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ABSTRACT

In this thesis, we propose the new mean-shift tracking algorithms based on a new
similarity measure function. The joint spatial-color feature is used as our basic model
elements. The target image is modeled with the kernel density estimation and we use the
concept of expectation of the estimated kernel density to develop the new similarity measure
functions. With these new similarity measure functions, two new similarity-based mean-shift
tracking algorithms were derived. To enhance the robustness, we add the
weighted-background information to the proposed mean-shift tracking algorithm. In order to
solve the deformation problem, the principal component analysis method is used to update the
orientation of the tracking object, and a simple method is elaborated to monitor the scale of
the object. The results of the experiments show that the new similarity-based tracking
algorithms are real-time and can track the moving object correctly, and update the orientation
and scale of the object automatically.
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Chapter 1. Introduction

1.1 Motivation and Objective

In related research of the computer vision, the object tracking is an important
issue in many computer vision applications. The object tracking can be applied on the
surveillance system which can capture the person of unknown identity and notifies
related persons immediately. Perceptual interfaces also require the tracking system to
capture where the user is. A good tracking system makes driving more secure and
assists the driver to handle the situation of navigation. Furthermore, robot system,
augmented reality, digital home, and ohject-based video compression all depend on the
object tracking system.

Up to now, there is not:a robust object tracking system which can be applied
under all kinds of different circumstances. The object tracking system is always
developed for specific situations. For:example, V. Parameswaran et al. [3] proposed a
tunable representation for tracking encoding appearance and geometry but failed for
deformation, and F. Porikli et al. [2] presented a method for the low-frame-rate video
in which objects have fast motion but failed under the huge variation of illumination.

In general, the tracking system is easily influenced by many factors. An
insufficient target representation of tracking system could easily create confusion
between the target and the background. Huge variations of illumination always make
the appearance of target be different from that of model. Occlusion problem results in
an incomplete target representation and makes the tracking fail. Moreover, the
computer can not judge the same target with different scale size at the scene

automatically. With these problems and related applications, how to track the moving



object robustly is an important and interesting research issue.

1.2 Literature Review

In this thesis, we propose an algorithm based on the mean-shift tracking algorithm
proposed in [1]. The advantages of the mean-shift tracker include fast operation,
robustness and invariance to a large class of object deformations. A large number of
related research followed [1] to develop various related aspects such as feature spaces
[4] [5], spatial information [6] [7], shape adaptation [8] [9], etc.

In visual tracking, object representation is an important issue because it can
describe the correlation between the appearance and the state of the object. An
appropriate object representation is more robust and makes the target model more
distinguished from the background, and achieves a better tracking result. In [1], D.
Comaniciu et al. used the spatial kernels.with'the pixels which are weighted by a
radially symmetric normalized distance-from the object center, together with color
histograms, to represent blob-alike color objects, and the representation of target make
mean-shift tracking more efficient. Radially symmetric kernel preserves representation
of the distance of a pixel from the center even the object has a large set of
transformations, but this approach only contains the color information of the target and
the spatial information is discarded. As shown in Figure 1.2-1, the tracker fails because
the rectangular block being tracked overlapped with another block of the same color

distribution but inverted spatial distribution of colors.
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Figure 1.2-1 : Similar color distribution blocks tracking sequence. (The figure is obtained from [3])

Furthermore, V. Parameswaran et al. [3] proposed the tunable kernels for tracking,



which simultaneously encodes appearance and geometry that enable the use of
mean-shift iterations for tracking. A method was presented to modulate the feature
histogram of the target that uses a set of spatial kernels with different bandwidths to
encode the spatial information. This method shows how one could learn the optimal
set of bandwidths to use the captured data for the case of pedestrians walking upright.
This approach indeed can solve the problem of similar color distribution blocks with
different spatial configuration, but it just works for some cases, such as walking

upright.

Another problem in the visual tracking is how to track the scale of object. In [1],
the mean-shift algorithm is run several times, using the current and scaled window
sizes. For each different window size, the similarity measure Bhattacharyya coefficient
is computed to be compared, and the windew Size yielding the largest Bhattacharyya
coefficient, i.e. the most similar distribution, is e¢hosen as the new current scale. V.
Parameswaran et al. [3], S. Birchfieldetralz[7] and F. Porikli et al. [10] use the similar
variation method to solve the scale problem; but this method is unstable, and easily

make the tracker lose the target.

R. Collins [4] extended the mean-shift tracker by adapting T. Lindeberg’s theory
[11] of feature scale selection based on local maxima of differential scale-space filters.
This method uses blob tracking and a scale kernel to accurately capture the target’s
variation in scale. But in the paper the detailed iteration method was not described.
Furthermore, an EM-like algorithm [9] is provided to estimate the shape of the local
mode. This approach estimates simultaneously the position of the local mode and uses
the covariance matrix to describe the approximate shape of object. But this paper also
does not illustrate how to decide the scale size from the covariance matrix and other

details about implementation.



Q. Zhao et al. [6] and H. Zhang et al. [8] propose the methods to solve the
problem of rotation and translation. H. Zhang et al. [8] proposed a method which
represents the object by a kernel-based model, which offers more accurate
spatial-spectral description than general blob models. Q. Zhao et al. [6] proposed the
color correlogram method to use the correlation of colors to solve the related problem.
But these methods are not suitable for the complex background situation.

Most papers in literature provide methods for specific applications. This thesis
extends the traditional mean-shift tracking algorithm and will propose a new
mean-shift based method to improve the arbitrary object tracking problem, and try to

estimate the scale and orientation of target.

1.3 Thesis Subject and Contribution

The subject of this thesis can.be divided into two parts. The first past is to develop
the new spatial-color mean-shift trackers.for.the purpose of capturing the target more
accurately than the traditional mean-shift-tracker. The second part is to develop a
method for solving the scale and orientation problem which always appears in
computer vision.

In the first part, the new spatial-color mean-shift object tracking algorithms are
presented, thus the trackers can track the target consistently. The tracking algorithms
combine the spatial information and color feature to represent the model more robustly,
and use the new similarity measure functions to obtain the iterative mean-shift
procedure. Some other extension methods and algorithms are used to improve the
performance of these new trackers, such as different color feature space and
weighted-background information.

In the second part, this thesis uses principle component analysis method to
estimate the scale and orientation of the tracking target. The principle component
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analysis method can be extended from the tracking algorithm proposed above because
the spatial-color mean-shift object tracking algorithms and the principle component
analysis method both use the spatial information and weighted-background
information.

The proposed spatial-color mean-shift object tracking algorithms are implemented
and the experiment results show that the new methods are more robust than the
traditional mean-shift tracking algorithm, and can improve the scale and orientation

problems.

1.4 OQutlines of Thesis

The remainder of this thesis is organized as follows.

Chapter 2: the traditional mean-shift tracking algorithm is reviewed, including how to
represent the target-model, the traditional similarity measure Bhattacharyya
coefficient, how t0 ' derive_the -traditional mean-shift tracker, and the
summary of total mean=shift tracking algorithm procedure.

Chapter 3: at first, two recent papers are reviewed, and the similar concept of these
two papers is extended to develop the new spatial-color mean-shift tracking
algorithms. To improve the new trackers and make them more robust, some
extensions of the basic algorithm is discussed and applied. Finally, the
algorithm for solving scale and orientation is presented and the total
algorithm is summarized at the end of this chapter.

Chapter 4: the experiment results are presented according to the developing steps of
algorithms in chapter 3. Some real image sequences and figures are
presented, and the experiment results are discussed.

Chapter 5: the conclusion of this thesis and the possible improvement in the future is

presented in this chapter.



Chapter 2. Traditional Mean-Shift Tracking Algorithm

2.1 Introduction

Mean shift tracking algorithm [1] is a template base image tracking algorithm.
The main concept of mean-shift tracking is to find the candidate which is the most
similar with target image by mean-shift iterations. The principle of mean-shift is to
compare the color distribution of candidate region with the color distribution of the
model, and to compute the similarity measure, Bhattacharyya coefficient, to observe
the variation of gradient of candidate to find the mean-shift vector. Further, mean-shift
finds the most similar region or the most possible area of the candidate. In later
sections, we will introduce the:derivation.and principle of the traditional mean-shift

tracking algorithm.

2.2 Target Representation

Mean-shift is a template based algorithm, so we must find a feature to represent
our target model. In general, we always choose the color p.d.f. as our reference model.
We consider the center of target model as location 0 and the candidate is defined at
location y. Further, we define the target model as q and the target candidate as p(y).
In practice, the image data are classified to m-bin histograms in order to reduce the

computational complexity. Thus we define the target model as

(’i :{qu}u=l m un :1 (2'1)

and the target candidate as



BO) ={B, e n DB =1 (2-2)

Although, the histogram is not the best nonparametric density estimate [16], it is

simple and sufficient for traditional mean-shift algorithm.
2.2.1 Model Representation

We need to capture the character to form a p.d.f. from the target model image with
the first step of mean-shift tracking algorithm. Let {x }., . represent the pixel
locations of the region which we want to track in the target model, and we consider the

center of target model as location 0. We define the function b:R*> —{l,...m} as
color index, and the value of funetion b(x;).is the index of its bin in the quantized
feature space of pixel x;. Theyprobability of the feature uU=1,..,m of the target

model is then defined as

)ob(x) -] (2-3)

X;

G, =C ) k(
i=1

where & is the Kronecher delta function, C is the normalization constant computed

for condition  >"" §, =1, so we can obtain

1
C=—— .
> k(s &

since the summation of delta functions is equal to one for u=1,...,m.

In (2-3) and (2-4), k(Hxi*Hz) is a convex and monotonic decreasing kernel function

which contains the highest weight at the center and smaller weights to pixels farther
from the center. In general, the pixel near the center of the target model region is more

important than the pixel near the periphery. In some situations, the periphery of the
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target is covered by some obstacles, and the weights improve the robustness of the
tracking result because the peripheral pixels are less significant. D.W. Scott [16] and D.
Comaniciu et al. [17] mention two functions which are normal function (Gaussian
function) and Epanechnikov function are more suitable to be the kernel function of

mean-shift tracking algorithm. We list some information about these two functions in

Table 2.2-1.
Table 2.2-1:  Two weight kernel functions.
Function Name Definition Sketch with d =2
Normal
. 1 1, 2 )
Function ———exp(-=|jx[), if x| <1
Ky (x)=1 (27) 2
(Gaussian 0 otherwise.
Function) S f_ o
Epanechnikov 1 d ¥2)@=fxlf), if x| <2
Ke (x) =1 2C,
Function 0, otherwise.

d: dimension of space (in our 2D image case, d =2)

C, : the volume of the unit d-Dimension sphere (in our 2D image case, C, =)

2.2.2 Candidate Representation

Now we define the p.d.f. of candidate in mean-shift tracking algorithm. Let

{x.}_ o represent the pixel locations of the region in the target candidate, which

centered at y in the current frame. As the same in 2.2.1, we define b(x) as color




index of its bin in the quantized feature space of pixel Xx;. The probability of the

feature u=1...,m of the target candidate is then defined as

)olb(x;) —u] (2-5)

N i —X.
pu(y)=ch2k(Hy —
i=1

where k(x) is the same kernel function with target model, h is bandwidth which

defines the region size of the candidate, & is the Kronecher delta function, C, is the

normalization constant computed for condition )’ p, =1, so we can obtain
u=l1
1
Cn = (2:6)

S )

Note that C, does not depend onty, since the pixel locations x; are organized in a

regular lattice and y is one jof the lattice nodes [1]. Therefore, C, can be

pre-calculated for a given kernel and different values of h.

2.3 Similarity Based on Bhattacharyya Coefficient

The similarity measure function is to compare the similarity between the target
candidate and the target model to find the most similar region. There are various
similarity measure functions to be used for different target representations. A
differentiable kernel function yields a differentiable similarity function and efficient
gradient-based optimizations procedures can be used for finding its local maximum
which is the most possible region which we want to track.

In traditional mean-shift tracking algorithm, Bhattacharyya coefficient is used as
the similarity measure function. First, the similarity function is defined as a distance

among model and candidate, and the distance between two discrete distributions as



d(y) =y1-plp(y).q] (2-7)

and then p is chosen as Bhattacharyya coefficient between candidate p and model

q.
pY) = P, = Y. B, (G 2-8)

The concept of Bhattacharyya coefficient is the cosine of the angle between the

m-dimensional unit vectors (\/;1,---,\/,5m)T and (ﬁ,---,@)T, and it is an

efficient and divergence-type for statistical measure.

With a different point of view, Bhattacharyya coefficient can be considered as the
error estimation of two distributions. Figure 2.3-1 shows that we can obtain the best
classification according to the vertical line:of point A, and we can get the smallest
error which is the yellow region. The larger error about classification results in larger
Bhattacharyya coefficient and represents high similarity, and smaller error results in

smaller Bhattacharyya coefficient and representslow similarity.

P(X)
A pl(x) p2(x)
A
x
Figure 2.3-1 :  lllustration of classification of two distributions.

2.4 Traditional Mean-Shift Tracker

Minimizing (2-7) is equivalent to maximizing the sample estimation of the
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Bhattacharyya coefficient (2-8). Using Taylor expansion to expand (2-8) around the

values p,(y) at y=y, which is the location of the target in previous frame. We start

to find the new target location in current frame. The linear approximation is obtained

as
PB).d1= Y VA6,

d"plp(y).qal

R T 0 ) L N
=2 1A - A G
= pIB) il + 25

3’ pIp(y).dl
op,(y)
21
aelp(y). q]
p, (¥)

+

~plp(y). 4., o

Y=Yo
1
2,/ p, (¥)4,
1S A GR 2 A ) [t
2 u=1 2 u=1 pu (yo)

m

2,

u=1

m

=> . ()4,

u=1

Y=Yo

Y=Yo

e [lau (5\7) - ﬁu (3}0)]2 +

[ﬁu (5\7) _ﬁu (5}0)]

[ﬁu (3\7) - lau (5\70)]

-G, [P, () = £, (¥0)]

(2-9)

The approximation is established under the assumption of the target not moving

drastically from previous location y, to current location y, and this condition is

always satisfactory between consecutive image frames. Substituting (2-5) into (2-9),

we can obtain

FONCONTEED WAL Yep Ll

11

y—X
h

i g
5bX- - A—u
JoTo(x) ~ul Pu (o)



=%i\/pu Fo)d, + zwk(Hy;"i (2-10)
where
W, = Z —u5[b(x,)—u] (2-11)

yo)

The objective is to find the maximum of Bhattacharyya coefficient p(y) .
Because p(y) is independent of y, the term of %z 0,¥,)G, 1n (2-10) does not
u=1

affect the value of p(y),and p(y) is only influenced by

n, _ 2
f(y)=52wik<Hy ul (2-12)
2 i=1 h
Further, using gradient-based optimizations procedure with (2-12), we obtain
C, < y-x|f
VE(y) =5 D (y—x)wk( ' (2-13)
2h° 4= h
Letting g(x) =-k'(x), we obtain
v (y) =2 2 Z(X —y)wig(|y
y 2
Sxwg ()
C, m |y—x-||2 Z':l t H h
=y | - 2-14
oh?2 {Z,_lg(h H ”) X y ( )

2
IR s

We can separate (2-14) into two parts. The first term is proportional to the density

estimation at

(2-14) be equal to 0.
Vi(y)=0 (2-15)

The second term can be obtained as the mean shift vector.
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g’o — X
h

zinilxiwig(
n, s\’ — X
Zi:lvvig( OT

The mean shift vector always points toward the direction of maximum increase in

A~

Y. =

2 (2-16)
)

the density. In this procedure, we can find the local maximum of the density by (2-16),

and the kernel region can recursively moved from current location y, to the new

location vy, .

2.5 Mean-Shift Tracking Algorithm Procedure

The complete traditional mean-shift tracking algorithm is presented as Figure

2.5-1.
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Initialization :
Compute statistics of the target
odel

{qu ?u =1,...,m

from the model region.

1. Initialize the location of the
target in current frame with

0
2. compute

.

Compute weights

{Wi }izl...nh

according to (2-11)

|

Find the next location
Y1 |
of target candidate according
to (2-16)

216 )
(2-16)

N
~ Ziilxiwig( Oh : )
Y e IP

Z,Elwlg(yohl )

Set

Yo < Y1

yes

Finish one iteration

Figure 2.5-1: Traditional mean-shift tracking algorithm procedure.
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Chapter 3. Spatial-Color Mean-Shift Object Tracking

Algorithm

3.1 Introduction

In this chapter, we will introduce two papers [7][12] with the spatiogram and the
new similarity measure. With the spatiogram of [7], we will extend the original model
to a new model with spatial and color feature information, and then use resembling
method as [12] to get two different similarity measures. We will derive the iterative
mean-shift tracking algorithms from the similarity measure functions. And then we will
discuss the two different color features.and 'select better color feature space by
experiment test. To improve the robustness, we will take account of the background
information and add the background-weighted parameter to the new mean-shift
algorithms. In the final step, we will'discuss the scale problem and try to use the
principal component analysis method to solve it. In conclusion, we will give a

summary and list the complete new mean-shift algorithm procedures.

3.2 Model Definition

In traditional mean-shift tracking algorithm, color histogram is used as the target
representation. Color histogram discards all spatial information and uses the concept of
color distribution to represent the target. This foundation technique is used to develop
several tracking systems [2] [4] [10] which show that color histogram is robustness
about deformation of the tracked object. But in some circumstances, spatial

information is important and advantageous for different interference. In this chapter,
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we want to build the target with color and spatial information.
3.2.1 Paper Survey about Spatiogram

Recently, S. Birchfield et al. [7] proposed the concept of each histogram bin which
contains the mean and covariance information of the locations of the pixels which
belong to that bin. This idea involves the spatially weighted by the mean and
covariance of the locations of the pixels and not only the color information as
traditional method. They call this concept a spatial histogram, or spatiogram. The

model of spatiogram of an image | can be represented as follows.

hy (b) =(n,, 1y, 2) b=1..,B (3-1)

where N, is the number of pixels whose values belong to the b-th bin, p, is mean
vector of locations of all pixels:which belongs to-the b-th bin (i.e. the 2D coordinates),
and 2, is covariance matrix-of locations of all pixels which belongs to the b-th bin

(symmetric matrix), and the pixels in.the image can be classified to B bins.

The spatiogram captures the spatial information of the general histogram bins, but
the traditional color histogram only gets the color distribution information. For
instance, Figure 3.2-1 illustrates the difference between the spatiogram and traditional
histogram. There are three different poses of a person’s head in the first row. For each
person’s head to compute the histogram and spatiogram first, if we want to rebuild the
original image from the computed histogram, the second row shows that we only can
get the disorderly image which barely contains the color information. However, the
image rebuilt form the computed spatiogram reveals the relationships about the color
as shown in the third row. This paper uses the spatiogram and the general
Bhattacharyya coefficient to derive a mean shift procedure algorithm and improve the

tracking result when being compared with histogram method. The experiment results
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demonstrate that spatial information captures a firmer description of the target to

improve robustness in tracking.

Figure 3.2-1: Three different poses of a person’s head (top), images generated from the computed histogram

(middle), images generated from the qompiitéd'-sp'éﬁ{)grqm (bottom). (The figure is obtained from [7].)

- : 1= R, '_.
3.2.2 A Joint Spatial-Color Feature Model

P

As shown in Figure 3.2-2." |fcyanand blue belong to the same bin, these two
blocks have the same spatiogram, bl-.l'[ they' have different color patterns. To keep the
robustness of color description of the spatiogram, we extend the spatiogram and define

our joint spatial-color model as

hl (b):<nb’uP,b’ZP,bauc,b1ZC,b> bzl,...,B (3_2)

where Ny, Mpy, Zpyb are the same as spatiogram which S. Birchfield et al.

proposed, and are respectively the number of pixels, the mean vector of locations, and

covariance matrix of locations of pixels which belong to the b-th bin. In (3-2), we add
two elements. M., is mean vector of color feature with d color channels of all pixels
which Dbelong to the Db-th bin (for example, in RGB color space, d=3 and

ne, =(R,,G,,By)). 2, iscovariance matrix of color feature with d color channels of
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all pixels which belong to the b-th bin, and the pixels in the image can be classified to

B bins. We choose RGB channels as the color feature first, so K., is a 3D vector,

2cp IS asymmetric matrix, and we will discuss another more robust color feature in

Figure 3.2-2 : Illustration of the same spatial information with different color distribution for one bin.

3.5.

3.3 Paper Survey about New Similarity Measure

The significance of mean shift algorithm-is to find the local maximum of the
similarity measure between :the-image model and the candidate. In general, the
similarity measure can be dertved'to-a-mean shift algorithm and we use the iterative
result to track the candidate location..The most general similarity measures used in
image tracking are the Bhattacharyya coefficient and the Kullback-Leibler divergence.
For the spatial-color model, we want to find a simple similar measure function to
obtain the mean-shift algorithm.

Lately, C. Yang et al. [12] proposed a new simple symmetric similarity function
between kernel density estimates of the template and candidate distributions in a joint

spatial-feature space and then presented an iterative tracking algorithm. This paper
where x; and y, are locations of pixels, u; and v; belong to the feature space.

This paper describes the target feature distribution in the joint spatial-feature space,

and uses estimated kernel density function to model the p.d.f. of the object in the
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model image as

u-u,

X-X;

o

1 & 2 2
ﬁx(x,u)=—ZW( Jk( ] (3-3)
N 3
where o and h are the bandwidths in spatial and feature space. We can also regard
(3-3) as a spatially weighted function w with Gaussian Mixture Model of feature space

k.

Finally, this paper uses expectation of the estimated kernel density function

between the model 1, and candidate I, in the joint feature-spatial space as

X
similarity measure

TNBEED WNRD (3-4)

) -

The paper then uses (3-5) to derive a similarity-based mean-shift tracking

U -V,

h

XY,
(2

i=1 j=1

M_lszw(

algorithm. The experiment results show that it'is more accurate and the number of
iterations is less than the traditional Bhattacharyya coefficient method. This main
concept of the new similarity function is based on the expectation of all pixels over the

model and candidate.

3.4 Spatial-Color Mean-Shift Object Tracking Algorithm

With the spatial-color feature and the concept of expectation, we develop two
different tracking algorithms. The detailed statement and demonstration will be derived

as follows.
3.4.1 Kernel Density Estimation of the Model Image

We start to derive the first similarity-based mean-shift tracker. First of all, we use
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model (3-2) and set the image model as the estimated kernel density function.

M exp(—;(x—up,b(i)f (ZP,b(i))l(X_”P,b(i))) EXp [_;(cx _"C,b(i))T (Zc,b(i))il(cx _Uc,b(i)))

p(x,u) = Slu—b(i)]
M= 2”|Zp,b(i)| (27) |Zc,b(i)|
A 1 Y .
= Mz K (X = 1p iy ZP,b(i))KC (€, = Be iy Z:c,t>(i))5[u —b(i)] (3-6)

i=1
where b(i) is the color bin which pixel i belongs to. K, and K. are multivariate
Gaussian kernel functions. We use the delta function whose role is the Gaussian
function in (3-3), the difference of these two concepts is that the Gaussian function

contains the smoothed component but the delta function does not. We can also regard

K, and K. as the spatially weighted and color-feature weighted function.

3.4.2 Similarity Measure Function

Similar with the concept of the expectation of the estimated kernel density as (3-5),

we can get a new similarity measure -funetion among the model 1, ={x,,u}., ,, and

I11,) =30 =D Py, )

1 N M

:WZZ KP(yJ‘ _"P,b(i)’zp,b(i))Kc (cyj _uc,b(i)’zc,b(i))é[vj —b(i)] (3-7)
j=1 i=1

As shown in Figure 3.4-1, if there is no deformation between candidate and target,
and the distance of motion is not large between frames, we can consider the motion of
object of two frames as a pure translation. Under these assumptions, the center of
target with respect to the mean of location of the b-th bin in the model is in proportion
to the center of candidate with respect to the mean of location of the b-th bin in the

candidate image. So we can obtain

Bepiy =X = Hppj) ~Y (3-8)
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Weoiy = Mppj) Y TX (3-9)

Figure 3.4-1: lllustration of pure translation.

Substitute (3-9) into (3-7), we can obtain the new similarity measure function as

follows.

J(y)=ﬁz

M=

Ko (¥ = o iy +¥ =X Zp i) JKc (€, = e iy Zic oy )LV, —b(0)]

I
=

(3-10)
3.4.3 Spatial-Color Mean-Shift Tracker

Similar with traditional Bhattacharyya coefficient method, we want to find the
maximum value of the similarity measure to get the best candidate, so we let the
gradient of the similarity function with respect to the vector y be equal to 0.

Vi(y)=0

1 N M

= WZZ'(ZP,W)&(Y] ~Hepg)) +y—X)KPKc5[V1 —b(i)]=0
j=1 i=1

= {ZZ(ZP,b(i))lKPKcé‘[V,‘ _b(i)]} (y-x)= ZZ(ZP,b(i))il(yj _HP,b(j))KPKcé[Vj —b(i)]

j=1 i=1 j=1 i=l
N M . ) TN ™ ) )
y—x={ZZ(Zp,bm) KpKeoly, _b(')]} {ZZ(ZPM) (¥ =R () )Ke KLY, _b(')]}
j=1 i=1 j=1 i=1
(3-11)
(3-11) is the mean shift vector and also an iterative function with respect to y, and we

rewrite (3-11) as
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Yrew = {ZZ(ZP,b(i))_lKPKC5[Vj _b(i)]} {ZZ(ZP,b(i))_l(Yj _up,b(j))KPKcé‘[Vj _b(i)]} X

=1 =1 =1 i=1

(3-12)
where
Ko (¥ =Be i) + You =% Zp i)
eXp(—;(y P~ Bepey T You = %) Zepi) (V) —Beng) + You —X)j (3-13)
) 2z ‘ZPMD ‘1/2
Ke(ey, —Be by Ze o)
o0 =3 6, e (o) €, s (314

1/2

(2”)3/2 ‘Zc,b(i)‘
and vy, Iis the new position of thetarget which we want to track and y_, is the

current position.

3.4.4 Another Derivation of the New Mean-Shift Tracker

Now we want to use another-method to derive the second similarity-based

mean-shift tracker. As the kernel density estimation model (3-6) which we defined in

3.4.1,ifwereplace x by x;,and ¢, by ¢, in(3-6), we can get a new kernel density
estimation function as
1 X .
p(u) = Mz Ko (Xi = Bp iy 2oy )Ke (€ = B iy Zie iy JOTU = b(0)] (3-15)
i=1

where

exp(—; (x; - MP,b(i))T (ZP,b(i))_l(Xi B up’b(i))j

1/2

Ke (x; _uP,b(i)'zP,b(i)) = (3'16)

Zﬂ‘zp,b(i)‘
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1 T -1
exp(_z(ci —Mepiy) Zepi) (€ _ucvb(i))j
3 ve o)
(27)%[Zc )|

Ke (e _uc,b(i)’zc,b(i)) =

K, and K. are also the spatially weighted and color-feature weighted functions, but

these two weighted functions are depend on the image model.
With similar concept of the expectation of the estimated kernel density used in

3.4.2, we define another new similarity measure function between the model

3(1,1)=30) = 3 6y ()

l N M

= WZZG(Y 'yj)Kp (x; ~ Pp iy ZP,b(i))KC (c, —Me niy z:c,b(i))5[Vj —b(i)]
j=1 i=1

(3-18)

where y is the center of the candidate image, -G(y-y,) is a weighted function which

is spatially weighted depends on the candidate image. (3-18) is another new similarity
measure function which we proposed.

Now we let the gradient of the similarity function with respect to the vector y be
equal to 0 to find the maximum value of the similarity measure to obtain the best

candidate.

Vi(y)=0 (3-19)

N M

: DD (y-y,)G (y-y ;) KoK S[v, —b(i)] =0

=
NM =43

=y 3Gy -y KK STY, ~b(i)] =23y G (v -y, )KoKe Ty, ~bi)]

=1 -1 =1 i-1
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Zzijl(y-yj)KPKC5[vj —b(i)]

j=1 i=1

336y -y )K,Kedlv, ~b(i)]

j=1 i=1

Sy= (3-20)

So we obtain (3-20) which is another iterative mean shift vector and we rewrite

(3-20) as

D ¥,G ' (You - ¥ ) Ko KTV, —b(i)]

i=1

Mz

Il
UN

j

Yoew = (3-21)

Mz

ZGI(Yom yJ)K K 5[V —b(i)]

Il
N

i

where y,, IS the new position of the target and y,, is the current position. (3-21)

contains the spatially weighted term G'(y,,-y,;), and we choose function G as the

Epanechnikov kernel function as

it x| <

K (x) =4 2C, (3-22)

0, otherwise

where d is the dimension of space;~€g—is-the volume of the unit d-Dimension sphere.

Letting K(x)= k(||x||2) , We obtain

if x<1
k(x)=1 2C, (3-23)
0, otherwise

In image case, d =2,s0 C, =x and we obtain

(2+2)(1 x)——(l X), if x<1

k(x) = (3-24)
0, otherwise
Letting G(x) =k(x), we obtain
G'(xX)=k'(x)= _2 (3-25)
T

which is a constant. The result is easy to compute and simpler, and this is the reason

why we choose weighted function G as Epanechnikov kernel function. Finally, by
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substituting (3-25) into (3-21), we can get the second similarity-based mean-shift
algorithm as follows.

>3y KoKeoly, - (i)

j=1 i=1l

zN:i KoK STV, —b(i)]

j=1 i=1

Yoew = (3_26)

(3-26) interprets that the object tracking algorithm is an iterative procedure which

moves from current position y,, to the new position vy, .

3.4.5 Spatial-Color Mean-Shift Tracking Procedure

we have found the new spatial-color mean-shift tracking algorithms, single object

tracking can be summarized as Figure 3.4-2 and Figure 3.4-3.
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Initialization :
Compute the target model

Hpps ZP,b 1Meps Z:c,b
from model region according to
the definition (3-2).

h, (b) = <nb’uP,b1zP,b'uC,b’ZC,b>

N, [ number of pixels in b-th bin. |

Mp, [ mean vector of location in b-th bin. |

2.p , | covariance matrix of location in b-th bin. |

K¢, [ mean vector of RGB feature in b-th bin. |

4 Zc,b | covariance matrix of RGB feature in b-th bin. |
Initialize the location of the target in b=1 B
> current frame with T
You
3-13 D
{ (6-13) )
1 ~
eXp(*E()’j “Mopi) T You -x)' (ZP‘b(i)) 1(3’] Mo i) T Yo *X))
K compute —
poand Kg 27[|ZP‘b(i)|

according to (3-13) and (3-14)
and substitute them into (3-12)
to find the next location

y new
of target candidate

1 _
o [_2 ey, ~Mes) Fesn) (e, _”c.ba))j

1/2

(272_)3/2 |chb(i) |

(3-12)
N M . ] -1
yes ynew:{ZZ( Pb(i))7 KPKC5[Vj_b(I)]}
j=1i=1
o ) . N M
Finish one iteration {ZZ( o ) (yJ l‘pb )K K 5[\/ b(i)] +x
j=1 i=1

Figure 3.4-2 :  Spatial-color mean-shift tracking procedure of the first tracker.
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Initialization :
Compute the target model

Rop 2ppsMepr 2
from model region according to
the definition (3-2).

hy (b) =Ny, e 2 s Be s Zc )

N, [ number of pixels in b-th bin. |

Mp b | mean vector of location in b-th bin. |

A 2.5, | covariance matrix of location in b-th bin. |

¢, [ mean vector of RGB feature in b-th bin. |

according to (3-16) and (3-17)

ZC b |_covariance matrix of RGB feature in b-th bin. |

b=1..B

A

Initialize the location of the target in
> current frame with

You

exp(—;(xi —llp,b(i))T (ZP,b(i))il(Xi _up'b(i)))

Kp =
1/2
2”|Zp,b(i)|

A
Find the next location

Ynew .
of target candidate according to
(3-26)
exp[ — = (6, ~Hety) Eeny) (€ ~Bengy)'
Set p o \Ci B by )\ & p) i —Mcha
Yy <Yy 1/2
old new (27[)3/2 |zc'b(i)|

if ”ynew ~You ” <&

> ¥, K Keolv, ~b(i)]

i=1

1]
LN

j

yes

YHEW =

i Ko KTV, —b(i)]

i=1

M=

J

Finish one iteration

1]
LN

Figure 3.4-3: Spatial-color mean-shift tracking procedure of the second tracker.

3.5 Choice of the Color Feature Space

In 3.2.2, we choose color space (R,G,B) as our color feature, so M., is the

3-dimension mean vector of values of (R,G,B) and 2., is the covariance matrix of

(R,G,B). The color space (R,G,B) is easily influenced by illumination that affects
our tracking results greatly. So we take account of the normalized color space (r,g,b)

which is formed independently from varying lighting levels. The normalized color
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space (r,g,b) isdefined as

‘e R - G b B
(R+G+B)’ (R+G+B)’ (R+G +B)

(3-27)

The covariance matrix of the normalized color space (r,g,b) is near singular
because the definition (3-27), so we choose (r,g) as the color feature space. Chapter
4 will show that the experiment results of (r,g) is more robust about the variation of

illumination than that of (R,G,B).

3.6 Background-Weighted Information

In many tracking applications, background information is an important issue.
Exactly representing the target model is a difficult subject, and the system is always
confused by the foreground feature  with the background feature because the
foreground always contains the background ‘information. The proposed tracking
method is based on the similarity between the target and the candidate; therefore, how
to represent the foreground. model is-:very. important. Further, the improper
representation of the foreground may:concern with the scale and orientation selection
algorithm, and obtain inappropriate scale. In this chapter, we derive a simple
weighted-background representation and add this approach to the spatial-color

mean-shift trackers which we proposed before.

Let N., as the normalized histogram of the foreground of the b-th bin

(D_No,=1),and Ny, asthe normalized histogram of the background of the b-th bin
b

(D_Ng, =1). The histogram of background is computed in the region around the
b

foreground (target). We define weights as
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N N N
PL smax(—=,—F2 ..., —2), if Ng,#0
O,b 0,1 0,2 NO,B
W, = 1, if Nep,#0 and Ny, =0 (3-28)
0, otherwise

The weights transformation diminishes the effect of features which contribute more to
the background than to the foreground.

Now we add the weighted-background information to the mean-shift trackers
developed in 3.4 and re-derive the revised weighted spatial-color mean-shift as follows.

We add the weights to (3-7) and (3-18), and obtain

I, y) J(y)=— Zwb(j)p(yjivj) (3-29)

I, y) J(y)=— z b(j)G(y_yj)p(Vj) (3-30)

By similar derivation in=3.4) we: can. obtain the final spatial-color mean-shift
tracker functions which contain the weighted-background information from (3-29) and

(3-30).

N M

Y ew :{ZZ( puy) Wy Ke KoLV, b(')]} {ZZ(EP,b(i))l(yj — oy Wo) K KOV, —b(i)]}+x

j=1 i=1 j=1i=l

(3-31)
M
Zywb(j)KPKCé‘[vj —b(i)]

(3-32)
D W, Kp KTy, —bo(i)]

i=1

Mz

]
4N

i

ynew =

Mz

iy

=
3.7 Update of Scale and Orientation

In computer vision and image processing, the object always changes its scale
when it is away from the camera or toward the camera. In the situation of zoom in and

zoom out of camera, the size of object body is also different between image frames. As
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shown in Figure 3.7-1, if the object size is smaller than tracking window, it will contain
many background pixels as well as the foreground object pixels. This problem causes
wrong tracking result with noisy background pixels when a histogram computed within
the window is compared to a model histogram describing the appearance of the
foreground object. If the object size is larger than tracking window, it will cause the

tracker to become more easily distracted by background clutter.

Figure 3.7-1: Illustration of scale problem. (The figure is obtained from [4])

The orientation problem is similar:with the scale problem. A fixed window may
not contain all regions of the tracked objéctif it appears the variation of orientation and
results in the failure of tracking. In the“later section, we will use part of principal

component analysis method to solve thesetwo problems.

3.7.1 Introduction of Principal Component Analysis

Principal component analysis (PCA) is mathematically defined as an orthogonal
linear transformation that transforms the data to a new coordinate system such that the
greatest variance by any projection of the data comes to lie on the first coordinate
which is the first principal component, the second greatest variance on the second
coordinate, and so on.

Assume the sample covariance matrix of standardized matrix X (X e R”) to be

R-—1 XX (3-33)
N -1

The principal component analysis problem can be derived to be as the eigen-equation

problem [13].
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Rv =Av (3-34)

.....

component which is the direction that makes variance of the projected data to be
maximum, and the smallest principal component is the direction that makes that
variance minimum as shown in Figure 3.7-2. In 2-dimension image data case, by this
method we can obtain two eigen-values and two eigen-vectors which represent the

orthogonal axes of data, respectively.

®
L é o
L A () Largest Principal
@@ | “ Component
o o e
@ ° o0 A P
S ®
Ps ® [ ] o
o o0 Smallest Principal
°e A ] C
‘omponent
oo ® b
@
® Jo
° { N )
o
®
Figure 3.7-2 :  lllustration of principal component analysis.

3.7.2 Orientation Selection by Principal Component Analysis

We can get the orientation of the total sample data by the concept of PCA method
by previous section. Because we have computed some information about the image
data location, we can use these data to get the total covariance matrix of total data for
reducing the computation. In this section, we want to derive the covariance matrix of

total image data from the elements which we defined in 3.2.2. Above all, we review the
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definition of some elements of model which we defined in (3-2) as follows. p,, is

mean vector of locations of pixels which belong to the b-th bin, X,  is covariance

matrix of location of pixels of the b-th bin, and B is the bin number which we

classified.
1
Hpp = N_in (3-35)
b ieb
= (X - Bep ) (X - Bpp)' (3-36)

ieb

And we define several new elements as follows. p, is the total mean vector of
the locations of all pixels in the target, ¥, is the within-class covariance matrix of the

B bins, X, is the between-class covariance matrix of the B bins, and %, is the total

covariance matrix of locations.-of all data.

= iz Ny, (3-37)
Z ZZ(X e ) (X; - Hpp)! (3-38)
e =D Ny(pp 1) (e -1r)' (3-39)

=g 1Z(x p ) (X -p)' (3-40)

Decomposing ¥, we get some derivation results.

2 N 12(" -p)(x; HT)

"N 122(" Mo+ Mg -l )(X By ey 1)

ieb

_ ZZ(X “He ) (X upb)T ~

ieb b ieb

~ ZZ(Mpb uT)(HPb p’T)

ieb

<L b ieb
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Because

ZZ(HM ) (x; ”Pb) Z(uPb "T)Z(X Hpb)

ieb ieb
= Z(up,b _uT)(NbuP,b ) bu’P,b)T
b
=0
, We can obtain
X Z—_Zb:;(x “Bep)(Xi M) + _ Zb:;(upb B ) e, ~r)’ (3-41)

=2y +2s

Therefore, we can get the total covariance matrix of all image data from the

elements of model which we have defined, and we substitute >, into R in (3-34) as
2, V=Av (3-42)
By solving this eigen-equation, ,we.¢ean get two eigen-vectors v, and v, with

respect to the largest principal component’ and smallest principal component,
respectively. If we use ellipse as, the region of the target, the largest principal
component represents the long“axis and the smallest principal component represents

the short axis as shown in Figure 3.7-2.

3.7.3 Adding Weighted-Background Information

In 3.6, we have discussed the influence of background information about the scale
and orientation selection. For improving robustness and accurate of scale and
orientation selection, we add the weighted background information to (3-41), and

obtained the total covariance matrix with weighted-background information.
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. 1 N
2 :N—Zwb(i)(xi i) (X - )T
i=1
;Wb(i)
1 1
T3 ZZWb(i)(Xi -up’b)(xi -up’b)T T Zzwb(i)(uP,b _MT)(HP,b "By )T
ZWb(i) b ieb Z\Nb(i) b ieh

i=1 i=1

=Y, t2s

(3-43)
We change (3-42) as Z'T v =Av and solve eigen-vectors again, and we obtain the

more accurate direction of long axis and short axis.
3.7.4 Scale Selection

By the total covariance matrix, we can get orientation of the distribution of target
image data by the axes of ellipse; but we can-not obtain the length of axes. Now we
want to know the relation between total covariance matrix and two axes.

We consider a uniform elipse.distribution, .and assume probability of this ellipse

1 :
Is —. Now we compute the variances.along two axes.
za

o, =jj(x 0)% p(x)dx

—J'J'a dudv
(3-44)
=;J'o J'Or3azcoszt9drd€
a‘2
"4
o, = ﬂ(y 0)* p(y)dy
= jjb dudv
(3-45)
=;j0 j0r3bzsin29drde
b2
"4
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. . . O O
where o, and o, are elements of total covariance matrix X, { * Xy}, and
(o2
Xy yy

we can obtain

(3-46)

The values of two axes are about double of variances along the long axis and short

axis.

3.8 Summary

In the previous section, we obtain the spatial-color mean-shift trackers, now we

summarize these concepts as Figure 3.8-1 and Figure 3.8-2.
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Initialization :
Compute the target model

Bops Zpps B ps 2
from model region according to
the definition (3-2).

hy (0) =<Nys e 2o Be s 2 )

N, [ number of pixels in b-th bin. |

Mpp [ mean vector of location in b-th bin. |

2.5 ,, [ covariance matrix of location in b-th bin. |

M¢ p | mean vector of rg feature in b-th bin. |

2. | covariance matrix of rg feature in b-th bin. |

b=1..8B

Compute weights

according to (3-28)

A

1 T -1
eXP(w(y Myt You —X) (Zppi) (Y~ Repgy T Yag —X)
Initialize the location of the target in 2770 TRy e Peo P e

/2

> current frame with 27(Zp |
You
A
compute —l(c - ) ) ey — )
Ke and K, 2 Me g Ch(i) vi " Hesi

according to (3-13) and (3-14)
and substitute them into (3-31)
to find the next location

y

new
of target candidate

1/2

(277)3/2 |2C,b(i)|

Jf Ng,p, #0

Set
yold <~ ynew

JAf Ny #0 and Ny, =0

,otherwise

.

(3-31)
yes by -1 i )
$ Yoew = ZZ(ZPW) Wi Ke KoLV, —b(i)]
Compute total covariance matrix le I;l
. O-xx O—X B i
% = o cry {ZZ(ZP,b(i)) 1()’1 =B 0y Moy Kp KTV, _b(l)]}ﬂ
j=1 i=1

to get the eigen-vexétors as orientation
according to (3-42) and compute scale
according to (3-46)

=

Finish one iteration

Figure 3.8-1: Complete spatial-color mean-shift tracking procedure of the first tracker.
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Initialization :
Compute the target model

uP,b'ZP,b’uC,b'ZC,b

from model region according
the definition (3-2).

hy (0) =Ny, e Zp 5 Be s Zic )

N, [ number of pixels in b-th bin.

Mpp [ mean vector of location in b-th bin. |

2.5, |_covariance matrix of location in b-th bin. |

4
Compute weights

¢, [ mean vector of rg feature in b-th bin. |

2. p, [ covariance matrix of rg feature in b-th bin. |

b=1..B

according to (3-28)

4
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{KPi}i:l,...,M and iKCi}i:l ..... M
according to (3-16) and (3-17)

exp(—%(xi - P«p,b(i))T (Zp,b(i))il(Xi a up'b(i))j

|1/ 2

2”|Zp,b(i)

4

Initialize the location of the target in
> current frame with

You

_1 (c; - pC,b(i))(ZC,b(i))_l (¢, - pC,b(i))T J

1/2

A
Find the next location

Yo

ew
of target candidate according to
(3-32)

(27)* |Zc,b(i)|

Jf Ng, #0

Jif Ny %0 and Ny, =0

,otherwise

yes

v

Compute total covariance matrix
. O O
o
i O-X)/ O-W
to get the eigen-vectors as orientation

according to (3-42) and compute scale
according to (3-46)

iiijb(j)KPKcé[Vj —b(i)]

W,y KeKcolv; —b(i)]

Xy

Finish one iteration

Figure 3.8-2 : Complete spatial-color mean-shift tracking procedure of the second tracker.
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Chapter 4. Experiment Results

4.1 Experiment Illustration

The proposed spatial-color mean-shift tracking algorithms have been
implemented in C and tested on a 2.8GHz Pentium 4 PC with 1GB memory. We divide
the color histograms into 512 bins, i.e. the B of (3-2) is equal to 512. In the first part,
we show our experiment results with the steps of what we developed our final trackers
in chapter 3 in order, and present the tracking results with single scale experiment. We
use the face sequence for face tracking, the cup sequence with complex appearance in
complex background, and the walking girl sequence which is obtained from [14] with
partial occlusions. In the second part; we present the experiment results with the boy
walking sequence and surveillance sequence. The first sequence is the person away
from the camera and toward the camera with huge variation of scale. The second
sequence which is obtained from the CAVIAR database [15] illustrates the problem of
huge deformation. The image size of face sequence, cup sequence, walking girl
sequence, and walking boy sequence are 320x240, and the image size of surveillance
sequence is 352x288. The tracking window sizes of face sequence, cup sequence,

walking girl sequence are 59x82, 50x65, and 27x98, respectively.

We define (3-12) and the extension part as tracker 1, and (3-26) and the extension
part as tracker 2. In the later section, we will compare the proposed tracker 1 and
tracker 2 with the traditional mean-shift tracker, i.e. (2-16), and the general scale
adaptation method with plus or minus 10 percent [1].

About the experiment results, we show part of the real tracking sequence, the

distance error figure, and iteration num figure. We define the correct location of the
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object every 10 frames by hand in advance, and use these data to analysis the tracking
results. We discard the distance error which is larger than 50 pixels that shows the
tracker loses the target. The iteration number is the frequency of tracker finding the
target in that frame in the iterative procedure. Finally, the computing time of the

proposed trackers will be discussed.

4.2 Spatial-Color Mean-Shift Trackers with RGB Feature

In this section, we present the experiment results of trackers with RGB color
feature that we proposed in 3.4, and we define (3-12) as tracker 1 and (3-26) as tracker

2.

4.2.1 Face Sequence ,ﬁ!'; ,;rf__i{;::,:;_




Figure 4.2-1: Face tracking results of spatial-color mean-shift trackers proposed in 3.4. Shown are frames 33,
93, 117, 126, 183, 256, 271, 455, 766. (red: tracker 1, blue: tracker 2, green: traditional mean-shift tracker)
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Figure 4.2-2 : Distance error of face sequence of-spatial-color mean-shift trackerl and tracker 2 proposed in

3.4 that is compared with traditional mean-shift tracker, (*note: we only consider the distance error which is

smaller than 50 pixels)

Figure 4.2-3 : Iteration number of face tracking sequence. (left: trackerl, middle: tracker2, right: traditional

mean-shift tracker)
At about 120" frame, tracker 1 loses the face and captures the target again at
about 950" frame. In the situation of face being captured of three trackers, the distance
errors of tracker 1 and tracker 2 are always smaller than those of traditional mean-shift
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tracker. The average of iteration number of traditional mean-shift tracker is smaller
than the other trackers. Up to now, the tracker 2 which we developed is not robust and
more unstable than the traditional mean-shift tracker, but the tracker 1 is better about

accurately tracking.

4.2.2 Cup Sequence

Figure 4.2-4 :  Cup tracking results of spatial-color mean-shift trackers proposed in 3.4. Shown are frames 4, 45,
63, 69, 81, 105, 166, 243, 364. (red: tracker 1, blue: tracker 2, green: traditional mean-shift tracker)
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Figure 4.2-6 :
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Iteration number of cup sequence. (left: trackerl, middle: tracker2, right: traditional mean-shift

At most frames, the tracker 1 and tracker 2 lose the target, and the mean-shift

tracker has weakly capturing. Because the background of this scene is very complex

and the appearance of cup which we want to track is also complex, the trackers easily

track the background object. The tracker 1 and tracker 2 contain the spatial

information, so the trackers easily capture the background region which involves the
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similar spatial information when the cup is swayed. The traditional mean-shift tracker
only contains the color distribution information, so it is easily affected by the complex

background information and can not accurately track the target.

4.2.3 Walking Girl Sequence

Figure 4.2-7 . Walking girl tracking results of spatial-color mean-shift trackers proposed in 3.4. Shown are
frames 28, 106, 111, 124, 130, 153, 166, 196, .220. (red: tracker 1, blue: tracker 2, green: traditional mean-shift

tracker)
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Figure 4.2-8 : Iteration numbers of walking girl sequence. (left: trackerl, middle: tracker2, right: traditional

mean-shift tracker)

The walking girl sequence contains the problem of variation of illumination and
partial occlusion. The variation of illumination from darker to bright and all trackers
are not robust with this situation. At 111™ frame, part of girl has be covered by the car
and the tracker 1 and traditional mean-shift tracker still track the girl, but the tracker 2
loses her. The trackers are not bettﬂe_rr_enough.,_'_ '

4.3 Spatial-Color Medﬁ-Shiﬂ?Tﬁéékéfs with Normalized Feature

1 g =
P 3 i

In order to reduce the i'hﬂuén?ég' of “the slight variation of illumination, the

normalized feature rg is used in 3.5. Similar with 4.2, the tracker 1 is defined as (3-12)

with rg feature and the tracker 2 is defined as (3-26) with rg feature.

4.3.1 Face Sequence

€ Trackerl
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Figure 4.3-1: Face tracking results of spatial-color mean-shift tracker 1 with rg feature in 3.5. Shown are
frames 33, 93, 117, 126, 183, 256, 271, 455, 766. (red: tracker 1 with rg feature, blue: tracker 1 with RGB
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Figure 4.3-2 :  Distance error of face sequence of spatial-color mean-shift trackerl with rg feature that is
compared with that with RGB feature in 3.5. (*note: we only consider the distance error which is smaller than 50

pixels)
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feature)

As shown in Figure 4.3-2, the tracker 1 with rg feature loses the target at about
1190™ frame because at the left top of the scene there is a box which has similar
appearance with face. In the situa'tion'of the face being tracked, the distance errors of
tracker 1 with rg feature are more accurate'thari those of tracker 1 with RGB feature,

and the average of iteration number of tracker 1 Wlth rg feature is smaller than that of

tracker 1 with RGB feature. Changmg feature space to the normalized feature space

can speed up the performance of tracker

€ Tracker2
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Figure 4.3-4 :  Face tracking results of spatial-color mean-shift tracker 2 with rg feature in 3.5. Shown are
frames 33, 93, 117, 126, 183, 256, 271, 455, 766. (red: tracker 2 with rg feature, blue: tracker 2 with RGB

1 feature)
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Figure 4.3-5: Distance error of face sequence of spatial-color mean-shift tracker2 with rg feature that is
compared with that with RGB feature in 3.5. (*note: we only consider the distance error which is smaller than 50

pixels)
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Figure 4.3-6 :  Iteration numbers of face sequence. (left: tracker2 with rg feature, right: tracker 2 with RGB

feature)

Figure 4.3-5 shows that the tracker 2 with rg feature makes tracking more
‘workable’ than the tracker 2 with RGB feature. The performance of tracker 2 with rg
feature is better than that of tracker 1 with RGB feature.

4.3.2 Cup Sequence

€ Trackerl
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Figure 4.3-7 :  Cup tracking results of spatial-color mean-shift tracker 1 with rg feature in 3.5. Shown are

frames 4, 45, 63, 69, 81, 105, 166, 243, 364. (red: tracker 1 with rg feature, blue: tracker 1 with RGB feature)
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Figure 4.3-8 :  Distance error of cup sequence of spatial-color mean-shift tracker 1 with rg feature that is
compared with that with RGB feature in 3.5. (*note: we only consider the distance error which is smaller than 50

pixels)
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Figure 4.3-9 : Iteration number of cup sequence. (left: tracker 1 with rg feature, right: tracker 1 with RGB

feature)

Change of the feature space with the cup sequence does not improve the tracking
performance obviously. Because the variation of illumination is not large, the results of

using rg feature are as well as that of using RGB feature.

€ Tracker2
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Figure 4.3-10 :  Cup tracking results of spatial-color mean-shift tracker 2 with rg feature in 3.5. Shown are
frames 4, 45, 63, 69, 81, 105, 166, 243, 364. (red: tracker 2 with rg feature, blue: tracker 2 with RGB feature)
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Figure 4.3-11: Distance error of cup sequence of spatial-color mean-shift tracker 2 with rg feature that is
compared with that with RGB feature in 3.5. (*note: we only consider the distance error which is smaller than 50

pixels)
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Figure 4.3-12 : Iteration numbers of cup sequence. (left: tracker 2 with rg feature, right: tracker 2 with RGB

feature)

As shown in Figure 4.3-11, the tracker 2 with rg feature captures the target and
tracks more accurately than the tracker 1 from 1% frame to about 350" frame. But
looking at the overall distance errors, similar with the tracker 1 which uses the rg

feature, the tracker 2 using the rg feature does not make tracking performance better.

4.3.3 Walking Girl Sequén_ces :

€ Trackerl
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Figure 4.3-13 :  Walking girl tracking results of spatial-color mean-shift tracker 1 with rg feature in 3.5. Shown
are frames 28, 106, 111, 124, 130, 153, 166, 196, .220. (red: tracker 1 with rg feature, blue: tracker 1 with RGB

feature)
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Figure 4.3-14 : Iteration numbers of wafﬂgng'@llrl éécjﬂéh{ée:‘_’e(-léft: tracker 1 with rg feature, right: tracker 1 with
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r
L

The tracker 1 with rg feature captures the girl from 1% frame to 111" frame, but
loses it because the huge variation of illumination. The rg feature is not good enough

to solve the huge variation of illumination.

€ Tracker 2
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Figure 4.3-15: Walking girl tracking results of spatial-color mean-shift tracker 2 with rg feature in 3.5. Shown
are frames 28, 106, 111, 124, 130, 153, 166, 196, .220. (red: tracker 2 with rg feature, blue: tracker 2 with RGB
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Figure 4.3-16 : Iteration numbers of walking girl sequence. (left: tracker 2 with rg feature, right: tracker 2 with

RGB feature)

The tracker 2 with rg feature captures the girl at most frames, but loses the girl at

about 70" frame because of the huge variation of illumination. Tracker 2 with rg

feature is better than tracker 2 with RGB feature, and the total performance of tracker

2 with rg feature is better than that of tracker 1 with RGB feature, obviously.

4.4 Spatial-Color Mean-Shift Trackers with Normalized Feature
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and Weighted Information

Considering the background information, we add the weighted-background
information to the trackers which we developed before. In this section, the tracker 1 is
defined as (3-31) and the tracker 2 is defined as (3-32).

4.4.1 Face Sequence

€ Tracker1

Figure 4.4-1: Face tracking results of spatial-color mean-shift tracker 1 with rg feature and
weighted-background information in 3.6. Shown are frames 33, 93, 117, 126, 183, 256, 271, 455, 766. (red:

tracker 1 with rg feature and weighted-background information, blue: tracker 1 with rg feature only)
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(left: tracker 1 with rg feature and weighted-background

information, right: tracker 2 with rg feature only)

Figure 4.4-2 shows that the performance of tracker 1 is more accurate than that of

tracker 1 without the weighted-background information, and tracker 1 captures the

target at all times. The average of iteration number of tracker 1 is larger than that of

tracker 1 without weighted-background information, but the difference between these
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two trackers is not large. In conclusion, the tracker 1 about the face tracking is much

better.

€ Tracker 2

Figure 4.4-4 ;. Face tracking results of spatial-color mean-shift tracker 2 with rg feature and
weighted-background information in 3.6. Shown are frames 33, 93, 117, 126, 183, 256, 271, 455, 766. (red:

tracker 2 with rg feature and weighted-background information, blue: tracker 2 with rg feature only)
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Figure 4.4-5: Distance error of face tracking sequence of spatial-color mean-shift tracker 2 with rg feature and
weighted-background information in 3.6 that is-compared:with that with rg feature only. (*note: we only consider

the distance error which is smaller; than 50 pixels)
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Figure 4.4-6 : Iteration numbers of face sequence. (left: tracker 1 with rg feature and weighted-background

information, right: tracker 2 with rg feature only)

With the experiment result of tracker 2, Figure 4.4-5 also shows that the tracking
results of tracker 2 is much better when adding the weighted-background information.
The location of tracking is more accurate, and the iteration number of tracker 2 is

about the same as the tracker 2 without the weighted-background information as
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shown in Figure 4.4-6.

€ Tracker 1, Tracker 2, Traditional Mean-Shift Tracker

Figure 4.4-7 :  Face tracking results of spatial-color mean-shift trackers with rg feature and
weighted-background information in 3.6. Shown are frames 33, 93, 117, 126, 183, 256, 271, 455, 766. (red:

tracker 1 with rg feature and weighted-background information, blue: tracker 2 with rg feature and

weighted-background information, green: traditional mean-shift tracker)
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Figure 4.4-8 : Distance error of face:sequence of spatial-color mean-shift trackers with rg feature and
weighted-background information in 3.6. (*note: we:only consider the distance error which is smaller than 50

pixels)
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Figure 4.4-9 : Iteration number of face sequence. (left: tracker 1 with rg feature and weighted-background
information, middle: tracker 2 with rg feature and weighted-background information, right: traditional

mean-shift tracker)
We can see that the tracker 1 is the best tracker from the real face sequence as
shown in Figure 4.4-7. The distance error of tracking results of the tracker 1, tracker 2,
and the traditional mean-shift tracker are compared in Figure 4.4-8. In these three

trackers, the tracking locations of tracker 1 are the most accurate than those of tracker
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2 and than those of traditional mean-shift tracker. The iteration numbers of three
trackers are about the same. Summary of all, the spatial-color mean-shift tracker 1 is
the best, and the spatial-color mean-shift tracker 2 is better than the traditional

mean-shift tracker.

4.4.2 Cup Sequence

€ Trackerl

Figure 4.4-10 :  Cup tracking results of spatial-color mean-shift tracker 1 with rg feature and
weighted-background information in 3.6. Shown are frames 4, 45, 63, 69, 81, 105, 166, 243, 364. (red: tracker 1

with rg feature and weighted-background information, blue: tracker 1 with rg feature only)
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Figure 4.4-11 :

Distance error of cup sequence of spatial-color mean-shift trackers with rg feature and

weighted-background information in 3.6."(*note: we:only consider the distance error which is smaller than 50
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Iteration number of cup sequence. (left: tracker 1 with rg feature and weighted-background

information, right: tracker 1 with rg feature only)

With this sequence of complex background and complex appearance of target, the

performance of the tracker 1 is strongly improved, obviously. The tracker 1 captures

the target at all times when the tracker 1 without weighted-background information
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always loses the target.

€ Tracker 2

Figure 4.4-13 :  Cup tracking results of spatial-color mean-shift tracker 2 with rg feature and
weighted-background information in 3.6. Shown are frames 4, 45, 63, 69, 81, 105, 166, 243, 364. (red: tracker 2

with rg feature and weighted-background information, blue: tracker 2 with rg feature only)
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Figure 4.4-14 : Distance error of cup sequence of spatial-color mean-shift tracker with rg feature and
weighted-background information in 3.6. (*note: we only consider the distance error which is smaller than 50

pixels)

250

200

180 F

100+

Mean Shift Iterations
Mean Shift lterations

S0

a 0 PP VRN lm |
0 200 400 BO00 800 1000 1200 1400 1600 1800 2000 1} 200 400 GO0 800 1000 1200 1400 1600 1300 2000
Fram Index Frar Index

Figure 4.4-15: Iteration numbers of cup sequence. (left: tracker 2 with rg feature and weighted-background

information, right: tracker 2 with rg feature only)

Similar with tracker 2, the tracker is improved after adding weighted-background

information and captures the target at all times.

€ Tracker 1, Tracker 2, Traditional Mean-Shift Tracker
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Figure 4.4-16 :  Cup tracking results of spatial-color mean-shift trackers with rg feature and
weighted-background information in 3.6. Shown are frames 4, 45, 63, 69, 81, 105, 166, 243, 364. (red: tracker 1
with rg feature and weighted-background inforr’hé\tion,' blue: tracker 2 with rg feature and weighted-background

informatioh, green: _traditionafmean-shift tracker)
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Figure 4.4-17 : Distance error of cup sequence of spatial-color mean-shift trackers with rg feature and
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weighted-background information in 3.6. (*note: we only consider the distance error which is smaller than 50

pixels)
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Figure 4.4-18 : Iteration number of cup sequence. (left: tracker 1 with rg feature and weighted-background
information, middle: tracker 2 with rg feature and weighted-background information, right: traditional

mean-shift tracker)

As shown in Figure 4.4-16, the all trackers capture the target at all times, but the
tracking locations of the tracker 1 and tracker 2 are more accurate than the traditional
mean-shift tracker in the real |mage sequences Flgure 4.4-17 shows the distance errors
of three trackers; the errors of trackelrill artd tracker 2 are about the same and are
always smaller than those of tradltlenal ‘mean- shllft tracker. The iteration numbers of
the proposed trackers are quite S|mtlar Wlth the traditional one as shown in Figure
4.4-18. To sum up, the trackers which we developed up to this point is already better

than the traditional one.

4.4.3 Walking Girl Sequence

€ Trackerl
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Figure 4.4-19 : Walking girl tracking results of spatial-color mean-shift tracker 1 with rg feature and
weighted-background in 3.6. Shown are frames 28, 106, 111, 124, 130, 153, 166, 196, .220. (red: tracker 1 with
rg feature and weighteq:backgjfduha;' E_)Iu_e_: tracker 1 with rg feature only)
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Figure 4.4-20 : Iteration numbers of walking girl sequence. (left: tracker 1 with rg feature and
weighted-background, right: tracker 1 with rg feature only)

Under these circumstances of the variation of illumination and partial occlusion,
Figure 4.4-19 shows that the tracker 1 captures the target when tracker 1 without
weighted-background always fail. When the target has been covered by the cars from

106" frame to 220" frame, the tracker 1 still captures the target.

€ Tracker2
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i By TR
Figure 4.4-21 : Walking girl trackiﬁémr.ésult_s of spatial-color mean-shift tracker 2 with rg feature and

weighted-background in 3.6. Shown are frames 28, 106, 111, 124, 130, 153, 166, 196, .220. (red: tracker 2 with

rg feature and weighted-background information, blue: tracker 2 with rg feature only)
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Figure 4.4-22 : Iteration numbers of walking girl sequence. (left: tracker 2 with rg feature and
weighted-background, right: tracker 2 with rg feature only)

Figure 4.4-21 shows that the tracker 2 fails during the tracking process. At 153"
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frame, the tracker 2 fails and captures the background object because the appearance
of the region which tracker 2 tracks is very similar with the girl model which we want
to track. The tracker 2 uses the spatial information and the spatial information of the
background region at 153" frame has very similar part, and this is the reason why

tracker 2 fails.

€ Tracker 1, Tracker 2, Traditional Mean-Shift Tracker

Figure 4.4-23 :  Walking girl tracking results of spatial-color mean-shift trackers with rg feature and
weighted-background in 3.6. Shown are frames 28, 106, 111, 124, 130, 153, 166, 196, .220. (red: tracker 1 with

rg feature and weighted-background, blue: tracker 2 with rg feature and weighted-background, green: traditional

mean-shift tracker)
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Figure 4.4-24 :  Iteration numbers of walking girl sequence. (left: tracker 1 with rg feature and
weighted-background, middle: tracker 2 with rg feature and weighted-background, right: traditional mean-shift

tracker)

All trackers are placed in Figure 4.4-23 to be compared the performance and
results. To sum up, the tracker 1 always captures the target girl under the
circumstances of the variation of illumination and partial occlusion, but the tracker 2
and traditional mean-shift fail in the tracking process. The spatial-color mean-shift

tracker 1 is the best tracker which we developed.

4.5 Spatial-Color Mean-Shift Trackers with Scale and

Orientation

In this section, the scale and orientation method in 3.7 is applied. The procedure
of Figure 3.8-1 is defined as the tracker 1 and the procedure of Figure 3.8-2 is defined

as the tracker 2.

4.5.1 Walking Person Sequence

€ Trackerl
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Figure 4.5-1: Walking person tracking results of spatial-color mean-shift trackerl with PCA scale method.
Shown are frames 83, 358, 409, 494, 513, 598, 655, 689, 733, 854, 914, and 1000.

€ Tracker 2
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Figure 4.5-2 :  Walking person tracking results of spatial-color mean-shift tracker2 with PCA scale method.
Shown are frames 83, 358, 409, 494, 513, 598, 655, 689, 733, 854, 914, and 1000.

€ Traditional Mean-Shift Tracker
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Figure 4.5-3:
scale adaptation method. Shown are frames 83, 358, 409, 494, 513, 598, 655, 689, 733, 854, 914, and 1000.

Walking person tracking results of traditional mean-shift tracker with plus or minus 10 percent

Pzan Shift Iterations.

it

P2an Shift Iterations




Figure 4.5-4 : Iteration number of walking person sequence. (left: tracker 1 with PCA scale method, middle:
tracker 2 with PCA scale method, right: traditional mean-shift tracker with plus or minus 10 percent scale

adaptation method)

Figure 4.5-3 shows the experiment results of traditional mean-shift tracker with
plus or minus 10 percent scale adaptation method [1]. At each step of traditional
mean-shift iteration, the mean-shift algorithm is run three times, once with current
scale, and once with the window of plus or minus 10 percent of the current window
size. The similarity measure Bhattacharyya coefficient is computed with different
window sizes, and the window size yielding the largest Bhattacharyya coefficient is
chosen as the current window size. In the tracking process, the tracker with traditional
method can always capture the person, but the scale size is not accurate with the true

one.
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Figure 4.5-1 and Figure 4 552’ are.-Te,spafral -color mean-shift trackers with PCA

-_;||'~\.“‘-\. o

scale method which we propo"séd L\.}Vlth ﬂxégﬂrspn away from the camera and toward

the camera, the two trackers Ggpt f' {f: etf@,t all times, and the scale size of the
. " 3
target is probably tracked, too. The mqposhad method is more robust and accurate than

the traditional mean-shift method.

4.5.2 Surveillance Sequences

€ Trackerl
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Surveillance Tracking I-color mean-shift trackerl with PCA scale method.

Figure 4.5-5: Jal
Shown are frames 3, 16, 24, 32, 51, 59, 76, 127, 286, 318, 332, and 353.

€ Tracker2
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Surveillance tracking results'ofspatial- ean-shift tracker2 with PCA scale method. Shown

Figure 4.5-6 : Al-Col
are frames 3, 16, 24, 32, 51, 59, 76, 127, 286, 318, 332, and 353.

€ Traditional Mean-Shift Tracker
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adaptation method. Shown are framesS 16, 24, 32, 51, 59, 76, 127, 286, 318, 332, and 353.
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Figure 4.5-8 : Iteration number of surveillance sequence. (left: tracker 1 with PCA scale method, middle:
tracker 2 with PCA scale method, right: traditional mean-shift tracker with plus or minus 10 percent scale

adaptation method)

In surveillance sequence, a person walks, lies down, and finally stands up to keep

walking. In these different actions, the target contains much deformation. Figure 4.5-5
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and Figure 4.5-6 show that the trackers proposed in this thesis always track the target
with the corresponding scale, orientation, and shape. Even though traditional
mean-shift tracker captures the target at all times as shown in Figure 4.5-7, the scale
size and orientation can not be fitted for the real one, the tracking window contains too
many background information. By these sequences, the proposed trackers are more
suitable for applying the surveillance applications than the traditional mean-shift

tracker.

4.6 Performance Analysis

We have shown that the proposed trackers are more accurate than the traditional
mean-shift tracker, and now we discuss the real time issue about the trackers. We
separate the analysis into two parts. The firSt.part is the preprocessing time of the
model building, and the second part is the tracking time (iteration time).

The face sequence and Cup sequence-are used to test the performance of the
proposed trackers. The models are built from-the first image of these two sequences,
and the preprocessing procedure is executed five times to obtain the average
computing time. The tracking time of each iteration of the first 200 frames are shown

in figures, and the average time of total frames is presented.

€ Trackerl

Table 4.6-1 shows the preprocessing time of tracker 1 with RGB feature and
without weighted-background information according to the preprocessing procedure as
shown in Figure 3.4-2, and Table 4.6-2 shows the preprocessing time of tracker 1 with
rg feature and weighted-background information according to the preprocessing
procedure as shown in Figure 3.8-1. The procedure of converting the RGB feature

space to the rg feature space and computing the weighted-background information is

78



added, so the preprocessing time as shown in Figure 3.8-1 is larger, but the average
time is still small enough to let the tracking system be real time.

Table 4.6-1: The preprocessing time of tracker 1 according to the procedure as shown in Figure 3.4-2.

1 2 3 4 5 Average time

Face sequence| 0.006384 |0.006994| 0.006821 |0.006322| 0.006766 | 0.006657

Cup sequence | 0.005079 |0.005184| 0.005241 |0.004497| 0.005059 | 0.005012

Table 4.6-2 :  The preprocessing time of tracker 1 according to the procedure as shown in Figure 3.8-1.

1 2 3 4 5 Average time

Face sequence| 0.030134 {0.026233| 0.027771 |0.025795| 0.029355 | 0.027858

Cup sequence | 0.016165 |0.015690.0.01:/430 |0.018856| 0.018387 | 0.017306

Figure 4.6-1 and Figure 4.6-2. show the iteration time of the first 200 frames of
face sequence and cup sequence. The worst.ease is about 0.07 second for finishing one
iteration of the face sequence, but the average time of total frames (about 2300 frames)
is 0.035855 second (about 28 frames/sec). The average time of one iteration of total
frames (about 1900 frames) of cup sequence is 0.017854 (about 56 frames/sec). The

tracker 1 can achieve the standard of real time system.
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Figure 4.6-1: The tracking time of the first 200 frames of face sequence of tracker 1.
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€ Tracker 2

The tracking time of the first 200 frames of cup sequence of tracker 1.

The same as tracker 1, the procedure of converting the RGB feature space to the

rg feature space and computing the weighted-background information is added, so the

preprocessing time as shown in Figure 3.8-2:s larger, but it still achieves the standard

of real time system. The average time of:preprocessing of tracker 2 is larger than that

of tracker 1 because the preprocessing procedure-of tracker 2 includes the computing

of K, and K,

Table 4.6-3 :

The preprocessing time of tracker 2 according to the procedure as shown in Figure 3.4-3.

1

2

3

4

5

Average time

Face sequence

0.023081

0.021131

0.021117

0.021489

0.023731

0.022110

Cup sequence

0.015975

0.015543

0.015505

0.015641

0.015808

0.015694

Table 4.6-4 :

The preprocessing time of tracker 2 according to the procedure as shown in Figure 3.8-2.

1

2

3

4

5

Average time

Face sequence

0.030712

0.032042

0.030352

0.032472

0.030917

0.031299

Cup sequence

0.020987

0.021176

0.021784

0.025734

0.022561

0.022448

80



Figure 4.6-3 and Figure 4.6-4 show the iteration time of the first 200 frames of
face sequence and cup sequence. The average time of total frames (about 2300 frames)
is 0.020670 second (about 48 frames/sec). The average time of one iteration of total
frames (about 1900 frames) of cup sequence is 0.006608 (about 151 frames/sec). The

tracking time of tracker 2 is smaller than that of tracker 1 because the procedure of

tracking includes the computing of K, and K., but the tracker 2 computes K, and

K. in the procedure of preprocessing. The tracker 2 can achieve the standard of real

time system.
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Figure 4.6-3: The tracking time of the first 200 frames of face sequence of tracker 2.
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Figure 4.6-4 : The tracking time of the first 200 frames of cup sequence of tracker 2.
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Chapter S. Conclusion and Future Work

The spatial-color mean-shift object tracking algorithm is proposed in this thesis.
Combining the spatial information with color feature makes the model contain more
robust information. The new trackers can be derived from the new similarity measure
of concept of the expectation of the estimated kernel density. Using the principal
component analysis and the extension method, the scale size and the orientation of the
target can be updated. The new iterative tracking algorithm can be summarized as
Figure 3.8-1 and Figure 3.8-2.

The experiment results presented in chapter 4 show that the new trackers can track
the target consistently, both in image location and in scale. The performance of
tracking algorithm shown in Figure 3.8-1 is better than Figure 3.8-2, but these two new
trackers are both much better than traditional mean-shift tracker under the different
cases, such as face tracking, object tracking under complex background, and partial
occlusion situation. The experiments results of scale and orientation show that the
principal component analysis method is better than traditional scale adaptation method,
and it can solve the problem of deformation. The performance analysis shows that the
proposed trackers can achieve the standard of real-time system.

There are several areas for improvement. First, the issue of model update is not
addressed in this thesis. Under what conditions the target histogram need to be updated
is a difficult problem, because it requires one to detect whether an observed
appearance change is due to the target changing appearance or a temporary occlusion.
Second, the huge variation of illumination is another problem. The variation of
illumination makes the appearance of target quite different from the original model,

and it makes the trackers confused and tracking results fail.
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