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Abstract 

 

 With the progress of semiconductor manufacturing techniques and the increasing 

of complexity of designs, to ensure the correctness of a design becomes a hard 

mission.  To find out the bugs in a large and complex design is time consuming but 

significant works.  The general verification method used by designers is simulation.  

The designers input appropriate signals to the design and observe if the outputs are 

correct to judge the correctness of the design.  This verification method can not 

ensure that the design is completely conform to the specification.  Clarke and Allen 

Emerson invented model checking techniques to recover the insufficiency of 

simulation based verification.  In this paper, we propose a Petri net-aided model 

checking techniques to assist SMV model checker.  In some cases, this technique can 

speed up the verification of EF and EX properties.  We implement a simple program 

with C++ language to transfer a FSM (finite state machine) into a Petri net and verify 

the state machine.  Then we show some examples to compare the verification time of 

PNV and SMV.  Finally we make a conclusion that in some cases, PNV can reduce 

the verification time of EF and EX properties substantially. 
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派屈網輔助邏輯電路模型檢查技術之研究 

 

學生：黃仕捷     指導教授：董蘭榮 博士 

 

國立交通大學 

電機與控制工程學系研究所 

摘要 

 
 隨著半導體製程的進步和電路系統設計的複雜度不斷增加，驗證這樣的系統

以確保此設計正確無誤變成了一項困難的任務。要在這樣大又複雜的設計中找出

問題變成了一項耗時卻又不可忽略的一個步驟。一般最常使用的驗證方法就是以

模擬(simulation)的方式，設計者輸入適當的測試訊號，接著觀察輸出訊號是否正

確來判斷設計的正確與否。這樣的驗證方式無法確保整個設計已經完全符合當初

設計的規格沒有任何錯誤。Clarke 和 Allen Emerson 發明了邏輯電路模型檢查

(Model checking)技術，彌補了以模擬來驗證的不足之處。在這篇論文中，我們

提出了一種以派屈網(Petri Net)輔助 SMV model checker 做邏輯電路模型檢查。利

用派屈網的一些特性，加速對於運算樹狀邏輯(Computational tree logic, CTL)中的

EF 和 EX 類的特性(properties)的驗證速度。我們以 C++實現了一個簡單的程式

將有限狀態機(Finite state machine)轉換成派屈網並對其做驗證。在這篇論文中，

我們展示了一些簡單的範例，比較 PNV (Petri net verification)與 SMV 的驗證時

間。我們下了一個結論:在部份情況下，PNV 可以大幅降低驗證 EF 及 EX 所花

費的時間。 
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Chapter 1  Introduction 

 With the advancement of semiconductor manufacturing and complexity 

increasing of designs, to ensure that designs are correct consumes more and more time 

and efforts.  Nowadays almost 80% of the overall design costs are paid for 

verification works.  In industrial, simulation continues the mainstream for 

verification topics.  However, simulation can only supply the presence of bugs rather 

than the absence.  Formal verification technique has been getting much attention for 

its 100% design error coverage [2].  By using mathematical model, formal method 

conducts exhaustive exploration of all possible behaviors of design and proves or 

disproves the correctness of design intention underlying system specification or 

properties. 

Model checking is a process of checking whether a given model satisfies given 

properties.  The properties are expressed in computational temporal logic (CTL). 

This technique is a promising formal technique and it has widely used in industry and 

academy.  A number of major companies including Intel, Motorola, ATT, Fujitsu and 

Siemens have started using model checking technique to verify their actual designs.  

Model checking allows ensuring that a finite state system does not violate properties it 

is supposed to conform with [3]. 

This technique was originally developed in 1981 by Clarke and Allen Emerson.  
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The main differences between model checking and simulation based verification are  

1) Model checking can be performed automatically 

2) When model checking detects an error, it produces meaningful results. 

Typically, the user provides a high level representation of the model and the properties 

to be checked.  The model checker will either stop with the answer true including 

that the model satisfies the properties, or give a counterexample to show why the 

model does not satisfy the properties. 

 The major method used by traditional model checkers is state traversing [2].  

With the increasing of the complexity of designs, states of a system increase 

dramatically.  State traversing method would cost more and more time to verify 

designs.  In this paper, we provide a verification method based on modeling a system 

with Petri net to speed up the verification of EF and EX properties. 

 There are several ways to analyze a Petri net, and matrix equation is one of them 

[1].  In this paper we use the matrix equation method to analyze Petri nets.  Because 

that the matrix equation method could solve the reachability issues of Petri net 

through linear algebra analysis [1, 34] and decrease the complexity of verification.  

Because of the feature of the matrix equation of a Petri net, we can use this method to 

speed up the verification of EF and EX properties. 

First of all, we transfer the inputted finite state machine into a Petri net.  

According to the information of the Petri net, we generate the transition matrix of the 

Petri net.  Then we put the properties into marking generator to transfer EF and EX 

properties into corresponding markings.  If there are some properties which are not 

EF or EX, we may pass them to SMV directly.  After getting transition matrix and 

markings, we start to verify the properties.  If some properties are verified to be false 

or we can not process the properties, we will pass them to SMV.  The main purpose 

for us to propose this thesis is to assist SMV to speed up verifying EF and EX 
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properties.  If we meet the properties we can not process, we still pass them to SMV 

to verify. 

 The detailed verification methods are shown in chapter 3.  In chapter 4, we 

illustrate the implementation of the verification software which is programming with 

C++ language.  In chapter 5, there are some examples verified with the software we 

implemented.  In chapter 6, we make some conclusions on this research works.
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Chapter 2  Background 

2.1 Model Checking 

 Model checking is an automatic technique for verifying correctness properties of 

finite-state reactive systems.  This technique has been successfully applied to find 

out subtle errors in complicated industrial designs such as sequential circuits, 

communication protocols and digital controllers [3]. 

 A reactive system consists of several components which are designed to interact 

with one another and with the system’s environment.  In contrast to functional 

systems, in which the semantics is given as a function from input to output values, a 

reactive system is specified by its temporal properties.  A temporal property is a set 

of desired behaviors in time; the system satisfies the property if each execution of the 

system belongs to the set.  From a logical standpoint, the system is described by a 

semantic Kripke-model, and a property is described by a logical formula.  Arguing 

about system correctness, thus, amounts to determining the truth of formulas in 

models [3]. 

 In order to perform such verification, one needs a modeling language in which 

the system can be characterized, a specification language for the formulation of 

properties, and a deductive calculus or algorithm for the verification process.  
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Usually, the system to be verified is modeled as a finite state transition graph, and the 

properties are formulated in an appropriate propositional temporal logic.  An 

efficient search procedure is then used to determine whether or not the state transition 

graph satisfies the temporal formulas.  When model checking was first developed in 

1981, it was only possible to handle concurrent systems with a few thousand states.  

The discovery of how to represent transition relations using ordered binary decision 

diagrams (OBDD) changed the possibility of verifying systems with realistic 

complexity dramatically.  By converting a formula to a BDD, a very concise 

representation of the transition relation may be obtained [3, 28]. 

 Much of the success of model checking is due to the fact that it is fully automatic 

verification method.  With model checking, all the user has to provide is a model of 

the system and a formulation of the properties to be proven.  The verification tool 

will either terminate with an answer indicating that the model satisfies the formula or 

show why the formula fails to hold in the model.  These counterexamples are 

particularly helpful in locating errors in the model or system [3, 26]. 

 With the completely automatic approach it may be necessary for the model 

checking algorithm to traverse all reachable states of the system.  This is only 

possible if the state space is finite.  Whereas other automated deduction methods 

may be able to handle some infinite-state problems, model checking usually is 

constrained to a finite abstraction.  In fact, model checking algorithms can be 

regarded as decision procedures for temporal properties of finite-state reactive 

systems [3, 26, 28]. 
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2.2 SMV Model Checker 

  SMV is a symbolic model checking tool developed by Cadence Berkeley Labs.  

It allows users to formally verify temporal logic properties of finite state systems.  

We use the SMV language to describe the finite state systems which we want to 

verify by SMV model checker.  Figure 2-1(Captured from Cadence SMV) is the 

Graphic user interface of Cadence SMV model checker [25]. 

 

 

Figure 2-1 SMV Graphic User Interface [25] 

 

The SMV language can be divided roughly into three parts – the definitional part, 

the structural part, and the expressions.  The definitional part declares signals and 

their relationship with each other.  It includes type declarations and assignments.  

The structural part combines the components declared in definitional part.  It 
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provides language constructs for defining modules and structured data types and for 

instantiating them.  Finally, the expression part specifies the properties that the user 

wants to verify, and the expressions are expressed by computational tree logic (CTL) 

[23, 24, 25, 33]. 

2.3 Computational Tree Logic 

 Computational Tree Logic (CTL) is branching-time logic: its formulas allow for 

specifying properties that take into account the non-deterministic, branching evolution 

of a FSM.  The evolution of a FSM from a given state can be described as an infinite 

tree, where the nodes are the states of the FSM.  The paths in the tree start at a given 

state are the possible alternative evolution of the FSM from that state.  The CTL 

formulas are constructed path qualifiers and temporal operators. 

 Path qualifiers: 

 A – “for all the paths” 

 E – “some of the paths” 

 Temporal operators: 

 Xp – “p holds next time” 

 Fp – “p holds sometime in the future” 

 Gp – “p holds globally in the future” 

 pUq – “p holds until q holds” 

There are eight CTL operators (AX, AF, AG, ApUq, EX, EF, EG, EpUq) can be 

used to express properties.  They are illustrated in Figure 2-2. 
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Figure 2-2 CTL illustration 
 

CTL operators can be nested in an arbitrary way and can be combined using logic 

operators ( !, &, |, ->, …).  For example, AG ( p -> EX q) means that “each 

occurrence of condition p is followed by at least one path that condition q occurs in 

the next state.”  AG ( p & q -> AF r) means that “for all occurrence of condition p 

and condition q are followed by condition r occurs at one state for each path finally.” 

[2, 4, 20] 

2.4 Petri Net 

2.4.1 Basic Definition 

A Petri net C is a four-tuple C = ( P, T, I, O ), where P is a set of places, T is a set 

of transitions, I is an input function, and O is an output function.  P = { p0, p1, p2, ... , 

pn } is a finite set of places, where n≧0.  T = { t0, t1, t2, … , tn } is a finite set of 

transitions, where n≧0.  The two sets P and T are disjoint, that is, P∩T =φ.  The 

input function I and the output function O record the relationship between places and 
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transitions.  For a transition ti, I(ti) represents the set of the input places of ti and O(ti) 

represents the set of output places of ti.  In other words, the input function I is a 

mapping from a transition ti to a collection of places I(ti), and the output function O is 

a mapping from a transition ti to a collection of places O(ti).  A place pi is an input 

place of a transition tj if pi ∈ I(t ); p  is an output place of t  if p  ∈ O(t ).j i j i j

 A transition could have more than one input places and more than one output 

places.  A transition also could have no input places or no output places.  A 

transition which has no input places means that the transition is always firable and 

usually used to represent inputs.  A transition which has no output places means that 

firing the transition only eliminates the tokens in its input places and no tokens will be 

created in any place. 

 A graphical representation of a Petri net is more convenient for illustrating the 

concepts of Petri net theory and easier for understanding.  A Petri net graph consists 

of two elements, places and transitions.  In a Petri net graph, a place is represented 

with a circle ○, and a transition is represented with a rectangle ▌.  Places and 

transitions in a Petri net are connected with arrows.  An arrow directed from a place 

to a transition defines the place to be an input place of the transition.  An arrow 

directed from a transition to a place defines the place to be an output place of the 

transition.  Multiple inputs to a transition are expressed by multiple arrows from the 

input places to the transition.  Multiple outputs of a transition are represented by 

multiple arrows from the transition to multiple output places.  However, a place can 

not connect to a place and a transition can not connect to a transition either.  Figure 

2-3 is an example of a Petri net graph. 
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Figure 2-3 Petri net 1 

 

There are five circles and four rectangles in Figure 2-3.  The circles and rectangles 

represent places and transitions respectively.  The following is the four-tuple 

representation of the Petri net graph in Figure 2-3. 

 C = (P, T, I, O) 

P = {p0, p1, p2, p3, p4} 

T = {t0, t1, t2, t3} 

I(t0) = {p0}   O(t0) = {p1, p2} 

I(t1) = {p2 }   O(t1) = {p4} 

I(t2) = {p3}   O(t2) = {p0} 

I(t3) = {p4}   O(t3) = {p3} 

2.4.2 Marking, State and Reachability 

2.4.2.1 Marking 

A marking μ is an assignment of tokens to the places of a Petri net.  Tokens in 

a Petri net graph are represented with dots ․ in the circles which represent places.  

The states of a Petri net are determined by the number and distribution of tokens in 

the Petri net.  A Petri net executes by firing transitions.  During the execution of a 

Petri net, the number and distribution of tokens may be changed.  A transition can be 
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fired if each of its input places has at least as many tokens in it as arrows from the 

place to the transition.  When a transition has this condition, we say this transition is 

enabled (firable).  The tokens in the input places of a transition and make the 

transition enable are the enabling tokens of the transition.  Firing a transition will 

remove the enabling tokens from its input places and depose into each of its output 

places one token for each arrow from the transition to the places.  For example, in 

Figure 2-4 the tokens in p0 and p3 are the enabling tokens of t0 and t2 respectively.  

After firing t0, the tokens in p0 will be removed and t0 will depose one token into each 

of its output places p1 and p2.  The result of firing t0 is shown in Figure 2-5. 

 

        
Figure 2-4 Petri net 1 state 0          Figure 2-5 Petri net 1 state 1 

 

2.4.2.2 State 

 The states of a Petri net are defined by markings.  The firing of a transition 

indicates a change in the state of the Petri net by changing the marking of the net.  

Since only enabled transitions can fire, the number of tokens in each place always 

remains non-negative when a transition is fired.  The change in states caused by 

firing a transition is defined by a change function δ called the next-state function.  

If a transition ti is enabled, δ(μ, ti) =μ' indicates that firing ti will change the 

marking from μ to μ'.  When the marking of a Petri net is changed, the state of 

the Petri net is changed.  For example, in Figure 2-4, the marking μ= [1 0 0 1 0]T.  
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After firing t0, the marking will change from μ to μ' = [0 1 1 1 0]T. 

2.4.2.3 Reachability 

 Given a Petri net C = ( P, T, I, O ) and an initial marking μ0, we can execute the 

Petri net by sequential transition firings.  Firing an enabled transition ti at the initial 

marking makes a new marking μ1 =δ(μ0, ti ).  At the new marking μ1, we can 

fire any enabled transitions to get a new marking.  Assume that tj is an enabled 

transition at μ1, firing tj will get a new marking μ2 =δ(μ1, tj ).  This action can 

continue as long as there is at least one enabled transition at the new marking.  If the 

Petri net reaches a marking in which no enabled transition, in other words, there is no 

transition can be fired, the execution of this Petri net must stop. 

 For a Petri net C = ( P, T, I, O ) with marking μ, a marking μ1 is immediately 

reachable from μ if there exists a transition ti ∈ T such that δ(μ, ti) =μ1.  If a 

marking μ2 is reachable from μ1 immediately, then we say that μ1 andμ2 are 

reachable from μ0.  In [1], they define the reachability set R( C, μ) of a Petri net C 

with marking μ to be all markings which are reachable from μ.  A marking μ' is in 

R( C, μ) if there is at least one sequence of transition firings which will change the 

marking from μ to μ'.  For example, the initial marking in Figure 2-4 is 

μ0 = [1 0 0 1 0]T, after firing the sequence of transitions ( t0, t1 ), we get μ1 = [0 1 1 

1 0]T and  μ2 =[0 1 0 0 1]T.  We say that μ1, μ2 ∈ R( C, μ0).

2.4.3 Matrix Equations 

 There are several approaches to analyze a Petri net, and one of them is based on 

matrix equations.  Each Petri net could be represented by a transition matrix.  The 

matrix indicates the relationship between places and transitions.  A transition matrix 
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is m (the number of places) rows by n (the number of transitions) columns.  Each 

column represents one transition and records the input places and output places of this 

transition.  The way of recording the relationship of places and transitions is that if 

there is an arrow directed from a place pi to a transition tj, we put -1 in the ith row by 

the jth column to mark that pi is an input of tj.  If there are two arrows directed from 

pi to tj, then we put -2 in the corresponding position in the matrix and so on.  If an 

arrow directed from tj to pk, we put 1 in the kth row by the jth column to mark that pk is 

an output of tj.  If there are two arrows directed from tj to pk, we put 2 in the 

corresponding position in the matrix.  After establishing the transition matrix of a 

Petri net, we can represent the Petri net by a matrix equation like the following. 

 

μ' = μ + Ax                   (2.1) 

 

Here μ is the initial state(marking) of the Petri net; A is the transition matrix 

records the relationship between places and transitions of the Petri net; x is a 

transition firing sequence matrix which records the firing times without firing order 

information of all transitions in the Petri net; μ' is the state(marking) of the Petri net 

after firing the transitions recorded in x.  Of course, these fired transitions should be 

enabled at the state μ.  This matrix equation indicates that we can get the next state 

μ' by adding the product of A and x to μ.  Take Figure 2-4 for example, 
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At the state μ, the enabled transitions are t0 and t2.  After t0 fired, as shown in 

 13



Figure 2-5, we can get a new marking by solving the matrix equation 
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To solve the matrix equation, we obtain .  If we set , we can get 

another marking  which represents the state firing t
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Chapter 3  Model Checking with Petri 
Net 

For the traditional model checking we told in section 2.1, the verification method 

is to spread the states from the initial state and then traverse all states to check that if 

all paths satisfy the properties which the system needs to hold.  The drawback of the 

traditional model checking method is when designs become more and more large and 

complex, the states need to be traverse will grow dramatically.  Because of this, the 

users need to spend more time verifying the designs through state traversing and the 

time will become considerable.  In order to assist the state traversing based model 

checking, we propose a verification method based on Petri net.  Because of the 

features of Petri net, the verification method we proposed can reduce the complexity 

of verifying EX and EF properties and economize on the time users spend verifying. 

 The method we used is to model a FSM in a Petri net and utilize the features of 

Petri net to reduce the complexity of verification.  In this chapter, we will introduce 

the verification flow and the methods of our verification (Petri Net Verification, 

abbreviate to PNV). 
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3.1 Verification Flow 

 The verification flow of our Petri net based model checking is shown in Figure 

3-1.  The input of PNV is a SMV code with some constrain we made.  The SMV 

code includes the description of FSMs and properties.  The FSM parts include 

signals (inputs and outputs), states and state transition information.  According to the 

information, we generate transition matrix and markings and verify the system. 

 

FSM to PN

Reachability Check

True ?

Verification OK

Marking Generator

Yes

No

Properties (EF, EX) FSM

Petri net

Δμ

Pass the false 
properties to 

SMV

Transition Matrix 
Generator

Transition Matrix

SMV code

 

Figure 3-1 Verification flow 

 

When we get a FSM and its properties, first, we transfer the FSM into a 

corresponding Petri net.  Second, we generate the transition matrix based on the Petri 

net we get before by Transition Matrix Generator.  Third, put the properties and 
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some data from the transition matrix into Marking Generator, we get corresponding 

markings.  After getting the transition matrix and markings, we can start to verify the 

system.  Because of the limitation of the verification methods, we can only process 

EX and EF properties.  After verifying, if a property is false, we will pass the 

property to SMV to verify it again and generate a counterexample. 

 The verification flow is separated into several parts.  In the following sections, 

we will talk about each part step by step.  In the first part, we will talk about the 

transformation from FSM into Petri net.  The generation method of transition matrix 

we have told in section 2.4.3, so we do not talk about it in this chapter.  Second, we 

will discuss how the marking generator generates the corresponding markings based 

on the properties.  Finally, we will introduce the main verification method of Petri 

net based model checking and the limitation of this method. 

3.2 Transformation from FSM into Petri Net 

3.2.1 Transformation of Places and Transitions 

 To transform a FSM into a Petri net, we need to know the relation between a 

FSM and a Petri net.  A FSM is composed of the following five parts: 

 Q : States 

 Σ: Input alphabet 

 Δ: Output alphabet 

 δ: Q × Σ→Q next-state function 

 Γ: Q → Δ output function 
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A Petri net is a four-tuple (P, T, I, O).  As a FSM (Q,Σ,Δ,δ,Γ) we define a Petri 

net (P, T, I, O) by 

 P = Q∪Σ∪Δ 

 T = {tq,σ| q∈Q andσ∈Σ} 

 I(tq,σ) = {q ,σ} 

 O(tq,σ) = {Γ( q )} 

According to the illustration above, we could know that all states, inputs, and outputs 

in a finite state machine are represented with places in a Petri net and all events 

(arrows) in a state machine are represented by transitions in a Petri net [1].  The rules 

of transferring a FSM into a Petri net are: 

 

1. Inputs, outputs, and states → places 

2. Events (arrows) → transitions 

3. Preconditions → input places 

4. Post-conditions → output places 

 

The arrows determine the state transitions in a FSM as well as the transitions in a Petri 

net, so an arrow in a FSM would be transferred into a transition in a Petri net.  The 

input places and output places of the transition are the preconditions and post 

conditions of the arrow in the FSM respectively. 

After discussing the transformation rules of FSMs and Petri nets, the following 

are some examples to show the transformation in different situations. 
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Figure 3-2 FSM 1             Figure 3-3 Petri net of Figure 3-2 

 

 Figure 3-3 is the Petri net transferred from the state machine in Figure 3-2.  In 

Figure 3-2, there are three states (State 0, State 1, and State 2) and three signals (A, B, 

C).  According to the transformation rule 1, there should be three places represent 

the states and another three places represent the control signals in the corresponding 

Petri net.  There are three arrows in the state machine to determine the state 

transitions.  According to the transformation rule 2, the Petri net needs to have three 

transitions to represent the three arrows, there are t0, t1, and t2.  Finally we connect 

the places and transitions bottom on the transformation rule 3 and 4 then the Petri net 

is built. 

 In the above example, we told about the state machine which changes states 

when control signals are 1(i.e. there is only one value being used for each signal).  

So there is only one place needs to be built to represent each signal in Petri net.  In 

some state machines, states may change when the control signal is 0 and 1 both.  In 

this kind of situation, we should generate two places to represent the two values of the 

signal.  It is illustrated in the following example. 
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Figure 3-4 FSM 2            Figure 3-5 Petri net for Figure 3-4 

 

 In the FSM in Figure 3-4, State 0 may change to State 1 when A = 0 and may 

change to State 2 when A = 1.  To transfer the FSM into a Petri net in this situation 

we should create two places to represent the two values of the signal A.  The 

corresponding Petri net is shown in Figure 3-5.  The transition t0 controls the state 

transition from State 0 to State 1, and t1 controls the state transition from State 0 to 

State 2. 

 In some cases, we could ignore to transfer some arrows and some values of 

signals into transitions and places.  It is that when a value of a signal which does not 

control any state transitions, we could ignore the transformation of the value and the 

arrow.  For example, in Figure 3-6, State 0 has a self-loop when A = 0.  Assume the 

initial state is State 0, and A = 0, the state is still at State 0 until A = 1.  This FSM 

could have the same behavior even if we ignore the transformation of the arrow 

controlled by signal A = 0.  Because A = 0 does not determine any state transitions. 

 

 
Figure 3-6 FSM 4 
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But in some other case, we still generate transitions and places even if the arrows and 

signals do not determine any state transitions.  An example is shown in section 5.2. 

 From the three examples above, we can observe that in some situations we 

transfer one signal into one place, but in other situations we transfer one signal into 

two places.  Theoretically speaking, we should always transfer a signal in a FSM 

into places based on its values.  In other words, when a signal A can be 0 and 1, we 

should generate two places to represent A = 0 and A = 1.  But some values of signals 

do not control any state transitions.  For example, the value 0 of the signal A in 

Figure 3-2 do not control any state changes in the FSM, we don’t need to generate a 

place to represent A = 0 and the transition controlled by A = 0 either.  It is no effect 

that we do not generate the place A = 0 and the transition in the corresponding Petri 

net.  Summarily speaking, when there are any arrows which do not determine state 

transitions, we could ignore the transformations of the arrows.  We only transfer the 

signals and arrows which are used into places and transitions respectively.  By doing 

this, we could make the corresponding Petri net more concise and the transition 

matrix of the Petri net smaller. 

 There is a special kind of transitions which do not have input places.  The 

transitions are firable all the time and usually connected in front of inputs to provide 

the input places tokens.  When we meet a situation that we don’t know how many 

tokens we have to assign to an input signal (e.g. clk), we put an input transition in 

front of the place to generate tokens to the signal.   
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Figure 3-7 Petri net 1 

 

In Figure 3-7, t3 to t5 are input transitions, they provide tokens to the inputs A, B and 

C respectively.   

3.2.2 Transformation of Multiple Modules 

 When a system consists of more than one module and these modules 

communicate with each other, we could transfer the modules into a Petri net as the 

following steps. 

 

1. Transfer each module into a Petri net individually 

2. Merge the same places which are used in different Petri nets. 

 

In Figure 3-8, it is a simple example to model bus communication protocol.  FSM A 

is master and FSM B is slave.  This system models the behavior of reading and 

writing.  The initial states of the two state machines are A0 and B0. 
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Figure 3-8 FSM 3 

 

 

Figure 3-9 Petri net of Figure 3-6 
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Figure 3-10 Petri net combine from Figure 3-8 

 

According to the rules we told above, the first step is to transfer the two state 

machines into Petri nets individually.  The transformation result is shown in Figure 

3-9.  The left Petri net is transferred from FSM A and the right one is transferred 

from FSM B.  Because of the cooperation of these two FSMs, there are many places 

which appear in both Petri nets.  Then we merge the same places of the two Petri 

nets.  After merging some places of the two Petri nets, we get one Petri net shown in 

Figure 3-10.  This Petri net is the result transferred from the system in Figure 3-8. 

3.3 Marking Generator 

The function of marking generator is to transfer the properties into corresponding 

markings.  Markings represent the states of Petri nets.  A property is written as  
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“O1 (starting state → O2 (ending state))”, O1 and O2 are CTL operators.  The 

starting state and ending state here can be mapping to μ and μ' in equation 2.1 

respectively.  To transfer a state into a marking, we put one token in each place 

which represents the state or signal mentioned in the state description.  The 

expression of a token in matrix equation of a Petri net is putting 1 in the position 

which represents the place.  In order to make the verification process convenient, we 

rewrite equation 2.1 as 

 

Δμ = Ax                   (3.1) 

 

where Δμ = μ' – μ.  The actual information we need is Δμ.  So, the rules 

of transferring the starting state and the ending state into Δμ are 

 

1. In a marking matrix (μ), we put 1 in each place which represents the state 

mentioned in the starting state. 

2. In another marking matrix (μ'), we put 1 in each place which represents the 

state mentioned in the ending state. 

3. Through subtracting μ from μ', we get Δμ. 

 

To simplify the transformation steps, we change the way we do above.  First we fill 

the matrix Δμ with 0. Then we add -1 instead of 1 in each place which represents 

the state mentioned in the starting state in a marking matrix and add 1 in each place 

which represents the state mentioned in the ending state in the same matrix.  By 

doing this, we can directly get the matrix Δμ. 
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3.4 Reachability Checking 

We have introduced in section 2.4.3 that a Petri net could be analyzed by a 

matrix equation and the equation could be express as equation 3.1.  According to 

linear algebra theorem [34], a linear system Ax = b is consistent if and only if the 

rank of A is equal to the rank of (A | b), where (A | b) is the augmented matrix.  For 

example, from Figure 2-4 and 2-5 we can get 
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If the state in Figure 2-5 is reached from the state in Figure 2-4, the rank of A will be 

the same as the rank of matrix (A |Δμ).  To evaluate the ranks of A and (A |Δμ), 

we use Gaussian elimination [34] to reduce the two matrices into reduced row echelon 

form and normalize the lead variables of each row.  After going through the steps, 

we get two matrices in row echelon form like the following. 
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The rank of A = 4 and the rank of (A |Δμ) = 4.  This linear system is consistent and 

we can get solutions of the transitions directly from the most right column.  The 

solution of the system is .  This solution means that we can reach the state 

of the Petri net in Figure 2-5 from the state in Figure 2-4 by firing the transition t
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time. 

Through this linear algebra method above, we can only know that this system has 

a solution or not.  This condition can make us apply it to check EX and EF 

properties.  Because as long as we can find any situation that makes the system 

satisfies the property which is EX or EF, we can say that the system satisfies the 

property.  The other kinds of properties (AX, AF, AG…) may not have many 

advantages to be verified by this method because that to verify a system which 

satisfies these kinds of properties (AX, AF, AG…) needs to be proved that more than 

one situation or all situations of the system which satisfy the properties.  So the main 

point in this paper is the methods to speed up verifying EF and EX properties with 

modeling a FSM in Petri net. 

 Before we start to solve the solutions of a matrix equation, we need to know the 

ranks of the matrices.  When the ranks of A and (A |Δμ) are equal, we can only 

know that the linear system has solutions.  When the ranks of the matrices are equal 

to the number of its transitions, we can get a unique solution of the system.  When 

the rank of the matrix is less than the number of its transitions, there are infinite 

solutions of the equation. 

The solution of a matrix equation is a set of the firing times of transitions in a 

Petri net, and the firing times must be integers and greater than 0.  Proving the 

equation is consistent is not enough to confirm that the system satisfies the property.  

We need to do some other process to ensure that there is at least one solution exists 

and satisfies the following two rules (Firing Times Rules). 

 

1. The values of the firing times should be equal or greater than 0. 

2. All the firing times should be integers. 
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In other words, when the ranks are equal to the number of transitions, we have to 

solve the solution and check if the solution conform the Firing Times Rules; when the 

ranks are less than the number of transitions, we also need to ensure that there exists 

at least one solution satisfies Firing Times Rules. 

3.4.1 Ranks are Equal to the No. of Transitions 

 When the ranks of a matrix equation are equal to the number of its transitions, 

we can use the method we told above to verify the linear system and confirm that this 

system has at least one solution then check if the solution satisfies Firing Times Rules. 

 To verify an EF property we only need to solve the solution and check if the 

solution satisfies the Firing Times Rules.  If the answer is YES and we can say that 

the EF property is true. 

 To verify an EX property we not only need to solve the solution and check if the 

solution satisfies the Firing Times Rules but also need to check one more rule which 

is: 

  All fired transitions should not have any correlation with each other. 

 

Proof:  

1. For a FSM, there is only one state which the state machine is staying at.  So 

in a Petri net transferred from a FSM, there is only one place which represents 

one of the states with a token in it. 

2. For each transition, one of its input places must be a state place.  In other 

words, firing a transition must cause a state transition. 

Because of the two reasons, for a Petri net transferred from only one state 

machine, when we solve the firing sequence which has more than one transition 
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fired, the fired transitions must have causal relation with each other.  For a Petri 

net transferred from more than one FSM, the Petri net can fire more than one 

transition at one time.  But the fired transitions should not have casual relation 

with each other, too.  When a firing sequence in which the fired transitions have 

casual relation with each other, the final state must be not the next state of the 

initial state. 

 

The method of checking the rule is that the output places of each fired transition 

should not be other fired transition’s input places.  When the fired transitions do not 

have any casual relation with each other, we can ensure that the final state is the next 

state of the initial state.  If there is a fired transition its input places are other fired 

transition’s output places, it means that there is causal relationship between these two 

transitions.  State transition causing by firing two successive transitions may not 

satisfy EX properties, i.e. the ending state is not the next state of the beginning state.  

The verification flow of ranks = NO. of transitions is shown in Figure 3-11. 

 

 
Figure 3-11 Flow of ranks = NO. of transition 
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3.4.2 Ranks are Less Than the No. of Transitions 

The cause of that the ranks are less than the number of transitions is that the FSM 

has loops and when we transfer the state machine into a Petri net we generate 

transitions without input places and the output places are the control signals.  For 

example, in Figure 3-12(a), the state machine has a loop and three control signals.  

We transfer the state machine into a Petri net in figure 3-12(b) and generate three 

transitions (t3, t4, t5) without input places to put tokens into signal places. 

 

 
             (a)                       (b) 

 

(c)                       (d) 
Figure 3-12 Example of the ranks < NO. of transitions 

 

In this example, we set a property: “AG ( S0 -> EF (S2))” to the FSM.  The reduced 

matrix is shown in Figure 3-12(d).  In this kind situation, the ranks will be less than 

the number of transitions and we can adjust some transitions to make the Petri net go 

through the loop one time of more.  In this example we can adjust the firing times of 

t5.  In Figure 3-12(d), if we set t5 = 0, the solution of the matrix equation will be (1, 1, 
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0, 1, 1, 0) and the state transition process is S0 → S1 → S2; if we set t5 = 1, the 

solution will be (2, 2, 1, 2, 2, 1) and the state transition process is S0 → S1 → S2 

→ S0 → S1 → S2. 

According to the illustration above, when the ranks of a matrix equation are less 

than the number of its transitions, we have to use some other methods to confirm that 

there is at least one solution satisfies the properties and the Firing Times Rules. 

 For EF properties, first we eliminate the matrix (A |Δμ) into reduced row 

echelon form.  Then we check each coefficient in each row to comprehend if the 

matrix obeys the following two rules. 

 

1. For each row, when the signs of the coefficients in the A part are the same, 

the sign of the value in Δμ column must be also the same as the signs. 

2. When there are positive and negative coefficients in the A part, we do not 

care the sign of the value in Δμ column. 

 

When the matrix (A |Δμ) satisfies the two rules above, we can say that this matrix 

equation could be found a solution set which satisfies the Firing Times Rules.  The 

following is an example to illustrate the two rules above. 

 

 

Figure 3-13 (a) 
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(b) 

Figure 3-13 Example of illustrating EF properties judging rules 

 

In Figure 3-13(a) row 0, the coefficients in the A part are zero except column t0.  The 

sign of (0, t0) is positive and it is the same as (0, Δμ).  So we can find a legal 

solution of t0.  In row 1, there are three non-zero coefficients and they are all 

positive, and the value (1, Δμ) is also positive.  We can find solutions of t1, t6, t9 

such that satisfy the equation and the Firing Times Rules like (t1, t6, t9) = (1, 0, 0).  

When there are positive and negative coefficients in a row in the A part, it means that 

there is at least one loop in this system and we can adjust some transitions to change 

the firing times of other transitions.  So for one row, no matter what the sign of 

column Δμ is, we always can find a solution set that satisfies the equation when 

there are positive and negative coefficients in the A part. 

In Figure 3-13(b), the coefficient in row 0 column t0 is positive but Δμ is 

negative.  They have different signs and the solution of t0 must be -1, it violates the 

Firing Times Rules.  In row 1, there are three positive coefficients in the A part but 

the value of Δμ is negative.  We can not find any solutions of (t1, t6, t9) which are 

positive integers and satisfy the equation. 

For EX properties, we always need to solve the solution to verify it.  Because 

even though the matrix equation has a solution which satisfies Firing Times Rules, we 

also need to check if the solution satisfies next state property.  So, when we meet an 
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EX property and the ranks of the matrix equation are less than its number of 

transitions, we can not get a solution and also can not verify EX properties at this kind 

of situation.  The verification flow of ranks < NO. of transitions is shown in Figure 

3-14. 

Property 
false

Check if there are any 
legal solutions

EF?

Exist?

Yes

Property true

EF propertiesEX properties

Can not verify

No

Pass the properties to 
SMV

YesNo

Matrix [A | Δμ]

 
Figure 3-14 Flow of ranks < NO. of transitions 

 

3.4.3 Summary 

 According to the illustration in the two section above, we could make a brief 

summary that when we find the ranks of the matrices A and (A |Δμ) of a system are 

equal and the same as the number of its transitions, we will solve the matrix equation 

and check if the solution tallies with Firing Times Rules.  When the ranks are equal 

and the solution satisfies the rules, we will show that the property is true.  When we 

find that the ranks of the matrices are equal but they are less than the number of its 

transitions, if the property is EF, we will check if the matrix has solutions satisfies 

Firing Times Rules.  When the property is EX, we can not verify it and will pass the 

property to SMV directly.  When we find that the ranks of the two matrices are not 
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equal, we will directly show that the property is false and pass the property to SMV.  

The total verification flow is shown in Figure 3-15. 

 

 

Figure 3-15 PNV software verification flow
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Chapter 4  Implementation 

 In this section, we will discuss the implementation of PNV for each block in 

Figure 3-1. 

4.1 Input Coding Rules 

The input data of PNV is a SMV code which should obey the coding rules we made.  

The coding rules are made for us to transfer FSM descriptions into a Petri net 

structure more easily and conveniently.  The codes which obey the coding rules are 

still readable by SMV model checker.  The coding rules are 

 

1. A signal which controls two state transitions should be named starting with 

“_”, e.g. “_enable”. 

2. In the input SMV code, each symbol, signal name, and keyword should be 

separated by a blank space. 

3. The properties should be described completely including the states and the 

values of signals. 

4. Adding “--” at the end of the signal transition descriptions which do not 

need to be transferred into transition in Petri net. 
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The first rule is made for PNV to recognize which signal needs to be transferred into 

two places.  The second rule is made for PNV to read the input SMV code easily.  

The purpose we make the third rule is to make marking generator generate markings 

easily.  The fourth rule can make a Petri net and its transition matrix smaller in some 

situation.  Even if we don’t allow the fourth rule, the codes are still readable for 

PNV. 

Figure 4-1 is a simple example of SMV code which obeys the coding rules 

above. 

 

Figure 4-1 SMV code of counter 

 

Figure 4-1 is a finite state machine of a counter.  From line 1 to line 3 and from line 

17 to line 20 are the definitional part.  Line 1 declares a module called counter and 

enable is its input.  Line 3 declares the state of the counter which has eight values 

from 0 to 7.  From line 4 to line 16 are the structural part.  Line 5 defines that the 

initial value of state is 0.  From line 6 to line 16 define the state transitions of counter.  

Line 7 describes that when enable = 0 and state = 0, the next state is still 0.  We don’t 

need to generate any transition in Petri net for this description.  So, according to the 
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4th coding rule, we add “--” at the end of line 7.  Line 17 is main module in which 

the designer defines the connections of all sub-modules.  From line 21 to line 24 are 

the expression part.  Line 22 and line 24 are the properties of this system.  The 

modules before main module are sub-modules which are used in main module.  The 

descriptions in main module connect the whole sub-modules together and define 

properties. 

4.2 Data Structure of PNV 

 The work of PNV is to transfer a SMV code into Petri net structure and to 

generate the transition matrix then verify it.  Figure 4-2 is the data structure of a Petri 

net built by PNV. 

 

 

Figure 4-2 Data structure of PNV 

 

There are three objects, Module, Place, and Transition, in the structure.  For each 

module, there are three elements, a place vector, a transition vector, and a string, in it.  
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Each place has a string to represent its name.  Each transition has two place vectors, 

one is to store the input places of the transition and the other is to store the output 

places of the transition [35]. 

 The first step of building a Petri net is to generate modules.  When PNV reads 

the keyword, MODULE, PNV pushes a new module which is named as the word after 

MODULE in the SMV code into the module vector.  After creating a new module, 

PNV continues to build the places and transitions of this module according to the 

declarations in VAR part and ASSIGN part respectively.  PNV creates one or two 

places to represent a signal which is declared as a Boolean signal.  When there is a 

signal which is a set of signals like states, PNV creates places according to the 

number of signals in the set.  For example, in Figure 4-1, PNV may push a module 

named “counter” in the module vector first and then push one place to represent the 

input signal, enable, and eight places to represent the signal, state (a set of signals), in 

the place vector which belongs to counter.  When PNV reads a signal which is 

starting with “_” (coding rule 1st), PNV pushes two places into the place vector to 

represent the two values of the signal. 

 After generating all places, the next step is to build the connections of places and 

transitions.  The descriptions in the ASSIGN parts in a SMV code express the 

relationship of places and transitions.  PNV builds the connections of places and 

transitions based on the descriptions.  In Figure 4-1 line 8, when PNV reads this 

description, PNV knows that there is a transition which has two input places, state=0 

and enable=1, and one output place, state=1.  Then PNV pushes these I/O data into 

the transition vector.  After pushing all transitions into the transition vector, a module 

is built completely.  Then PNV continues to build the following modules using the 

same methods. 

 After building all sub-modules, the last module must be main module.  Main 
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module is a module which composes the sub-modules to become a complete system.  

The work of main module is to build the interconnections of the sub-modules 

included in main module.  Figure 4-3 is an example that there are two sub-modules, 

fsm_a and fsm_b, in this system. 

 

Figure 4-3 SMV code 

 

The main module includes two sub-modules and declares two new signals in its VAR 

part.  The two sub-modules included in main module are named FA and FB 

respectively.  The signals in FA and FB will be named starting with “FA.” and “FB.” 

respectively.  It is to mark the origin of the signals in main module.  Line 24 and 25 

in Figure 4-3 are ports mapping of the two sub-modules.  When PNV reads line 24, 

PNV copies the places and transitions from the module fsm_a to main module.  

After copying the places and transitions, PNV changes the names of the places into 

starting with “FA.” and changes the names of the input signals from their original 
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names into the corresponding names that connect to the input ports.  For example, in 

Figure 4-3 line 24, PNV copies the places from fsm_a and changes the names.  

Besides the input signals, all places’ names would be changed starting with “FA.”.  

But the input signals, _BWRITE, DSELAPB and PD, will be changed as _BW, DSEL 

and FB.PD respectively.  _BW and DSEL are input signals from outside and FB.PD 

is an inner signal of the system from fsm_b.  After processing the VAR part of main 

module, the whole system is built completely. 

After building a whole Petri net structure, the following step is to generate the 

matrix.  Because PNV stores places and transitions in the place vector and the 

transition vector respectively in main module, we can easily know that how many 

places and transitions in this system.  The number of rows is the number of places of 

the system and the number of columns is the number of transitions.  We get these 

data from the two vectors and generate a corresponding size matrix.  Then PNV fills 

the matrix according to the illustration we told in section 2.4.3.  After doing so, the 

matrix is accomplished. 

4.3 Property to Marking 

To verify a system represented with Petri net, we need to transfer its properties 

into markings.  From the above works, each place stored in the place vector has an 

index to locate where it stored in the vector.  We use the indexes to locate the 

positions of the places and create an n (the number of places) by 1 matrix to store the 

marking of each property.  The methods of transfer a property into a marking is 

illustrated in section 2.4.2 and section 3.3.  The information we need to verify is   

Δμ = μ' – μ.  A property description is beginning from its starting state and 
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finishing at the ending state.  The starting state is μ and the ending state is μ'.  

According to the transformation methods in section 3.3, we can directly compose the 

generation of μ and μ' by adding 1 in the places of the ending state and adding -1 

in the states in the starting state.  So when PNV reads a property, it adds a 

corresponding number in each space in the marking matrix.  For example, in Figure 

4-1 the first property in line 22 describes that the starting state is en=1 and cnt.state=0, 

PNV adds -1 in the spaces which represent en=1 and cnt.state=0 and adds 1 in the 

spaces which represents cnt.state=7.  Those spaces represent other places are still 0.  

Figure 4-4 is the transition matrix and the first marking in Figure 4-1. 

 

 

Figure 4-4 Transition matrix 

4.4 Verification Core 

 After the collection of markings and transition matrix, PNV can start to verify 

the system with the methods we have told in section 3.4.  Assuming that the 

transition matrix is an m by n matrix and the markings are m by 1 matrix.  First, 

PNV creates a new empty matrix and copy the transition matrix into the matrix and 
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then do Gaussian elimination to evaluate the rank of the transition matrix.  Second, 

PNV copies the transition matrix into the new matrix again and copies the marking 

into the next column of the transition matrix, the matrix becomes (A |Δμ).  Then 

PNV starts to evaluate the rank of the (A |Δμ) matrix.  When the two ranks are 

unequal, this matrix equation does not have solutions.  PNV will pass the property to 

SMV to verify it again and generate a counterexample.  When the two ranks are 

equal and the same as the number of its transitions, PNV will solve the solutions of 

the equation and check if all solutions satisfy Firing Times Rules.  When PNV gets 

an EX property, there is one more rule should be checked.  It is that the fired 

transitions in the solution should not have causality.  The reasons we have told in 

section 3.4.2. 

When the property is EF and the ranks are equal but less than the number of its 

transitions, PNV will check if the equation has a solution satisfies Firing Times Rules.  

When the property is EX and the ranks are equal but less than the number of its 

transitions, PNV can not verify the property and will pass the property to SMV. 

4.4.1 Elimination Methods 

The elimination method of PNV is based on Gaussian elimination and some 

special methods.  The methods are devised according to the characteristic of 

transition matrices to simplify the computational complexity of the elimination 

process. 

A transition matrix of a Petri net has a characteristic that the most values in the 

matrix are zero.  For each column, only the rows which represent the places connect 

to this transition have non-zero values.  For each row, only the columns which 

represent the transitions connect to this place have non-zero values.  In other words, 
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in a transition matrix, the most values are zero and the second most values are 1 or -1.  

The causes of this characteristic are that for each row, the non-zero columns are the 

transitions connected with the place.  For a place, especially state place, there are not 

many transitions connect with it.  This characteristic means we can utilize some 

specific methods to eliminate a transition matrix with fewer steps than using general 

Gaussian elimination.  During generating a transition matrix, we would put the state 

places together to make the characteristic more obvious.  By doing so, the work of 

elimination may be reduced outstandingly. 

One of the methods we devise is that when we find one row with zero lead value, 

we can ignore this row in the elimination step.  In other words, we check the 

representative value and decide if we need to eliminate this row.  When the 

representative value is not zero, we have to eliminate it, but if the value is zero, we 

can skip the row.  Though checking the representative value, we can save the work 

of eliminating unnecessary rows.  According to this method, we can avoid some 

unnecessary calculation.  So, we can say that the method devised from the 

characteristic of a transition matrix can make us more easily and quickly eliminate the 

transition matrices. 

 Because of the characteristic of a transition matrix, there is another method could 

be used to simplify the complexity of elimination.  We check the values in the 

pivotal row and memorize the columns of the non-zero values.  When we start to 

eliminate other rows, we can only calculate the non-zero columns and skip the other 

columns which are zero.  By using this method, we can reduce the calculation when 

we meet a row which needs to be eliminated. 

According to the methods above, the first step of elimination is to find out a 

non-zero value in the first column to be the pivotal row.  When the pivotal row is not 

the first row, we have to exchange the pivotal row with the first row.  Then we check 
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all values in the pivotal row and record the column indexes of the non-zero values.  

The next step is to eliminate the first column.  We will check the values in the first 

column and eliminate the non-zero rows.  The following is an example illustrating 

the steps we mentioned above. 

 

     
(a)                                 (b) 

 

  (c) 

Figure 4-5 Eliminating example 

 

Figure 4-5(a) is a transition matrix.  For the first column, the (0, 0) position is 

zero, so row 0 can not be the pivotal row.  We continue to check (1, 0) and find that 

it is a non-zero value, so we exchange row 0 and row 1 to become the matrix shown 

in Figure 4-5(b).  After deciding the pivotal row, we start to check the items in the 

pivotal row and record the indexes of non-zero values.  We find that column 0 and 

column 7 are not zero and we record the indexes 0 and 7.  Then we start to eliminate 

the non-zero values in column 0 and only calculate the columns we have recorded.  
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In this example, we can eliminate the first column through four times of calculation 

with our methods instead of use full Gaussian elimination with sixty-four times of 

calculation. 

 For an m by n matrix, we assume that m and n are the same order and m = n + k.  

To find out the first pivotal row and exchange it to the first row, we have to check 

column 0 m times in the worse case and do 3n times to exchange the two rows.  To 

find the second pivotal row, we have to check (m - 1) times and exchange 3(n - 1) 

times.  The above operations we have to do for a matrix are 

 

[m + 3n] + [(m - 1) + 3(n - 1)] +... 

= [(n + k) + 3n] + [(n + k - 1) + 3(n - 1)] +… 

=  ∑
=

++
n

i
iki

1
3)(

=  ∑
=

+
n

i
ki

1
4

= 2n (n + 1) + kn 

= 2n2 + (2 + k) n 

 

The computational complexity of finding the pivotal row and exchanging it to the 

right position is O(n2 ). 

To eliminate the first column, we have to check (m – 1) rows to figure out which 

rows need to be eliminated and we assume that there are ci rows need to be eliminated.  

Before we start to eliminate, we need to check the values in the pivotal row and it cost 

n operations.  After checking the pivotal row, we find out that there are di non-zero 

values.  So the number of calculation we need to do is ci * di.  The total operations 

we have to do for eliminating a matrix into reduced row echelon form are 
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  [n + (m - 1) + c1 * d1] + [(n - 1) + (m - 1) + c2 * d2] +… 

  = [n + (n + k - 1) + c1 * d1] + [(n - 1) + (n + k - 1) + c2 * d2] +… 
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The order of  term is about n.  The computational complexity of the 

elimination step is O(n

∑
=

n

i
ii dc

1
*

2 ).  After the elimination step, we get a matrix in reduced row 

echelon form.  When the rank of the matrix is equal to its transition number, we can 

get the firing times of each transition without more action.  An example is shown in 

Figure 4-6, the matrix is in reduced row echelon form and the rank is the same as its 

transition number, so we can get the solutions of t0 to t5 are a to f without back 

substitution.  Summarily, the total computational complexity of our elimination 

process is O(n2 ) and its order is lower than the computational complexity of original 

Gaussian elimination O(n3 ).  The methods we use to eliminate a transition matrix 

can reduce the order of computational complexity from O(n3 ) to O(n2 ). 

 

t0 t1 t2 t3 t4 t5 Δμ

1 0 0 0 0 0 a
0 1 0 0 0 0 b
0 0 1 0 0 0 c
0 0 0 1 0 0 d
0 0 0 0 1 0 e
0 0 0 0 0 1 f

0
1
2
3
4
5

 
Figure 4-6 Reduced row echelon form
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Chapter 5  Experimental Results 

In this chapter, we will use PNV to verify five examples and interpret the rules 

we mentioned above.  The simulation environment of the following examples is: 

“OS: Windows XP, CUP: AMD 3000+, RAM: 1GB.” 

5.1 Counter 

Figure 5-1 is a finite state machine of a four-state counter.  The initial state of 

the FSM is s0. 

 

 

Figure 5-1 FSM of counter 

 

Figure 5-2 is the Petri net graph and its transition matrix of the counter.  In Figure 
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5-2(a), there are two places used to represent the reset signal.  It is because that state 

transitions should always happened when reset = 0.  So we need two places to 

indicate reset = 1 and reset = 0 as shown in Figure 5-2(a).  The transitions t0 to t3 are 

working for state transition, t4 to t7 are working for reset, and t8 to t10 are for input 

signals.  The transitions t0 to t3 always need one input place which is reset = 0 to 

ensure that the system is not being reset. 

 

                 (a)                                  (b) 

Figure 5-2 Petri net of the counter 

 

The property of this Petri net we set is “AG (state=0 -> EF (state=3))”.  This 

property means that there is at least one path starting from state = 0 and finally ending 

at state = 3.  We verify this property by SMV and PNV respectively.  Figure 5-3 is 

the verification result generated by PNV verbose mode.  Figure 5-3(a) shows the 

places and the transitions generated by PNV.  The first part in Figure 5-3(b) shows 

the transition matrix of the Petri net, the second part shows the matrix after being 

eliminated and the rank of this matrix, the third part shows the property and the 

corresponding marking, the fourth part shows the result of eliminated (A |Δμ), and 

 48



the final part shows the verification result of the property and time cost.  There is a 

brief mode of PNV shown in Figure 5-4, this mode only shows the result and time 

cost of the properties and it is faster than verbose mode.  Figure 5-5 is the 

verification result generated by SMV. 

 

    
(a)                                  (b) 

Figure 5-3 Verification result of counter with PNV verbose mode 
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Figure 5-4 Verification result of counter with PNV brief mode 
 

 
Figure 5-5 Verification result of counter with SMV 

 
 SMV PNV 
 Processor Total Verbose Brief 
Time (ms) 16 300.699 13.0455 1.00963 
Memory (KB) 1184 1940 

Table 5-1 Time cost of SMV and PNV for counter 
 

 In this example, the rank of A and (A |Δμ) are less than the number of 

transitions.  We can not get an exact solution, so we verify this design by the 

methods illustrated in section 3.4.2. 

The time costs of SMV and PNV are shown in Table 5-1.  The SMV processor 

time is clocked by SMV and we don’t know what action included in this time interval 

and the accuracy is lower than the timer used by PNV.  So we add another timer to 

clock the time cost of SMV, the result is shown in SMV Total.  This result includes 

all action of SMV and its clocking condition is the same as PNV.  Adding another 

timer to clock SMV makes us more convenient to compare the time costs of SMV and 

PNV.  From Table 5-1 PNV part, we could notice that the most time cost by PNV is 
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to print out the result. 

The processing time depends on the status of CPU, so the time cost of each 

processing may not be equal; even so, we still can find that the time which is shown in 

Table 5-1 costs of PNV are fewer than the time costs of SMV, especially at PNV brief 

mode. 

5.2 Greatest Common Divisor 

In this section, we will show an example about greatest common divisor (GCD) 

and verify it by SMV and PNV.  Figure 5-6 is the FSM of GCD.  The state s0 is idle 

mode, this machine starts when the start signal = 1 and the state transfers to s1.  At 

s1, the machine transfers its state according to the inputs, u > v, u < v, and u = v.  The 

state will transfer to s2 and s3 when u > v and u < v respectively.  At these two states, 

the system will subtract the smaller number from the larger one then send the answer 

and the smaller number to a comparator.  The comparator will identify which 

number is larger and send the result (u > v, u < v, or u = v) to GCD system.  When 

the two numbers are equal, the state will transfer to s4 and the process is finished.  

The final number is the GCD of the original u and v. 
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Figure 5-6 FSM of GCD 

 

 
(a) 

 
(b) 

Figure 5-7 Verification result of GCD with PNV verbose mode 
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 SMV PNV 
 Processor Total Verbose Brief 
Time (ms) 31 285.795 25.2552 1.2306 
Memory (KB) 1624 1944 

Table 5-2 Time cost of SMV and PNV for GCD 
 

 In this example, we show two EF properties and the second one is planned to be 

false deliberately to show the methods we told in section 3.4.2.  In Figure 5-7(a), the 

property is false and we can see that the first row of the matrix Reduced [A U] 

violates the first rule in section 3.4.2.  The solution of the first transition must be -1 

and it is illegal.  This property is verified as false by PNV then PNV will pass it to 

SMV and verify it again to generate a counterexample, it’s shown in Figure 5-7(b).  

Table 5-2 shows the time costs of SMV and PNV. 

5.3 AMBA 

This example is to model the behavior of the communication between AMBA 

ASB and APB.  We simplify the signals of the two components from Figure 5-8 and 

Figure 5-9.  Figure 5-8 is the read timing graph and Figure 5-9 is the write timing 

graph.  We ignore the BTRAN and BWAIT signals.  In Figure 5-8, when 

DSELAPB = 1 means that APB is selected.  Then the data will be sent to APB and 

PSEL will be set high.  In the next clock cycle (c2 in Figure 5-8), PSTB will be set 

high and APB starts to read the data ASB needs [40, 42]. 
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Figure 5-8 APB to ASB Read timing (Captured from [42]) 

 

Figure 5-9 ASB to APB Write timing (Captured from [42]) 
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Figure 5-9 is the timing graph of ASB writes data into APB.  The BWRITE signal is 

high at this action and the same that APB start writing when PSTB is high. 

 

 
Figure 5-10 FSM of the communication of ASB and APB 

 

Figure 5-10 are the FSMs we build according to the timing graph above.  FSM 

A is ASB and FSM B is APB.  The output signals of each state are shown under the 

FSMs.  In this example, there are four properties set to be verified.  The first 

property is that at the initial states A0 and B0, when DSELAPB is high and BWRITE 

is high, there exists a path which goes back to the initial states.  The second property 

is to verify an EX property.  In this example, the ranks are equal to the number of the 

transitions.  So we can solve the solutions of the properties and can verify EX 

properties.  The third and fourth properties are contrasts.  The third property is to 

verify an EF property and the property is true.  Then we change the EF operator into 

EX, it is the fourth property.  These two properties are used to show that there is a 

path from the starting state to the ending state but the ending state is not the next state 
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of the starting state and PNV can recognize the if the ending state is the next state of 

the starting state. 

The following are parts of the verification result of PNV and SMV. 

 

 
Figure 5-11 Verification result of AMBA with PNV verbose mode 

 
 SMV PNV 
 Processor Total Verbose Brief 
Time (ms) 16 408.82 85.0385 2.42684 
Memory (KB) 1632 1956 

Table 5-3 Time cost of SMV and PNV for AMBA 
 

 Because the ranks and the number of transitions are equal, PNV can solve the 

solution for each property and shows the solutions in the verification result.  In 

Figure 5-11, PNV finds that there is a solution of this property but the solution shows 
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that the ending state is not the next state of the starting state.  So PNV determine that 

the property is false and pass the property to SMV.  Table 5-3 shows the time costs 

of SMV and PNV. 

5.4 Traffic Light Controller 

This example is a crossroads traffic light controller.  The illustration of the 

crossroads is shown in Figure 5-12. 

 

 
Figure 5-12 Traffic light controller 

 

We assume that there are few cars on feeder, so the traffic lights of feeder are red at 

most time.  There are two sensors on feeder shown in Figure 5-12, when there is a 

car which wants to cross the main street, the sensors will send a signal to the 

controller then the traffic lights of feeder will turn into green and the light of the main 

street will turn into red for a short time.  After this, the feeder lights will go back to 

red and the main street lights will turn into green.  When there is no cars want to 

cross the street on feeder, the traffic lights will always green for main street and red 
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for feeder.  The behavior of the controller is shown in Figure 5-13. 
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Figure 5-13 FSMs of traffic light controller 
 

The initial state of each machine is: State controller: M; Main street: G; M_counter: 0; 

Feeder: R; F_counter: 0.  At the beginning, M_counter starts to count for seven clock 

cycles to ensure that there is enough time for main street cars to pass.  When there 

are any cars want to pass the street during the seven clock cycles, the traffic lights of 

feeder will not be turned into green.  After seven clock cycles, when there is a car in 

feeder wants to pass the street, the controller will turn the lights of the main street into 

red and turn the lights of feeder into green; when there is no car waiting to pass in 
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feeder, the controller will still let the cars in main street pass.  When the lights of 

feeder is turned into green and the lights of main street is turned into red, F_counter 

starts to count for three clock cycles then turns the feeder lights red and main street 

lights green. 

 In this example, we set a property which is: “At the initial state (main street 

lights are green and feeder lights are red), there exists one path to the state that main 

street lights are red and feeder lights are green.”  Table 5-4 shows the time costs of 

SMV and PNV. 

 
 SMV PNV 
 Processor Total Verbose Brief 
Time (ms) 141 394.138 82.7625 2.42657 
Memory (KB) 2012 1960 

Table 5-4 Time cost of SMV and PNV for traffic light controller 
 

5.5 Wizard’s Registration Flow 

It is am example about the registration flow of Wizard we got it from .NET 

Framework Developer Center [43].  There are five states of this machine.  The 

initial state is Default (S0).  When the user wants to register and press Begin, the 

state will transfer into Register (S1).  At Register, the user can choose Next to go to 

the next state Edit (S2) or Previous to go back to Register.  At Edit (S2) and Edit 

user (S3), the user can choose Next or Previous to go forward or go back and also can 

choose Cancel to go back to Default.  The last state is Finish which means the 

registration is done.  If the user wants to change his setting, he can press Previous to 

go back or press Cancel to go to the initial state directly. 
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Figure 5-14 The registration flow of Wizard 

 

 For this system, there is one property we set to be verified.  It is “At the Default 

state and Begin signal is pressed, there exists a path to Finish state.”  Table 5-5 

shows the time costs of PNV and SMV. 

 
 SMV PNV 
 Processor Total Verbose Brief 
Time (ms) 16 299.217 25.7013 1.23563 

Memory (KB) 1628 1944 
Table 5-5 Time cost of SMV and PNV for Registration
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Chapter 6  Conclusion and Future 
Work 

6.1 Conclusion 

In this paper, we introduce SMV and provide another verification method, PNV, 

based on modeling a FSM into a Petri net.  Because of the verification method of 

PNV, we can use it to verify EF and partial EX properties.  The purpose for us to 

propose this verification method is to assist SMV to speed up verifying EF and EX 

properties.  We still verify the properties which PNV can not handle by SMV.  The 

most advantageous situation of using PNV is that the EF properties are true and the 

EX properties can be verified by PNV and the properties are true.  At this situation, 

we can only spend very short time and a little more memory usage than SMV on 

verifying these properties with PNV.  When the properties are verified to be false by 

PNV, PNV will pass the properties to SMV to verify them again.  PNV can identify 

the properties which are verified to be false by checking the ranks of the matrices and 

this work takes little time.  The advantage of using PNV to verify EF and EX 

properties is that we can use little time on the work.  The disadvantage of PNV is 

that PNV needs more memory than SMV to verify a design.  Summarily speaking, 
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using PNV to assist SMV can earn the most benefit when the properties are true and 

can be processed by PNV.  Even if the properties are verified to be false, we only 

spend little time more than only using SMV to verify them. 

6.2 Future Work 

The way we combine SMV and PNV now is calling SMV by PNV when it’s 

necessary.  It means that the two programs are still individual and they need to read 

the input file one time respectively.  If SMV and PNV could be integrated into one 

program, the information of the input file can be shared between SMV part and PNV 

part and we don’t need to waste time on reading the input file twice.  Combining the 

two programs can also make users more convenient use the program. 

The marking generator is not friendly enough for users.  The generating method 

now is based on the properties and the user should describe the properties amply 

about each signal and state.  If the marking generator could be made smarter, users 

could describe a property with only mentioning its states of some signals and the 

generator would filled with appropriate signals to make the property complete. 
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