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Chapter 5 

3D Metal-Gate/High-κ/GOI CMOSFETs on 

1-Poly-6-Metal 0.18-μm Si Devices 

5.1 Introduction 

One of the biggest challenges for VLSI technology is the AC power consumption 

[5.1] caused by the interconnect parasitic capacitance (Cv2f/2), which  becomes a major 

limit for VLSI ICs beyond the implementation of metal-gates and high-κ nano-CMOS to 

solve the DC power in gate leakage [5.2]. Increasing operational frequency (f) of circuits 

with denser interconnects makes the AC power consumption even worse. A potential 

solution is three-dimensional (3D) integration which can effectively shorten the 

interconnect distances and therefore reduce the AC power consumption. Such 3D 

integration can also provide a way to increase the IC density [5.3] (equivalent to scaling 

down) once the quantum-mechanical scaling barrier is reached. However, the technology 

challenges are how to realize 3D ICs [5.4]-[5.6] with a low thermal budget and small 

impact on lower multiple interconnect and CMOSFET layers. Using the inherent low 

temperature process of the Ge-on-Insulator (GOI) technology [5.7]-[5.13], we have 

integrated self-aligned IrO2-IrO2/Hf dual-gated/LaAlO3/GOI CMOSFETs on 

1-Poly-6-Metal (1P6M) 0.18-μm Si devices. The process yields GOI CMOSFETs with 
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high hole and electron mobilities, without degrading the underlying Si devices. This 

approach is promising for future high performance VLSI ICs. However, unlike SiO2, 

high-κ gate dielectrics exhibit significant charge trapping, causing the threshold voltage 

(Vt) to shift under applied voltage and raised temperature conditions. Such 

Bias-Temperature-Instability (BTI) [5.14], [5.15]-[5.16] of Vt with time creates a severe 

reliability concern for ICs, where the use of high-κ gate dielectrics is more problematic 

than oxynitrides in devices [5.17]-[5.18]. In addition to the charge trapping, the poor BTI 

in high-κ CMOSFETs may be related to impurity diffusion from the gate [5.19], and from 

the use of processing water and/or hydrogen annealing after device fabrication  

[5.17]-[5.18]. In this paper we report the BTI of three-dimensional (3D) self-aligned 

metal-gate/high-κ/Germanium-on-insulator (GOI) CMOSFETs and compare the results 

with those from control Si devices. 

5.2 Experimental Procedure 

 The self-aligned 3D GOI CMOSFETs were formed by depositing 200-nm 

PECVD oxide on both H+-implanted Ge (5×1016 cm-2 dose at 200 KeV) and 1P6M 

0.18-μm MOSFETs wafers, O2 plasma enhanced bonding, a 300 oC “smart cut”, 400oC 

annealing for 0.5 hour, and then slight polishing [5.7]-[ 5.9], [5.12]-[5.13]. Both (100) 

and (110) n-Ge and (100) p-Ge substrates were used for the 3D GOI. The LaAlO3 gate 
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dielectric was deposited by PVD from a LaAlO3 source (κ = 25.1) followed by 400oC 

oxidation [5.12]-[5.13]. Then a 150-nm IrO2 or 150-nm IrO2/15-nm Hf gate was 

deposited on the LaAlO3 by PVD for the p- or n-MOSFETs respectively. Low 

work-function Hf was used for n-MOSFETs, similar to fully silicided NiSi:Hf/Al2O3 

devices [5.12]-[5.13]. The IrO2/LaAlO3 p-MOSFETs or IrO2/Hf/LaAlO3 n-MOSFETs 

was formed by self- aligned 25 keV boron or 35 keV phosphorus implantation, followed 

by a 500oC RTA. 

5.3 Results and discussion 

Fig. 5-1 plots the flat band voltage (Vfb) as a function of different EOT thickness of 

LaAlO3 gate dielectric with IrO2 and IrO2/Hf gates after 550oC-950oC RTA. The Ir gate 

on LaAlO3/Si MOS capacitor was also measured as reference, where the low temperature 

550OC RTA was used to minimize the possibility of Ir oxidization by the residual 

moisture or oxygen under a nitrogen ambient. It is noticed that the extracted 

work-function for IrO2 on LaAlO3 is 5.1 eV and the increasing RTA temperature from 750 

to 950oC only cause a small work-function reduction. In addition, the work-function is 

reduced to 4.4 eV by adding 15nm-Hf on LaAlO3. 

Fig. 5-2(a) shows the comparison of gate dielectric leakage current of IrO2/LaAlO3 

and Ir/LaAlO3 capacitors as a function of Vg-Vfb. The gate leakage current is ~one order 
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of magnitude lower using IrO2 than Ir. Similar lower dielectric leakage current is also 

reported in ferro-electric capacitors [5.20], which is most probably due to smaller metal 

diffusion in more thermal-dynamic stable IrO2 than pure metallic Ir. Fig. 5-2(b) shows the 

Jg-Vg curves of IrO2/Hf or IrO2 on Si or GOI MOSFETs using LaAlO3 gate-dielectrics. 

The LaAlO3 gate-dielectrics can minimize the residual moisture or oxygen under a 

nitrogen ambient from 750 to 950oC and only cause Jg-Vg curves a small variable.  

Figs. 5-3(a) and 5-3(b) show the C-V characteristics of self-aligned of IrO2/Hf or 

IrO2 on Si or GOI CMOSFETs using LaAlO3 gate-dielectrics. The same inversion and 

accumulation capacitance value indicates the metal-like IrO2 gate without gate depletion. 

An EOT thickness of 1.4 nm is obtained from the measured capacitance for IrO2 or 

IrO2/Hf gates on LaAlO3/Si CMOSFETs. 

 Figs. 5-4(a) and 5-4(b) show Id -Vd characteristics for a family of /Vg -Vt / values of 

3D LaAlO3/GOI CMOSFETs and 2D LaAlO3/Si CMOSFETs with metal-like IrO2/Hf and 

IrO2 dual gates. An EOT of 1.4-nm was obtained from the C-V measurements. To the best 

of our knowledge these good results are the first demonstration of 3D integration, using a 

process compatible with current VLSI technology, which does not degrade the lower 

layer MOSFETs. The (110) p-MOSFETs had higher drive current than the (100) devices - 

such hole mobility enhancement has been reported in the literature [5.21].  
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Figs. 5-5(a) and 5-5(b) show Id –Vg characteristics of 3D LaAlO3/GOI CMOSFETs 

and 2D LaAlO3/Si CMOSFETs with metal-like IrO2/Hf and IrO2 dual gates. The 

threshold voltage of ~0.25V is measured in (110)Ge, reflecting high work-function and 

little Fermi-level pinning. Future work, we must reduce the work-function of 

n-MOSFETs to show lower threshold voltages. 

The IrO2/Hf/LaAlO3/GOI n-MOSFETs have a peak electron mobility of 357 

cm2/Vs and values close to universal electron mobility at higher Eeff (Figs. 5-6(a)). Peak 

hole mobilities of 181 and 234 cm2/Vs were measured for the IrO2/LaAlO3/GOI 

p-MOSFETs on (100) and (110) substrates, respectively(Fig. 5-6(b)). These hole 

mobilities are higher than universal mobility values. The 136 and 156 cm2/Vs values at 

Eeff of 1 MV/cm are 2.2- and 2.5-times higher than that of the universal hole mobility. 

Such mobility enhancement reflects the smaller Ge effective mass than Si [5.11].  

In Figs. 5-7(a) and 5-7 (b) we show the ΔVt with BT stress time at 10 MV/cm and 

85oC for the 3D GOI and control 2D Si p- and n-MOSFETs, respectively. After 1 hour of 

BT stress, the ΔVt of 3D metal-gate/high-κ/GOI CMOSFETs was -30 and 21 mV for the 

p- and n-MOSFETs respectively, which is slightly larger than the control 2D Si 

CMOSFETs. These results are comparable with TaN/HfAlO [5.19] and poly-Si/HfSiON 

[5.22] devices, suggesting that the major BTI issue is related to the metal-gate/high-κ 
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dielectric rather than the low-temperature processed 3D GOI. The observed BTI is much 

better than that for TiN/HfO2 devices [5.22], indicating that the strong bonding of AlO in 

LaAlO3 most probably plays a key role in the BTI improvement. This is also consistent 

with the better BTI for TaN/HfAlO devices compared with those using TiN/HfO2[5.19]. 

In this case the improvements were at the expense of a lower κ for HfAlO compared with 

HfO2.  

We measured the BTI at other gate electric fields to estimate the 10-year lifetime. 

Fig. 5-8 shows the lifetime (⏐ΔVt⏐=50 mV) as a function of ⏐Vgs⏐ for various 

metal-gate/high-κ MOSFETs, BT stressed at 85oC. The extrapolated Vmax-10years values are 

-1.2 and 1.4 V for p- and n-MOSFETs, respectively. These values can meet the BTI 

reliability requirements at 1 V operation, with a 20% safety margin. Note that the 

Vmax-10years value from the time-to-breakdown (tBD) is much higher than that from BTI 

measurements, and is an over-estimate of the reliability of the high-κ CMOSFETs. The 

high Vmax-10years for BTI in these metal-gate/high-κ 3D GOI and control 2D CMOSFETs 

is related the absence of impurities in gate [5.19], the presence of a good IrO2 diffusion 

barrier, and the avoidance of hydrogen annealing or process water [5.17]-[5.18] in the 

device fabrication. 
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5.4 Conclusion 

We have fabricated the [IrO2-IrO2/Hf]/LaAlO3/GOI CMOSFETs on 1P6M 

0.18-μm Si devices. At the 1.4-nm EOT, the peak electron and hole mobilities are 357 

and 234 cm2/Vs, the hole mobility being 2.5-times higher than the universal mobility at 1 

MV/cm Eeff. Good NBTI and PBTI performance was shown by the relatively small 

⏐ΔVt⏐ of -30 and 21 mV, and the high extrapolated Vmax-10years value of -1.2 V under 10 

MV/cm, 85oC stress. These high performances self-aligned 3D metal-gate/high-κ/GOI 

devices and their successful 3D integration are promising for future VLSI. 3D GOI 

CMOSFETs with full process compatibility with current VLSI lines. 
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Fig. 5-1  The Vfb and EOT plot for IrO2 and IrO2/Hf gates on LaAlO3/Si   

after different RTA condition from 550 to 950oC.  
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Fig. 5-2 (a) Jg-Vg curves of IrO2/LaAlO3/Si MOSFETs. The Jg is 

~104X-105X lower than SiO2 at 1.4nm EOT due to the uniform 

LaAlO3 after 950oC RTA. (b) The Jg-Vg curves of IrO2/Hf or IrO2 

on LaAlO3 MOSFETs on Si or GOI at 1.4nm EOT with different 

RTA temperature. 
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Fig. 5-3 The C-V characteristics of (a) IrO2/Hf on LaAlO3 gate-dielectrics 

n-MOSFETs on Si and GOI. (b) 150nm-IrO2 on LaAlO3 gate- 

dielectrics p-MOSFETs on Si and GOI. 
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Fig. 5-4 The Id-Vd characteristics of (a) IrO2/Hf or IrO2.on LaAlO3 gate- 

dielectrics n- and p-MOSFETs on Si (b) IrO2/Hf or IrO2 on LaAlO3 

gate-dielectrics n- and p-MOSFETs on GOI.  
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Fig. 5-5 The Id-Vg characteristics of (a) IrO2/Hf on LaAlO3 gate-dielectrics 

n-MOSFETs on Si or GOI. (b) IrO2 on LaAlO3 gate-dielectrics 

p-MOSFETs on Si or GOI.  
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Fig. 5-6 (a) The electron mobility of IrO2/Hf on LaAlO3 n-MOSFETs on Si 

or GOI. (b)  The hole mobility of IrO2 on LaAlO3 p-MOSFETs on 

Si or GOI.  
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(b) 

Fig. 5-7 Vt shift as a function of time during (a) NBTI measurement of 

IrO2/LaAlO3 on 3D GOI or 2D Si PMOS at 85oC and 10MV/cm. (b) 

PBTI measurement of IrO2/Hf/LaAlO3 on 3D GOI or 2D Si NMOS 

at 85oC and 10MV/cm. 
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Fig. 5-8 The extrapolated max operation voltage Vmax from BTI and tBD for 

10 years lifetime. The Vmax is limited by NBTI that is reduced from 

1.9 V at RT to 1.2 V at 85oC.  

 

 


