ﬁ%gfﬁjlmﬁi\’}}_% A ’Ff p'?*;[‘_f.’.

g4 ERE BRI E TS B4

B2l ~F T THEH4I 7

7% &

ok AR T AS hdU R /3R ARG e R e RSN 2 B L st B B Reae
PR & F P R AR AR RS B R P iR P e ip B AR AR
e AREfk L FEE A TS - P RN R E S AR RE R B
G AR TR o Ra o PR TR ET N AR S A A AR
oo 1L BT DAt g AR e » BB BRI A SO
“RIE (S BRI AR B IR F i 4 s T e T R e RN AR S A K e A
15Tt R Rwm ¢ o AR - B3 RIS R R O Y I s R 7
Fd e AR Al AR R AL 0 AT RACA R HE 0 T B AR 2 kA TR
CHITHREPEEN A o AART TR DA Y o AR Y BfE R Fag bk A
B F ARG Al AR T R E o R NS AR BoR T AR
BB EA P FEDP Do FHPPBEH TR > APLF LR PRGpE g R
RIS 8 e B R B (T o 47 o GV i en= 2 ¢ > 2 e £V 53 (2 47 5V 48 P
A SR frit il BRFrcH i B A TR {3 R A R N RN g <) e
Bde o RABAETF Fiv AR FUF BB B A AL F O AT R

Analysis and Evaluation of Control Flow Obfuscations of

Software Programs

Student: Hsin-Y1 Tsai Advisors - Dr. Yu-Lun Huang

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

Modern control flow obfuseation techniques are usually composed of a sequence of
transformations to control flows and intended to discourage reverse engineering and malicious
tampering of software codes. In'.this thesis, we:present an approach to analyzing and
evaluating the effectiveness of such techniques which was not addressed in detail in the
previous work. Our work is implemented on a source level basis with abstractions of control
flows of a software program. Existing control flow obfuscating transformations can be
decomposed and categorized into various types of atomic operators and defined in formal
algorithms that take abstracted control flows as inputs. These algorithms are evaluated in
terms of their complexities and robustness against reverse engineering. The side effect of
space penalty of each atomic operator is also evaluated. Given the individual results, the
whole software program can thus be evaluated as well, providing an objective indication of

the aggregated effectiveness of the overall obfuscation result.

il

2
¢
ﬁ

PEAEFAGUER R AR @ sk R - - TR R - Hp#
FEROER ol e R 3MLF e BT - TRER LB E RS F AR

}i}\ﬁ:j‘;}'ﬁ %?{;}'}‘ '1;—" Eﬁg’f‘lﬁ'lu;}'ﬁ %T' v E"\ﬁ)Ef' ,—»/\‘ﬁ” \ N 'ﬁ;\“;ﬂ’gﬁl ° é‘_ RTES ?

BFohs E¢ XL IRV RGAY R IR BEARFF RN B
mpre B oo (ABE a0 N L REFE S > BEE ppF Ny BRI XL R PR

HEFR PR AEEH > R Ak) Fa (AR -

AE N RA)’%J BIFOEHE R HE § BB R ARG AT LN
penE ekt Flad G AN AR REALE N o F A BERBA DT L
EC U EELT RS EET J PRy SE SRS SR VRN S R

AR S BT o

RTES % =% £ &% %m’?%i VNI A T s - desd s s - AT RIR L - AT A
SRR Sy S RN B AR E S e L
A e T R AR LI AT RSP A RA g RE AR R - e
Ffenp > 7B IR F R G B EOFRE S HE A S Bl - A fOTRT S L
FORE - APLERTIRIR AL TP AT P AR RAIIPE S At TR T

P~ ¥ SRR ARPERAL 2 LA e 0 AN PR IR e e

Bfs o AREAE - X ggﬁgj—ﬁgéﬁgk S FE A gj;}?a;kﬁqk BRI o

il

Table of Contents

¥ RS SURRPRTPR i
ADSTFACT ... i
B = ST OSRSPRRRN ii
TaDIE OF CONTENTS ...ttt Y%
LISE OF TADIES ... Vi
I TS o) T 10 USSR vii
(O gF- 1o (=1 g | oY1 0o [1Tox £ o] o USSR 1
1.1 BACKEIOUNG.uiiiiieiiecieeie et ettt ettt et e et e eenbeesnaeenseas 1

L Ofe) 1138 Lo 1 T0) s U PR SRURUUSRPRP 3

L I 4 110 o] TSRS TSRPRRI 3
Chapter 2 Related WOKKc.oiieiieie ettt 5
2.1 Control FIOW ObfUSCAtIONc.eiiiiiiiiiiiieiieeie ettt ettt et 5

2.2 Evaluation of ODfUSCALIONScccuieriiiiiiiiieiieeiieeie ettt ettt e ereesee e es 9

2.3 GIaph DISTANCEveeiiieiieciie ettt ettt ettt et e et e e beesabeensaeeaaeenseeenes 10
Chapter 3 Program Parser ...t il oeereeeeesteesieseesieesseseessesesseessesseessesssesssesses 13
R0 B D 1S5 1118) o D O SRR PSRRR 13

3.2 Format of Parsed Programscioiliih. it et 15
Chapter 4 ALOMIC OPEratOrS i ieasseaiieitaaseesceesiamteeaseesseesseaeesseesseassessesseessessessesssessessees 17
4.1 Insert Opaque Predicatesol et eete et eteesaeeebeeseneeneens 17

4.2 Split Code EICMENLS it iifea it ettt ete e sae e steeseeebeenseeenseens 22

4.3 Reorder Code EICMENTSccoieiiiiieie ettt st 26

4.4 Insert DUMMY COAESccueeiuiiiiieiiieiieeie ettt et et eb e seaeeteesaaeesbeessaeeseesnneans 27

4.5 Replace with Equivalent Codes...........oocuiiiiiiiieniieniieiecieeieeie et 29
Chapter 5 Formalization of Obfuscating Transformations............cccccceeevvieiieieiiesnennn. 33
5.1 Computation Transformationscccueeruierieeiienieeie ettt 33
5.1.1 Branch Insertion Transformation, T7ccccueeeeooeeeeeeeeeeeeeeeee e 34

5.1.2 Loop Condition Extension Transformation, TZccccceeveevievieeeesreeeeennene 34

5.1.3 Language-Breaking Transformation, TGc..cccccoevievieieieieieieeceeeenee 35

5.1.4 Parallelize COAE, TLooo oot e e 35

5.1.5 Add Redundant Operands, Tcccocveviieieiieiieeieeieeee et 36

5.2 Aggregation Transformations, Tocooeueeeeeeeeeeeeeeeeeeeeeeeees oo see e 36

5.3 Ordering Transformations, Tcooveeeeeeveeeeeeeeeeeeeeeeeseeseeseee e see e s 36
Chapter 6 EVAIUALIONc.coiiic et re e snae e 38
0.1 DP VAIUC ...ttt ettt et ettt et eaae b eene 38

6.2 Distance Using Graph Edgecccoiviiiiiiiiiiii e 39

6.3 Example of DP Value upon Formalizationccoccueeviieniiinieniieieeicee e 40
Chapter 7 SPace PENAILYccoiieeec et 45

iv

Chapter 8 Example: Prime NUMDEE LiStccoiiiieiieie i 48

8.1 Source Program and Parsed Result...........ccccoeiiiriiiiiiiniiiiiiiiiciceeee e 48
8.2 Obfuscation FOrmalizationceevuieriieriieiiieiie ettt 49
8.3 Evaluation and Space Penaltycccoviiiiiiiiiiiieieeeeeeee e 53
Chapter 9 CONCIUSION........coiiiic ittt te e e e re e e s e e saeeneenres 56
RETEIEICES. ...ttt 57

List of

Tables

Table 1. Classification of obfuscating transformationscceeceeeviercieenieeriienie e 6

Table 2. Space penalty of each atomic operator

vi

Figure 2.1.

Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 3.1.

Figure 4.1.

Figure 4.2.

Figure 4.3.
Figure 4.4.

Figure 4.5.
Figure 4.6.
Figure 4.7.
Figure 6.1.
Figure 6.2.
Figure 8.1.
Figure 8.2.

Figure 8.3.

List of Figures

Three types of opaque predicates where solid lines indicate paths that may
sometimes be taken, and dashed lines represent never-taken paths (C. Collberg [8])
.. 7
Branch insertion transformations (C. Collberg [8])ccceovverveerieniiiiieciieiieeieeee. 7
The loop condition insertion transformation (D. Low [7]) .ccceeevveiiienieniieiecieenee. 8
Example of graph union method............cocooviiiiiiiiiniiniieee, 11
Example of the formal representation of a parsed program............ccccceeecveevirennnnnn. 15
Example of applying the operator, 05; (W3 C)) i 19
Example of applying the operator, Op, (¥, C,) «evvvriniiinniiiniiiniieiins 21
Split SIMPIE DIOCKSeeniiieiieeiiieiieeieee e 23
The fragmented pieces are demarcated by Op;. To ensure the priorities of any
conditions, C, should be segmented in reverse order...........cccoeeeeeieeriienveenieennnane 25
Example of inserting dummy simple bloCKS.........ccceeverviniiniiiinienicccieecee 28
Example of inserting dummy T00PS <.t ceveeiiieiiieiieiieeieeeee e 29
Example of replacing the target element with its equivalent codes...................... 31
Subgraphs in two circles are the common subgraphs of G1 and G2. 40
Example of obfuscation formahization.......o........ccccoooeniiiininiiniee, 42
The parsed representation OFPTrOSram L. ...cooooiiiiiiiiiiiiieieie e 49

Program II: the obfuscated version of Program I after applying the specified basic
block fissi0n ObfUSCAIONeevieuiiiiiiiiiiecieect e 51
Program III: the obfuscated version of Program I after applying the specified

branch INSertion tranSTOIrMAtIONvuveeereeeeeeeeeeeeeee 53

vii

Chapter 1

Introduction

Recently, programs incur more and more risks of being maliciously tampered due to the
popularity of mobile executables. To protect the executables from being sinfully pirated,
professionals and researchers have proposed several techniques. However, the protections
provided by the techniques usually accompany side effects. Hence, it is important to estimate
the side effects in advance to get an optimal solution between the effectiveness and overheads

of the techniques.

1.1 Background

With the popularity of mabile executables, the protection of the authorization in these
executables becomes one of the major-issues-for their service providers. Since the mid 1990s,
digital rights management (DRM) [19,020,121] has been used for the protection of the
authorization of these mobile executables. This technique prevents unauthorized duplication
and piracy of the digital contents. It thus ensures the profits for the publishers and the owners
of these digital contents. The DRM is implemented by injecting authentication codes,
verification codes and access control codes into the executables. To verify the authority of
users, the verification codes or access control codes are executed before the original mobile
executables. However, attackers can still try to reverse engineer the mobile executables and
skip or remove the verification codes if the execution logics of these mobile codes are not
well protected.

It has been reported that Windows Media DRM10 was stripped in 2006 [17, 18]. Marius

Oiaga, a technology news editor, reported that “the application FairUse4WM is designed to

complement the DRM removal program “drmdbg” that manages files containing digital
rights copyright protection code.” It was also mentioned that “FairUse4WM actually permits
the stripping of DRM from subscription copyright protected content allowing for unlimited
usage of the files independent of the subscription renewal process [17].” It is clear that
Windows Media DRM10 protects the authorization of the digital contents, but fails to protect
the authorization codes used to verify the access rights of the contents. It implies that the
verification codes can be easily skipped or removed, if the critical sections are compromised.

In recent years, advanced techniques, such as trusted computing platforms (TCP) [24, 25,
26], software encryption [22, 23, 27], software obfuscation [1, 2, 7, 8, 9], have been proposed
to protect the execution logics of the authorization codes or access control codes in the mobile
executables. When applying the trusted computing techniques, tamper-resistant hardware
devices [14] are needed to protect:the sensitive credentials. However, software execution
performance, deployment flexibility and total-cost can be sacrificed if the tamper-resistant
devices are used.

In addition to the TCP techniques, many ‘crypto methods are presented to prevent
malicious tampering and discourage reverse engineering based on cryptography theories, such
as software encryption [13, 22, 23]. In the methods, the encrypted software codes are
decrypted right upon execution. However, the time consumed in the cryptography operations
is proportional to the code sizes of the software modules, and this kind of methods is
impractical for some real-time applications. Upon applying the software control flow
obfuscation methods, the execution paths and logics are obfuscated. The authorization codes
are hidden in the obfuscated execution paths and thus can be prevented from being skipped or
removed. Code obfuscation techniques [1, 3, 7, 8] require no extra hardware and are
platform-independence, and thus provides higher flexibility in deploying the mobile
executables.

The basic idea of code obfuscation is to transform an application such that the

transformed outcome is functionally identical to the original but is much more difficult to be
reverse engineered. Therefore, applications can run on an untrusted platform without the risk
of reverse engineering, tampering or intellectual property thefts. Control flow obfuscation
aims at disguising the real control flow in a program. Collberg et al. [6, 7, 8] proposed a
classification of obfuscating transformations and several obfuscation methods. However, they
did not clearly explain the improvement of the robustness against reverse engineering after
obfuscation. The evaluation of robustness of a program before and after obfuscation is

important in getting an optimal solution between security and obfuscation overheads.

1.2 Contribution

In this thesis, we present an approach to analyzing and evaluating the effectiveness of
control flow obfuscating transformationsswhich. was not addressed in detail in the previous
work. Analyzing existing control flow obfuscating transformations, the transformations can be
performed with composition of various fypes-of atomic operators which are defined in formal
algorithms that take abstracted control flows as inputs. The transformations are evaluated in
terms of their robustness against reverse engineering based on the difference between an
original and its transformed programs. The side effect of space penalty of each atomic
operator is also estimated that given the individual results, the whole overhead on code size

can be evaluated as well.

1.3 Synopsis

The remainder of this thesis is organized as follows. In the next chapter, we brief the
related work. Chapter 3 defines the program parser with the entry and the directed graph of a
source program. Chapter 4 depicts the proposed atomic operators which are basic elements

used to perform more complicated obfuscating transformations. The formalization of control

flow obfuscating transformations is introduced in Chapter 5. We discuss robustness against
reverse engineering after different transformations in Chapter 6, followed by the analysis of
overheads as a result of obfuscation in Chapter 7. Chapter 8 presents an example to explain
how to apply the approach to a source program. Finally the conclusion is given in the last

chapter.

Chapter 2

Related Work

As software security becomes more and more important for their providers, several
techniques in control flow obfuscations [2, 7, 8, 9] have been proposed to prevent software
programs from being reversely engineered. Besides obfuscating transformations, evaluation
measures of obfuscation were defined [6, 7, 8]. In this chapter, we survey some famous
obfuscation techniques and evaluation metrics. We point out the weakness or infeasibility of
the evaluation measures when they are used to estimate the robustness of control flow
obfuscations. After the surveys, we propose an improved approach to analyzing control flow
obfuscations upon the advantagesiof the existing evaluation measures in the following

chapters.

2.1 Control Flow Obfuscation

To discourage reverse engineering, several obfuscating transformations [1, 2, 6, 7, 8] are
proposed. The transformations can be classified as layout obfuscation, data obfuscation,
control flow obfuscation and preventive transformation as Table 1 shows. Layout obfuscations
affect the information in a program that is unnecessary to its execution. Examples include
scrambling identifier names and removing comments and debugging information. Data
obfuscations operate on the data structures used in a program. Extended techniques involve
data storage, data encryption, data aggregation and data ordering. Preventive transformations
are not intended to obscure a human reader, but intended to stop decompilers and
deobfuscators from functioning correctly. Control flow obfuscations target on disturbing the

logic of the execution path of the original program to make reverse engineering difficult.

Table 1. Classification of obfuscating transformations

Classification of Obfuscating Description
Transformations
Layout obfuscation Affect information unnecessary to the execution

of a program

Data obfuscation Change data structures

Preventive transformations Stop decompilers and deobfuscators from

functioning correctly

Control flow obfuscation Disturb execution flows

Since control flows of a program dominate and reveal the execution logic of the program
that implies control flows are the key to understanding programs, we focus on evaluating the
effectiveness of control flow obfuscation in.this thesis. With the control flow obfuscation
methods, the execution logic of thé-original|program’can be hidden behind the disturbed flows
and thus makes the difficulty of reverse engineering relatively high. Techniques used for
control flow obfuscation includé:branch insertion; ordering transformation, loop condition
insertion transformation, etc. Followings depict the brief introduction to several techniques
for control flow obfuscation.

Branch insertion transformation [8] is designed by inserting opaque predicates into a
program to disturb and conceal the real control flow. An opaque predicate is a Boolean valued
expression whose value is known a priori to an obfuscator but difficult for a deobfuscator to
deduce. According to the outcome, these opaque predicates can be categorized into three types,
as shown in Figure 2.1. For a type I or type Il opaque predicate P, it is always evaluates to
false or true, which can be denoted by PF or P, respectively. P’ is the representative of a type

IIT opaque predicate P. Its outcome can be sometimes evaluated true and sometimes false.

.4

i

Type 1 Type 11 Type 111

4 —--
«— -
<_

<4+ —-=-!

Figure 2.1. Three types of opaque predicates where solid lines indicate paths that may sometimes be

taken, and dashed lines represent never-taken paths (C. Collberg [8])

S1;S2;+++38,
@] Q. .q-...- . (b) (©)
S13825 43, S1582;7+35; 1385 ;S

f _____ | @ |
£(S)=f(S")=HS?) £(S)=£(S")=f(S")

Figure 2.2. Branch insertion transformations (C. Collberg [8])

With a type I or type II predicate, the original codes should be moved to the false or the
true target of the predicate to preserve the original functionality. Since type I or type II
predicates always achieve the same result, dummy codes can be used for the
never-achieved target of the predicates. With a type III predicate, the equivalent codes may be
placed on one target while the original codes are placed on the other. Figure 2.2 illustrates the
implementation of branch insertion transformations with different types of the opaque

predicates.

T

l

S

k € f(k) &

k esf(k) k < il
AN
i € a(kj) 1<)
) i=13j=100;
i=1; while ((i<100).&& (j*i*(+1)*(+1)%4==0)") {
while (i<100) {
:> e
BRF =i 13;
} ;
© (d)

Figure 2.3. The loop condition insertion transformation (D. Low [7])

In addition to branch insertion transformation, the ordering obfuscation [7] randomizes
the independent instructions so that the spatial locality of instructions cannot reveal the logical
relations among the instructions, nor provide useful clues of the execution logic of the
program. On the other hands, ordering obfuscation focus on jumbling the placement of any
code section in a source program. Furthermore, to make branch conditions more complex and
further increase the difficulty of reverse engineering, type I or II opaque predicates are
introduced in loop condition insertion transformations [7]. In Figure 2.3(d), j2 *G+ 1)? is used
as a type I opaque predicate inserted in the control flow as shown in Figure 2.3(a). The

insertion extends the condition of the loop, but the execution result is still preserved.

2.2 Evaluation of Obfuscations

To evaluate the complexity and overhead of obfuscated programs, D. Low et al. defined
some metrics to evaluate an obfuscating transformation, including resilience, potency and cost.
Resilience states how well an obfuscating transformation holds up under attack from an
automatic deobfuscator. Cost indicates the additional run-time resources required to execute
an obfuscated program. Potency shows the degree to which an obfuscating transformation
confuses a human who is trying to understand the obfuscated program.

It is acknowledged that obfuscation can be used to discourage reverse engineering. The
time spent on reverse engineering a program normally depends on the ability or the
experience of a reverse engineer. Among the three metrics proposed in the previous work [7],
only potency implies the difficulty for a reverse engineer to compromise and deduce an
obfuscated program. Thus, in this thesisjmwe. evaluate the robustness of an obfuscating

transformation upon potency. The following is the definition of potency.

pot(P,P'):CCOO':;Z((B—l Eq (1)

In Eq (1), comp(P) states the complexity of an original program P ,while comp(P’) refers
to that of an obfuscated program P’. Despite the fact that the clear definition of potency was
given, it was not clearly explained how to determine the explicit values of complexities,
comp().

To determine the complexities of software programs, many methods are proposed in the
past few years, such as Measure Relative Logical Complexity (RLC), Absolute Logical
Complexity (ALC) or N-Scope [10]. In these methods, directed graphs are used to represent
the software programs, and the complexities of the programs are measured by edges, branches
and nodes in the graphs.

Measure RLC uses the ratio of the numbers of branches and nodes to represent the

complexity while ALC counts branches only. In N-Scope, the complexity is determined by the

nesting levels of all branches in a program. In control flow obfuscation, the insertion of
opaque predicates changes the number and depth of loops in a program, and thus changes its
complexity. Nevertheless, according to the rules defined in RLC and ALC, it may result in the
same complexities even different control flow obfuscating transformations are applied. Hence,
in this thesis, N-Scope is used to evaluate the complexities of the program and then derive the
potency for control flow obfuscation.

Potency with N-Scope is sensitive when the numbers or depths of loops are changed.
Unfortunately, for some transformations, instructions are reordered without changing the
number and depths of loops. In these cases, it results in an unchanged potency value and fails

to reflect the complexities introduced by the obfuscating transformations.

2.3 Graph Distance

To address the drawback of:potency with- N-Scopé and further make a precise evaluation,
in our work, graph distance, giving a variation-of the-execution logics between two programs,
should be evaluated to indicate how mueh confusion is to a human reader after obfuscation.

In 1998, Bunke [11] proposed the MCS method with a distance metric based on the
maximal common subgraph. The method depicts the distance between two graphs with the
number of vertices of their maximal common subgraph and of the larger graph between the
two, as shown in Eq (2).

mcs(G,,G,)|
d(G,G,)=1-1MeS(G.G,)l Eq (2)
’ max(|G, |,|G,)

where |G| means the number of nodes of the graph G, and mcs(G,,G>) is the maximal common
subgraph of G, and Gy.

Nonetheless, if the size of the maximal common subgraph is unchanged, the distance
between graphs remains the same even if the smaller graph changes its size. In other words,

changes in the smaller graph cannot be reflected when using the MCS method. To improve the

10

drawback of the MCS method, in 2001, Wallis et al. [12] proposed a measure based on graph
union, which is referred to below as the graph union method, as shown in Eq (3).

mcs(G,,G,)|
d(G,G,)=1- | L2 Eq (3)
v |G1|+|G2|_|mCS(G1)G2 |)

Common subgraphs of G1 and G2
2d(G1,G2)=2/3

Common subgraphs of G1 and G3
2d(G1,G3)=2/3

Figure 2.4. Example of graph union method

Using the union rather than the larger of two graphs, changes in the smaller graph can be
distinguished. Considering the example in Figure 2.4, d(G1,G2) equals to d(G1,G3) in terms
of the graph union method even though G1 and G2 have more common subgraphs than G1
and G3. The distance changes only when size of the maximal common subgraph is changed. It
is not able to reflect the changes in other common subgraphs. To emphasize more on the

disparity of the execution logics of two programs, we propose a distance measure in terms of

11

the number of edges. In the proposed measure, the summation of all edges in all common
subgraphs is counted in so that even minor changes can be reflected in the derived distance.

The proposed measure is detailed in Chapter 6.

12

Chapter 3

Program Parser

To formalize the obfuscating transformations, a program must be parsed, fragmented and
converted into its graph representation. In this chapter, we describe the definition of basic

components of a program graph and the rules for the program parser defined in the thesis.

3.1 Definition

As a high-level abstraction, a software program is composed of a sequence of code
blocks. Upon decomposing the software program, it can be converted into a directed graph,
whose vertices are the code blocks of thejpregram.and edges are the execution orders for
these code blocks. In this section, we defin¢ the code blocks and edges used to explicitly
represent software programs based on-directed graphs.
According to the diversion of execution, the code blocks in a program can be classified
as branches or simple blocks, defined as follows.
¢ Branch (B): A branch in this thesis refers to one of the branch statements used in for loop,
while loop, do-while loop, if-else statements, and go-to unconditional jumps in high-level
programming languages.

¢+ Simple Block (S): A simple block is defined as a set of sequential statements with no
branch instructions inside this code block.

¢ Code Element (C): A code element refers to a branch or a simple block. In other words, a
set of code elements is the union of sets of branches and simple blocks. A code element
can be classified according to their specialties. The following gives a notation of the

classification of code elements.

13

- Cyis the entry point of a source program.

- D, the don 't-care codes, is the element which is never executed.

- E(C) is an equivalence of C. It preserves the same functionality as C.

- An empty statement (¢) represents the termination of an execution path and can also be

considered as a code element.

The edges of a directed graph of a software program are the execution sequences of the
program. Normally, instructions in a program are either sequentially executed or branched. To
specify the different characteristics in execution, two types of edges, sequential edge and
branch edge, are defined respectively to represent the execution sequences of code elements.
¢+ Sequential edge (€): A sequential edge, e = (C;, C;), i # j, is defined for two code elements,

C; and C;, whose execution order is sequential. It stands that C;, the immediate successor,

is executed right after C;, the immediate predecessor.
¢ Branch edge (b): Since a branch may jump to its-true or false target, there are two code

elements which are possible to be executed.right after the branch, B. To state the branching
relationship between the branch.and its targets, a branch edge, b = B(C™™, C™), is
defined. In this representation, B stands for the branch, where C"* and C"** represent the
true and false targets of B, respectively.

With these notations and definitions, the directed graph, G, can be represented by a
combined tuple (7, E), where 1/ is the vertex set and E is the edge set. The vertex set, ¥,
contains all the code elements, including simple blocks and branches, in the parsed program.
The edge set, E, is composed of sequential edges and branch edges. The following formal
representation details the relationship of the above notations.

G= (¥, B).

V=C=8 U B, where

S={Si|V¥1, S; 1s a simple block},

B= {B;|V1, B; is a branch},

14

C= {C;|V1, C;is a code element, either a simple block or a branch}.

&= {E; |V1, E; is either a sequential edge or a branch edge}.

3.2 Format of Parsed Programs

With the definitions described in Section 3.1, a software program can be decomposed
and formatted into a parsed program, V¥, with its entry point Cy and a directed graph G,

represented in the form of

Y= (CO’ G)

S S,

Y =(So, {So, Bo, S1, S2}, {(So, Bo),
BO(SI/SZ)/ (Sll(p)/ (SZ/(p) })

Figure 3.1. Example of the formal representation of a parsed program

Figure 3.1 shows an example to decompose a program into three simple blocks and one

branch, where
Co= So,
V= {So, Bo, S1, S>},
E= {(So, Bo), Bo(S1, S2), (S1, 9), (52, 9)},

G=(7, %)

15

= ({80, Bo, S1, S2},(S0, Bo), Bo(S1, S2), (S1, 9), (S2, @) }).
Thus, the parsed program can be presented as
Y= (COa g)

= (So, 1S0, Bo, S1, 82}, 1(S0, Bo), Bo(S1,52), (S1, 9), (S2, 9)}).

16

Chapter 4

Atomic Operators

A program graph is derived by executing the program parser mentioned in the pervious
chapter. Therefore, obfuscating control flows of a program can be treated as modifying the
program graph into another graph. To maintain the same functionalities of a program, any
modification to this can be achieved by changing edges and/or vertices in its program graph.
It is possible to split or merge vertices and edges without affecting the functionalities. Yet, it is
difficult to remain the same execution results by merely applying deletion to edges or vertices.

The addition without affecting functionalities can be realized by inserting branches,
equivalent vertices or dummy vertices. The modification can be realized by splitting, merging
vertices or extracting new vertices from existing ones:. Since that each vertex in the program
graph represents a code element in:the corresponding program, from these actions, we
conclude five atomic operators as‘basic building blocks for obfuscating programs. These
operators are inserting opaque predicates, splitting code elements, reordering code elements,
inserting equivalent codes and dummy codes. In this thesis, the atomic operator, O, applying
to the target code element C; in the program ‘P, is defined in the form of

O (Y, C).
The following sections describe the proposed atomic operators and their transformation

algorithms.

4.1 Insert Opaque Predicates

Inserting opaque predicates hides the real control flow of the source program. Since there

are three types of opaque predicates introduced in Chapter 2, the insertions also fall into three

17

. . f
categories, accordingly. O, ,

0,, and O represent the three types of insertion: type I
(false), II (true) and III, respectively. The following sub sections depict the formalization

algorithms for the three opaque predicate insertion transformations.

I) Insert Type I Opaque Predicates, ng (v,C)

As a type I opaque predicate, P", is inserted in front of the target code element C,, C,
should be moved to the false target of P”to remain the same functionality. Owing to that
the execution result of P is always false, any existing element, Cuny, may be specified as
the true target of P’ that Cuny does not contribute to various results. In case that the code
size is not a factor in obfuscating the program, a don t-care element can also be placed

on the true target by applying, another atomic operator, inserting dummy codes. The

following is the algorithm of applying Oof; (y,C,) to aparsed program, ‘Y.

Algorithm 4.1.1 Type I Opaque Predicate-Insertion, ng (v,C)

Insert PFinto ¢’such that v € ¢ U {PT

IF C;= Co THEN
Replace the entry point with P™;
END IF;
FOR g;; := a sequential edge(Csj, C¢) OR bj;:= a branch edge Bj(Cy;, Cy;) in £DO
SWITCH C;
CASE Cq:
Brew € P (Cany, C);
CASE Cq;:
Replace (Cei, Cej) With (Cei, PF);
CASE By;
Brew € P (Cany, C);
CASE Cy:
Replace Bj(Cpi, Cy;) with By(P", Cy);
CASE Cy;:

Replace Bi,-(Cbi, ij) with Bij(Cbi ,PF);
END FOR;

18

Insert bpew t0 E; |

v Ci
Ci
A\ 4 :
f |
Ci OOP (l//, Ct) F :
¥ I
y Ct ':'
Cj P
A
Cj

Figure 4.1. Examplé of applying the operator, O& (v,C)

The insertion varies according to the characteristics of the target code element, C.. In the
case that if C; is also the entry point Gy, then,.inthe graph representation of the program, Cj is
replaced by PF.If C, is the code element C,i inthe sequential edge € = (Cei, C,), a branch
edge, P (Cany» Cy) is inserted to the program graph @ On the other hand, if C, is the code
element C,; in e€jj, the existing edge (C.;, C,)) is replaced by (C,;, P). In the third case, if C;
is the branch code elements (B;) in a branch edge bjj, then a new edge PF (Cany, C;) should be
inserted to the program graph. If C; is one of the target code elements of the branch edge b,
then Bi(Cp, Cp) will be replaced by either B{(P", Cy) or Bi(Cy, P), respectively. In the
example as shown in Figure 4.1, C; is designated as C,,,. That is, C; is assigned to the true

target of P in this example.

IT) Insert Type II Opaque Predicates, 08,, (v,C)

The procedure for inserting type II opaque predicates is similar to that for type I

19

predicates. Since a type II opaque predicate (P) always evaluates true, the target code
element C, should be moved to the true target of P’ as it is inserted such that the
maintenance of the execution result is assured. Similarly, any code element can be its

false target that contributes nothing to the execution result. The formalization algorithm

for type IT opaque predicate insertion, O, (v,C,), is described in Algorithm 4.1.2.

Algorithm 4.1.2 Type II Opaque Predicate Insertion, O, (v,C,)

Insert PTinto ¥such that v < ¢ U {P'};

IF C;= Co THEN
Replace the entry point with P';
END IF;
FOR gj;:= (Cei, C¢j) OR bjj := Bjj(Cpi, Cpj) DO
SWITCH C;
CASE C,;:
brew € PT(Cy, Cany) ;
CASE Cg;:
Replace (Cei, Cej):With (Cgi, PY);
CASE B;;:
brew € PT(Cy, Cany) ;
CASE Cy;:
Replace Bj(Cy;, Cp;) with Bj(P", Cy));
CASE Cy;:
Replace Bj(Cp;, Cp;) with Bj(Cyi ,P");
END FOR;
Insert bpew to E; |

III) Insert Type III Opaque Predicates, O, (v,C,)

As described in Chapter 2, a type III opaque predicate (P”) may sometimes evaluates true
and sometimes false, thus the target code element C; should be placed on both targets of
P’, as shown in Figure 4.2. However, this placement is meaningless in performing
obfuscation. It is strongly recommended applying another atomic operator, inserting

equivalent codes, after type IIl opaque predicate insertion. The insertion of equivalent

20

codes is described in Algorithm 4.4. Algorithm 4.1.3 explains the procedure upon

inserting type III opaque predicates for obfuscation.

% Ci

Ci

Ci Oge(v.Ct) F T
h

Y C

G
A\ 4
G

Figure 4.2. Example of applying the operator, ng (v,C)

Algorithm 4.1.3 Type IIT Opaque Predicate Insertion, Of,(y,C,)

Insert P” into ¥such that v ¢ v U {P°};

IF C;=Cy, THEN
Replace the entry point with P’;
END IF;
FOR e := (Cej, Cej) OR by := By(Cy;, Cp)) DO
SWITCH C,
CASE Ce:
Brew € P?(Ct, Cy);
CASE Cyg;
Replace (Cei, Cej) With (Cei, P7);
CASE By
Brew € P?(Ct, Cy);
CASE Cy:
Replace Bj(Cy;, Cy;) with B;j(P?, Cy;);
CASE Cy;
Replace Bj(Cpi, Cy;) with By(Cy;i ,P?);
END FOR;
Insert bpey tO E; =

21

4.2 Split Code Elements

Splitting a code element into pieces can increase the number of vertices in the program
graph and also increase its complexity. Since code elements are distinguished into simple

blocks and branches, two types of splitting operators are addressed in this section.

I) Split Simple Blocks, Og (y,C,)

Type I splitting operator, denoted by Og (y,C,) tries to obfuscate the simple block, C,,

in further by dividing C; into n pieces, Cy;, V' 0 <i<n. Figure 4.3 shows the operation
of the type I splitting operator. Due to the limitation of instruction counts in the source

code level, the parameter » is limited to the instruction counts (N) in the target code

element C,. The algorithm for formalizing this operator, Og,(w,C,), is described as

follows.

Algorithm 4.2.1 Split Simple Blocks, O (v, C;)

IF C, € BTHEN
BREAK;
END IF;
IFn>NORN<2THEN
BREAK;
END IF;
IF C;=Co THEN
Replace the entry point Cy with Cy;
END IF;
Remove C; from 7/such that v < 7/—{C};
Insert new vertices to ¥’such that ¥ < ¥ U {Cti| Vi,0 <i<n};
FOR g := (Cei, C¢j) OR bjj := Bjj(Cpi, Cpj) DO
IF C; = C¢ THEN
Replace (Cei, Cgj) With (Cin-1), Cqj);
END IF;
ELSE IF C; = C; THEN

22

Replace (Cei, Cej) With (Cei, Cro);
END IF;
IF C; = C, THEN
Replace Bji(Cypi, Cpj) with Bjj(Cio,Cy);
END IF;
ELSE IF C; = Cy, THEN
Replace Bjj(Chi, Cp;j) With Bi(Cpi,Cro);
END IF;
END FOR;
j<€0;
m < |e|, where |e| is the number of edges in ;
FOR alljsuchthat0 <j<n-1DO
Insert emsj = (Cy, Cyjry)) to @

IR
END FOR; [|
CtO
v
/4 Ct1
C: OL(v.C.) v

Cin-1)

Figure 4.3. Split simple blocks

II) Split Branches, OJ, (v ,C,)

Type 1I splitting operator, denoted by Og, (v,C,), aims at splitting a target branch, C;,

into n smaller pieces. Before splitting, the expression of the branch should be converted
as in postfix. In this case, the expression is reformatted as

Condy Cond; Opy Cond, Op; Condy-2 Opn-3 Condy.1 Opn-2

23

where Cond, is a condition in C,, and Op; refers to “AND” or “OR.” The format contains
N conditions and (N-1) operators. Note that when applying type II splitting operator, the
parameter n cannot be larger than N, condition counts of C,. Algorithm 4.2.2 details the

steps of splitting branches.

Algorithm 4.2.2 Split Branches, O, (v,C,)

IF Ci e STHEN
BREAK;
END IF;
IFn>NORN<2THEN
BREAK;
END IF;
IF C;=Co THEN
Replace the entry point Cy with Cy;
END IF;
Remove C; from 7/such that v < ¢={C};
Insert new vertices to ¢such that v < 7 U {Cﬁ| Vi0i=< i<n}
Co € Cq;
m €< 2;
FORmM <n DO
Cim-1) € Cim-2) — Condn.(m-1) — Opn-m;
Cim-2) € Condn-(m-1);

m&<m+1;
END FOR;
FOR gj;:= (Cei, C¢j) OR bjj := Bj(Cyi, Cyy) DO
IF C = C¢; THEN
Replace (Cei, Cgj) With (Cei, Cro);
END IF;

ELSE IF C;=B; THEN
Replace C(Cyi, Cpj) With Cyn-1)(Chi, Cyj);
FORN>2DO
SWITCH Opnin
CASE “OR”
Insert Cin-2)(Ci, Cin-1)) t0 E;
CASE “AND”
Insert Cyn-2)(Cin-1),Chj) t0 E;

24

n<n-1;

END IF;
END FOR ;

END FOR ;
Ijrn:2 Split at Opn.;
Cond,Cond; OpyCond, Op; Condy_; Opp.; Condy_; Opy.;
I I I
(.)y
Ci Co
]](I’l:.g (2) Split at Opp.; () Sphlt at Opy-:
|

\ v

CondyCond; OpyCond; Op; Condy., Opn.; Condy.; Opy.;
I I I |

L . o !
Ca Cy Cu

Ifn=N [N-1) Split “@§s2)8plit" (2) Split (1) Split
| I I |

v v v v
CondyCond; OpyCond; Op; Condy., Opn.; Condy.; Opy.;

v v v v v
Covy Civy Ciney) Cu Cuo

Figure 4.4. The fragmented pieces are demarcated by Op;. To ensure the priorities of any conditions, C;

should be segmented in reverse order.

The fragmented pieces are demarcated by Op;, and to ensure the priorities of any
conditions, C; should be segmented in reverse order. That is, the splitting starts from Opy.,
sequentially back to Opy as Figure 4.4 shows. First, the original expression is segmented into
two parts, Cy and C;; where Cj contains only Condy.;, and C;; contains almost the total

conditions and operators of the original expression except for Opy., and Condy.;. After the

25

first round, C,;is going to be split into a new C;; and Cj,. After the second round, C;; is the
outcome of removing Opy.;and Condy.; from C,;, and C,; is reset as Condy.;. The same steps
are repeated until n pieces are achieved.

After splitting C,, new connections between the segmented pieces, Cy.y) and Cyp.i+1), are
developed based on the type of the operator Opy.-i+2), 1 € [n + 2 — N, n]. In other words,
Cin-i+1) would be the true or false target of Cyp.+;) due to the type of Opw.ni+z. In
consideration of the case that the type of Opn.ois “AND,” it implies if Cy evaluates false, no
matter what the evaluation of Cj; is, it fails to reach the original true target of C,. Under the
circumstances, Cy; is set as the true target of Cy, and the false target of C;y would be that of the
original C,. For the other case that the type of Opy.2is “OR,” although Cy evaluates false, it
may reach the original true target of C; as long as one of the fragments of C,evaluates true.
Thus, C,; should be placed on the false target of Cy,y. On the basis of the above analysis, if
Opn--i+2)1s “AND,” a new branch edge Cig-i(Cifn-i+1),Crj) 1s inserted where Cy; is the false
target of C,. Otherwise, if Opwu-ivg)15—OR,> a new branch edge Cip.i(Chriy Cipn-i+1)) 18

inserted where Cy, is the true target of G

4.3 Reorder Code Elements

Upon performing reverse engineering, instruction localities usually reveal the execution
logics of a program. Randomizing the placement of instructions in a source program helps to

hide the execution logics of the source program from being reversely engineered.

The reordering operator, denoted by Op(w,C,), then becomes one of the atomic
operators in obfuscating source programs. However, to remain the execution result unchanged,
it is necessary to check the execution dependency for the target code element C; and its

immediate successor Cy.;, before applying the reordering operator. If dependency exists, then

reordering operator may result in an incorrect execution result. The following is the algorithm

26

formalizing the reordering operator O, (v, C,).

Algorithm 4.3 Reorder Code Elements, O,(v,C,)

IF either C; e BOR Cy1 € 3,
BREAK;
END IF;
IF dependency exists between C; and Ci.q,
BREAK;
END IF;
IF C;= Co THEN
Replace the entry point with Ciy.;
END IF;
FOR gjj:= (C.i, C¢) DO
IF Cu1= Cg THEN
Replace (Cei, Cgj) with (C;, Cg));
END IF;
IF C,= Ce THEN
Replace (Cei, Cgj) With (Cej, Ciia);
END IF;
IF Ci= Cei AND Cyy = C¢; THEN
Replace (Cei, C¢j) With (Cra, C0);
END IF;
END FOR; [|

4.4 Insert Dummy Codes

As insertion of dummy codes changes the original execution logics of a source program,
the program becomes more obscure. According to the level of obscurity, the dummy code
element which is going to be inserted can be a simple block or a branch. Even a new loop can
be created and inserted by combining a branch with a simple block. Insertion of opaque
predicates can be regarded as insertion of dummy branches. Hence, in this sub section, we
only introduce the algorithms of inserting a dummy loop and simple block. Algorithm 4.4.1

describes the formalization algorithm of the operator on inserting dummy simple blocks Dj,

27

denoted by O, (w,C,). Algorithm 4.4.2 represents how to insert a dummy loop, which is
composed of a dummy branch D, and simple block D, in front of the target C..

Algorithm 4.4.1 Insert Dummy Simple Blocks, O;(v,C,)

Insert D into ¥/such that ¥ < ¢ U {Ds};
IF C;= Co THEN
Replace the entry point with D;
END IF;
FOR ejj:= (Cei, C¢j) OR bjj := Bjj(Cyi, Cyj) DO
SWITCH C;
CASE Cq;:
Replace (Cgi, C¢j) With (Cej, Ds);
CASE Cy:
Replace Bj(Cyi, Cy;) with Bjj(Ds, Cy);
CASE Cy;:
Replace Bj(Cyi, Cp;) With'B;(Cpi, Ds);
END FOR;
Insert a new sequential edge (Ds, Cy) to &; [|

v <

Og(‘//:ct) Ds

Ci

Figure 4.5. Example of inserting dummy simple blocks

Algorithm 4.4.2 Insert Dummy Loops, O,’D(t//,Ct)

Insert Ds and Dy, into ¥such that ¥ < ¢ U { Ds,Dp};

IF C;=Co THEN
Replace the entry point with Dy;

END IF;

FOR ejj := (Cei, C¢j) OR bjj := Bjj(Cyi, Cyj) DO
SWITCH C;

28

CASE Cq;:
Replace (Cei, Cgj) With (Cei, Dp);
CASE Cy:
Replace Bj(Cyi, Cp;j) with Bjj(Dy, Cy);
CASE Cy;:
Replace Bj(Cyi, Cp;j) with Bjj(Cyi ,Dy);
END FOR;
Insert a new sequential edge (Ds, Dy) to
Insert a new branch edge Dy(Ds, Cy) to ; [|

OID(‘//)Ct)

F
‘ l
Ci

¢ —

Figure 4.6. Example-of inserting dummy loops

4.5 Replace with Equivalent Codes

Equivalent codes are the codes with the same execution result as the origin while
implementations of the equivalent codes and the origin are different. In other words, the
equivalent codes can confuse reverse engineers by providing the codes with different

execution logics while preserving the same functionality.
This operator, denoted by O,(y,C,), replaces the target code element C; with its

equivalence, E(C,). For a branch, if both of its true and false targets are C,, only the false

target is replaced with £(C,), Figure 4.7 illustrating this case. The formalization algorithm of

O, (yv,C,) is described as follows.

29

Algorithm 4.5 Replace with Equivalent Codes,

OE(WaCz)

Insert E(C;) into ¥/such that ¥ < v U {E(C)};
Remove C; from 7such that v < 1/— {Cy};
IF C;= Co THEN
Replace the entry point with E(C,);
END IF;
FOR gj;:= (Cei, C¢j) OR bjj := Bjj(Cpi, Cpj) DO
IF Ci= C,i AND C;= C,; THEN
Replace Bj(Cyi, Cp;j) With Bj(Cyi, E(Cy));
Insert C, into “such that ¥= 7 U {Cy;
ELSE
SWITCH C;
CASE Cg;:
Replace (Cei, Cgj) with (E(Cy),Cqj);
CASE Cg;:
Replace (Cei, Cqj) With (Cei,sE(C,));
CASE B;;:

Replace Bj(Cypj, Cpj) With E(C)(Cyi,-Ch);

CASE Cbi:

Replace Bij(Cbi, ij) with Bij(E(Ct),ij);

CASE ij:

Replace Bij(Cbi, ij) with Bij(Cbi, E(C

END IF;

END FOR;

IF Cie Y THEN
Find (E(Cy).y) ;
Insert (C,, y);

END IF;

30

)

l//
T F I

C; Oc(v,C) C; E(C)

< |
«

4 A

C; C;

Figure 4.7. Example of replacing the target element with its equivalent codes

Algorithm 4.5 shows the algorithm, of inserting equivalent codes based on directed

graphs. Techniques which can be used forrereating equivalent codes are briefly introduced as

follows.

¢

¢

Inline method: Inline is an important technique in' compiler optimization. It is also useful
in creating equivalent codes. In inline methods, a procedure call is replaced with the body
of called procedure, and the procedure itself is removed.

Outline method: With outline method, a sequence of instructions is turned into a
subroutine and the instructions are replaced with a new procedure call. Outlining is a
useful companion transformation to inline methods. They can be combined to create more
obscure equivalent codes.

Interleave method: The idea on interleaving two methods declared in the same class is to
merge the bodies and parameter lists of the methods. To distinguish between calls to the
two methods, an extra parameter is added to judge which instructions should be executed
for the same execution result.

Clone method: In clone methods, several different versions of a method are created by

31

applying different sets of techniques in equivalence creation, and a method dispatch is
used to select between the different versions at runtime. Clone methods make it appear that
different routines are being called, but in fact, the routines derive the same execution.
Parallelize method: For a target code element, C,, if the contained instructions can be split
into two independent pieces, some technique, like using threads, can be used to execute the
pieces in parallel. Otherwise, if no independently smaller pieces are contained in C,, C; and
a don’t-care code element, D, are executed in parallel after the creation of D. Note that
since D will be executed, it cannot be equivalent codes of C; or other code elements that
will change the execution result.

Add redundant operands: Once opaque variables have been constructed, we can use
algebraic laws to add redundant operands to arithmetic expressions. For example, an
original variable of an arithmetic expression is. multiplied by an opaque variable whose
real value is one.

Insert dummy instructions: ‘By imserting._some -instructions that will not change the

execution result of the code element;an equivalent code element can be achieved.

32

Chapter 5

Formalization of Obfuscating Transformations

Since any transformation, 7, can be decomposed into a series of atomic operators
described in the previous chapters. In this thesis, the obfuscating transformation, 7, applying
to the program Y, is represented in the form of

T(?P).
Different transformations are derived while atomic operators are applied to different target
elements. Therefore, T can be represented as a subset of the set of the atomic operators

defined in this thesis. That is,

‘T(\P) < {ng(lP’tha)’ Oé

p

(\P’Ct_b) 2 ng(‘PJthc)’ Ogb (‘Plctfd) >
O (V.G g), Op(W,C, ;) O (W.C, 5)s Op(Y.C, 1),

/ s
OD(\P’Ct_i)} L

where C; , is a code element of ¥, V x € {a, b, ¢, d, ¢, f, g, h, 1}. In this chapter, we detail a
formal representation of these obfuscating transformations with a combination of the above
atomic operators.

In 1998, Collberg et al. proposed several control transformations of obfuscating the
control flow of source programs attempting to further discourage the reverse engineering
attacks. These transformations are classified as affecting the computations, aggregation or

ordering of the control flow, as described in the following sections.

5.1 Computation Transformations

Computation transformations are targeted to make algorithmic changes by inserting

33

opaque predicates together with redundant or dummy codes to source programs. Branch
insertion, loop condition extension, irrelevant code insertion and non-reducible flow

conversion are falling into this category.

5.1.1 Branch Insertion Transformation, 7%
Branch insertion transformations, denoted by 7%, are designed based on one of the three

opaque predicate insertion operators, O

op > Of)p and ng . The formalization of the branch

insertion transformation can be defined by an ordered four-operator tuple, shown as follows
T8 = (0% 00,51 0: 1,10, 1)

In this transformation, 77, the target code.element is first split into two pieces, which is

indicated by OZ . Then, the second step is te apply one of the three opaque predicates to the

split pieces. The second operator is represented by O,,, where O, € { O(’;p . Og,» 04, }.

Op>»
Finally, the insertion of equivalent.codes and dummy codes,O,and O, are optional in this

transformation.

5.1.2 Loop Condition Extension Transformation, 7%

A loop can be obfuscated by making the loop condition more complex. The idea is to
extend the loop condition with a type I (P") or type II (P") opaque predicate that will not
affect the times the loop will execute. For this purpose, the target code element can first be
split into two pieces and then the opaque predicates, P' or P", can be inserted into the
program. A dummy code can also be used to replace the never reached target of the predicate,

optionally. The formal representation of this transformation can be defined in the form of:

Tt = (0%, 0,10, D),

34

where OZ splits a simple block into two halves and O, is an optional to 77. Note that, to
remain the loop execution times unchanged, only type I or II opaque predicates can be

inserted into the split code elements. Therefore, O, is one of ng and ng , and thus can

be represented as

O, € { ng, Of)p).

5.1.3 Language-Breaking Transformation, 7¢

A language-breaking transformation, denoted by T¢, introduces instruction sequences
which have no direct correspondence with any source language construct. After the
transformation, when faced with such instruction sequences, a deobfuscator will either have to
try to synthesize an equivalent but convoluted source language program or give up altogether.

The language-breaking transformation. converts a reducible flow graph to a
non-reducible one by turning a 'structured_loop into a loop with multiple headers. The

formalization of T¢ is defined with the atomic eperators as follows.

TG = (Oésaogpa[OD])J

where Q2 is the operator on splitting a simple block into two halves, and O, is an option
ss Y Y g p b p

used in 7C.

5.1.4 Parallelize Code, 77

A reverse engineer will find a parallel program much more difficult to understand than a

sequential one. Thus, parallelization yields high levels of potency. The transformation, 77,

can be formalized with the atomic operator O, such that the formal representation is shown as

follows.

T"= (OE)»

35

where the technique of creation of equivalent codes is limited to the parallelize method.

5.1.5 Add Redundant Operands, 7%

Algebraic laws can be used to add redundant operands to arithmetic expressions. In this
way, the logic of the original expression is modified and the operation becomes more complex.
The formalization of T%is defined in the form of

TR:(OE),

where only the method “add redundant codes” can be used as the technique for creating

equivalent codes for the atomic operator O, .

5.2 Aggregation Transformations, 2

The basic idea of aggregation transformations falls into two categories. The one is to
break up codes which programmeérs aggregated-them-into a method and scatter the codes over

the program. The other is to aggregate the codes which seems not to belong together into one

method. The transformation 77 can be implemented by the operator, 0., with specific

techniques of creation of equivalent codes. The formalization of 7" can be defined in the form

of
T4 < {0, 0g,Op,, O }
where O, is the operator of inserting equivalent codes which created by inline methods.

Similarly, outline methods, interleave methods and clone methods are used for the creation of

equivalent codes in the operator O, , O, and O

., respectively.

5.3 Ordering Transformations, 7¢

To eliminate useful spatial clues for understanding the execution logics of a program,

36

ordering obfuscation was proposed to randomize the placement of any code element in the

source program. The reordering operator, O, is introduced in ordering transformations, T°.

The definition of T° is represented in the form of

T9=(Op),

where O, exchanges the two target code elements if no dependency exists between them.

37

Chapter 6

Evaluation

Normally, reverse engineering a software application starts at using disassemblers or
decompilers so that executable codes can be decompiled to the corresponding high-level
representations. After decompiling or disassembling, reverse-engineers try to gather the
desired information by analyzing the control flow and the data structures on the basis of the
high-level representations. Hence, the difficulty of reverse engineering an obfuscated program
should consist of two categories, decompiling time and the difficulty to reverse-engineers. In
this chapter, we try to evaluate the difficulty in reverse engineering after applying different

obfuscation methods.

6.1 DP Value

Since decompiling time is normally proportional to code size, the measure referred to in
this thesis focuses on how to measure the difficulty for a reverse-engineer in reverse
engineering obfuscated programs derived from different obfuscating methods. The difficulty
for reverse-engineers depends on their own senses and abilities, i.e. different engineers may
spend different time reverse engineering the same program. For systematical and numerical
analysis, we propose a measure that tries to eliminate personal factors in reverse engineering.
This measure does not express the difficulties of reverse engineering the same program
between different reverse-engineers, but this measure distinguishes the difficulties for an
identical reverse-engineer while different obfuscating transformations are applied to the same
program.

DPAP,) 1s defined as the measure of the difficulty in reverse engineering an obfuscated

38

program that is the result after applying a transformation 7 to a source program P,,;. In other
words, DPAP,;i) indicates the robustness to resist reverse-engineers after an obfuscating
transformation 7. D®PAP,:i) consists of two metrics, graph distance and potency, and it is
defined as follows:

DPAPori) = (dis(Pori, Pobt), POH(Pori, Pobe)). Eq (4)
In Eq (4), dis(P,.i, Pory) means the distance between the original program P,; and the
obfuscated program P,¢ that results from applying Tto Poy.

Potency with N-Scope can evaluate the impact made by some control flow obfuscation
methods on the difficulty in reverse engineering. However, potency cannot detect the change
of the execution paths which provide useful information for reverse-engineers. dis(Poyi, Pobr)
indicates how much difference exists between the execution logics of P and Py, and thus
makes up for the deficiency of potency. Even if distance measure supplement the drawback of
potency, it cannot determine the change resulting-from some control flow obfuscation
methods, such as branch insertion transformation, as efficacy as potency. Hence, both potency
and distance measure are introduced in the proposed method to address evaluation.

An increment of the distance between P, and P,,r means that their correlation is reduced,
and thus implies that it is more difficult to understand the logic of P, by tracing Pos. The
more complex the obfuscated program, the more time will be spent on reverse engineering.
Therefore, the larger the @@ is, the strong the robustness to resist reverse-engineers after

obfuscation.

6.2 Distance Using Graph Edge

To present more explicit disparities between the original and obfuscated programs after
different obfuscation methods, all common subgraphs are taken account to measure the

distance, not merely the maximal common subgraph. Furthermore, to focus more on

39

execution logics and execution paths of programs, the number of edges contained in common
subgraphs rather than the number of nodes is used in the proposed distance measure.

The proposed distance measure between two graphs G1 and G2 is as follows.

dis(G1,G2)=1-Y" 2|edge(CS,(G1,G2))|

Eq (5)
|ledge(Gl)|+|edge(G2)|

where CS{(G1, G2) refers to the i™ common subgraph of G1 and G2, edge(G) means the set of
edges within graph G, and |edge(G)| is the number of edges within G. The minimum value of
dis(G1, G2) is zero while the two graphs are exactly the same. The maximum value of dis(G1,
G2) is one while no common subgraph exists between them.

In Figure 6.1, both G1 and G2 are composed of eight nodes and seven edges. Subgraphs
in two circles are the common subgraphs of G1 and G2, where two and four nodes are
included individually. The smaller common subgraph contains one edge while the larger one

has three. According to Eq (5), dis(G1, G2)ican‘be derived as

P- (7 i TN
T+7 7

Figure 6.1. Subgraphs in two circles are the common subgraphs of G1 and G2.

6.3 Example of DP Value upon Formalization

To measure distance, we need to compare edge sets of two program graphs, record

40

conjunct edges and count the number of the conjunct edges. Before measuring potency,
complexity of programs should be calculated. After tracing an edge set, we record nodes
which are in a loop or on forked paths directed by a branch until the paths encounter. Then we
use the number of recorded nodes to derive the potency with N-Scope value. In the following,
an example is presented to illustrate how to calculate ©® value.
Taking Figure 6.2 as an example, the original program is parsed to

W= (S0, {S0, B1, 81, Sz}, {(So, B1), Bi(S1, S2), (S1, B1), (S2, 9)}),
and ¥ becomes

W1 = (So, {80, B1, S2, S10, S11, S12}, {(So, B1), Bi(S10, S2), (Si10, S12), (S2, ¢), (S12, S11),

(S11, B1)}).

after applying the transformation 7;('') where

T(Y) = (0L (¥,S),0,(¥,S,)).

Moreover, after applying (V1) where
(')
= B(Y)

=(05,(¥,5)),0:(¥.,5,)), 08, (¥ ,S,,), O (¥ ,S,,))s

¥, is converted to
Wo= (S0, 1S0, B1, S, S10, S11, S12, P, E(S12), E(S11)}, {(So, B), Bi(Si0, S2), (Si0, P),
(S2: 9)s (S12, S10), (S11, B1), P (S12, E(S12)), (E(S12), S11)}).
Comparing edge sets of ¥ and ¥,

>'ledge(CS,(¥ ¥,))|=2,

VI,edge(CS,(‘If W)= [(SO’Bl)’ Bl(X: Sz VE
where B, (x,S,) means that only the relation between B; and its false target S> is counted in

this edge set.

41

The comparison between ¥ and W, is similar to the above.

Zledge(CSi(\}f S)=2,

vi,edge(CS, (Y ¥,)=(S,.B,) B,(x,S,).

LIJ=(50, {501 51151152}1 v
{(50,81),B(51,52), (51,B1),
(S29)}) S1o S,
F
A T Y
7A(W1),where
Siz (W)= (0%(V1, Sp), S12 E(S;2)
oKW1, S512)) I
, | > :
511 511
After applying 73(W) : After applying 7x(W:):
Wi=(5y {So, By 52 510,511, S12 }, wz=(5‘7'{5‘7'BJ'5?'51’7'511'5;)2;)#"5(512)}'
{(So B1), BASw, S2), (S1a S12), (52 @), (S0 B1)) BS10,52), (St P), (S2),
(5]2,5]]), (5]1,8])}) (5121511)1(511151)1 PP(SIZIHSIZ))I

(K 512),511)})

Figure 6.2. Example of obfuscation formalization

According to Eq (5), dis(\Y, ¥,) and dis(\P, ') can be derived as follows.
|edge(*Y)| = 4,
|edge(*Y1)| = 6,
|edge(‘Y2)| =9,
dis(W,W)=1-2%2/(4+6)=3/5,
dis(P,W2)=1-2*2/(4+9)=9/13.

Note that (S, ¢) is not counted in the edge set of the program graphs since ¢ stands for the

42

termination of an edge.

The formula of N-Scope is in the form of

> |range(¥,B,;)|

N_S W)= X;ebranchin¥ 10, E 6
cope('¥) Y |range(¥,B;)+|N, | o "

X;ebranchin¥

where |Ny| is the number of vertices in ¥, and |range('V, B;)| means the number of nodes that
are contained in the loop leaded by the branch, B;, or are on the forked paths branching out at
B; until the paths converge.
In Figure 6.2, since ¥ contains a branch, B, either a loop or forks exist in V. Observing

the edge set of ¥, according to Eq (6),

range(\Y, B;) = {B,, S},

|range(Y, B;)| = 2.

N-Scope(¥)=1/3.
For ¥}, nodes contained in the loop leaded by B, or lying on any forked paths from B;to S,
are B;, Sip, S;; and S;,. That is,

range(\Y1, B;) = {B, Si0, Si1, S12},

|range(\Y'1, B;)| =4,

N-Scope(W)=4/(4+6)=2/5.
The final obfuscated program ¥, has two branches, B; and P’. For By, its range set is as
follows:

range(¥ 2, B)) = {B, S10, Si1, S12, P°, E(S12)},

|range(\Y>, B;)| = 6.
For the predicate P, its range set is shown as below.

range(V 2, P') = {S;,, E(S;2)},

lrange(¥ 2, P*)| = 2.

Based on |[range(V,, B;)| and |range(W, P*)|, N-Scope('P>) can be derived as follows.

43

N-Scope(W2)=2+6)/(2+6+8)=1/2.

By the definition of potency, we can derive the following potency values.

2/5 1
(P, W)= 25 ;L
poi(1) E 5
12 1

oW, V)= /2 4 _
poi(¥, ¥2) 1/3 2

In the above example, the ability to resist reverse engineering by the transformation T;
with respect to the original program ¥, is derived as
OPr(VY) = (dis(Y, V1) , pot(\Y, V1)) =(3/5,1/5),
where Wiresults from applying 7;to . The robustness against reverse engineering after
applying a transformation T; to the original program Y is derived as
OPr(WY) = (dis(\Y, ¥s) , pot(\Y, ¥3))=(9/13,1/2).
Since OPr(\Y) is larger than DPx(V), T provides the stronger robustness to resist

reverse-engineers than ;.

44

Chapter 7

Space Penalty

Control flow obfuscation uses techniques such as creating buggy loops and inserting
dummy codes to disorder the real execution path. After obfuscating transformations, a source
program can forbid malicious tampering and reverse engineering. However, it suffers from
space penalty. The more transformations applied to the program, the more code size
overheads are suffered. Thus, estimation of space penalty is important for assurance whether
the increment of code sizes due to the designated transformations is tolerable. Through the
proposed formal representation, estimation of space penalty can be efficiently determined in
advance such that users can decide whether to apply more transformations or not. In this
chapter we analyze overheads on-code sizes resulting from each obfuscating transformation.

Assuming that an original parsediprogram ¥ has# code elements where the size of the i"

n
element is denoted as z, V 1 € [1, n], the total code size of V¥ is Zz, . After obfuscating
i=1

transformations, x simple blocks and y branches are inserted into ¥ where the size of the i
simple block and the j™ branch are respectively indicated as 5 and b, Vie [1,x]and V j € [1,

y]. Hence, the total code size of the obfuscated program becomes

n X y
Dz 5+ 2.6,
i=1 i=1 i=1

and the space penalty is

For simplicity of analysis, the summation of the sizes of all inserted elements is replaced

with the product of the average size and the number of elements. Since the gap between the

45

average size of simple blocks and that of braches is too large to be ignored, they should be
individually denoted by §and @. The mentioned space penalty becomes x-§ + y-@. In the
following, we describe the space penalty with respect to each proposed atomic operator, and

Table 1 makes the arrangement.

Table 2. Space penalty of each atomic operator

Atomic Operators SIZEIEE
Penalty

Insert opaque predicates, B

O4p(v,Ce) | Ogp(w,Cc) | O8y(y.C.)

Split code elements, 0

05 (w.C) | 05(w.Co)

Reorder code elementS, O, (y;Cp) 0

Insert equivalent codes, 0,(#.C,) Oor Sor ®

Insert dummy simple bloeks;:03 y.C,) S

Insert dummy loops, ‘O 6 s + 3

¢ Insert opaque predicates, Of (v,C,) / Og,(v.C,) | Of,(w.C.):

According to the proposed algorithms, any type of opaque predicate insertion introduces a
predicate. Thus the space penalty is 3.

+ Split code elements, OZ (v,C,) / O (v,C,):
This operator splits a target code element into smaller pieces. Each smaller piece is a part
of the original target element. Hence, the total code size is not raised, i.e. the space penalty
is zero, even the number of code elements increases.

* Reorder code elements, O,(y,C,):

In this operator, no code element is added. Thus, the space penalty is zero.

46

¢+ Insert equivalent codes, O,(y,C,):
This operator replaces C; with its equivalence, E(C;). If the program ¥ contains a branch
edge whose true and false targets are both C,, then the false target is replaced with E(C)),
and the true target remains the same. In this case, an additional code element is inserted
that makes the space penalty become § or ® depending on the type of C,. Otherwise, if
no such branch edge as mentioned above exists in ¥, a new code element is added while

an existing element is removed. Hence, the space penalty is zero.

¢+ Insert dummy simple blocks, O;(w,C,):
An extra simple code element is inserted while applying the operator. Thus the space
penalty is §.

¢+ Insert dummy loops, O}(w,C,):
A loop consists of a branch and:a simple block. Hence, inserting a dummy loop implies

that an extra branch and simple block are introduced. The space penalty is thus § + 3.

47

Chapter 8

Example: Prime Number List

In this chapter, we present how the proposed formalization method can be applied to a

complete example program, and we will give the evaluation after obfuscation.

8.1 Source Program and Parsed Result

Program 1, a prime number printer that prints out prime numbers which are not larger

than the input a, is accounted an example program used to present how the proposed method

works.

#include <stdio.h>

#include <stdlib.h>

int k(int);

int main()

{ inta, b, sum;
printf("insert a number:");
scanf("%d",&a);
for(sum=0,b=2;b<=a;b++)

{ if(k(b)) printf("%3d",b);
sum+=Db;
¥
return O;
¥
int k(int b)
{ inti;

for(i=2;i<=b/2;i++)
if(b%i==0) return O;
return 1;
1

Program |. Prime number list

We first parse the source program and derive three sets, S, B and , as defined in Section

3.1. Figure 8.1 shows the parsed result of Program I, including its control flow, simple blocks,

V S; € , and branches, V B; & 3. Therefore, we now have

S= {8, S1, 5>},

48

B={B;, B>} and
E={(So, B1), Bi(B2, @), BxAS1, S2), (S1, S2), (S2, B1)}.

The parsed program ¥ is then denoted as

Y = (So, {So, S1, S2, B1,B2}, {(S0,B1), Bi(B2,), BxAS1, S2), (51, S2), (S2, B1)}).

So
Sy | inta, b, sum;
@ F printf("insert a prime
number : ");
T i scanf("%d",&a);
sum=0;
 b=2;
T B 1 B<=a
A 4 B, | k(b)
S, F S; | printf("%3d",b);
S, | sum+=b;
b++;

Figure 8.1: The parsed representation of Program |

8.2 Obfuscation Formalization

After parsing a source program, we can apply our formalization method to target
elements of the program. In this section, we take two control flow obfuscation methods, the
basic block fission obfuscation [2] and the branch insertion transformation [8], as the
designated transformations applied in the example. The basic block fission obfuscation is to
split the chosen basic block into several smaller blocks, where opaque predicates and goto

instructions are inserted. With analyzing the basic block fission obfuscation, the action of

inserting goto instructions can be corresponding with the atomic operator, Oép. Thus, this

obfuscation method can be denoted by

Tb - {Ogs’ogb’OOp’OD}’

49

where O,, € {00,

op? ~op?

0, }-

Assume that the specific basic block fission obfuscation and branch insertion

transformation used in this example are specified respectively as follows.

T(¥) = (OL(¥,S,). Op(¥,B,). O%(¥.B,). Ohy(.,S,)).

T>(¥) = (0%(¥.S,)» O

)

(\P’SOI)’ OE(\II’SOl)’ OD(\II’Bl))

In the following, we clarify the procedures of applying the transformations to the program in

detail.

I) Apply the specified basic block fission obfuscation, 7; (')

a)

b)

d)

Running OZ (¥,S,):

Y = (S0, {So0, So1, S1, S2, B, Bat, 4(So1, B1), Bi(B>, ¢), BxS1, S2), (S1, S2), (S2, By),

(S00, So1)}).

In this example, Sy is =int a, b, sum; printf("insert a prime number \n");,” and Sy; is

“scanf("%d",&a); sum=0; b=2;".
Running O, (Y¥,B,):
Y = (Soo, {So0, So1, S1, S2, B1, B2, D1}, {(So1, D1), Bi(B2, 9), BxAS1, S2), (S, S2), (S,

B1), (Soo, So1), (D1, B1)}).

In this case, we choose “sum=a +b%4” as D;.
Running Oép(‘P,Bl) :

W = (Soo, {S00, Soz» S1, S2, B1, Ba, Dy, Pi"}, {(Sor, D), Bi(Ba, 9), BAS1, S2), (S, S2),
(S2, P17, (Soo, Sor), (D1, P1"), P/ (By, B2)}).

In this example, “(a° —)%3 == 0" is chosen for the predicate P;’.
Running ch,p (¥,S,,):

W1 = (Soo, {So0, Sz, S1, S2, B1, B2, Dy, Pi", P" Y, {(Sor, Dy), Bi(B2, ¢), BxS1, S2), (Si,

50

52), (S2, B1), (Son, P2"), (Di1, Pi"), P1'(By, B2), P (D1, Son)}).
In this case, we choose “7b? -1==a°" as PZF.
After the basic block fission obfuscation, the obfuscated control flow of Program I is
derived, and the obfuscated program, Program II, is then regenerated according to the final

result ¥, as shown in Figure 8.2.

/***** program || *****/
Soo #include <stdio.h>
#include <stdlib.h>
int k(int);
int main()

0 | { inta, b, sum; //S00
| printf(“insert a number: "); //S00
| if ((7*b*b-1) == a*a) //P2F

F | sum=a+ (b%4); //D1
h 4
1 else
Su | T €
| scanf("%d",&a); //S01
—__ sum=0; //S01
l‘_ b=2; //S01
sum=a+ (b%4); //D1
D| }
Addrl:
> if (((@*a*a-a)%3) ==0) //P1T
Y {
T if(b<=a) //B1
=== Py
: Addr2:
| ! if(k(b)) //B2
: printf("%3d",b); /51
| sum+=b; 1/S2
B b++; 1/S2
| goto Addrl; //P1T
| F }
: T i
1 else
| 0 goto Addr2; //B2
return O;
T H
v
int k(int b)
Sy E { inti;
for(i=2;i<=b/2;i++)
if(b%i == 0)
return O;
return 1;
3 i
S>
L 7

Figure 8.2. Program ll: the obfuscated version of Program | after applying the specified basic block

fission obfuscation

1) Apply the specified branch insertion transformation, 7> (V)
a) Running OZ (¥,S,):

Y = (So0, {So0, So1, S1, S2, B1, B2}, {(So1, B1), Bi(B2, 9), Bx(S1, S2), (S1, S2), (S2, B)),

(So0s So1)})-

51

In this example, Sypis “int a, b, sum; printf("insert a prime number \n");,” and Sy, is
“scanf("%d",&a); sum=0; b=2;".

b) Rumning O),(¥,S,,):
¥ = (So0, {S00, So1, S, S2, B, B2, P}, {(So1, B1), Bi(B2, 9), Bx(S1,), (S1, S2), (S,
B)), (Soo, P11, P (B1, Son)}).
In this case, we choose “7b% -1==2a2" as P,".

¢) Running O, (V¥,S,,):

¥ = (So0, {S00, E(So1), S1, S2, B1, Ba, Pi" }, {(E(So1), B1), Bi(Ba, 9), Bx(S1,), (S,
S2), (2, B1), (Soo, P1"), Pi" (B1, E(Son)}).
In this example, the equivalent code element E(Sp;) is generated by inserting

dummy instructions.
d) Running O,(¥,B,):
V2= (So0, {So0, E(So1), St, St Biy-Bav-Pit, Dif, {(E(Sor), D1), Bi(B2, 9), BAS1, S2), (S,
52), (S2, D), (Son, P, Pl (DisE(Sa)s (D1, B)}).
In this case, we choose “sum =a+b%4 ” as D;.
After applying the branch insertion transformation 7>, the obfuscated control flow of

Program I is shown in Figure 8.3. With deparsing the obfuscated program ¥, the obfuscated

program, Program III, resulting from 7> can be achieved.

52

S |

[***** program |1l *****/

#include <stdio.h>

#include <stdlib.h>

int k(int);

int main()

{ inta, b, sum;
printf("insert a number:");
if((7*b*b-1) == a*a)

sum=a+(b%4);
else

{
scanf("%d",&a);

if ((a %13) <=7) b=39;

sum=0;
b=2;
Addrl:
sum=a+(b%4);
H
if(b<=a)
{
if(k(b))
printf("%3d",b);
sum+=b;
b++;
goto Addr1;
return O;
T
int k(int b)
{ inti;
for(i=2;i<=b/2;i++)
if(b%i == 0)
return O;
return 1;
}

//S00
//S00
//P1F
//D1

//E(SO1)
//E(SO1)
//E(SO1)
//E(SO1)

//D1
//B1

//B2
//S1
1/S2
1/S2
//D1

insertion-transformation

> |edge(CS, (¥ ¥,)|=4,

>ledge(Cs,(¥ ¥,))|=4.

8.3 Evaluation and Space Penalty

obtain the following analysis. Comparing ‘¥ and ‘¥,

vi,edge(CS,(‘¥ ¥,)=(B,(S,.0)B,(5,,.5,)(5.,5,).

vi,edge(CS, (Y, ¥,) ={Bi(S,,0)B,(S,,5,)(S.,S;)] -

dis(¥,¥)=1-2-4/(6+12)=5/09,

53

Figure 8.3. Program llI: the obfuscated version of Program | after applying the specified branch

According to the formal representations of the original and two obfuscated programs, we

The number of edges in ¥, W, and W, are 6, 12 and 10, respectively. Thus,

disW,¥)=1-2-4/(6+10)=1/2.
For the original program ‘¥, there are two branches B; and B>. Hence,
range(¥, B;) = {S1, S>, B, B>},
range(W, B2) = {S1},
N-Scope(W)=@4+1)/(4+1+5)=1/2.
For the obfuscated program ¥, four branches are contained. Corresponding values are as
follows.
range(¥,, P;") = {B,},
range(¥1, B)) = {B2, S1, P,", Sz, B},
range(W1, B2) = {81},
range(¥1, P;") = {So;},

N-Scope(¥))= _1+5+1x1" 8
1+5+1+41+9 .17

pot(¥, W) = (E/E)_lz_i.
17/ 2 17

For the obfuscated program ¥, thfee branches are contained. Thus,
range(¥>, Pi") = {E(So1) },
range(Y2, B;) = {B>, S1, D1, S2, B/},
range(W», B;) = {Si},

N_Scope(‘{lz) = 1+5+1 :l R
1+5+1+8 15

pot(¥, ¥>) = 7/&_1_ 1.

12 15

The abilities against reverse engineering provided by 7; and 7> are derived as follows.
DPr(WY)=(5/9,—-1/17),
DP(Y)=(1/2,—1/15).
The negative potency values indicate that after these two transformations, the structures of the

obfuscated programs are not as complex as that of the original program. It implies that these

54

transformations may fail from the perspective on the complexity of program structure

Compared with ©O®Pzp, the value of ©®Py is a little larger. Hence, T; provides the stronger

robustness than 7>.

The space penalty caused by T; can be estimated as

0+ S+ @ + 38 =3 +2-3,
where OZ (¥,S,) results in no overheads, O,(¥,B,) leadsto S, Oép(‘P,Bl) leads

to ®,and ng (¥,S,,) leadsto ®.On the other hand, the space penalty caused by 7> is

0+ @ +0+5 = 8 + g,
where OZ(W,S,) and O.(¥,S,,) results in no overheads, O, (¥,S,,) leads to B,

and O,(¥,B,) leadsto s.

55

Chapter 9

Conclusion

We present an approach to evaluating and analyzing control flow obfuscating
transformations. In our approach, we formalize the transformations and develop a new
evaluation measure. In formalizing the transformations, we first analyze and parse a source
program which is going to be obfuscated into sequences of code elements and its directed
graph. With analysis of the transformations, we design the atomic operators which are the
basic components of any obfuscating transformation. On the basis of the formal representation,
we develop an applicable evaluation measure to estimate the robustness against reverse
engineering after obfuscation. The‘measure provides sensitive results in terms of software
complexities and differences.

Nevertheless, if we considet the side-cffects of obfuscating a software program that code
size will be increased and execution-performance will be slowed down, we need to carefully
determine the obfuscation criteria for different applications and make a proper compromise
between the security and overhead. In our method, space penalty is also evaluated such that a
tradeoff between the robustness and the overheads can be well judged.

So far, we have quantized the degree of the robustness of obfuscating transformations. In
the future, we will figure out the relationship between the ®® values and the time spent on
reversing engineering obfuscated programs. This helps understand the effectiveness of

software obfuscations under the real attacks.

56

[8]

References

M. D. Preda and R. Giacobazzi, “Control Code Obfuscation by Abstract Interpretation,”
In Proc. 3" IEEE International Conference on Software Engineering and Formal
Methods (SEFM’05), pp. 301-310, September 2005.

T. W. Hou, H.Y. Chen and M. H. Tsai, “Three Control Flow Obfuscation Methods for
Java Software,” IEE Proceedings Software, volume 153, No. 2, pp.80-86, April 2006.

B. Pfitzmann and M. Schunter, “Asymmetric Fingerprinting,” EUROCRYPT 96, pp.
84-95, 1996.

W. Cho, I. Lee, and S. Park, “Againt Intelligent Tampering: Software Tamper Resistance
by Extended Control Flow Obfuscation,” In Proc. World Multiconference on Systems,
Cybernetics, and Informatics.‘International Institute of Informatics and Systematics,
2001.

C. Wang, J. Hill, J. Knight,-and J.-Davidson, “Seftware Tamper Resistance: Obstructing
Static Analysis of Programs,” Technical Report CS-2000-12, December 2000.

C. Collberg and C. Thomborson, “Watermarking, Tamper-Proofing, and Obfuscation —
Tools for Software Protection,” IEEE Transactions on Software Engineering, volume 28,
No. 8, August 2002.

D. Low, “Java Control Flow Obfuscation,” Master Thesis, University of Auckland,
1998.

C. Collberg, C. Thomborson and D. Low, “A Taxonomy of Obfuscating
Transformations,” Technical Report, 1997.

J. M. Memon, Shams-ul-Arfeen, A. Mughal and F. Memon, “Preventing Reverse
Engineering Threat in Java Using Byte Code Obfuscation Techniques,” In Proc. 2™

International Conference on Emerging Technologies, pp. 689-694, November 2006.

[10] H. Zuse, “Sofiware Complexity: Measures and Methods,” Watler de Gruyter, New York,

57

1991.

[11] H. Bunke and K. Shearer, “A Graph Distance Metric Based on the Maximal Common
Subgraph,” Pattern Recognition Letters, volume 19, issue 3-4, pp. 255-259, 1998.

[12] W. D. Wallis, P. Shoubridge, M. Kraetz and D. Ray, “Graph Distances Using Graph
Union,” Pattern Recognition Letters, volume 22, issue 6-7, pp. 701-704, 2001.

[13]D. Aucsmith, “Tamper-Resistant Software: An Implementation,” In Proc. 1%
International Workshop on Information Hiding (Lecture Notes in Computer Science),
volume 1174, pp. 317-333, 1996.

[14] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M. Horowitz,
“Architectural Support for Copy and Tamper Resistant Software,” In Proc. 9t
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IX), pp.168—177, November 2000.

[15] C. Collberg, C. Thomborsen, and D. Low, “Breaking Abstractions and Unstructuring
Data Structures,” In Proc. International Conference on Computer Languages, pp. 28-38,
May 1998.

[16] C. Collberg, C. Thomborson and D. Low, “Manufacturing Cheap, Resilient, and Stealthy
Opaque Constructs,” In Proc. 25™ ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’98), PP. 184-196, January 1998.

[17] SOFTPEDIA.

http:/news.softpedia.com/news/FairUse4 WM-Kills-Microsoft-DRM-34206.shtml

[18] afterdawn.com. http://www.afterdawn.com/news/archive/7875.cfm

[19] S. R. Subramanya and B. K. Yi, “Digital Rights Management,” [EEE Potentials
Magazine, volume 25, issue 2, pp. 31-34, 2006.

[20] Y. Nishimoto, A. baba, T. Kurioka and S. Namba, “A Digital Rights Management
System for Digital Broadcasting Based on Home Servers,” IEEE Transactions on

Broadcasting, volume 52, issue 2, pp. 167-172, June 2006.

58

[21] X. Wang, “MPEG-21 Rights Expression Language: Enabling Interoperable Digital
Rights Management,” IEEE Multimedia, volume 11, issue 4, pp. 84-87, 2004.

[22] T. Wikinson, D. Hearn and S. Wiseman, “Trustworthy Access Control with
Untrustworthy Web Servers,” In Proc. 15" Annual Computer Security Applications
Conference (ACSAC’99), pp. 12-21, 6-10 December 1999.

[23] N. Komninos, B. Honary and M. Darnell, “Security Enhancements for A5/1 Without
Loosing Hardware Efficiency in Future Mobile Systems,” In Proc. 3" International
Conference on 3G Mobile Communication Technologies, pp. 324-328, 8-10 May 2002.

[24] J. Reid, J. M. G. Nieto, E. Dawson and E. Okamoto, “Privacy and Trusted Computing,”
In Proc. 14™ International Workshop on Database and Expert Systems Applications, pp.
383-388, 1-5 September 2003.

[25] Z. D. Shen, F. Yan, W. Z. Qiang, X. P. Wu and H. G. Zhang, “Grid System Integrated
with Trusted Computing Platform,” In Proc. }*' International Multi-Symposiums on
Computer and Computational Sciences (IMSCCS’06), pp. 619-625, 20-24 June 2006.

[26] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proudler, Trusted Computing
Platforms — TCPA Technology in Context, Prentice Hall, 2003.

[27] N. Komninos, B. Honary and M. Dernel, “An Efficient Stream Cipher Alphal for
Mobile and Wireless Devices,” In Proc. 8" IMA International Conference on

Cryptography and Coding, pp. 294-300, 2001.

59

