦ ; Rx(0) = Ir×r

Hw(0) = 0r×r Nr + 2r2

Input from Subspace Tracker: Q(t−1) ; Θ(t)

z⊥(t) ; f (t)

Partitions: Q(t − 1) =

⎡
⎣ Vx(t − 1)

Vy(t − 1)

⎤
⎦

z⊥(t) =

⎡
⎣ zx(t)

zy(t)

⎤
⎦

hx(t) = QH
x (t − 1)zx(t) Nr r

z⊥
x (t) = zx(t) − Qx(t − 1)hx(t) Nr

‖z⊥
x (t)‖2 = [z⊥

x (t)]Hz⊥
x (t) N 1

z⊥
x (t) = ‖z⊥

x (t)‖−1
2 z⊥

x (t) N

Rx1(t) =

⎡
⎣ αRx(t − 1)Θ(t) + hx(t)f

H(t)

‖z⊥(t)‖2f
H(t)

⎤
⎦ r3

2
+ 2r2 + 3r

2
r2 + r

⎡
⎣ Rx(t)

0

⎤
⎦ = Gx(t)Rx1(t)

r(r+1)(2r+1)
3

(r + 1)2

(forGx(t))

GH
x (t) =

⎡
⎣ Θx(t) QH

x (t − 1)qx(t)

fH
x (t) (z⊥

x (t))Hqx(t)

⎤
⎦

−−−−→
extract Θx(t) ; fx(t)

hvx(t) = V H
y (t − 1)z⊥

x (t) Nr r

hqy(t) = QH
x (t − 1)zy(t) Nr r

γxy(t) = (z⊥
x (t))Hzy(t) N 1

Qx(t) = Qx(t − 1)Θx(t) + z⊥
x (t)fH

x (t) Nr2 + Nr

Hw(t) = [ΘH
x (t)Hw(t − 1) + fx(t)h

H
vx(t)]Θ(t)

+[ΘH
x (t)hqy(t) + γxy(t)fx(t)]f

H(t) 2r3 + 3r2 + r

Ψq(t) = Hw(t)R−1
x (t) r3

2
r2
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where vx(t) = Qx(t)rx(t) + qx(t)rx(t). Further, from (4.42), we can use the Givens

plane rotation Gx(t) to structure the updating form as
⎡
⎣ Rx(t) rx(t)

0 · · · 0 rx(t)

⎤
⎦ = Gx(t)

⎡
⎣ Rx(t − 1) hx(t)

0 · · ·0 ‖z⊥
x (t)‖2

⎤
⎦GH(t) (4.43)

[
Qx(t) qx(t)

]
=

[
Qx(t − 1) z⊥

x (t)
]
GH

x (t) (4.44)

This case is the same as the LORAF3 subspace tracking, so requires only 2r − 1 unitary

Givens plane rotations to reduce the Rx(t − 1) to Rx(t). In order to find the matrix

Hw(t) = QH
x (t)Vy(t), we previous consider the conjugated transposed form of (4.44) to

get ⎡
⎣ QH

x (t)

qH
x (t)

⎤
⎦ = Gx(t)

⎡
⎣ QH

x (t − 1)

(z⊥
x (t))H

⎤
⎦ (4.45)

Thus, the recursive form of Hw(t) can be deduce as follow
⎡
⎣ Hw(t) QH

x (t)vy(t)

qH
x (t)Vy(t) qH

x (t)vy(t)

⎤
⎦ =

⎡
⎣ QH

x (t)

qH
x (t)

⎤
⎦ [

Vy(t) vy(t)
]

= Gx(t)

⎡
⎣ QH

x (t − 1)

(z⊥
x (t))H

⎤
⎦ [

Vy(t − 1) zy(t)
]
GH(t)

= Gx(t)

⎡
⎣ Hw(t − 1) hqy(t)

hH
vx(t) γxy(t)

⎤
⎦GH(t) (4.46)

The final step is equivalent to the last approach above.

The complete implementing procedure is summarized in Table 4.2. Attractively, this

technique utilizes only O(Nr) computational complexity each update in time, so it is

faster than the last one.

4.3 Fast Adaptive ESPRIT Algorithm with O(Nr) Com-

plexity Using OPAST Subspace Tracking

The adaptive ESPRIT algorithms described above can help us to handle many problems

about signal parameters estimation exactly, particularly for the spatial problem of estimat-

ing the DOA of signals. Since the techniques of adaptive signal processing are applied,
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Table 4.2: FAST ADAPTIVE ESPRIT ALGORITHM O(Nr) USING LORAF 3 SUB-

SPACE TRACKING

Equation Computations Storage Sizes

Initialize: Qx(0) =

⎡
⎣ Ir×r

0(N−r)×r

⎤
⎦ ; Rx(0) = Ir×r

Hw(0) = 0r×r Nr + 2r2

Input from Subspace Tracker: Q(t−1) ; G(t)

z⊥(t)

Partitions: Q(t − 1) =

⎡
⎣ Vx(t − 1)

Vy(t − 1)

⎤
⎦

z⊥(t) =

⎡
⎣ zx(t)

zy(t)

⎤
⎦

hx(t) = QH
x (t − 1)zx(t) Nr r

z⊥
x (t) = zx(t) − Qx(t − 1)hx(t) Nr

‖z⊥
x (t)‖2 = [z⊥

x (t)]Hz⊥
x (t) N 1

z⊥
x (t) = ‖z⊥

x (t)‖−1
2 z⊥

x (t) N

Rx1(t) =

⎡
⎣ αRx(t − 1) hx(t)

0 ‖z⊥(t)‖2

⎤
⎦GH(t) r3

2
+ 5r2

2
+ 3r + 1 (r + 1)2

hvx(t) = V H
y (t − 1)z⊥

x (t) Nr r

hqy(t) = QH
x (t − 1)zy(t) Nr r

γxy(t) = (z⊥
x (t))Hzy(t) N 1⎡

⎣ Rx(t) rx(t)

0 · · · 0 rx(t)

⎤
⎦ = Gx(t)Rx1(t) 3r2 − r

(r + 1)2

(forGx(t))[
Qx(t) qx(t)

]
=

[
Qx(t − 1) z⊥

x (t)
]
GH

x (t) 4Nr − 2N⎡
⎣ Hw(t) QH

x (t)vy(t)

qH
x (t)Vy(t) qH

x (t)vy(t)

⎤
⎦

= Gx(t)

⎡
⎣ Hw(t − 1) hqy(t)

hH
vx(t) γxy(t)

⎤
⎦GH(t) 2(r + 1)3

Ψq(t) = Hw(t)R−1
x (t) r3

2
r2
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the computational complexity can be low down successfully. It was proved that the per-

formances of these two approaches are satisfactory [4]. Especially, the second technique

reduce the computational complexity to O(Nr) at each time step, so the cost of compu-

tation is saving very much.

In this section, we propose a new adaptive ESPRIT technique utilizing the OPAST

subspace tracking. This method is very simple and is developed intuitively without any

complex principle. We only consider the description presented in Section 4.1, and repre-

sent the processing of our technique in the following text.

The first step is the same as other approaches. When we obtain the signal subspace

WO(t) ∈ C2N×r from the OPAST subspace tracking, we divide it into two split submatri-

ces Vx(t) ∈ CN×r and Vy(t) ∈ CN×ras

WO(t) =

⎡
⎣ Vx(t)

Vx(t)

⎤
⎦ (4.47)

Simultaneously, we separate the vector p′(t) ∈ C2N×1 given from (3.24) into two split

subvectors as

p′(t) =

⎡
⎣ p′

x(t)

p′
y(t)

⎤
⎦ (4.48)

where p′
x(t) and p′

y(t) both have the same dimension (∈ CN×1). Consider (3.23), (4.47),

and (4.48) together, we can get two updating recursions as

Vx(t) = Vx(t − 1) + p′
x(t)q

H(t) (4.49)

Vy(t) = Vy(t − 1) + p′
y(t)q

H(t) (4.50)

where q(t) ∈ Cr×1 is come from the OPAST algorithm. Obviously, (4.49), and (4.50)

can be regarded as the update form of the split signal subspaces respectively effected by

the subarrays, ZX and ZY . Review the basic concept described in Section 4.1, it is not

difficult to find the effort shown in (4.8). There is an instinctive idea about that we can

obtain an adaptive processing form with low complexity by directly updating the matrix

products V H
x Vx and V H

x Vy . For the purpose of implementing the idea, we define two
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matrix products H1(t) ∈ Cr×r and H2(t) ∈ Cr×r as

H1(t) = V H
x (t)Vx(t) (4.51)

H2(t) = V H
x (t)Vy(t) (4.52)

Then we substitute the equation (4.49) into (4.51) to obtain the form as

H1(t) = [Vx(t − 1) + p′
x(t)q

H(t)]H [Vx(t − 1) + p′
x(t)q

H(t)]

= H1(t − 1)

+ V H
x (t − 1)p′

x(t)q
H(t)

+ q(t)[p′
x(t)]

HVx(t − 1)

+ p1(t)Qr(t) (4.53)

where p1(t) ∈ Cand Qr(r) ∈ Cr×r are defined as

p1(t) = [p′
x(t)]

Hp′
x(t) (4.54)

Qr(t) = q(t)qH(t) (4.55)

It is successful that we find an updating recursion of the matrix product H1(t). We further

apply (4.49), (4.50) and (4.52) to do the similar work to obtain the form as

H2(t) = [Vx(t − 1) + p′
x(t)q

H(t)]H [Vy(t − 1) + p′
y(t)q

H(t)]

= H2(t − 1)

+ V H
x (t − 1)p′

y(t)q
H(t)

+ q(t)[p′
x(t)]

HVy(t − 1)

+ p2(t)Qr(t) (4.56)

where p2(t) ∈ R has the relation as

p2(t) = [p′
x(t)]

Hp′
y(t) (4.57)

Consequently, the purpose for finding the direct updating recursions is achieved. The final

step is that utilize (4.53) and (4.56) to find the matrix product Ψh(t) ∈ Cr×r as

Ψh(t) = [H1(t)]
−1H2(t) (4.58)
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Thus, the desired phase delay or wanted signal parameters can be estimated by imple-

menting the eigenvalue decomposition of Ψh(t). It is worth to note that the initial values

of H1(0) and H2(0) must be set suitably. Since the initial value of signal subspace matrix

WO(0) has been set in the OPAST algorithm, we must compute the matched H1(0) and

H2(0) as

H1(0) = W H
O (0)

⎡
⎣ IN×N

0N×N

⎤
⎦ [

IN×N 0N×N

]
WO(0) (4.59)

H2(0) = W H
O (0)

⎡
⎣ IN×N

0N×N

⎤
⎦ [

0N×N IN×N

]
WO(0) (4.60)

However, our technique is very simple and intuitive without introducing any complex

concepts of ‘QR-reduction’ and ‘Givens plane rotation’. Although this approach is also

required O(Nr) computational complexity per time update, the amounts of computations

of this technique is practically less than the approaches described in the last section. The

effort of computation costs saving is more obvious when the signal source number r is

more large. This is why we call it ‘fast adaptive ESPRIT’. Furthermore, our simulations

demonstrate the fact that the performance of our approach is identical to the first presented

method with O(Nr2) complexity above. In the next chapter, we will show the results of

simulations and do a discussion of comparing the amounts of computations and storage

sizes with three techniques. We will also exhibit the summary of our adaptive ESPRIT

approach in Table 4.3.

Of course, our technique is also suitable to apply the PAST subspace tracking. The

amounts of computations are slightly less than our technique using the OPAST subspace

tracking since the inherent property in the algorithm for subspace tracking. However, it

lacks the advantages of the OPAST subspace tracking. Thus, we will do not consider our

technique utilizing the PAST subspace tracking in next chapter.
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Table 4.3: FAST ADAPTIVE ESPRIT ALGORITHM O(Nr) USING OPAST SUB-

SPACE TRACKING

Equation Computations Storage Sizes

Initialize:

H1(0) = W H
O (0)

⎡
⎣ IN×N

0N×N

⎤
⎦ [

IN×N 0N×N

]
WO(0)

H2(0) = W H
O (0)

⎡
⎣ IN×N

0N×N

⎤
⎦ [

0N×N IN×N

]
WO(0) 2r2

Input from Subspace Tracker:

WO(t − 1) ; p′(t) ; Qr(t)

Partitions:

WO(t − 1) =

⎡
⎣ Vx(t − 1)

Vy(t − 1)

⎤
⎦

p′(t) =

⎡
⎣ p′

x(t)

p′
y(t)

⎤
⎦

p1(t) = [p′
x(t)]

Hp′
x(t) N 1

p2(t) = [p′
x(t)]

Hp′
y(t) N 1

H1(t) = H1(t − 1)

+V H
x (t − 1)p′

x(t)q
H(t) Nr + r2

+q(t)[p′
x(t)]

HVx(t − 1)

+p1(t)Qr(t) r2

H2(t) = H2(t − 1)

+V H
x (t − 1)p′

y(t)q
H(t) Nr + r2

+q(t)[p′
x(t)]

HVy(t − 1) Nr + r2

+p2(t)Qr(t) r2

Ψh(t) = (H1(t))
−1H2(t)

4r3

3
r2
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Chapter 5

SIMULATION RESULTS AND

COMPARISON

In this chapter, computer simulations for DOA estimation by Matlab program demonstrate

the applicability and the performance of the adaptive ESPRIT algorithm utilizing OPAST

subspace tracking which we propose in Section 4.3. Simultaneously, we also simulate the

two adaptive ESPRIT algorithms using LORAF subspace trackers described in Section

4.2 for comparison. For simplicity, the discussed three adaptive ESPRIT algorithms are

called ESPRIT-OPAST, ESPRIT-LORAF2, and ESPRIT-LORAF3 respectively. Simula-

tion results show that ESPRIT-OPAST has the tracking performance almost identical to

ESPRIT-LORAF2 and ESPRIT-LORAF3. Then we also compare the required computa-

tional complexity and memory sizes to realize each adaptive ESPRIT algorithm.

5.1 Simulation Results

Consider the desired parameters ϕk = ω0δ sin(θk)/c for DOA estimation shown in Sec-

tion 2.2, the c is the speed of light obviously. If we assume that the frequency f0 =

ω0/(2π) is 150MHz and the displacement δ is equal to 2m, we can obtain a relation

ϕk = 2π sin(θk) = 2πνk. Hence, for simplicity in our simulations, our task is to estimate

νk = sin(θk) instead of θk. The received data is generated according to the data model

described in Section 2.2 ((2.1) to (2.9)), when the number of source r and the SNR are
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given. Furthermore, the forgetting factors α and β in all algorithms are set equal to 0.98

in the overall simulations here.

In the first experiment, the signal sources with constant νk are observed. Consider

three cases, one signal sources collected by 6 sensor doublets, two signal sources collected

by 10 sensor doublets, and four signal sources collected by 50 sensor doublets. Each case

is simulated in both conditions, 3dB SNR and 0dB SNR. The simulation results are show

in Figure 5.1 to Figure 5.6. We can find that the tracking curves of three algorithms are

very close.

In the second experiment, we compare the performance of the algorithms in tracking

two signals with crossed phase delay νk by 10 sensor doublets. Figure 5.7 and Figure 5.8

show that the signal sources with the larger slope and the shorter snapshots in two kinds

of environments,3dB SNR and −3dB SNR respectively. Then observe the signal sources

with the smaller slope and the longer snapshots. All three algorithms are simulated in

both 3dB SNR and −3dB SNR, and exhibit their results in Figure 5.9 and Figure 5.14.

The results show that three algorithms have almost the same performance as each other.

Finally, We now consider two cases for that four signal sources impinging on the array

composed of 50 sensor pairs. One case is tracking the suddenly varied phase delay νk,

and the other one is tracking the smoothly varied one. Both two kinds of noise conditions,

3dB SNR and −3dB SNR, are set in each case for three algorithms. Figure 5.15 to Figure

5.26 display the simulation results. From the figures, we can find that three approaches

almost have the same performance since the tracking curves of three algorithms are almost

overlapped.

However, ESPRIT-OPAST has the performance nearly identical to ESPRIT-LORAF2

and ESPRIT-LORAF3.

5.2 Computational Complexity

In the comparison of the computational complexity, we have known that ESPRIT-LORAF2

requiresO(Nr2) complexity per time updating, but ESPRIT-OPAST and ESPRIT-LORAF3

both only need O(Nr) complexity each time step. Now we want to know the amounts
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Table 5.1: COMPARISON IN COMPUTATIONAL COMPLEXITY

computations

ESPRIT-LORAF2 3Nr2 + 11Nr + 7N + 29r3

6
+ 9r2 + 17r

3

ESPRIT-LORAF3 20Nr + N + 3r3 + 16r2 + 19r
2

+ 3

ESPRIT-OPAST 11Nr + 10N + 4r3

3
+ 9r2 + 3r + 1

Table 5.2: COMPARISON IN STORAGE

storage sizes

ESPRIT-LORAF2 3Nr + 2N + 9r2 + 10r + 6

ESPRIT-LORAF3 3Nr + 2N + 8r2 + 11r + 7

ESPRIT-OPAST 2Nr + 2N + 5r2 + 2r + 6

of computations per time recursion for three kinds of techniques respectively. The com-

putations of every operation are shown in the Tables which are the summaries of the

algorithms. We now calculate the sum of all the procedures for each of the three al-

gorithms, ESPRIT-LORAF2, ESPRIT-LORAF3 and ESPRIT-OPAST, and show in the

Table 5.1. While one ‘givens plane rotor’ operation is equal to two ‘mac’ operations in

the two approaches, LORAF2 and LORAF3. However, the effects of the O(r2) and O(r)

are slight since the fact N � r exists exactly in the most practical applications. The

required amounts of computations for ESPRIT-LORAF3 are about 20Nr + N + O(r3),

but for ESPRIT-OPAST are only about 11Nr + 10N + O(r3). Thus, It is obviously that

ESPRIT-OPAST requires the least amounts of computations each time updating.

5.3 Storage Size

In the discussion of the amounts of the storage sizes, we attempt to understand that which

one of these algorithms requires the least amounts of storage spaces. We also list the

storage spaces required in every operation in the Tables. The sum of all necessary storage

sizes for each algorithm is show in the Table 5.2. ESPRIT-OPAST needs 2Nr + 2N +

5r2 + 2r + 6 storage sizes which are smaller than others. Undoubtedly, ESPRIT-OPAST

saves the storage sizes most.
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Figure 5.1: DOA estimation for one signal source with the constant phase, N = 6 , SNR =

3dB
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Figure 5.2: DOA estimation for one signal source with the constant phase, N = 6 , SNR =

0dB
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Figure 5.3: DOA estimation for two signal sources with the constant phase delays , N =

10 , SNR = 3dB
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Figure 5.4: DOA estimation for two signal sources with the constant phase delays , N =

10 , SNR = 0dB
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Figure 5.5: DOA estimation for four signal sources with the constant phase delays , N =

50 , SNR = 3dB
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Figure 5.6: DOA estimation for four signal sources with the constant phase delays , N =

50 , SNR = 0dB
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Figure 5.7: DOA estimation for two signal sources with the crossed phase delays , N = 10

, SNR = 3dB
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Figure 5.8: DOA estimation for two signal sources with the crossed phase delays , N = 10

, SNR = -3dB

48



0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time Snapshot

P
ha

se
 D

el
ay

 ν
k =

 s
in

(θ
k)

ESPRIT
OPAST

Figure 5.9: DOA estimation for two signal sources with the crossed phase delays via

ESPRIT-OPAST, N = 10 , SNR = 3dB
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Figure 5.10: DOA estimation for two signal sources with the crossed phase delays via

ESPRIT-LORAF2, N = 10 , SNR = 3dB
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Figure 5.11: DOA estimation for two signal sources with the crossed phase delays via

ESPRIT-LORAF3, N = 10 , SNR = 3dB
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Figure 5.12: DOA estimation for two signal sources with the crossed phase delays via

ESPRIT-OPAST, N = 10 , SNR = -3dB

50



0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time Snapshot

P
ha

se
 D

el
ay

 ν
k =

 s
in

(θ
k)

ESPRIT
LORAF2

Figure 5.13: DOA estimation for two signal sources with the crossed phase delays via

ESPRIT-LORAF2, N = 10 , SNR = -3dB
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Figure 5.14: DOA estimation for two signal sources with the crossed phase delays via

ESPRIT-LORAF3, N = 10 , SNR = -3dB
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Figure 5.15: DOA estimation for four signal sources with the phase delays varies suddenly

via ESPRIT-OPAST, N = 50 , SNR = 3dB
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Figure 5.16: DOA estimation for four signal sources with the phase delays varies suddenly

via ESPRIT-LORAF2, N = 50 , SNR = 3dB
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Figure 5.17: DOA estimation for four signal sources with the phase delays varies suddenly

via ESPRIT-LORAF3, N = 50 , SNR = 3dB
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Figure 5.18: DOA estimation for four signal sources with the phase delays varies suddenly

via ESPRIT-OPAST, N = 50 , SNR = -3dB
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Figure 5.19: DOA estimation for four signal sources with the phase delays varies suddenly

via ESPRIT-LORAF2, N = 50 , SNR = -3dB
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Figure 5.20: DOA estimation for four signal sources with the phase delays varies suddenly

via ESPRIT-LORAF3, N = 50 , SNR = -3dB
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Figure 5.21: DOA estimation for four signal sources with the phase delays varies

smoothly via ESPRIT-OPAST, N = 50 , SNR = 3dB
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Figure 5.22: DOA estimation for four signal sources with the phase delays varies

smoothly via ESPRIT-LORAF2, N = 50 , SNR = 3dB
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Figure 5.23: DOA estimation for four signal sources with the phase delays varies

smoothly via ESPRIT-LORAF3, N = 50 , SNR = 3dB
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Figure 5.24: DOA estimation for four signal sources with the phase delays varies

smoothly via ESPRIT-OPAST, N = 50 , SNR = -3dB
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Figure 5.25: DOA estimation for four signal sources with the phase delays varies

smoothly via ESPRIT-LORAF2, N = 50 , SNR = -3dB
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Figure 5.26: DOA estimation for four signal sources with the phase delays varies

smoothly via ESPRIT-LORAF3, N = 50 , SNR = -3dB
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Chapter 6

CONCLUSIONS

In this thesis, the OPAST subspace tracking is employed to develop a new and fast adap-

tive ESPRIT algorithm with O(Nr) computational complexity. The derived approach

is straightforward simple and intuitive in no need of QR-reduction, sequential orthogo-

nal iteration, and Givens plane rotation which are used in developing adaptive ESPRIT

algorithms existing in literature. Our method requires only about 11Nr + 10N + O(r3)

computational complexity every update and saves the more amounts of computations than

ESPRIT-LORAF2 and ESPRIT-LORAF3. It is also examined that this method requires

the least storage spaces compared with ESPRIT-LORAF2 and ESPRIT-LORAF3. Com-

puter simulations further demonstrate that for DOA estimation our algorithm manifests

nearly the same performance as both ESPRIT-LORAF2 and ESPRIT-LORAF3.
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