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Design of Offline and Adaptive Blind Equalizers
Using Subspace Approach

Student: Chia-Hua Lin Advisor: Dr. Mu-Huo Cheng

Institute of Electrical and Control Engineering

National Chiao-Tung University

Abstract

In wireless communication systems, equalization is often required in order to sup-
press the intersymbol interference (ISI) caused by multipath channels. Conventional ap-
proaches use training sequences for equalizer design which wastes the bandwidth. The
blind equalizer can perform equalization in no need of the training sequences and thus
achieves more efficient channel bandwidth usage. In this thesis, we present new meth-
ods based on the subspace approach for computing fractionally spaced blind equalizers in
single input multiple output (SIMO) systems.

We first present a new offline method using the properties of the channel matrix struc-
ture and the idea of mutually referenced filters. This method is later used to develop an
adaptive blind equalizer by employing the OPAST algorithm and the bi-iteration singular
value decomposition. We also use the idea of mutually reference filters to develop a new
blind equalizer design using the iterative least squares method. Finally, simulations are
performed to demonstrate the better performance of the proposed algorithms compared to

existing approaches.

Index Terms - Blind equalization, Adaptive equalization, intersymbol
interference, OPAST
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Chapter 1

| ntroduction

1.1 Introduction

In wireless communication systems, equalization process is often necessary in order to
suppress the intersymbol interference (ISl) caused by channels with multi-path phenom-
ena. The conventional equalization design is usually performed by using the information
known in a priori contained in a training sequence. Since the communication channels
are usually time varying, the training sequence must be sent periodically. Hence, much
bandwidth is wasted by sending the training sequence. The equalizer designed in no need
of the training sequence, referred to as the blind equalizer, draws much research interest
in recent years in order to obtain a more efficient channel bandwidth [1], [2].

Early blind equalizer is designed using a symbol-rate sampled mono-channel trans-
mission model in terms of second order or high order statistics of the received signals
[1]-[4]. The corresponding adaptive methods are classically designed via the stochastic
gradient descent scheme for minimizing one designed cost function. Lately, the use of ei-
ther the fractionally spaced samples in one sensor or multiple sensors reception arrays is
employed for the design of blind equalizer mainly for two reasons. One is that some high
order statistics methods such as the constant modulus algorithm (CMA) can be shown to
be globally convergent in this scheme and the other is that the blind equalizer is shown to

be achievable in this scheme merely based on the second order statistics of the received



signals [5].

Based on the multiple FIR channel model and second order statistics of the channel
outputs, many methods for blind equalizer design have been proposed. Some methods
perform the blind channel identification first, then the equalizer is designed from the ob-
tained channel. Some methods, such as the linear prediction-based approach [6], require
partial channel information; these methods are robust to channel order overestimation but

the performance will be degraded by the error in channel estimation.

1.2 Type of Blind Equalization Design

Recently, the subspace approach is an important technique for blind equalizer design
because the closed form solution can be derived via this approach. This approach, in
noise-free condition, yields perfect channel estimation using only a finite number of data.
The subspace algorithms decompose the received data into two mutually orthogonal sub-
spaces, namely the signal subspace and the noise subspaces. The orthogonality between
the signal and nose subspace enables direct channel identification or even direct estima-
tion of input symbols [1]-[4].

There are also some other methods that use neither channel estimation nor the struc-
ture of channel matrix, like mutually referenced equalizers (MRES) [5]. In these cases,
these methods requires nonlinear optimization, which may affect their convergence speed
and lager number of computations.

For adaptive blind equalization algorithms, like linear prediction methods, MREs,
and CMA. Direct blind equalization methods are also based on RLS and LMS solutions.
These algorithm use the algebraic structure of the received data sequence together with

statistical source properties.



1.3 Organization of the Thesis

The remainder of this thesis is divided into five chapters including conclusions. Chapter
2 explains that problem formulation including over-sampling a single sensor, multiple
sensor, and blind equalization design. Chapter 3 realizes the difference between current
method and our methods for off-line situation. Chapter 4 use some algorithm let off-line
situation of blind equalization become adaptive blind equalization. The final chapter is

the conclusions.



Chapter 2

Problem Formulation and Subspace

Blind Equalizer Design

In this chapter, we discuss the subspace approach for the design of blind equalizers. We
first discuss the formulation of received data either by oversampling a single sensor or
by sampling multiple sensors. Then the zero-forcing equalizer is obtained directly from
the formulation by the pseudoinverse technique. The subspace decomposition is shortly

reviewed and its application to the design of blind equalizer is then elaborated.

2.0.1 Received Data

Denotes,, as the transmitted digital symbol sequence at thwfiewhere theT' repre-
sents the symbol duration. These digital symbols are modulated, filtered, and transmitted
through the wireless communication channel; then the signal is received via antennas,

after filtering and demodulation, yielding the baseband continuous signal given by

o

2(t)= > swh(t —mT) +n(t) (2.1)

wheren(t) is the assumed additive noise and) denotes the equivalent channel impulse
response including the transmitter filter, receiver filter, channel response, and modula-
tion/demodulation. In this thesis, we assume that the channel impulse reggonkas

a finite duration; moreover we also assume that several measurements can be performed

4



during one transmission symbol peri@d The latter is realized either by sampling the
received signal on several sensors at theTater by oversampling the received signal on
a single sensor, or by combining both methods above. The digitized received signal and

its formulation via oversampling or multi-sensor is discussed below.

2.0.2 Oversampling on a Single Sensor

In this approach, the received signal is sampled at the ratewafiich is a fraction of the
symbol intervall’; that is, normally we have an integércalled the oversampling factor
such that, = T'/A. Hence, in one symbol intervdl, we obtainL digitized received data

zi(n) = x(to +iA +nT) for0 <i < L — 1. Using (2.1), we obtain

z;i(n) = z(ty + 1A +nT)

= Z Smh(to + 1A + nT —mT) + n(to + iA + nT)

= (2.2)
= i Smhi{n —m) + n;(n)

whereh;(n) = h(to+iA+nT), n;(n) = n(tp+iA+nT),and theindex =0,--- , L—1.
Then we can treat the received data as obtained from an equivalent multichannel setup
shown in Fig. 2.1 wheré,;(n) denotes thd'-sampled impulse of theth channelx;(n)
the baud-rate signal measured at the output of-tiechannely:;(n) the corresponding
noise sequence, ardthe number of channels.
Collecting all L channel measured outputs, channel responses, and measured noise

together as vectors, we have

xL_l(n) hL_l(TL) nL_l(n)

The vector form of (2.2) can be obtained as below

oo

x(n) = Z smh(n —m) 4+ n(n). (2.3)

m=—0oQ
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Fig. 2.1: Baud-rate digital multiple sensor model

Since we assume thatt) is causal and of finite duration, then all channel respange)
is finite. Assume that the maximum length/gfn) is of order)M, then the equation (2.3)

can be represented in a matrix form given by

[ 2(n)
x(n) =

| zr-1(n)
[ 70(0)  ho(1) o) || s ]

o m(0) ha(1) ha(M) Sn-1

2.4)

| hi-1(0) hp-a(1) hp1(M) | | Sn-m |

=[n© B - won || "




Collect all received data a¥T" interval in a vectoky(n) as shown below

Using (2.4), we can then express the received data above in a form below

xy(n) =

x(n)

x(n —1)

x(n — N + 2)
x(n—N+1)

xy(n) = Hs(n) +ny(n)

whereH is called the channel matrix given by

h(0) h(1)
0 h(0) h(1)
- .
0 0
|0 0
and )
Sn
Sp—1
s(n) = :
Sn—N—M+2
| Sn—N-M+1

The equation (2.5) describes the relation between the received data and the transmitted
input sequence; the dimension of each element is listed in Table 2.1. Note that this for-

mulation will be used throughout this thesis. Similar expressions can be obtained for the

h(M) 0
h(M) O
h(0) h(1) h(M)
0 h(0) h(1)
| )
n(n—1)
IIN(TL) = :
n(n—N)
| I n(n— N +1)

case of multiple sensor, as discussed below.

2.0.3 Multiple Sensors

For the case with multiple sensors, in each sensor we receive a signal that may have

gone through different propagation channels. Hence, the complex envelop of the signal

7

(2.5)



Table 2.1: Matrix Size

matrix size type

H NL x (N + M) block Toeplitz matrix

s(n) (N+M)x1 vector
ny(n) NL x 1 vector
xn(n) NL x 1 vector

received on the-th sensor can be expressed as below

o

win) = 3 swhin —m) +mi(n) (2.6)

Note that the above equation (2.6) is in the same form as (2.2); hence the received data
obtained by oversampling on a single sensor can be expressed in the identical form as
the received data from multiple sensors when the oversampling faamequal to the
number of sensors. Similar relations can be obtained straightforwardly by combining both
the oversampling and multiple sensors; that is, gi¥ersensors and the oversampling

factor P, the received data can be expressed in the same form as (2.5)wheki P.

2.1 Zero-Forcing Equalizer

The channel matrix{ in (2.5) is of sizeLN x (M + N). Let LN > M + N and assume
H is full rank, the zero-forcing equalizer can be obtained from the pseudoinverse of the
channel matrixt/ which is(H% H)~' H* where the superscrigi denotes the hermitian

operation. Multiplying (2.5) on the left by H)~' HH, we obtain
s(n) = (H"H) "H"xx(n) =s(n) + (HYH) "' H"ny(n) (2.7)

Clearly,s(n) = s(n) for noise-free condition. Note that the zero-forcing equalizer cannot

be obtained directly in practice because the channel matrix is unknown. The reason we

8



list the result here is that most blind equalizer design via subspace approach can be seen
as a way to obtain the pseudoinverse of the channel matrix. The pseudoinverse of the

channel matrix is called the equalization matrix denoted as below

!
Z =(H"H)'H" = : (2.8)
Zf/[-}—N—l
Note that any row of the equalization matéixcan be realized as an FIR equalizer as
shown in Fig. 2.2, wherg;(n) fori = 0,1, ..., L — 1 is the component of thé-th row of

7 whered can be either one chosen from OXo+ M — 1. That is,

H
ze=1{ go(0) ... gr-1(0) ... go(N—=1) ... gra(N—1) ] (2.9)
The output of this equalizer, denotedsén), is obtained as below
Sa(n) = 24 %, (n) (2.10)

which will approximates,,_4, thed delayed input data.

2.2 Subspace Blind Equalizer

In this section, we present shortly how the subspace approach is used to design a blind
equalizer. The subspace approach needs first to obtain the information of the autocorrela-

tion matrix R, of the received signal vectary (n), given by
Ry = E(xy(n)xi(n)) (2.11)

where E(-) denotes the expectation operator. Normally, the additive received noise is
assumed to be independent of the transmitted source signal, the autocorrelatiorRnatrix
using (2.5) becomes

Ry=HR,H" + R, (2.12)

where R, = E(s(n)sf(n)) and R, = E(ny(n)nk(n)) respectively denote the auto-

correlation matrices of the transmitted discrete signal vegtoy and the received noise

9
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Fig. 2.2: Linear equalization for fractionally spaced channels

vectorny(n). Note that the dimension @k, is (M + N) x (M + N), and is normally
assumed to be full-rank. The dimension of the maitjxis LN x LN. Assume as nor-
mally done in the literature that the transmitted signal and the noise are both white; that
is, Ry, = o2l andR,, = 21 where[ is an identity matrix with the corresponding size.

Substituting these assumption into (2.12) yields
Ro=o’HH" + 521 (2.13)

Note thatR, equals a sum of two matrices; the first term on the right side of the above
equation constitutes the signal subspace while the second term expresses the noise sub-
space. Note that the signal subspace has the dimension of at\mesit/ if the channel
matrix H is full rank. The subspace approach derives frBgto obtain the signal sub-

space by matrix decomposition, as discussed in the following section.

10



2.2.1 Subspace Decomposition

Assume the channel matri¥ is full rank, then by simple eigenvalue decomposition for

the correlation matrixz, with its eigenvalues in descending order, we obtain

Ay

H
R (5 N =snsH+oiNN" (2.14)
2

Ro=[s N |

whereA;, A, are diagonal matrices, is of dimension.N x (N + M) which constitutes

the signal subspace, aid of dimensionLN x (LN — (N + M)) represents the noise
subspace. The diagonal elementg\pfare all larger tham? while each diagonal element
of A, is equal tas2. These two subspacés N are obviously orthogonal. The dimension

of each matrix in the above equation is listed in Table 2.2.

2.2.2 Blind Equalizer Matrix

When the noise is assumed free, we then obtain
Rys 5SPHELS0 NG H (2.15)

Given R, and its subspace decomposition, for noise-free condition, we may estimate the
channel matrix as below

H = cSA?QY (2.16)

wherec is an unknown scale constant afdis also an unknown orthonormal matrix.
Therefore, we can obtain via the subspace decomposition the estimate of the channel
matrix up to an unknown orthonormal matrix and an unknown scale constant. Note that
the design of single-input single-output blind equalizers inevitably results in an ambiguity
of a scale constant; hence we assume the constagtial to 1 in the sequel, that is,

H = SA}/QQH. The critical step in the design of blind equalizers using the subspace
approach then lies in how to determine the unknown mélrigeveral approaches will be
discussed in this thesis.

The equalization matrix in (2.8) can be obtained using (2.16) and assuming,

11



Table 2.2: Subspace Matrix Size

matrix size

Ay =A+02l (M + N)x (M +N)
Ay =02 (LN—-M—N)x (LN —-M—N)
S LN x (M + N)

N LN x (LN — M — N)

yielding

Z = (H"H) HY
o4 QAl—l/QSH (2.17)

The equalized output after the operation of equalization matrix can be shown below to be
white:

ZRyZH =1 (2.18)

The above result means that the equalized output for any orthonormal Qatvik be
white; the whitened output, however, is not enough to assure the equalizer performance.
Hence, extra criteria will be required to determine an adequate design of the matrix

that is the main topic in the next chapter.

12



Chapter 3

Subspace Off-Line Equalizer Design

In this chapter, we will exploit subspace decomposition that is showed in previous chapter
to process received signals, and obtain equalizer matrix. Therefore, in first section [1], we
introduce method of other paper that also use subspace approach and transmitted signals is
white. In second and third section, we show our methods that are also use signal subspace

but simulations demonstrate the good performance of our methods.

3.1 Estimate() with Crosscorrelation Matrix

In this section, a direct blind equalization method proposed in [1] is discussed first, then

two new methods are proposed.

3.1.1 Formulation () Matrix

In noiseless case, the output of an equalization matrkenoted as,,(n), is given below

é]w(n) = = ZXN(TL) (31)

13



which ideally satisfies the whitening condition below

So(n)
B{sy(n)slh(n— 1)} = E [sn—1) .. S0 | =7
Sm+n-1(n)
(3.2)
whereJ is
J O1x(m4+n5-1) 0 (3.3)

Iy N—nyxrsn-1) O@rsN—1)x1

because the transmitted signal is assumed white. The equalizer wiarobtained from
this condition derived as follows.

¢From (3.1) and (3.2), we know
J = E{8y(n)s (n — 1)} = ZE{xy(n)xE(n — 1)} 2" (3.4)
Define the crosscorrelation matrix
Ri = B{xy(n)xy(n —1)} (3.5)

The equation (3.4) becomes

ZRZH =] (3.6)

We have discussed in Chapter 2 that the equalizer matrix (2.17) has theZfeem

QAl_l/QSH; substituting it into the above equation yields the following equation
J = QA PSH R SATVPQM £ QR,QM. (3.7)

whereR, = A;2SH R, SA;"?. Note thatR, can be evaluated from the subspace de-
composition ofR, and the direct evaluation dt,. Hence, the above equation enables us

to obtain().

3.1.2 (@ Matrix Estimation

It is clear that the rank oR, is M + N — 1 as we have
HH H O
QRoR; =JJ" = (3.8)
I

14



SinceQ = [qq,...,qum+n-1], qo therefore is the eigenvector &, R4 corresponding
to the eigenvalue of zero. The eigenvector can be obtained by performing the singular

value decomposition (SVD) ak, as below
Ry, =UxVH (3.9)

with descending singular valuesii thenq, can be selected as last columnlaf After

we haveqy, the other columns af) can also be obtained recursively as below,

which can be shown directly from (3.7). One way to choose the best delayed equalizer in

the equalizer matri¥ is to minimize the following constant modulus index
D(d) = B{(|zixv()| - 1)} (3.11)

The equalizer having the smalldstvalue will be considered as the best delayed equalizer.
In summary, the channel output whitening algorithm for direct equalization is listed

in following:

1. Define the equalizer length N, which should be used reasonably large to satisfy the

conditionLN > (M + N).
2. Compute the correlation matrit, and R, in (2.11) and (3.5).

3. Estimate the signal subspace of raidk+ N by computing the subspace decompo-

sition of R,.
4. ComputeR, (3.7) and its SVD.
5. Estimate) according to (3.10), and compute the equalization mar{.17).

6. Choose the best delayed equalizeZiaccording to (3.11)

15



3.2 Estimate( with Channel Matrix structure Method

In this section we exploit the idea of mutually referenced filters (MRES) and the special
property Toeplitz structure of the channel matrix to design the blind equalizer. Instead
of estimating all equalizers in a equalization matrix, the method proposed Here estimates
one equalizer with the delay= int((M + N)/2) which, as commonly done in equalizer
design, results in good performance.

We observe that the channel matrik is a Toeplitz structure oL.N x (M + N);

excluding the first row off yields H,. as below

0 h(0) h1) ... h(dM) 0 ... 0
P 61
0 ... 0 h0) h(1) ... h(M) ©
0 ... 0.0 ho) h(1) ... h(M)

Since the channel matrii is assumed full rank of/ + N, the rank ofH,., of course, is
M + N —1 because of the existing first zero columrHn. ¢From (2.16H = SA;/2Q¥
and define” = SA;'/?; it follows that,

H=FQ" (3.13)

Also defineF, obtained fromF' by truncating its first row; we obtain the following equa-
tion:

H, = F.Q" (3.14)

Again usingQ? = [qo, ..., qrn_1] in (3.14), we obtain
F.qo=0 (3.15)

Therefore, the vectay, can be obtained as the eigenvectoffF, corresponding to the
zero eigenvalue; equivalentky, can be obtained from the SVD &i.. The solution ofqg

can also be obtained from the following optimization problem

min. qq' F Fr st |lqoll = 1 (3.16)

16



Therefore, if we have the equalizer mattikthat can recover original transmitted

signal perfectly, then the conditions in the delayed equatiZeare simply rewritten as
[ Taron-1,0 ] Zxn(n) = [ 0, Infin s } Zxy(n+ 1), (3.17)

Using (2.17) in (3.17) yields
| Lune10 | QA RS i (n) = [ 0, Iyny | QAP S xy(n 1) (3.18)

SinceSH? andAfl/ * are already obtained from the subspace decomposition, denote =

AT2SHx v (n); the equation (3.18) becomes

| Diren10 | Qyn(n) = [ 0. Lyencs | Qyn(n+ 1) (3.19)
which reads equivalently
af ] | af ]
LI 4 qH yn(n+1) (3.20)
i Ui N2 1 i Ui Ny ]
Thus we obtain
a’yn(n) =qlyn(n+1) fori=0,...,M+ N —2 (3.21)

Given the delayl, by the above recursion we have
a'yn(n) = afl, yn(n+dy) fori=0,...,M+N—d,—1 (3.22)
Thus
ai'yn(n) = qfl yn(n+dy) (3.23)
Hence, givergy/, yn(n), andyy(n + d,) we can obtairy) by least-square solution,
yielding
Qo E{yn(n)yn(n+dg)} = ag E{yn(n+ dg)yn (n+ dg)} (3.24)
qif Ra, = qff (3.25)
where the autocorrelation matrix gfy 4, is an identity matrix.
In summary, this algorithm is listed in the following:
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1. Define the equalizer lengthi such thatLN > (M + N).
2. Compute the correlation matrix, in (2.11).

3. Estimate the signal subspace of rank+ N from the subspace decomposition of

Ry.
4. Computey, using SVD fromF;.
5. ComputeR,, and use (3.25) to findy] .

6. Computez!! = qff A;"/*S™.

3.3 Estimate( with Iterative Least Square Method

In above section, we observe that to estimate the equalizer niatugually needs to
compute the auto-correlation and cross-correlation matrices of received signals. This sec-
tion presents one new blind equalization algorithm; this algorithm uses the idea similar to
that of mutually referenced filters (MRES) to derive equalizer matrix but it only uses the
autocorrelation matrix of received signals.

As discussed above, givey, we can obtairy; andq; for i > 1 recursively. Denote
Ay as below
yn(n)
yn(n+1)7
Ay = : (3.26)
yn(n+ N+ M-—2)7
yn(n+N+M-—1)"

where the row number ol is greater than the rank of channel matkix(rank(H) =

M + N). Let By obtained by excluding the first low of y and adding the last received

18



signaly’Z in the last row as below

yn(n+1)%

n+ N+ M-—2)"
By — | Y " (3.27)
yn(n+N+M-—1)"

yn(new)?

The MRE (3.21) enables us to write the following equation

Since the row numbers of y and By are greater than the rank of channel mafifixwe
can assume that bothy and By are full rank, thus botll y and By have pseudoinverse

matrices,

Al = (AHAy) " AR (3.29)

Bl = (BEBy) ' BY (3.30)
Multiplying (3.28) byB', on the left yields
BLANg; =qiq for0,...,M+ N —2 (3.31)

Hence, the equation (3.31) enables us to obtain from an inifitd computey; i < 1 as

shown in the flow path below
o — Q1 — -+ =7 QM+N-2 — 7 QM+N-1
Similarly, the same operation (3.21) can be reversed; multiplying (3.2A)wae obtain
a = A\ Byqi1 for M+ N—2....0 (3.32)

Givenq,,, v_1 We can obtairy; via (3.32) as shown in the flow path below

/ /

! !
Qo <4 <~ .- ~— AQuyn—2 “ Upren-1
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Combining (3.31) and (3.32) together, a new flow loop is formed as shown below:

Q9 — 41 — ... — qmM+N-2 — QqM+N-1

! ! ! !
Qo ~— d — — Ypin—2 T AuinN-1

Given an initialqg, the loop will continue until the loop recursion converges. One

criterion is to seqqo—qo

< e wheree is a user defined threshold. From our experience,
the loop converges with less than 10 iterationsefer 1073.

To summarize, this algorithm is listed in the following:

1. Define the equalizer length N, which can be used reasonably large to satisfy the

conditionLN > (M + N).
2. Compute the correlation matriy in (2.11).

3. Estimate the signal subspace of rank+ N from the subspace decomposition of

Ry.
4. Set the initiak, and a thresholé.

5. Use the iteration loop to estimafeand compute the equalizer mateix
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Chapter 4

Adaptive Subspace Blind Equalizer

The blind equalizers discussed above are designed by batch data or called off-line data.
This chapter presents an adaptive blind equalizer by using the OPAST algorithm [7],
[8], generally Gram-Schmidt orthogonalization [10], and bi-iteration algorithm [9]. We

discuss OPAST first and then the adaptive equalizer is developed.

4.1 OPAST Algorithm

Definer(k) is a sequence ai x 1 random vectors, and the autocorrelation matrix of
r(k)is C = FE{r(k)r(k)"”}. Consider the problem of estimating the principal subspace
spanned by the sequence of dimensicn n. So consider the following scalar function:
JW) = E{||r — ww x|} (4.1)
where a subspace matrix arguméinte C**". It has been shown in PAST algorithm that

1. W is a stationary point of (W) iff W = SQ, whereS is ann x r matrix containing

anyr distinct eigenvectors af’, and@ IS anyr x r unitary matrix.

2. All stationary points of/(1¥) are saddle points, expect whéhcontains that

dominant eigenvectors @f. In this case,/ (1) obtain the global minimum.

In tracking applications, we can replace the autocorrelation matwith its recursive

versionC(t) = aC(t — 1) + r(t)r(t)? at thetth iteration wherex is a forgetting factor
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chosen between (0,1]. In PAST algorithm, a fast implementation is proposed based on the
projection approximation that if the subspace matiixt) is slowly varying witht, then
C(t)W(t) =~ C(t)W(t — 1). Using this projection approximation, the matrix product
C(t)W(t — 1) and the matrix invers¢W* (¢t — 1)C(t)W (t — 1))_1 can be computed

in O(np). DefineZ(n) & (WH(t — 1)C(t)W(t — 1))*1, then PAST algorithm can be

written in Table 4.1.

Table 4.1: PAST Algorithm

The OPAST algorithm consists of the PAST algorithm and an orthonormalization step

of the subspace matrix at each iteration

—1/2

W (t) £ W(t) (W)W (t)) (4.2)

where(V[/H(t)l/V(t))*l/2 defines an inverse square root (@ (1)\W(¢)). we will use

the iterating equation df’(¢) to keeplW (¢ — 1) be an orthonormal matrix, we get

WHBW () =1+ [p@)]” at)a” (t) = I +xx" (4.3)
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where we know the fact thd/ (¢t — 1)p(t) = 0 from PAST algorithm, and define
x = ||p(t)|| q(t). Therefore

! —1 | xx (4.4)
L+ x|

(WhHw) =1+ H 1H2 (

= I+7(H)a(t)at)” (4.5)
where
1 1
T(t) = 5 -1].
la@l (¢ L+ [p(0)[ la(0)] )
Exploiting (4.3), (4.5) and the iterating of (¢), we can have
W(t) = (W(t-1)+pt)"at) (I +(t)alt)a)”) (4.6)

=W(t—1)+pt)a"(t) (4.7)

where

p(t) £ r(O)W(t = Da(t) + (1 +7(t) [a(t)

I°) p(2).
The OPAST algorithm can be rewritten as the PAST (Table 4.1) combined with that
shown in Table 4.2.

4.2 Modified Algorithm for r-Dominant Generalized Eigen-
vectors

The PAST algorithm obtaine’ = SQ where the columns of consists of- principal
eigenvectors of’ and@ is anyr x r unitary matrix. Consider the following constraint:

WHCW = M
where M = diag(my, mo,
that

..,m,) andmy, mo,

(4.8)
.,m, > 0. Therefore, we can obtain

4.9
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Table 4.2: OPAST Algorithm

W(t) =W(t—1)+p ) ()

_ 1 1 _
) = qor <\/1+|p<t>|2||q<t>||2 1)

P =Wt —1)a@) + (1+7) a)]*) plt)

where the diagonal matriX isa generalized eigenvalue matrix@f

Since the principal generalized eigenvalues are different, so it is simple to show that

M=
Q=1
W-= 8

This means that if we use the cost function (4.1) and the constraint (4.8), then we can
obtain ther principal generalized eigenvectors. In fact, the constraint (4.8) implies that
W should beC' orthogonal. This can be obtained by orthogonalizing the métfixia
iterating algorithm for dominant eigen-subspace. The algorithm for orthogonalization is

given as

m; = w; (410)

Jj—1

m!/ Cw;
0 = W5 = D, ™ (411
i=1 ¢ !

wherew; is theith column ofiV. WhenC = I, the C orthogonalization is the same as
the Gram-Schmidt orthogonalization (GSO) method. ¢From the GSO method, we also
can obtain eigenvalues 6f, because in (4.11) we must compuite’ C'm; andm? Cm;
equal tom; eigenvalue of” that is useful for blind equalization algorithm.

Thus, the above idea results in the following modified algorithm Table 4:3join-

cipal generalized eigenvectors.
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Table 4.3: Modified Algorithm

a(t) =32t -1y

y(t) = WH(t - 1)r(t)

7(t) = T 0am)

p(t) =7(t) (x(t) = W(t - 1)y(t))

Z(t) = 22t =1 —~ya)at)”

7(*) = TP <\/1+||p($|2|q(t)||2 B 1)

P = rOW(E=Da)+ (1470 la0]) po)
W (t) = W(t — 1) +p'(t)a” (t)

C(t) =aC(t - 1) +r)r(t)?

(W(t),2(t)) = C(t) orthogonalize(TW (t))

4.3 Adapive equalization algorithm Using Channel ma-

trix Method

The adaptive equalizer starts to use OPAST algorithm to find the signal suld$pace
SQ. SinceS andA; are required in the adaptive equalizer, we use the modified algorithm
to achieve this goal. DefinE = SA}/2 andF,. contain the las.(N — 1) rows of theF'.
Then the classical bi-iteration algorithm is used to compute the dominant singular values
and vectors of’. to obtainqy; the algorithm is shown in the following Table 4.4.

In the bi-iteration algorithmA(¢) and B(t) denote auxiliary matrix of size\/ + N) x
L(N —1)andL(N — 1) x (M + N). The QR factorizations in (Table 4.4) produce the

corresponding dominant left and right singular vectors in the SVB,ofThe triangular
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Table 4.4: Bi-lteration Algorithm

Qa(t=0) =Iy.+ny fort=1,2,3,...foreachtime step do

B(t)  =F@0)Qa(t—1)

B(t)  =Qp(t)Rp(t): L(N — 1) x (M + N) QR-factorization
At)  =FE0)"Qs()

Alt)  =Qa(®)Ra(t): (M + N) x L(N — 1) QR-factorization

matrix will converge toward the diagonal matrix of the dominant singular values.

Qa(®) ==V(1)
Qp(t) — U(1)

RA(t),RB(t) S ESVD(t)
and the structure of the exact SVD of the
F.(t) =U®)Ssyp(t)VE (1) (4.12)

where
U(t) is matrix of left singular vectors;
V(t) is matrix of right singular vectors;
Ysvp(t) is diagonal matrix of singular values.
Thenq, can be selected as the last column vector of right singular végtor
¢From (3.25), we need to obtality,. DefineR,, = E{yNyﬁMg}i it can be rewritten

as

Rq, = AT E{xy(n)xn(n + dg)T}SAL (4.13)

= AP FAB{xn(n)xn(n + dy) " }FAT! (4.14)
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Define Ry, = E{xy(n)xy(n + d,)"}; the computation ofz,; can be obtain below
Ry(n) = aRg(n — 1) +xy(n)xy(n + d.)? (4.15)

whereq is forgetting factor chosen betweed 1]. Therefore,R,, also can be rewritten
as

Ry, (n) = AT'FY Ry(n)FAT! (4.16)

Combining all iterating algorithms together we obtain the adaptive equalizer which is

shown in Table 4.5.
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Table 4.5: Subspace Blind Equalization Algorithm

q(?t) =3 Z(t - y(t)

y(t) = S7(t - Dxn(t)

() = Ty 0am)

p(t) =7(t) (xn(t) = St —1)y(t))

Z(t) =2t =1 —~y®at)at)”

(OB Tk (\/1+||p<$||2|q<t>||2 - 1)

() =78t Dalt)+(1+ ) la®)]?) p(t)
S5(t) = S(t=1)+p ()a”(t)

Ro(t) = aRo(t — 1) +xn(t)xn (t)7

(S(t),A1(t)) = Ro(t) orthogonalize(S(t))

Fit)  =SHA*w)

E.(t) = the lastL(N — 1) rows of F(t)

B(t) = E(H)Qa(t - 1)

B(t) = Qp(t)Rp(1)

A(t) = F()"Qp(1)

A(t) = Qa(t)Ra(t)

ao(t) = the last column o€) 4 (¢)

Ry(t) = aRg(n — 1) + xy(n)xy(n + do)?
Ry, () = A;%t)F(t)’Zf é%d(t)F@)A;l(t)

em
—
~
S~—
=
Q
—
~
S~—

ai(t)  =a




Chapter 5

Simulations

In this chapter, we use simulations to examine the performance of our new algorithms
described in this thesis. We compare the performance of the proposed methods with some

typical existing algorithms below:
¢ the output whitening method in [1] (LF) for direct equalization;
e the MRE algorithm in [5] (MRE) for estimating equalizers with all passible delays;
¢ the subspace algorithm [3] (TXK) for channel identification and equalization;

¢ the linear prediction-based algorithm in [6] (PS) for adaptive equalization.

5.1 Criteria of Performance Measure

As a performance measure, we estimate the residual intersymbol interference (I1SI) over
100 Monte Carlo runs as done in most other measurements. Let the “overall” channel

impulse response be

L—-1N-1
c(n) = > gi(i)hi(n—j). (5.1)
i=0 j=0
The residual ISl is defined as
2 2

max,, |c¢(n)|?
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We also estimate the signal-to interference-and-noise ratio (SINR) of the equalizer output,

which may be more suitable for studying the noise performance

o2 max, |c(n)|’
02 (X, le()]” —max, [e(n)|*) + 02 32, 32, 19:(7)

wheres? is the variance of the transmitted symbols.

SINR =

(5.3)

For all simulations, the signal-to-noise ratio (SNR) is for the input to the equalizer

B {Jx(n) —n(n)*}
SR ey

For each experiment, we use an i.i.d. input sequence drawn from a 16-QAM constellation.

(5.4)

The noise is drawn from a white Gaussian distribution at a varying SNR. The channel is

drawn from Table 5.1 [2].

Table 5.1: Channel Coefficients [2]

h(0) h(1) h(2) h(3) h(4)
—0.049 + 0.359;  0.482 — 0.5697 = 0.556 + 0.587i 1 —0.171 + 0.061
0.443 — 0.0364 1 0.921 = 0.194i  0.189 — 0.208i  —0.087 — 0.054i
—0.221 — 0.322i  —0.199 + 0.918i 1 ~0.284 — 0.524i  0.136 — 0.190i

0.417 + 0.030 1 0.873 +0.145  0.285+0.309i  —0.049 + 0.161i

The number of subchannelsiis= 4, the channel order i8/ = 4, and choosed’ = 4
to let the delay b@ = 4. In addition to above channel model [2], we also use the channel
impulse response in [3] that is an approximation of two-ray multipath environment and
the channel is obtained from delayed raised consine pulses. A single pulse is described

by ¢.(t, 3) where( is a roll-off factor. The channel impulse response is:
h(t) = (0.2¢(t,0.11) + 0.4e(t — 0.25,0.11)) Wer(t) (5.5)

whereWsr(t) is a square window of duration 6 symbol interval and is shown in Fig. 5.1
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Channel Impulse Response (TXK)
0.6 ! ‘

0.4 B

h(n)

0.2r 7

05 5 10 15 20 25

taps n

Fig. 5.1: Oversampling ratio L=4 and channel length M=6

5.2 Simulation Results

In this section, we use several examples to demonstrate that our method is effective to
design an equalizer. We also use ISI and SINR as performance indexes to compare the

difference of all algorithms.

5.2.1 Simulations of Off-Line Designed Blind Equalizer

First, the channel model in Table 5.1 is used to generate 500 symbols for equalizer design
under SNR=25dB; the equalizer outputs result in the constellation shown in Fig. 5.2 and
5.3 which clearly shows that the resolution using the iterative least square method and
the channel structure method is be better than that of the Fan’s method. In Fig. 5.4 and
5.5, we compare the performance indexes (ISI and SINR) and observe that the channel
structure method has better performance; the iterative least square method is better as the
SNR exceeding 25dB. In Fig. 5.6 and 5.7, we use different symbols numbers and SNRs to
show that our methods also have better performance. Next, we use the channel of TXK to
produce the received data, and compute ISI and SINR for comparison. In Fig. 5.8 and 5.9,

we observe that the change of N can influence the performance; when N=7 the iterative
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least square method improves its performance and in Fig. 5.10 and 5.11 using different
to display channel structure method can resist different channel and iterative least square

method inN = 7 still have better performance.

5.2.2 Simulations of On-Line Blind Equalization

In this subsection, we use the adaptive channel structure method to illustrate its perfor-
mance. In Fig. 5.12 we show equalizer estimation this algorithm for 25dB SNR and with
500 symbols and in Fig. 5.13 and 5.14 show that our algorithm have better performance
than the linear prediction algorithm. For the channel of TXK, the performance of our

algorithm for SNR below 25dB still remains an acceptable I1SI and SINR.
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Received Data

Imaginary

Imaginary

-4 -3 -2 -1 0 1 2 3 4
Real

Fig. 5.2: Signal constellations for 500 symbols at SNR=25dB. (a) Without equalization.

(b) After equalization for Fan’s method.
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Channel Structure Method
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Fig. 5.3: After equalization for Channel Structure and Iterative Least Square method.
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ISI Comparison
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Fig. 5.4: Performance comparison versus different SNR for ISI. ( (a) 250 and (b) 750
symbols)
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SINR of Equalizer Output
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Fig. 5.5: Performance comparison versus different SNR for SINR. ( (a) 250 and (b) 750
symbols)
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ISI Comparison
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Fig. 5.6: Performance comparison versus different symbol number for ISI. ( (a) 20dB and
(b) 25dB)
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SINR of Equalizer Output
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Fig. 5.7: Performance comparison versus different symbol number for SINR. ( (a) 20dB
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ISI Comparison

-8 Channel Structure Method

107* <%-Fan >
- Iterative Least Square Method
4A-TXK
107 <+MRE | ‘ ‘ ‘
0 5 10 15 20 25 30 35 40
SNR (dB)
) ISI Comparison
10 ‘ ‘ ‘
10° :
{
® 10 £ )
-8-Channel Structure Method
-4
10 *<-Fan .
+>-Iterative Least Square Method
A-TXK >
10_6 -Q_MRE i i i i
0 5 10 15 2 25 30 35 40

0
SNR (dB)

Fig. 5.8: Using Channel of TXK to performance comparison versus different SNR for ISI
with 500 symbols. ( (a) N=5 and (b) N=7)
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SINR of Equalizer Output
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Fig. 5.9: Using Channel of TXK to performance comparison versus different SNR for
SINR with 500 symbols. ( (a) N=5 and (b) N=7)
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ISI Comparison
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Fig. 5.10: Using Channel of TXK to performance comparison versus different symbol
number for ISI with SNR=25dB. ( (aV = 5 and (b)N = 7)
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SINR of Equalizer Output
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Fig. 5.11: Using Channel of TXK to performance comparison versus different symbol
number for SINR with SNR=25dB. ((ay = 5 and (b)N =7)
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Fig. 5.12: Performance comparison versus different SNR for I1SI and SINR with 20dB.
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ISI Comparison
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Fig. 5.13: Performance comparison versus different SNR for ISl and SINR with 20dB.
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Chapter 6

Conclusion

This thesis presents two design algorithms for subspace blind equalization and an adaptive
subspace blind equalizer. We use the property of Toeplitz structure of channel matrix and
the concept of mutual-reference filters to develop a new blind equalizer and its adaptive
algorithm. We also use the iterative least squares approach to design the blind equalizer.
Simulations are also performed to demonstrate that our algorithms yield better perfor-

mance with respect to the measures of ISl and SINR.
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