
 i

軟體控制流程之模糊化分析與評估

學生：蔡欣宜 指導教授：黃育綸 博士

國立交通大學 電機學院 電機與控制工程所

摘 要

模糊軟體程式碼的執行/控制流程有助於阻擋反組譯程式及防止攻擊者惡意竄改程

式碼，進而達到保護軟體程式碼完整性與控制存取的保護目的。這些應用於程式碼控制

流程的模糊化作業通常可經由一連串的程式碼轉換來達成，在模糊控制邏輯的同時，仍

能保有相同的執行結果。然而，目前相關研究僅止於提供可用於軟體程式碼控制流程轉

換的模糊化技巧，例如應用內嵌法或模組化、加入等值碼或偽碼等技巧，並未針對模糊

化處理後軟體程式碼抵擋反組譯的能力、下降的執行效能與增加的程式碼成本等加以分

析。因此，在本篇論文中，我們提出一套剖析原始碼及評估模糊化技巧有效度的方法，

藉由搭配軟體程式控制流程的抽象概念，剖析原始碼架構，並透過正規方法來分析模糊

化技巧提供的保護能力。在本論文所提出的分析方法中，我們使用數種不同類型的基本

轉換元素表示現有的控制流程模糊化作業，用以轉換程式碼的控制流程，模糊化其執行

邏輯，進而達到保護的目的。透過模糊轉換的正規化，我們能容易地根據提出的評量準

則對模糊化後的程式碼架構進行分析。在我們提出的方法中，不但針對轉換後程式碼的

複雜度和抵抗反組譯攻擊的強度加以評估，更討論各種轉換元素所造成的程式碼大小的

增加，使程式碼所有者能在複雜度、抗反組譯能力與成本之間，取得最佳平衡點。

 ii

Analysis and Evaluation of Control Flow Obfuscations of

Software Programs

Student: Hsin-Yi Tsai Advisors：Dr. Yu-Lun Huang

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

Modern control flow obfuscation techniques are usually composed of a sequence of

transformations to control flows and intended to discourage reverse engineering and malicious

tampering of software codes. In this thesis, we present an approach to analyzing and

evaluating the effectiveness of such techniques which was not addressed in detail in the

previous work. Our work is implemented on a source level basis with abstractions of control

flows of a software program. Existing control flow obfuscating transformations can be

decomposed and categorized into various types of atomic operators and defined in formal

algorithms that take abstracted control flows as inputs. These algorithms are evaluated in

terms of their complexities and robustness against reverse engineering. The side effect of

space penalty of each atomic operator is also evaluated. Given the individual results, the

whole software program can thus be evaluated as well, providing an objective indication of

the aggregated effectiveness of the overall obfuscation result.

 iii

誌 謝

不得不再次承認時間流逝的無情，我還記得當初和同學們一一拜訪實驗室、找指導

教授的情景，如今已完成碩士學位，將往下一里程邁進。碩士論文能順利完成，首先要

感謝指導教授黃育綸老師的悉心指導並且不厭其煩地為我解惑、與我討論。在 RTES 實

驗室的二年中，從老師身上學習到了何謂研究、如何呈現，雖不顯著但我也察覺了自己

細微的成長，很榮幸能成為老師的學生，謝謝老師。同時，我也要感謝口試委員們提供

諸多寶貴的意見與建議，使我的論文內容能更趨於完善。

我要向我的家人獻上最深的謝意，感謝爸爸、媽媽和弟弟總是這麼相信我並支持我

做的任何決定，因為有你們，我才能在疲累時休息再出發。當然，還要感謝我的男友，

謝謝你包容我的任性，在自身課業壓力大到自顧不暇之餘還得分心照顧我、聽我抱怨、

逗我開心，謝謝你。

RTES 實驗室是間溫馨的實驗室，我們一起下棋、一起討論、一起打棒球、一起關起

門來說悄悄話，就是這樣和樂融融的氣氛，讓我覺得能成為這間實驗室的一份子真的是

太棒了。另外，也感謝從大學陪伴至研究所的同學們，我想我會很想念與你們一起苦中

作樂的日子，那些搞不清楚有幾屆的實驗室太鼓達人大賽、圍在一起溫故知新、交換情

報的聚餐。我們各選擇了不同的路，希望你們在軍中時、在熬夜加班時、在洗手作羹湯

時、在申報所得稅時還能不忘替我加油，我會很感激很感激的。

最後，我想再說一次，謝謝幫助過我、陪伴我、鼓勵我的人，謝謝你們。

 iv

Table of Contents
摘 要 ...i
Abstract ...ii
誌 謝 ...iii
Table of Contents ...iv
List of Tables ..vi
List of Figures ...vii
Chapter 1 Introduction ...1

1.1 Background...1
1.2 Contribution..3
1.3 Synopsis..3

Chapter 2 Related Work ...5
2.1 Control Flow Obfuscation ..5
2.2 Evaluation of Obfuscations ..9
2.3 Graph Distance ...10

Chapter 3 Program Parser ...13
3.1 Definition..13
3.2 Format of Parsed Programs ..15

Chapter 4 Atomic Operators ..17
4.1 Insert Opaque Predicates ..17
4.2 Split Code Elements ...22
4.3 Reorder Code Elements ..26
4.4 Insert Dummy Codes ..27
4.5 Replace with Equivalent Codes..29

Chapter 5 Formalization of Obfuscating Transformations ...33
5.1 Computation Transformations ..33

5.1.1 Branch Insertion Transformation, T B ...34
5.1.2 Loop Condition Extension Transformation, T L ..34
5.1.3 Language-Breaking Transformation, T G ...35
5.1.4 Parallelize Code, T P ..35
5.1.5 Add Redundant Operands, T R ...36

5.2 Aggregation Transformations, TA ...36
5.3 Ordering Transformations, T O ...36

Chapter 6 Evaluation ..38
6.1 DP Value ...38
6.2 Distance Using Graph Edge ...39
6.3 Example of DP Value upon Formalization ...40

Chapter 7 Space Penalty ...45

 v

Chapter 8 Example: Prime Number List ..48
8.1 Source Program and Parsed Result...48
8.2 Obfuscation Formalization ...49
8.3 Evaluation and Space Penalty ..53

Chapter 9 Conclusion..56
References..57

 vi

List of Tables
Table 1. Classification of obfuscating transformations ..6
Table 2. Space penalty of each atomic operator ...46

 vii

List of Figures
Figure 2.1. Three types of opaque predicates where solid lines indicate paths that may

sometimes be taken, and dashed lines represent never-taken paths (C. Collberg [8])
..7

Figure 2.2. Branch insertion transformations (C. Collberg [8]) ...7
Figure 2.3. The loop condition insertion transformation (D. Low [7])8
Figure 2.4. Example of graph union method .. 11
Figure 3.1. Example of the formal representation of a parsed program...................................15

Figure 4.1. Example of applying the operator,),(t
f

Op CO ψ ...19

Figure 4.2. Example of applying the operator,),(t
q
Op CO ψ ...21

Figure 4.3. Split simple blocks ...23
Figure 4.4. The fragmented pieces are demarcated by Opi. To ensure the priorities of any

conditions, Ct should be segmented in reverse order..25
Figure 4.5. Example of inserting dummy simple blocks..28
Figure 4.6. Example of inserting dummy loops ...29
Figure 4.7. Example of replacing the target element with its equivalent codes31
Figure 6.1. Subgraphs in two circles are the common subgraphs of G1 and G2.40
Figure 6.2. Example of obfuscation formalization ...42
Figure 8.1. The parsed representation of Program I ...49
Figure 8.2. Program II: the obfuscated version of Program I after applying the specified basic

block fission obfuscation..51
Figure 8.3. Program III: the obfuscated version of Program I after applying the specified

branch insertion transformation..53

 1

Chapter 1

Introduction

Recently, programs incur more and more risks of being maliciously tampered due to the

popularity of mobile executables. To protect the executables from being sinfully pirated,

professionals and researchers have proposed several techniques. However, the protections

provided by the techniques usually accompany side effects. Hence, it is important to estimate

the side effects in advance to get an optimal solution between the effectiveness and overheads

of the techniques.

1.1 Background

With the popularity of mobile executables, the protection of the authorization in these

executables becomes one of the major issues for their service providers. Since the mid 1990s,

digital rights management (DRM) [19, 20, 21] has been used for the protection of the

authorization of these mobile executables. This technique prevents unauthorized duplication

and piracy of the digital contents. It thus ensures the profits for the publishers and the owners

of these digital contents. The DRM is implemented by injecting authentication codes,

verification codes and access control codes into the executables. To verify the authority of

users, the verification codes or access control codes are executed before the original mobile

executables. However, attackers can still try to reverse engineer the mobile executables and

skip or remove the verification codes if the execution logics of these mobile codes are not

well protected.

It has been reported that Windows Media DRM10 was stripped in 2006 [17, 18]. Marius

Oiaga, a technology news editor, reported that “the application FairUse4WM is designed to

 2

complement the DRM removal program “drmdbg” that manages files containing digital

rights copyright protection code.” It was also mentioned that “FairUse4WM actually permits

the stripping of DRM from subscription copyright protected content allowing for unlimited

usage of the files independent of the subscription renewal process [17].” It is clear that

Windows Media DRM10 protects the authorization of the digital contents, but fails to protect

the authorization codes used to verify the access rights of the contents. It implies that the

verification codes can be easily skipped or removed, if the critical sections are compromised.

In recent years, advanced techniques, such as trusted computing platforms (TCP) [24, 25,

26], software encryption [22, 23, 27], software obfuscation [1, 2, 7, 8, 9], have been proposed

to protect the execution logics of the authorization codes or access control codes in the mobile

executables. When applying the trusted computing techniques, tamper-resistant hardware

devices [14] are needed to protect the sensitive credentials. However, software execution

performance, deployment flexibility and total cost can be sacrificed if the tamper-resistant

devices are used.

In addition to the TCP techniques, many crypto methods are presented to prevent

malicious tampering and discourage reverse engineering based on cryptography theories, such

as software encryption [13, 22, 23]. In the methods, the encrypted software codes are

decrypted right upon execution. However, the time consumed in the cryptography operations

is proportional to the code sizes of the software modules, and this kind of methods is

impractical for some real-time applications. Upon applying the software control flow

obfuscation methods, the execution paths and logics are obfuscated. The authorization codes

are hidden in the obfuscated execution paths and thus can be prevented from being skipped or

removed. Code obfuscation techniques [1, 3, 7, 8] require no extra hardware and are

platform-independence, and thus provides higher flexibility in deploying the mobile

executables.

The basic idea of code obfuscation is to transform an application such that the

 3

transformed outcome is functionally identical to the original but is much more difficult to be

reverse engineered. Therefore, applications can run on an untrusted platform without the risk

of reverse engineering, tampering or intellectual property thefts. Control flow obfuscation

aims at disguising the real control flow in a program. Collberg et al. [6, 7, 8] proposed a

classification of obfuscating transformations and several obfuscation methods. However, they

did not clearly explain the improvement of the robustness against reverse engineering after

obfuscation. The evaluation of robustness of a program before and after obfuscation is

important in getting an optimal solution between security and obfuscation overheads.

1.2 Contribution

 In this thesis, we present an approach to analyzing and evaluating the effectiveness of

control flow obfuscating transformations which was not addressed in detail in the previous

work. Analyzing existing control flow obfuscating transformations, the transformations can be

performed with composition of various types of atomic operators which are defined in formal

algorithms that take abstracted control flows as inputs. The transformations are evaluated in

terms of their robustness against reverse engineering based on the difference between an

original and its transformed programs. The side effect of space penalty of each atomic

operator is also estimated that given the individual results, the whole overhead on code size

can be evaluated as well.

1.3 Synopsis

 The remainder of this thesis is organized as follows. In the next chapter, we brief the

related work. Chapter 3 defines the program parser with the entry and the directed graph of a

source program. Chapter 4 depicts the proposed atomic operators which are basic elements

used to perform more complicated obfuscating transformations. The formalization of control

 4

flow obfuscating transformations is introduced in Chapter 5. We discuss robustness against

reverse engineering after different transformations in Chapter 6, followed by the analysis of

overheads as a result of obfuscation in Chapter 7. Chapter 8 presents an example to explain

how to apply the approach to a source program. Finally the conclusion is given in the last

chapter.

 5

Chapter 2

Related Work

As software security becomes more and more important for their providers, several

techniques in control flow obfuscations [2, 7, 8, 9] have been proposed to prevent software

programs from being reversely engineered. Besides obfuscating transformations, evaluation

measures of obfuscation were defined [6, 7, 8]. In this chapter, we survey some famous

obfuscation techniques and evaluation metrics. We point out the weakness or infeasibility of

the evaluation measures when they are used to estimate the robustness of control flow

obfuscations. After the surveys, we propose an improved approach to analyzing control flow

obfuscations upon the advantages of the existing evaluation measures in the following

chapters.

2.1 Control Flow Obfuscation

To discourage reverse engineering, several obfuscating transformations [1, 2, 6, 7, 8] are

proposed. The transformations can be classified as layout obfuscation, data obfuscation,

control flow obfuscation and preventive transformation as Table 1 shows. Layout obfuscations

affect the information in a program that is unnecessary to its execution. Examples include

scrambling identifier names and removing comments and debugging information. Data

obfuscations operate on the data structures used in a program. Extended techniques involve

data storage, data encryption, data aggregation and data ordering. Preventive transformations

are not intended to obscure a human reader, but intended to stop decompilers and

deobfuscators from functioning correctly. Control flow obfuscations target on disturbing the

logic of the execution path of the original program to make reverse engineering difficult.

 6

Table 1. Classification of obfuscating transformations

Classification of Obfuscating
Transformations

Description

Layout obfuscation Affect information unnecessary to the execution
of a program

Data obfuscation Change data structures

Preventive transformations Stop decompilers and deobfuscators from
functioning correctly

Control flow obfuscation Disturb execution flows

Since control flows of a program dominate and reveal the execution logic of the program

that implies control flows are the key to understanding programs, we focus on evaluating the

effectiveness of control flow obfuscation in this thesis. With the control flow obfuscation

methods, the execution logic of the original program can be hidden behind the disturbed flows

and thus makes the difficulty of reverse engineering relatively high. Techniques used for

control flow obfuscation include branch insertion, ordering transformation, loop condition

insertion transformation, etc. Followings depict the brief introduction to several techniques

for control flow obfuscation.

Branch insertion transformation [8] is designed by inserting opaque predicates into a

program to disturb and conceal the real control flow. An opaque predicate is a Boolean valued

expression whose value is known a priori to an obfuscator but difficult for a deobfuscator to

deduce. According to the outcome, these opaque predicates can be categorized into three types,

as shown in Figure 2.1. For a type I or type II opaque predicate P, it is always evaluates to

false or true, which can be denoted by PF or PT, respectively. P? is the representative of a type

III opaque predicate P. Its outcome can be sometimes evaluated true and sometimes false.

 7

Figure 2.1. Three types of opaque predicates where solid lines indicate paths that may sometimes be

taken, and dashed lines represent never-taken paths (C. Collberg [8])

S1;S2;…;Sn

S1;S2;…;Sj S1;S2;…;Sj

PT

Sj+1;…;Sn

P?

Sa
j+1;…;Sa

n
Sb

j+1;…;Sb
n

S1;S2;…;Sj

PT

Sa
j+1;…;Sa

n
Sb

j+1;…;Sb
n

T

F

T F

Sa Sb

f(Si)=f(Sa
i)=f(Sb

i)

Sa Sb

T F

f(Si)=f(Sa
i) f(Sb

i)

(a) (b) (c)

Figure 2.2. Branch insertion transformations (C. Collberg [8])

With a type I or type II predicate, the original codes should be moved to the false or the

true target of the predicate to preserve the original functionality. Since type I or type II

predicates always achieve the same result, dummy codes can be used for the

never-achieved target of the predicates. With a type III predicate, the equivalent codes may be

placed on one target while the original codes are placed on the other. Figure 2.2 illustrates the

implementation of branch insertion transformations with different types of the opaque

predicates.

 8

S
k f(k)

P(k)

T

F

P(k) QT(k,j)

S
k f(k)
j g(k,j)

T

T

F

F

P(k) QF(k,j)

S
k f(k)
j g(k,j)

F
F

T
T

(a)
(b)

i=1;
while (i<100) {

…
i++;

}

i=1; j=100;
while ((i<100) && (j*j*(j+1)*(j+1)%4==0)T) {

…
i++;
j=j*1+3;

}
(c) (d)

Figure 2.3. The loop condition insertion transformation (D. Low [7])

In addition to branch insertion transformation, the ordering obfuscation [7] randomizes

the independent instructions so that the spatial locality of instructions cannot reveal the logical

relations among the instructions, nor provide useful clues of the execution logic of the

program. On the other hands, ordering obfuscation focus on jumbling the placement of any

code section in a source program. Furthermore, to make branch conditions more complex and

further increase the difficulty of reverse engineering, type I or II opaque predicates are

introduced in loop condition insertion transformations [7]. In Figure 2.3(d), j2 * (j + 1)2 is used

as a type I opaque predicate inserted in the control flow as shown in Figure 2.3(a). The

insertion extends the condition of the loop, but the execution result is still preserved.

 9

2.2 Evaluation of Obfuscations

To evaluate the complexity and overhead of obfuscated programs, D. Low et al. defined

some metrics to evaluate an obfuscating transformation, including resilience, potency and cost.

Resilience states how well an obfuscating transformation holds up under attack from an

automatic deobfuscator. Cost indicates the additional run-time resources required to execute

an obfuscated program. Potency shows the degree to which an obfuscating transformation

confuses a human who is trying to understand the obfuscated program.

It is acknowledged that obfuscation can be used to discourage reverse engineering. The

time spent on reverse engineering a program normally depends on the ability or the

experience of a reverse engineer. Among the three metrics proposed in the previous work [7],

only potency implies the difficulty for a reverse engineer to compromise and deduce an

obfuscated program. Thus, in this thesis, we evaluate the robustness of an obfuscating

transformation upon potency. The following is the definition of potency.

1−
′

=′
comp(P)

)Pcomp(
PPpot),(Eq (1)

In Eq (1), comp(P) states the complexity of an original program P ,while comp(P’) refers

to that of an obfuscated program P’. Despite the fact that the clear definition of potency was

given, it was not clearly explained how to determine the explicit values of complexities,

comp().

To determine the complexities of software programs, many methods are proposed in the

past few years, such as Measure Relative Logical Complexity (RLC), Absolute Logical

Complexity (ALC) or N-Scope [10]. In these methods, directed graphs are used to represent

the software programs, and the complexities of the programs are measured by edges, branches

and nodes in the graphs.

Measure RLC uses the ratio of the numbers of branches and nodes to represent the

complexity while ALC counts branches only. In N-Scope, the complexity is determined by the

 10

nesting levels of all branches in a program. In control flow obfuscation, the insertion of

opaque predicates changes the number and depth of loops in a program, and thus changes its

complexity. Nevertheless, according to the rules defined in RLC and ALC, it may result in the

same complexities even different control flow obfuscating transformations are applied. Hence,

in this thesis, N-Scope is used to evaluate the complexities of the program and then derive the

potency for control flow obfuscation.

Potency with N-Scope is sensitive when the numbers or depths of loops are changed.

Unfortunately, for some transformations, instructions are reordered without changing the

number and depths of loops. In these cases, it results in an unchanged potency value and fails

to reflect the complexities introduced by the obfuscating transformations.

2.3 Graph Distance

To address the drawback of potency with N-Scope and further make a precise evaluation,

in our work, graph distance, giving a variation of the execution logics between two programs,

should be evaluated to indicate how much confusion is to a human reader after obfuscation.

In 1998, Bunke [11] proposed the MCS method with a distance metric based on the

maximal common subgraph. The method depicts the distance between two graphs with the

number of vertices of their maximal common subgraph and of the larger graph between the

two, as shown in Eq (2).

|)||,max(|
|),(|

),(
21

21
21 1

GG
GGmcs

GGd −= Eq (2)

where |G| means the number of nodes of the graph G, and mcs(G1,G2) is the maximal common

subgraph of G1 and G2.

Nonetheless, if the size of the maximal common subgraph is unchanged, the distance

between graphs remains the same even if the smaller graph changes its size. In other words,

changes in the smaller graph cannot be reflected when using the MCS method. To improve the

 11

drawback of the MCS method, in 2001, Wallis et al. [12] proposed a measure based on graph

union, which is referred to below as the graph union method, as shown in Eq (3).

|),(|||||
|),(|

),(
2121

21
21 1

GGmcsGG
GGmcs

GGd
−+

−= Eq (3)

G1

G2

G3

1

2

3

4

5

6

7 8

1

4

5

2

9

6

7 8

1

4

9

10

11

6

7 8

1

6

7 8

4

5
Common subgraphs of G1 and G2

d(G1,G2)=2/3

1

6

7 8

Common subgraphs of G1 and G3
d(G1,G3)=2/3

Figure 2.4. Example of graph union method

Using the union rather than the larger of two graphs, changes in the smaller graph can be

distinguished. Considering the example in Figure 2.4, d(G1,G2) equals to d(G1,G3) in terms

of the graph union method even though G1 and G2 have more common subgraphs than G1

and G3. The distance changes only when size of the maximal common subgraph is changed. It

is not able to reflect the changes in other common subgraphs. To emphasize more on the

disparity of the execution logics of two programs, we propose a distance measure in terms of

 12

the number of edges. In the proposed measure, the summation of all edges in all common

subgraphs is counted in so that even minor changes can be reflected in the derived distance.

The proposed measure is detailed in Chapter 6.

 13

Chapter 3

Program Parser

To formalize the obfuscating transformations, a program must be parsed, fragmented and

converted into its graph representation. In this chapter, we describe the definition of basic

components of a program graph and the rules for the program parser defined in the thesis.

3.1 Definition

As a high-level abstraction, a software program is composed of a sequence of code

blocks. Upon decomposing the software program, it can be converted into a directed graph,

whose vertices are the code blocks of the program and edges are the execution orders for

these code blocks. In this section, we define the code blocks and edges used to explicitly

represent software programs based on directed graphs.

According to the diversion of execution, the code blocks in a program can be classified

as branches or simple blocks, defined as follows.

 Branch (B): A branch in this thesis refers to one of the branch statements used in for loop,

while loop, do-while loop, if-else statements, and go-to unconditional jumps in high-level

programming languages.

 Simple Block (S): A simple block is defined as a set of sequential statements with no

branch instructions inside this code block.

 Code Element (C): A code element refers to a branch or a simple block. In other words, a

set of code elements is the union of sets of branches and simple blocks. A code element

can be classified according to their specialties. The following gives a notation of the

classification of code elements.

 14

- C0 is the entry point of a source program.

- D, the don’t-care codes, is the element which is never executed.

- E(C) is an equivalence of C. It preserves the same functionality as C.

- An empty statement (φ) represents the termination of an execution path and can also be

considered as a code element.

The edges of a directed graph of a software program are the execution sequences of the

program. Normally, instructions in a program are either sequentially executed or branched. To

specify the different characteristics in execution, two types of edges, sequential edge and

branch edge, are defined respectively to represent the execution sequences of code elements.

 Sequential edge (e): A sequential edge, e = (Ci, Cj), i ≠ j, is defined for two code elements,

Ci and Cj, whose execution order is sequential. It stands that Cj, the immediate successor,

is executed right after Ci, the immediate predecessor.

 Branch edge (b): Since a branch may jump to its true or false target, there are two code

elements which are possible to be executed right after the branch, B. To state the branching

relationship between the branch and its targets, a branch edge, b = B(CTrue, CFalse), is

defined. In this representation, B stands for the branch, where CTrue and CFalse represent the

true and false targets of B, respectively.

With these notations and definitions, the directed graph, G, can be represented by a

combined tuple (V, E), where V is the vertex set and E is the edge set. The vertex set, V,

contains all the code elements, including simple blocks and branches, in the parsed program.

The edge set, E, is composed of sequential edges and branch edges. The following formal

representation details the relationship of the above notations.

 G = (V, E).

 V = C = S ∪ B, where

 S = {Si |∀i, Si is a simple block},

 B = {Bi |∀i, Bi is a branch},

 15

C = {Ci |∀i, Ci is a code element, either a simple block or a branch}.

E = {Ei |∀i, Ei is either a sequential edge or a branch edge}.

3.2 Format of Parsed Programs

With the definitions described in Section 3.1, a software program can be decomposed

and formatted into a parsed program, Ψ, with its entry point C0 and a directed graph G,

represented in the form of

Ψ = (C0, G).

S0

B0

S1 S2

T F

=(S0, {S0, B0, S1, S2}, {(S0, B0),
B0(S1,S2), (S1,φ), (S2,φ) })

Figure 3.1. Example of the formal representation of a parsed program

Figure 3.1 shows an example to decompose a program into three simple blocks and one

branch, where

C0 = S0,

V = {S0, B0, S1, S2},

E = {(S0, B0), B0(S1, S2), (S1, φ), (S2, φ)},

G = (V, E)

 16

= ({S0, B0, S1, S2},{(S0, B0), B0(S1, S2), (S1, φ), (S2, φ)}).

Thus, the parsed program can be presented as

Ψ = (C0, G)

= (S0, {S0, B0, S1, S2}, {(S0, B0), B0(S1,S2), (S1, φ), (S2, φ)}).

 17

Chapter 4

Atomic Operators

A program graph is derived by executing the program parser mentioned in the pervious

chapter. Therefore, obfuscating control flows of a program can be treated as modifying the

program graph into another graph. To maintain the same functionalities of a program, any

modification to this can be achieved by changing edges and/or vertices in its program graph.

It is possible to split or merge vertices and edges without affecting the functionalities. Yet, it is

difficult to remain the same execution results by merely applying deletion to edges or vertices.

 The addition without affecting functionalities can be realized by inserting branches,

equivalent vertices or dummy vertices. The modification can be realized by splitting, merging

vertices or extracting new vertices from existing ones. Since that each vertex in the program

graph represents a code element in the corresponding program, from these actions, we

conclude five atomic operators as basic building blocks for obfuscating programs. These

operators are inserting opaque predicates, splitting code elements, reordering code elements,

inserting equivalent codes and dummy codes. In this thesis, the atomic operator, O, applying

to the target code element Ct in the program Ψ, is defined in the form of

O (Ψ, Ct).

The following sections describe the proposed atomic operators and their transformation

algorithms.

4.1 Insert Opaque Predicates

Inserting opaque predicates hides the real control flow of the source program. Since there

are three types of opaque predicates introduced in Chapter 2, the insertions also fall into three

 18

categories, accordingly. f
opO , t

opO and q
opO represent the three types of insertion: type I

(false), II (true) and III, respectively. The following sub sections depict the formalization

algorithms for the three opaque predicate insertion transformations.

I) Insert Type I Opaque Predicates,),(t
f

Op CO ψ

As a type I opaque predicate, PF, is inserted in front of the target code element Ct, Ct

should be moved to the false target of PF to remain the same functionality. Owing to that

the execution result of PF is always false, any existing element, Cany, may be specified as

the true target of PF that Cany does not contribute to various results. In case that the code

size is not a factor in obfuscating the program, a don’t-care element can also be placed

on the true target by applying another atomic operator, inserting dummy codes. The

following is the algorithm of applying),(t
f

op CO ψ to a parsed program, Ψ.

Algorithm 4.1.1 Type I Opaque Predicate Insertion,),(t
f

Op CO ψ

Insert PF into V such that V V ∪ {PF};

IF Ct = C0 THEN
Replace the entry point with PF;

END IF;
FOR eij := a sequential edge(Cei, Cej) OR bij := a branch edge Bij(Cbi, Cbj) in E DO

SWITCH Ct
CASE Cei:

bnew PF(Cany, Ct);
 CASE Cej:

Replace (Cei, Cej) with (Cei, PF);
 CASE Bij:

bnew PF(Cany, Ct);
 CASE Cbi:
 Replace Bij(Cbi, Cbj) with Bij(PF, Cbj);
 CASE Cbj:
 Replace Bij(Cbi, Cbj) with Bij(Cbi ,PF);
END FOR;

 19

Insert bnew to E;

),(t
f
OP CO ψ

Figure 4.1. Example of applying the operator,),(t
f

Op CO ψ

 The insertion varies according to the characteristics of the target code element, Ct. In the

case that if Ct is also the entry point C0, then, in the graph representation of the program, C0 is

replaced by PF. If Ct is the code element Cei in the sequential edge eij = (Cei, Cej), a branch

edge, PF(Cany, Ct) is inserted to the program graph P. On the other hand, if Ct is the code

element Cej in eij, the existing edge (Cei, Cej) is replaced by (Cei, PF). In the third case, if Ct

is the branch code elements (Bi) in a branch edge bij, then a new edge PF(Cany, Ct) should be

inserted to the program graph. If Ct is one of the target code elements of the branch edge bij,

then Bi(Cbi, Cbj) will be replaced by either Bi(PF, Cbj) or Bi(Cbi, PF), respectively. In the

example as shown in Figure 4.1, Cj is designated as Cany. That is, Cj is assigned to the true

target of PF in this example.

II) Insert Type II Opaque Predicates,),(t
t
Op CO ψ

The procedure for inserting type II opaque predicates is similar to that for type I

 20

predicates. Since a type II opaque predicate (PT) always evaluates true, the target code

element Ct should be moved to the true target of PT as it is inserted such that the

maintenance of the execution result is assured. Similarly, any code element can be its

false target that contributes nothing to the execution result. The formalization algorithm

for type II opaque predicate insertion,),(t
t
op CO ψ , is described in Algorithm 4.1.2.

Algorithm 4.1.2 Type II Opaque Predicate Insertion,),(t
t
Op CO ψ

Insert PT into V such that V V ∪ {PT};

IF Ct = C0 THEN
Replace the entry point with PT;

END IF;
FOR eij := (Cei, Cej) OR bij := Bij(Cbi, Cbj) DO

SWITCH Ct
CASE Cei:

bnew PT(Ct, Cany) ;
CASE Cej:

Replace (Cei, Cej) with (Cei, PT);
CASE Bij:

bnew PT(Ct, Cany) ;
CASE Cbi:

 Replace Bij(Cbi, Cbj) with Bij(PT, Cbj);
 CASE Cbj:
 Replace Bij(Cbi, Cbj) with Bij(Cbi ,PT);
END FOR;
Insert bnew to E;

III) Insert Type III Opaque Predicates,),(t
q
Op CO ψ

As described in Chapter 2, a type III opaque predicate (P?) may sometimes evaluates true

and sometimes false, thus the target code element Ct should be placed on both targets of

P?, as shown in Figure 4.2. However, this placement is meaningless in performing

obfuscation. It is strongly recommended applying another atomic operator, inserting

equivalent codes, after type III opaque predicate insertion. The insertion of equivalent

 21

codes is described in Algorithm 4.4. Algorithm 4.1.3 explains the procedure upon

inserting type III opaque predicates for obfuscation.

),(t
q
OP CO ψ

Figure 4.2. Example of applying the operator,),(t
q
Op CO ψ

Algorithm 4.1.3 Type III Opaque Predicate Insertion,),(t
q
Op CO ψ

Insert P? into V such that V V ∪ {P?};

IF Ct = C0 THEN
Replace the entry point with P?;

END IF;
FOR eij := (Cei, Cej) OR bij := Bij(Cbi, Cbj) DO

SWITCH Ct
CASE Cei:

bnew P?(Ct, Ct) ;
CASE Cej:

Replace (Cei, Cej) with (Cei, P?);
 CASE Bij:

bnew P?(Ct, Ct);
CASE Cbi:

 Replace Bij(Cbi, Cbj) with Bij(P?, Cbj);
 CASE Cbj:
 Replace Bij(Cbi, Cbj) with Bij(Cbi ,P?);
END FOR;
Insert bnew to E;

 22

4.2 Split Code Elements

Splitting a code element into pieces can increase the number of vertices in the program

graph and also increase its complexity. Since code elements are distinguished into simple

blocks and branches, two types of splitting operators are addressed in this section.

I) Split Simple Blocks,),(t
n
Ss CO ψ

Type I splitting operator, denoted by),(t
n
Ss CO ψ ,tries to obfuscate the simple block, Ct,

in further by dividing Ct into n pieces, Cti, ∀ 0 ≤ i < n. Figure 4.3 shows the operation

of the type I splitting operator. Due to the limitation of instruction counts in the source

code level, the parameter n is limited to the instruction counts (N) in the target code

element Ct. The algorithm for formalizing this operator,),(t
n
Ss CO ψ , is described as

follows.

Algorithm 4.2.1 Split Simple Blocks,),(t
n
Ss CO ψ

IF Ct ∈ B THEN
BREAK;

END IF;
IF n > N OR n < 2 THEN

BREAK;
END IF;
IF Ct = C0 THEN

Replace the entry point C0 with Ct0;
END IF;
Remove Ct from V such that V V – {Ct};

Insert new vertices to V such that V V ∪ {Cti│∀i,0 ≤ i < n};
FOR eij := (Cei, Cej) OR bij := Bij(Cbi, Cbj) DO

IF Ct = Cei THEN
Replace (Cei, Cej) with (Ct(n-1), Cej);

 END IF;
ELSE IF Ct = Cej THEN

 23

Replace (Cei, Cej) with (Cei, Ct0);
 END IF;

IF Ct = Cbi THEN
Replace Bij(Cbi, Cbj) with Bij(Ct0,Cbj);

 END IF;
ELSE IF Ct = Cbj THEN

Replace Bij(Cbi, Cbj) with Bi(Cbi,Ct0);
 END IF;
END FOR;
j 0;
m |e|, where |e| is the number of edges in E;

FOR all j such that 0 < j < n – 1 DO
Insert em+j = (Ctj, Ct(j+1)) to P
j j + 1;

END FOR;

),(t
n
Ss CO ψ

Figure 4.3. Split simple blocks

II) Split Branches,),(t
n
Sb CO ψ

Type II splitting operator, denoted by),(t
n
Sb CO ψ , aims at splitting a target branch, Ct,

into n smaller pieces. Before splitting, the expression of the branch should be converted

as in postfix. In this case, the expression is reformatted as

Cond0 Cond1 Op0 Cond2 Op1 CondN-2 OpN-3 CondN-1 OpN-2

 24

where Condi is a condition in Ct, and Opj refers to “AND” or “OR.” The format contains

N conditions and (N-1) operators. Note that when applying type II splitting operator, the

parameter n cannot be larger than N, condition counts of Ct. Algorithm 4.2.2 details the

steps of splitting branches.

Algorithm 4.2.2 Split Branches,),(t
n
Sb CO ψ

IF Ct ∈ S THEN
BREAK;

 END IF;
IF n > N OR n < 2 THEN

BREAK;
END IF;
IF Ct = C0 THEN

Replace the entry point C0 with Ct0;
END IF;
Remove Ct from V such that V V – {Ct};

Insert new vertices to V such that V V ∪ {Cti│∀i,0 ≦ i < n};
Ct0 Ct;
m 2;
FOR m ≤ n DO
 Ct(m-1) Ct(m-2) − CondN-(m-1) − OpN-m;
 Ct(m-2) CondN-(m-1);
 m m + 1;
END FOR;
FOR eij := (Cei, Cej) OR bij := Bi(Cbi, Cbj) DO

IF Ct = Cej THEN
Replace (Cei, Cej) with (Cei, Ct0);

 END IF;
 ELSE IF Ct = Bi THEN

Replace Ct(Cbi, Cbj) with Ct(n-1)(Cbi,Cbj);

 FOR n ≥ 2 DO
 SWITCH OpN-n

 CASE “OR”
 Insert Ct(n-2)(Cbi, Ct(n-1)) to E ;

 CASE “AND”
 Insert Ct(n-2)(Ct(n-1),Cbj) to E ;

 25

 n n− 1 ;
END FOR ;

 END IF ;
END FOR ;

Figure 4.4. The fragmented pieces are demarcated by Opi. To ensure the priorities of any conditions, Ct

should be segmented in reverse order.

The fragmented pieces are demarcated by Opi, and to ensure the priorities of any

conditions, Ct should be segmented in reverse order. That is, the splitting starts from OpN-2

sequentially back to Op0 as Figure 4.4 shows. First, the original expression is segmented into

two parts, Ct0 and Ct1 where Ct0 contains only CondN-1, and Ct1 contains almost the total

conditions and operators of the original expression except for OpN-2 and CondN-1. After the

 26

first round, Ct1 is going to be split into a new Ct1 and Ct2. After the second round, Ct2 is the

outcome of removing OpN-3 and CondN-2 from Ct1, and Ct1 is reset as CondN-2. The same steps

are repeated until n pieces are achieved.

 After splitting Ct, new connections between the segmented pieces, Ct(n-i) and Ct(n-i+1), are

developed based on the type of the operator OpN-(n-i+2), i ∈ [n + 2 – N, n]. In other words,

Ct(n-i+1) would be the true or false target of Ct(n-i+1) due to the type of OpN-(n-i+2). In

consideration of the case that the type of OpN-2 is “AND,” it implies if Ct0 evaluates false, no

matter what the evaluation of Ct1 is, it fails to reach the original true target of Ct. Under the

circumstances, Ct1 is set as the true target of Ct0, and the false target of Ct0 would be that of the

original Ct. For the other case that the type of OpN-2 is “OR,” although Ct0 evaluates false, it

may reach the original true target of Ct as long as one of the fragments of Ct evaluates true.

Thus, Ct1 should be placed on the false target of Ct0. On the basis of the above analysis, if

OpN-(n-i+2) is “AND,” a new branch edge Ct(n-i)(Ct(n-i+1),Cbj) is inserted where Cbj is the false

target of Ct. Otherwise, if OpN-(n-i+2) is “OR,” a new branch edge Ct(n-i)(Cbi, Ct(n-i+1)) is

inserted where Cbi is the true target of Ct.

4.3 Reorder Code Elements

Upon performing reverse engineering, instruction localities usually reveal the execution

logics of a program. Randomizing the placement of instructions in a source program helps to

hide the execution logics of the source program from being reversely engineered.

The reordering operator, denoted by),(tR CO ψ , then becomes one of the atomic

operators in obfuscating source programs. However, to remain the execution result unchanged,

it is necessary to check the execution dependency for the target code element Ct and its

immediate successor Ct+1, before applying the reordering operator. If dependency exists, then

reordering operator may result in an incorrect execution result. The following is the algorithm

 27

formalizing the reordering operator),(tR CO ψ .

Algorithm 4.3 Reorder Code Elements,),(tR CO ψ

IF either Ct ∈ B OR Ct+1 ∈ B,
BREAK;

END IF;
IF dependency exists between Ct and Ct+1,

BREAK;
END IF;
IF Ct = C0 THEN

Replace the entry point with Ct+1.;
END IF;
FOR eij := (Cei, Cej) DO

IF Ct+1 = Cei THEN
Replace (Cei, Cej) with (Ct, Cej);

 END IF;
IF Ct = Cej THEN

Replace (Cei, Cej) with (Cei, Ct+1);
 END IF;

IF Ct = Cei AND Ct+1 = Cej THEN
Replace (Cei, Cej) with (Ct+1, Ct);

 END IF;
END FOR;

4.4 Insert Dummy Codes

As insertion of dummy codes changes the original execution logics of a source program,

the program becomes more obscure. According to the level of obscurity, the dummy code

element which is going to be inserted can be a simple block or a branch. Even a new loop can

be created and inserted by combining a branch with a simple block. Insertion of opaque

predicates can be regarded as insertion of dummy branches. Hence, in this sub section, we

only introduce the algorithms of inserting a dummy loop and simple block. Algorithm 4.4.1

describes the formalization algorithm of the operator on inserting dummy simple blocks Ds,

 28

denoted by),(t
s
D CO ψ . Algorithm 4.4.2 represents how to insert a dummy loop, which is

composed of a dummy branch Db and simple block Ds, in front of the target Ct.

Algorithm 4.4.1 Insert Dummy Simple Blocks,),(t
s
D CO ψ

Insert Ds into V such that V V ∪ { Ds };

IF Ct = C0 THEN
Replace the entry point with D;

END IF;
FOR eij := (Cei, Cej) OR bij := Bij(Cbi, Cbj) DO

SWITCH Ct

 CASE Cej:
Replace (Cei, Cej) with (Cei, Ds);

 CASE Cbi:
 Replace Bij(Cbi, Cbj) with Bij(Ds, Cbj);
 CASE Cbj:
 Replace Bij(Cbi, Cbj) with Bij(Cbi, Ds);
END FOR;
Insert a new sequential edge (Ds, Ct) to E;

),(t
s
D CO ψ

Figure 4.5. Example of inserting dummy simple blocks

Algorithm 4.4.2 Insert Dummy Loops,),(t
l
D CO ψ

Insert Ds and Db into V such that V V ∪ { Ds ,Db };

IF Ct = C0 THEN
Replace the entry point with Db;

END IF;
FOR eij := (Cei, Cej) OR bij := Bij(Cbi, Cbj) DO

SWITCH Ct

 29

 CASE Cej:
Replace (Cei, Cej) with (Cei, Db);

 CASE Cbi:
 Replace Bij(Cbi, Cbj) with Bij(Db, Cbj);
 CASE Cbj:
 Replace Bij(Cbi, Cbj) with Bij(Cbi ,Db);
END FOR;
Insert a new sequential edge (Ds, Db) to E;
Insert a new branch edge Db(Ds, Ct) to E;

),(t
l
D CO ψ

Figure 4.6. Example of inserting dummy loops

4.5 Replace with Equivalent Codes

Equivalent codes are the codes with the same execution result as the origin while

implementations of the equivalent codes and the origin are different. In other words, the

equivalent codes can confuse reverse engineers by providing the codes with different

execution logics while preserving the same functionality.

This operator, denoted by),(tE CO ψ , replaces the target code element Ct with its

equivalence, E(Ct). For a branch, if both of its true and false targets are Ct, only the false

target is replaced with E(Ct), Figure 4.7 illustrating this case. The formalization algorithm of

),(tE CO ψ is described as follows.

 30

Algorithm 4.5 Replace with Equivalent Codes,),(tE CO ψ

Insert E(Ct) into V such that V V ∪ {E(Ct)};
Remove Ct from V such that V V – {Ct};

IF Ct = C0 THEN
Replace the entry point with E(Ct);

END IF;
FOR eij := (Cei, Cej) OR bij := Bij(Cbi, Cbj) DO

IF Ct = Cbi AND Ct = Cbj THEN
Replace Bij(Cbi, Cbj) with Bij(Cbi, E(Ct));
Insert Ct into V such that V = V ∪ {Ct};

ELSE
SWITCH Ct

CASE Cei:
Replace (Cei, Cej) with (E(Ct),Cej);

CASE Cej:
Replace (Cei, Cej) with (Cei, E(Ct));

 CASE Bij:
Replace Bij(Cbi, Cbj) with E(Ct)(Cbi, Cbj);

CASE Cbi:
Replace Bij(Cbi, Cbj) with Bij(E(Ct),Cbj);

 CASE Cbj:
Replace Bij(Cbi, Cbj) with Bij(Cbi, E(Ct));

 END IF;
END FOR;
IF Ct ∈ V THEN

Find (E(Ct),y) ;
Insert (Ct, y);

END IF;

 31

),(tE CO ψ

Figure 4.7. Example of replacing the target element with its equivalent codes

Algorithm 4.5 shows the algorithm of inserting equivalent codes based on directed

graphs. Techniques which can be used for creating equivalent codes are briefly introduced as

follows.

 Inline method: Inline is an important technique in compiler optimization. It is also useful

in creating equivalent codes. In inline methods, a procedure call is replaced with the body

of called procedure, and the procedure itself is removed.

 Outline method: With outline method, a sequence of instructions is turned into a

subroutine and the instructions are replaced with a new procedure call. Outlining is a

useful companion transformation to inline methods. They can be combined to create more

obscure equivalent codes.

 Interleave method: The idea on interleaving two methods declared in the same class is to

merge the bodies and parameter lists of the methods. To distinguish between calls to the

two methods, an extra parameter is added to judge which instructions should be executed

for the same execution result.

 Clone method: In clone methods, several different versions of a method are created by

 32

applying different sets of techniques in equivalence creation, and a method dispatch is

used to select between the different versions at runtime. Clone methods make it appear that

different routines are being called, but in fact, the routines derive the same execution.

 Parallelize method: For a target code element, Ct, if the contained instructions can be split

into two independent pieces, some technique, like using threads, can be used to execute the

pieces in parallel. Otherwise, if no independently smaller pieces are contained in Ct, Ct and

a don’t-care code element, D, are executed in parallel after the creation of D. Note that

since D will be executed, it cannot be equivalent codes of Ct or other code elements that

will change the execution result.

 Add redundant operands: Once opaque variables have been constructed, we can use

algebraic laws to add redundant operands to arithmetic expressions. For example, an

original variable of an arithmetic expression is multiplied by an opaque variable whose

real value is one.

 Insert dummy instructions: By inserting some instructions that will not change the

execution result of the code element, an equivalent code element can be achieved.

 33

Chapter 5

Formalization of Obfuscating Transformations

Since any transformation, T, can be decomposed into a series of atomic operators

described in the previous chapters. In this thesis, the obfuscating transformation, T, applying

to the program Ψ, is represented in the form of

T (Ψ).

Different transformations are derived while atomic operators are applied to different target

elements. Therefore, T can be represented as a subset of the set of the atomic operators

defined in this thesis. That is,

T (Ψ) ⊆ {),(_ at
f
Op CO Ψ ,),(_ bt

t
Op CO Ψ ,),(_ ct

q
Op CO Ψ ,),(_ dt

n
Sb CO Ψ ,

),(_ et
n
Ss CO Ψ ,),(_ ftR CO Ψ ,),(_ gtE CO Ψ ,),(_ ht

s
D CO Ψ ,

),(_ it
l
D CO Ψ }+,

where Ct_x is a code element of Ψ, ∀ x ∈ {a, b, c, d, e, f, g, h, i}. In this chapter, we detail a

formal representation of these obfuscating transformations with a combination of the above

atomic operators.

In 1998, Collberg et al. proposed several control transformations of obfuscating the

control flow of source programs attempting to further discourage the reverse engineering

attacks. These transformations are classified as affecting the computations, aggregation or

ordering of the control flow, as described in the following sections.

5.1 Computation Transformations

Computation transformations are targeted to make algorithmic changes by inserting

 34

opaque predicates together with redundant or dummy codes to source programs. Branch

insertion, loop condition extension, irrelevant code insertion and non-reducible flow

conversion are falling into this category.

5.1.1 Branch Insertion Transformation, T B

Branch insertion transformations, denoted by T B , are designed based on one of the three

opaque predicate insertion operators, f
OpO , t

OpO and q
OpO . The formalization of the branch

insertion transformation can be defined by an ordered four-operator tuple, shown as follows

T B = (2
SsO , OpO , [EO] , [DO]) .

In this transformation, T B , the target code element is first split into two pieces, which is

indicated by 2
SsO . Then, the second step is to apply one of the three opaque predicates to the

split pieces. The second operator is represented by OpO , where OpO ∈{ f
OpO , t

OpO , q
OpO }.

Finally, the insertion of equivalent codes and dummy codes, EO and DO , are optional in this

transformation.

5.1.2 Loop Condition Extension Transformation, T L

A loop can be obfuscated by making the loop condition more complex. The idea is to

extend the loop condition with a type I (PT) or type II (PF) opaque predicate that will not

affect the times the loop will execute. For this purpose, the target code element can first be

split into two pieces and then the opaque predicates, PT or PF, can be inserted into the

program. A dummy code can also be used to replace the never reached target of the predicate,

optionally. The formal representation of this transformation can be defined in the form of:

T L = (2
SsO , OpO , [DO]),

 35

where 2
SsO splits a simple block into two halves and DO is an optional to T L . Note that, to

remain the loop execution times unchanged, only type I or II opaque predicates can be

inserted into the split code elements. Therefore, OpO is one of f
OpO and t

OpO , and thus can

be represented as

OpO ∈ { f
OpO , t

OpO }.

5.1.3 Language-Breaking Transformation, T G

A language-breaking transformation, denoted by T G , introduces instruction sequences

which have no direct correspondence with any source language construct. After the

transformation, when faced with such instruction sequences, a deobfuscator will either have to

try to synthesize an equivalent but convoluted source language program or give up altogether.

 The language-breaking transformation converts a reducible flow graph to a

non-reducible one by turning a structured loop into a loop with multiple headers. The

formalization of T G is defined with the atomic operators as follows.

T G = (2
SsO , f

OpO , [DO]) ,

where 2
SsO is the operator on splitting a simple block into two halves, and DO is an option

used in T G .

5.1.4 Parallelize Code, T P

A reverse engineer will find a parallel program much more difficult to understand than a

sequential one. Thus, parallelization yields high levels of potency. The transformation, T P ,

can be formalized with the atomic operator
EO such that the formal representation is shown as

follows.

T P = (EO),

 36

where the technique of creation of equivalent codes is limited to the parallelize method.

5.1.5 Add Redundant Operands, T R

Algebraic laws can be used to add redundant operands to arithmetic expressions. In this

way, the logic of the original expression is modified and the operation becomes more complex.

The formalization of T R is defined in the form of

T R = (EO),

where only the method “add redundant codes” can be used as the technique for creating

equivalent codes for the atomic operator EO .

5.2 Aggregation Transformations, TA

The basic idea of aggregation transformations falls into two categories. The one is to

break up codes which programmers aggregated them into a method and scatter the codes over

the program. The other is to aggregate the codes which seems not to belong together into one

method. The transformation T A can be implemented by the operator,
EO , with specific

techniques of creation of equivalent codes. The formalization of T A can be defined in the form

of

T A ⊆ { EiO , EoO , EvO , EcO } + ,

where EiO is the operator of inserting equivalent codes which created by inline methods.

Similarly, outline methods, interleave methods and clone methods are used for the creation of

equivalent codes in the operator EoO , EvO and EcO , respectively.

5.3 Ordering Transformations, T O

To eliminate useful spatial clues for understanding the execution logics of a program,

 37

ordering obfuscation was proposed to randomize the placement of any code element in the

source program. The reordering operator, RO , is introduced in ordering transformations, T O.

The definition of T O is represented in the form of

T O = (RO),

where RO exchanges the two target code elements if no dependency exists between them.

 38

Chapter 6

Evaluation

Normally, reverse engineering a software application starts at using disassemblers or

decompilers so that executable codes can be decompiled to the corresponding high-level

representations. After decompiling or disassembling, reverse-engineers try to gather the

desired information by analyzing the control flow and the data structures on the basis of the

high-level representations. Hence, the difficulty of reverse engineering an obfuscated program

should consist of two categories, decompiling time and the difficulty to reverse-engineers. In

this chapter, we try to evaluate the difficulty in reverse engineering after applying different

obfuscation methods.

6.1 DP Value

Since decompiling time is normally proportional to code size, the measure referred to in

this thesis focuses on how to measure the difficulty for a reverse-engineer in reverse

engineering obfuscated programs derived from different obfuscating methods. The difficulty

for reverse-engineers depends on their own senses and abilities, i.e. different engineers may

spend different time reverse engineering the same program. For systematical and numerical

analysis, we propose a measure that tries to eliminate personal factors in reverse engineering.

This measure does not express the difficulties of reverse engineering the same program

between different reverse-engineers, but this measure distinguishes the difficulties for an

identical reverse-engineer while different obfuscating transformations are applied to the same

program.

DPT(Pori) is defined as the measure of the difficulty in reverse engineering an obfuscated

 39

program that is the result after applying a transformation T to a source program Pori. In other

words, DPT(Pori) indicates the robustness to resist reverse-engineers after an obfuscating

transformation T. DPT(Pori) consists of two metrics, graph distance and potency, and it is

defined as follows:

DPT(Pori) = (dis(Pori, Pobf), pot(Pori, Pobf)). Eq (4)

In Eq (4), dis(Pori, Pobf) means the distance between the original program Pori and the

obfuscated program Pobf that results from applying T to Pori.

Potency with N-Scope can evaluate the impact made by some control flow obfuscation

methods on the difficulty in reverse engineering. However, potency cannot detect the change

of the execution paths which provide useful information for reverse-engineers. dis(Pori, Pobf)

indicates how much difference exists between the execution logics of Pori and Pobf, and thus

makes up for the deficiency of potency. Even if distance measure supplement the drawback of

potency, it cannot determine the change resulting from some control flow obfuscation

methods, such as branch insertion transformation, as efficacy as potency. Hence, both potency

and distance measure are introduced in the proposed method to address evaluation.

An increment of the distance between Pori and Pobf means that their correlation is reduced,

and thus implies that it is more difficult to understand the logic of Pori by tracing Pobf. The

more complex the obfuscated program, the more time will be spent on reverse engineering.

Therefore, the larger the DP is, the strong the robustness to resist reverse-engineers after

obfuscation.

6.2 Distance Using Graph Edge

To present more explicit disparities between the original and obfuscated programs after

different obfuscation methods, all common subgraphs are taken account to measure the

distance, not merely the maximal common subgraph. Furthermore, to focus more on

 40

execution logics and execution paths of programs, the number of edges contained in common

subgraphs rather than the number of nodes is used in the proposed distance measure.

The proposed distance measure between two graphs G1 and G2 is as follows.

∑ +
−=

i

i

GedgeGedge
GGCSedge

GGdis
|)(||)(|

|)),((|
),(

21
212121 Eq (5)

where CSi(G1, G2) refers to the ith common subgraph of G1 and G2, edge(G) means the set of

edges within graph G, and |edge(G)| is the number of edges within G. The minimum value of

dis(G1, G2) is zero while the two graphs are exactly the same. The maximum value of dis(G1,

G2) is one while no common subgraph exists between them.

In Figure 6.1, both G1 and G2 are composed of eight nodes and seven edges. Subgraphs

in two circles are the common subgraphs of G1 and G2, where two and four nodes are

included individually. The smaller common subgraph contains one edge while the larger one

has three. According to Eq (5), dis(G1, G2) can be derived as

dis(G1, G2) =
7
3

77
32121 =

+
⋅+⋅

− .

N1

N2

N3

N4

N5

N6

N7 N8

N1

N4

N5

N2

N9

N6

N7 N8

G1 G2

Figure 6.1. Subgraphs in two circles are the common subgraphs of G1 and G2.

6.3 Example of DP Value upon Formalization

To measure distance, we need to compare edge sets of two program graphs, record

 41

conjunct edges and count the number of the conjunct edges. Before measuring potency,

complexity of programs should be calculated. After tracing an edge set, we record nodes

which are in a loop or on forked paths directed by a branch until the paths encounter. Then we

use the number of recorded nodes to derive the potency with N-Scope value. In the following,

an example is presented to illustrate how to calculate DP value.

Taking Figure 6.2 as an example, the original program is parsed to

Ψ = (S0, {S0, B1, S1, S2}, {(S0, B1), B1(S1, S2), (S1, B1), (S2, φ)}),

and Ψ becomes

Ψ1 = (S0, {S0, B1, S2, S10, S11, S12}, {(S0, B1), B1(S10, S2), (S10, S12), (S2, φ), (S12, S11),

(S11, B1)}).

after applying the transformation T1(Ψ) where

T1(Ψ) = ()(1
3 SOSs ,Ψ ,)(11SOR ,Ψ).

Moreover, after applying T2(Ψ 1) where

T2(Ψ1)

= T3(Ψ)

= ()(1
3 SOSs ,Ψ ,)(11SOR ,Ψ ,)(12SOq

Op ,Ψ ,)(12SOE ,Ψ),

Ψ1 is converted to

Ψ2 = (S0, {S0, B1, S2, S10, S11, S12, P?, E(S12), E(S11)}, {(S0, B1), B1(S10, S2), (S10, P?),

(S2, φ), (S12, S11), (S11, B1), P?(S12, E(S12)), (E(S12), S11)}).

Comparing edge sets of Ψ and Ψ1,

21 =ΨΨ∑
i

iCSedge |)),((| ,

)},(),,{()),((, 21101 SBBSCSedgei i ×=ΨΨ∀ ,

where),(21 SB × means that only the relation between B1 and its false target S2 is counted in

this edge set.

 42

The comparison between Ψ and Ψ2 is similar to the above.

 22 =ΨΨ∑
i

iCSedge |)),((| ,

)},(),,{()),((, 21102 SBBSCSedgei i ×=ΨΨ∀ .

Figure 6.2. Example of obfuscation formalization

According to Eq (5), dis(Ψ, Ψ1) and dis(Ψ, Ψ2) can be derived as follows.

|edge(Ψ)| = 4,

|edge(Ψ1)| = 6,

|edge(Ψ2)| = 9,

dis(Ψ,Ψ1) = 1 – 2 * 2 / (4 + 6) = 3 / 5,

dis(Ψ,Ψ2) = 1 – 2 * 2 / (4 + 9) = 9 / 13.

Note that (S2, φ) is not counted in the edge set of the program graphs since φ stands for the

 43

termination of an edge.

The formula of N-Scope is in the form of

|||),(|

|),(|
)(

Ψ
Ψ∈

Ψ∈

+Ψ

Ψ
=Ψ−

∑

∑
NBrange

Brange

i

i

x

x

 in branch
i

 in branch
i

ScopeN [10], Eq (6)

where |NΨ| is the number of vertices in Ψ, and |range(Ψ, Bi)| means the number of nodes that

are contained in the loop leaded by the branch, Bi, or are on the forked paths branching out at

Bi until the paths converge.

In Figure 6.2, since Ψ contains a branch, B1, either a loop or forks exist in Ψ. Observing

the edge set of Ψ, according to Eq (6),

 range(Ψ, B1) = {B1, S1},

|range(Ψ, B1)| = 2.

N-Scope(Ψ) = 1 / 3.

For Ψ1, nodes contained in the loop leaded by B1 or lying on any forked paths from B1 to S2

are B1, S10, S11 and S12. That is,

range(Ψ1, B1) = {B1, S10, S11, S12},

|range(Ψ1, B1)| = 4,

N-Scope(Ψ1) = 4 / (4 + 6) = 2 / 5.

The final obfuscated program Ψ2 has two branches, B1 and P?. For B1, its range set is as

follows:

range(Ψ 2, B1) = {B1, S10, S11, S12, P?, E(S12)},

|range(Ψ2, B1)| = 6.

For the predicate P?, its range set is shown as below.

 range(Ψ 2, P?) = {S12 , E(S12)},

 |range(Ψ 2, P?)| = 2.

Based on |range(Ψ2, B1)| and |range(Ψ2, P?)|, N-Scope(Ψ2) can be derived as follows.

 44

 N-Scope(Ψ2) = (2 + 6) / (2 + 6 + 8) = 1 / 2.

By the definition of potency, we can derive the following potency values.

pot(Ψ, Ψ 1) =
5
11

3/1
5/2

=− ,

pot(Ψ, Ψ 2) =
2
11

31
21

=−
/
/ .

In the above example, the ability to resist reverse engineering by the transformation T1

with respect to the original program Ψ, is derived as

DPT1(Ψ) = (dis(Ψ, Ψ1) , pot(Ψ, Ψ1)) = (3 / 5, 1 / 5),

where Ψ1 results from applying T1 to Ψ. The robustness against reverse engineering after

applying a transformation T3 to the original program Ψ is derived as

DPT3(Ψ) = (dis(Ψ, Ψ3) , pot(Ψ, Ψ3)) = (9 / 13, 1 / 2) .

Since DPT3(Ψ) is larger than DPT1(Ψ), T3 provides the stronger robustness to resist

reverse-engineers than T1.

 45

Chapter 7

Space Penalty

Control flow obfuscation uses techniques such as creating buggy loops and inserting

dummy codes to disorder the real execution path. After obfuscating transformations, a source

program can forbid malicious tampering and reverse engineering. However, it suffers from

space penalty. The more transformations applied to the program, the more code size

overheads are suffered. Thus, estimation of space penalty is important for assurance whether

the increment of code sizes due to the designated transformations is tolerable. Through the

proposed formal representation, estimation of space penalty can be efficiently determined in

advance such that users can decide whether to apply more transformations or not. In this

chapter we analyze overheads on code sizes resulting from each obfuscating transformation.

Assuming that an original parsed program Ψ has n code elements where the size of the ith

element is denoted as zi, ∀ i ∈ [1, n], the total code size of Ψ is ∑
=

n

i
i

1

z . After obfuscating

transformations, x simple blocks and y branches are inserted into Ψ where the size of the ith

simple block and the jth branch are respectively indicated as si and bj, ∀i ∈ [1, x] and ∀ j ∈ [1,

y]. Hence, the total code size of the obfuscated program becomes

∑∑∑
===

++
y

i
i

x

i
i

n

i
i

111

bsz ,

and the space penalty is

∑∑
==

+
y

i
i

x

i
i

11
bs .

For simplicity of analysis, the summation of the sizes of all inserted elements is replaced

with the product of the average size and the number of elements. Since the gap between the

 46

average size of simple blocks and that of braches is too large to be ignored, they should be

individually denoted by S and B . The mentioned space penalty becomes x⋅ S + y⋅B . In the

following, we describe the space penalty with respect to each proposed atomic operator, and

Table 1 makes the arrangement.

Table 2. Space penalty of each atomic operator

Atomic Operators Space
Penalty

Insert opaque predicates,

),(t
f
Op CO ψ /),(t

t
Op CO ψ /),(t

q
Op CO ψ

B

Split code elements,

),(t
n
Ss CO ψ /),(t

n
Sb CO ψ

0

Reorder code elements,),(tR CO ψ 0

Insert equivalent codes,),(tE CO ψ 0 or S or B

Insert dummy simple blocks,),(t
s
D CO ψ S

Insert dummy loops,),(t
l
D CO ψ S + B

 Insert opaque predicates,),(t
f
Op CO ψ /),(t

t
Op CO ψ /),(t

q
Op CO ψ :

According to the proposed algorithms, any type of opaque predicate insertion introduces a

predicate. Thus the space penalty is B .

 Split code elements,),(t
n
Ss CO ψ /),(t

n
Sb CO ψ :

This operator splits a target code element into smaller pieces. Each smaller piece is a part

of the original target element. Hence, the total code size is not raised, i.e. the space penalty

is zero, even the number of code elements increases.

 Reorder code elements,),(tR CO ψ :

In this operator, no code element is added. Thus, the space penalty is zero.

 47

 Insert equivalent codes,),(tE CO ψ :

This operator replaces Ct with its equivalence, E(Ct). If the program Ψ contains a branch

edge whose true and false targets are both Ct, then the false target is replaced with E(Ct),

and the true target remains the same. In this case, an additional code element is inserted

that makes the space penalty become S or B depending on the type of Ct. Otherwise, if

no such branch edge as mentioned above exists in Ψ, a new code element is added while

an existing element is removed. Hence, the space penalty is zero.

 Insert dummy simple blocks,),(t
s
D CO ψ :

An extra simple code element is inserted while applying the operator. Thus the space

penalty is S .

 Insert dummy loops,),(t
l
D CO ψ :

A loop consists of a branch and a simple block. Hence, inserting a dummy loop implies

that an extra branch and simple block are introduced. The space penalty is thus S + B.

 48

Chapter 8

Example: Prime Number List

In this chapter, we present how the proposed formalization method can be applied to a

complete example program, and we will give the evaluation after obfuscation.

8.1 Source Program and Parsed Result

Program Ⅰ, a prime number printer that prints out prime numbers which are not larger

than the input a, is accounted an example program used to present how the proposed method

works.

Program I. Prime number list

We first parse the source program and derive three sets, S, B and E, as defined in Section

3.1. Figure 8.1 shows the parsed result of Program I, including its control flow, simple blocks,

∀ Si ∈ S, and branches, ∀ Bj ∈ B. Therefore, we now have

S = {S0, S1, S2},

#include <stdio.h>
#include <stdlib.h>
int k(int);
int main()
{ int a, b, sum;

printf("insert a number:");
scanf("%d",&a);
for(sum=0,b=2;b<=a;b++)
{

 if(k(b)) printf("%3d",b);
 sum+=b;
 }

return 0;
}

int k(int b)
{ int i;

for(i=2;i<=b/2;i++)
if(b%i==0) return 0;

return 1;
}

 49

B = {B1, B2} and

 E = {(S0, B1), B1(B2,φ), B2(S1, S2), (S1, S2), (S2, B1)}.

The parsed program Ψ is then denoted as

Ψ = (S0, {S0, S1, S2, B1,B2}, {(S0,B1), B1(B2,φ), B2(S1, S2), (S1, S2), (S2, B1)}).

S0 int a, b, sum;
printf("insert a prime
number : ");
scanf("%d",&a);
sum=0;
b=2;

B1 B<=a
B2 k(b)
S1 printf("%3d",b);
S2 sum+=b;

b++;

Figure 8.1. The parsed representation of Program I

8.2 Obfuscation Formalization

After parsing a source program, we can apply our formalization method to target

elements of the program. In this section, we take two control flow obfuscation methods, the

basic block fission obfuscation [2] and the branch insertion transformation [8], as the

designated transformations applied in the example. The basic block fission obfuscation is to

split the chosen basic block into several smaller blocks, where opaque predicates and goto

instructions are inserted. With analyzing the basic block fission obfuscation, the action of

inserting goto instructions can be corresponding with the atomic operator, t
OpO . Thus, this

obfuscation method can be denoted by

T b = { n
SsO , n

SbO , OpO , DO },

 50

where OpO ∈{ f
opO , t

opO , q
opO }.

Assume that the specific basic block fission obfuscation and branch insertion

transformation used in this example are specified respectively as follows.

T 1 (Ψ) = (),(0
2 SOSs Ψ ,),(1BOD Ψ ,),(1BOt

Op Ψ ,),(01SOf
Op Ψ).

T 2 (Ψ) = (),(0
2 SOSs Ψ ,),(01SOf

Op Ψ ,),(01SOE Ψ ,),(1BOD Ψ).

In the following, we clarify the procedures of applying the transformations to the program in

detail.

I) Apply the specified basic block fission obfuscation, T 1 (Ψ)

a) Running)(0
2 SOSs ,Ψ :

Ψ = (S00, {S00, S01, S1, S2, B1, B2}, {(S01, B1), B1(B2, φ), B2(S1, S2), (S1, S2), (S2, B1),

(S00, S01)}).

In this example, S00 is “int a, b, sum; printf("insert a prime number \n");,” and S01 is

“scanf("%d",&a); sum=0; b=2;”.

b) Running)(1BOD ,Ψ :

Ψ = (S00, {S00, S01, S1, S2, B1, B2, D1}, {(S01, D1), B1(B2, φ), B2(S1, S2), (S1, S2), (S2,

B1), (S00, S01), (D1, B1)}).

In this case, we choose “ 4%basum += ” as D1.

c) Running),(1BOt
Op Ψ :

Ψ = (S00, {S00, S01, S1, S2, B1, B2, D1, P1
T}, {(S01, D1), B1(B2, φ), B2(S1, S2), (S1, S2),

(S2, P1
T), (S00, S01), (D1, P1

T), P1
T(B1, B2)}).

In this example, “ 03)%(3 ==− aa ” is chosen for the predicate P1
T.

d) Running),(01SOf
Op Ψ :

Ψ1 = (S00, {S00, S01, S1, S2, B1, B2, D1, P1
T, P2

F }, {(S01, D1), B1(B2, φ), B2(S1, S2), (S1,

 51

S2), (S2, B1), (S00, P2
F), (D1, P1

T), P1
T(B1, B2), P2

F(D1, S01)}).

In this case, we choose “ 22 17 ab ==− ” as P2
F.

After the basic block fission obfuscation, the obfuscated control flow of Program I is

derived, and the obfuscated program, Program II, is then regenerated according to the final

result Ψ1, as shown in Figure 8.2.

 /***** Program II *****/
#include <stdio.h>
#include <stdlib.h>
int k(int);
int main()
{ int a, b, sum; //S00
 printf("insert a number: "); //S00
 if ((7*b*b-1) == a*a) //P2F
 sum=a+ (b%4); //D1
 else
 {
 scanf("%d",&a); //S01
 sum=0; //S01
 b=2; //S01

sum=a+ (b%4); //D1
 }

 Addr1:

if (((a*a*a-a)%3) == 0) //P1T
 {
 if(b<=a) //B1
 {
 Addr2:

if(k(b)) //B2
 printf("%3d",b); //S1
 sum+=b; //S2
 b++; //S2
 goto Addr1; //P1T
 }
 }
 else
 goto Addr2; //B2

 return 0;
}

int k(int b)
{ int i;

for(i=2;i<=b/2;i++)
 if(b%i == 0)
 return 0;
 return 1;
}

Figure 8.2. Program II: the obfuscated version of Program I after applying the specified basic block

fission obfuscation

II) Apply the specified branch insertion transformation, T 2 (Ψ)

a) Running),(0
2 SOSs Ψ :

Ψ = (S00, {S00, S01, S1, S2, B1, B2}, {(S01, B1), B1(B2, φ), B2(S1, S2), (S1, S2), (S2, B1),

(S00, S01)}).

 52

In this example, S00 is “int a, b, sum; printf("insert a prime number \n");,” and S01 is

“scanf("%d",&a); sum=0; b=2;”.

b) Running),(01SOf
Op Ψ :

Ψ = (S00, {S00, S01, S1, S2, B1, B2, P1
F}, {(S01, B1), B1(B2, φ), B2(S1, S2), (S1, S2), (S2,

B1), (S00, P1
F), P1

F(B1, S01)}).

In this case, we choose “ 22 17 ab ==− ” as P1
F.

c) Running),(01SOE Ψ :

Ψ =　 (S00, {S00, E(S01), S1, S2, B1, B2, P1
F }, {(E(S01), B1), B1(B2, φ), B2(S1, S2), (S1,

S2), (S2, B1), (S00, P1
F), P1

F(B1, E(S01))}).

In this example, the equivalent code element E(S01) is generated by inserting

dummy instructions.

d) Running),(1BOD Ψ :

Ψ2 = (S00, {S00, E(S01), S1, S2, B1, B2, P1
F, D1}, {(E(S01), D1), B1(B2, φ), B2(S1, S2), (S1,

S2), (S2, D1), (S00, P1
F), P1

F(D1, E(S01)), (D1, B1)}).

In this case, we choose “ 4basum %+= ” as D1.

After applying the branch insertion transformation T 2 , the obfuscated control flow of

Program I is shown in Figure 8.3. With deparsing the obfuscated program Ψ2, the obfuscated

program, Program III, resulting from T 2 can be achieved.

 53

 /***** Program III *****/
#include <stdio.h>
#include <stdlib.h>
int k(int);
int main()
{ int a, b, sum; //S00
 printf("insert a number:"); //S00
 if((7*b*b-1) == a*a) //P1F
 sum=a+(b%4); //D1
 else
 {
 scanf("%d",&a); //E(S01)
 if ((a %13) <=7) b=39; //E(S01)
 sum=0; //E(S01)
 b=2; //E(S01)
Addr1:

sum=a+(b%4); //D1
 }
 if(b<=a) //B1
 {
 if(k(b)) //B2
 printf("%3d",b); //S1
 sum+=b; //S2
 b++; //S2
 goto Addr1; //D1
 }
return 0;
}

int k(int b)
{ int i;
 for(i=2;i<=b/2;i++)
 if(b%i == 0)
 return 0;
 return 1;
}

Figure 8.3. Program III: the obfuscated version of Program I after applying the specified branch

insertion transformation

8.3 Evaluation and Space Penalty

According to the formal representations of the original and two obfuscated programs, we

obtain the following analysis. Comparing Ψ and Ψ1,

41 =ΨΨ∑
i

iCSedge |)),((| ,

)},(),,(),,({)),((, 21212211 SSSSBSBCSedgei i ϕ =ΨΨ∀ .

42 =ΨΨ∑
i

iCSedge |)),((| ,

)},(),,(),,({)),((, 21212212i SSSSBSBCSedgei ϕ =ΨΨ∀ .

The number of edges in Ψ, Ψ1 and Ψ2 are 6, 12 and 10, respectively. Thus,

dis(Ψ , Ψ1) = 1 – 2 ⋅ 4 / (6 + 12) = 5 / 9,

 54

dis(Ψ , Ψ2) = 1 – 2 ⋅ 4 / (6 + 10) = 1 / 2.

For the original program Ψ, there are two branches B1 and B2. Hence,

range(Ψ, B1) = {S1, S2, B1, B2},

range(Ψ, B2) = {S1},

N-Scope(Ψ) = (4 + 1) / (4 + 1 + 5) = 1 / 2.

For the obfuscated program Ψ1, four branches are contained. Corresponding values are as

follows.

range(Ψ1, P1
T) = {B1},

range(Ψ1, B1) = {B2, S1, P1
T, S2, B1},

range(Ψ1, B2) = {S1},

range(Ψ1, P2
F) = {S01},

N-Scope(Ψ1) =
17
8

91151
1151

=
++++

+++ ,

pot(Ψ, Ψ1) =
17
1

1
2
1

17
8 −=−)(.

For the obfuscated program Ψ2, three branches are contained. Thus,

range(Ψ2, P1
F) = {E(S01) },

range(Ψ2, B1) = {B2, S1, D1, S2, B1},

range(Ψ2, B2) = {S1},

N-Scope(Ψ2) =
15
7

8151
151

=
+++

++ ,

pot(Ψ, Ψ2) =
15
1

1
21

15
7

−=− .

The abilities against reverse engineering provided by T 1 and T 2 are derived as follows.

DPT1(Ψ) = (5 / 9, – 1 / 17),

DPT2(Ψ)=(1 / 2, – 1 / 15).

The negative potency values indicate that after these two transformations, the structures of the

obfuscated programs are not as complex as that of the original program. It implies that these

 55

transformations may fail from the perspective on the complexity of program structure.

Compared with DPT2, the value of DPT1 is a little larger. Hence, T 1 provides the stronger

robustness than T 2 .

The space penalty caused by T 1 can be estimated as

0 + S + B + B = S + 2 ⋅B ,

where)(0
2 SOSs ,Ψ results in no overheads,)(1BOD ,Ψ leads to S ,)(1BOt

Op ,Ψ leads

to B , and)(01SOf
Op ,Ψ leads to B . On the other hand, the space penalty caused by T 2 is

0 + B + 0 + S = B + S ,

where)(0
2 SOSs ,Ψ and),(01SOE Ψ results in no overheads,)(01SOf

Op ,Ψ leads to B ,

and)(1BOD ,Ψ leads to S .

 56

Chapter 9

Conclusion

We present an approach to evaluating and analyzing control flow obfuscating

transformations. In our approach, we formalize the transformations and develop a new

evaluation measure. In formalizing the transformations, we first analyze and parse a source

program which is going to be obfuscated into sequences of code elements and its directed

graph. With analysis of the transformations, we design the atomic operators which are the

basic components of any obfuscating transformation. On the basis of the formal representation,

we develop an applicable evaluation measure to estimate the robustness against reverse

engineering after obfuscation. The measure provides sensitive results in terms of software

complexities and differences.

Nevertheless, if we consider the side effects of obfuscating a software program that code

size will be increased and execution performance will be slowed down, we need to carefully

determine the obfuscation criteria for different applications and make a proper compromise

between the security and overhead. In our method, space penalty is also evaluated such that a

tradeoff between the robustness and the overheads can be well judged.

So far, we have quantized the degree of the robustness of obfuscating transformations. In

the future, we will figure out the relationship between the DP values and the time spent on

reversing engineering obfuscated programs. This helps understand the effectiveness of

software obfuscations under the real attacks.

 57

References

[1] M. D. Preda and R. Giacobazzi, “Control Code Obfuscation by Abstract Interpretation,”

In Proc. 3rd IEEE International Conference on Software Engineering and Formal

Methods (SEFM’05), pp. 301-310, September 2005.

[2] T. W. Hou, H.Y. Chen and M. H. Tsai, “Three Control Flow Obfuscation Methods for

Java Software,” IEE Proceedings Software, volume 153, No. 2, pp.80-86, April 2006.

[3] B. Pfitzmann and M. Schunter, “Asymmetric Fingerprinting,” EUROCRYPT 96, pp.

84-95, 1996.

[4] W. Cho, I. Lee, and S. Park, “Againt Intelligent Tampering: Software Tamper Resistance

by Extended Control Flow Obfuscation,” In Proc. World Multiconference on Systems,

Cybernetics, and Informatics. International Institute of Informatics and Systematics,

2001.

[5] C. Wang, J. Hill, J. Knight, and J. Davidson, “Software Tamper Resistance: Obstructing

Static Analysis of Programs,” Technical Report CS-2000-12, December 2000.

[6] C. Collberg and C. Thomborson, “Watermarking, Tamper-Proofing, and Obfuscation –

Tools for Software Protection,” IEEE Transactions on Software Engineering, volume 28,

No. 8, August 2002.

[7] D. Low, “Java Control Flow Obfuscation,” Master Thesis, University of Auckland,

1998.

[8] C. Collberg, C. Thomborson and D. Low, “A Taxonomy of Obfuscating

Transformations,” Technical Report, 1997.

[9] J. M. Memon, Shams-ul-Arfeen, A. Mughal and F. Memon, “Preventing Reverse

Engineering Threat in Java Using Byte Code Obfuscation Techniques,” In Proc. 2nd

International Conference on Emerging Technologies, pp. 689-694, November 2006.

[10] H. Zuse, “Software Complexity: Measures and Methods,” Watler de Gruyter, New York,

 58

1991.

[11] H. Bunke and K. Shearer, “A Graph Distance Metric Based on the Maximal Common

Subgraph,” Pattern Recognition Letters, volume 19, issue 3-4, pp. 255-259, 1998.

[12] W. D. Wallis, P. Shoubridge, M. Kraetz and D. Ray, “Graph Distances Using Graph

Union,” Pattern Recognition Letters, volume 22, issue 6-7, pp. 701-704, 2001.

[13] D. Aucsmith, “Tamper-Resistant Software: An Implementation,” In Proc. 1st

International Workshop on Information Hiding (Lecture Notes in Computer Science),

volume 1174, pp. 317–333, 1996.

[14] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M. Horowitz,

“Architectural Support for Copy and Tamper Resistant Software,” In Proc. 9th

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-IX), pp.168–177, November 2000.

[15] C. Collberg, C. Thomborson, and D. Low, “Breaking Abstractions and Unstructuring

Data Structures,” In Proc. International Conference on Computer Languages, pp. 28–38,

May 1998.

[16] C. Collberg, C. Thomborson and D. Low, “Manufacturing Cheap, Resilient, and Stealthy

Opaque Constructs,” In Proc. 25th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL’98), PP. 184-196, January 1998.

[17] SOFTPEDIA.

http://news.softpedia.com/news/FairUse4WM-Kills-Microsoft-DRM-34206.shtml

[18] afterdawn.com. http://www.afterdawn.com/news/archive/7875.cfm

[19] S. R. Subramanya and B. K. Yi, “Digital Rights Management,” IEEE Potentials

Magazine, volume 25, issue 2, pp. 31-34, 2006.

[20] Y. Nishimoto, A. baba, T. Kurioka and S. Namba, “A Digital Rights Management

System for Digital Broadcasting Based on Home Servers,” IEEE Transactions on

Broadcasting, volume 52, issue 2, pp. 167-172, June 2006.

 59

[21] X. Wang, “MPEG-21 Rights Expression Language: Enabling Interoperable Digital

Rights Management,” IEEE Multimedia, volume 11, issue 4, pp. 84-87, 2004.

[22] T. Wikinson, D. Hearn and S. Wiseman, “Trustworthy Access Control with

Untrustworthy Web Servers,” In Proc. 15th Annual Computer Security Applications

Conference (ACSAC’99), pp. 12-21, 6-10 December 1999.

[23] N. Komninos, B. Honary and M. Darnell, “Security Enhancements for A5/1 Without

Loosing Hardware Efficiency in Future Mobile Systems,” In Proc. 3rd International

Conference on 3G Mobile Communication Technologies, pp. 324-328, 8-10 May 2002.

[24] J. Reid, J. M. G. Nieto, E. Dawson and E. Okamoto, “Privacy and Trusted Computing,”

In Proc. 14th International Workshop on Database and Expert Systems Applications, pp.

383-388, 1-5 September 2003.

[25] Z. D. Shen, F. Yan, W. Z. Qiang, X. P. Wu and H. G. Zhang, “Grid System Integrated

with Trusted Computing Platform,” In Proc. 1st International Multi-Symposiums on

Computer and Computational Sciences (IMSCCS’06), pp. 619-625, 20-24 June 2006.

[26] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proudler, Trusted Computing

Platforms – TCPA Technology in Context, Prentice Hall, 2003.

[27] N. Komninos, B. Honary and M. Dernel, “An Efficient Stream Cipher Alpha1 for

Mobile and Wireless Devices,” In Proc. 8th IMA International Conference on

Cryptography and Coding, pp. 294-300, 2001.

