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摘要 

本論文中發展了一個以空間和顏色為基礎的平均移動演算法。其中以空間中

顏色分佈的相對資訊和顏色的特徵來定義物件的模型，並以新的相似度函數發展

出新的平均移動演算法來做物件追蹤，為了要使物件追蹤的效果更穩健，針對不

同的特徵做了實驗並選出使追蹤效果最好的顏色特徵，接著並在演算法中加入了

以背景資訊而建立的權重值，使得演算法具有更好的穩定性。而為了解決在物件

追蹤中常遇到的物件大小與方位的問題，我們使用了主成分分析的方法來估測物

件的方位，並以主成分分析所延伸而來的演算法來估計物件的大小，而此方法確

實可以自動更新物件的大小與方位。在最後的實驗中則可以看出此追蹤演算法可

以解決部份遮蔽和物件變形的問題，且在複雜背景下仍具有良好的即時追蹤效

能。 
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ABSTRACT 

In this thesis, we propose the new mean-shift tracking algorithms based on a new 
similarity measure function. The joint spatial-color feature is used as our basic model 
elements. The target image is modeled with the kernel density estimation and we use the 
concept of expectation of the estimated kernel density to develop the new similarity measure 
functions. With these new similarity measure functions, two new similarity-based mean-shift 
tracking algorithms were derived. To enhance the robustness, we add the 
weighted-background information to the proposed mean-shift tracking algorithm. In order to 
solve the deformation problem, the principal component analysis method is used to update the 
orientation of the tracking object, and a simple method is elaborated to monitor the scale of 
the object. The results of the experiments show that the new similarity-based tracking 
algorithms are real-time and can track the moving object correctly, and update the orientation 
and scale of the object automatically. 
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Chapter 1.  Introduction 

1.1 Motivation and Objective 

In related research of the computer vision, the object tracking is an important 

issue in many computer vision applications. The object tracking can be applied on the 

surveillance system which can capture the person of unknown identity and notifies 

related persons immediately. Perceptual interfaces also require the tracking system to 

capture where the user is. A good tracking system makes driving more secure and 

assists the driver to handle the situation of navigation. Furthermore, robot system, 

augmented reality, digital home, and object-based video compression all depend on the 

object tracking system. 

Up to now, there is not a robust object tracking system which can be applied 

under all kinds of different circumstances. The object tracking system is always 

developed for specific situations. For example, V. Parameswaran et al. [3] proposed a 

tunable representation for tracking encoding appearance and geometry but failed for 

deformation, and F. Porikli et al. [2] presented a method for the low-frame-rate video 

in which objects have fast motion but failed under the huge variation of illumination. 

In general, the tracking system is easily influenced by many factors. An 

insufficient target representation of tracking system could easily create confusion 

between the target and the background. Huge variations of illumination always make 

the appearance of target be different from that of model. Occlusion problem results in 

an incomplete target representation and makes the tracking fail. Moreover, the 

computer can not judge the same target with different scale size at the scene 

automatically. With these problems and related applications, how to track the moving 
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object robustly is an important and interesting research issue. 

1.2 Literature Review 

In this thesis, we propose an algorithm based on the mean-shift tracking algorithm 

proposed in [1]. The advantages of the mean-shift tracker include fast operation, 

robustness and invariance to a large class of object deformations. A large number of 

related research followed [1] to develop various related aspects such as feature spaces 

[4] [5], spatial information [6] [7], shape adaptation [8] [9], etc. 

In visual tracking, object representation is an important issue because it can 

describe the correlation between the appearance and the state of the object. An 

appropriate object representation is more robust and makes the target model more 

distinguished from the background, and achieves a better tracking result. In [1], D. 

Comaniciu et al. used the spatial kernels with the pixels which are weighted by a 

radially symmetric normalized distance from the object center, together with color 

histograms, to represent blob-alike color objects, and the representation of target make 

mean-shift tracking more efficient. Radially symmetric kernel preserves representation 

of the distance of a pixel from the center even the object has a large set of 

transformations, but this approach only contains the color information of the target and 

the spatial information is discarded. As shown in Figure 1.2-1, the tracker fails because 

the rectangular block being tracked overlapped with another block of the same color 

distribution but inverted spatial distribution of colors. 

 

Figure 1.2-1 : Similar color distribution blocks tracking sequence. (The figure is obtained from [3]) 

Furthermore, V. Parameswaran et al. [3] proposed the tunable kernels for tracking, 
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which simultaneously encodes appearance and geometry that enable the use of 

mean-shift iterations for tracking. A method was presented to modulate the feature 

histogram of the target that uses a set of spatial kernels with different bandwidths to 

encode the spatial information. This method shows how one could learn the optimal 

set of bandwidths to use the captured data for the case of pedestrians walking upright. 

This approach indeed can solve the problem of similar color distribution blocks with 

different spatial configuration, but it just works for some cases, such as walking 

upright. 

Another problem in the visual tracking is how to track the scale of object. In [1], 

the mean-shift algorithm is run several times, using the current and scaled window 

sizes. For each different window size, the similarity measure Bhattacharyya coefficient 

is computed to be compared, and the window size yielding the largest Bhattacharyya 

coefficient, i.e. the most similar distribution, is chosen as the new current scale. V. 

Parameswaran et al. [3], S. Birchfield et al. [7] and F. Porikli et al. [10] use the similar 

variation method to solve the scale problem, but this method is unstable, and easily 

make the tracker lose the target.  

R. Collins [4] extended the mean-shift tracker by adapting T. Lindeberg’s theory 

[11] of feature scale selection based on local maxima of differential scale-space filters. 

This method uses blob tracking and a scale kernel to accurately capture the target’s 

variation in scale. But in the paper the detailed iteration method was not described. 

Furthermore, an EM-like algorithm [9] is provided to estimate the shape of the local 

mode. This approach estimates simultaneously the position of the local mode and uses 

the covariance matrix to describe the approximate shape of object. But this paper also 

does not illustrate how to decide the scale size from the covariance matrix and other 

details about implementation. 
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 Q. Zhao et al. [6] and H. Zhang et al. [8] propose the methods to solve the 

problem of rotation and translation. H. Zhang et al. [8] proposed a method which 

represents the object by a kernel-based model, which offers more accurate 

spatial-spectral description than general blob models. Q. Zhao et al. [6] proposed the 

color correlogram method to use the correlation of colors to solve the related problem. 

But these methods are not suitable for the complex background situation. 

Most papers in literature provide methods for specific applications. This thesis 

extends the traditional mean-shift tracking algorithm and will propose a new 

mean-shift based method to improve the arbitrary object tracking problem, and try to 

estimate the scale and orientation of target. 

1.3 Thesis Subject and Contribution 

The subject of this thesis can be divided into two parts. The first past is to develop 

the new spatial-color mean-shift trackers for the purpose of capturing the target more 

accurately than the traditional mean-shift tracker. The second part is to develop a 

method for solving the scale and orientation problem which always appears in 

computer vision. 

In the first part, the new spatial-color mean-shift object tracking algorithms are 

presented, thus the trackers can track the target consistently. The tracking algorithms 

combine the spatial information and color feature to represent the model more robustly, 

and use the new similarity measure functions to obtain the iterative mean-shift 

procedure. Some other extension methods and algorithms are used to improve the 

performance of these new trackers, such as different color feature space and 

weighted-background information. 

In the second part, this thesis uses principle component analysis method to 

estimate the scale and orientation of the tracking target. The principle component 
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analysis method can be extended from the tracking algorithm proposed above because 

the spatial-color mean-shift object tracking algorithms and the principle component 

analysis method both use the spatial information and weighted-background 

information. 

The proposed spatial-color mean-shift object tracking algorithms are implemented 

and the experiment results show that the new methods are more robust than the 

traditional mean-shift tracking algorithm, and can improve the scale and orientation 

problems. 

1.4 Outlines of Thesis 

The remainder of this thesis is organized as follows. 

Chapter 2: the traditional mean-shift tracking algorithm is reviewed, including how to 

represent the target model, the traditional similarity measure Bhattacharyya 

coefficient, how to derive the traditional mean-shift tracker, and the 

summary of total mean-shift tracking algorithm procedure. 

Chapter 3: at first, two recent papers are reviewed, and the similar concept of these 

two papers is extended to develop the new spatial-color mean-shift tracking 

algorithms. To improve the new trackers and make them more robust, some 

extensions of the basic algorithm is discussed and applied. Finally, the 

algorithm for solving scale and orientation is presented and the total 

algorithm is summarized at the end of this chapter. 

Chapter 4: the experiment results are presented according to the developing steps of 

algorithms in chapter 3. Some real image sequences and figures are 

presented, and the experiment results are discussed. 

Chapter 5: the conclusion of this thesis and the possible improvement in the future is 

presented in this chapter. 
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Chapter 2.  Traditional Mean-Shift Tracking Algorithm 

2.1 Introduction 

Mean shift tracking algorithm [1] is a template base image tracking algorithm. 

The main concept of mean-shift tracking is to find the candidate which is the most 

similar with target image by mean-shift iterations. The principle of mean-shift is to 

compare the color distribution of candidate region with the color distribution of the 

model, and to compute the similarity measure, Bhattacharyya coefficient, to observe 

the variation of gradient of candidate to find the mean-shift vector. Further, mean-shift 

finds the most similar region or the most possible area of the candidate. In later 

sections, we will introduce the derivation and principle of the traditional mean-shift 

tracking algorithm. 

2.2 Target Representation 

Mean-shift is a template based algorithm, so we must find a feature to represent 

our target model. In general, we always choose the color p.d.f. as our reference model. 

We consider the center of target model as location 0 and the candidate is defined at 

location y. Further, we define the target model as q and the target candidate as ( )p y . 

In practice, the image data are classified to m-bin histograms in order to reduce the 

computational complexity. Thus we define the target model as 

1,...,
1

ˆ ˆ ˆ{ }         1
m

u u m u
u

q q=
=

= =∑q                                    (2-1) 

and the target candidate as 
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1,...,
1

ˆ ˆ ˆ( ) { ( )}         1
m

u u m u
u

p p=
=

= =∑p y y                               (2-2) 

 Although, the histogram is not the best nonparametric density estimate [16], it is 

simple and sufficient for traditional mean-shift algorithm. 

2.2.1 Model Representation 

We need to capture the character to form a p.d.f. from the target model image with 

the first step of mean-shift tracking algorithm. Let *
1...{ }i i n=x  represent the pixel 

locations of the region which we want to track in the target model, and we consider the 

center of target model as location 0. We define the function 2: {1,..., }b R m→  as 

color index, and the value of function *( )ib x  is the index of its bin in the quantized 

feature space of pixel *
ix . The probability of the feature 1,...,u m=  of the target 

model is then defined as 

2* *

1

ˆ ( ) [ ( ) ]
n

u i i
i

q C k b uδ
=

= −∑ x x                                  (2-3) 

where δ  is the Kronecher delta function, C is the normalization constant computed 

for condition  
1

ˆ 1m
uu

q
=

=∑ , so we can obtain 

2*
1

1

( )n
ii

C
k

=

=
∑ x

                                           (2-4) 

since the summation of delta functions is equal to one for 1,...,u m= . 

In (2-3) and (2-4), 
2*( )ik x  is a convex and monotonic decreasing kernel function 

which contains the highest weight at the center and smaller weights to pixels farther 

from the center. In general, the pixel near the center of the target model region is more 

important than the pixel near the periphery. In some situations, the periphery of the 
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target is covered by some obstacles, and the weights improve the robustness of the 

tracking result because the peripheral pixels are less significant. D.W. Scott [16] and D. 

Comaniciu et al. [17] mention two functions which are normal function (Gaussian 

function) and Epanechnikov function are more suitable to be the kernel function of 

mean-shift tracking algorithm. We list some information about these two functions in 

Table 2.2-1. 

Table 2.2-1:  Two weight kernel functions. 

Function Name Definition Sketch with 2d =  

Normal 

Function 

(Gaussian 

Function) 

2
/ 2

1 1exp( ), 1
(2 ) 2( )

0, .

d
N

if
K

otherwise
π

⎧ − <⎪= ⎨
⎪⎩

x x
x

Epanechnikov 

Function 

21 ( 2)(1 ),  1
2( )

0, .
dE

d if
CK

otherwise

⎧ + − <⎪= ⎨
⎪⎩

x x
x

  :d  dimension of space (in our 2D image case, 2d = ) 

  :dC  the volume of the unit d-Dimension sphere (in our 2D image case, dC π= ) 

2.2.2 Candidate Representation 

Now we define the p.d.f. of candidate in mean-shift tracking algorithm. Let 

1,...,{ }
hi i n=x  represent the pixel locations of the region in the target candidate, which 

centered at y in the current frame. As the same in 2.2.1, we define ( )b x  as color 
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index of its bin in the quantized feature space of pixel ix . The probability of the 

feature 1,...,u m=  of the target candidate is then defined as 

2

1

ˆ ( ) ( ) [ ( ) ]
hn

i
u h i

i

p C k b u
h

δ
=

−
= −∑ y xy x                          (2-5) 

where ( )k x  is the same kernel function with target model, h  is bandwidth which 

defines the region size of the candidate, δ  is the Kronecher delta function, hC  is the 

normalization constant computed for condition 
1

ˆ 1
m

u
u

p
=

=∑ , so we can obtain 

2

1

1

( )h

h
n i
i

C
k

h=

=
−∑ y x                                       (2-6) 

Note that hC  does not depend on y, since the pixel locations ix  are organized in a 

regular lattice and y is one of the lattice nodes [1]. Therefore, hC  can be 

pre-calculated for a given kernel and different values of h. 

2.3 Similarity Based on Bhattacharyya Coefficient 

The similarity measure function is to compare the similarity between the target 

candidate and the target model to find the most similar region. There are various 

similarity measure functions to be used for different target representations. A 

differentiable kernel function yields a differentiable similarity function and efficient 

gradient-based optimizations procedures can be used for finding its local maximum 

which is the most possible region which we want to track. 

In traditional mean-shift tracking algorithm, Bhattacharyya coefficient is used as 

the similarity measure function. First, the similarity function is defined as a distance 

among model and candidate, and the distance between two discrete distributions as 
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 ˆ ˆ( ) 1 [ ( ), ]d ρ= −y p y q                                        (2-7) 

and then ρ  is chosen as Bhattacharyya coefficient between candidate p̂  and model 

q̂ . 

1

ˆ ˆ ˆ ˆ ˆ( ) [ ( ), ] ( )
m

u u
u

p qρ ρ
=

≡ =∑y p y q y                               (2-8) 

The concept of Bhattacharyya coefficient is the cosine of the angle between the 

m-dimensional unit vectors 1ˆ ˆ( ,..., )T
mρ ρ  and 1̂ ˆ( ,..., )T

mq q , and it is an 

efficient and divergence-type for statistical measure. 

With a different point of view, Bhattacharyya coefficient can be considered as the 

error estimation of two distributions. Figure 2.3-1 shows that we can obtain the best 

classification according to the vertical line of point A, and we can get the smallest 

error which is the yellow region. The larger error about classification results in larger 

Bhattacharyya coefficient and represents high similarity, and smaller error results in 

smaller Bhattacharyya coefficient and represents low similarity. 

 

Figure 2.3-1 :  Illustration of classification of two distributions. 

2.4 Traditional Mean-Shift Tracker 

Minimizing (2-7) is equivalent to maximizing the sample estimation of the 
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Bhattacharyya coefficient (2-8). Using Taylor expansion to expand (2-8) around the 

values ˆ ( )uρ y  at 0ˆ=y y  which is the location of the target in previous frame. We start 

to find the new target location in current frame. The linear approximation is obtained 

as 

0
1

ˆ ˆ ˆ ˆ ˆ[ ( ), ] ( )
m

u u
u

qρ ρ
=

=∑p y q y  

0

0

0

0

0
0

0

2

2
2

0

ˆ ˆ[ ( ), ]
ˆ ( )

ˆ ˆˆ ˆ[ ( ) ( )]
!

ˆ ˆ[ ( ), ]ˆ ˆ ˆ ˆˆ ˆ[ ( ), ] [ ( ) ( )]
ˆ ( )

ˆ ˆ[ ( ), ]
ˆ ( )

ˆ ˆˆ ˆ                         [ ( ) ( )] ......
2!

ˆ ˆ[ ( ),

n

n
u n

u u
n

u u
u

u
u u

n

ρ
ρ

ρ ρ

ρρ ρ ρ
ρ

ρ
ρ

ρ ρ

ρ

∞
=

=

=
=

=

∂
∂

= −

∂
= + −

∂

∂
∂

+ − +

≈

∑ y y

y y
y y

y y

p y q
y

y y

p y qp y q y y
y

p y q
y

y y

p y
0

0

0 0

0

0
1 1

ˆ ˆ[ ( ), ] ˆ ˆˆ ˆ] [ ( ) ( )]
ˆ ( )

1ˆ ˆ ˆˆ ˆ ˆ ˆ( ) [ ( ) ( )]
ˆ ˆ2 ( )

u u
u

m m

u u u u u
u u u u

q q
q

ρ ρ ρ
ρ

ρ ρ ρ
ρ

=
=

= == =

∂
+ −

∂

= + ⋅ ⋅ −∑ ∑

y y
y y

y y y y

p y qq y y
y

y y y
y

   

0
1 1 0

ˆ1 1ˆ ˆˆ ˆ( ) ( )
ˆ2 2 ( )

m m
u

u u u
u u u

qqρ ρ
ρ= =

= +∑ ∑y y
y

                  (2-9) 

The approximation is established under the assumption of the target not moving 

drastically from previous location 0ŷ  to current location y , and this condition is 

always satisfactory between consecutive image frames. Substituting (2-5) into (2-9), 

we can obtain 

2

0
1 1 1 0

ˆ1 1ˆ ˆ ˆ ˆ ˆ( ) [ ( ), ] ( ) ( ) [ ( ) ]
ˆ2 2 ( )

hnm m
i u

u u h i
u u i u

qq C k b u
h

ρ ρ ρ δ
ρ= = =

−
= ≈ + −∑ ∑ ∑ y xy p y q y x

y
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2

0
1 1

1 ˆ ˆ ˆ( ) ( )
2 2

hnm
h i

u u i
u i

Cq w k
h

ρ
= =

−
= +∑ ∑ y xy                         (2-10) 

where 

1 0

ˆ
[ ( ) ]

ˆ ˆ( )

m
u

i i
u u

qw b uδ
ρ=

= −∑ x
y                                  (2-11) 

 The objective is to find the maximum of Bhattacharyya coefficient ( )ρ y . 

Because ( )ρ y  is independent of y, the term of 0
1

1 ˆ ˆ ˆ( )
2

m

u u
u

qρ
=
∑ y  in (2-10) does not 

affect the value of ( )ρ y , and ( )ρ y  is only influenced by 

2

1
( ) ( )

2

hn
h i

i
i

Cf w k
h=

−
= ∑ y xy                                     (2-12) 

Further, using gradient-based optimizations procedure with (2-12), we obtain 

2

2
1

( ) ( ) '( )
2

hn
h i

i i
i

Cf w k
h h=

−
∇ = −∑ y xy y x                           (2-13) 

Letting ( ) '( )g x k x= − , we obtain 

2

2
1

( ) ( ) ( )
2

hn
h i

i i
i

Cf w g
h h=

−
∇ = −∑ y xy x y  

     

2

2 1

22 1

1

( )
( )

2
( )

h

h

h

n i
i iinh i

i
n i
i

w g
C hg
h h

g
h

=

=

=

⎡ ⎤−
⎢ ⎥⎡ ⎤− ⎢ ⎥= × −⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎢ ⎥
⎣ ⎦

∑
∑

∑

y xx
y x y

y x
           (2-14) 

We can separate (2-14) into two parts. The first term is proportional to the density 

estimation at y and 
2

1
( )hn i

i
g

h=

−∑ y x  is assumed as a positive number [18], and let 

(2-14) be equal to 0. 

( )f∇ =y 0                                                  (2-15) 

The second term can be obtained as the mean shift vector. 
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2
0

1

1 2
0

1

ˆ
( )

ˆ
ˆ

( )

h

h

n i
i ii

n i
ii

w g
h

w g
h

=

=

−

=
−

∑

∑

y xx
y

y x                                   (2-16) 

 The mean shift vector always points toward the direction of maximum increase in 

the density. In this procedure, we can find the local maximum of the density by (2-16), 

and the kernel region can recursively moved from current location 0ŷ  to the new 

location 1ŷ . 

2.5 Mean-Shift Tracking Algorithm Procedure 

The complete traditional mean-shift tracking algorithm is presented as Figure 

2.5-1. 
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newy

0ŷ

0 1,...,ˆ{ ( )}u u mp =y

1...{ }
hi i nw =

1 0ˆ ˆ if ε− <y y

1ŷ

0 1ˆ ˆ←y y

1,...,ˆ{ }  u u mq =

1 0

ˆ
[ ( ) ]

ˆ ˆ( )

m
u

i i
u u

qw b uδ
ρ=

= −∑ x
y

2
0

1

1 2
0

1

ˆ
( )

ˆ
ˆ

( )

h

h

n i
i ii

n i
ii

x w g
h

w g
h

=

=

−

=
−

∑

∑

y x

y
y x

 

Figure 2.5-1 :  Traditional mean-shift tracking algorithm procedure. 
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Chapter 3.  Spatial-Color Mean-Shift Object Tracking 

Algorithm 

3.1 Introduction 

In this chapter, we will introduce two papers [7][12] with the spatiogram and the 

new similarity measure. With the spatiogram of [7], we will extend the original model 

to a new model with spatial and color feature information, and then use resembling 

method as [12] to get two different similarity measures. We will derive the iterative 

mean-shift tracking algorithms from the similarity measure functions. And then we will 

discuss the two different color features and select better color feature space by 

experiment test. To improve the robustness, we will take account of the background 

information and add the background-weighted parameter to the new mean-shift 

algorithms. In the final step, we will discuss the scale problem and try to use the 

principal component analysis method to solve it. In conclusion, we will give a 

summary and list the complete new mean-shift algorithm procedures. 

3.2 Model Definition 

In traditional mean-shift tracking algorithm, color histogram is used as the target 

representation. Color histogram discards all spatial information and uses the concept of 

color distribution to represent the target. This foundation technique is used to develop 

several tracking systems [2] [4] [10] which show that color histogram is robustness 

about deformation of the tracked object. But in some circumstances, spatial 

information is important and advantageous for different interference. In this chapter, 
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we want to build the target with color and spatial information. 

3.2.1 Paper Survey about Spatiogram 

Recently, S. Birchfield et al. [7] proposed the concept of each histogram bin which 

contains the mean and covariance information of the locations of the pixels which 

belong to that bin. This idea involves the spatially weighted by the mean and 

covariance of the locations of the pixels and not only the color information as 

traditional method. They call this concept a spatial histogram, or spatiogram. The 

model of spatiogram of an image I can be represented as follows. 

( ) , ,          1,...,I b b bh b n b B= 〈 〉 =μ ∑                               (3-1) 

where bn  is the number of pixels whose values belong to the b-th bin, bμ  is mean 

vector of locations of all pixels which belongs to the b-th bin (i.e. the 2D coordinates), 

and b∑  is covariance matrix of locations of all pixels which belongs to the b-th bin 

(symmetric matrix), and the pixels in the image can be classified to B bins. 

The spatiogram captures the spatial information of the general histogram bins, but 

the traditional color histogram only gets the color distribution information. For 

instance, Figure 3.2-1 illustrates the difference between the spatiogram and traditional 

histogram. There are three different poses of a person’s head in the first row. For each 

person’s head to compute the histogram and spatiogram first, if we want to rebuild the 

original image from the computed histogram, the second row shows that we only can 

get the disorderly image which barely contains the color information. However, the 

image rebuilt form the computed spatiogram reveals the relationships about the color 

as shown in the third row. This paper uses the spatiogram and the general 

Bhattacharyya coefficient to derive a mean shift procedure algorithm and improve the 

tracking result when being compared with histogram method. The experiment results 
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demonstrate that spatial information captures a firmer description of the target to 

improve robustness in tracking. 

 

Figure 3.2-1 :  Three different poses of a person’s head (top), images generated from the computed histogram 

(middle), images generated from the computed spatiogram (bottom). (The figure is obtained from [7].) 

3.2.2 A Joint Spatial-Color Feature Model 

As shown in Figure 3.2-2, if cyan and blue belong to the same bin, these two 

blocks have the same spatiogram, but they have different color patterns. To keep the 

robustness of color description of the spatiogram, we extend the spatiogram and define 

our joint spatial-color model as 

, , , ,( ) , , , ,          1,...,I b P b P b C b C bh b n b B= 〈 〉 =μ μ∑ ∑                     (3-2) 

where bn , ,P bμ , ,P b∑  are the same as spatiogram which S. Birchfield et al. 

proposed, and are respectively the number of pixels, the mean vector of locations, and 

covariance matrix of locations of pixels which belong to the b-th bin. In (3-2), we add 

two elements. ,C bμ  is mean vector of color feature with d color channels of all pixels 

which belong to the b-th bin (for example, in RGB color space, d=3 and 

, ( , , )C b b b bR G B=μ ). ,C b∑  is covariance matrix of color feature with d color channels of 
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all pixels which belong to the b-th bin, and the pixels in the image can be classified to 

B bins. We choose RGB channels as the color feature first, so ,C bμ  is a 3D vector, 

,C b∑  is a symmetric matrix, and we will discuss another more robust color feature in 

3.5. 

     

Figure 3.2-2 :  Illustration of the same spatial information with different color distribution for one bin. 

3.3 Paper Survey about New Similarity Measure 

The significance of mean shift algorithm is to find the local maximum of the 

similarity measure between the image model and the candidate. In general, the 

similarity measure can be derived to a mean shift algorithm and we use the iterative 

result to track the candidate location. The most general similarity measures used in 

image tracking are the Bhattacharyya coefficient and the Kullback-Leibler divergence. 

For the spatial-color model, we want to find a simple similar measure function to 

obtain the mean-shift algorithm. 

Lately, C. Yang et al. [12] proposed a new simple symmetric similarity function 

between kernel density estimates of the template and candidate distributions in a joint 

spatial-feature space and then presented an iterative tracking algorithm. This paper 

denotes model image as 1,...,{ , }x i i i MI u == x  and candidate image as 1,...,{ , }y j j j NI v == y , 

where ix  and jy  are locations of pixels, iu  and jv  belong to the feature space. 

This paper describes the target feature distribution in the joint spatial-feature space, 

and uses estimated kernel density function to model the p.d.f. of the object in the 
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model image as 

2 2

1

- -1ˆ ( , )
N

i i
x

i

u up u w k
N hσ=

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ x xx                             (3-3) 

where σ  and h  are the bandwidths in spatial and feature space. We can also regard 

(3-3) as a spatially weighted function w with Gaussian Mixture Model of feature space 

k. 

 Finally, this paper uses expectation of the estimated kernel density function 

between the model xI  and candidate yI  in the joint feature-spatial space as 

similarity measure 

1

1 ˆ( , ) ( , )
M

x y x j j
j

J I I p v
N =

= ∑ y                                       (3-4) 

   
2 2

1 1

- -1 N M
i j i j

i j

u v
w k

MN hσ= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑
x y

                      (3-5) 

The paper then uses (3-5) to derive a similarity-based mean-shift tracking 

algorithm. The experiment results show that it is more accurate and the number of 

iterations is less than the traditional Bhattacharyya coefficient method. This main 

concept of the new similarity function is based on the expectation of all pixels over the 

model and candidate. 

3.4 Spatial-Color Mean-Shift Object Tracking Algorithm 

With the spatial-color feature and the concept of expectation, we develop two 

different tracking algorithms. The detailed statement and demonstration will be derived 

as follows. 

3.4.1 Kernel Density Estimation of the Model Image 

We start to derive the first similarity-based mean-shift tracker. First of all, we use 



 

20 

model (3-2) and set the image model as the estimated kernel density function. 

1 1
, ( ) , ( ) , ( ) , ( ) , ( ) , ( )

1/ 2 1/ 23/ 21 , ( ) , ( )

1 1exp ( ) ( ) ( ) exp ( ) ( ) ( )
1 2 2( , ) [ ( )]

2 (2 )

T T
P b i P b i P b i C b i C b i C b iM

i P b i C b i

p u u b i
M

δ
π π

− −

=

⎛ ⎞ ⎛ ⎞− − − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= −∑

x xx μ x μ c μ c μ
x

∑ ∑

∑ ∑

 , ( ) , ( ) , ( ) , ( )
1

1 ( , ) ( , ) [ ( )]
M

P P b i P b i C C b i C b i
i

K K u b i
M

δ
=

− − −∑ xx μ c μ∑ ∑                (3-6) 

where ( )b i  is the color bin which pixel i belongs to. PK  and CK  are multivariate 

Gaussian kernel functions. We use the delta function whose role is the Gaussian 

function in (3-3), the difference of these two concepts is that the Gaussian function 

contains the smoothed component but the delta function does not. We can also regard 

PK  and CK  as the spatially weighted and color-feature weighted function. 

3.4.2 Similarity Measure Function 

Similar with the concept of the expectation of the estimated kernel density as (3-5), 

we can get a new similarity measure function among the model 1,...{ , }x i i i MI u == x  and 

candidate 1,...,{ , }y j j j NI v == y  as 

1

1( , ) ( ) ( , )
N

x y j j
j

J I I J p v
N =

= = ∑y y  

   , ( ) , ( ) , ( ) , ( )
1 1

1   ( , ) ( , ) [ ( )]
j

N M

P j P b i P b i C C b i C b i j
j i

K K v b i
NM

δ
= =

= − − −∑∑ yy μ c μ∑ ∑       (3-7) 

As shown in Figure 3.4-1, if there is no deformation between candidate and target, 

and the distance of motion is not large between frames, we can consider the motion of 

object of two frames as a pure translation. Under these assumptions, the center of 

target with respect to the mean of location of the b-th bin in the model is in proportion 

to the center of candidate with respect to the mean of location of the b-th bin in the 

candidate image. So we can obtain 

, ( ) , ( )P b i P b j− = −μ x μ y                                          (3-8) 



 

21 

, ( ) , ( )P b i P b j= − +μ μ y x                                           (3-9) 

, ( )P b iμ
x

, ( )P b jμ

y

model
target

 

Figure 3.4-1 :  Illustration of pure translation. 

Substitute (3-9) into (3-7), we can obtain the new similarity measure function as 

follows. 

, ( ) , ( ) , ( ) , ( )
1 1

1( ) ( , ) ( , ) [ ( )]
j

N M

P j P b j P b i C C b i C b i j
j i

J K K v b i
NM

δ
= =

= − + − − −∑∑ yy y μ y x c μ∑ ∑  

(3-10) 

3.4.3 Spatial-Color Mean-Shift Tracker 

Similar with traditional Bhattacharyya coefficient method, we want to find the 

maximum value of the similarity measure to get the best candidate, so we let the 

gradient of the similarity function with respect to the vector y  be equal to 0. 

( )J∇ =y 0  

1
, ( ) , ( )

1 1

1 -( ) ( ) [ ( )]=
N M

P b i j P b j P C j
j i

K K v b i
NM

δ−

= =

⇒ − + − −∑∑ y μ y x 0∑  

1 1
, ( ) , ( ) , ( )

1 1 1 1
( ) [ ( )] ( ) ( ) ( ) [ ( )]

N M N M

P b i P C j P b i j P b j P C j
j i j i

K K v b i K K v b iδ δ− −

= = = =

⎧ ⎫
⇒ − − = − −⎨ ⎬

⎩ ⎭
∑∑ ∑∑y x y μ∑ ∑

 

1

1 1
, ( ) , ( ) , ( )

1 1 1 1
( ) [ ( )] ( ) ( ) [ ( )]

N M N M

P b i P C j P b i j P b j P C j
j i j i

K K v b i K K v b iδ δ
−

− −

= = = =

⎧ ⎫ ⎧ ⎫
− = − − −⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∑∑ ∑∑y x y μ∑ ∑

                                                             (3-11) 

(3-11) is the mean shift vector and also an iterative function with respect to y , and we 

rewrite (3-11) as 
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1

1 1
, ( ) , ( ) , ( )

1 1 1 1
( ) [ ( )] ( ) ( ) [ ( )] +

N M N M

new P b i P C j P b i j P b j P C j
j i j i

K K v b i K K v b iδ δ
−

− −

= = = =

⎧ ⎫ ⎧ ⎫
= − − −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭
∑∑ ∑∑y y μ x∑ ∑         

(3-12) 

where  

, ( ) , ( )

1
, ( ) , ( ) , ( )

1/ 2

, ( )

( , )

1exp ( ) ( ) ( )
2     

2

P j P b j old P b i

T
j P b j old P b i j P b j old

P b i

K

π

−

− + −

⎛ ⎞− − + − − + −⎜ ⎟
⎝ ⎠=

y μ y x

y μ y x y μ y x

∑

∑

∑

     (3-13) 

, ( ) , ( )

1
, ( ) , ( ) , ( )

1/ 23/2
, ( )

( , ) 

1exp ( ) ( ) ( )
2     

(2 )

j

j j

C C b i C b i

T
C b i C b i C b i

C b i

K

π

−

−

⎛ ⎞− − −⎜ ⎟
⎝ ⎠=

y

y y

c μ

c μ c μ

∑

∑

∑

                  (3-14) 

and newy  is the new position of the target which we want to track and oldy  is the 

current position. 

3.4.4 Another Derivation of the New Mean-Shift Tracker 

Now we want to use another method to derive the second similarity-based 

mean-shift tracker. As the kernel density estimation model (3-6) which we defined in 

3.4.1, if we replace x  by ix , and xc  by ic  in (3-6), we can get a new kernel density 

estimation function as 

, ( ) , ( ) , ( ) , ( )
1

1( ) ( , ) ( , ) [ ( )]
M

P i P b i P b i C i C b i C b i
i

p u K K u b i
M

δ
=

= − − −∑ x μ c μ∑ ∑         (3-15) 

where 

1
, ( ) , ( ) , ( )

, ( ) , ( ) 1/ 2

, ( )

1exp ( ) ( ) ( )
2( , )

2

T
i P b i P b i i P b i

P i P b i P b i

P b i

K
π

−⎛ ⎞− − −⎜ ⎟
⎝ ⎠− =

x μ x μ
x μ

∑
∑

∑
      (3-16) 
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1
, ( ) , ( ) , ( )

, ( ) , ( ) 1/ 23/2
, ( )

1exp ( ) ( ) ( )
2( , ) 

(2 )

T
i C b i C b i i C b i

C i C b i C b i

C b i

K
π

−⎛ ⎞− − −⎜ ⎟
⎝ ⎠− =

c μ c μ
c μ

∑
∑

∑
      (3-17) 

PK  and CK  are also the spatially weighted and color-feature weighted functions, but 

these two weighted functions are depend on the image model. 

With similar concept of the expectation of the estimated kernel density used in 

3.4.2, we define another new similarity measure function between the model 

1,...,{ , }x i i i MI u == x  and candidate 1,...,{ , }y j j j NI v == y  as 

1

, ( ) , ( ) , ( ) , ( )
1 1

1( , ) ( ) ( - ) ( )

1             ( - ) ( , ) ( , ) [ ( )]

N

x y j j
j

N M

j P i P b i P b i C i C b i C b i j
j i

J I I J G p v
N

G K K v b i
NM

δ

=

= =

= =

= − − −

∑

∑∑

y y y

y y x μ c μ∑ ∑
 

                                                             (3-18) 

where y  is the center of the candidate image, ( - )jG y y  is a weighted function which 

is spatially weighted depends on the candidate image. (3-18) is another new similarity 

measure function which we proposed. 

Now we let the gradient of the similarity function with respect to the vector y  be 

equal to 0 to find the maximum value of the similarity measure to obtain the best 

candidate. 

( )J∇ =y 0                                                (3-19) 

1 1

1 ( - ) '( - ) [ ( )]
N M

j j P C j
j i

G K K v b i
NM

δ
= =

⇒ − =∑∑ y y y y 0  

1 1 1 1

'( - ) [ ( )] '( - ) [ ( )]
N M N M

j P C j j j P C j
j i j i

G K K v b i G K K v b iδ δ
= = = =

⇒ − = −∑∑ ∑∑y y y y y y  
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1 1

1 1

'( - ) [ ( )]

'( - ) [ ( )]

N M

j j P C j
j i

N M

j P C j
j i

G K K v b i

G K K v b i

δ

δ

= =

= =

−
⇒ =

−

∑∑

∑∑

y y y
y

y y
             (3-20) 

So we obtain (3-20) which is another iterative mean shift vector and we rewrite 

(3-20) as 

1 1

1 1

'( - ) [ ( )]

'( - ) [ ( )]

N M

j old j P C j
j i

new N M

old j P C j
j i

G K K v b i

G K K v b i

δ

δ

= =

= =

−
=

−

∑∑

∑∑

y y y
y

y y
                       (3-21) 

where newy  is the new position of the target and oldy  is the current position. (3-21) 

contains the spatially weighted term '( - )old jG y y , and we choose function G as the 

Epanechnikov kernel function as 

21 ( 2)(1 ),  1
2( )

0,
d

d if
CK

otherwise

⎧ + − <⎪= ⎨
⎪⎩

x x
x                           (3-22) 

where d  is the dimension of space, dC  is the volume of the unit d-Dimension sphere. 

Letting 2( ) ( )K k=x x , we obtain 

1 ( 2)(1 ),  1
2( )

0,
d

d x if x
Ck x

otherwise

⎧ + − <⎪= ⎨
⎪⎩

                            (3-23) 

In image case, 2d = , so dC π=  and we obtain 

  
1 2(2 2)(1 ) (1- ),  1

( ) 2
0,

x x if x
k x

otherwise
π π

⎧ + − = <⎪= ⎨
⎪⎩

                      (3-24) 

Letting ( ) ( )G x k x= , we obtain 

2'( ) '( )G x k x
π

= = −                                           (3-25) 

which is a constant. The result is easy to compute and simpler, and this is the reason 

why we choose weighted function G as Epanechnikov kernel function. Finally, by 
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substituting (3-25) into (3-21), we can get the second similarity-based mean-shift 

algorithm as follows. 

1 1

1 1

[ ( )]

[ ( )]

N M

j P C j
j i

new N M

P C j
j i

K K v b i

K K v b i

δ

δ

= =

= =

−
=

−

∑∑

∑∑

y
y                                (3-26) 

(3-26) interprets that the object tracking algorithm is an iterative procedure which 

moves from current position oldy  to the new position newy . 

3.4.5 Spatial-Color Mean-Shift Tracking Procedure 

we have found the new spatial-color mean-shift tracking algorithms, single object 

tracking can be summarized as Figure 3.4-2 and Figure 3.4-3. 
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P b i

K
π
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y μ y x y μ y x∑
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, ( ) , ( ) , ( )
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, ( )
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(2 )

j j

T
C b i C b i C b i

C

C b i

K
π
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Figure 3.4-2 :  Spatial-color mean-shift tracking procedure of the first tracker. 
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1
, ( ) , ( ) , ( )

1/ 23/2
, ( )

1exp ( )( ) ( )
2
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T
i C b i C b i i C b i

C

C b i

K
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1 1

1 1

[ ( )]
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N M

j P C j
j i
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P C j
j i
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K K v b i
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δ
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∑∑
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, , , ,( ) , , , ,I b P b P b C b C bh b n= 〈 〉μ μ∑ ∑
(3-2)

bn
,P bμ

,P b∑
,C bμ

,C b∑

number of pixels in b-th bin.

mean vector of location in b-th bin.

covariance matrix of location in b-th bin.

mean vector of RGB feature in b-th bin.

covariance matrix of RGB feature in b-th bin.

1,...,b B=

 

Figure 3.4-3 :  Spatial-color mean-shift tracking procedure of the second tracker. 

3.5 Choice of the Color Feature Space 

In 3.2.2, we choose color space ( , , )R G B  as our color feature, so ,C bμ  is the 

3-dimension mean vector of values of ( , , )R G B  and ,C b∑  is the covariance matrix of 

( , , )R G B . The color space ( , , )R G B  is easily influenced by illumination that affects 

our tracking results greatly. So we take account of the normalized color space ( , , )r g b  

which is formed independently from varying lighting levels. The normalized color 
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space ( , , )r g b  is defined as 

( )
Rr

R G B
=

+ +
, 

( )
Gg

R G B
=

+ +
, 

( )
Bb

R G B
=

+ +
                    (3-27) 

The covariance matrix of the normalized color space ( , , )r g b  is near singular 

because the definition (3-27), so we choose ( , )r g  as the color feature space. Chapter 

4 will show that the experiment results of ( , )r g  is more robust about the variation of 

illumination than that of ( , , )R G B . 

3.6 Background-Weighted Information 

In many tracking applications, background information is an important issue. 

Exactly representing the target model is a difficult subject, and the system is always 

confused by the foreground feature with the background feature because the 

foreground always contains the background information. The proposed tracking 

method is based on the similarity between the target and the candidate; therefore, how 

to represent the foreground model is very important. Further, the improper 

representation of the foreground may concern with the scale and orientation selection 

algorithm, and obtain inappropriate scale. In this chapter, we derive a simple 

weighted-background representation and add this approach to the spatial-color 

mean-shift trackers which we proposed before. 

 Let ,F bN  as the normalized histogram of the foreground of the b-th bin 

( , 1O b
b

N =∑ ), and ,O bN  as the normalized histogram of the background of the b-th bin 

( , 1F b
b

N =∑ ). The histogram of background is computed in the region around the 

foreground (target). We define weights as 
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, ,1 ,2 ,
,

, ,1 ,2 ,

, ,

max( , ,..., ),   0

1,  0    0
0,

F b F F F B
O b

O b O O O B

b F b O b

N N N N
if N

N N N N
W if N and N

otherwise

⎧
× ≠⎪

⎪⎪= ≠ =⎨
⎪
⎪
⎪⎩

   (3-28) 

The weights transformation diminishes the effect of features which contribute more to 

the background than to the foreground. 

Now we add the weighted-background information to the mean-shift trackers 

developed in 3.4 and re-derive the revised weighted spatial-color mean-shift as follows. 

We add the weights to (3-7) and (3-18), and obtain 

( )
1

1( , ) ( ) ( , )
N

x y b j j j
j

J I I J W p v
N =

= = ∑y y                              (3-29) 

( ) j
1

1( , ) ( ) G( - ) ( )
N

x y b j j
j

J I I J W p v
N =

= = ∑y y y                           (3-30) 

By similar derivation in 3.4, we can obtain the final spatial-color mean-shift 

tracker functions which contain the weighted-background information from (3-29) and 

(3-30). 

1

1 1
, ( ) ( ) , ( ) , ( ) ( )

1 1 1 1
( ) [ ( )] ( ) ( ) [ ( )] +

N M N M

new P b i b j P C j P b i j P b j b j P C j
j i j i

W K K v b i W K K v b iδ δ
−

− −

= = = =

⎧ ⎫ ⎧ ⎫
= − − −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭
∑∑ ∑∑y y μ x∑ ∑

                                                                (3-31) 

j ( )
1 1
N

( )
j=1 1

[ ( )]
=

[ ( )]

N M

b j P C j
j i

new M

b j P C j
i

W K K v b i

W K K v b i

δ

δ

= =

=

−

−

∑∑

∑∑

y
y                                      (3-32) 

3.7 Update of Scale and Orientation 

In computer vision and image processing, the object always changes its scale 

when it is away from the camera or toward the camera. In the situation of zoom in and 

zoom out of camera, the size of object body is also different between image frames. As 
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shown in Figure 3.7-1, if the object size is smaller than tracking window, it will contain 

many background pixels as well as the foreground object pixels. This problem causes 

wrong tracking result with noisy background pixels when a histogram computed within 

the window is compared to a model histogram describing the appearance of the 

foreground object. If the object size is larger than tracking window, it will cause the 

tracker to become more easily distracted by background clutter. 

 
Figure 3.7-1 :  Illustration of scale problem. (The figure is obtained from [4]) 

The orientation problem is similar with the scale problem. A fixed window may 

not contain all regions of the tracked object if it appears the variation of orientation and 

results in the failure of tracking. In the later section, we will use part of principal 

component analysis method to solve these two problems. 

3.7.1 Introduction of Principal Component Analysis 

Principal component analysis (PCA) is mathematically defined as an orthogonal 

linear transformation that transforms the data to a new coordinate system such that the 

greatest variance by any projection of the data comes to lie on the first coordinate 

which is the first principal component, the second greatest variance on the second 

coordinate, and so on. 

Assume the sample covariance matrix of standardized matrix X ( PR∈X ) to be 

1
1

T

N
=

−
R X X                                               (3-33) 

The principal component analysis problem can be derived to be as the eigen-equation 

problem [13]. 
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λ=Rv v                                                  (3-34) 

By solving this eigen-equation, we can obtain eigen-values 1,...,{ }i i Pλ =  and 

eigen-vectors 1,...,{ }i i P=v , respectively. The largest eigen-vector is the largest principal 

component which is the direction that makes variance of the projected data to be 

maximum, and the smallest principal component is the direction that makes that 

variance minimum as shown in Figure 3.7-2. In 2-dimension image data case, by this 

method we can obtain two eigen-values and two eigen-vectors which represent the 

orthogonal axes of data, respectively. 

 

Figure 3.7-2 :  Illustration of principal component analysis. 

3.7.2 Orientation Selection by Principal Component Analysis 

We can get the orientation of the total sample data by the concept of PCA method 

by previous section. Because we have computed some information about the image 

data location, we can use these data to get the total covariance matrix of total data for 

reducing the computation. In this section, we want to derive the covariance matrix of 

total image data from the elements which we defined in 3.2.2. Above all, we review the 

Largest Principal 

Component

Smallest Principal 
Component 

1v

2v
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definition of some elements of model which we defined in (3-2) as follows. ,P bμ  is 

mean vector of locations of pixels which belong to the b-th bin, ,P b∑  is covariance 

matrix of location of pixels of the b-th bin, and B is the bin number which we 

classified. 

,
1

P b i
i bbN ∈

= ∑μ x                                             (3-35) 

, , ,( - )( - )T
P b i P b i P b

i b∈

=∑ x μ x μ∑                                  (3-36) 

And we define several new elements as follows. Tμ  is the total mean vector of 

the locations of all pixels in the target, W∑  is the within-class covariance matrix of the 

B bins, B∑  is the between-class covariance matrix of the B bins, and T∑  is the total 

covariance matrix of locations of all data. 

T ,
1

b P b
b

N
N

= ∑μ μ                                           (3-37) 

, ,( - )( - )T
W i P b i P b

b i b∈

=∑∑ x μ x μ∑                                (3-38) 

, T , T( - )( - )T
B b P b P b

b
N=∑ μ μ μ μ∑                               (3-39) 

1

1 ( - )( - )   
1

N
T

T i T i T
iN =

=
− ∑ x μ x μ∑                               (3-40) 

Decomposing T∑ , we get some derivation results. 

1
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1

N
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=
− ∑ x μ x μ∑  

   , , , ,
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1
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= + +
− ∑∑ x μ μ μ x μ μ μ  

, , , ,

, , , ,
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1 1
1 1   ( - )( - ) ( - )( - )   

1 1

T T
i P b i P b i P b P b T

b i b b i b

T T
P b T i P b P b T P b T

b i b b i b

N N

N N

∈ ∈

∈ ∈
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− −

∑∑ ∑∑

∑∑ ∑∑
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μ μ x μ μ μ μ μ
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Because  

, , , ,

, , ,

( - )( - ) ( - ) ( - )

                                         ( - )( - )

                                          

TT
P b T i P b P b T i P b

b i b b i b
T

P b T b P b b P b
b

N N
∈ ∈

=

=

=

∑∑ ∑ ∑

∑

μ μ x μ μ μ x μ

μ μ μ μ

0

 

, we can obtain 

, , , ,
1 1( - )( - ) ( - )( - )

1 1
     

T T
T i P b i P b P b T P b T

b i b b i b

W B

N N∈ ∈

= +
− −

= +

∑∑ ∑∑x μ x μ μ μ μ μ∑

∑ ∑
    (3-41) 

Therefore, we can get the total covariance matrix of all image data from the 

elements of model which we have defined, and we substitute T∑  into R in (3-34) as 

  T λ=v v∑                                                  (3-42) 

By solving this eigen-equation, we can get two eigen-vectors 1v  and 2v  with 

respect to the largest principal component and smallest principal component, 

respectively. If we use ellipse as the region of the target, the largest principal 

component represents the long axis and the smallest principal component represents 

the short axis as shown in Figure 3.7-2. 

3.7.3 Adding Weighted-Background Information 

In 3.6, we have discussed the influence of background information about the scale 

and orientation selection. For improving robustness and accurate of scale and 

orientation selection, we add the weighted background information to (3-41), and 

obtained the total covariance matrix with weighted-background information. 
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                                                             (3-43) 

We change (3-42) as '
T λ=v v∑  and solve eigen-vectors again, and we obtain the 

more accurate direction of long axis and short axis. 

3.7.4 Scale Selection 

By the total covariance matrix, we can get orientation of the distribution of target 

image data by the axes of ellipse, but we can not obtain the length of axes. Now we 

want to know the relation between total covariance matrix and two axes. 

We consider a uniform ellipse distribution, and assume probability of this ellipse 

is 1
abπ

. Now we compute the variances along two axes. 
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where xxσ  and yyσ  are elements of total covariance matrix ' xx xy
T

xy yy

σ σ
σ σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

∑ , and 

we can obtain 

2 2

2 2
xx x

yy y

a

b

σ σ

σ σ

= =

= =
                                                 (3-46) 

The values of two axes are about double of variances along the long axis and short 

axis. 

3.8 Summary 

In the previous section, we obtain the spatial-color mean-shift trackers, now we 

summarize these concepts as Figure 3.8-1 and Figure 3.8-2. 
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Figure 3.8-1 :  Complete spatial-color mean-shift tracking procedure of the first tracker. 
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Figure 3.8-2 :  Complete spatial-color mean-shift tracking procedure of the second tracker. 
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Chapter 4.  Experiment Results 

4.1 Experiment Illustration 

The proposed spatial-color mean-shift tracking algorithms have been 

implemented in C and tested on a 2.8GHz Pentium 4 PC with 1GB memory. We divide 

the color histograms into 512 bins, i.e. the B of (3-2) is equal to 512.  In the first part, 

we show our experiment results with the steps of what we developed our final trackers 

in chapter 3 in order, and present the tracking results with single scale experiment. We 

use the face sequence for face tracking, the cup sequence with complex appearance in 

complex background, and the walking girl sequence which is obtained from [14] with 

partial occlusions. In the second part, we present the experiment results with the boy 

walking sequence and surveillance sequence. The first sequence is the person away 

from the camera and toward the camera with huge variation of scale. The second 

sequence which is obtained from the CAVIAR database [15] illustrates the problem of 

huge deformation. The image size of face sequence, cup sequence, walking girl 

sequence, and walking boy sequence are 320x240, and the image size of surveillance 

sequence is 352x288. The tracking window sizes of face sequence, cup sequence, 

walking girl sequence are 59x82, 50x65, and 27x98, respectively. 

 We define (3-12) and the extension part as tracker 1, and (3-26) and the extension 

part as tracker 2. In the later section, we will compare the proposed tracker 1 and 

tracker 2 with the traditional mean-shift tracker, i.e. (2-16), and the general scale 

adaptation method with plus or minus 10 percent [1]. 

About the experiment results, we show part of the real tracking sequence, the 

distance error figure, and iteration num figure. We define the correct location of the 
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object every 10 frames by hand in advance, and use these data to analysis the tracking 

results. We discard the distance error which is larger than 50 pixels that shows the 

tracker loses the target. The iteration number is the frequency of tracker finding the 

target in that frame in the iterative procedure. Finally, the computing time of the 

proposed trackers will be discussed. 

4.2 Spatial-Color Mean-Shift Trackers with RGB Feature 

In this section, we present the experiment results of trackers with RGB color 

feature that we proposed in 3.4, and we define (3-12) as tracker 1 and (3-26) as tracker 

2. 

4.2.1 Face Sequence 
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Figure 4.2-1 :  Face tracking results of spatial-color mean-shift trackers proposed in 3.4. Shown are frames 33, 

93, 117, 126, 183, 256, 271, 455, 766. (red: tracker 1, blue: tracker 2, green: traditional mean-shift tracker) 

 

 
Figure 4.2-2 :  Distance error of face sequence of spatial-color mean-shift tracker1 and tracker 2 proposed in 

3.4 that is compared with traditional mean-shift tracker. (*note: we only consider the distance error which is 

smaller than 50 pixels) 

 

 

Figure 4.2-3 :  Iteration number of face tracking sequence. (left: tracker1, middle: tracker2, right: traditional 

mean-shift tracker) 

 At about 120th frame, tracker 1 loses the face and captures the target again at 

about 950th frame. In the situation of face being captured of three trackers, the distance 

errors of tracker 1 and tracker 2 are always smaller than those of traditional mean-shift 
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tracker. The average of iteration number of traditional mean-shift tracker is smaller 

than the other trackers. Up to now, the tracker 2 which we developed is not robust and 

more unstable than the traditional mean-shift tracker, but the tracker 1 is better about 

accurately tracking. 

4.2.2 Cup Sequence 

 

Figure 4.2-4 :  Cup tracking results of spatial-color mean-shift trackers proposed in 3.4. Shown are frames 4, 45, 

63, 69, 81, 105, 166, 243, 364. (red: tracker 1, blue: tracker 2, green: traditional mean-shift tracker) 
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Figure 4.2-5 :  Distance error of cup sequence of spatial-color mean-shift tracker1 and tracker 2 proposed in 3.4 

that is compared with traditional mean-shift tracker. (*note: we only consider the distance error which is smaller 

than 50 pixels) 

 

 

Figure 4.2-6 :  Iteration number of cup sequence. (left: tracker1, middle: tracker2, right: traditional mean-shift 

tracker)  

 At most frames, the tracker 1 and tracker 2 lose the target, and the mean-shift 

tracker has weakly capturing. Because the background of this scene is very complex 

and the appearance of cup which we want to track is also complex, the trackers easily 

track the background object. The tracker 1 and tracker 2 contain the spatial 

information, so the trackers easily capture the background region which involves the 
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similar spatial information when the cup is swayed. The traditional mean-shift tracker 

only contains the color distribution information, so it is easily affected by the complex 

background information and can not accurately track the target. 

4.2.3 Walking Girl Sequence 

 

Figure 4.2-7 :  Walking girl tracking results of spatial-color mean-shift trackers proposed in 3.4. Shown are 

frames 28, 106, 111, 124, 130, 153, 166, 196, .220. (red: tracker 1, blue: tracker 2, green: traditional mean-shift 

tracker) 
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Figure 4.2-8 :  Iteration numbers of walking girl sequence. (left: tracker1, middle: tracker2, right: traditional 

mean-shift tracker) 

 The walking girl sequence contains the problem of variation of illumination and 

partial occlusion. The variation of illumination from darker to bright and all trackers 

are not robust with this situation. At 111th frame, part of girl has be covered by the car 

and the tracker 1 and traditional mean-shift tracker still track the girl, but the tracker 2 

loses her. The trackers are not better enough. 

4.3 Spatial-Color Mean-Shift Trackers with Normalized Feature 

In order to reduce the influence of the slight variation of illumination, the 

normalized feature rg is used in 3.5. Similar with 4.2, the tracker 1 is defined as (3-12) 

with rg feature and the tracker 2 is defined as (3-26) with rg feature. 

4.3.1 Face Sequence 

 Tracker 1 
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Figure 4.3-1 :  Face tracking results of spatial-color mean-shift tracker 1 with rg feature in 3.5. Shown are 

frames 33, 93, 117, 126, 183, 256, 271, 455, 766. (red: tracker 1 with rg feature, blue: tracker 1 with RGB 

feature) 

 

 
Figure 4.3-2 :  Distance error of face sequence of spatial-color mean-shift tracker1 with rg feature that is 

compared with that with RGB feature in 3.5. (*note: we only consider the distance error which is smaller than 50 

pixels) 
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Figure 4.3-3 :  Iteration numbers of face sequence. (left: tracker1 with rg feature, right: tracker 1 with RGB 

feature) 

 As shown in Figure 4.3-2, the tracker 1 with rg feature loses the target at about 

1190th frame because at the left top of the scene there is a box which has similar 

appearance with face. In the situation of the face being tracked, the distance errors of 

tracker 1 with rg feature are more accurate than those of tracker 1 with RGB feature, 

and the average of iteration number of tracker 1 with rg feature is smaller than that of 

tracker 1 with RGB feature. Changing feature space to the normalized feature space 

can speed up the performance of tracker. 

 

 Tracker 2 
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Figure 4.3-4 :  Face tracking results of spatial-color mean-shift tracker 2 with rg feature in 3.5. Shown are 

frames 33, 93, 117, 126, 183, 256, 271, 455, 766. (red: tracker 2 with rg feature, blue: tracker 2 with RGB 

feature) 

 

 
Figure 4.3-5 :  Distance error of face sequence of spatial-color mean-shift tracker2 with rg feature that is 

compared with that with RGB feature in 3.5. (*note: we only consider the distance error which is smaller than 50 

pixels) 



 

48 

 

 
Figure 4.3-6 :  Iteration numbers of face sequence. (left: tracker2 with rg feature, right: tracker 2 with RGB 

feature) 

 Figure 4.3-5 shows that the tracker 2 with rg feature makes tracking more 

‘workable’ than the tracker 2 with RGB feature. The performance of tracker 2 with rg 

feature is better than that of tracker 1 with RGB feature. 

4.3.2 Cup Sequence 

 Tracker 1 
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Figure 4.3-7 :  Cup tracking results of spatial-color mean-shift tracker 1 with rg feature in 3.5. Shown are 

frames 4, 45, 63, 69, 81, 105, 166, 243, 364. (red: tracker 1 with rg feature, blue: tracker 1 with RGB feature) 

 

 
Figure 4.3-8 :  Distance error of cup sequence of spatial-color mean-shift tracker 1 with rg feature that is 

compared with that with RGB feature in 3.5. (*note: we only consider the distance error which is smaller than 50 

pixels) 
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Figure 4.3-9 :  Iteration number of cup sequence. (left: tracker 1 with rg feature, right: tracker 1 with RGB 

feature) 

 Change of the feature space with the cup sequence does not improve the tracking 

performance obviously. Because the variation of illumination is not large, the results of 

using rg feature are as well as that of using RGB feature. 

 

 Tracker 2 
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Figure 4.3-10 :  Cup tracking results of spatial-color mean-shift tracker 2 with rg feature in 3.5. Shown are 

frames 4, 45, 63, 69, 81, 105, 166, 243, 364. (red: tracker 2 with rg feature, blue: tracker 2 with RGB feature) 

 

 
Figure 4.3-11 :  Distance error of cup sequence of spatial-color mean-shift tracker 2 with rg feature that is 

compared with that with RGB feature in 3.5. (*note: we only consider the distance error which is smaller than 50 

pixels) 

 



 

52 

 
Figure 4.3-12 :  Iteration numbers of cup sequence. (left: tracker 2 with rg feature, right: tracker 2 with RGB 

feature) 

 As shown in Figure 4.3-11, the tracker 2 with rg feature captures the target and 

tracks more accurately than the tracker 1 from 1st frame to about 350th frame. But 

looking at the overall distance errors, similar with the tracker 1 which uses the rg 

feature, the tracker 2 using the rg feature does not make tracking performance better. 

4.3.3 Walking Girl Sequences 

 Tracker 1 
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Figure 4.3-13 :  Walking girl tracking results of spatial-color mean-shift tracker 1 with rg feature in 3.5. Shown 

are frames 28, 106, 111, 124, 130, 153, 166, 196, .220. (red: tracker 1 with rg feature, blue: tracker 1 with RGB 

feature) 

 

 

Figure 4.3-14 :  Iteration numbers of walking girl sequence. (left: tracker 1 with rg feature, right: tracker 1 with 

RGB feature) 

 The tracker 1 with rg feature captures the girl from 1st frame to 111th frame, but 

loses it because the huge variation of illumination. The rg feature is not good enough 

to solve the huge variation of illumination. 

 
 Tracker 2 
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Figure 4.3-15 :  Walking girl tracking results of spatial-color mean-shift tracker 2 with rg feature in 3.5. Shown 

are frames 28, 106, 111, 124, 130, 153, 166, 196, .220. (red: tracker 2 with rg feature, blue: tracker 2 with RGB 

feature) 

 

 

Figure 4.3-16 :  Iteration numbers of walking girl sequence. (left: tracker 2 with rg feature, right: tracker 2 with 

RGB feature) 

 The tracker 2 with rg feature captures the girl at most frames, but loses the girl at 

about 70th frame because of the huge variation of illumination. Tracker 2 with rg 

feature is better than tracker 2 with RGB feature, and the total performance of tracker 

2 with rg feature is better than that of tracker 1 with RGB feature, obviously. 

 

4.4 Spatial-Color Mean-Shift Trackers with Normalized Feature 
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and Weighted Information 

Considering the background information, we add the weighted-background 

information to the trackers which we developed before. In this section, the tracker 1 is 

defined as (3-31) and the tracker 2 is defined as (3-32). 

4.4.1 Face Sequence 

 Tracker 1 

 

Figure 4.4-1 :  Face tracking results of spatial-color mean-shift tracker 1 with rg feature and 

weighted-background information in 3.6. Shown are frames 33, 93, 117, 126, 183, 256, 271, 455, 766. (red: 

tracker 1 with rg feature and weighted-background information, blue: tracker 1 with rg feature only) 
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Figure 4.4-2 :  Distance error of face sequence of spatial-color mean-shift tracker 1 with rg feature and 

weighted-background information in 3.6 that is compared with that with rg feature only. (*note: we only consider 

the distance error which is smaller than 50 pixels) 

 

 

Figure 4.4-3 :  Iteration number of face sequence. (left: tracker 1 with rg feature and weighted-background 

information, right: tracker 2 with rg feature only) 

Figure 4.4-2 shows that the performance of tracker 1 is more accurate than that of 

tracker 1 without the weighted-background information, and tracker 1 captures the 

target at all times. The average of iteration number of tracker 1 is larger than that of 

tracker 1 without weighted-background information, but the difference between these 
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two trackers is not large. In conclusion, the tracker 1 about the face tracking is much 

better. 

 

 Tracker 2 

 

Figure 4.4-4 :  Face tracking results of spatial-color mean-shift tracker 2 with rg feature and 

weighted-background information in 3.6. Shown are frames 33, 93, 117, 126, 183, 256, 271, 455, 766. (red: 

tracker 2 with rg feature and weighted-background information, blue: tracker 2 with rg feature only) 
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Figure 4.4-5 :  Distance error of face tracking sequence of spatial-color mean-shift tracker 2 with rg feature and 

weighted-background information in 3.6 that is compared with that with rg feature only. (*note: we only consider 

the distance error which is smaller than 50 pixels) 

 

 

Figure 4.4-6 :  Iteration numbers of face sequence. (left: tracker 1 with rg feature and weighted-background 

information, right: tracker 2 with rg feature only) 

 With the experiment result of tracker 2, Figure 4.4-5 also shows that the tracking 

results of tracker 2 is much better when adding the weighted-background information. 

The location of tracking is more accurate, and the iteration number of tracker 2 is 

about the same as the tracker 2 without the weighted-background information as 
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shown in Figure 4.4-6. 

 

 Tracker 1, Tracker 2, Traditional Mean-Shift Tracker 

 

Figure 4.4-7 :  Face tracking results of spatial-color mean-shift trackers with rg feature and 

weighted-background information in 3.6. Shown are frames 33, 93, 117, 126, 183, 256, 271, 455, 766. (red: 

tracker 1 with rg feature and weighted-background information, blue: tracker 2 with rg feature and 

weighted-background information, green: traditional mean-shift tracker) 
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Figure 4.4-8 :  Distance error of face sequence of spatial-color mean-shift trackers with rg feature and 

weighted-background information in 3.6. (*note: we only consider the distance error which is smaller than 50 

pixels) 

 

 

Figure 4.4-9 :  Iteration number of face sequence. (left: tracker 1 with rg feature and weighted-background 

information, middle: tracker 2 with rg feature and weighted-background information, right: traditional 

mean-shift tracker) 

We can see that the tracker 1 is the best tracker from the real face sequence as 

shown in Figure 4.4-7. The distance error of tracking results of the tracker 1, tracker 2, 

and the traditional mean-shift tracker are compared in Figure 4.4-8. In these three 

trackers, the tracking locations of tracker 1 are the most accurate than those of tracker 
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2 and than those of traditional mean-shift tracker. The iteration numbers of three 

trackers are about the same. Summary of all, the spatial-color mean-shift tracker 1 is 

the best, and the spatial-color mean-shift tracker 2 is better than the traditional 

mean-shift tracker. 

4.4.2 Cup Sequence 

 Tracker 1 

 

Figure 4.4-10 :  Cup tracking results of spatial-color mean-shift tracker 1 with rg feature and 

weighted-background information in 3.6. Shown are frames 4, 45, 63, 69, 81, 105, 166, 243, 364. (red: tracker 1 

with rg feature and weighted-background information, blue: tracker 1 with rg feature only) 
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Figure 4.4-11 :  Distance error of cup sequence of spatial-color mean-shift trackers with rg feature and 

weighted-background information in 3.6. (*note: we only consider the distance error which is smaller than 50 

pixels) 

 

 
Figure 4.4-12 :  Iteration number of cup sequence. (left: tracker 1 with rg feature and weighted-background 

information, right: tracker 1 with rg feature only) 

 With this sequence of complex background and complex appearance of target, the 

performance of the tracker 1 is strongly improved, obviously. The tracker 1 captures 

the target at all times when the tracker 1 without weighted-background information 
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always loses the target. 

 
 Tracker 2 

 

Figure 4.4-13 :  Cup tracking results of spatial-color mean-shift tracker 2 with rg feature and 

weighted-background information in 3.6. Shown are frames 4, 45, 63, 69, 81, 105, 166, 243, 364. (red: tracker 2 

with rg feature and weighted-background information, blue: tracker 2 with rg feature only) 
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Figure 4.4-14 :  Distance error of cup sequence of spatial-color mean-shift tracker with rg feature and 

weighted-background information in 3.6. (*note: we only consider the distance error which is smaller than 50 

pixels) 

 

 

Figure 4.4-15 :  Iteration numbers of cup sequence. (left: tracker 2 with rg feature and weighted-background 

information, right: tracker 2 with rg feature only) 

 Similar with tracker 2, the tracker is improved after adding weighted-background 

information and captures the target at all times.  

 
 Tracker 1, Tracker 2, Traditional Mean-Shift Tracker 
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Figure 4.4-16 :  Cup tracking results of spatial-color mean-shift trackers with rg feature and 

weighted-background information in 3.6. Shown are frames 4, 45, 63, 69, 81, 105, 166, 243, 364. (red: tracker 1 

with rg feature and weighted-background information, blue: tracker 2 with rg feature and weighted-background 

information, green: traditional mean-shift tracker) 

 

 

 
Figure 4.4-17 :  Distance error of cup sequence of spatial-color mean-shift trackers with rg feature and 
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weighted-background information in 3.6. (*note: we only consider the distance error which is smaller than 50 

pixels) 

 

 

Figure 4.4-18 :  Iteration number of cup sequence. (left: tracker 1 with rg feature and weighted-background 

information, middle: tracker 2 with rg feature and weighted-background information, right: traditional 

mean-shift tracker) 

 As shown in Figure 4.4-16, the all trackers capture the target at all times, but the 

tracking locations of the tracker 1 and tracker 2 are more accurate than the traditional 

mean-shift tracker in the real image sequences. Figure 4.4-17 shows the distance errors 

of three trackers; the errors of tracker 1 and tracker 2 are about the same and are 

always smaller than those of traditional mean-shift tracker. The iteration numbers of 

the proposed trackers are quite similar with the traditional one as shown in Figure 

4.4-18. To sum up, the trackers which we developed up to this point is already better 

than the traditional one. 

4.4.3 Walking Girl Sequence 

 Tracker 1 
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Figure 4.4-19 :  Walking girl tracking results of spatial-color mean-shift tracker 1 with rg feature and 

weighted-background in 3.6. Shown are frames 28, 106, 111, 124, 130, 153, 166, 196, .220. (red: tracker 1 with 

rg feature and weighted-background, blue: tracker 1 with rg feature only) 

 

 

Figure 4.4-20 :  Iteration numbers of walking girl sequence. (left: tracker 1 with rg feature and 

weighted-background, right: tracker 1 with rg feature only) 

 Under these circumstances of the variation of illumination and partial occlusion, 

Figure 4.4-19 shows that the tracker 1 captures the target when tracker 1 without 

weighted-background always fail. When the target has been covered by the cars from 

106th frame to 220th frame, the tracker 1 still captures the target. 

 
 Tracker 2 
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Figure 4.4-21 :  Walking girl tracking results of spatial-color mean-shift tracker 2 with rg feature and 

weighted-background in 3.6. Shown are frames 28, 106, 111, 124, 130, 153, 166, 196, .220. (red: tracker 2 with 

rg feature and weighted-background information, blue: tracker 2 with rg feature only) 

 

 

Figure 4.4-22 :  Iteration numbers of walking girl sequence. (left: tracker 2 with rg feature and 

weighted-background, right: tracker 2 with rg feature only) 

 Figure 4.4-21 shows that the tracker 2 fails during the tracking process. At 153rd 
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frame, the tracker 2 fails and captures the background object because the appearance 

of the region which tracker 2 tracks is very similar with the girl model which we want 

to track. The tracker 2 uses the spatial information and the spatial information of the 

background region at 153rd frame has very similar part, and this is the reason why 

tracker 2 fails. 

 
 Tracker 1, Tracker 2, Traditional Mean-Shift Tracker 

 

Figure 4.4-23 :  Walking girl tracking results of spatial-color mean-shift trackers with rg feature and 

weighted-background in 3.6. Shown are frames 28, 106, 111, 124, 130, 153, 166, 196, .220. (red: tracker 1 with 

rg feature and weighted-background, blue: tracker 2 with rg feature and weighted-background, green: traditional 

mean-shift tracker) 
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Figure 4.4-24 :  Iteration numbers of walking girl sequence. (left: tracker 1 with rg feature and 

weighted-background, middle: tracker 2 with rg feature and weighted-background, right: traditional mean-shift 

tracker) 

 All trackers are placed in Figure 4.4-23 to be compared the performance and 

results. To sum up, the tracker 1 always captures the target girl under the 

circumstances of the variation of illumination and partial occlusion, but the tracker 2 

and traditional mean-shift fail in the tracking process. The spatial-color mean-shift 

tracker 1 is the best tracker which we developed. 

4.5 Spatial-Color Mean-Shift Trackers with Scale and 

Orientation 

In this section, the scale and orientation method in 3.7 is applied. The procedure 

of Figure 3.8-1 is defined as the tracker 1 and the procedure of Figure 3.8-2 is defined 

as the tracker 2. 

4.5.1 Walking Person Sequence 

 Tracker 1 
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Figure 4.5-1 :  Walking person tracking results of spatial-color mean-shift tracker1 with PCA scale method. 

Shown are frames 83, 358, 409, 494, 513, 598, 655, 689, 733, 854, 914, and 1000. 

 

 Tracker 2 
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Figure 4.5-2 :  Walking person tracking results of spatial-color mean-shift tracker2 with PCA scale method. 

Shown are frames 83, 358, 409, 494, 513, 598, 655, 689, 733, 854, 914, and 1000. 

 
 Traditional Mean-Shift Tracker 
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Figure 4.5-3 :  Walking person tracking results of traditional mean-shift tracker with plus or minus 10 percent 

scale adaptation method. Shown are frames 83, 358, 409, 494, 513, 598, 655, 689, 733, 854, 914, and 1000. 
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Figure 4.5-4 :  Iteration number of walking person sequence. (left: tracker 1 with PCA scale method, middle: 

tracker 2 with PCA scale method, right: traditional mean-shift tracker with plus or minus 10 percent scale 

adaptation method) 

 Figure 4.5-3 shows the experiment results of traditional mean-shift tracker with 

plus or minus 10 percent scale adaptation method [1]. At each step of traditional 

mean-shift iteration, the mean-shift algorithm is run three times, once with current 

scale, and once with the window of plus or minus 10 percent of the current window 

size. The similarity measure Bhattacharyya coefficient is computed with different 

window sizes, and the window size yielding the largest Bhattacharyya coefficient is 

chosen as the current window size. In the tracking process, the tracker with traditional 

method can always capture the person, but the scale size is not accurate with the true 

one. 

 Figure 4.5-1 and Figure 4.5-2 are the spatial-color mean-shift trackers with PCA 

scale method which we proposed. With the person away from the camera and toward 

the camera, the two trackers capture the target at all times, and the scale size of the 

target is probably tracked, too. The proposed method is more robust and accurate than 

the traditional mean-shift method. 

4.5.2 Surveillance Sequences 

 Tracker 1 



 

75 

 

Figure 4.5-5 :  Surveillance Tracking results of spatial-color mean-shift tracker1 with PCA scale method. 

Shown are frames 3, 16, 24, 32, 51, 59, 76, 127, 286, 318, 332, and 353. 

 
 Tracker 2 



 

76 

 

Figure 4.5-6 :  Surveillance tracking results of spatial-color mean-shift tracker2 with PCA scale method. Shown 

are frames 3, 16, 24, 32, 51, 59, 76, 127, 286, 318, 332, and 353. 

 
 Traditional Mean-Shift Tracker 
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Figure 4.5-7 :  Surveillance tracking results of traditional mean-shift tracker with plus or minus 10 percent scale 

adaptation method. Shown are frames 3, 16, 24, 32, 51, 59, 76, 127, 286, 318, 332, and 353. 

 

 

Figure 4.5-8 :  Iteration number of surveillance sequence. (left: tracker 1 with PCA scale method, middle: 

tracker 2 with PCA scale method, right: traditional mean-shift tracker with plus or minus 10 percent scale 

adaptation method) 

 In surveillance sequence, a person walks, lies down, and finally stands up to keep 

walking. In these different actions, the target contains much deformation. Figure 4.5-5 
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and Figure 4.5-6 show that the trackers proposed in this thesis always track the target 

with the corresponding scale, orientation, and shape. Even though traditional 

mean-shift tracker captures the target at all times as shown in Figure 4.5-7, the scale 

size and orientation can not be fitted for the real one, the tracking window contains too 

many background information. By these sequences, the proposed trackers are more 

suitable for applying the surveillance applications than the traditional mean-shift 

tracker. 

4.6 Performance Analysis 

We have shown that the proposed trackers are more accurate than the traditional 

mean-shift tracker, and now we discuss the real time issue about the trackers. We 

separate the analysis into two parts. The first part is the preprocessing time of the 

model building, and the second part is the tracking time (iteration time). 

The face sequence and cup sequence are used to test the performance of the 

proposed trackers. The models are built from the first image of these two sequences, 

and the preprocessing procedure is executed five times to obtain the average 

computing time. The tracking time of each iteration of the first 200 frames are shown 

in figures, and the average time of total frames is presented. 

 

 Tracker 1 

Table 4.6-1 shows the preprocessing time of tracker 1 with RGB feature and 

without weighted-background information according to the preprocessing procedure as 

shown in Figure 3.4-2, and Table 4.6-2 shows the preprocessing time of tracker 1 with 

rg feature and weighted-background information according to the preprocessing 

procedure as shown in Figure 3.8-1. The procedure of converting the RGB feature 

space to the rg feature space and computing the weighted-background information is 
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added, so the preprocessing time as shown in Figure 3.8-1 is larger, but the average 

time is still small enough to let the tracking system be real time. 

Table 4.6-1 :  The preprocessing time of tracker 1 according to the procedure as shown in Figure 3.4-2. 

 1 2 3 4 5 Average time

Face sequence 0.006384 0.006994 0.006821 0.006322 0.006766 0.006657 

Cup sequence 0.005079 0.005184 0.005241 0.004497 0.005059 0.005012 

 

Table 4.6-2 :  The preprocessing time of tracker 1 according to the procedure as shown in Figure 3.8-1. 

 1 2 3 4 5 Average time

Face sequence 0.030134 0.026233 0.027771 0.025795 0.029355 0.027858 

Cup sequence 0.016165 0.015690 0.017430 0.018856 0.018387 0.017306 

 
 

 Figure 4.6-1 and Figure 4.6-2 show the iteration time of the first 200 frames of 

face sequence and cup sequence. The worst case is about 0.07 second for finishing one 

iteration of the face sequence, but the average time of total frames (about 2300 frames) 

is 0.035855 second (about 28 frames/sec). The average time of one iteration of total 

frames (about 1900 frames) of cup sequence is 0.017854 (about 56 frames/sec). The 

tracker 1 can achieve the standard of real time system. 

 

Figure 4.6-1 :  The tracking time of the first 200 frames of face sequence of tracker 1. 
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Figure 4.6-2 :  The tracking time of the first 200 frames of cup sequence of tracker 1. 

 

 Tracker 2 

The same as tracker 1, the procedure of converting the RGB feature space to the 

rg feature space and computing the weighted-background information is added, so the 

preprocessing time as shown in Figure 3.8-2 is larger, but it still achieves the standard 

of real time system. The average time of preprocessing of tracker 2 is larger than that 

of tracker 1 because the preprocessing procedure of tracker 2 includes the computing 

of PK  and CK . 

Table 4.6-3 :  The preprocessing time of tracker 2 according to the procedure as shown in Figure 3.4-3. 

 1 2 3 4 5 Average time

Face sequence 0.023081 0.021131 0.021117 0.021489 0.023731 0.022110 

Cup sequence 0.015975 0.015543 0.015505 0.015641 0.015808 0.015694 

 

Table 4.6-4 :  The preprocessing time of tracker 2 according to the procedure as shown in Figure 3.8-2. 

 1 2 3 4 5 Average time

Face sequence 0.030712 0.032042 0.030352 0.032472 0.030917 0.031299 

Cup sequence 0.020987 0.021176 0.021784 0.025734 0.022561 0.022448 
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Figure 4.6-3 and Figure 4.6-4 show the iteration time of the first 200 frames of 

face sequence and cup sequence. The average time of total frames (about 2300 frames) 

is 0.020670 second (about 48 frames/sec). The average time of one iteration of total 

frames (about 1900 frames) of cup sequence is 0.006608 (about 151 frames/sec). The 

tracking time of tracker 2 is smaller than that of tracker 1 because the procedure of 

tracking includes the computing of PK  and CK , but the tracker 2 computes PK  and 

CK  in the procedure of preprocessing. The tracker 2 can achieve the standard of real 

time system. 

 

Figure 4.6-3 :  The tracking time of the first 200 frames of face sequence of tracker 2. 

 

 

Figure 4.6-4 :  The tracking time of the first 200 frames of cup sequence of tracker 2. 
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Chapter 5.  Conclusion and Future Work 

The spatial-color mean-shift object tracking algorithm is proposed in this thesis. 

Combining the spatial information with color feature makes the model contain more 

robust information. The new trackers can be derived from the new similarity measure 

of concept of the expectation of the estimated kernel density. Using the principal 

component analysis and the extension method, the scale size and the orientation of the 

target can be updated. The new iterative tracking algorithm can be summarized as 

Figure 3.8-1 and Figure 3.8-2. 

The experiment results presented in chapter 4 show that the new trackers can track 

the target consistently, both in image location and in scale. The performance of 

tracking algorithm shown in Figure 3.8-1 is better than Figure 3.8-2, but these two new 

trackers are both much better than traditional mean-shift tracker under the different 

cases, such as face tracking, object tracking under complex background, and partial 

occlusion situation. The experiments results of scale and orientation show that the 

principal component analysis method is better than traditional scale adaptation method, 

and it can solve the problem of deformation. The performance analysis shows that the 

proposed trackers can achieve the standard of real-time system. 

There are several areas for improvement. First, the issue of model update is not 

addressed in this thesis. Under what conditions the target histogram need to be updated 

is a difficult problem, because it requires one to detect whether an observed 

appearance change is due to the target changing appearance or a temporary occlusion. 

Second, the huge variation of illumination is another problem. The variation of 

illumination makes the appearance of target quite different from the original model, 

and it makes the trackers confused and tracking results fail. 
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