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基於類神經網路的演化策略 

應用於一階動態系統 

 

學生：陳思穎             指導教授：陳永平 博士 

 

國立交通大學電機與控制工程學系 

 

 

摘要 

Chinese Abstract 

本論文目的在於利用類神經網路學習一階動態系統，用以控制一迴授系統。論文

3.2 節中，為了學習一階動態系統，提出兩種簡單的類神經網路架構，一種是一般的類

神經網路，另一種加入了參數影響，而此參數是根據一階差分方程而來的。另外，本論

文不用常見的倒傳遞學習法則，而用一演化策略，因為倒傳遞學習法則必須知道反向動

態系統，但反向動態系統並不容易得到，而該演化策略並無此缺點。雖然使用該演化策

略的學習時間較長，但類神經網路經過演化策略的學習後，能表現的跟目標系統極度相

似，即使將此類神經網路放入一有外來雜訊的迴授系統當控制器時，亦能控制系統穩定

不受雜訊影響。 
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Neural Network-Based Evolution Strategies for 
Implementing First Order Dynamic Systems 

 

Student: Sze-Ying Chen         Advisor: Dr. Yon-Ping Chen 

 

Department of Electrical and Control Engineering 

National Chiao Tung University 

 

ABSTRACT 

English Abstract 

The objective of the thesis is training a neural network to perform as a first order LTI 

system, and then apply as a controller. Based on evolution strategies and the first order 

difference equation, two simple neural network structures are designed to implement the first 

order LTI systems. With the evolution strategies, it is not necessary to know the inverse 

dynamic system, which is required while using the backpropagation learning algorithm in 

general neural networks. From the simulation results, the proposed neural networks, called 

general structure (GS) and structure with sampling time (SST), may perform almost the same 

as the first order LTI system and are robust to an unexpected disturbance as a controller, even 

though the learning time is long.  
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 GS : General structure 

 SST : Structure with sampling time 

 g
kW  : The kth individual of the gth generation 

 ng : The number of the individuals in the gth generation 

 l : The multiple of the distance in the reproduction process 

 ( )sg
kΩ  : The kth child of the sth step in the gth generation 

 Ωtmp(s) : The temporal individual of the sth step 

 δΩ(s) : The difference of the sth step 

 ( )s⊥Ωδ  : The perpendicular vector of δW(s) 

 δΩtmp(s) : The temporal difference of the sth step 
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Chapter 1 
Introduction 

 

 

In recent years, many researchers have been devoted to developing intelligent theories, 

such as fuzzy logic [1], genetic algorithm [2-4], and neural network theory [5, 6]. These 

intelligent theories are used in more and more fields [7, 8] and show their great power as a 

problem solver. 

Many investigators have developed intelligent machines, such as Kismet and Aryan. We 

also built an eye-robot to mimic the motion of human eyes, and try to control the robot. In the 

conventional control theory, the model of the plant should be known exactly before designing 

the controller. If the model has some error from the real system, the designed controller may 

not stable and control well. However, in reality, many plants are complex and the model could 

not be determined, thus that restricts the use of the conventional control theory. The controller 

could not be designed by the conventional control theory when the model of the plant is 

uncertain. Fortunately, the intelligent control needs no exact model of the plant to design a 

controller, and can learn to control the system gradually. Thus, the restriction of the 

conventional control theory is the reason why we use the intelligent theory to control our 

robot. 

Basically, the artificial neural network based on the human neural network contains 

many neurons connected with synaptic weights. Thus, it can learn, recall, and generalize from 

training data like a human brain. Models of the neurons, models of the structure and the 

learning algorithm are the basic entities of the artificial neural network. They play important 
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roles in calculation of the output. Some learning algorithms focus on changing the way of the 

connections between neurons [11], some focus on adjusting the connecting weights [12], and 

some focus on the above two simultaneously [13]. One the other hand, the learning of the 

neural network theory could be divided into three main parts: supervised learning, 

unsupervised learning, and reinforcement learning [14]. The objective of the algorithm is to 

approach the optimal value of its error function. If the accurate data exist, the supervised 

learning is easier to approach the optimal value of the error function than the other two, 

because it doesn’t view a wrong result as correct. In the thesis, we focus on adjusting the 

connecting weight by supervised learning in system control field. Although backpropagation 

learning algorithm is commonly used and easy to apply, it has a problem of local optimization 

[15]. Hence, evolution strategies are used to increase the search space and thus try to avoid 

local optimization.  

The thesis contains five chapters. The introduction is described in this chapter. Chapter 2 

describes the basic neural network theory and some application in system control. The 

learning algorithms for neural network, evolution strategies, are explained in detail in Chapter 

3 and the simulation results are demonstrated in Chapter 4. Finally, the conclusion is given in 

Chapter 5. 
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Chapter 2 
Intelligent Control 

 

 

Intelligent control designed to simulate intelligent biological systems is a new control 

method which combines automatic control and artificial intelligence. The processes of the 

machines using intelligent control will be similar with the human thinking. Today automatic 

control systems have played an important role of our daily life, such as airplanes and 

spacecrafts. Although automatic control has works well, it is difficult to design a controller for 

a complex dynamic system. To solve the problem, recently investigators have paid their 

attentions to the intelligent algorithms, such as fuzzy theory and neural network, to achieve 

the system identification and controller design. It is known that neural networks are modeled 

after the physical architecture of the human brain; therefore, this chapter will focus on the 

control using neural network, which has been widely applied to intelligent systems.   

 

2.1 Introduction to Neural Network 

Neural networks demonstrate the ability to learn, recall, and generalize from training 

patterns or data. 

In general, the biological neural network in human brain is constructed by a large 

amount of neurons, which contain somas, axons, dendrites, and synapses. The current excited 

by the impulse from the other neuron will change the strength of synapses until steady when 

the biological neural network is learning. Artificial neural networks (ANN) which are 
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modeled after the physical architecture of the human brain is proposed to simulate the 

learning function for intelligent machine. Therefore, ANN is highly interconnected by a large 

of processing elements, which are also called artificial neuron or neuron simply, and its 

connective behavior is like human brain 

 

Figure 2.1 An artificial neuron 

An artificial neuron, which imitates a biological neuron, is shown in Fig. 2.1 and 

expressed as  

⎟
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where the output y is a function of the input xk, k=1,2,3,…. Note that the bias b and the 

weights wk, k=1,2,3,… are all constant. There are many types of activation function f, linear or 

nonlinear, and the hyperbolic tangent function described as  
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Because ANN is highly interconnected by a large of processing elements, the connection 

geometry among the processing elements is important to form a ANN. ANN can be 

constructed by artificial neurons in different modes, such as the commonest multilayer 
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feedforward network shown in Fig. 2.2, which possesses one input layer, one output layer and 

some hidden layers. 

 

Figure 2.2 Multilayer feedforward network 

The most important element of ANN is the learning rules, which are mainly classified 

into the parameter learning and the structure learning. The parameter learning is updating the 

weights in the neural network, while the structure learning is changing the network structure, 

such as the number of neurons and their connection. It is known that there are three types of 

parameter learning, including supervised learning, reinforcement learning, and unsupervised 

learning. In this thesis, the simulation uses a known plant and designed controller, so the 

input-output pairs of the controller can be gotten easily. The neural network learns the 

behavior of the controller by using these input-output pairs, and this kind of learning belongs 

to supervised learning. This thesis will focus on the supervised learning. 

In supervised learning, the back propagation learning algorithm, based on the simple 

gradient algorithm for updating the weights, is commonly used in most applications. The back 

propagation learning is often executed by multilayer feedforward networks with elements 

containing differentiable activation functions. Such networks are also called the 

back-propagation networks and Fig. 2.3 shows a back-propagation network consisting of one  
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M
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input layer 

first hidden layer 
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input layer with m neurons, one single hidden layer with l neurons, and one output layer with 

n neurons.  

 

Figure 2.3 two-layer back-propagation network 

For the back-propagation network in Fig. 2.3, let [ ]Tm21 xxx L=x , 

[ ]Tl21 zzz L=z , and [ ]Tn21 yyy L=y  be the inputs of the network, the 

outputs of neurons in the hidden layer, and the outputs of the network, respectively. Let 

vqj be the weight from the j-th neuron in the input layer to q-th neuron in the hidden layer 

and wiq be the weight from the q-th neuron in the hidden layer to i-th neuron in the output 

layer. Then, the output of the q-th neuron in the hidden layer is described as  
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where fz is the activation function, and the output of the i-th neuron in the output layer is 

described as  
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where fy is the activation function. 
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In supervised learning with the given input-output training data (x, d), the cost function  

is defined as the following error function 
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where yi is the output of the network and di is the desired output. Then, according to the 

gradient-descent method, the changes of the weights are determined as 
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. Besides, the learning 

rate η is often given experimentally to reduce the computing time or increase the precision. 

Finally, the weights can be updated by 
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It is the advantage that the back propagation algorithm can be used in the networks with 

nonlinear functions. Many researchers use the simple algorithm to learn classification and 
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input-output relationship. The objective of this thesis is to control the system using neural 

network, so the neural network for control will be introduced in the next section.  

 

2.2 Neural Network for Control 

Since traditional control theory is based on the mathematic model of the plant, it fails 

when the mathematic model is unknown or not accurate. The intelligent control theory based 

on the abilities of thinking and learning of human is not restricted to the mathematic model. It 

has more abilities to solve the control problem than the conventional control theory. 

The investigators have proposed many control method based on neural network, such as 

model reference control. Besides, some neural network structures are proposed for system 

identification, such as recurrent neural network. The model reference control based on neural 

network and recurrent neural network will be introduced in this section. 

 

Figure 2.4 the feedback system 

The model reference control based on neural network is introduced first. When the plant 

is given, the feedback system is shown as Fig. 2.4 and the controller is the learning objective 

system [16]. The reference model is designed according to the specification of the problem. 

Basically, the learning algorithm is based on the gradient method, so the learning process 

needs two neural networks, one to be a controller and the other to be a plant. This learning can 
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use backpropagation learning algorithm introduced in the last section. To back propagate the 

error to the neural network, the inverse of the plant should be known. Unfortunately, not every 

inverse dynamic of the plant exists, or can be known even if it exists. Hence, the neural 

network plant should be trained first for back propagating the system error to the neural 

network controller, shown as Fig 2.5. However, it causes that the neural network plant should 

be retrained whenever the condition of the plant changed a little. 

 

Figure 2.5 to train neural network plant 

It is known that the learning algorithm alters the connecting weights depending on the 

error between the plant output and the neural network plant output. If the neural network plant 

is trained well, it will replace the original plant. It is worthy noticing that the connecting 

weights of the neural network plant do not change when the neural network controller is 

trained. Fig. 2.6 shows the learning system for training the neural network controller. 

Compared with the reference model, the neural network controller does not learn as the real 

controller. If the plant in s-domain is defined as H(s) and the controller is defined as G(s), the 

system is described as 
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+
=

1
                                                 (2.9) 

where Y(s) is the system output and U(s) is the system input. However, the neural network 
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system is described as  

 ( )
( ) ( ) ( )sHsG
sU
sY

NNNN
NN =                                                (2.10) 

where GNN(s) denotes the neural network controller and HNN (s) denotes the neural network 

plant. Because the neural network plant is trained as the real plant, HNN (s) is assumed 

identical to H(s). Thus, the neural network controller does not learn as the real controller, and 

expressed as 

( ) ( )
( ) ( )sHsG

sGsG
+

=
1NN                                                 (2.11) 

which does not equal to G(s). 

 

Figure 2.6 to train the neural network controller 

The model reference control based on neural network is a simple way to control the 

system depending on the specification of the problem. However, the neural network plant 

should be trained first, and that leads errors while the plant changes, such as the input-output 

relationship and the sampling time. No mater what the plant changes, the neural network plant 

should be trained again for back propagation precisely. Besides, it is known that the neural  
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network controller is not the original controller. These restrict the use of the model reference 

control based on the neural network.  

Because of the restriction of the inverse dynamic, some investigators proposed other 

control method without learning the neural network plant [17-19]. For simplicity, the neural 

network controller could be learned as system identification while the controller is designed, 

but it can not be guarantee the control ability of the neural network controller. Thus, a fully 

recurrent neural network, shown as Fig 2.7, is proposed with capability of dynamics and the 

ability to store the information for later use. In the next paragraph, a leaning algorithm for 

fully recurrent neural network, real- time recurrent learning (RTRL), will be introduced. 

 

Figure 2.7 the fully recurrent neural network 

RTRL has been proposed by many investigators independently, and the most used is by 

Williams and Zipser [20], which is introduced here. The learning algorithms will be described 

in detail as below. 

While the network have n neurons, with m external inputs, the outputs of neurons are 

denoted as ykn(t), kn = 1,2,…,n, and the external inputs are denoted as xki(t), ki = 1,2,…,m, 
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where t is the time. These values are concatenated to form the (m+n)-tuple z(t), which is 

expressed as  
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which are the outputs of every neurons and input neurons. Since the network is fully 

connected, the weight matrix W in a ( )nmn +×  matrix to obtain n outputs of neurons by m 

external inputs and n inputs of neurons. Thus, the net input of the knth neurons at time t can be 

calculated as  

( ) ( )∑=
l

lknlkn tzwts                                                   (2.13) 

where l = 1,2,…,m+n. The output of the neuron at next time step is determined as 

( ) ( )( )tsfty knknkn =+1                                                    

(2.14) 

where ( )⋅knf is the activation function of the knth neuron. Let the first o neurons exist specified 

target value d, so the n-tuple error e is described as 

( ) ( ) ( )
⎩
⎨
⎧ ≤−

=
otherwise                          0

 if       okntytd
te knkn

kn .                                    (2.15) 

Define the overall network error at time t as 

( ) ( )[ ]∑=
kn

kn tetJ 2

2
1 ,                                                  (2.16) 

thus, let 

( ) ( )∑
+=

=
1

0 1
10total

t

tt
tJt,tJ                                                  (2.17) 
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denotes the network error running from time t0 to the time t1. W is adjusted along the negative 

of ( )10total t,tJW∇ . Thus, the weight change can be written as  

( )∑
+=

∆=∆
1

0 1

t

tt
ijij tww                                                    (2.18) 

where 

( ) ( ) ( ) ( )∑ ∂
∂

=
∂
∂

−=∆
kn ij

kn
kn

ij
ij w

tyte
w

tJtw αα                                   (2.19) 

and α is the fixed learning rate. The value of ( )
ij

kn

w
ty

∂
∂  can be determined as   

( ) ( )( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

∂
∂′=

∂
+∂ ∑

=

tzδ
w

tywtsf
w
ty

jikn

n

l ij

l
knlknkn

ij

kn

1

1                            (2.20) 

where δik denotes the Kronecher delta. It is known that the initial states of the network is 

independent of the weights, so it can be given as  

( ) 00 =
∂

∂

ij

kn

w
ty .                                                       (2.21) 

One variable ( )tpkn
ij , defined as  

( ) ( )( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+′=+ ∑

=

tzδtpwtsftp jikn

n

l

l
ijknlknkn

kn
ij

1

1                               (2.22) 

where 

( ) 00 =tpkn
ij                                                          (2.23) 

is created to denote ( )
ij

kn

w
ty

∂
∂ . Finally, the weight change at time t can be determined by 

( ) ( ) ( )∑ +=∆
kn

kn
ijknij tptetw 1α                                            (2.24) 
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and the overall weight change can be also determined.  

The RTRL is broadly used such as in classification and learning finite state systems, and 

the author show many simulation results to demonstrate its ability. Unfortunately, the 

calculation of this learning algorithm needs many previous data, so the algorithm needs a lot 

of memory to store information. Besides, it is computational expensive, because the weight 

matrix is large and the previous state information is much.  

 There are still many other methods to learn dynamic systems or controllers, but they will 

not be explained in detail in the thesis. In the next section, evolution strategies for neural 

network will be introduced using simple neural network structures to learn first order LTI 

systems. 
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Chapter 3 
Evolution Strategies 

 

 

Recently, the concept of the biological evolution is used in the intelligent theory, such as 

genetic algorithms, to reproduce the species generation by generation, then learn and survive 

based on the nature selection. Several investigators have proposed many evolution strategies 

to solve problems in diverse fields.  

 

3.1 Modeling of First Order LTI System 

 In general, a linear time invariant system is described by an ordinary differential 

equation, expressed as  

( ) ( ) ( )( ) ( )( ) ( ) ( )tbutya...tyatyaty 1n
2n

2
1n

1
n =++++ −

−−                           (3.1) 

where y(t) is the system output at time t, u(t) is the system input at time t, and ai are the 

constant parameters of the system, i=1,2,3,…,n-1. When the initial conditions, ( )( )0ny , 

( )( )01−ny , …, ( )0y& , and ( )0y , are all zero, the LTI system could be rewritten into the transfer 

function as 

( )
( ) 12

1
1 −−

− ++++
=

nn
nn asa...sas

b
sU
sY                                         (3.2) 

which is commonly used to clarify the characteristics of the LTI system. This thesis will focus  
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on the modeling of the simplest first order LTI system, expressed as 

( ) ( ) ( )tbutayty =+& ,                                                   (3.3) 

by intelligent structures and algorithms. For simplicity, the first LTI system is commonly 

rewritten into the transfer function as  

( )
( ) as

b
sU
sY

+
=                                                         (3.4) 

which has been widely used in controller design.  

The thesis focus on implementing the first order LTI systems using neural networks, but 

it is known that the neural networks belong to discrete time systems, not continuous time 

system. Therefore, the error does exist between the NN system and the objective system, the 

first order LTI systems. A simple method of DT system has been proposed to approximate the 

first order LTI system [21], and will be introduced next.  

The discrete-time system obtained from (3.3) under the sampling time ∆T is described 

as   

[ ] ( ) [ ] ( ) [ ]nuTbnyTany ∆+−=+ ∆11                                       (3.5) 

where y[n] = y(n∆T) and u[n] = u(n∆T) and which is so called the first order difference 

equation. 

 To find the error between the first order LTI system (3.3) and its corresponding 

difference equation (3.5) when the system input is a step function, the solution of (3.3) should 

be determined first as  

( ) atdecty −+=  and ( ) atadety −−=&                                      (3.6) 

where c and d are related to the input amplitude and the system initial conditions y(0) and 

( )0y& . If the step input is given with amplitude A and the system is initially idled, the solution 
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is obtained as 

( ) ate
a

bA
a

bAty −−= .                                                   (3.7) 

Thus, the exact solution at t = n∆T is expressed as  

( ) ( ) ( )[ ]TnaTna e
a

bAe
a

bA
a

bATny ∆∆ 1∆ −− −=−= .                               (3.8) 

As for the solution of (3.5) with the same input and initial conditions of (3.3), its solution 

corresponding sampling time ∆T can be found as  

[ ] ( )[ ]nTa
a

bAny ∆11 −−= .                                              (3.9) 

Compared to (3.8), the error at time t= n∆T is 

[ ] [ ] ( )

( ) ( )( )[ ]
( ) ( )[ ]nTna

Tnan

Tae
a

bA

eTa
a

bA
Tnynyny

∆1           

1∆11           

∆

∆

∆

−−=

−−−−=

−=∆

−

−                                (3.10) 

and the sum of error is 

[ ]
( ) ( )

( )

( )

( ) ( ) ( )( )

( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎥
⎦

⎤
⎢
⎣

⎡ −−
+−−+

−
×=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−−+

−
=

−++−+−+−

++++=

⎥
⎦

⎤
⎢
⎣

⎡

−−
−−

−
−

−
=∆

−−−

+

−

+−

=
∑

L

L

L

L

2
∆

2
∆1

2
∆              

2
∆∆∆1

2
∆              

∆1∆1∆11                  

1               

∆11
∆11

1
1

22
2

2
2

22
2

2

2

∆∆2∆

1

∆

∆1

0

TaaaTaa
a

bAT

TaTaTaTa
a

bA

TaTaTa
a

bA

eee
a

bA

Ta
Ta

e
e

a
bAky

n

TanTaTa

n

Ta

Tnan

k

     (3.11) 

where ∆T is assumed to be small and the sum of error is then proportional to ∆T2. It implies 

that the sum of error is reduced while the sampling time decreases. 
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A close look at (3.11) will reveal that the fitness is large while the sampling time is small. 

The problem is how to increase the fitness except decreasing the sampling time. Here, neural 

network theory is introduced to learn the first order LTI system for solving the problem. Next, 

two neural network structures will be introduced in order to learn the first order LTI system. 

 

3.2 Neural Network Structure 

In the thesis, the learning result after evolution strategies is determined from the fitness 

function which is defined as the negative sum of the errors between the outputs of the first 

order LTI system and the NN system. This thesis is intended as an investigation of whether a 

neural network structure could learn the first order LTI system as a controller. In the last 

section, the first order difference equation is proposed as a simple way to approach the first 

order LTI system. Before introducing our neural network structures, the structure for first 

order difference equation will be introduced first. It shows that the first order LTI system 

could be implementing based on neural networks. 

 

3.2.1 Structure for The First Order Difference Equation 

It can be found in (3.5) that the first order difference equation needs two parameters, 

(1-a∆T) and (b∆T), for the input and the output at last time step to approach the first order LTI 

system. In neural network, a general neuron with n inputs contains n connecting weights, (n-1) 

operators, and one activation function to produce an output. Here, the system input and output 

at last time are both viewed as inputs of a neural network. Now that the first order difference 

equation could be implemented by just one neuron with the activation function whose slope is 

one, shown as Fig. 3.1. Thus, it is concerned that whether the neural network with more 
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neurons is possible to let fitness larger than first order difference equation. Intuitively, it is 

possible to do that. It will be shown in Chapter 4. 

 

Figure 3.1 the first order difference equation using one neuron 

 

3.2.2 General Structure 

According to the first order difference equation, a general structure of neural network 

contains an input layer with two neurons which represent the system input and output at last 

time, an output layer with one neuron which represents the system output at this time, and 

some hidden layers. It is known that MLP can process more problems than single layer, so 

one hidden layer is used in the general structure for simplicity. Although amount of the 

neurons in the hidden layer will increase the possibility of good performance, they will 

increase the computation time. To give consideration to the possibility of good performance 

and the computation time, five neurons is chosen to put in the hidden layer, shown as Fig. 3.2. 

One may notice that the activation functions of this structure are all described as  

( ) 1=⋅f ,                                                           (3.12) 

and there is no threshold term in the structure. In this two-layered neural network structure, 

called ‘GS’ for short, the synaptic weight connecting the neuron i  to the neuron j is 

symbolized as ( )l
jiw  where l means that the synaptic weight is between (l-1)th layer and lth 
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layer, l = 1,2. Namely, there are two weight matrices, which are described as  

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
52

1
51

1
42

1
41

1
32

1
31

1
22

1
21

1
12

1
11

1

ww
ww
ww
ww
ww

W  and ( ) ( ) ( ) ( ) ( ) ( )[ ]2
15

2
14

2
13

2
12

2
11

2 wwwww=W  (3.13) 

in the GS, and the output of the GS can be simply determined as 

[ ] ( ) ( ) [ ]
[ ]⎥⎦
⎤

⎢
⎣

⎡
=+

nu
ny

ny 12 WW1  (3.14) 

that is a discrete time equation.  

 

Figure 3.2 the GS for first order LTI system 

Compare with the fist order difference equation in the last section, the output of the GS 

will be the same if the weight matrices are given as 

( )

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆∆−
∆∆−
∆∆−
∆∆−
∆∆−

=

TbTa
TbTa
TbTa
TbTa
TbTa

1
1
1
1
1

1W  and ( ) [ ]20202020202 .....=W               (3.15) 

where a and b are the parameters of first order LTI system 
as

b
+

 and ∆T means the sampling 

time. As long as the GS with weight matrices described as (3.15) will be equivalent to the fist 

1z−
[ ]1y n+ [ ]y n

[ ]u n

[ ]y n
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order difference equation, the fitness will be the same. 

Whether any other weight matrices will lead to larger fitness is a question. It can be said 

that the GS is better than the fist order difference equation if fitness of the GS is larger with 

the same sampling time. There remains a second question: how much does the sampling time 

affect the fitness of the GS. It is known that the fitness will increase as the sampling time 

decrease in the fist order difference equation, so to reduce the sampling time is necessary. 

Thus, the question about whether the sampling time has the same influence on the GS with 

fist order difference equation is taken up in the next chapter. 

3.2.3 Structure with Sampling Time 

Since the GS is a discrete time system without coefficients related to sampling time, it 

learns under the fixed sampling time of the training data. As a result, the GS is only suitable 

for the fixed sampling time, which restricts the use of the GS. One problem is raised: Does 

any neural network structure exist for arbitrary sampling times after learning, just like the first 

order difference equation suitable for a first order LTI system? To solve the problem, a 

structure with sampling time, called ‘SST’ in short, is designed to adapt a wide range of 

sampling times, as shown in Fig. 3.3, which adopts the parameters of the first order difference 

equation and is described as 

[ ] ( ) ( ) ( ) [ ]
( ) [ ] ⎥

⎦

⎤
⎢
⎣

⎡ −
=+

nuTb
nyTa

ny
∆
∆1

1 12 WW  (3.16) 

where the gains of the inputs is the main difference with the GS. By setting the weight 

matrices as  

( )

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11
11
11
11
11

1W  and ( ) [ ]20202020202 .....=W ,                       (3.17) 
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the SST obtains the output same as the first order difference equation. In this case, the SST is 

available for a wide range of sampling times and subject to an error due to the use of the 

sampling time. To further increase the fitness, it is required to find different weight matrices 

based on the evolution strategies, which will be introduced in the next section.  

 

Figure 3.3 the SST for first order LTI system 

In this section, except the structure for the fist order difference equation, two types of 

the structures of the neural network are designed to learn the first order LTI system, and the 

most difference between these two types is how the sampling time effects. Before simulations, 

the learning algorithm of these structures will be introduced in the next section. 

 

3.3 Evolution Strategies 

In neural network theory, it is an important issue to find the neural network whose 

weights lead to the global minimum of an error function. Unfortunately, it is difficult to know 

the minimum is global or not, even for systems without uncertainties. Therefore, instead of 

global minimum, investigators often develop evolution strategies to search the optimal 

minimum of fitness function with largest fitness locally, not globally. 

The backpropagation learning algorithm adjusts the synaptic weights using chain rule 

1z−
[ ]1y n+ [ ]y n

b∆T 
[ ]u n

[ ]y n

(1-a∆T) 
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depending on the gradient descent method as (2.6) and (2.7), so the synaptic weights could 

not be updated using the backpropagation learning algorithm while the inverse dynamic 

system is unknown. However, the evolution strategies we proposed adjust weights using 

evolution, but the chain rule according to the fitness function, so it avoid the disadvantage of 

the backpropagation learning algorithm. It can be said that that the neural network can learn 

easily using the evolution strategies even if the inverse dynamic system is unknown.  

According to the origin of species by Darwin [22], individuals less suited to the 

environment are less likely to survive and to reproduce. Under the limit of the environment, 

much of the species reproduce sexually, which leads no two individuals are identical generally, 

and thus the individuals more suited to the environment are more likely to keep their 

inheritable characteristics to future generations. That is so called nature selection, the most 

widely used by biologists to represent the scientific model of how species evolve. 

Here, evolution strategies, depending on nature selection, are proposed for the learning 

algorithm of the neural network. In the evolution strategies, the given problem is viewed as 

the environment and every set of weight matrices is viewed as an individual [23]. Basically, 

the biological reproduction is divided into two groups: sexual and asexual. Individual is 

different with their parents by sexual reproduction, but it is just identical copy of its parents 

by asexual reproduction except for mutation. Different with the nature world where the 

mutation happens with the reproduction unpredictably, it does not happen in the evolution 

strategies. In general, the species do not reproduce sexually and asexually at the same time, 

even if hydras and earthworms which can reproduce either sexually or asexually. In the 

evolution strategies, the reproduction happen both sexually and asexually at the same time. 

Four points is helpful in sketch out the evolution strategies: the initial individuals 

creation, the reproduction process, the learning process, and the elite process. Since the 

generation inherits from the last generation, the initial individuals affect the future offspring; 
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it means that not arbitrary initial individual after learning will behave as the objective system. 

By various reproduction processes and the learning processes, the individuals of every 

generation will be different even if the initial individuals are the same. Further, the elite 

process chooses the individuals which are more suitable to the problem. In the thesis, the 

evolution leads to a lot of results depending on its initial population, reproduction process, 

learning process, and elite process, and any above terms probably fails to learn. These four 

influences will be discussed next.  

 

3.3.1 Initial Individuals Creation 

 From (3.13), the structures both contain two weight matrices W(1) aad W(2). In the 

evolution strategies, the matrices are combined as an individual g
kW , defined as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]2
15

2
14

2
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2
12

2
11

1
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1
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1
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1
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1
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1
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1
11 wwwwwwwwwwwwwwwg

k =W  

 (3.18) 

which is the kth individual of the gth generation. Let g=0, 1, 2,…, and k=1, 2, 3,…, ng where ng 

is the population size of the gth generation. First, it is known that the initial individuals 0
kW  

affect the offspring g
kW  where 0≠g  and not arbitrary 0

kW  lead a successful learning. No 

exact way can decide how these initial individuals are before the evolution. The learning is 

expected to success even if the initial individuals are given randomly. Unfortunately, it is 

difficult because of the issue of the local optimal. Note that (3.15) and (3.17) could be thought 

as good individual of GS and SST, respectively. If the parameters are used to be an initial 

individual, the probability of success increases. Chapter 4 will show the influences of the 

initial individuals. 
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3.3.2 Reproduction Process 

The reproduction process is used for increasing the searching space of the individuals. 

For the human beings, the offspring combines the half chromosomes of each parent when the 

sexual reproduction happens. The child contains the half genes from the mother and the other 

half genes from the father. Not all the reproduction processes of the living things are same to 

the human begin, such as hydras whose offspring can be produced asexually. Therefore, how 

to create the offspring is concerned.  

In the evolution strategies, the individuals g
kW  are called the parents and g

kΩ  are 

called the children after the reproduction process. In the beginning of the reproduction process, 

n0 initial individuals have been created using method of Section 3.3.1. Of course, there are 

many approaches to create children and they can be produced from not only two parents. In 

the thesis, the reproduction process is divided into two methods: inward method and outward 

method. The inward method satisfied by  

g
c

g
kk

g
c

g
k WWWΩ −≤− max  (3.19) 

is introduced first where g
cW  expressed as  

( )g
n

gg
g

g
c gn

WWWW +++= L21
1  (3.20) 

is the center of the parents . For example, a child can be created as 
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shown as Fig. 3.4(a), or be created as 

( )g
n

gg
g

g
k gn

WWWΩ +++= L21
1 , (3.22) 

shown as Fig. 3.4(b). Besides, the outward method could be used. The children can be created 

outward as 
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shown in Fig. 3.5(a), or 

( )
( ) g

c
g

c
g

k
g
k

g
c

g
k

g
c

g
k

l
l

WWWΩ

WWWΩ

+−=⇒

−=−

  
 (3.24) 

where l is larger than one, shown in Fig. 3.5(b). In (3.23) and (3.24), the multiple of the 

distance l affects the children, thus it affects the probability of finding an individual which 

contains the best optimal value, called the best individual. However, it is unknown what the 

best individual is, and the effect degree could not be predicted because the evolution strategies 

not only use the reproduction process. Since the effect of l is unknown, a variable l seems a 

better choice than the fixed.  

                 

(a)                                 (b) 

Figure 3.4 Illustration of finding children inward 
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(a)                                    (b) 

Figure 3.5 Illustration of finding children outward 

It is mentioned that the variable multiple l can increase the probability of finding the 

best individual, and be given 0.95 of l in the last generation while the variation of fitness is 

not more than 5 generations in the evolution strategies. However, when l decreases to smaller 

than 1, the method is inward, not outward. In this case, a random reproduction process is 

adopted to replace the original outward process described as (3.24). The new children are 

reproduced randomly with larger distance than the maximum distance g
c

g
kk

WW −max , shown 

as Fig. 3.6. The purpose of this replacement is to increase the possibility of finding the best 

individual. 

center

parent

child

d

 

Figure 3.6 Random children creation 



 28

3.3.3 Learning Process 

After the reproduction process, there are (2n+1) children when there are n parents. In the 

learning process, every child learns independently, and the learning process will be introduced 

in this section. 

The objective of the learning process is to find an individual whose fitness approaches 

the optimal value, called optimal individual. Traditionally, the backpropagation learning 

algorithm uses the gradient of the error function to reach the objective. In the evolution 

strategies, it doesn’t use the gradient method to decide how the synaptic weights alter. Every 

step of the learning process tries to find a new individual whose fitness is larger than last step 

until the process reaches one of the stop conditions.  

The learning process starts with randomly creating a small enough difference ( )1tmpΩδ  

around the first individual ( )1g
kΩ  and then obtain the temporal individual 

( ) ( ) ( )112 tmptmp ΩΩΩ g
k δ+= . (3.25) 

If ( )2tmpΩ  does not lead to an fitness larger than ( )1g
kΩ , give it up and further find a new 

temporal individual. Once the fitness created by ( )2tmpΩ  is larger than ( )1g
kΩ , choose 

( )1tmpΩδ  and ( )2tmpΩ  as the desired difference and individual, that is, ( ) ( )11 tmpΩΩ δδ = , 

and ( ) ( )22 tmpΩΩ g
k = .  

After the difference ( )1Ωδ  is determined, the desired individual is updated as the 

procedure depicted in Fig. 3.7 and described as 

( ) ( ) ( )sΩsΩsΩ g
k tmptmp 1 δ+=+  (3.26) 
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where 

( ) ( ) ( )
2

tmp

1

11

ab

sΩbsΩasΩ

−=

−+−= ⊥δδδ
 (3.27) 

and ( )1−⊥ sΩδ  is the perpendicular vector of ( )sΩδ  and a is chosen randomly between 0 

and 1 to avoid the direction of ( )sΩtmpδ  is opposite to ( )1−sΩδ .  

 

Figure 3.7 finding temporal individual of the next step 

To find a perpendicular vectors, for example, one method is to choose two entries 

indexed i and j in the original vector, which is described as 

[ ]nji vvvvv LLL21=v                                    (3.28) 

and obtain the perpendicular vector as 

[ ]000 LLL ij vv −=⊥v .                                  (3.29) 

Although there are other simple ways to find perpendicular vectors, a more complex way 

which contains more variety is used in the thesis. The origin vector is described as (3.28), and 

every entry of the perpendicular vector is given randomly first except the index i, determined 

as 

[ ]nii rrcrrr LL 1121 +−
⊥ =v                                  (3.30) 
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where c is given as  

i

nniiii

v
rvrvrvrvrvc ++++++

−= ++−− LL 11112211                             (3.31) 

such that 0=⋅ ⊥vv . Since the perpendicular vector is decided, ( )sΩtmpδ  could be 

calculated. The temporal individual of (s+1)th step is determined as (3.26). If ( )1tmp +sΩ  

leads larger fitness than ( )sΩ g
k , keep ( )sΩδ  as ( )sΩtmpδ  and let ( )1+sΩ g

k  be equal to 

( )1tmp +sΩ , otherwise, choose a randomly and find a new perpendicular vector to create a new 

( )sΩtmpδ  again. Then, use the same way to get individual of every step until the learning 

process reaches the stop conditions. If the fitness of the final step does not reach the desired 

fitness, suppose it as the optimal fitness and labeled as g
k,Ω opt . Every child uses the learning 

process to find its own optimal fitness.  

The most common used stop condition is to check whether the fitness reach the desired 

fitness or not. Besides, the number of the steps could be restricted by experience or the 

learning could be stopped when the fitness has unchanged for several steps. In the thesis, the 

stop conditions of the learning process are checking whether the fitness is smaller than the 

desired and the weights have unchanged for several steps. If the learning process reaches any 

of the stop conditions, it stops. 

 

3.3.4 Elite Process 

It is known that the environment limits the population size of the species, so the number 

of individuals is restricted no matter the individuals belongs to which generation. Since the 

meaning of this restriction is to control the population size within limits, the generation length, 
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the population size of every generation, or the population size of all generations could be 

chosen as a restriction. For simplicity, the generation length and the population size of every 

generation are set to be the restriction. Unfortunately, the restriction of the generation length 

may stop the learning before learning well, and the restriction of the population size may 

increase the learning time. To be accurate, the restriction of population size of every 

generation is the first choice of the evolution strategies and the generation length is set to be 

very large.  

It deserves to be mentioned that there are (2n+1) children with their own optimal 

minimum after the learning process if there are n parents. It tells the number of the individuals 

is larger than the last generation. Generation by generation, the number of the individuals will 

become very large and that will increase the learning computation time seriously. Therefore, 

the population size of every generation should be restricted. The elite process is introduced to 

solve the problem by choosing some child to be the parent of the next generation. It is an 

issue which individuals should be kept for the next generation. They can be chosen randomly 

from the (2n+1) children, but, in this thesis, they are chosen depending on their own optimal 

fitness. To find n individuals for the next generation, the children are sorted by their fitness. 

Then, the first n children which contain the largest fitness will be kept. In other words, it is 

expressed as  

g
k,

g
k Ω opt

1 =+W  (3.32) 

where g
k,Ω opt  contains the kth largest fitness. 

 

According to the above methods, the evolution strategies start from creating n initial 

individuals. Then do the reproduction process to produce the (2n+1) children. For the (2n+1) 
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children, use the learning process to find their own optimal fitness. At this time, the elite 

process is used to reduce the number of the individual to n, and it keeps the number of the 

individuals unchanged generation by generation. The reproduction process, the learning 

process and the elite process repeats again and again until the largest fitness reach the desired 

goal or is unchanged for several generations. The flow chart of the evolution strategies is 

shown in the next section. 
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3.3.5 Flow Chart 

 

Figure 3.8 the flow chart of the evolution strategies 
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Chapter 4 
Simulation Results 

 
 

In this chapter, the objective system of the neural network is a first order LTI system, 

described as  

( ) ( ) ( )tutyty =+&                                                      (4.1) 

for simplicity. According to the system, the training data are captured with given sampling 

times when the input function is a step function whose amplitude is equal to 1 and the system 

initial condition are idled. The fitness function is defined as the negative sum of the errors 

between the outputs of the first order LTI system and the NN system. The learning procedure 

indicated in the last chapter was implemented by a Matlab program. 

In last chapter, it is mentioned that there are some settings which will affect the 

performance of the evolution strategies, such as the initial individuals and sampling times. 

Here, the influence of these settings will be discussed, and then the learned neural network 

using the evolution strategies will be implemented as a controller. The influence of the 

sampling times will be discussed in Section 4.1, the influence of the initial individuals 

creation will be discussed in Section 4.2, and then Section 4.3 will show the results of the 

neural network trained as a controller. 
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4.1 Influence of The Sampling Time 

The influence resolves itself into the following two points: one is the influence of the 

sampling time to learning result; the other is the abilities of two neural network structures to 

adapt different sampling times. The first point will be discussed in the following paragraph. 

In the first order difference equation, it showed that the fitness increases as the sampling 

time decreases. It is concerned whether the fitness of the two neural network structures 

increase as the sampling time decrease like the first order difference equation. There remains 

a second question about whether the sampling time affects the success rate of the learning 

result or not. Here, the GS and SST are trained under the sampling time 0.01 and 0.001. Fig. 

4.1.1 shows the learning result of the GS when the training data are under sampling time 0.01 

at 1st, 3rd, and 5th time. Fig 4.1.2 shows the variation of negative fitness, sum of the error, 

during the learning process of the GS when the training data are under sampling time 0.01 at 

1st, 3rd, and 5th time. Similarly, the objective of Fig. 4.2.1 and Fig 4.2.2 is the SST under the 

sampling time 0.01, the objective of Fig. 4.3.1 and Fig 4.3.2 is the GS under the sampling 

time 0.001, and the objective of Fig. 4.4.1 and Fig 4.4.2 is the SST under the sampling time 

0.001. Table 4.1 presents the learning results whose initial individual are all given randomly. 

We define the learning as success learning while the average of the error is smaller than 0.05, 

and show the result in the Table 4.2.1 and Table 4.2.2. Every case is learned by starting with 

three different initial random individuals.  
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Figure 4.1.1 the learning result of the GS under sampling time 0.01 
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Figure 4.1.2 the change of the sum of the error of the GS under sampling time 0.01 
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Figure 4.2.1 the learning result of the SST under sampling time 0.01 
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Figure 4.2.2 the change of the sum of the error of the SST under sampling time 0.01 
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Figure 4.3.1 the learning result of the GS under sampling time 0.001 
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Figure 4.3.2 the change of the sum of the error of the GS under sampling time 0.001 
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Figure 4.4.1 the learning result of the SST under sampling time 0.001 
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Figure 4.4.2 the change of the sum of the error of the SST under sampling time 0.001 
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Table 4.1 the results of learning with different sampling times 

∆T = 0.01 ∆T = 0.001 

generation length learning time generation length learning time  

GS SST GS SST GS SST GS SST 

1st 78 89 01:34:55 00:08:13 62 47 01:21:54 00:33:07

2nd 36 88 00:50:07 00:09:01 485 27 15:27:51 00:16:57

3rd 102 66 01:50:32 00:09:27 86 76 01:12:17 00:55:54

4th 81 38 01:32:53 00:12:34 94 53 01:43:28 00:39:49

5th 54 133 01:34:51 00:07:21 127 34 04:42:18 00:28:33

average 70 83 01:28:40 00:09:19 171 47 04:53:34 00:24:52

 

Table 4.2.1 the error and the accurate rate of learning with sampling time 0.01 

∆T = 0.01 

Sum of error average of error (10-2) Success/Fail  

GS SST GS SST GS SST

1st 0.0740 0.1784 0.01480 0.03568 S S 

2nd 0.2939 0.1538 0.05878 0.03076 S S 

3rd 1.5743 0.2525 0.31486 0.05050 S S 

4th 1.8689 0.4242 0.37378 0.08484 S S 

5th 0.1782 0.1291 0.03564 0.02582 S S 

average 0.7979 0.2276 0.15957 0.04552 Success rate(%) 100 100
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Table 4.2.2 the error and the accurate rate of learning with sampling time 0.001 

∆T = 0.001 

Sum of error average of error (10-2) Success/Fail  

GS SST GS SST GS SST

1st 61.3104 85.9001 1.22621 1.71800 S S 

2nd 144.4808 118.1299 2.88962 2.36260 S S 

3rd 374.9141 4.1978 7.49828 0.08396 F S 

4th 131.3523 32.7474 2.62705 0.65495 S S 

5th 570.8313 15.3980 11.41663 0.30550 F S 

average 256.5779 51.2746 5.13156 1.02500 Success rate(%) 60 100

 

The Fig 4.1.1 and Fig. 4.2.1 show that the learning results are almost the same with the 

system response when the sampling time is 0.01. Fig. 4.3.1 and Fig. 4.4.1 show that the 

learning results have some error from the first order LTI system response when the sampling 

time is 0.001, although the direction of the trend is the same. It means the fitness of the 

proposed neural network structures increases as the sampling time decrease. Besides, Table 

4.1, Table 4.2.1, and Table 4.2.2 tell that the error has no relationship with generation length, 

and the learning time is independent with the value of the generation length. The Table 4.1 

also shows that the learning time increases as the sampling time decrease in the same neural 

network structure, and the average learning time of the SST is shorter than the GS. Table 4.2.1 

and Table 4.2.2 indicate that the larger sampling time produce smaller fitness. It is similar 

with the first order difference equation. Besides, compared to the success rate, it is clear that 

the success rate of the GS decreases as the sampling time decreases.  
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Since the simulation results show errors are small, i.e. fitness are large, take the best 

individual with ∆T=0.01 to test the dynamic of the NN system. Here, two significant 

conditions for a system are variable for validation: the one is the initial condition y(0) of the 

system, and the other is the input function. Let the initial condition y(0) be 0.5, 2, and -2, and 

the input function be 2p(t), -2 p(t), and sine function where p(t) is a unit step function. The 

testing results of the initial conditions are shown in Fig. 4.5.1 to Fig. 4.5.3, and the testing 

results of the input functions are shown in Fig. 4.6.1 to Fig. 4.6.3.  
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Figure 4.5.1 testing result when initial condition y(0) is 0.5 
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 Figure 4.5.2 testing result when initial condition y(0) is 2 
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Figure 4.5.3 testing result when initial condition y(0) is -2 
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Figure 4.6.1 testing result when input function u = 2p(t) 
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Figure 4.6.2 testing result when input function u = -2p(t) 
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Figure 4.6.3 testing result when input function u = sin(2t) 

Fig 4.5.1 to Fig 4.6.3 indicate the neural networks using evolution strategies don't just 

learn as a specific curve, but the input-output relationship of the objective system. In another 

words, the learned neural network system behaves similar with the first order LTI system no 

matter what the initial condition or the input function is. Thus, these results lead to the 

conclusion that that the neural network using evolution strategies could learn well as a first 

order LTI system. 

Since the influence of the sampling time to the fitness does exist, the abilities of two 

structures to adapt different sampling times must be recalled here. To verify the abilities, take 

the best learning result under the sampling time 0.01, to test the system under the smaller 

sampling time 0.005 whose result is shown as Fig. 4.7, and to test under the much smaller 

sampling time 0.001 whose result is shown as Fig. 4.8.  

(1) 

(2) 

(3) 
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Figure 4.7 the testing result with T∆ =0.005 of the learned neural network with T∆  =0.01 
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Figure 4.8 the testing result with T∆ =0.001 of the learned neural network with T∆ =0.01 
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The Fig 4.7 tells that the GS fails, but the SST successes. Fig. 4.7 and Fig. 4.8 indicate 

that the GS can only be used under a fixed sampling time, but the SST can be used under 

larger range near the sampling time of the training data. Therefore, the SST is trained with 

different sampling times, 0.01, 0.001, and 0.0001 using evolution strategies, and then the 

results will show in Fig. 4.9 and Fig 4.10.1 to Fig. 4.10.3. It demonstrates that the SST can 

adapt larger rage of the sampling time when it is trained under larger range. It concludes that 

the SST is better than the GS concerning about the sampling time for learning the first order 

LTI system. 
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Figure 4.9 the learning result of the SST with sampling time 0.01, 0.001, 0.0001 
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Figure 4.10.1 the testing result under the sampling time smaller than trained sampling time 
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Figure 4.10.2 the testing result under the sampling time between trained sampling time 
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Figure 4.10.3 the testing result under the sampling time larger than trained sampling time 

 

4.2 Influence of The Initial Weights Setting 

In the last section, it is said that the success rate decreases and the learning time increases 

as the sampling time decreases. How to let the error reach the global minimum is an important 

issue for neural network investigators because it is easy to consider the local minimum as the 

global minimum. Thus, the local minimum may the main reason for failure learning. However, 

it is worthy noticing that the first order difference equation provides a set of adequate 

parameters to approach the first order LTI system. In the following, one of the initial 

individual is given depending on the parameters of the first order difference equation and 

compare with the random initial individual. The general structure using the initial individual 

given by the first order difference equation is called GSi. Since the SST has used the 

parameters of the first order difference equation in the network, SST is not discussed in this 
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section. The learning objective is the first order LTI system with sampling time 0.001, and one 

of the initial individual is given by the first order difference equation with sampling time 0.01. 

The learning result is shown in Figure 4.11.1 to Fig. 4.11.2, and Table 4.3.  

Table 4.3 learning results of GS with sampling time 0.001 

GS with ∆T = 0.001 
 generation 

length 
learning time sum of error

average of error 

(10-2) 
success/fail 

1st 70 03:02:29 3.9376 0.07875 S 

2nd 49 02:40:50 25.6901 0.51380 S 

3rd 850 06:34:49 1.1476 0.02295 S 

4th 235 14:45:59 22.7393 0.45479 S 

5th 117 05:01:20 93.8409 1.87682 S 

average 264 06:25:05 29.4711 0.58942 success rate (%) 100
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Figure 4.11.1 the learning result of the GS under sampling time 0.001 
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Figure 4.11.2 the change of the sum of the error of the SST under sampling time 0.001 
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Compared with the Table 4.1 to Table 4.2.2, Table 4.3 indicates that the success rate of 

GSi is larger than GS. It is worthy noticing that the sum of error of 3rd learning is smaller than 

the first order difference equation, 2.0302. It means the GS could perform better than the first 

order difference equation under the sampling time 0.001. However, the average of the 

learning time is larger than the last section. It reminds that the learning time is independent of 

the success rate. Similar to Section 4.1, two significant conditions for a system are also 

variable for validation: the one is the initial condition of the system, and the other is the input 

function. The influences of these two conditions are shown in Fig. 4.12.1 to Fig. 4.13.3 using 

the 3rd learning result. Thus, as the figures indicate, no matter what the initial condition and 

the input functions are, the learned neural network behaves corresponding to the first order 

LTI system. 
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Figure 4.12.1 testing result when initial condition y(0) is 0.5 
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Figure 4.12.2 testing result when initial condition y(0) is 2 
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Figure 4.12.3 testing result when initial condition y(0) is -2 
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Figure 4.13.1 testing result when input function u = 2p(t) 
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Figure 4.13.2 testing result when input function u = -2p(t) 

(1) (2) 

(1) (2) 



 55

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time(sec)

system response

input

real system output (1)
output of GS (2)

 

Figure 4.13.3 testing result when input function u = sin(2t) 

 

4.3 Implement as a Controller 

According to the results of the last two sections, it concludes that GS and SST using the 

evolution strategies have good performance on learning a first order LTI system. Further, 

implement it as a first order LTI controller to control the given plant to verify its ability. Here, 

a first order and a second order LTI system are the objective plant of the learned controller. 

Section 4.3.1 use the first order LTI plant to test the learned neural network structures, and 

Section 4.3.2 use the second order LTI plant to test. 

 

 

(1) (2) 
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4.3.1 System with First Order LTI Plant 

 

Figure 4.14 the feedback system 

In the beginning, a first order LTI system, described as 

( ) ( ) ( )tutyty =+&                                                       (4.2) 

where y is the system output and u is the input of the plant, is given as a plant of a feedback 

system, which is shown as Fig. 4.14. In the system, the neural network is trained as a first 

order LTI system and replaces the original controller, which is designed as 

 ( ) ( ) ( )tetutu 2.56.5 =+&                                                  (4.3) 

where the e is the error between the desired output and the system output.  
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Figure 4.15 the learning result of a controller: ( ) ( ) ( )tetutu 2.56.5 =+&  

( ) ( ) ( )tutyty =+&  ( ) ( ) ( )tetutu 2.56.5 =+&∑
-

+ e u y yd 

(1) (2) (3) 



 57

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time(sec)

system response

input

real system output (1)

output of GS (2)

output of SST (3)

 

Figure 4.16 the testing result of the feedback system with a neural network controller 

 

Figure 4.17 the feedback controller with disturbance 

The neural networks, SST and GSi, are trained as (4.3) with sampling time 0.001, the 

input function is a unit step function. The Fig. 4.15 shows the training result of two structures 

when they use the same input function and initial condition. It shows that the output of neural 

network controller is very close to the original controller, thus take it to replace the original 

one. Fig. 4.16 shows the system response with neural network controller when the y(0) is 0.5 

and the input function u is sin(2t). It was observed that the controller control the system well 

even if the initial condition or the input function change.  

( ) ( ) ( )tutyty =+&  ( ) ( ) ( )tetutu 2.56.5 =+&∑
-

+ e u y yd 
+

0.1sin(100t) 

∑+

(1) (2) (3) 
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In reality, the feedback system may contain some unexpected disturbances, so we add a 

sin function with high frequency 100 rad/sec and small amplitude 0.1 as the unexpected 

disturbance to the feedback system, shown as Fig. 4.17. Fig 4.18 shows the testing result of 

the feedback system with disturbance. It tells that the neural network controller performs 

similar to the original one, and can reject the influence of the disturbance.  
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Figure 4.18 the testing result of the feedback system with unexpected disturbance 

 

4.3.2 System with Second Order LTI Plant 

 

Figure 4.19 the feedback system 

∑
-

+ e u yyd ( ) ( ) ( ) ( )tutytyty 1342.512.5 =++ &&&( ) ( ) ( )tetutu =+&

(1) (2) (3) 
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Similar to the last section, a second order LTI plant, described as 

( ) ( ) ( ) ( )tutytyty 1342.512.5 =++ &&&                                         (4.4) 

in the feedback system, which is shown as Fig. 4.19. In the feedback system, the neural 

network is trained as a first order LTI system and replaces the original controller, which is 

designed as 

( ) ( ) ( )tetutu =+& . (4.5) 

Since the original controller is designed the same with (4.1), let the best learning result of the 

above simulations be the neural network controller here. 
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Figure 4.20 the testing result of the feedback system with a neural network controller 

Fig. 4.20 shows the system response with neural network controller when y(0) is 0.5, 

and the input function u is sin(2t). It was observed that the controller control the second order 

system stable. Then, we also add an unexpected disturbance corresponding to the last section 

(1) (2) (3) 
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to the feedback system. The system is shown as Fig. 4.21. Fig 4.22 shows the testing result of 

the feedback system with disturbance, and it shows that the neural network controller can 

reject the influence of the disturbance. Fig. 4.23(a) and Fig. 4.23(b) show the testing results of 

the plant input and plant output respectively while the unexpected disturbance is given as a 

random function. According to the above two simulations by different plants, it can be said 

that the neural network can learn well as a first order LTI controller by the evolution strategies. 

As long as the original controller can do, the neural network can also do. 

 

Figure 4.21 the feedback controller with disturbance 
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Figure 4.22 the testing result of the feedback system with unexpected disturbance 

∑
-
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(a)                                  (b) 

Figure 4.23 the testing result of the feedback system with unexpected random disturbance 
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Chapter 5 
Conclusion 

 

 

In this thesis, we provide two neural network structures, GS and SST, to learn a first 

order LTI system. These two structures are both simple structures using only one output delay.  

The GS can be used under a fixed sampling time, so it should be trained under sampling time 

small enough to increase its workable range. The SST contains the parameters of the first 

order difference equation in the network, so the parameters help SST adapt larger range of 

sampling time around that of the training data. Besides, we provide evolution strategies to 

help the neural network learn. It increases the searching space and tries to avoid local minima. 

For the purpose, the initial individual can be given by a set of known parameters from the first 

order difference equation. In the evolution strategies, the objective of the learning process is 

to find the individuals which lead to larger fitness. In the learning process, the change of the 

individuals of last step is important for creating the individuals of the next step. In the 

reproduction process, we use two ways to generate children such that the chance of finding a 

better individual is increased.  

Originally, it is expected that the cost of the computation time is low because the neural 

network structures are simple, but not as expected due to the use of the evolution strategies. 

The evolution strategies are time consumption since they increase the searching space and 

require too many generations and steps for a better individual. It is noted that even though the 

number of generations and steps is sometimes large, the learning result is not guaranteed to be 

good. 

No matter how long the learning costs, the neural network structures using the evolution 
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strategies can learn the first order LTI system, and behave as well as the objective system. No 

matter how the input functions and the initial conditions change, the output of the neural 

network is very similar to the objective system. It can replace the original first order LTI 

controller and engage as a feedback control. Even if the system has some unexpected 

disturbance, the neural network controller could also control the system successfully.  

In the thesis, the fitness function is the sum of the errors between the outputs of the 

objective system and the neural network, so the neural network learns from a given system. 

Further, the fitness function can be changed as the sum of the error between the desired output 

and the outputs of the feedback system with neural network controller. Then, it is not 

necessary to know the controller designed by the conventional control theory and the neural 

network could learn to control the feedback system if the system could be controlled by a first 

order LTI system. In other words, the neural network could be trained to be a first order LTI 

controller by the evolution strategies even if the plant and the objective controller are 

unknown. Besides, the neural network structure can add some items for more order dynamic 

system, such as ∆T2 and [ ] [ ]nynu × . These kinds of items may help increase the accuracy of 

the learning, and objective system is not restricted to a first order LTI system. In the future, 

both the above concepts, changing the fitness function and adding extra suitable items, ∆T2 

and [ ] [ ]nynu × , could be tried for improving the proposed method. 
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