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Abstract

With the progress of semiconductor manufacturing techniques and the increasing
of complexity of designs, to ensure the,correctness of a design becomes a hard
mission. To find out the bugs ifr a largemand complex design is time consuming but
significant works. The general verification method used by designers is simulation.
The designers input appropriate-signals to-the design and observe if the outputs are
correct to judge the correctness of the'design. This verification method can not
ensure that the design is completely conform to the specification. Clarke and Allen
Emerson invented model checking techniques to recover the insufficiency of
simulation based verification. In this paper, we propose a Petri net-aided model
checking techniques to assist SMV model checker. In some cases, this technique can
speed up the verification of EF and EX properties. We implement a simple program
with C++ language to transfer a FSM (finite state machine) into a Petri net and verify
the state machine. Then we show some examples to compare the verification time of
PNV and SMV. Finally we make a conclusion that in some cases, PNV can reduce

the verification time of EF and EX properties substantially.
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Chapter 1 Introduction

With the advancement of semiconductor manufacturing and complexity
increasing of designs, to ensure that designs are correct consumes more and more time
and efforts. Nowadays almost 80% of the overall design costs are paid for
verification works.  In industrial, _ simulation continues the mainstream for
verification topics. However, simulation'¢an‘only 'supply the presence of bugs rather
than the absence. Formal verification technique has been getting much attention for
its 100% design error coverage'{2].~ By-using mathematical model, formal method
conducts exhaustive exploration of all“pessible behaviors of design and proves or
disproves the correctness of design intention underlying system specification or
properties.

Model checking is a process of checking whether a given model satisfies given
properties. The properties are expressed in computational temporal logic (CTL).
This technique is a promising formal technique and it has widely used in industry and
academy. A number of major companies including Intel, Motorola, ATT, Fujitsu and
Siemens have started using model checking technique to verify their actual designs.
Model checking allows ensuring that a finite state system does not violate properties it
is supposed to conform with [3].

This technique was originally developed in 1981 by Clarke and Allen Emerson.



The main differences between model checking and simulation based verification are

1) Model checking can be performed automatically

2) When model checking detects an error, it produces meaningful results.
Typically, the user provides a high level representation of the model and the properties
to be checked. The model checker will either stop with the answer true including
that the model satisfies the properties, or give a counterexample to show why the
model does not satisfy the properties.

The major method used by traditional model checkers is state traversing [2].
With the increasing of the complexity of designs, states of a system increase
dramatically. State traversing method would cost more and more time to verify
designs. In this paper, we provide a verification method based on modeling a system
with Petri net to speed up the verification of EF-and EX properties.

There are several ways to analyze a Petri-net, and matrix equation is one of them
[1]. In this paper we use the matrix equation-method to analyze Petri nets. Because
that the matrix equation method “could solve .the reachability issues of Petri net
through linear algebra analysis [1, 34] and decrease the complexity of verification.
Because of the feature of the matrix equation of a Petri net, we can use this method to
speed up the verification of EF and EX properties.

First of all, we transfer the inputted finite state machine into a Petri net.
According to the information of the Petri net, we generate the transition matrix of the
Petri net. Then we put the properties into marking generator to transfer EF and EX
properties into corresponding markings. If there are some properties which are not
EF or EX, we may pass them to SMV directly. After getting transition matrix and
markings, we start to verify the properties. If some properties are verified to be false
or we can not process the properties, we will pass them to SMV. The main purpose

for us to propose this thesis is to assist SMV to speed up verifying EF and EX
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properties. If we meet the properties we can not process, we still pass them to SMV
to verify.

The detailed verification methods are shown in chapter 3. In chapter 4, we
illustrate the implementation of the verification software which is programming with
C++ language. In chapter 5, there are some examples verified with the software we

implemented. In chapter 6, we make some conclusions on this research works.



Chapter 2 Background

2.1 Model Checking

Model checking is an automatic technique for verifying correctness properties of
finite-state reactive systems. This technique has been successfully applied to find
out subtle errors in complicated. industrial: designs such as sequential circuits,
communication protocols and digital controllers.[3]:

A reactive system consists of ‘several components which are designed to interact
with one another and with the system’s environment. In contrast to functional
systems, in which the semantics is given as a function from input to output values, a
reactive system is specified by its temporal properties. A temporal property is a set
of desired behaviors in time; the system satisfies the property if each execution of the
system belongs to the set. From a logical standpoint, the system is described by a
semantic Kripke-model, and a property is described by a logical formula. Arguing
about system correctness, thus, amounts to determining the truth of formulas in
models [3].

In order to perform such verification, one needs a modeling language in which
the system can be characterized, a specification language for the formulation of

properties, and a deductive calculus or algorithm for the verification process.
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Usually, the system to be verified is modeled as a finite state transition graph, and the
properties are formulated in an appropriate propositional temporal logic. An
efficient search procedure is then used to determine whether or not the state transition
graph satisfies the temporal formulas. When model checking was first developed in
1981, it was only possible to handle concurrent systems with a few thousand states.
The discovery of how to represent transition relations using ordered binary decision
diagrams (OBDD) changed the possibility of verifying systems with realistic
complexity dramatically. By converting a formula to a BDD, a very concise
representation of the transition relation may be obtained [3, 28].

Much of the success of model checking is due to the fact that it is fully automatic
verification method. With model checking, all the user has to provide is a model of
the system and a formulation of the properties to. be proven. The verification tool
will either terminate with an answer indicating that'the model satisfies the formula or
show why the formula fails to hold in the.model. These counterexamples are
particularly helpful in locating errots in.the model or system [3, 26].

With the completely automatic approach it may be necessary for the model
checking algorithm to traverse all reachable states of the system. This is only
possible if the state space is finite. Whereas other automated deduction methods
may be able to handle some infinite-state problems, model checking usually is
constrained to a finite abstraction. In fact, model checking algorithms can be
regarded as decision procedures for temporal properties of finite-state reactive

systems [3, 26, 28].



2.2 SMV Model Checker

SMV is a symbolic model checking tool developed by Cadence Berkeley Labs.
It allows users to formally verify temporal logic properties of finite state systems.
We use the SMV language to describe the finite state systems which we want to
verify by SMV model checker. Figure 2-1(Captured from Cadence SMV) is the

Graphic user interface of Cadence SMV model checker [25].

v =16
File Prop View Goto History Abstraction Help
Browser | Properties | Results | cone | Using | Groups

Name | Layer | "

Source | Trace | Log |

File Show

Figure 2-1 SMV Graphic User Interface [25]

The SMV language can be divided roughly into three parts — the definitional part,
the structural part, and the expressions. The definitional part declares signals and
their relationship with each other. It includes type declarations and assignments.

The structural part combines the components declared in definitional part. It



provides language constructs for defining modules and structured data types and for
instantiating them. Finally, the expression part specifies the properties that the user
wants to verify, and the expressions are expressed by computational tree logic (CTL)

[23, 24, 25, 33].

2.3 Computational Tree Logic

Computational Tree Logic (CTL) is branching-time logic: its formulas allow for
specifying properties that take into account the non-deterministic, branching evolution
of a FSM. The evolution of a FSM from a given state can be described as an infinite
tree, where the nodes are the states'of the FSM." “The paths in the tree start at a given
state are the possible alternative evolution of the FSM from that state. The CTL
formulas are constructed path qualifiers and-temporal operators.

Path qualifiers:

® A —“for all the paths”
® E — “some of the paths”
Temporal operators:

® Xp—“p holds next time”
® Fp—“p holds sometime in the future”
® Gp - “p holds globally in the future”
® pUg - “p holds until g holds”

There are eight CTL operators (AX, AF, AG, ApUq, EX, EF, EG, EpUQ) can be

used to express properties. They are illustrated in Figure 2-2.



P p P
P P P
AFp AXp
p p
P P P
p p q
EXp

EGp EFp EpUq

Figure 2-2 CTL illustration

CTL operators can be nested in an arbitrary way and can be combined using logic
operators ( !, &, |, ->, ...). For example, AG ( p -> EX Q) means that “each
occurrence of condition p is followed by at'least one path that condition q occurs in
the next state.” AG ( p & q -> AF r) means. that “for all occurrence of condition p
and condition ( are followed by condition r occurs at one state for each path finally.”

(2, 4,20]

2.4 Petri Net

2.4.1 Basic Definition

A Petri net C is a four-tuple C= (P, T, I, O ), where P is a set of places, T is a set
of transitions, | is an input function, and O is an output function. P = { po, p1, P2, --. ,
pn} is a finite set of places, where n=0. T = {to, t3, tp, ... , t,} is a finite set of
transitions, where n=0. The two sets P and T are disjoint, that is, PNT =¢. The

input function | and the output function O record the relationship between places and



transitions. For a transition t;, I(tj) represents the set of the input places of tj and O(t;)
represents the set of output places of ;. In other words, the input function | is a
mapping from a transition t; to a collection of places I(t;j), and the output function O is
a mapping from a transition tj to a collection of places O(tj)). A place p; is an input
place of a transition tj if p; € I(t)); pi is an output place of tj if p; € O(;).

A transition could have more than one input places and more than one output
places. A transition also could have no input places or no output places. A
transition which has no input places means that the transition is always firable and
usually used to represent inputs. A transition which has no output places means that
firing the transition only eliminates the tokens in its input places and no tokens will be
created in any place.

A graphical representation of’a Petri net 1S more convenient for illustrating the
concepts of Petri net theory and-easier for understanding. A Petri net graph consists
of two elements, places and transitions.In-a-Petri net graph, a place is represented
with a circle O, and a transition “is-represented with a rectangle I . Places and
transitions in a Petri net are connected with arrows. An arrow directed from a place
to a transition defines the place to be an input place of the transition. An arrow
directed from a transition to a place defines the place to be an output place of the
transition. Multiple inputs to a transition are expressed by multiple arrows from the
input places to the transition. Multiple outputs of a transition are represented by
multiple arrows from the transition to multiple output places. However, a place can
not connect to a place and a transition can not connect to a transition either. Figure

2-3 is an example of a Petri net graph.



P1

P4
Po

ps
B

Figure 2-3 Petri net 1

There are five circles and four rectangles in Figure 2-3. The circles and rectangles
represent places and transitions respectively. The following is the four-tuple
representation of the Petri net graph in Figure 2-3.

C=/P,T,1,0)

P = {Po, P1, P2, P3, P4}

T = {tO: tla t29 t3}

I(to) = {Po} O(to) = {P1, P2;
I(t) = {p2 } O(ty) =1pa}
I(t2) = {ps} O(tz) = tPo}
I(t3) = {Paj O(ta) = {ps}

2.4.2 Marking, State and Reachability

2.4.2.1 Marking

A marking g 1is an assignment of tokens to the places of a Petri net. Tokens in
a Petri net graph are represented with dots e in the circles which represent places.
The states of a Petri net are determined by the number and distribution of tokens in
the Petri net. A Petri net executes by firing transitions. During the execution of a

Petri net, the number and distribution of tokens may be changed. A transition can be

10



fired if each of its input places has at least as many tokens in it as arrows from the
place to the transition. When a transition has this condition, we say this transition is
enabled (firable). The tokens in the input places of a transition and make the
transition enable are the enabling tokens of the transition. Firing a transition will
remove the enabling tokens from its input places and depose into each of its output
places one token for each arrow from the transition to the places. For example, in
Figure 2-4 the tokens in pp and ps are the enabling tokens of ty and t; respectively.
After firing to, the tokens in pp will be removed and ty will depose one token into each

of its output places p1 and p,. The result of firing t is shown in Figure 2-5.

P1
fo p2 b
P4
Po
3
t P
Figure 2-4 Petri net 1 state 0 Figure 2-5 Petri net 1 state 1

2.4.2.2 State

The states of a Petri net are defined by markings. The firing of a transition
indicates a change in the state of the Petri net by changing the marking of the net.
Since only enabled transitions can fire, the number of tokens in each place always
remains non-negative when a transition is fired. The change in states caused by
firing a transition is defined by a change function ¢ called the next-state function.

If a transition tj is enabled, O (i, ti) =x' indicates that firing tj will change the
marking from ¢ to u'. When the marking of a Petri net is changed, the state of
the Petri net is changed. For example, in Figure 2-4, the marking ¢=1[10010]".

11



After firing to, the marking will change from g to p©'=[0111 0]".

2.4.2.3 Reachability

Given a Petrinet C=( P, T, I, O ) and an initial marking ° we can execute the
Petri net by sequential transition firings. Firing an enabled transition t; at the initial
marking makes a new marking p'=5(u’ t). At the new marking ' we can
fire any enabled transitions to get a new marking. Assume that tj is an enabled
transition at ', firing tj will get a new marking T=5(u', tj). This action can
continue as long as there is at least one enabled transition at the new marking. If the
Petri net reaches a marking in which no enabled transition, in other words, there is no
transition can be fired, the execution of this Petri net must stop.

For a Petrinet C = ( P, T, I, O) with marking (, a marking u s immediately
reachable from g if there exists,a transition'ti € T such that & (u,t)=yx'. Ifa
marking w? is reachable from- ' immediately, then we say that ' andp? are
reachable from ¢ °. 1In [1], they define the reachability set R( C, 1) of a Petri net C
with marking (¢ to be all markings which are reachable from (. A marking ¢ 'is in
R( C, ) if there is at least one sequence of transition firings which will change the
marking from g to u'. For example, the initial marking in Figure 2-4 is
©’=[10010]", after firing the sequence of transitions ( to, t; ), we get £ '=[01 1

10]"and p?=[01001]". Wesaythat ', u?><R(C, 1.

2.4.3 Matrix Equations

There are several approaches to analyze a Petri net, and one of them is based on
matrix equations. Each Petri net could be represented by a transition matrix. The

matrix indicates the relationship between places and transitions. A transition matrix
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is m (the number of places) rows by n (the number of transitions) columns. Each
column represents one transition and records the input places and output places of this
transition. The way of recording the relationship of places and transitions is that if
there is an arrow directed from a place p; to a transition tj we put -1 in the i"™ row by
the j™ column to mark that p; is an input of ti. If there are two arrows directed from
pi to tj, then we put -2 in the corresponding position in the matrix and so on. If an
arrow directed from tj to px, we put 1 in the k™ row by the j"™ column to mark that py is
an output of tj. If there are two arrows directed from tj to px, we put 2 in the
corresponding position in the matrix. After establishing the transition matrix of a

Petri net, we can represent the Petri net by a matrix equation like the following.

U= AX (2.1)

Here ( is the initial state(marking) of the Petri het; A is the transition matrix
records the relationship between: places--and transitions of the Petri net; X is a
transition firing sequence matrix which'records the firing times without firing order
information of all transitions in the Petri net; 'is the state(marking) of the Petri net
after firing the transitions recorded in X. Of course, these fired transitions should be
enabled at the state (. This matrix equation indicates that we can get the next state

' by adding the product of A and X to (. Take Figure 2-4 for example,

to 4 b 4

(1] -1 0 1 0]™
0| m 1 0 0 0P
u=(01 r A=1 -1 0 0|
I| m» 0O 0 -1 1/|p
0] 01 0 —Ijnm

At the state y, the enabled transitions are tp and t,. After tp fired, as shown in

13



Figure 2-5, we can get a new marking by solving the matrix equation

1 -1 0 1 0 'l
0 1 0 0 O 0
=00+ 1 -1 0 0
1 0O 0 -1 1
0
o) {0 1 0 -1F
o
1
: 0
To solve the matrix equation, we obtain u'=|1 If we set X= aE we can get
1
0
_O_

another marking u'= which represents the state firing ty and t; from the initial

O O = = =

state u [1].
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Chapter 3 Model Checking with Petri
Net

For the traditional model checking we told in section 2.1, the verification method
is to spread the states from the initial state and then traverse all states to check that if
all paths satisfy the properties whichsthe systemrneeds to hold. The drawback of the
traditional model checking methiod is when designs become more and more large and
complex, the states need to be traverse will grow dramatically. Because of this, the
users need to spend more time verifying the designs through state traversing and the
time will become considerable. In order to assist the state traversing based model
checking, we propose a verification method based on Petri net. Because of the
features of Petri net, the verification method we proposed can reduce the complexity
of verifying EX and EF properties and economize on the time users spend verifying.

The method we used is to model a FSM in a Petri net and utilize the features of
Petri net to reduce the complexity of verification. In this chapter, we will introduce
the verification flow and the methods of our verification (Petri Net Verification,

abbreviate to PNV).
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3.1 Verification Flow

The verification flow of our Petri net based model checking is shown in Figure
3-1. The input of PNV is a SMV code with some constrain we made. The SMV
code includes the description of FSMs and properties. The FSM parts include
signals (inputs and outputs), states and state transition information. According to the

information, we generate transition matrix and markings and verify the system.

SMV code
Properties (EF, EX) FSM
Marking Generator € FSM to PN
Petri net
v
Transition Matrix
Generator
A o2 Transition Matrix

Reachability Check

No Pass the false
properties to
SMV

Yes

Verification OK

Figure 3-1 Verification flow

When we get a FSM and its properties, first, we transfer the FSM into a
corresponding Petri net. Second, we generate the transition matrix based on the Petri

net we get before by Transition Matrix Generator. Third, put the properties and
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some data from the transition matrix into Marking Generator, we get corresponding
markings. After getting the transition matrix and markings, we can start to verify the
system. Because of the limitation of the verification methods, we can only process
EX and EF properties. After verifying, if a property is false, we will pass the
property to SMV to verify it again and generate a counterexample.

The verification flow is separated into several parts. In the following sections,
we will talk about each part step by step. In the first part, we will talk about the
transformation from FSM into Petri net. The generation method of transition matrix
we have told in section 2.4.3, so we do not talk about it in this chapter. Second, we
will discuss how the marking generator generates the corresponding markings based
on the properties. Finally, we will introduce the main verification method of Petri

net based model checking and the limitation of this.method.

3.2 Transformation from FSM into Petri Net

3.2.1 Transformation of Places and Transitions

To transform a FSM into a Petri net, we need to know the relation between a
FSM and a Petri net. A FSM is composed of the following five parts:

® (Q: States

® > : Input alphabet

®  A: Output alphabet

® §:Q x X—Q next-state function

® [:Q — A output function
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A Petri net is a four-tuple (P, T, I, O). Asa FSM (Q,>,A,d,I") we define a Petri
net (P, T, I, O) by

® P=QUXUA

® T={.,/q=Qando € X}

® I(ty)=1{q.0}

® O(tg)={I'(q)}
According to the illustration above, we could know that all states, inputs, and outputs
in a finite state machine are represented with places in a Petri net and all events
(arrows) in a state machine are represented by transitions in a Petrinet [1]. The rules

of transferring a FSM into a Petri net are:

1. Inputs, outputs, and states, == places

D

Events (arrows) — transitions
3. Preconditions — input places

4. Post-conditions — output places

The arrows determine the state transitions in a FSM as well as the transitions in a Petri
net, so an arrow in a FSM would be transferred into a transition in a Petri net. The
input places and output places of the transition are the preconditions and post
conditions of the arrow in the FSM respectively.

After discussing the transformation rules of FSMs and Petri nets, the following

are some examples to show the transformation in different situations.
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to

State 0 A
State 0 State 1

4

State 1 B
B

C t

State 2 T‘_Q c

State 2

Figure 3-2 FSM 1 Figure 3-3 Petri net of Figure 3-2

Figure 3-3 is the Petri net transferred from the state machine in Figure 3-2. In
Figure 3-2, there are three states (State 0, State 1, and State 2) and three signals (A, B,
C). According to the transformation rule 1, there should be three places represent
the states and another three places represent the control signals in the corresponding
Petri net. There are three arrows in  the state machine to determine the state
transitions. According to the transformation-tule 2, the Petri net needs to have three
transitions to represent the three arrows, there are to, t;, and t,. Finally we connect
the places and transitions bottom on the transformation rule 3 and 4 then the Petri net
is built.

In the above example, we told about the state machine which changes states
when control signals are 1(i.e. there is only one value being used for each signal).
So there is only one place needs to be built to represent each signal in Petri net. In
some state machines, states may change when the control signal is 0 and 1 both. In
this kind of situation, we should generate two places to represent the two values of the

signal. It is illustrated in the following example.
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1
State 0 < A=0
State 1

State 1 A=1
t
State 2 B
State 3 .
State 3 C
Figure 3-4 FSM 2 Figure 3-5 Petri net for Figure 3-4

In the FSM in Figure 3-4, State 0 may change to State 1 when A = 0 and may
change to State 2 when A = 1. To transfer the FSM into a Petri net in this situation
we should create two places to represent the two values of the signal A. The
corresponding Petri net is shown in Figure 3-5. The transition ty controls the state
transition from State 0 to State 1,;and t; controls.the state transition from State 0 to
State 2.

In some cases, we could 1gnote fo-transfer some arrows and some values of
signals into transitions and places. "+ Itis.that-when a value of a signal which does not
control any state transitions, we could ignore the transformation of the value and the
arrow. For example, in Figure 3-6, State 0 has a self-loop when A=0. Assume the
initial state is State 0, and A = 0, the state is still at State O until A = 1. This FSM
could have the same behavior even if we ignore the transformation of the arrow

controlled by signal A=0. Because A =0 does not determine any state transitions.

State 0 State 1

Figure 3-6 FSM 4
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But in some other case, we still generate transitions and places even if the arrows and
signals do not determine any state transitions. An example is shown in section 5.2.

From the three examples above, we can observe that in some situations we
transfer one signal into one place, but in other situations we transfer one signal into
two places. Theoretically speaking, we should always transfer a signal in a FSM
into places based on its values. In other words, when a signal A can be 0 and 1, we
should generate two places to represent A=0and A=1. But some values of signals
do not control any state transitions. For example, the value 0 of the signal A in
Figure 3-2 do not control any state changes in the FSM, we don’t need to generate a
place to represent A = 0 and the transition controlled by A = 0 either. It is no effect
that we do not generate the place A = 0 and the transition in the corresponding Petri
net. Summarily speaking, when there are any atrows which do not determine state
transitions, we could ignore the-transformations of the arrows. We only transfer the
signals and arrows which are used into‘places.-and transitions respectively. By doing
this, we could make the corresponding Petri net more concise and the transition
matrix of the Petri net smaller.

There is a special kind of transitions which do not have input places. The
transitions are firable all the time and usually connected in front of inputs to provide
the input places tokens. When we meet a situation that we don’t know how many
tokens we have to assign to an input signal (e.g. clk), we put an input transition in

front of the place to generate tokens to the signal.
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to
State 0 Q—\7<—Q<—I t
B=1

t ~

State 1 7<—©<—Iu
. c=1

State 2 r<—©<_ltj

Figure 3-7 Petri net 1

In Figure 3-7, t3 to ts are input transitions, they provide tokens to the inputs A, B and

C respectively.

3.2.2 Transformation of Multiple Modules

When a system consists . 'of . moreé than one module and these modules
communicate with each other, we could transfer the- modules into a Petri net as the

following steps.

1. Transfer each module into a Petri net individually

2. Merge the same places which are used in different Petri nets.

In Figure 3-8, it is a simple example to model bus communication protocol. FSM A
is master and FSM B is slave. This system models the behavior of reading and

writing. The initial states of the two state machines are A0 and BO.
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Write=1 &

A3 CLK=1

FSM A Al:B read=1
A2 : Receive=1
A3 : B write=1

A0

A0 Read=1&

Al

CLK=1

A2

A3

A§

=

Receive=1

B_write=1

S

Ack=1

.

CLK=1

B_write=1 & B read=1
CLK=1 B0 g cLK=I

— Bl
CLK=I1 Receive=1 &

CLK=1

FSM B B0 : Ack=1
B1 : Data=1

Figure 3-8 FSM 3

B0

B1

Receive=1

B_write=1

Ack=1

B2

Figure 3-9 Petri net of Figure 3-6
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BO

Write=1

O

Data=1

%) s
B read=1

Receive=1

A3
B_write=1

Ack=1 i

Figure 3-10 Petrinet combine from Figure 3-8
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=
Qe )
1 v
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? A
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According to the rules we told above, the first step is to transfer the two state
machines into Petri nets individually. . Thetransformation result is shown in Figure
3-9. The left Petri net is transferred “from 'FSM A and the right one is transferred
from FSM B. Because of the cooperation of these two FSMs, there are many places
which appear in both Petri nets. Then we merge the same places of the two Petri
nets. After merging some places of the two Petri nets, we get one Petri net shown in

Figure 3-10. This Petri net is the result transferred from the system in Figure 3-8.

3.3 Marking Generator

The function of marking generator is to transfer the properties into corresponding

markings. Markings represent the states of Petri nets. A property is written as



“O; (starting state — O, (ending state))”, O; and O, are CTL operators. The
starting state and ending state here can be mapping to ¢ and ' in equation 2.1
respectively. To transfer a state into a marking, we put one token in each place
which represents the state or signal mentioned in the state description. The
expression of a token in matrix equation of a Petri net is putting 1 in the position
which represents the place. In order to make the verification process convenient, we

rewrite equation 2.1 as

A =AX (3.1)

where Ay = p'— . The actual information we need is A . So, the rules

of transferring the starting state and the ending state into A 1 are

1. In a marking matrix (- ),.we put 1.in each-place which represents the state
mentioned in the starting state.

2. In another marking matrix ('), we put-1 in each place which represents the
state mentioned in the ending state.

3. Through subtracting ¢ from ', weget A (.

To simplify the transformation steps, we change the way we do above. First we fill
the matrix A g with 0. Then we add -1 instead of 1 in each place which represents
the state mentioned in the starting state in a marking matrix and add 1 in each place
which represents the state mentioned in the ending state in the same matrix. By

doing this, we can directly get the matrix A .
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3.4 Reachability Checking

We have introduced in section 2.4.3 that a Petri net could be analyzed by a
matrix equation and the equation could be express as equation 3.1. According to
linear algebra theorem [34], a linear system AX = b is consistent if and only if the
rank of A is equal to the rank of (A | b), where (A | b) is the augmented matrix. For

example, from Figure 2-4 and 2-5 we can get

1 0 1 0] o] [17 [=1] -1 0 1 0 |-l
1 0 0 0 1 o] |1 10 0 0 |1
A=|1 -1 0 0 Au=|1]-lo]=|1 (AlAw=|1 -1 0 0 |1
0 0 -1 1 1l (1] |o 0 0 -1 1|0
0 1 0 -1 o] [o] |o] 0 1 0 -1/ 0]

If the state in Figure 2-5 is reached from the state'in Figure 2-4, the rank of A will be
the same as the rank of matrix (A |A «). | To evaluate the ranks of A and (A |A 1),
we use Gaussian elimination [34] to teduce-the-twomatrices into reduced row echelon
form and normalize the lead variables.of each row. After going through the steps,

we get two matrices in row echelon form like the following.

Reduced A = and reduced (A|Au)=

S O O O
S O O = O
S O = O O
S = O O O
S O O O =
S O O = O
S O = O O
S = O O O
S O O o =

The rank of A =4 and the rank of (A|A 1)=4. This linear system is consistent and

we can get solutions of the transitions directly from the most right column. The

solution of the system is X = This solution means that we can reach the state

S o o =

of the Petri net in Figure 2-5 from the state in Figure 2-4 by firing the transition tyone
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time.

Through this linear algebra method above, we can only know that this system has
a solution or not. This condition can make us apply it to check EX and EF
properties. Because as long as we can find any situation that makes the system
satisfies the property which is EX or EF, we can say that the system satisfies the
property. The other kinds of properties (AX, AF, AG...) may not have many
advantages to be verified by this method because that to verify a system which
satisfies these kinds of properties (AX, AF, AG...) needs to be proved that more than
one situation or all situations of the system which satisfy the properties. So the main
point in this paper is the methods to speed up verifying EF and EX properties with
modeling a FSM in Petri net.

Before we start to solve the solutions of a matrix equation, we need to know the
ranks of the matrices. When the ranks of A and (A |A 1) are equal, we can only
know that the linear system has-solutions..—-When the ranks of the matrices are equal
to the number of its transitions, we'can. get aunique solution of the system. When
the rank of the matrix is less than the number of its transitions, there are infinite
solutions of the equation.

The solution of a matrix equation is a set of the firing times of transitions in a
Petri net, and the firing times must be integers and greater than 0. Proving the
equation is consistent is not enough to confirm that the system satisfies the property.
We need to do some other process to ensure that there is at least one solution exists

and satisfies the following two rules (Firing Times Rules).

1. The values of the firing times should be equal or greater than 0.

2. All the firing times should be integers.
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In other words, when the ranks are equal to the number of transitions, we have to
solve the solution and check if the solution conform the Firing Times Rules; when the
ranks are less than the number of transitions, we also need to ensure that there exists

at least one solution satisfies Firing Times Rules.

3.4.1 Ranks are Equal to the No. of Transitions

When the ranks of a matrix equation are equal to the number of its transitions,
we can use the method we told above to verify the linear system and confirm that this
system has at least one solution then check if the solution satisfies Firing Times Rules.

To verify an EF property we only need to solve the solution and check if the
solution satisfies the Firing Times Rules.If the answer is YES and we can say that
the EF property is true.

To verify an EX property we not only need to sglve the solution and check if the
solution satisfies the Firing Times Rules but also’'need to check one more rule which
is:

® Al fired transitions should not have any correlation with each other.

Proof:

1. For a FSM, there is only one state which the state machine is staying at. So
in a Petri net transferred from a FSM, there is only one place which represents
one of the states with a token in it.

2. For each transition, one of its input places must be a state place. In other
words, firing a transition must cause a state transition.

Because of the two reasons, for a Petri net transferred from only one state

machine, when we solve the firing sequence which has more than one transition
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fired, the fired transitions must have causal relation with each other. For a Petri
net transferred from more than one FSM, the Petri net can fire more than one
transition at one time. But the fired transitions should not have casual relation
with each other, too. When a firing sequence in which the fired transitions have
casual relation with each other, the final state must be not the next state of the

Initial state.

The method of checking the rule is that the output places of each fired transition
should not be other fired transition’s input places. When the fired transitions do not
have any casual relation with each other, we can ensure that the final state is the next
state of the initial state. If there is a fired transition its input places are other fired
transition’s output places, it means that there is causal relationship between these two
transitions. State transition causing by:firing:two. successive transitions may not
satisfy EX properties, i.e. the ending state is not the hext state of the beginning state.

The verification flow of ranks = NO. of transitions 15 shown in Figure 3-11.

Matrix [A | Ap]

Solve and check
the solution

property

Property
false

A 4
Pass the properties to

Figure 3-11 Flow of ranks = NO. of transition




3.4.2 Ranks are Less Than the No. of Transitions

The cause of that the ranks are less than the number of transitions is that the FSM
has loops and when we transfer the state machine into a Petri net we generate
transitions without input places and the output places are the control signals. For
example, in Figure 3-12(a), the state machine has a loop and three control signals.
We transfer the state machine into a Petri net in figure 3-12(b) and generate three

transitions (13, t4, ts) without input places to put tokens into signal places.

SO A

S2 C
bt

(@) (b)
t0 tl t2 3 t4 t5 Ap t0 tl t2 3 t4 t5 Au
SO|-1 0 1 O O O -1 1 0 0 0 0 -1 1
S1 1 -1 0 0 0 0 o 1 0 0 0 -1 1
S210 1 -1 0 O O 1 o o0 1 0 o0 -1 0
A -1 0 0 1 0 0 o 0O 0 O 1 0 -1 1
B o -1 0 0 1 0 o o 0 O o0 1 -1 1
C o 0 -1 0 0 1 o O 0 0 0 0 o0 o

(c) (d)

Figure 3-12 Example of the ranks < NO. of transitions

In this example, we set a property: “AG ( SO -> EF (S2))” to the FSM. The reduced
matrix is shown in Figure 3-12(d). In this kind situation, the ranks will be less than
the number of transitions and we can adjust some transitions to make the Petri net go
through the loop one time of more. In this example we can adjust the firing times of

ts. In Figure 3-12(d), if we set ts = 0, the solution of the matrix equation will be (1, 1,
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0, 1, 1, 0) and the state transition process is SO — S1 — S2; if we set ts = 1, the
solution will be (2, 2, 1, 2, 2, 1) and the state transition process is SO — S1 — S2
— SO0 — SI — S2.

According to the illustration above, when the ranks of a matrix equation are less
than the number of its transitions, we have to use some other methods to confirm that
there is at least one solution satisfies the properties and the Firing Times Rules.

For EF properties, first we eliminate the matrix (A |A 1) into reduced row
echelon form. Then we check each coefficient in each row to comprehend if the

matrix obeys the following two rules.

1. For each row, when the signs of the coefficients in the A part are the same,
the sign of the value in A " columirmust be also the same as the signs.

2. When there are positive and negative coefficients in the A part, we do not

care the sign of the value in | A4 column.

When the matrix (A | A 1) satisfies the'twoirules above, we can say that this matrix
equation could be found a solution set which satisfies the Firing Times Rules. The

following is an example to illustrate the two rules above.

t0 t1 2 3 t4 t5 t6 t7 t8 t9 t10 t1l t12 Ap
of1r 0 0 0 0 0 0 0 OO O 0 O0 1
r1fo 1 0 0 0 0 1 0 O 1 O O O 1
2(0 0o 10 0 -1 -1 0 -1 -1 -1 1 0 -l
36 60 0 1. 01 1 0 0 O O -1 0 O
410 0 0 0 1 17.0 0 1 0 0 -1 0 0
5(6 0 0 000 01 1 1 0 0 0 1
6/0 0 0 0 00 00 0O 0 O O0 I 1
710 0 0 0 0 0 0 0 O O O O O O
&0 0 0 0 0 0O 0OOO O O 0O 0 O

Figure 3-13 (a)
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t0 t1 2 3 t4 t5 t6 t7 t8 t9 tl0 tIl t12 Ap
of1r 0 0 0 0 06 00O O 0 0 0 -1
1o 1 0 0 O 1 0 0 1 0 0 0 -1
2(0 0 1.0 0 -1 -1 0 -1-1-11 0 0
3(6 0 0610 1.1 0 0 O 0 -1 0 0
4({0 0 0 01 1.0 0 1 0 0 -1 0 1
5(6 0 0 00 0 0 1 1 1 0 O 0 O
6/0 0 0 06000 0 0 0 0 o0 1 o0
7170 0 0 0 0 O O O O O O O O O
&0 0 0 06 0 060 060 0 0 O 0 O

(b)

Figure 3-13 Example of illustrating EF properties judging rules

In Figure 3-13(a) row 0, the coefficients in the A part are zero except column ty. The
sign of (0, tp) is positive and it is the same as (0, A 1). So we can find a legal
solution of t0. In row 1, there are three non-zero coefficients and they are all
positive, and the value (1, A p) is.also'positive. We can find solutions of 3, tg, tg
such that satisfy the equation and the Firing Times*Rules like (1, ts, tg) = (1, 0, 0).
When there are positive and negative coefficients in @ row in the A part, it means that
there is at least one loop in this system and we c¢an adjust some transitions to change
the firing times of other transitions. So for one row, no matter what the sign of
column A g is, we always can find a solution set that satisfies the equation when
there are positive and negative coefficients in the A part.

In Figure 3-13(b), the coefficient in row 0 column tp is positive but A p is
negative. They have different signs and the solution of t0 must be -1, it violates the
Firing Times Rules. In row 1, there are three positive coefficients in the A part but
the value of A y is negative. We can not find any solutions of (13, ts, tg) which are
positive integers and satisfy the equation.

For EX properties, we always need to solve the solution to verify it. Because
even though the matrix equation has a solution which satisfies Firing Times Rules, we

also need to check if the solution satisfies next state property. So, when we meet an

32



EX property and the ranks of the matrix equation are less than its number of
transitions, we can not get a solution and also can not verify EX properties at this kind
of situation. The verification flow of ranks < NO. of transitions is shown in Figure

3-14.

Matrix [A | Ap]
No /th\ Yes

EX properties EF properties

v v
Can not verify Check if there are any
legal solutions

Property No
false

Yes

Pass the properties to
— SMV

Figure 3-14 Flowof ranks < NO. of transitions

Property true

3.4.3 Summary

According to the illustration in the two section above, we could make a brief
summary that when we find the ranks of the matrices A and (A |A () of a system are
equal and the same as the number of its transitions, we will solve the matrix equation
and check if the solution tallies with Firing Times Rules. When the ranks are equal
and the solution satisfies the rules, we will show that the property is true. When we
find that the ranks of the matrices are equal but they are less than the number of its
transitions, if the property is EF, we will check if the matrix has solutions satisfies
Firing Times Rules. When the property is EX, we can not verify it and will pass the

property to SMV directly. When we find that the ranks of the two matrices are not
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equal, we will directly show that the property is false and pass the property to SMV.

The total verification flow is shown in Figure 3-15.

SMV code

v l -
PN generator > Marking
generator

v PN

Transition Marking
v Matrix v _Ap

‘ Evaluate ranks ‘

Ranks = NO. of
transitions?

v
Solve and check

the solution 4
Property Pass the properties to
l false SMV
A A
EX properties EF properties N
A 4 vy Legal? 0 3
Can not verify Check if there are any
legal solutions
Yes
No " gxo
EF
Yes
ext state? No )
X Yes
Exist? 0
Yes
\ 4

Figure 3-15 PNV software verification flow
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Chapter 4 Implementation

In this section, we will discuss the implementation of PNV for each block in

Figure 3-1.

4.1 Input Coding Rules

The input data of PNV is a SMV code:which'should obey the coding rules we made.
The coding rules are made for us to'transfer FSM descriptions into a Petri net
structure more easily and conveniently. The codes which obey the coding rules are

still readable by SMV model checker. The coding rules are

1. A signal which controls two state transitions should be named starting with
“ 7 e.g.“ enable”.

2. In the input SMV code, each symbol, signal name, and keyword should be
separated by a blank space.

3. The properties should be described completely including the states and the
values of signals.

4. Adding “--” at the end of the signal transition descriptions which do not

need to be transferred into transition in Petri net.
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The first rule is made for PNV to recognize which signal needs to be transferred into
two places. The second rule is made for PNV to read the input SMV code easily.
The purpose we make the third rule is to make marking generator generate markings
easily. The fourth rule can make a Petri net and its transition matrix smaller in some
situation. Even if we don’t allow the fourth rule, the codes are still readable for
PNV.

Figure 4-1 is a simple example of SMV code which obeys the coding rules

above.

1 MODULE counter ( enable )

2 VAR

3 state:{0,1,2,3,4,5,6,77%,;
4 ASSIGN

5 Init ( state ) := 0;

6  next ( state ) := case

7 state=0 & enable=0: 0 ;--
8 state=0 & enable=1:1 ;
9 state=1: 2 ;

10 state=2: 3 ;

11 state=3: 4 ;

12 state=4: 5 ;

13 state=5: 6 ;

14 state=6: 7 ;

15 state=7 : 0 ;

16 esac ;

17 MODULE main

18 VAR

19 c¢nt: counter (en) ;

20  en : boolean ;

21 SPEC

22 AG (en=1 & cnt.state=0 -> EF ( cnt.state=7 ) )
23 SPEC

24 AG ( cnt.state=1 -> EX ( cnt.state=2) )

Figure 4-1 SMV code of counter

Figure 4-1 is a finite state machine of a counter. From line 1 to line 3 and from line
17 to line 20 are the definitional part. Line 1 declares a module called counter and
enable is its input. Line 3 declares the state of the counter which has eight values
from 0 to 7. From line 4 to line 16 are the structural part. Line 5 defines that the
initial value of state is 0. From line 6 to line 16 define the state transitions of counter.
Line 7 describes that when enable = 0 and state = 0, the next state is still 0. We don’t

need to generate any transition in Petri net for this description. So, according to the
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4™ coding rule, we add “--” at the end of line 7. Line 17 is main module in which
the designer defines the connections of all sub-modules. From line 21 to line 24 are
the expression part. Line 22 and line 24 are the properties of this system. The
modules before main module are sub-modules which are used in main module. The
descriptions in main module connect the whole sub-modules together and define

properties.

4.2 Data Structure of PNV

The work of PNV is to transfer a SMV code into Petri net structure and to
generate the transition matrix then.verify it. Figure 4-2 is the data structure of a Petri

net built by PNV.

Module vector

Module name I:I

Place vector I i Place name I:I

0 1 n

Transition vector

0 1 n Input place | | | |

vector
0 1 e n

Output place | | | |

vector
0 1 e n

Figure 4-2 Data structure of PNV

There are three objects, Module, Place, and Transition, in the structure. For each

module, there are three elements, a place vector, a transition vector, and a string, in it.
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Each place has a string to represent its name. Each transition has two place vectors,
one is to store the input places of the transition and the other is to store the output
places of the transition [35].

The first step of building a Petri net is to generate modules. When PNV reads
the keyword, MODULE, PNV pushes a new module which is named as the word after
MODULE in the SMV code into the module vector. After creating a new module,
PNV continues to build the places and transitions of this module according to the
declarations in VAR part and ASSIGN part respectively. PNV creates one or two
places to represent a signal which is declared as a Boolean signal. When there is a
signal which is a set of signals like states, PNV creates places according to the
number of signals in the set. For example, in Figure 4-1, PNV may push a module
named “counter” in the module veetor first and then push one place to represent the
input signal, enable, and eight places to represent the-signal, state (a set of signals), in
the place vector which belongs to icounter....When PNV reads a signal which is
starting with “  (coding rule 1%),"PNV.pushes two places into the place vector to
represent the two values of the signal.

After generating all places, the next step is to build the connections of places and
transitions. The descriptions in the ASSIGN parts in a SMV code express the
relationship of places and transitions. PNV builds the connections of places and
transitions based on the descriptions. In Figure 4-1 line 8, when PNV reads this
description, PNV knows that there is a transition which has two input places, state=0
and enable=1, and one output place, state=1. Then PNV pushes these /O data into
the transition vector. ~After pushing all transitions into the transition vector, a module
is built completely. Then PNV continues to build the following modules using the
same methods.

After building all sub-modules, the last module must be main module. Main
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module is a module which composes the sub-modules to become a complete system.
The work of main module is to build the interconnections of the sub-modules
included in main module. Figure 4-3 is an example that there are two sub-modules,

fsm_a and fsm_b, in this system.

1 MODULE fsm_a ( _BWRITE , DSELAPB , PD )
2 VAR

3 stateA:{0,1,2,3,4,5,6};
4 _PSTB: boolean ;

5 PSEL : boolean ;

6 _PWRITE : boolean ;

7 BD : boolean ;

8 ASSIGN

9

10 .

11 (omitted)

12 .

13 MODULE fsm_b ( _PW , PSEL, _PSTB )
14 VAR

15 stateB: {0,1,2,3,47%};

16 PD : boolean ;

17 ASSIGN

18

19 .
20 (omitted)
21 .
22 MODULE main
23VAR
24 FA : fsm_a ( _BW ,6 DSEL, FB.PD ) ;
25 FB : fsm_b ( FA._PWRITE , FA.PSEL, FA. PSTB ) ;
26 _BW : boolean ;
27 DSEL : boolean ;

28 ASSIGN

29 init(_BW):=0;
30 SPEC

31

32 .

33 (omitted)

34

Figure 4-3 SMV code

The main module includes two sub-modules and declares two new signals in its VAR
part. The two sub-modules included in main module are named FA and FB
respectively. The signals in FA and FB will be named starting with “FA.” and “FB.”
respectively. It is to mark the origin of the signals in main module. Line 24 and 25
in Figure 4-3 are ports mapping of the two sub-modules. When PNV reads line 24,
PNV copies the places and transitions from the module fsm a to main module.
After copying the places and transitions, PNV changes the names of the places into

starting with “FA.” and changes the names of the input signals from their original
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names into the corresponding names that connect to the input ports. For example, in
Figure 4-3 line 24, PNV copies the places from fsm a and changes the names.
Besides the input signals, all places’ names would be changed starting with “FA.”.
But the input signals, BWRITE, DSELAPB and PD, will be changed as BW, DSEL
and FB.PD respectively. =~ BW and DSEL are input signals from outside and FB.PD
is an inner signal of the system from fsm_b. After processing the VAR part of main
module, the whole system is built completely.

After building a whole Petri net structure, the following step is to generate the
matrix. Because PNV stores places and transitions in the place vector and the
transition vector respectively in main module, we can easily know that how many
places and transitions in this system. The number of rows is the number of places of
the system and the number of columns is the number of transitions. We get these
data from the two vectors and generate a corresponding size matrix. Then PNV fills
the matrix according to the illustration’we told.in section 2.4.3. After doing so, the

matrix is accomplished.

4.3 Property to Marking

To verify a system represented with Petri net, we need to transfer its properties
into markings. From the above works, each place stored in the place vector has an
index to locate where it stored in the vector. We use the indexes to locate the
positions of the places and create an n (the number of places) by 1 matrix to store the
marking of each property. The methods of transfer a property into a marking is
illustrated in section 2.4.2 and section 3.3. The information we need to verify is
Ap = p'— . A property description is beginning from its starting state and
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finishing at the ending state. The starting state is ¢ and the ending state is ('
According to the transformation methods in section 3.3, we can directly compose the
generation of 1 and ' by adding 1 in the places of the ending state and adding -1
in the states in the starting state. So when PNV reads a property, it adds a
corresponding number in each space in the marking matrix. For example, in Figure
4-1 the first property in line 22 describes that the starting state is en=1 and cnt.state=0,
PNV adds -1 in the spaces which represent en=1 and cnt.state=0 and adds 1 in the
spaces which represents cnt.state=7. Those spaces represent other places are still 0.

Figure 4-4 is the transition matrix and the first marking in Figure 4-1.

t0 tl 2 t3 t4 t5 t6 t7 Ap

en=1 [-1 0%0 0 -0 0 0 0 -1
state=0 |-1 20 00200 O 1 -1
state=1 | 1= -1/-—0/=0 0.0 0 0 O
state=2 [0 1T -1 60 O 0 0 O
state=3 [ 020 . " F=-1"0 O O O O
state=4 [ 0 <0 ~0 110 0 0 O
state=5 |0 0.0 O -1:-1 0 O O
state=6 {0 O 0°0"" 0 1 -1 O O
state=7 |0 O O O O O 1 -1 1

Figure 4-4 Transition matrix

4.4 \erification Core

After the collection of markings and transition matrix, PNV can start to verify
the system with the methods we have told in section 3.4. Assuming that the
transition matrix is an m by n matrix and the markings are m by 1 matrix. First,

PNV creates a new empty matrix and copy the transition matrix into the matrix and
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then do Gaussian elimination to evaluate the rank of the transition matrix. Second,
PNV copies the transition matrix into the new matrix again and copies the marking
into the next column of the transition matrix, the matrix becomes (A |A ). Then
PNV starts to evaluate the rank of the (A |A 1) matrix. When the two ranks are
unequal, this matrix equation does not have solutions. PNV will pass the property to
SMV to verify it again and generate a counterexample. When the two ranks are
equal and the same as the number of its transitions, PNV will solve the solutions of
the equation and check if all solutions satisfy Firing Times Rules. When PNV gets
an EX property, there is one more rule should be checked. It is that the fired
transitions in the solution should not have causality. The reasons we have told in
section 3.4.2.

When the property is EF and 'the ranks are equal but less than the number of its
transitions, PNV will check if the equation has a selution satisfies Firing Times Rules.
When the property is EX and+the tanks-are-equal-but less than the number of its

transitions, PNV can not verify the property.and will pass the property to SMV.

4.4.1 Elimination Methods

The elimination method of PNV is based on Gaussian elimination and some
special methods. The methods are devised according to the characteristic of
transition matrices to simplify the computational complexity of the elimination
process.

A transition matrix of a Petri net has a characteristic that the most values in the
matrix are zero. For each column, only the rows which represent the places connect
to this transition have non-zero values. For each row, only the columns which

represent the transitions connect to this place have non-zero values. In other words,
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in a transition matrix, the most values are zero and the second most values are 1 or -1.
The causes of this characteristic are that for each row, the non-zero columns are the
transitions connected with the place. For a place, especially state place, there are not
many transitions connect with it. This characteristic means we can utilize some
specific methods to eliminate a transition matrix with fewer steps than using general
Gaussian elimination. During generating a transition matrix, we would put the state
places together to make the characteristic more obvious. By doing so, the work of
elimination may be reduced outstandingly.

One of the methods we devise is that when we find one row with zero lead value,
we can ignore this row in the elimination step. In other words, we check the
representative value and decide if we need to eliminate this row. When the
representative value is not zero, we have to eliminate it, but if the value is zero, we
can skip the row. Though checking the representative value, we can save the work
of eliminating unnecessary rows. According to this method, we can avoid some
unnecessary calculation. So, we can say: that the method devised from the
characteristic of a transition matrix can make us more easily and quickly eliminate the
transition matrices.

Because of the characteristic of a transition matrix, there is another method could
be used to simplify the complexity of elimination. We check the values in the
pivotal row and memorize the columns of the non-zero values. When we start to
eliminate other rows, we can only calculate the non-zero columns and skip the other
columns which are zero. By using this method, we can reduce the calculation when
we meet a row which needs to be eliminated.

According to the methods above, the first step of elimination is to find out a
non-zero value in the first column to be the pivotal row. When the pivotal row is not

the first row, we have to exchange the pivotal row with the first row. Then we check
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all values in the pivotal row and record the column indexes of the non-zero values.
The next step is to eliminate the first column. We will check the values in the first
column and eliminate the non-zero rows. The following is an example illustrating

the steps we mentioned above.

t0 tl 2 3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7
0fo o1 -1 0 0 0 O 0—10000001:>
11-1. 0 0 0 0 0 0 1 110 0 1 -1 0 0 O 1
241 -1 0 0 0 O 0 O 21 -1 0 0 0 O O O
3({0 1.0 0 0 0 0 O 3({0 1.0 0 0 O 0 O
410 0 1 -1 -1 0 O O 410 0 1 -1 -1 0 O O
5f0 0 0 0 1 -1 0 O 50 0 0 0 1 -1 0 O
6 {0 0 0 0 0 1 -1 0 6 {0 0 0 0 01 -1 0
710 0 0 O O O 1 O 710 0 0 O O O 1 O
&|-1 0 0 0 0 O O 1 &8 (-1 0 0 0 0 O O 1
(@) (b)
t0 12 3 t4+t5 t6 t7
0 | AN'0 0210 0. 0= 0 1
10)01-10000)
2 1/O0F-1"0-0 0 0=0 |1
3110 107000 000
4 (| 0 0"%1 -1T"-120 0[O0
5110 0+=0 0 .1+-1 010
6 {10 0 "0°°0"°0 1 -110
7 (10 0 0 O O O 1 1\0
8 1Y 0 0 0 0 0 0 Y

(©)

Figure 4-5 Eliminating example

Figure 4-5(a) is a transition matrix. For the first column, the (0, 0) position is
zero, so row 0 can not be the pivotal row. We continue to check (1, 0) and find that
it is a non-zero value, so we exchange row 0 and row 1 to become the matrix shown
in Figure 4-5(b). After deciding the pivotal row, we start to check the items in the
pivotal row and record the indexes of non-zero values. We find that column 0 and
column 7 are not zero and we record the indexes 0 and 7. Then we start to eliminate

the non-zero values in column 0 and only calculate the columns we have recorded.

44



In this example, we can eliminate the first column through four times of calculation
with our methods instead of use full Gaussian elimination with sixty-four times of
calculation.

For an m by n matrix, we assume that m and n are the same order and m =n + k.
To find out the first pivotal row and exchange it to the first row, we have to check
column 0 m times in the worse case and do 3n times to exchange the two rows. To
find the second pivotal row, we have to check (m - 1) times and exchange 3(n - 1)

times. The above operations we have to do for a matrix are

[m+3n]+[(m-1)+3(n-1)]+.

[(n+K)+3n]+[(n+k-1)+3(n-1)]+...

Zn:(i+k)+3i

Zn:4i +k
i=1

=2n(n+ 1) +kn

=2n°+ (2 +k)n

The computational complexity of finding the pivotal row and exchanging it to the
right position is O(n?).

To eliminate the first column, we have to check (m — 1) rows to figure out which
rows need to be eliminated and we assume that there are c; rows need to be eliminated.
Before we start to eliminate, we need to check the values in the pivotal row and it cost
n operations. After checking the pivotal row, we find out that there are d; non-zero
values. So the number of calculation we need to do is ¢; * di. The total operations

we have to do for eliminating a matrix into reduced row echelon form are
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[N+(M-1)+cy*di]+[(n-1)+(M-1)+cCp*do] +...

=[n+(n+k-1)+c;*d]J+[(n-1)+(n+k-1)+c,*dy] +...

Di+(i+k-1)+c *d,

i=1

D 2i+(k=1)+¢ *d,

i=1

=n(n+1)+(k-1)n+ anci*di

i=1

=n*+kn+ Y .c *d,

i=1

n
The order of Zci *d, term is about n. The computational complexity of the
i=1

elimination step is O(n®).  After the elimination step, we get a matrix in reduced row
echelon form. When the rank of the matrix is equal to its transition number, we can
get the firing times of each transition without:more .action. An example is shown in
Figure 4-6, the matrix is in reduced row echelon form and the rank is the same as its
transition number, so we can get the.solutions of t; to ts are a to f without back
substitution. Summarily, the total ‘computational complexity of our elimination
process is O(n”) and its order is lower than the computational complexity of original
Gaussian elimination O(n’ ). The methods we use to eliminate a transition matrix

can reduce the order of computational complexity from O(n’ ) to O(n?).

t0 t1 2 t3 t4 t5 Ap

N bh W —O
SO O OO -
(= e
S oo~ O O
SO = O O O
O~ O O OO
—_0 O O O O
- 0 Q0 O

Figure 4-6 Reduced row echelon form
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Chapter 5 Experimental Results

In this chapter, we will use PNV to verify five examples and interpret the rules

we mentioned above. The simulation environment of the following examples is:

“OS: Windows XP, CUP: AMD 3000+, RAM: 1GB.”

5.1 Counter

Figure 5-1 is a finite state machine ofia four-state counter. The initial state of

the FSM is s0.

clk
‘@ reset & clk °
reset & clk

reset & clk

Figure 5-1 FSM of counter

Figure 5-2 is the Petri net graph and its transition matrix of the counter. In Figure
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5-2(a), there are two places used to represent the reset signal. It is because that state
transitions should always happened when reset = 0. So we need two places to
indicate reset = 1 and reset = 0 as shown in Figure 5-2(a). The transitions tj to t3 are
working for state transition, t4 to t; are working for reset, and tg to tjo are for input
signals. The transitions tp to t3 always need one input place which is reset = 0 to

ensure that the system is not being reset.

t9  reset=1

s1 110

s2 0o 1 -1

/ o 10 t1 2 t3 ¥4 t5 t6 t7 t8 t9 t10
A\
‘4E sO | -1 0 0 1 11 1 00
s0 0 0

s3 0 0 1 -1
reset=0 11 1 A1

t10 v 2
m% reset=1 | -0 0 0 0 -1 -1 -1 -1
I clk

s

o O O O o
1
-

o

1

—
o O -~ O O o o
o =~ O O O o
- O O O O o

s2 clk =1 -1 1111141

3 z
t7 \4
s3

@ (b)

Figure 5-2 Petri net of the counter

The property of this Petri net we set is “AG (state=0 -> EF (state=3))”. This
property means that there is at least one path starting from state = 0 and finally ending
at state = 3. We verify this property by SMV and PNV respectively. Figure 5-3 is
the verification result generated by PNV verbose mode. Figure 5-3(a) shows the
places and the transitions generated by PNV. The first part in Figure 5-3(b) shows
the transition matrix of the Petri net, the second part shows the matrix after being
eliminated and the rank of this matrix, the third part shows the property and the

corresponding marking, the fourth part shows the result of eliminated (A |A 1), and
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the final part shows the verification result of the property and time cost. There is a
brief mode of PNV shown in Figure 5-4, this mode only shows the result and time
cost of the properties and it is faster than verbose mode. Figure 5-5 is the

verification result generated by SMV.

(b)

Figure 5-3 Verification result of counter with PNV verbose mode
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enter the input file @ crtd. smv -i

\Documents and Settings\PorschelMy Documentsiwork\Peiri nety... [ {m| ﬂ
g

on relation: 20 + 1

Figure 5-5 Verification result of counter with SMV

SMV PNV
Processor: Total Verbose Brief
Time (ms) 16 300.699 13.0455 1.00963
Memory (KB) 1184 1940
Table 5-1 Time cost of SMV.and PNV for counter

In this example, the rank of A and (A |A w) are less than the number of
transitions. We can not get an exact solution, so we verify this design by the
methods illustrated in section 3.4.2.

The time costs of SMV and PNV are shown in Table 5-1. The SMV processor
time is clocked by SMV and we don’t know what action included in this time interval
and the accuracy is lower than the timer used by PNV. So we add another timer to
clock the time cost of SMV, the result is shown in SMV Total. This result includes
all action of SMV and its clocking condition is the same as PNV. Adding another
timer to clock SMV makes us more convenient to compare the time costs of SMV and

PNV. From Table 5-1 PNV part, we could notice that the most time cost by PNV is
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to print out the result.

The processing time depends on the status of CPU, so the time cost of each
processing may not be equal; even so, we still can find that the time which is shown in
Table 5-1 costs of PNV are fewer than the time costs of SMV, especially at PNV brief

mode.

5.2 Greatest Common Divisor

In this section, we will show an example about greatest common divisor (GCD)
and verify it by SMV and PNV. Figure 5-6 is the FSM of GCD. The state s0 is idle
mode, this machine starts when thé start signal ='1 and the state transfers to s1. At
s1, the machine transfers its state according to-the inputs, u>v,u<v,andu=v. The
state will transfer to s2 and s3 when 0> v.and-u.< v respectively. At these two states,
the system will subtract the smaller‘number. from the larger one then send the answer
and the smaller number to a comparator. The comparator will identify which
number is larger and send the result (u > v, u <v, or u = v) to GCD system. When
the two numbers are equal, the state will transfer to s4 and the process is finished.

The final number is the GCD of the original u and v.
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start

(b)
Figure 5-7 Verification result of GCD with PNV verbose mode
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SMV PNV
Processor Total Verbose Brief
Time (ms) 31 285.795 25.2552 1.2306
Memory (KB) 1624 1944
Table 5-2 Time cost of SMV and PNV for GCD

In this example, we show two EF properties and the second one is planned to be
false deliberately to show the methods we told in section 3.4.2. In Figure 5-7(a), the
property is false and we can see that the first row of the matrix Reduced [A U]
violates the first rule in section 3.4.2. The solution of the first transition must be -1
and it is illegal. This property is verified as false by PNV then PNV will pass it to
SMYV and verify it again to generate a counterexample, it’s shown in Figure 5-7(b).

Table 5-2 shows the time costs of SMV and PNV.

5.3 AMBA

This example is to model the behavior of the communication between AMBA
ASB and APB. We simplify the signals of the two components from Figure 5-8 and
Figure 5-9. Figure 5-8 is the read timing graph and Figure 5-9 is the write timing
graph. We ignore the BTRAN and BWAIT signals. In Figure 5-8, when
DSELAPB = 1 means that APB is selected. Then the data will be sent to APB and
PSEL will be set high. In the next clock cycle (c2 in Figure 5-8), PSTB will be set

high and APB starts to read the data ASB needs [40, 42].

53



iming

APB to ASB Read t

| | 1 | | |
] en =] L] =

I I | | 1 1
! i | | ]
OSELAPE |I: : I,L]I,_" i
oo [ N
| | [
BWRITE l_ \ I. ,'l
| i

mlJ..

PSTE
1 |

"Aé.:| | |
| ]
T

FD1:||

20v02 : AMBA

ARM—

Figure 5-8 APB to/ASB Read timing (Captured from [42])
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Figure 5-9 ASB to APB Write timing (Captured from [42])

54




Figure 5-9 is the timing graph of ASB writes data into APB. The BWRITE signal is

high at this action and the same that APB start writing when PSTB is high.

ASB APB
DSELAPB —» L—» PSEL PSEL —>
BA —>| —» PSTB FSTB —>
BD <« > PA PA —>»
BWRITE — ) | PWRITE PWRITE—>
BCLK —»|
BCLK —»| |« PD PD <l

BCLK & BCLK &

BCLK & PA
& PWRITE=(,

DSELAPB

& BCLK & PWRITE=1 &

BCLK

Al
BA& \__/ BA&BD&
BWRITE = 0 BWRITE = |
& BCLK & BCLK

A0 : Idle , PSTB=0 BO : Idle
A2 : PSEL,PA,PD,PWRITE=1 B4":.PD
A3:PSTB=1

A4 : PSEL, PA, PWRITE =0

A5:PSTB=1

A6 =BD

Figure 5-10 FSM of the:.communication of ASB and APB

Figure 5-10 are the FSMs we build according to the timing graph above. FSM
A'is ASB and FSM B is APB. The output signals of each state are shown under the
FSMs. In this example, there are four properties set to be verified. The first
property is that at the initial states A0 and BO, when DSELAPB is high and BWRITE
is high, there exists a path which goes back to the initial states. The second property
is to verify an EX property. In this example, the ranks are equal to the number of the
transitions. So we can solve the solutions of the properties and can verify EX
properties. The third and fourth properties are contrasts. The third property is to
verify an EF property and the property is true. Then we change the EF operator into
EX, it is the fourth property. These two properties are used to show that there is a

path from the starting state to the ending state but the ending state is not the next state
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of the starting state and PNV can recognize the if the ending state is the next state of
the starting state.

The following are parts of the verification result of PNV and SMV.

=5 & FB.stateB=4 & FB.PD=1 ) )

Figure 5-11 Verification result of AMBA with PNV verbose mode

SMV PNV
Processor Total Verbose Brief
Time (ms) 16 408.82 85.0385 2.42684
Memory (KB) 1632 1956
Table 5-3 Time cost of SMV and PNV for AMBA

Because the ranks and the number of transitions are equal, PNV can solve the
solution for each property and shows the solutions in the verification result. In

Figure 5-11, PNV finds that there is a solution of this property but the solution shows
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that the ending state is not the next state of the starting state. So PNV determine that
the property is false and pass the property to SMV. Table 5-3 shows the time costs

of SMV and PNV.

5.4 Traffic Light Controller

This example is a crossroads traffic light controller. The illustration of the

crossroads is shown in Figure 5-12.

Feeder

Sensor

|
|
|
|

Figure 5-12 Traffic light controller

We assume that there are few cars on feeder, so the traffic lights of feeder are red at
most time. There are two sensors on feeder shown in Figure 5-12, when there is a
car which wants to cross the main street, the sensors will send a signal to the
controller then the traffic lights of feeder will turn into green and the light of the main
street will turn into red for a short time. After this, the feeder lights will go back to
red and the main street lights will turn into green. When there is no cars want to

cross the street on feeder, the traffic lights will always green for main street and red
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for feeder. The behavior of the controller is shown in Figure 5-13.

State controller

car

M:M.TG
F:F_car

Main street M_counter
° M G & clk

(1 (2 -
U

wait &
F car &
clk

clk

M R & clk

State =7 : wait =1
State =0 : wait=0

F_counter

F G & clk clk clk

State = 3 : finish

Figure 5-13 FSMs of traffic light controller

The initial state of each machine is: State controller: M; Main street: G; M_counter: 0;
Feeder: R; F_counter: 0. At the beginning, M_counter starts to count for seven clock
cycles to ensure that there is enough time for main street cars to pass. When there
are any cars want to pass the street during the seven clock cycles, the traffic lights of
feeder will not be turned into green. After seven clock cycles, when there is a car in
feeder wants to pass the street, the controller will turn the lights of the main street into

red and turn the lights of feeder into green; when there is no car waiting to pass in
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feeder, the controller will still let the cars in main street pass. When the lights of
feeder is turned into green and the lights of main street is turned into red, F_counter
starts to count for three clock cycles then turns the feeder lights red and main street
lights green.

In this example, we set a property which is: “At the initial state (main street
lights are green and feeder lights are red), there exists one path to the state that main

street lights are red and feeder lights are green.” Table 5-4 shows the time costs of

SMYV and PNV.
SMV PNV
Processor Total Verbose Brief
Time (ms) 141 394.138 82.7625 2.42657
Memory (KB) 2012 1960

Table 5-4 Time cost of SMV and:PNV for traffic light controller

5.5 Wizard’s Registration Flow

It is am example about the registration flow of Wizard we got it from .NET
Framework Developer Center [43]. There are five states of this machine. The
initial state is Default (S0). When the user wants to register and press Begin, the
state will transfer into Register (S1). At Register, the user can choose Next to go to
the next state Edit (S2) or Previous to go back to Register. At Edit (S2) and Edit
user (S3), the user can choose Next or Previous to go forward or go back and also can
choose Cancel to go back to Default. The last state is Finish which means the
registration is done. If the user wants to change his setting, he can press Previous to

go back or press Cancel to go to the initial state directly.
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SO : Default
S1 : Register
S2 : Edit

S3 : Edit user
S4 : Finish

Cancel

Figure 5-14 The registration flow of Wizard

For this system, there is one property we set to be verified.

state and Begin signal is pressed, there, exists a path to Finish state.”

shows the time costs of PNV and‘SMV.

It is “At the Default

SMV

PNV

Processor

Total

Verbose

Brief

Time (ms)

16

299217

25.7013

1.23563

Memory (KB)

1628

1944

Table 5-5 Time cost of SMV and PNV for Registration
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Chapter 6 Conclusion and Future
Work

6.1 Conclusion

In this paper, we introduce SMV and provide another verification method, PNV,
based on modeling a FSM int6 a Petri net:~ Because of the verification method of
PNV, we can use it to verify EF and partial'EX properties. The purpose for us to
propose this verification method is to ‘assist'SMV to speed up verifying EF and EX
properties. We still verify the properties which PNV can not handle by SMV. The
most advantageous situation of using PNV is that the EF properties are true and the
EX properties can be verified by PNV and the properties are true. At this situation,
we can only spend very short time and a little more memory usage than SMV on
verifying these properties with PNV.  When the properties are verified to be false by
PNV, PNV will pass the properties to SMV to verify them again. PNV can identify
the properties which are verified to be false by checking the ranks of the matrices and
this work takes little time. The advantage of using PNV to verify EF and EX
properties is that we can use little time on the work. The disadvantage of PNV is

that PNV needs more memory than SMV to verify a design. Summarily speaking,
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using PNV to assist SMV can earn the most benefit when the properties are true and
can be processed by PNV. Even if the properties are verified to be false, we only

spend little time more than only using SMV to verify them.

6.2 Future Work

The way we combine SMV and PNV now is calling SMV by PNV when it’s
necessary. [t means that the two programs are still individual and they need to read
the input file one time respectively. If SMV and PNV could be integrated into one
program, the information of the input file can be shared between SMV part and PNV
part and we don’t need to waste time on reading the input file twice. Combining the
two programs can also make users,more convenient use the program.

The marking generator is not friendly.enough for users. The generating method
now is based on the properties and the user should describe the properties amply
about each signal and state. If the marking generator could be made smarter, users
could describe a property with only mentioning its states of some signals and the

generator would filled with appropriate signals to make the property complete.
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