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以子空間方法設計離線及適應性盲目等化器

研究生: 林佳華 指導教授: 鄭木火 博士

國立交通大學電機與控制工學系

摘要

本論文的目的是針對單一輸入多重輸出 (single input multiple output, SIMO)的情況

下, 以子空間方法設計盲目等化器。 由於在高速數位通訊傳輸下, 傳輸訊號經過多路徑無線通

道, 會造成傳輸訊號有嚴重地符號間干擾 (intersymbol interference, ISI),除此之外, 接收機

對於無線通道與傳輸訊號一般而言是一無所知的, 所以傳統中的無線通訊系統是使用訓練序列

(training sequences)讓接收機了解無線通道之特性, 不過使用訓練序列是相當浪費頻寬, 因此

需要使用盲目等化器來改善頻寬的使用與降低符號間干擾。

本論文將提出兩種新型離線式盲目等化器之方法並改良其一方法使其為適應性盲目等化

器。 第一種離線式方法, 吾人利用過度取樣 (Oversampling)生成特殊之 Toeplitz 架構的通

道矩陣, 且將此通道矩陣之特性與接收訊號的二階統計 (second order statistics, SOS)的子空

間運用, 在與 MRE(mutually referenced filters)方法搭配即是吾人提出的第一種盲目等化器

方法。 第二種離線式方法, 利用 MRE 擁有地特性並與最小平方法 (Least Square Method)和

二階統計的子空間相互結合, 得到了疊代式的最小平方法亦即是吾人提出的第二種盲目等化器

方法。 最後, 應用了子空間追蹤 (subspace tracking)與二次疊代 (Bi-iteration)的奇異值分解

(singular value decomposition, SVD)將所提出的第一種離線式方法改進為可以不斷更新等

化器參數的適應性盲目等化器。

在論文最後, 使用電腦的數值模擬與其他文獻提出之方法比較。 所使用的比較標準分別為

符號間干擾 (ISI) 與訊號雜波比 (signal-to-interference-noise ratio, SINR),經由數值模擬的

驗證, 判斷方法的優越性。

關鍵詞: 盲目等化器, 適應性盲目等化器, 符號間干擾, 正交投影子空間追蹤

I



Design of Offline and Adaptive Blind Equalizers

Using Subspace Approach

Student: Chia-Hua Lin Advisor: Dr. Mu-Huo Cheng

Institute of Electrical and Control Engineering

National Chiao-Tung University

Abstract

In wireless communication systems, equalization is often required in order to sup-

press the intersymbol interference (ISI) caused by multipath channels. Conventional ap-

proaches use training sequences for equalizer design which wastes the bandwidth. The

blind equalizer can perform equalization in no need of the training sequences and thus

achieves more efficient channel bandwidth usage. In this thesis, we present new meth-

ods based on the subspace approach for computing fractionally spaced blind equalizers in

single input multiple output (SIMO) systems.

We first present a new offline method using the properties of the channel matrix struc-

ture and the idea of mutually referenced filters. This method is later used to develop an

adaptive blind equalizer by employing the OPAST algorithm and the bi-iteration singular

value decomposition. We also use the idea of mutually reference filters to develop a new

blind equalizer design using the iterative least squares method. Finally, simulations are

performed to demonstrate the better performance of the proposed algorithms compared to

existing approaches.

Index Terms - Blind equalization, Adaptive equalization, intersymbol

interference, OPAST
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Chapter 1

Introduction

1.1 Introduction

In wireless communication systems, equalization process is often necessary in order to

suppress the intersymbol interference (ISI) caused by channels with multi-path phenom-

ena. The conventional equalization design is usually performed by using the information

known in a priori contained in a training sequence. Since the communication channels

are usually time varying, the training sequence must be sent periodically. Hence, much

bandwidth is wasted by sending the training sequence. The equalizer designed in no need

of the training sequence, referred to as the blind equalizer, draws much research interest

in recent years in order to obtain a more efficient channel bandwidth [1], [2].

Early blind equalizer is designed using a symbol-rate sampled mono-channel trans-

mission model in terms of second order or high order statistics of the received signals

[1]-[4]. The corresponding adaptive methods are classically designed via the stochastic

gradient descent scheme for minimizing one designed cost function. Lately, the use of ei-

ther the fractionally spaced samples in one sensor or multiple sensors reception arrays is

employed for the design of blind equalizer mainly for two reasons. One is that some high

order statistics methods such as the constant modulus algorithm (CMA) can be shown to

be globally convergent in this scheme and the other is that the blind equalizer is shown to

be achievable in this scheme merely based on the second order statistics of the received

1



signals [5].

Based on the multiple FIR channel model and second order statistics of the channel

outputs, many methods for blind equalizer design have been proposed. Some methods

perform the blind channel identification first, then the equalizer is designed from the ob-

tained channel. Some methods, such as the linear prediction-based approach [6], require

partial channel information; these methods are robust to channel order overestimation but

the performance will be degraded by the error in channel estimation.

1.2 Type of Blind Equalization Design

Recently, the subspace approach is an important technique for blind equalizer design

because the closed form solution can be derived via this approach. This approach, in

noise-free condition, yields perfect channel estimation using only a finite number of data.

The subspace algorithms decompose the received data into two mutually orthogonal sub-

spaces, namely the signal subspace and the noise subspaces. The orthogonality between

the signal and nose subspace enables direct channel identification or even direct estima-

tion of input symbols [1]-[4].

There are also some other methods that use neither channel estimation nor the struc-

ture of channel matrix, like mutually referenced equalizers (MREs) [5]. In these cases,

these methods requires nonlinear optimization, which may affect their convergence speed

and lager number of computations.

For adaptive blind equalization algorithms, like linear prediction methods, MREs,

and CMA. Direct blind equalization methods are also based on RLS and LMS solutions.

These algorithm use the algebraic structure of the received data sequence together with

statistical source properties.
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1.3 Organization of the Thesis

The remainder of this thesis is divided into five chapters including conclusions. Chapter

2 explains that problem formulation including over-sampling a single sensor, multiple

sensor, and blind equalization design. Chapter 3 realizes the difference between current

method and our methods for off-line situation. Chapter 4 use some algorithm let off-line

situation of blind equalization become adaptive blind equalization. The final chapter is

the conclusions.

3



Chapter 2

Problem Formulation and Subspace

Blind Equalizer Design

In this chapter, we discuss the subspace approach for the design of blind equalizers. We

first discuss the formulation of received data either by oversampling a single sensor or

by sampling multiple sensors. Then the zero-forcing equalizer is obtained directly from

the formulation by the pseudoinverse technique. The subspace decomposition is shortly

reviewed and its application to the design of blind equalizer is then elaborated.

2.0.1 Received Data

Denotesn as the transmitted digital symbol sequence at timenT where theT repre-

sents the symbol duration. These digital symbols are modulated, filtered, and transmitted

through the wireless communication channel; then the signal is received via antennas,

after filtering and demodulation, yielding the baseband continuous signal given by

x(t) =

∞∑

m=−∞

smh(t−mT ) + n(t) (2.1)

wheren(t) is the assumed additive noise andh(t) denotes the equivalent channel impulse

response including the transmitter filter, receiver filter, channel response, and modula-

tion/demodulation. In this thesis, we assume that the channel impulse responseh(t) has

a finite duration; moreover we also assume that several measurements can be performed
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during one transmission symbol periodT . The latter is realized either by sampling the

received signal on several sensors at the rateT , or by oversampling the received signal on

a single sensor, or by combining both methods above. The digitized received signal and

its formulation via oversampling or multi-sensor is discussed below.

2.0.2 Oversampling on a Single Sensor

In this approach, the received signal is sampled at the rate of∆ which is a fraction of the

symbol intervalT ; that is, normally we have an integerL called the oversampling factor

such thatL = T/∆. Hence, in one symbol intervalT , we obtainL digitized received data

xi(n) = x(t0 + i∆ + nT ) for 0 ≤ i ≤ L− 1. Using (2.1), we obtain

xi(n) = x(t0 + i∆ + nT )

=
∞∑

m=−∞

smh(t0 + i∆ + nT −mT ) + n(t0 + i∆ + nT )

=
∞∑

m=−∞

smhi(n−m) + ni(n)

(2.2)

wherehi(n) = h(t0+i∆+nT ), ni(n) = n(t0+i∆+nT ), and the indexi = 0, · · · , L−1.

Then we can treat the received data as obtained from an equivalent multichannel setup

shown in Fig. 2.1 wherehi(n) denotes theT -sampled impulse of thei-th channel,xi(n)

the baud-rate signal measured at the output of thei-th channel,ni(n) the corresponding

noise sequence, andL the number of channels.

Collecting allL channel measured outputs, channel responses, and measured noise

together as vectors, we have

x(n) =




x0(n)
...

xL−1(n)


 , h(n) =




h0(n)
...

hL−1(n)


n(n) =




n0(n)
...

nL−1(n)




The vector form of (2.2) can be obtained as below

x(n) =
∞∑

m=−∞

smh(n−m) + n(n). (2.3)
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Fig. 2.1: Baud-rate digital multiple sensor model

Since we assume thath(t) is causal and of finite duration, then all channel responsehi(n)

is finite. Assume that the maximum length ofhi(n) is of orderM , then the equation (2.3)

can be represented in a matrix form given by

x(n) =




x0(n)
...

xL−1(n)




=




h0(0) h0(1) · · · h0(M)

h1(0) h1(1) · · · h1(M)
...

...
. . .

...

hL−1(0) hL−1(1) · · · hL−1(M)







sn

sn−1

...

sn−M




=
[

h(0) h(1) · · · h(M)
]




sn

sn−1

...

sn−M




(2.4)
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Collect all received data ofNT interval in a vectorxN(n) as shown below

xN (n) =




x(n)

x(n− 1)
...

x(n−N + 2)

x(n−N + 1)




Using (2.4), we can then express the received data above in a form below

xN (n) = Hs(n) + nN(n) (2.5)

whereH is called the channel matrix given by

H =




h(0) h(1) . . . h(M) 0 . . . . . . 0

0 h(0) h(1) . . . h(M) 0 . . . 0

...
...

. . . . . . . . . . . . . . .
...

0 . . . 0 h(0) h(1) . . . h(M) 0

0 . . . 0 0 h(0) h(1) . . . h(M)




and

s(n) =




sn

sn−1

...

sn−N−M+2

sn−N−M+1




nN(n) =




n(n)

n(n− 1)
...

n(n−N)

n(n−N + 1)




The equation (2.5) describes the relation between the received data and the transmitted

input sequence; the dimension of each element is listed in Table 2.1. Note that this for-

mulation will be used throughout this thesis. Similar expressions can be obtained for the

case of multiple sensor, as discussed below.

2.0.3 Multiple Sensors

For the case with multiple sensors, in each sensor we receive a signal that may have

gone through different propagation channels. Hence, the complex envelop of the signal

7



Table 2.1: Matrix Size

matrix size type

H NL× (N + M) block Toeplitz matrix

s(n) (N + M)× 1 vector

nN (n) NL× 1 vector

xN (n) NL× 1 vector

received on thei-th sensor can be expressed as below

xi(n) =

∞∑

m=−∞

smhi(n−m) + ni(n) (2.6)

Note that the above equation (2.6) is in the same form as (2.2); hence the received data

obtained by oversampling on a single sensor can be expressed in the identical form as

the received data from multiple sensors when the oversampling factorL is equal to the

number of sensors. Similar relations can be obtained straightforwardly by combining both

the oversampling and multiple sensors; that is, givenK sensors and the oversampling

factorP , the received data can be expressed in the same form as (2.5) whenL = KP.

2.1 Zero-Forcing Equalizer

The channel matrixH in (2.5) is of sizeLN × (M + N). LetLN ≥M + N and assume

H is full rank, the zero-forcing equalizer can be obtained from the pseudoinverse of the

channel matrixH which is(HHH)−1HH where the superscriptH denotes the hermitian

operation. Multiplying (2.5) on the left by(HHH)−1HH , we obtain

ŝ(n) = (HHH)−1HHxN (n) = s(n) + (HHH)−1HHnN(n) (2.7)

Clearly,ŝ(n) = s(n) for noise-free condition. Note that the zero-forcing equalizer cannot

be obtained directly in practice because the channel matrix is unknown. The reason we

8



list the result here is that most blind equalizer design via subspace approach can be seen

as a way to obtain the pseudoinverse of the channel matrix. The pseudoinverse of the

channel matrix is called the equalization matrix denoted as below

Z = (HHH)−1HH =




zH
0

...

zH
M+N−1


 (2.8)

Note that any row of the equalization matrixZ can be realized as an FIR equalizer as

shown in Fig. 2.2, wheregi(n) for i = 0, 1, . . . , L− 1 is the component of thed-th row of

Z whered can be either one chosen from 0 toN + M − 1. That is,

zd =
[

g0(0) . . . gL−1(0) . . . g0(N − 1) . . . gL−1(N − 1)
]H

(2.9)

The output of this equalizer, denoted asŝd(n), is obtained as below

ŝd(n) = zH
d xn(n) (2.10)

which will approximatesn−d, thed delayed input data.

2.2 Subspace Blind Equalizer

In this section, we present shortly how the subspace approach is used to design a blind

equalizer. The subspace approach needs first to obtain the information of the autocorrela-

tion matrixR0 of the received signal vectorxN (n), given by

R0 = E(xN (n)xH
N(n)) (2.11)

whereE(·) denotes the expectation operator. Normally, the additive received noise is

assumed to be independent of the transmitted source signal, the autocorrelation matrixR0

using (2.5) becomes

R0 = HRsH
H + Rn (2.12)

whereRs = E(s(n)sH(n)) andRn = E(nN(n)nH
N (n)) respectively denote the auto-

correlation matrices of the transmitted discrete signal vectors(n) and the received noise

9



Fig. 2.2: Linear equalization for fractionally spaced channels

vector nN(n). Note that the dimension ofRs is (M + N) × (M + N), and is normally

assumed to be full-rank. The dimension of the matrixRn is LN × LN . Assume as nor-

mally done in the literature that the transmitted signal and the noise are both white; that

is, Rs = σ2
sI andRn = σ2

nI whereI is an identity matrix with the corresponding size.

Substituting these assumption into (2.12) yields

R0 = σ2
sHHH + σ2

nI (2.13)

Note thatR0 equals a sum of two matrices; the first term on the right side of the above

equation constitutes the signal subspace while the second term expresses the noise sub-

space. Note that the signal subspace has the dimension of at mostN + M if the channel

matrix H is full rank. The subspace approach derives fromR0 to obtain the signal sub-

space by matrix decomposition, as discussed in the following section.

10



2.2.1 Subspace Decomposition

Assume the channel matrixH is full rank, then by simple eigenvalue decomposition for

the correlation matrixR0 with its eigenvalues in descending order, we obtain

R0 =
[

S N
]

 Λ1

Λ2




[
S N

]H

= SΛ1S
H + σ2

nNNH (2.14)

whereΛ1, Λ2 are diagonal matrices,S is of dimensionLN × (N + M) which constitutes

the signal subspace, andN of dimensionLN × (LN − (N + M)) represents the noise

subspace. The diagonal elements ofΛ1 are all larger thanσ2
n while each diagonal element

of Λ2 is equal toσ2
n. These two subspacesS, N are obviously orthogonal. The dimension

of each matrix in the above equation is listed in Table 2.2.

2.2.2 Blind Equalizer Matrix

When the noise is assumed free, we then obtain

R0 = σ2
sHHH = SΛ1S

H (2.15)

GivenR0 and its subspace decomposition, for noise-free condition, we may estimate the

channel matrix as below

Ĥ = cSΛ
1/2
1 QH (2.16)

wherec is an unknown scale constant andQ is also an unknown orthonormal matrix.

Therefore, we can obtain via the subspace decomposition the estimate of the channel

matrix up to an unknown orthonormal matrix and an unknown scale constant. Note that

the design of single-input single-output blind equalizers inevitably results in an ambiguity

of a scale constant; hence we assume the constantc equal to 1 in the sequel, that is,

Ĥ = SΛ
1/2
1 QH . The critical step in the design of blind equalizers using the subspace

approach then lies in how to determine the unknown matrixQ; several approaches will be

discussed in this thesis.

The equalization matrix in (2.8) can be obtained using (2.16) and assumingc = 1,

11



Table 2.2: Subspace Matrix Size

matrix size

Λ1 = Λ + σ2
nI (M + N)× (M + N)

Λ2 = σ2
nI (LN −M −N)× (LN −M −N)

S LN × (M + N)

N LN × (LN −M −N)

yielding

Z = (ĤHĤ)−1ĤH

= QΛ
−1/2
1 SH

(2.17)

The equalized output after the operation of equalization matrix can be shown below to be

white:

ZR0Z
H = I (2.18)

The above result means that the equalized output for any orthonormal matrixQ will be

white; the whitened output, however, is not enough to assure the equalizer performance.

Hence, extra criteria will be required to determine an adequate design of the matrixQ;

that is the main topic in the next chapter.
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Chapter 3

Subspace Off-Line Equalizer Design

In this chapter, we will exploit subspace decomposition that is showed in previous chapter

to process received signals, and obtain equalizer matrix. Therefore, in first section [1], we

introduce method of other paper that also use subspace approach and transmitted signals is

white. In second and third section, we show our methods that are also use signal subspace

but simulations demonstrate the good performance of our methods.

3.1 EstimateQ with Crosscorrelation Matrix

In this section, a direct blind equalization method proposed in [1] is discussed first, then

two new methods are proposed.

3.1.1 FormulationQ Matrix

In noiseless case, the output of an equalization matrixZ, denoted aŝsM(n), is given below

ŝM(n) ,




ŝ0(n)
...

ŝM+N−1(n)


 = ZxN (n) (3.1)
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which ideally satisfies the whitening condition below

E{ŝM(n)ŝH
M(n− 1)} = E








ŝ0(n)
. . .

ŝM+N−1(n)




[
ŝ∗0(n− 1) . . . ŝ∗M+N−1(n− 1)

]





= J

(3.2)

whereJ is

J =



 01×(M+N−1) 0

I(M+N−1)×(M+N−1) 0(M+N−1)×1



 (3.3)

because the transmitted signal is assumed white. The equalizer matrixZ is obtained from

this condition derived as follows.

¿From (3.1) and (3.2), we know

J = E{ŝM(n)ŝH
M(n− 1)} = ZE{xN (n)xH

N (n− 1)}ZH (3.4)

Define the crosscorrelation matrix

R1 , E{xN(n)xH
N(n− 1)} (3.5)

The equation (3.4) becomes

ZR1Z
H = J (3.6)

We have discussed in Chapter 2 that the equalizer matrix (2.17) has the formZ =

QΛ
−1/2
1 SH ; substituting it into the above equation yields the following equation

J = QΛ
−1/2
1 SHR1SΛ

−1/2
1 QH , QR2Q

H . (3.7)

whereR2 = Λ
−1/2
1 SHR1SΛ

−1/2
1 . Note thatR2 can be evaluated from the subspace de-

composition ofR0 and the direct evaluation ofR1. Hence, the above equation enables us

to obtainQ.

3.1.2 Q Matrix Estimation

It is clear that the rank ofR2 is M + N − 1 as we have

QR2R
H
2 QH = JJH =


 0

I


 (3.8)
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SinceQH = [q0, . . . ,qM+N−1], q0 therefore is the eigenvector ofR2R
H
2 corresponding

to the eigenvalue of zero. The eigenvector can be obtained by performing the singular

value decomposition (SVD) ofR2 as below

R2 = UΣV H (3.9)

with descending singular values inΣ, thenq0 can be selected as last column ofU . After

we haveq0, the other columns ofQ can also be obtained recursively as below,

qi = R2qi−1 i = 1, . . . , M + N − 1. (3.10)

which can be shown directly from (3.7). One way to choose the best delayed equalizer in

the equalizer matrixZ is to minimize the following constant modulus index

D(d) = E{(
∣∣zH

d xN (n)
∣∣2 − 1)2} (3.11)

The equalizer having the smallestD value will be considered as the best delayed equalizer.

In summary, the channel output whitening algorithm for direct equalization is listed

in following:

1. Define the equalizer length N, which should be used reasonably large to satisfy the

conditionLN ≥ (M + N).

2. Compute the correlation matrixR0 andR1 in (2.11) and (3.5).

3. Estimate the signal subspace of rankM + N by computing the subspace decompo-

sition ofR0.

4. ComputeR2 (3.7) and its SVD.

5. EstimateQ according to (3.10), and compute the equalization matrixZ (2.17).

6. Choose the best delayed equalizer inZ according to (3.11)
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3.2 EstimateQ with Channel Matrix structure Method

In this section we exploit the idea of mutually referenced filters (MREs) and the special

property Toeplitz structure of the channel matrix to design the blind equalizer. Instead

of estimating all equalizers in a equalization matrix, the method proposed Here estimates

one equalizer with the delayd = int((M + N)/2) which, as commonly done in equalizer

design, results in good performance.

We observe that the channel matrixH is a Toeplitz structure ofLN × (M + N);

excluding the first row ofH yieldsHr as below

Hr =




0 h(0) h(1) . . . h(M) 0 . . . 0
...

...
. . . . . . . . . . . . . . .

...

0 . . . 0 h(0) h(1) . . . h(M) 0

0 . . . 0 0 h(0) h(1) . . . h(M)




(3.12)

Since the channel matrixH is assumed full rank ofM + N, the rank ofHr, of course, is

M +N−1 because of the existing first zero column inHr. ¿From (2.16)H = SΛ
−1/2
1 QH

and defineF = SΛ
−1/2
1 ; it follows that,

H = FQH (3.13)

Also defineFr obtained fromF by truncating its first row; we obtain the following equa-

tion:

Hr = FrQ
H (3.14)

Again usingQH = [q0, . . . ,qM+N−1] in (3.14), we obtain

Frq0 = 0 (3.15)

Therefore, the vectorq0 can be obtained as the eigenvector ofF H
r Fr corresponding to the

zero eigenvalue; equivalently,q0 can be obtained from the SVD ofFr. The solution ofq0

can also be obtained from the following optimization problem

min
q0

qH
0 F H

r Frq0 s.t. ‖q0‖ = 1 (3.16)
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Therefore, if we have the equalizer matrixZ that can recover original transmitted

signal perfectly, then the conditions in the delayed equalizerzH
d are simply rewritten as

[
IM+N−1, 0

]
ZxN (n) =

[
0, IM+N−1

]
ZxN(n + 1), (3.17)

Using (2.17) in (3.17) yields

[
IM+N−1, 0

]
QΛ

−1/2
1 SHxN (n) =

[
0, IM+N−1

]
QΛ

−1/2
1 SHxN(n + 1) (3.18)

SinceSH andΛ
−1/2
1 are already obtained from the subspace decomposition, denoteyN(n) =

Λ
−1/2
1 SHxN (n); the equation (3.18) becomes

[
IM+N−1, 0

]
QyN (n) =

[
0, IM+N−1

]
QyN (n + 1) (3.19)

which reads equivalently



qH
0

qH
1

...

qH
M+N−2




yN(n) =




qH
1

qH
2

...

qH
M+N−1




yN (n + 1) (3.20)

Thus we obtain

qH
i yN(n) = qH

i+1yN(n + 1) for i = 0, . . . , M + N − 2 (3.21)

Given the delayd, by the above recursion we have

qH
i yN (n) = qH

i+dg
yN(n + dg) for i = 0, . . . , M + N − dg − 1 (3.22)

Thus

qH
0 yN(n) = qH

dg
yN(n + dg) (3.23)

Hence, givenqH
0 , yN(n), andyN(n + dg) we can obtainqH

dg
by least-square solution,

yielding

qH
0 E{yN (n)yH

N (n + dg)} = qH
dg

E{yN(n + dg)y
H
N (n + dg)} (3.24)

qH
0 Rdg

= qH
dg

(3.25)

where the autocorrelation matrix ofyN+dg
is an identity matrix.

In summary, this algorithm is listed in the following:
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1. Define the equalizer lengthN such thatLN ≥ (M + N).

2. Compute the correlation matrixR0 in (2.11).

3. Estimate the signal subspace of rankM + N from the subspace decomposition of

R0.

4. Computeq0 using SVD fromFr.

5. ComputeRdg
and use (3.25) to findqH

dg
.

6. ComputezH
dg

= qH
dg

Λ
−1/2
1 SH .

3.3 EstimateQ with Iterative Least Square Method

In above section, we observe that to estimate the equalizer matrixZ usually needs to

compute the auto-correlation and cross-correlation matrices of received signals. This sec-

tion presents one new blind equalization algorithm; this algorithm uses the idea similar to

that of mutually referenced filters (MREs) to derive equalizer matrix but it only uses the

autocorrelation matrix of received signals.

As discussed above, givenq0, we can obtainq1 andqi for i > 1 recursively. Denote

AN as below

AN =




yN (n)H

yN(n + 1)H

...

yN (n + N + M − 2)H

yN (n + N + M − 1)H

...




(3.26)

where the row number ofAN is greater than the rank of channel matrixH (rank(H) =

M + N). Let BN obtained by excluding the first low ofAN and adding the last received

18



signalyH
new in the last row as below

BN =




yN (n + 1)H

...

yN(n + N + M − 2)H

yN(n + N + M − 1)H

...

yN(new)H




, (3.27)

The MRE (3.21) enables us to write the following equation

ANqi = BNqi+1 for 0, . . . , M + N − 2 (3.28)

Since the row numbers ofAN andBN are greater than the rank of channel matrixH, we

can assume that bothAN andBN are full rank, thus bothAN andBN have pseudoinverse

matrices,

A†
N =

(
AH

NAN

)−1
AH

N (3.29)

B†
N =

(
BH

N BN

)−1
BH

N (3.30)

Multiplying (3.28) byB†
N on the left yields

B†
NANqi = qi+1 for 0, . . . , M + N − 2 (3.31)

Hence, the equation (3.31) enables us to obtain from an initialq0 to computeqi i ≤ 1 as

shown in the flow path below

q0 −→ q1 −→ . . . −→ qM+N−2 −→ qM+N−1

Similarly, the same operation (3.21) can be reversed; multiplying (3.21) byA†
N we obtain

qi = A†
NBNqi+1 for M + N − 2, . . . , 0 (3.32)

GivenqM+N−1 we can obtainqi via (3.32) as shown in the flow path below

q
′

0 ←−q
′

1 ←− . . .←− q
′

M+N−2 ←− q
′

M+N−1
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Combining (3.31) and (3.32) together, a new flow loop is formed as shown below:

q0 −→ q1 −→ . . . −→ qM+N−2 −→ qM+N−1

⇑ ⇓
q

′

0 ←− q
′

1 ←− . . . ←− q
′

M+N−2 ←− q
′

M+N−1

Given an initialq0, the loop will continue until the loop recursion converges. One

criterion is to set
∣∣∣q0−q

′

0

∣∣∣ ≤ ǫ whereǫ is a user defined threshold. From our experience,

the loop converges with less than 10 iterations forǫ ≤ 10−3.

To summarize, this algorithm is listed in the following:

1. Define the equalizer length N, which can be used reasonably large to satisfy the

conditionLN ≥ (M + N).

2. Compute the correlation matrixR0 in (2.11).

3. Estimate the signal subspace of rankM + N from the subspace decomposition of

R0.

4. Set the initialg0 and a thresholdǫ.

5. Use the iteration loop to estimateQ and compute the equalizer matrixZ.
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Chapter 4

Adaptive Subspace Blind Equalizer

The blind equalizers discussed above are designed by batch data or called off-line data.

This chapter presents an adaptive blind equalizer by using the OPAST algorithm [7],

[8], generally Gram-Schmidt orthogonalization [10], and bi-iteration algorithm [9]. We

discuss OPAST first and then the adaptive equalizer is developed.

4.1 OPAST Algorithm

Definer(k) is a sequence ofn × 1 random vectors, and the autocorrelation matrix of

r(k) is C = E{r(k)r(k)H}. Consider the problem of estimating the principal subspace

spanned by the sequence of dimensionr < n. So consider the following scalar function:

J(W ) = E{
∥∥r−WW Hr

∥∥2} (4.1)

where a subspace matrix argumentW ∈ Cn×r. It has been shown in PAST algorithm that

1. W is a stationary point ofJ(W ) iff W = SQ̃, whereS is ann×r matrix containing

anyr distinct eigenvectors ofC, andQ̃ is anyr × r unitary matrix.

2. All stationary points ofJ(W ) are saddle points, expect whenS contains thatr

dominant eigenvectors ofC. In this case,J(W ) obtain the global minimum.

In tracking applications, we can replace the autocorrelation matrixC with its recursive

versionC(t) = αC(t − 1) + r(t)r(t)H at thetth iteration whereα is a forgetting factor
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chosen between (0,1]. In PAST algorithm, a fast implementation is proposed based on the

projection approximation that if the subspace matrixW (t) is slowly varying witht, then

C(t)W (t) ≈ C(t)W (t − 1). Using this projection approximation, the matrix product

C(t)W (t − 1) and the matrix inverse
(
W H(t− 1)C(t)W (t− 1)

)−1
can be computed

in O(np). DefineZ(n) ,
(
W H(t− 1)C(t)W (t− 1)

)−1
, then PAST algorithm can be

written in Table 4.1.

Table 4.1: PAST Algorithm

q(t) = 1
αZ(t− 1)y(t)

y(t) = W H(t− 1)r(t)

γ(t) = 1
(1+yH(t)q(t))

p(t) = γ(t) (r(t)−W (t− 1)y(t))

Z(t) = 1
αZ(t− 1)− γ(t)q(t)q(t)H

W (t) = W (t− 1) + p(t)qH(t)

The OPAST algorithm consists of the PAST algorithm and an orthonormalization step

of the subspace matrix at each iteration

W (t) , W (t)
(
W H(t)W (t)

)−1/2
(4.2)

where
(
W H(t)W (t)

)−1/2
defines an inverse square root of

(
W H(t)W (t)

)
. we will use

the iterating equation ofW (t) to keepW (t− 1) be an orthonormal matrix, we get

W H(t)W (t) = I + ‖p(t)‖2 q(t)qH(t) = I + xxH (4.3)
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where we know the fact thatW H(t − 1)p(t) = 0 from PAST algorithm, and define

x , ‖p(t)‖q(t). Therefore

(
W H(t)W (t)

)−1/2
= I +

1

‖x‖2


 1√

1 + ‖x‖2
− 1


xxH (4.4)

= I + τ(t)q(t)q(t)H (4.5)

where

τ(t) ,
1

‖q(t)‖2



 1√
1 + ‖p(t)‖2 ‖q(t)‖2

− 1



 .

Exploiting (4.3), (4.5) and the iterating ofW (t), we can have

W (t) =
(
W (t− 1) + p(t)Hq(t)

) (
I + τ(t)q(t)q(t)H

)
(4.6)

= W (t− 1) + p
′

(t)qH(t) (4.7)

where

p
′

(t) , τ(t)W (t− 1)q(t) +
(
1 + τ(t) ‖q(t)‖2

)
p(t).

The OPAST algorithm can be rewritten as the PAST (Table 4.1 ) combined with that

shown in Table 4.2.

4.2 Modified Algorithm for r-Dominant Generalized Eigen-

vectors

The PAST algorithm obtainsW = SQ̃ where the columns ofS consists ofr principal

eigenvectors ofC andQ̃ is anyr × r unitary matrix. Consider the following constraint:

W HCW = M (4.8)

whereM = diag(m1, m2, . . . , mr) andm1, m2, . . . , mr > 0. Therefore, we can obtain

that

Q̃HΣ = MQ̃H (4.9)
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Table 4.2: OPAST Algorithm

W (t) = W (t− 1) + p
′

(t)qH(t)

τ(t) = 1
‖q(t)‖2

(
1√

1+‖p(t)‖2‖q(t)‖2
− 1

)

p
′

(t) = τ(t)W (t− 1)q(t) +
(
1 + τ(t) ‖q(t)‖2

)
p(t)

where the diagonal matrixΣ isa generalized eigenvalue matrix ofC.

Since ther principal generalized eigenvalues are different, so it is simple to show that

M = Σ

Q̃ = I

W = S

This means that if we use the cost function (4.1) and the constraint (4.8), then we can

obtain ther principal generalized eigenvectors. In fact, the constraint (4.8) implies that

W should beC orthogonal. This can be obtained by orthogonalizing the matrixW via

iterating algorithm for dominant eigen-subspace. The algorithm for orthogonalization is

given as

m1 = w1 (4.10)

mj = wj −
j−1∑

i=1

mH
i Cwj

mH
i Cmi

mi (4.11)

wherewi is theith column ofW . WhenC = I, the C orthogonalization is the same as

the Gram-Schmidt orthogonalization (GSO) method. ¿From the GSO method, we also

can obtain eigenvalues ofC, because in (4.11) we must computemH
i Cmi andmH

i Cmi

equal tomi eigenvalue ofC that is useful for blind equalization algorithm.

Thus, the above idea results in the following modified algorithm Table 4.3forr prin-

cipal generalized eigenvectors.
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Table 4.3: Modified Algorithm

q(t) = 1
αZ(t− 1)y(t)

y(t) = W H(t− 1)r(t)

γ(t) = 1
(1+yH(t)q(t))

p(t) = γ(t) (r(t)−W (t− 1)y(t))

Z(t) = 1
αZ(t− 1)− γ(t)q(t)q(t)H

τ(t) = 1
‖q(t)‖2

(
1√

1+‖p(t)‖2‖q(t)‖2
− 1

)

p
′

(t) = τ(t)W (t− 1)q(t) +
(
1 + τ(t) ‖q(t)‖2

)
p(t)

W (t) = W (t− 1) + p
′

(t)qH(t)

C(t) = αC(t− 1) + r(t)r(t)H

(W (t),Σ(t)) = C(t) orthogonalize(W (t))

4.3 Adapive equalization algorithm Using Channel ma-

tr ix Method

The adaptive equalizer starts to use OPAST algorithm to find the signal subspaceW =

SQ̃. SinceS andΛ1 are required in the adaptive equalizer, we use the modified algorithm

to achieve this goal. DefineF = SΛ
1/2
1 andFr contain the lastL(N − 1) rows of theF .

Then the classical bi-iteration algorithm is used to compute the dominant singular values

and vectors ofFr to obtainq0; the algorithm is shown in the following Table 4.4.

In the bi-iteration algorithm,A(t) andB(t) denote auxiliary matrix of size(M +N)×

L(N − 1) andL(N − 1)× (M + N). The QR factorizations in (Table 4.4) produce the

corresponding dominant left and right singular vectors in the SVD ofFr. The triangular
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Table 4.4: Bi-Iteration Algorithm

QA(t = 0) = IM+N for t = 1, 2, 3, . . . for each time step do

B(t) = Fr(t)QA(t− 1)

B(t) = QB(t)RB(t) : L(N − 1)× (M + N) QR-factorization

A(t) = Fr(t)
HQB(t)

A(t) = QA(t)RA(t) : (M + N)× L(N − 1) QR-factorization

matrix will converge toward the diagonal matrix of the dominant singular values.

QA(t) −→ V (t)

QB(t) −→ U(t)

RA(t), RB(t) −→ ΣSV D(t)

and the structure of the exact SVD of theFr

Fr(t) = U(t)ΣSV D(t)V H(t) (4.12)

where

U(t) is matrix of left singular vectors;

V(t) is matrix of right singular vectors;

ΣSV D(t) is diagonal matrix of singular values.

Thenq0 can be selected as the last column vector of right singular vectorV (t).

¿From (3.25), we need to obtainRdg
. DefineRdg

= E{yNyH
N+dg
}; it can be rewritten

as

Rdg
= Λ

−1/2
1 SHE{xN(n)xN(n + dg)

H}SΛ
−1/2
1 (4.13)

= Λ−1
1 F HE{xN(n)xN (n + dg)

H}FΛ−1
1 (4.14)
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DefineRd = E{xN(n)xN (n + dg)
H}; the computation ofRd can be obtain below

Rd(n) = αRd(n− 1) + xN (n)xN(n + de)
H (4.15)

whereα is forgetting factor chosen between(0, 1]. Therefore,Rdg
also can be rewritten

as

Rdg
(n) = Λ−1

1 F HRd(n)FΛ−1
1 (4.16)

Combining all iterating algorithms together we obtain the adaptive equalizer which is

shown in Table 4.5.

27



Table 4.5: Subspace Blind Equalization Algorithm

q(t) = 1
αZ(t− 1)y(t)

y(t) = SH(t− 1)xN (t)

γ(t) = 1
(1+yH(t)q(t))

p(t) = γ(t) (xN (t)− S(t− 1)y(t))

Z(t) = 1
αZ(t− 1)− γ(t)q(t)q(t)H

τ(t) = 1
‖q(t)‖2

(
1√

1+‖p(t)‖2‖q(t)‖2
− 1

)

p
′

(t) = τ(t)S(t− 1)q(t) +
(
1 + τ(t) ‖q(t)‖2

)
p(t)

S(t) = S(t− 1) + p
′

(t)qH(t)

R0(t) = αR0(t− 1) + xN (t)xN (t)H

(S(t),Λ1(t)) = R0(t) orthogonalize(S(t))

F (t) = S(t)Λ
1/2
1 (t)

Fr(t) = the lastL(N − 1) rows ofF (t)

B(t) = Fr(t)QA(t− 1)

B(t) = QB(t)RB(t)

A(t) = Fr(t)
HQB(t)

A(t) = QA(t)RA(t)

q0(t) = the last column ofQA(t)

Rd(t) = αRd(n− 1) + xN (n)xN (n + de)
H

Rdg
(t) = Λ−1

1 (t)F (t)HRd(t)F (t)Λ−1
1 (t)

qH
dg

(t) = qH
0 (t)Rdg

(t)
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Chapter 5

Simulations

In this chapter, we use simulations to examine the performance of our new algorithms

described in this thesis. We compare the performance of the proposed methods with some

typical existing algorithms below:

• the output whitening method in [1] (LF) for direct equalization;

• the MRE algorithm in [5] (MRE) for estimating equalizers with all passible delays;

• the subspace algorithm [3] (TXK) for channel identification and equalization;

• the linear prediction-based algorithm in [6] (PS) for adaptive equalization.

5.1 Criteria of Performance Measure

As a performance measure, we estimate the residual intersymbol interference (ISI) over

100 Monte Carlo runs as done in most other measurements. Let the “overall” channel

impulse response be

c(n) =

L−1∑

i=0

N−1∑

j=0

gi(j)hi(n− j). (5.1)

The residual ISI is defined as

ISI =

∑
n |c(n)|2 −maxn |c(n)|2

maxn |c(n)|2
(5.2)
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We also estimate the signal-to interference-and-noise ratio (SINR) of the equalizer output,

which may be more suitable for studying the noise performance

SINR =
σ2

s maxn |c(n)|2

σ2
s

(∑
n |c(n)|2 −maxn |c(n)|2

)
+ σ2

n

∑
i

∑
j |gi(j)|2

(5.3)

whereσ2
s is the variance of the transmitted symbols.

For all simulations, the signal-to-noise ratio (SNR) is for the input to the equalizer

SNR=
E

{
|x(n)− n(n)|2

}

E
{
|n(n)|2

} . (5.4)

For each experiment, we use an i.i.d. input sequence drawn from a 16-QAM constellation.

The noise is drawn from a white Gaussian distribution at a varying SNR. The channel is

drawn from Table 5.1 [2].

Table 5.1: Channel Coefficients [2]

h(0) h(1) h(2) h(3) h(4)

−0.049 + 0.359i 0.482 − 0.569i 0.556 + 0.587i 1 −0.171 + 0.061i

0.443 − 0.0364i 1 0.921 − 0.194i 0.189 − 0.208i −0.087 − 0.054i

−0.221 − 0.322i −0.199 + 0.918i 1 −0.284 − 0.524i 0.136 − 0.190i

0.417 + 0.030i 1 0.873 + 0.145i 0.285 + 0.309i −0.049 + 0.161i

The number of subchannels isL = 4, the channel order isM = 4, and choosesN = 4

to let the delay bed = 4. In addition to above channel model [2], we also use the channel

impulse response in [3] that is an approximation of two-ray multipath environment and

the channel is obtained from delayed raised consine pulses. A single pulse is described

by ct(t, β) whereβ is a roll-off factor. The channel impulse response is:

h(t) = (0.2c(t, 0.11) + 0.4c(t− 0.25, 0.11))W6T (t) (5.5)

whereW6T (t) is a square window of duration 6 symbol interval and is shown in Fig. 5.1
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Fig. 5.1: Oversampling ratio L=4 and channel length M=6

5.2 Simulation Results

In this section, we use several examples to demonstrate that our method is effective to

design an equalizer. We also use ISI and SINR as performance indexes to compare the

difference of all algorithms.

5.2.1 Simulations of Off-Line Designed Blind Equalizer

First, the channel model in Table 5.1 is used to generate 500 symbols for equalizer design

under SNR=25dB; the equalizer outputs result in the constellation shown in Fig. 5.2 and

5.3 which clearly shows that the resolution using the iterative least square method and

the channel structure method is be better than that of the Fan’s method. In Fig. 5.4 and

5.5, we compare the performance indexes (ISI and SINR) and observe that the channel

structure method has better performance; the iterative least square method is better as the

SNR exceeding 25dB. In Fig. 5.6 and 5.7, we use different symbols numbers and SNRs to

show that our methods also have better performance. Next, we use the channel of TXK to

produce the received data, and compute ISI and SINR for comparison. In Fig. 5.8 and 5.9,

we observe that the change of N can influence the performance; when N=7 the iterative
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least square method improves its performance and in Fig. 5.10 and 5.11 using differentN

to display channel structure method can resist different channel and iterative least square

method inN = 7 still have better performance.

5.2.2 Simulations of On-Line Blind Equalization

In this subsection, we use the adaptive channel structure method to illustrate its perfor-

mance. In Fig. 5.12 we show equalizer estimation this algorithm for 25dB SNR and with

500 symbols and in Fig. 5.13 and 5.14 show that our algorithm have better performance

than the linear prediction algorithm. For the channel of TXK, the performance of our

algorithm for SNR below 25dB still remains an acceptable ISI and SINR.
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Fig. 5.2: Signal constellations for 500 symbols at SNR=25dB. (a) Without equalization.

(b) After equalization for Fan’s method.
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Fig. 5.3: After equalization for Channel Structure and Iterative Least Square method.
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Fig. 5.4: Performance comparison versus different SNR for ISI. ( (a) 250 and (b) 750

symbols)
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Fig. 5.5: Performance comparison versus different SNR for SINR. ( (a) 250 and (b) 750

symbols)
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Fig. 5.6: Performance comparison versus different symbol number for ISI. ( (a) 20dB and

(b) 25dB)
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Fig. 5.7: Performance comparison versus different symbol number for SINR. ( (a) 20dB

and (b) 25dB)
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Fig. 5.8: Using Channel of TXK to performance comparison versus different SNR for ISI

with 500 symbols. ( (a) N=5 and (b) N=7)
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Fig. 5.9: Using Channel of TXK to performance comparison versus different SNR for

SINR with 500 symbols. ( (a) N=5 and (b) N=7)
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Fig. 5.10: Using Channel of TXK to performance comparison versus different symbol

number for ISI with SNR=25dB. ( (a)N = 5 and (b)N = 7)
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Fig. 5.11: Using Channel of TXK to performance comparison versus different symbol

number for SINR with SNR=25dB. ( (a)N = 5 and (b)N = 7)
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Fig. 5.12: Performance comparison versus different SNR for ISI and SINR with 20dB.
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Fig. 5.13: Performance comparison versus different SNR for ISI and SINR with 20dB.
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Fig. 5.14: Performance comparison versus different SNR for ISI and SINR withN=4 and

1500 symbol.

45



0 500 1000 1500 2000 2500 3000
10

−3

10
−2

10
−1

10
0

10
1

SNR (dB)

IS
I

ISI Comparison

 

 

Adaptive Channel Structure Method
Linear Prediction

0 500 1000 1500 2000 2500 3000
−10

−5

0

5

10

15

20

25

SNR (dB)

S
IN

R
 (

dB
)

SINR of Equalizer Output

 

 

Adaptive Channel Structure Method
Linear Prediction

Fig. 5.15: Using channel of TXK to performance comparison versus different symbol

number for ISI and SINR withN=7 and 30dB.
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Fig. 5.16: Using channel of TXK to performance comparison versus different SNR for

SINR with N=7 and 1500 symbols.

47



Chapter 6

Conclusion

This thesis presents two design algorithms for subspace blind equalization and an adaptive

subspace blind equalizer. We use the property of Toeplitz structure of channel matrix and

the concept of mutual-reference filters to develop a new blind equalizer and its adaptive

algorithm. We also use the iterative least squares approach to design the blind equalizer.

Simulations are also performed to demonstrate that our algorithms yield better perfor-

mance with respect to the measures of ISI and SINR.
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