Chapter 5

3D Metal-Gate/High-κ/GOI CMOSFETs on 1-Poly-6-Metal 0.18-μm Si Devices

5.1 Introduction

One of the biggest challenges for VLSI technology is the AC power consumption [5.1] caused by the interconnect parasitic capacitance $(Cv^2f/2)$, which becomes a major limit for VLSI ICs beyond the implementation of metal-gates and high-k nano-CMOS to solve the DC power in gate leakage [5.2]. Increasing operational frequency (f) of circuits with denser interconnects makes the AC power consumption even worse. A potential solution is three-dimensional (3D) integration which can effectively shorten the interconnect distances and therefore reduce the AC power consumption. Such 3D integration can also provide a way to increase the IC density [5.3] (equivalent to scaling down) once the quantum-mechanical scaling barrier is reached. However, the technology challenges are how to realize 3D ICs [5.4]-[5.6] with a low thermal budget and small impact on lower multiple interconnect and CMOSFET layers. Using the inherent low temperature process of the Ge-on-Insulator (GOI) technology [5.7]-[5.13], we have self-aligned IrO₂-IrO₂/Hf dual-gated/LaAlO₃/GOI CMOSFETs integrated on 1-Poly-6-Metal (1P6M) 0.18-µm Si devices. The process yields GOI CMOSFETs with high hole and electron mobilities, without degrading the underlying Si devices. This approach is promising for future high performance VLSI ICs. However, unlike SiO₂, high- κ gate dielectrics exhibit significant charge trapping, causing the threshold voltage (V_t) to shift under applied voltage and raised temperature conditions. Such Bias-Temperature-Instability (BTI) [5.14], [5.15]-[5.16] of V_t with time creates a severe reliability concern for ICs, where the use of high- κ gate dielectrics is more problematic than oxynitrides in devices [5.17]-[5.18]. In addition to the charge trapping, the poor BTI in high- κ CMOSFETs may be related to impurity diffusion from the gate [5.19], and from the use of processing water and/or hydrogen annealing after device fabrication [5.17]-[5.18]. In this paper we report the BTI of three-dimensional (3D) self-aligned metal-gate/high- κ /Germanium-on-insulator (GOI) CMOSFETs and compare the results with those from control Si devices.

5.2 Experimental Procedure

The self-aligned 3D GOI CMOSFETs were formed by depositing 200-nm PECVD oxide on both H⁺-implanted Ge $(5\times10^{16} \text{ cm}^{-2} \text{ dose at } 200 \text{ KeV})$ and 1P6M 0.18-µm MOSFETs wafers, O₂ plasma enhanced bonding, a 300 °C "smart cut", 400°C annealing for 0.5 hour, and then slight polishing [5.7]-[5.9], [5.12]-[5.13]. Both (100) and (110) n-Ge and (100) p-Ge substrates were used for the 3D GOI. The LaAlO₃ gate

dielectric was deposited by PVD from a LaAlO₃ source ($\kappa = 25.1$) followed by 400°C oxidation [5.12]-[5.13]. Then a 150-nm IrO₂ or 150-nm IrO₂/15-nm Hf gate was deposited on the LaAlO₃ by PVD for the p- or n-MOSFETs respectively. Low work-function Hf was used for n-MOSFETs, similar to fully silicided NiSi:Hf/Al₂O₃ devices [5.12]-[5.13]. The IrO₂/LaAlO₃ p-MOSFETs or IrO₂/Hf/LaAlO₃ n-MOSFETs was formed by self- aligned 25 keV boron or 35 keV phosphorus implantation, followed by a 500°C RTA.

5.3 Results and discussion

Fig. 5-1 plots the flat band voltage (V_{fb}) as a function of different EOT thickness of LaAlO₃ gate dielectric with IrO₂ and IrO₂/Hf gates after 550°C-950°C RTA. The Ir gate on LaAlO₃/Si MOS capacitor was also measured as reference, where the low temperature 550°C RTA was used to minimize the possibility of Ir oxidization by the residual moisture or oxygen under a nitrogen ambient. It is noticed that the extracted work-function for IrO₂ on LaAlO₃ is 5.1 eV and the increasing RTA temperature from 750 to 950°C only cause a small work-function reduction. In addition, the work-function is reduced to 4.4 eV by adding 15nm-Hf on LaAlO₃.

Fig. 5-2(a) shows the comparison of gate dielectric leakage current of $IrO_2/LaAlO_3$ and $Ir/LaAlO_3$ capacitors as a function of V_g - V_{fb} . The gate leakage current is ~one order of magnitude lower using IrO_2 than Ir. Similar lower dielectric leakage current is also reported in ferro-electric capacitors [5.20], which is most probably due to smaller metal diffusion in more thermal-dynamic stable IrO_2 than pure metallic Ir. Fig. 5-2(b) shows the J_g-V_g curves of IrO2/Hf or IrO2 on Si or GOI MOSFETs using LaAlO3 gate-dielectrics. The LaAlO3 gate-dielectrics can minimize the residual moisture or oxygen under a nitrogen ambient from 750 to 950°C and only cause J_g-V_g curves a small variable.

Figs. 5-3(a) and 5-3(b) show the C-V characteristics of self-aligned of IrO2/Hf or IrO2 on Si or GOI CMOSFETs using LaAlO3 gate-dielectrics. The same inversion and accumulation capacitance value indicates the metal-like IrO₂ gate without gate depletion. An EOT thickness of 1.4 nm is obtained from the measured capacitance for IrO₂ or IrO2/Hf gates on LaAlO₃/Si CMOSFETs.

Figs. 5-4(a) and 5-4(b) show I_d - V_d characteristics for a family of $/V_g$ - V_t / values of 3D LaAlO₃/GOI CMOSFETs and 2D LaAlO₃/Si CMOSFETs with metal-like IrO₂/Hf and IrO₂ dual gates. An EOT of 1.4-nm was obtained from the *C*-*V* measurements. To the best of our knowledge these good results are the first demonstration of 3D integration, using a process compatible with current VLSI technology, which does not degrade the lower layer MOSFETs. The (110) p-MOSFETs had higher drive current than the (100) devices - such hole mobility enhancement has been reported in the literature [5.21].

Figs. 5-5(a) and 5-5(b) show $I_d - V_g$ characteristics of 3D LaAlO₃/GOI CMOSFETs and 2D LaAlO₃/Si CMOSFETs with metal-like IrO₂/Hf and IrO₂ dual gates. The threshold voltage of ~0.25V is measured in (110)Ge, reflecting high work-function and little Fermi-level pinning. Future work, we must reduce the work-function of n-MOSFETs to show lower threshold voltages.

The IrO₂/Hf/LaAlO₃/GOI n-MOSFETs have a peak electron mobility of 357 cm²/Vs and values close to universal electron mobility at higher E_{eff} (Figs. 5-6(a)). Peak hole mobilities of 181 and 234 cm²/Vs were measured for the IrO₂/LaAlO₃/GOI p-MOSFETs on (100) and (110) substrates, respectively(Fig. 5-6(b)). These hole mobilities are higher than universal mobility values. The 136 and 156 cm²/Vs values at E_{eff} of 1 MV/cm are 2.2- and 2.5-times higher than that of the universal hole mobility. Such mobility enhancement reflects the smaller Ge effective mass than Si [5.11].

In Figs. 5-7(a) and 5-7 (b) we show the ΔV_t with BT stress time at 10 MV/cm and 85°C for the 3D GOI and control 2D Si p- and n-MOSFETs, respectively. After 1 hour of BT stress, the ΔV_t of 3D metal-gate/high- κ /GOI CMOSFETs was -30 and 21 mV for the p- and n-MOSFETs respectively, which is slightly larger than the control 2D Si CMOSFETs. These results are comparable with TaN/HfAIO [5.19] and poly-Si/HfSiON [5.22] devices, suggesting that the major BTI issue is related to the metal-gate/high- κ

dielectric rather than the low-temperature processed 3D GOI. The observed BTI is much better than that for TiN/HfO₂ devices [5.22], indicating that the strong bonding of AlO in LaAlO₃ most probably plays a key role in the BTI improvement. This is also consistent with the better BTI for TaN/HfAlO devices compared with those using TiN/HfO₂[5.19]. In this case the improvements were at the expense of a lower κ for HfAlO compared with HfO₂.

We measured the BTI at other gate electric fields to estimate the 10-year lifetime. Fig. 5-8 shows the lifetime ($|\Delta V_t|$ =50 mV), as a function of $|V_{gs}|$ for various metal-gate/high- κ MOSFETs, BT stressed at 85°C. The extrapolated $V_{max-10years}$ values are -1.2 and 1.4 V for p- and n-MOSFETs, respectively. These values can meet the BTI reliability requirements at 1 V operation, with a 20% safety margin. Note that the $V_{max-10years}$ value from the time-to-breakdown (t_{BD}) is much higher than that from BTI measurements, and is an over-estimate of the reliability of the high- κ CMOSFETs. The high $V_{max-10years}$ for BTI in these metal-gate/high- κ 3D GOI and control 2D CMOSFETs is related the absence of impurities in gate [5.19], the presence of a good IrO₂ diffusion barrier, and the avoidance of hydrogen annealing or process water [5.17]-[5.18] in the device fabrication.

5.4 Conclusion

We have fabricated the [IrO₂-IrO₂/Hf]/LaAlO₃/GOI CMOSFETs on 1P6M 0.18- μ m Si devices. At the 1.4-nm EOT, the peak electron and hole mobilities are 357 and 234 cm²/Vs, the hole mobility being 2.5-times higher than the universal mobility at 1 MV/cm E_{eff}. Good NBTI and PBTI performance was shown by the relatively small $|\Delta V_t|$ of -30 and 21 mV, and the high extrapolated $V_{max-10years}$ value of -1.2 V under 10 MV/cm, 85°C stress. These high performances self-aligned 3D metal-gate/high- κ /GOI devices and their successful 3D integration are promising for future VLSI. 3D GOI CMOSFETs with full process compatibility with current VLSI lines.

Fig. 5-1 The $V_{\rm fb}$ and EOT plot for IrO_2 and IrO_2/Hf gates on LaAlO_3/Si

after different RTA condition from 550 to 950°C.

(a)

(b)

Fig. 5-2 (a) J_g-V_g curves of $IrO_2/LaAlO_3/Si$ MOSFETs. The J_g is $\sim 10^4X-10^5X$ lower than SiO₂ at 1.4nm EOT due to the uniform LaAlO₃ after 950°C RTA. (b) The J_g-V_g curves of IrO_2/Hf or IrO_2 on LaAlO₃ MOSFETs on Si or GOI at 1.4nm EOT with different RTA temperature.

Fig. 5-3 The C-V characteristics of (a) IrO₂/Hf on LaAlO₃ gate-dielectrics n-MOSFETs on Si and GOI. (b) 150nm-IrO₂ on LaAlO₃ gatedielectrics p-MOSFETs on Si and GOI.

Fig. 5-4 The I_d - V_d characteristics of (a) IrO_2/Hf or $IrO_2.on LaAlO_3$ gatedielectrics n- and p-MOSFETs on Si (b) IrO_2/Hf or IrO_2 on LaAlO_3 gate-dielectrics n- and p-MOSFETs on GOI.

(a)

Fig. 5-5 The I_d - V_g characteristics of (a) IrO_2/Hf on $LaAlO_3$ gate-dielectrics n-MOSFETs on Si or GOI. (b) IrO_2 on $LaAlO_3$ gate-dielectrics p-MOSFETs on Si or GOI.

(a)

Fig. 5-6 (a) The electron mobility of IrO₂/Hf on LaAlO₃ n-MOSFETs on Si or GOI. (b) The hole mobility of IrO₂ on LaAlO₃ p-MOSFETs on Si or GOI.

Fig. 5-7 Vt shift as a function of time during (a) NBTI measurement of $IrO_2/LaAlO_3$ on 3D GOI or 2D Si PMOS at 85°C and 10MV/cm. (b) PBTI measurement of $IrO_2/Hf/LaAlO_3$ on 3D GOI or 2D Si NMOS at 85°C and 10MV/cm.

Fig. 5-8 The extrapolated max operation voltage V_{max} from BTI and t_{BD} for

10 years lifetime. The V_{max} is limited by NBTI that is reduced from

