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ABSTRACT

The objective of the thesis is training a neural network to perform as a first order LTI
system, and then apply as a controller. Based on evolution strategies and the first order
difference equation, two simple neural network structures are designed to implement the first
order LTI systems. With the evolution strategies, it is not necessary to know the inverse
dynamic system, which is required while using the backpropagation learning algorithm in
general neural networks. From the simulation results, the proposed neural networks, called
general structure (GS) and structure with sampling time (SST), may perform almost the same
as the first order LTI system and are robust to an unexpected disturbance as a controller, even

though the learning time is long.
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Chapter 1
Introduction

In recent years, many researchers have been devoted to developing intelligent theories,
such as fuzzy logic [1], genetic algorithm [2-4], and neural network theory [5, 6]. These
intelligent theories are used in more and more fields [7, 8] and show their great power as a

problem solver.

Many investigators have developed intelligent machines, such as Kismet and Aryan. We
also built an eye-robot to mimic the:motion of human eyes, and try to control the robot. In the
conventional control theory, the model of the plant should be known exactly before designing
the controller. If the model has some errorfrom the real system, the designed controller may
not stable and control well. Howevet; in.reality,many plants are complex and the model could
not be determined, thus that restricts the use of the conventional control theory. The controller
could not be designed by the conventional control theory when the model of the plant is
uncertain. Fortunately, the intelligent control needs no exact model of the plant to design a
controller, and can learn to control the system gradually. Thus, the restriction of the
conventional control theory is the reason why we use the intelligent theory to control our

robot.

Basically, the artificial neural network based on the human neural network contains
many neurons connected with synaptic weights. Thus, it can learn, recall, and generalize from
training data like a human brain. Models of the neurons, models of the structure and the

learning algorithm are the basic entities of the artificial neural network. They play important



roles in calculation of the output. Some learning algorithms focus on changing the way of the
connections between neurons [11], some focus on adjusting the connecting weights [12], and
some focus on the above two simultaneously [13]. One the other hand, the learning of the
neural network theory could be divided into three main parts: supervised learning,
unsupervised learning, and reinforcement learning [14]. The objective of the algorithm is to
approach the optimal value of its error function. If the accurate data exist, the supervised
learning is easier to approach the optimal value of the error function than the other two,
because it doesn’t view a wrong result as correct. In the thesis, we focus on adjusting the
connecting weight by supervised learning in system control field. Although backpropagation
learning algorithm is commonly used and easy to apply, it has a problem of local optimization
[15]. Hence, evolution strategies are used to increase the search space and thus try to avoid

local optimization.

The thesis contains five chapters. The introduction is described in this chapter. Chapter 2
describes the basic neural network itheory-and some application in system control. The
learning algorithms for neural network; evolution strategies, are explained in detail in Chapter
3 and the simulation results are demonstrated in Chapter 4. Finally, the conclusion is given in

Chapter 5.



Chapter 2
Intelligent Control

Intelligent control designed to simulate intelligent biological systems is a new control
method which combines automatic control and artificial intelligence. The processes of the
machines using intelligent control will be similar with the human thinking. Today automatic
control systems have played an important role of our daily life, such as airplanes and
spacecrafts. Although automatic control has works well, it is difficult to design a controller for
a complex dynamic system. To solve'the problem, recently investigators have paid their
attentions to the intelligent algorithms, such-as fuzzy theory and neural network, to achieve
the system identification and controller design. It is known that neural networks are modeled
after the physical architecture of the human brain; therefore, this chapter will focus on the

control using neural network, which has been widely applied to intelligent systems.

2.1 Introduction to Neural Network

Neural networks demonstrate the ability to learn, recall, and generalize from training

patterns or data.

In general, the biological neural network in human brain is constructed by a large
amount of neurons, which contain somas, axons, dendrites, and synapses. The current excited
by the impulse from the other neuron will change the strength of synapses until steady when

the biological neural network is learning. Artificial neural networks (ANN) which are



modeled after the physical architecture of the human brain is proposed to simulate the
learning function for intelligent machine. Therefore, ANN is highly interconnected by a large
of processing elements, which are also called artificial neuron or neuron simply, and its

connective behavior is like human brain

v

Figure 2.1 An artificial neuron

An artificial neuron, which imitates a biological neuron, is shown in Fig. 2.1 and

expressed as

yzf(ixk wk—i-bJ (2.1)

where the output y is a function of the input x;, &=1,2,3,.... Note that the bias » and the
weights w,, k=1,2,3,... are all constant. There are many types of activation function f; linear or
nonlinear, and the hyperbolic tangent function described as

X —X

f(x)=tanh(x) =<5 (2.2)

e +e”
is commonly used.
Because ANN is highly interconnected by a large of processing elements, the connection

geometry among the processing elements is important to form a ANN. ANN can be

constructed by artificial neurons in different modes, such as the commonest multilayer



feedforward network shown in Fig. 2.2, which possesses one input layer, one output layer and

some hidden layers.

input
P output

input layer second hidden layer

first hidden layer

Figure 2.2 Multilayer feedforward network

The most important element of ANN"is the, learning rules, which are mainly classified
into the parameter learning and the structure:learning: The parameter learning is updating the
weights in the neural network, while the structure learning is changing the network structure,
such as the number of neurons and their connection. It is known that there are three types of
parameter learning, including supervised learning, reinforcement learning, and unsupervised
learning. In this thesis, the simulation uses a known plant and designed controller, so the
input-output pairs of the controller can be gotten easily. The neural network learns the
behavior of the controller by using these input-output pairs, and this kind of learning belongs

to supervised learning. This thesis will focus on the supervised learning.

In supervised learning, the back propagation learning algorithm, based on the simple
gradient algorithm for updating the weights, is commonly used in most applications. The back
propagation learning is often executed by multilayer feedforward networks with elements
containing differentiable activation functions. Such networks are also called the

back-propagation networks and Fig. 2.3 shows a back-propagation network consisting of one



input layer with m neurons, one single hidden layer with / neurons, and one output layer with

1 neurons.

Figure 2.3 two-layer back-propagation network
For the back-propagation network in Fig. 2.3, let x:[xl X, e xm]T ,
z=[21 Z, e z,]T, and yz[y, e yn]T be the inputs of the network, the

outputs of neurons in the hidden-layer, and the outputs of the network, respectively. Let
v,; be the weight from the j-th neuron in-the mput layer to g-th neuron in the hidden layer
and w;, be the weight from the g-th neuron in the hidden layer to i-th neuron in the output

layer. Then, the output of the g-th neuron in the hidden layer is described as

z, :fz[qu/ xjj g=12,..,1 (2.3)
j=1

where f; is the activation function, and the output of the i-th neuron in the output layer is

described as

i
v, :fy[ZW[qqu i=12..n (2.4)
q=1

where f, 1s the activation function.



In supervised learning with the given input-output training data (x, d), the cost function

is defined as the following error function

n

E(w)= 53 (d-) = 22[01 f(z W7 H (2.5)

i=1
where y; is the output of the network and d; is the desired output. Then, according to the

gradient-descent method, the changes of the weights are determined as

OE _  OE 0y,
ow, ﬂayl. ow,

=n(d,—y, ){ fy’(z Wiqzqﬂ z, (2.6)

q=1
= ’7501'2(1
and
4 L .0
Avq/:—n—aE =—7 [a_an’ ZqJ
ov, T\ 0,0z, 0v

n i m
= 772|:(d1‘_yt)fy{zwiqijWiq:lfz{zvq/xjjxj 2.7)

i=1 q=1 j=1
= ﬂéhqx]

where J,, d yl{ (z W, qﬂ and 5hq:fz'(ivq/.xjji( oi ,q) Besides, the learning
Jj=1 i=1

rate 7 is often given experimentally to reduce the computing time or increase the precision.

Finally, the weights can be updated by

{w(n+ D)= w(n)+ Aw

w(n+1)= v(n)+ Av 28)

It is the advantage that the back propagation algorithm can be used in the networks with

nonlinear functions. Many researchers use the simple algorithm to learn classification and



input-output relationship. The objective of this thesis is to control the system using neural

network, so the neural network for control will be introduced in the next section.

2.2 Neural Network for Control

Since traditional control theory is based on the mathematic model of the plant, it fails
when the mathematic model is unknown or not accurate. The intelligent control theory based
on the abilities of thinking and learning of human is not restricted to the mathematic model. It

has more abilities to solve the control problem than the conventional control theory.

The investigators have proposed many control method based on neural network, such as
model reference control. Besides, somé neural network structures are proposed for system
identification, such as recurrent neural network. The model reference control based on neural

network and recurrent neural network will be introduced in this section.

y (t

reference mode|

+ e(t u(t t
+ ( }P Controller ( Plant 4 )$

y(t)

Figure 2.4 the feedback system

The model reference control based on neural network is introduced first. When the plant
is given, the feedback system is shown as Fig. 2.4 and the controller is the learning objective
system [16]. The reference model is designed according to the specification of the problem.
Basically, the learning algorithm is based on the gradient method, so the learning process
needs two neural networks, one to be a controller and the other to be a plant. This learning can

8



use backpropagation learning algorithm introduced in the last section. To back propagate the
error to the neural network, the inverse of the plant should be known. Unfortunately, not every
inverse dynamic of the plant exists, or can be known even if it exists. Hence, the neural
network plant should be trained first for back propagating the system error to the neural
network controller, shown as Fig 2.5. However, it causes that the neural network plant should

be retrained whenever the condition of the plant changed a little.

u_»[n] Plant yln]

Figure 2.5:to.train neural network plant

It is known that the learning algorithm alters the connecting weights depending on the
error between the plant output and the neural network plant output. If the neural network plant
is trained well, it will replace the original plant. It is worthy noticing that the connecting
weights of the neural network plant do not change when the neural network controller is
trained. Fig. 2.6 shows the learning system for training the neural network controller.
Compared with the reference model, the neural network controller does not learn as the real
controller. If the plant in s-domain is defined as H(s) and the controller is defined as G(s), the

system is described as

Y(s) _ Gls)H(s)
U(s) " 1 G(s)H(s) @9)

where Y(s) is the system output and U(s) is the system input. However, the neural network



system is described as

Tols) G ()i () (2.10)

where Gnn(s) denotes the neural network controller and Hnn (s) denotes the neural network
plant. Because the neural network plant is trained as the real plant, Hxy (s) is assumed
identical to H(s). Thus, the neural network controller does not learn as the real controller, and

expressed as

GMSF#% @2.11)

which does not equal to G(s).

> reference mode!

neural network controller neural network plant

Figure 2.6 to train the neural network controller

The model reference control based on neural network is a simple way to control the
system depending on the specification of the problem. However, the neural network plant
should be trained first, and that leads errors while the plant changes, such as the input-output
relationship and the sampling time. No mater what the plant changes, the neural network plant

should be trained again for back propagation precisely. Besides, it is known that the neural

10



network controller is not the original controller. These restrict the use of the model reference

control based on the neural network.

Because of the restriction of the inverse dynamic, some investigators proposed other
control method without learning the neural network plant [17-19]. For simplicity, the neural
network controller could be learned as system identification while the controller is designed,
but it can not be guarantee the control ability of the neural network controller. Thus, a fully
recurrent neural network, shown as Fig 2.7, is proposed with capability of dynamics and the
ability to store the information for later use. In the next paragraph, a leaning algorithm for

fully recurrent neural network, real- time recurrent learning (RTRL), will be introduced.

d, (1)
X0 > (1)
N
(1)
0 g T2
(1)

Figure 2.7 the fully recurrent neural network

RTRL has been proposed by many investigators independently, and the most used is by
Williams and Zipser [20], which is introduced here. The learning algorithms will be described

in detail as below.

While the network have n neurons, with m external inputs, the outputs of neurons are

denoted as yi(f), kn = 1,2,...,n, and the external inputs are denoted as x;(), ki = 1,2,...,m,

11



where ¢ is the time. These values are concatenated to form the (m+n)-tuple z(¢), which is

expressed as

(2.12)

- ()= Vult) ifk=kn
¢ x,(¢) ifk=n+ki

which are the outputs of every neurons and input neurons. Since the network is fully

connected, the weight matrix W in a nx(m+n) matrix to obtain n outputs of neurons by m
external inputs and # inputs of neurons. Thus, the net input of the kn™ neurons at time ¢ can be

calculated as
Skn(t)zzwknlzl(t) (2.13)
1

where 1= 1,2,...,m+n. The output of the heuron at next time step is determined as

Vinlt+1)= £, (5, (2)

(2.14)

where f;, (-)is the activation function of the kun™ neuron. Let the first o neurons exist specified

target value d, so the n-tuple error e is described as

dkn(t)_ykn(t) lfkngo
= . 2.15
“ul?) {0 otherwise @15)
Define the overall network error at time t as
1
()= 2 e () . (2.16)
kn
thus, let
Jtotal(tO’tl): Zj(t) (2.17)

t=ty+1

12



denotes the network error running from time ¢ to the time #,. W is adjusted along the negative

of VW J_,(t,.t,). Thus, the weight change can be written as

Aw, = 3 Aw,(0) (2.18)
t=ty+1
where
Aw(ﬁ:—-————aZkk %K) 2.19)
Y ow T ow,
and a is the fixed learning rate. The value of aaL”(t) can be determined as
Wi
oy, (t+1 . oyt
% f}m ( n( ){; wknl ﬁi) + §[anj (t) (220)

where Oy denotes the Kronecher delta. It-is known-that the initial states of the network is

independent of the weights, so it-can be given as

03ults) _ o @21)
ow,;

One variable p;" (¢), defined as

py(t+1)= msm{mey+%@0} (222)
where
py'(t,)=0 (2.23)
is created to denote aLv:(t) Finally, the weight change at time # can be determined by
ij
aZe,m pi(e+1) (2.24)

13



and the overall weight change can be also determined.

The RTRL is broadly used such as in classification and learning finite state systems, and
the author show many simulation results to demonstrate its ability. Unfortunately, the
calculation of this learning algorithm needs many previous data, so the algorithm needs a lot
of memory to store information. Besides, it is computational expensive, because the weight

matrix is large and the previous state information is much.

There are still many other methods to learn dynamic systems or controllers, but they will
not be explained in detail in the thesis. In the next section, evolution strategies for neural
network will be introduced using simple neural network structures to learn first order LTI

systems.

14



Chapter 3
Evolution Strategies

Recently, the concept of the biological evolution is used in the intelligent theory, such as
genetic algorithms, to reproduce the species generation by generation, then learn and survive
based on the nature selection. Several investigators have proposed many evolution strategies

to solve problems in diverse fields.

3.1 Modeling of First Qrder LTI System

In general, a linear time nvariant_system is-described by an ordinary differential

equation, expressed as
YOO+ a o)+ a,y" o)+ +a, y(t)=bulz) (3.1)

where y(?) is the system output at time ¢, u(f) is the system input at time ¢, and a; are the

constant parameters of the system, i=1,2,3,...,n-1. When the initial conditions, y(”)(O),

y(”’l)(O), e )'/(O) , and y(O), are all zero, the LTI system could be rewritten into the transfer
function as
Y(s) b

= 3.2
Uls) s"+as"'+.+a,_,s+a,, 3-2)

which is commonly used to clarify the characteristics of the LTI system. This thesis will focus
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on the modeling of the simplest first order LTI system, expressed as
3(0)+ay(e)=bule). (3.3)

by intelligent structures and algorithms. For simplicity, the first LTI system is commonly

rewritten into the transfer function as

=2 (34)

which has been widely used in controller design.

The thesis focus on implementing the first order LTI systems using neural networks, but
it is known that the neural networks belong to discrete time systems, not continuous time
system. Therefore, the error does exist between the NN system and the objective system, the
first order LTI systems. A simple method of DT system has been proposed to approximate the

first order LTI system [21], and will be introduced next.

The discrete-time system obtained from (3.3) under the sampling time A7 is described

yln+1]=(1-aAT)y[n]+(BAT)uln] (3.5)

where y[n] = y(nAT) and u[n] = u(nAT) and which is so called the first order difference

equation.

To find the error between the first order LTI system (3.3) and its corresponding
difference equation (3.5) when the system input is a step function, the solution of (3.3) should

be determined first as
yt)=c+de™ and  j(t)=—ade ™ (3.6)

where ¢ and d are related to the input amplitude and the system initial conditions y(0) and
y(O). If the step input is given with amplitude 4 and the system is initially idled, the solution
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is obtained as

{)="2 22 (3.7)

wnar)=24 54 paoar) AL patnan], (3.8)
a

As for the solution of (3.5) with the same input and initial conditions of (3.3), its solution

corresponding sampling time AT can be found as
bA n
y[n]z;[l—(l—aAT) ] (3.9)

Compared to (3.8), the error at time = nAT is

Ayln]= yln]-y(nAT)

AL (- aary = s (3.10)
a

:b—A[e—“("”)—(l—aAT)"]
a

and the sum of error is

n bA l_efa(nJrl)AT 1_(1_aAT)n+l
Aylk]=="= -
Z; ug a{ 1—e ! 1-(1-aAT)

:%(l+e”AT+ e’“”+---+e"“’”)
—%(1+(1—aAT)+(1—aAT)2+---+(1—aAT)”) (3.11)

—%{%40aAT)(aAT)Z{%ﬂjL..}

=(AT)ZX%{%+{(1—aAT)(—a)2+(_§)2 (‘aﬁTy}...}

where AT is assumed to be small and the sum of error is then proportional to AT”. It implies
that the sum of error is reduced while the sampling time decreases.
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A close look at (3.11) will reveal that the fitness is large while the sampling time is small.
The problem is how to increase the fitness except decreasing the sampling time. Here, neural
network theory is introduced to learn the first order LTI system for solving the problem. Next,

two neural network structures will be introduced in order to learn the first order LTI system.

3.2 Neural Network Structure

In the thesis, the learning result after evolution strategies is determined from the fitness
function which is defined as the negative sum of the errors between the outputs of the first
order LTI system and the NN system. This thesis is intended as an investigation of whether a
neural network structure could learn the first order LTI system as a controller. In the last
section, the first order difference .equationmissproposed as a simple way to approach the first
order LTI system. Before introducing our neural network structures, the structure for first
order difference equation will be introduced first. It shows that the first order LTI system

could be implementing based on neural networks.

3.2.1 Structure for The First Order Difference Equation

It can be found in (3.5) that the first order difference equation needs two parameters,
(1-aAT) and (bAT), for the input and the output at last time step to approach the first order LTI
system. In neural network, a general neuron with » inputs contains n connecting weights, (n-1)
operators, and one activation function to produce an output. Here, the system input and output
at last time are both viewed as inputs of a neural network. Now that the first order difference
equation could be implemented by just one neuron with the activation function whose slope is

one, shown as Fig. 3.1. Thus, it is concerned that whether the neural network with more
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neurons is possible to let fitness larger than first order difference equation. Intuitively, it is

possible to do that. It will be shown in Chapter 4.

yinl -aAT

i yin+1]
sum

uln] bAT

Figure 3.1 the first order difference equation using one neuron

3.2.2 General Structure

According to the first order difference-equation, a general structure of neural network
contains an input layer with two neurons which represent the system input and output at last
time, an output layer with one neuron which represents the system output at this time, and
some hidden layers. It is known that MLP can process more problems than single layer, so
one hidden layer is used in the general structure for simplicity. Although amount of the
neurons in the hidden layer will increase the possibility of good performance, they will
increase the computation time. To give consideration to the possibility of good performance
and the computation time, five neurons is chosen to put in the hidden layer, shown as Fig. 3.2.

One may notice that the activation functions of this structure are all described as
r0)=1, (3.12)

and there is no threshold term in the structure. In this two-layered neural network structure,

called ‘GS’ for short, the synaptic weight connecting the neuron i to the neuron j is

. (1) . . . th th
symbolized as w)’ where / means that the synaptic weight is between (/-1)™ layer and /

19



layer, / = 1,2. Namely, there are two weight matrices, which are described as

i) |
ngl) ngz)

WO ) | and Wl ) ) 61
)
wl) W) |

in the GS, and the output of the GS can be simply determined as
){n+1]=PVQhV“{?{nq (3.14)
uln]

that is a discrete time equation.

Figure 3.2 the GS for first order LTI system

Compare with the fist order difference equation in the last section, the output of the GS

will be the same if the weight matrices are given as

[1—aAT
1—aAT
1—aAT
1—aAT

1-aAT

bAT |

bAT
bAT
bAT
bAT

and W@ =[02 02 02 02 02] (3.15)

where a and b are the parameters of first order LTI system b and AT means the sampling

S+a

time. As long as the GS with weight matrices described as (3.15) will be equivalent to the fist
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order difference equation, the fitness will be the same.

Whether any other weight matrices will lead to larger fitness is a question. It can be said
that the GS is better than the fist order difference equation if fitness of the GS is larger with
the same sampling time. There remains a second question: how much does the sampling time
affect the fitness of the GS. It is known that the fitness will increase as the sampling time
decrease in the fist order difference equation, so to reduce the sampling time is necessary.
Thus, the question about whether the sampling time has the same influence on the GS with

fist order difference equation is taken up in the next chapter.

3.2.3 Structure with Sampling Time

Since the GS is a discrete time system without coefficients related to sampling time, it
learns under the fixed sampling time of the training data. As a result, the GS is only suitable
for the fixed sampling time, which restricts the use of the GS. One problem is raised: Does
any neural network structure exist forarbitrary sampling times after learning, just like the first
order difference equation suitable for-a_first-order LTI system? To solve the problem, a
structure with sampling time, called ‘SST’ in short, is designed to adapt a wide range of
sampling times, as shown in Fig. 3.3, which adopts the parameters of the first order difference

equation and is described as

(1-aAT )y[n]}

(bAT)u[n] (3.16)

y[n+ l]: W(Z)W(I){

where the gains of the inputs is the main difference with the GS. By setting the weight

matrices as

and W@ =[02 02 02 02 02], (3.17)

s

-

=

[
N
_ e =
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the SST obtains the output same as the first order difference equation. In this case, the SST is
available for a wide range of sampling times and subject to an error due to the use of the
sampling time. To further increase the fitness, it is required to find different weight matrices

based on the evolution strategies, which will be introduced in the next section.

Y

(1-aAT)

— bAT

Figure 3.3 the SST for first order LTI system

In this section, except the structure for the fist order difference equation, two types of
the structures of the neural netwotk are“designed to'learn the first order LTI system, and the
most difference between these two types.is how the sampling time effects. Before simulations,

the learning algorithm of these structures will be introduced in the next section.

3.3 Evolution Strategies

In neural network theory, it is an important issue to find the neural network whose
weights lead to the global minimum of an error function. Unfortunately, it is difficult to know
the minimum is global or not, even for systems without uncertainties. Therefore, instead of
global minimum, investigators often develop evolution strategies to search the optimal

minimum of fitness function with largest fitness locally, not globally.

The backpropagation learning algorithm adjusts the synaptic weights using chain rule
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depending on the gradient descent method as (2.6) and (2.7), so the synaptic weights could
not be updated using the backpropagation learning algorithm while the inverse dynamic
system is unknown. However, the evolution strategies we proposed adjust weights using
evolution, but the chain rule according to the fitness function, so it avoid the disadvantage of
the backpropagation learning algorithm. It can be said that that the neural network can learn

easily using the evolution strategies even if the inverse dynamic system is unknown.

According to the origin of species by Darwin [22], individuals less suited to the
environment are less likely to survive and to reproduce. Under the limit of the environment,
much of the species reproduce sexually, which leads no two individuals are identical generally,
and thus the individuals more suited to the environment are more likely to keep their
inheritable characteristics to future generations. That is so called nature selection, the most

widely used by biologists to represent the seientific model of how species evolve.

Here, evolution strategies, ‘depending on nature selection, are proposed for the learning
algorithm of the neural network. In the evolution strategies, the given problem is viewed as
the environment and every set of weight matrices is viewed as an individual [23]. Basically,
the biological reproduction is divided into two groups: sexual and asexual. Individual is
different with their parents by sexual reproduction, but it is just identical copy of its parents
by asexual reproduction except for mutation. Different with the nature world where the
mutation happens with the reproduction unpredictably, it does not happen in the evolution
strategies. In general, the species do not reproduce sexually and asexually at the same time,
even if hydras and earthworms which can reproduce either sexually or asexually. In the

evolution strategies, the reproduction happen both sexually and asexually at the same time.

Four points is helpful in sketch out the evolution strategies: the initial individuals
creation, the reproduction process, the learning process, and the elite process. Since the
generation inherits from the last generation, the initial individuals affect the future offspring;

23



it means that not arbitrary initial individual after learning will behave as the objective system.
By various reproduction processes and the learning processes, the individuals of every
generation will be different even if the initial individuals are the same. Further, the elite
process chooses the individuals which are more suitable to the problem. In the thesis, the
evolution leads to a lot of results depending on its initial population, reproduction process,
learning process, and elite process, and any above terms probably fails to learn. These four

influences will be discussed next.

3.3.1 Initial Individuals Creation

From (3.13), the structures both contain two weight matrices W aad W?. In the

evolution strategies, the matrices are combined as an individual W), defined as

R e T TR ]

(3.18)

which is the £™ individual of the g™ generation. Let g=0, 1, 2...., and k=1, 2, 3,..., n® where n®

is the population size of the g™ generation. First, it is known that the initial individuals w

affect the offspring W,* where g #0 and not arbitrary W, lead a successful learning. No

exact way can decide how these initial individuals are before the evolution. The learning is
expected to success even if the initial individuals are given randomly. Unfortunately, it is
difficult because of the issue of the local optimal. Note that (3.15) and (3.17) could be thought
as good individual of GS and SST, respectively. If the parameters are used to be an initial
individual, the probability of success increases. Chapter 4 will show the influences of the

initial individuals.
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3.3.2 Reproduction Process

The reproduction process is used for increasing the searching space of the individuals.
For the human beings, the offspring combines the half chromosomes of each parent when the
sexual reproduction happens. The child contains the half genes from the mother and the other
half genes from the father. Not all the reproduction processes of the living things are same to
the human begin, such as hydras whose offspring can be produced asexually. Therefore, how

to create the offspring is concerned.

In the evolution strategies, the individuals W ¢ are called the parents and QF are

called the children after the reproduction process. In the beginning of the reproduction process,
n° initial individuals have been created using method of Section 3.3.1. Of course, there are
many approaches to create childrentand they can be produced from not only two parents. In
the thesis, the reproduction process.is divided into twe methods: inward method and outward

method. The inward method satisfied by

Qs -w|< mkax\W,f —Wwe (3.19)
is introduced first where W expressed as
Wg:L(Wg+Wg+...+Wg) (3.20)
c l’lg 1 2 né .
is the center of the parents . For example, a child can be created as
Liwe vwe) if k =n®
QF = f : (3.21)
E(Wkg + Wkgﬂ), otherwise
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shown as Fig. 3.4(a), or be created as

Q7 :nLg(Wﬁ +W2g+~--+Wn§,),

(3.22)

shown as Fig. 3.4(b). Besides, the outward method could be used. The children can be created

outward as

QW =IWg-we) ifk=n*
QF -W§E =1 (Wkg+1 -Wg ) otherwise

we-we)+we, ifk=n* "
= 0QF = ! !

/ (Wkg+1 -Wg )+ Wg, otherwise
shown in Fig. 3.5(a), or

Qs —we=1we-we)
= QF =W -we)+we

(3.23)

(3.24)

where [ is larger than one, shown in Fig: 3.5(b). In®(3.23) and (3.24), the multiple of the

distance / affects the children, thus it affects the probability of finding an individual which

contains the best optimal value, called the best individual. However, it is unknown what the

best individual is, and the effect degree could not be predicted because the evolution strategies

not only use the reproduction process. Since the effect of / is unknown, a variable / seems a

better choice than the fixed.

O parent
O chila

(a)

O parent
O chid

(b)

Figure 3.4 Illustration of finding children inward
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O parent
[ chid [ chid

(a) (b)

Figure 3.5 Illustration of finding children outward

It is mentioned that the variable multiple / can increase the probability of finding the
best individual, and be given 0.95 of / in the last generation while the variation of fitness is
not more than 5 generations in the evolution:strategies. However, when / decreases to smaller
than 1, the method is inward, not outward. In this‘case, a random reproduction process is

adopted to replace the original ;outward process described as (3.24). The new children are

reproduced randomly with larger distance than the:maximum distance m?x‘Wkg —W#|, shown

as Fig. 3.6. The purpose of this replacement is to increase the possibility of finding the best

individual.

O  child

Figure 3.6 Random children creation
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3.3.3 Learning Process

After the reproduction process, there are (2n+1) children when there are n parents. In the
learning process, every child learns independently, and the learning process will be introduced

in this section.

The objective of the learning process is to find an individual whose fitness approaches
the optimal value, called optimal individual. Traditionally, the backpropagation learning
algorithm uses the gradient of the error function to reach the objective. In the evolution
strategies, it doesn’t use the gradient method to decide how the synaptic weights alter. Every
step of the learning process tries to find a new individual whose fitness is larger than last step

until the process reaches one of the stop conditions.

The learning process starts with randomly creating a small enough difference 5Q, (1)

around the first individual Q¢(1) and then obtain the temporal individual

Qo (2)=2¢(1)+06Q,,,(1). (3.25)

tmp

If Q,_ (2) does not lead to an fitness larger than QZ(1), give it up and further find a new

tmp

temporal individual. Once the fitness created by thp(Z) is larger than ©QZ(1), choose

o thp(l) and Q_ (2) as the desired difference and individual, that is, §Q(1)=6 thp(l),

tmp
and Qf(2)=9, (2).

— ““tmp

After the difference 5Q(1) is determined, the desired individual is updated as the

procedure depicted in Fig. 3.7 and described as

Qo (s+1)= Q% (s)+ 52, () (3.26)
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where

5Q, (s)=asQ(s—1)+b5Q*(s-1)

tmp

b=+1-d?

(3.27)

and 5Q*(s—1) is the perpendicular vector of 5Q(s) and a is chosen randomly between 0

and 1 to avoid the direction of 6Q, (s) is opposite to 5 Q(s—1).

8(s-1) .thp(s+1)

Figure 3.7 finding temporal individual of the next step

To find a perpendicular vectors, forrexample, one method is to choose two entries

indexed 7 and j in the original vector, which is deseribed as

V:l"l R A VnJ (3.28)
and obtain the perpendicular vector as

vi=fo 0 v, o =y 0] (3.29)

Although there are other simple ways to find perpendicular vectors, a more complex way
which contains more variety is used in the thesis. The origin vector is described as (3.28), and
every entry of the perpendicular vector is given randomly first except the index i, determined

as

vi=ln on oony e ony o] (3.30)

29



where ¢ is given as

_V17’1+Vz”2+"'+V171”171+Vi+1r;+1+"'+Vnrn

CcC=

(3.31)
V.

1

such that v-v*=0. Since the perpendicular vector is decided, & thp(s) could be
calculated. The temporal individual of (s+1)™ step is determined as (3.26). If thp(s+1)
leads larger fitness than Qf(s), keep 5Q(s) as & thp(s) and let Qf(s+1) be equal to
(O (s+ 1), otherwise, choose a randomly and find a new perpendicular vector to create a new

0Q, (s) again. Then, use the same way to get individual of every step until the learning

process reaches the stop conditions. If the fitness of the final step does not reach the desired

fitness, suppose it as the optimal fitness and labeled as OQf .

Every child uses the learning

process to find its own optimal fitness.

The most common used stop condition-is.to check whether the fitness reach the desired
fitness or not. Besides, the number of the:steps could be restricted by experience or the
learning could be stopped when the fitness has unchanged for several steps. In the thesis, the
stop conditions of the learning process are checking whether the fitness is smaller than the
desired and the weights have unchanged for several steps. If the learning process reaches any

of the stop conditions, it stops.

3.3.4 Elite Process

It is known that the environment limits the population size of the species, so the number
of individuals is restricted no matter the individuals belongs to which generation. Since the

meaning of this restriction is to control the population size within limits, the generation length,
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the population size of every generation, or the population size of all generations could be
chosen as a restriction. For simplicity, the generation length and the population size of every
generation are set to be the restriction. Unfortunately, the restriction of the generation length
may stop the learning before learning well, and the restriction of the population size may
increase the learning time. To be accurate, the restriction of population size of every
generation is the first choice of the evolution strategies and the generation length is set to be

very large.

It deserves to be mentioned that there are (2n+1) children with their own optimal
minimum after the learning process if there are n parents. It tells the number of the individuals
is larger than the last generation. Generation by generation, the number of the individuals will
become very large and that will increase, the learning computation time seriously. Therefore,
the population size of every genetation should be restricted. The elite process is introduced to
solve the problem by choosing :some child to be the parent of the next generation. It is an
issue which individuals should be kept for the next geéneration. They can be chosen randomly
from the (2n+1) children, but, in this thesis, they are chosen depending on their own optimal
fitness. To find » individuals for the next generation, the children are sorted by their fitness.
Then, the first n children which contain the largest fitness will be kept. In other words, it is

expressed as

WET =08 (3.32)
where Q| contains the k™ largest fitness.

According to the above methods, the evolution strategies start from creating » initial

individuals. Then do the reproduction process to produce the (2n+1) children. For the (2n+1)
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children, use the learning process to find their own optimal fitness. At this time, the elite
process is used to reduce the number of the individual to 7, and it keeps the number of the
individuals unchanged generation by generation. The reproduction process, the learning
process and the elite process repeats again and again until the largest fitness reach the desired
goal or is unchanged for several generations. The flow chart of the evolution strategies is

shown in the next section.
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3.3.5 Flow Chart

create initial individuals
of first generation

v

Pt reproduction process

v

learning process

does any optimal
minimum reach the
desired error?

are optimal minima
unchanged for k
generations?

yes

change the reproduction
process of the next
generation

A 4

elite process

are optimal minima
unchanged for s
generations?

Figure 3.8 the flow chart of the evolution strategies
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Chapter 4
Simulation Results

In this chapter, the objective system of the neural network is a first order LTI system,

described as
w(e)+ (1) =ult) (4.1)

for simplicity. According to the system, the training data are captured with given sampling
times when the input function is a step function whose amplitude is equal to 1 and the system
initial condition are idled. The fitness funetion:is defined as the negative sum of the errors
between the outputs of the first order LTI system and the NN system. The learning procedure

indicated in the last chapter was implemented by a Matlab program.

In last chapter, it is mentioned that there are some settings which will affect the
performance of the evolution strategies, such as the initial individuals and sampling times.
Here, the influence of these settings will be discussed, and then the learned neural network
using the evolution strategies will be implemented as a controller. The influence of the
sampling times will be discussed in Section 4.1, the influence of the initial individuals
creation will be discussed in Section 4.2, and then Section 4.3 will show the results of the

neural network trained as a controller.
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4.1 Influence of The Sampling Time

The influence resolves itself into the following two points: one is the influence of the
sampling time to learning result; the other is the abilities of two neural network structures to

adapt different sampling times. The first point will be discussed in the following paragraph.

In the first order difference equation, it showed that the fitness increases as the sampling
time decreases. It is concerned whether the fitness of the two neural network structures
increase as the sampling time decrease like the first order difference equation. There remains
a second question about whether the sampling time affects the success rate of the learning
result or not. Here, the GS and SST are trained under the sampling time 0.01 and 0.001. Fig.
4.1.1 shows the learning result of the GS when the training data are under sampling time 0.01
at 1%, 3 and 5™ time. Fig 4.1.2 shows the variation of negative fitness, sum of the error,
during the learning process of the GS when the training data are under sampling time 0.01 at
1%, 3 and 5™ time. Similarly, the objéctive of Fig. 4.2.1 and Fig 4.2.2 is the SST under the
sampling time 0.01, the objective of Fig. 4.3.1-and Fig 4.3.2 is the GS under the sampling
time 0.001, and the objective of Fig. 4.4.1 and Fig 4.4.2 is the SST under the sampling time
0.001. Table 4.1 presents the learning results whose initial individual are all given randomly.
We define the learning as success learning while the average of the error is smaller than 0.05,
and show the result in the Table 4.2.1 and Table 4.2.2. Every case is learned by starting with

three different initial random individuals.
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Figure 4.1.1 the learning result of the GS under sampling time 0.01

the error
90 ‘ :

1st training (1)
80 3rd training (2)
5th training (3)

70

60 -

error

20+

10f
(2)

0 L | [ L
0 20 40 60 80 100 120

generation

Figure 4.1.2 the change of the sum of the error of the GS under sampling time 0.01
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Figure 4.2.1 the learning result of the SST under sampling time 0.01
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Figure 4.2.2 the change of the sum of the error of the SST under sampling time 0.01
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Figure 4.3.1 the learning/result of the GS:under sampling time 0.001
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Figure 4.3.2 the change of the sum of the error of the GS under sampling time 0.001
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Figure 4.4.1 the learning result of the.SST under sampling time 0.001
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Figure 4.4.2 the change of the sum of the error of the SST under sampling time 0.001
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Table 4.1 the results of learning with different sampling times

AT=10.01 AT=0.001
generation length learning time generation length learning time
GS SST GS SST GS SST GS SST
1™ 78 89 | 01:34:55 | 00:08:13 | 62 47 | 01:21:54 | 00:33:07
2n 36 88 100:50:07 | 00:09:01 | 485 27 | 15:27:51 | 00:16:57
3 102 66 | 01:50:32 | 00:09:27 | 86 76 | 01:12:17 | 00:55:54
4 81 38 | 01:32:53 | 00:12:34 | 94 53 1 01:43:28 | 00:39:49
5t 54 133 | 01:34:51 | 00:07:21 | 127 34 | 04:42:18 | 00:28:33
average | 70 83 | 01:28:40 00:09:19 171 47 | 04:53:34 | 00:24:52

Table 4.2.1 the error and'the ac;:ur‘at‘e‘rate of learning with sampling time 0.01

‘AT‘=“(‘).01
Sum of error average of error (10?) Success/Fail
GS SST GS SST GS SST
1* 0.0740 | 0.1784 | 0.01480 | 0.03568 S S
2" 10.2939 | 0.1538 | 0.05878 | 0.03076 S S
31 1.5743 | 0.2525 | 0.31486 | 0.05050 S S
4 1.8689 | 0.4242 | 0.37378 | 0.08484 S S
5t 0.1782 | 0.1291 | 0.03564 | 0.02582 S S
average | 0.7979 | 0.2276 | 0.15957 | 0.04552 | Success rate(%) | 100 | 100
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Table 4.2.2 the error and the accurate rate of learning with sampling time 0.001

AT =0.001
Sum of error average of error (107%) Success/Fail
GS SST GS SST GS SST
1™ 61.3104 | 85.9001 | 1.22621 | 1.71800 S S
o 144.4808 | 118.1299 | 2.88962 | 2.36260 S S
3 3749141 | 4.1978 | 7.49828 | 0.08396 F S
4 131.3523 | 32.7474 | 2.62705 | 0.65495 S S
5t 570.8313 | 15.3980 | 11.41663 | 0.30550 F S
average | 256.5779 | 51.2746 | 5.13156 | 1.02500 | Success rate(%) | 60 | 100

The Fig 4.1.1 and Fig. 4.2:1 show that the learning results are almost the same with the
system response when the sampling time is 0.01.-Fig. 4.3.1 and Fig. 4.4.1 show that the
learning results have some error from the first order LTI system response when the sampling
time is 0.001, although the direction of the trend is the same. It means the fitness of the
proposed neural network structures increases as the sampling time decrease. Besides, Table
4.1, Table 4.2.1, and Table 4.2.2 tell that the error has no relationship with generation length,
and the learning time is independent with the value of the generation length. The Table 4.1
also shows that the learning time increases as the sampling time decrease in the same neural
network structure, and the average learning time of the SST is shorter than the GS. Table 4.2.1
and Table 4.2.2 indicate that the larger sampling time produce smaller fitness. It is similar
with the first order difference equation. Besides, compared to the success rate, it is clear that

the success rate of the GS decreases as the sampling time decreases.
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Since the simulation results show errors are small, i.e. fitness are large, take the best
individual with A7=0.01 to test the dynamic of the NN system. Here, two significant
conditions for a system are variable for validation: the one is the initial condition y(0) of the
system, and the other is the input function. Let the initial condition y(0) be 0.5, 2, and -2, and
the input function be 2p(), -2 p(¢), and sine function where p(¢) is a unit step function. The
testing results of the initial conditions are shown in Fig. 4.5.1 to Fig. 4.5.3, and the testing

results of the input functions are shown in Fig. 4.6.1 to Fig. 4.6.3.
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Figure 4.5.1 testing result when initial condition y(0) is 0.5
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Figure 4.5.3 testing result when initial condition y(0) is -2
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Figure 4.6.1 testing result:when input function u = 2p(¢)
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Figure 4.6.2 testing result when input function u = -2p(¢)
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system response
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Figure 4.6.3 testing result when input function u = sin(2¢)

Fig 4.5.1 to Fig 4.6.3 indicate the'neural networks using evolution strategies don't just
learn as a specific curve, but the input-eutput relationship of the objective system. In another
words, the learned neural network system behaves similar with the first order LTI system no
matter what the initial condition or the input function is. Thus, these results lead to the
conclusion that that the neural network using evolution strategies could learn well as a first

order LTI system.

Since the influence of the sampling time to the fitness does exist, the abilities of two
structures to adapt different sampling times must be recalled here. To verify the abilities, take
the best learning result under the sampling time 0.01, to test the system under the smaller
sampling time 0.005 whose result is shown as Fig. 4.7, and to test under the much smaller

sampling time 0.001 whose result is shown as Fig. 4.8.
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Figure 4.7 the testing result with= A 7=0.005 of the learned neural network with AT =0.01
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Figure 4.8 the testing result with A7 =0.001 of the learned neural network with A7 =0.01

46



The Fig 4.7 tells that the GS fails, but the SST successes. Fig. 4.7 and Fig. 4.8 indicate
that the GS can only be used under a fixed sampling time, but the SST can be used under
larger range near the sampling time of the training data. Therefore, the SST is trained with
different sampling times, 0.01, 0.001, and 0.0001 using evolution strategies, and then the
results will show in Fig. 4.9 and Fig 4.10.1 to Fig. 4.10.3. It demonstrates that the SST can
adapt larger rage of the sampling time when it is trained under larger range. It concludes that

the SST is better than the GS concerning about the sampling time for learning the first order

LTI system.
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Figure 4.9 the learning result of the SST with sampling time 0.01, 0.001, 0.0001
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system response
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Figure 4.10.3 the testing resultunder the sampling time larger than trained sampling time

4.2 Influence of The Initial Weights Setting

In the last section, it is said that the success rate decreases and the learning time increases
as the sampling time decreases. How to let the error reach the global minimum is an important
issue for neural network investigators because it is easy to consider the local minimum as the
global minimum. Thus, the local minimum may the main reason for failure learning. However,
it is worthy noticing that the first order difference equation provides a set of adequate
parameters to approach the first order LTI system. In the following, one of the initial
individual is given depending on the parameters of the first order difference equation and
compare with the random initial individual. The general structure using the initial individual
given by the first order difference equation is called GS;. Since the SST has used the
parameters of the first order difference equation in the network, SST is not discussed in this
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section. The learning objective is the first order LTI system with sampling time 0.001, and one

of the initial individual is given by the first order difference equation with sampling time 0.01.

The learning result is shown in Figure 4.11.1 to Fig. 4.11.2, and Table 4.3.

Table 4.3 learning results of GS with sampling time 0.001

GS with AT=0.001
generation learning time sum of error avernee Zf oot success/fail

length (10?)
1% 70 03:02:29 3.9376 0.07875 S
o 49 02:40:50 25.6901 0.51380 S
3 850 06:34:49 1.1476 0.02295 S
4 235 14:45:59 22.7393 0.45479 S
5t 117 05:01:20 93.8409 1.87682 S

average 264 06:25:05 294711 0.58942 success rate (%) | 100
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Figure 4.11.1 the learning result of the GS under sampling time 0.001
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Figure 4.11.2 the change of the sum of the error of the SST under sampling time 0.001
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Compared with the Table 4.1 to Table 4.2.2, Table 4.3 indicates that the success rate of
GS; is larger than GS. It is worthy noticing that the sum of error of 3" learning is smaller than
the first order difference equation, 2.0302. It means the GS could perform better than the first
order difference equation under the sampling time 0.001. However, the average of the
learning time is larger than the last section. It reminds that the learning time is independent of
the success rate. Similar to Section 4.1, two significant conditions for a system are also
variable for validation: the one is the initial condition of the system, and the other is the input
function. The influences of these two conditions are shown in Fig. 4.12.1 to Fig. 4.13.3 using
the 3" learning result. Thus, as the figures indicate, no matter what the initial condition and
the input functions are, the learned neural network behaves corresponding to the first order

LTI system.
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Figure 4.13.2 testing result when input function u = -2p(r)
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Figure 4.13.3 testing result when inpuit function u = sin(2¢)

4.3 Implement as a Controller

According to the results of the last two sections, it concludes that GS and SST using the
evolution strategies have good performance on learning a first order LTI system. Further,
implement it as a first order LTI controller to control the given plant to verify its ability. Here,
a first order and a second order LTI system are the objective plant of the learned controller.
Section 4.3.1 use the first order LTI plant to test the learned neural network structures, and

Section 4.3.2 use the second order LTI plant to test.
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4.3.1 System with First Order LTI Plant

v

Yd_+ i(t)+6.5u(t)=2.5e(r) 4 j(t)+ y(t)=ult)

Figure 4.14 the feedback system

In the beginning, a first order LTI system, described as
)+ y(0)=ult) (4.2)

where y is the system output and u is the input of the plant, is given as a plant of a feedback
system, which is shown as Fig. 4.14. In the system, the neural network is trained as a first

order LTI system and replaces the original controller, which is designed as
i(t)+6.5u(t)=2.5¢(t) (4.3)
where the e is the error between the desired output and the system output.
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Figure 4.15 the learning result of a controller: #i(¢)+ 6.5u(t)=2.5¢(t)
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Figure 4.16 the testing result of the feedback system with a neural network controller

O-1sin(1007)
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Yd 4+ i(t)+6.5u(t) = 2.5¢(t)

Figure 4.17 the feedback controller with disturbance

The neural networks, SST and GS;, are trained as (4.3) with sampling time 0.001, the
input function is a unit step function. The Fig. 4.15 shows the training result of two structures
when they use the same input function and initial condition. It shows that the output of neural
network controller is very close to the original controller, thus take it to replace the original
one. Fig. 4.16 shows the system response with neural network controller when the y(0) is 0.5
and the input function u is sin(2¢). It was observed that the controller control the system well

even if the initial condition or the input function change.
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In reality, the feedback system may contain some unexpected disturbances, so we add a
sin function with high frequency 100 rad/sec and small amplitude 0.1 as the unexpected
disturbance to the feedback system, shown as Fig. 4.17. Fig 4.18 shows the testing result of
the feedback system with disturbance. It tells that the neural network controller performs

similar to the original one, and can reject the influence of the disturbance.
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Figure 4.18 the testing result of the feedback system with unexpected disturbance

4.3.2 System with Second Order LTI Plant
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Figure 4.19 the feedback system
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Similar to the last section, a second order LTI plant, described as
$(e)+12.5(¢)+ 42.5p(¢) =13ult) (4.4)

in the feedback system, which is shown as Fig. 4.19. In the feedback system, the neural
network is trained as a first order LTI system and replaces the original controller, which is

designed as
i(t)+ult)=elt). (4.5)

Since the original controller is designed the same with (4.1), let the best learning result of the

above simulations be the neural network controller here.

system response

0.8

0.6

0.4

0.2

-0.2

-0.4

input
real system output (1)
—— — output of GS (2) -
***** output of SST (3)

L L L L
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time(sec)

-0.6

-0.8

Figure 4.20 the testing result of the feedback system with a neural network controller

Fig. 4.20 shows the system response with neural network controller when y(0) is 0.5,
and the input function u is sin(2¢). It was observed that the controller control the second order

system stable. Then, we also add an unexpected disturbance corresponding to the last section
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to the feedback system. The system is shown as Fig. 4.21. Fig 4.22 shows the testing result of
the feedback system with disturbance, and it shows that the neural network controller can
reject the influence of the disturbance. Fig. 4.23(a) and Fig. 4.23(b) show the testing results of
the plant input and plant output respectively while the unexpected disturbance is given as a
random function. According to the above two simulations by different plants, it can be said
that the neural network can learn well as a first order LTI controller by the evolution strategies.

As long as the original controller can do, the neural network can also do.

0.1sin(100¢)

v

Yd_+ eyl Gi(t)+ult)=elt) $(t)+12.59(t)+ 42.59(¢) =13 ult)

Figure 4.21 the feedback controller with disturbance
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Figure 4.22 the testing result of the feedback system with unexpected disturbance
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Figure 4.23 the testing result of the feedback system with unexpected random disturbance
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Chapter 5
Conclusion

In this thesis, we provide two neural network structures, GS and SST, to learn a first
order LTI system. These two structures are both simple structures using only one output delay.
The GS can be used under a fixed sampling time, so it should be trained under sampling time
small enough to increase its workable range. The SST contains the parameters of the first
order difference equation in the network, so the parameters help SST adapt larger range of
sampling time around that of the training data. Besides, we provide evolution strategies to
help the neural network learn. It inereasesithesearching space and tries to avoid local minima.
For the purpose, the initial individual can be given by a set of known parameters from the first
order difference equation. In the evolution strategies, the objective of the learning process is
to find the individuals which lead to larger fitness. In the learning process, the change of the
individuals of last step is important for creating the individuals of the next step. In the
reproduction process, we use two ways to generate children such that the chance of finding a

better individual is increased.

Originally, it is expected that the cost of the computation time is low because the neural
network structures are simple, but not as expected due to the use of the evolution strategies.
The evolution strategies are time consumption since they increase the searching space and
require too many generations and steps for a better individual. It is noted that even though the
number of generations and steps is sometimes large, the learning result is not guaranteed to be

good.

No matter how long the learning costs, the neural network structures using the evolution
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strategies can learn the first order LTI system, and behave as well as the objective system. No
matter how the input functions and the initial conditions change, the output of the neural
network is very similar to the objective system. It can replace the original first order LTI
controller and engage as a feedback control. Even if the system has some unexpected

disturbance, the neural network controller could also control the system successfully.

In the thesis, the fitness function is the sum of the errors between the outputs of the
objective system and the neural network, so the neural network learns from a given system.
Further, the fitness function can be changed as the sum of the error between the desired output
and the outputs of the feedback system with neural network controller. Then, it is not
necessary to know the controller designed by the conventional control theory and the neural
network could learn to control the feedback system if the system could be controlled by a first
order LTI system. In other words,the neuralnétwork could be trained to be a first order LTI
controller by the evolution strategies even if the plant and the objective controller are
unknown. Besides, the neural network structure can add some items for more order dynamic
system, such as AT* and u[n]x y[n]. TheseKinds of items may help increase the accuracy of
the learning, and objective system is not restricted to a first order LTI system. In the future,
both the above concepts, changing the fitness function and adding extra suitable items, AT

and u[n]x y[n], could be tried for improving the proposed method.
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