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t 

中文摘要 

本論文提出在匯流排傳輸上面，設計一個功率感知資料匯流排編碼解碼器，

來降低 transition activity，進而達到降低功耗輸出的效果。在 8 位元寬度以及外

部負載電容 50 pF 環境下模擬結果，分別與編碼前及 RSH 方法相比較可降低 23%

和 6%功率消耗，其設計特色在於：(1)編碼解碼端不需要花費龐大硬體成本以及

處理時間，便可達到迅速傳輸資料以及有效率降低功耗的目的；(2)針對不同應

用能自動挑選來做最合適的編碼處理。經由測試結果，只需要額外增加 6%硬體

成本，在多媒體資料傳輸，平均可降低 20%左右動態功率；在 DCT、FIR 程式中，

平均可降低 50~60%左右動態功率。 

再者，我們將此低功耗匯流排整合至在已開發的嵌入式RISC/DSP單核心處理

器內，針對處理器系統架構上面，加入數位低功耗設計，有效率的降低功率消耗，

期望能在效能以及功耗上達到一個平衡點。此設計採用TSMC 0.18μm 製程，晶

片製作面積約 2.11x2.11 mm2，預估最大操作頻率在 100MHz，功率消耗約 16mW。 
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Abstract 

In this thesis, we propose a power-aware codec scheme to reduce transition 

activity for data bus design. The low power data bus codec consisting of transparent, 

inverter, XOR, and XNOR module can lead to 23 % & 6 % power reduction 

compared with the un-coding and R-S-H’s methods under the 8-bit width and the 50 

pF capacitance loading. The main features of this codec design are: (1) codec can save 

68% area overhead compared with R-S-H’s design and (2) codec can adaptively 

choose the optimal encoding scheme for different kinds of data types due to versatile 

applications. From the FIR and DCT benchmark simulations, the power can be 

reduced to 50%~60% on average.  

Furthermore, we integrate this data bus codec into a RISC/DSP unit-core 

processor with the tradeoff between cost and power. The chip fabricated in TSMC 

0.18μm CMOS technology process with the total area of 2.11×2.11mm2 and has 

power consumption of 16mW at 100MHz with 1.8V supply voltage. 
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Chapter 1   
Introduction 

1.1 Brief Introduction 

 In 3C integration era, the mobile phone does not only communicate with people 

but also has various functions like digital camera, MP3 player, games, and etc. 

Therefore, the multi-functions mobile phone just can acquire favor of consumers in 

the information market.  

 However, when the demand of performance and functions of the mobile phone 

increases, the power consumption would be an important design issue. Most of 

companies not only seek for high performance and low cost, but also focus on low 

power design. 

 In other words, low power is a primary consideration to System on Chip (SOC) 

design, especially for handheld devices due to the limited battery life. In order to 

accomplish such challenging tasks, many design techniques such as multi-Vth design 

techniques [1][2], dynamic voltage scaling [3][4], gated clock [5], and low-power 

on-chip memory architecture [6] have been proposed to reduce both dynamic power 

and leakage power However, those design techniques require advanced design process 

to reach the low power goal. 

In the processor, it becomes increasingly limited by memory performance and 

system power consumption [7]. The power associated with off-chip accesses can 

dominate the overall power budget. The memory power problem is even more acute 

for processors that possess memory intensive access patterns and require streaming 

serial memory access that tends to exhibit low temporal locality. 
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In terms of reducing memory power, one approach is to consider how optimally 

to schedule off-chip accesses. The capacitance associated with the external bus is 

much larger than the internal node capacitance inside a microprocessor. [7] For 

example, a low-power embedded microprocessor system like an Analog Devices 

ADSP-BF533 running at 500 MHz consumes about 374 mW on average during 

normal execution. Assuming a 3.65 V supply voltage and 133 MHz bus frequency, the 

average external power consumed is around 170 mW, which accounts for 

approximately 30% of the overall system power dissipation. One factor affecting the 

capacitance on external bus power is the bus width. For example, the power 

dissipation on 16-bit bus is larger than 30% on 8-bit bus. As a consequence, the 

design target like MP3 player, PDA and mobile phone always use low bit width bus 

instead of the high bit width bus. 

Recently, R-S-H proposed codec scheme to reduce power consumption for data 

and address buses. However, the table size is proportional to bit width in [16]. That 

means that while data width is larger, more power consumption certainly be induced. 

In this thesis, we are motivated to design a power-aware data bus codec which can 

reduce dynamic power for data transmission. This power-aware codec is composed of 

transparent, inverter, XOR, and XNOR modules. We use the audio, image, EEG,, 

random, and specific data to verify the codec characteristics via simulation results and 

compare with other encoding schemes. In terms of codec implementation, a 

RISC/DSP unit-core processor that integrates the proposed codec and low power 

cache controller design is used for verification. The chip has been fabricated in TSMC 

0.18μm CMOS technology with the total area of 2.11×2.11mm2. The maximum clock 

frequency runs at 100MHz with a single 1.8V supply voltage. 

The proposed codec design has following features:  

(1)Low cost 
 2



 

Codec does not need large hardware cost (just have 5% gate counts of total 

processor) and one cycle processing time penalty. 

 

(2)Low power 

In the result of 8-bit simulation, our proposal has 23 % dynamic power 

reduction in average on bus. For DSP function such as DCT and FIR, our proposal has 

50-60% dynamic power reduction on bus. For power estimation, the proposed 

encoder and decoder only have 0.8mW in PrimePower simulation. 

 

(3)Awareness 

 The general encoder is usually suitable for several specific data stream or data 

property. For instance, Bus-Invert encoding scheme can only be used to acute data 

variability. Our proposed method can compare the result of all encoding functions in 

encoder and adaptively choose the optimal encoding scheme for different kinds of 

data types due to versatile applications. 

 

1.2 Organization of the Thesis 

In this thesis, the organization is as follows. In Chapter 1, we give a brief 

introduction for low power design. In Chapter 2, we propose a new power-aware 

codec design for data bus. The integrated processor including our proposed bus codec, 

and tool chains will be demonstrated in Chapter 3. The processor layout and simulated  

result are shown in Chapter 4. Finally, conclusions and future work are remarked in 

the last Chapter. 
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Chapter 2  
Power-Aware Data Bus Codec 

We would present an adaptive data bus codec including proposal, architecture, 

and performance comparison with the features of low power, low cost, and awareness. 

 

2.1  Motivation 

As we know, there are two major sources of power dissipation in digital CMOS 

circuits, which are summarized as follows[8][9] 

                                    (2-1) 2  leakageP a C V f I V= × × × + × ,

Where P, C, α , V, f denote power consumption, capacitance, transition activity, 

supply voltage, and clock frequency, respectively. The first and second terms 

represent the dynamic power and leakage power, respectively. In the second term, 

leakage current that can be arisen from substrate injection and sub-threshold effects is 

primarily determined by the fabrication technology. 

 For the reduction of dynamic power, the main design principle is to minimize the 

values of V, C,  f and α  in Eq. (2-1) [10]. Among the four parameters, supply 

voltage V that has a quadratic effect and capacitance C are very efficient ways of 

decreasing the power dissipation. However, for CMOS circuits, the designers usually 

decrease V and C in layout level. For larger digital circuits and systems, decreasing V 

and C is an annoying problem in cell-based design. On the other hand, lowering the 

transition activity is a very promising way to reduce the power consumption in 

cell-based design.  
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Generally speaking, the percentage of power dissipation on bus is in the range of 

10% and 80% for microprocessor. The category of bus is external bus and internal bus. 

External bus includes external memory data transmission and I/O data transmission. 

Internal bus includes internal memory, cache, and IP data transmission. The power 

dissipation in external busses usually is larger than that of internal busses by hundred 

times [8]. Thus, we are motivated to solve this critical power problem of data bus in 

architecture and logic level. In this paper, we propose a power-aware encoder and 

decoder to compress the data transition activity α , and thus the power can be saved. 

There are four properties in bus stream [11] discussed as follows. 

(1) Instruction address stream: Instructions addresses are often consecutive. As a 

result, instruction address stream is very predictable. 

(2) Data address stream: Data access may be consecutive while accessing arrays;  

otherwise, the data address stream is random. Although data addresses are less 

predictable, they still follow the principles of spatial and temporal locality. 

(3) Instruction stream: Most ISAs (Instruction Set Architecture) exhibit some 

regularity and instructions can be partitioned into fixed-location fields. As a result, 

Instruction stream is predictable by fixed-location fields. 

(4) Data stream: The sequence is not predictable. The values vary irregularly 

with different kinds of applications and different kinds of algorithms.  

The above properties in bus stream have been widely applied to three 

off-the-shelf computer architectures. 

(a) Harvard architecture with four busses: 
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Fig. 2-1. Harvard architecture with four busses. 

Harvard archit storage 

and signal pathways for instructions and da

ann architecture with two busses: 

The von Neum

storage

 

ann architecture with one bus: 

ecture is a computer architecture with physically separate 

ta. Each address bus and data bus is only 

for instruction memory or data memory. As a result, each stream has independent bus 

and been easily controlled. 

 

(b) von Neum

 
Fig. 2-2. von Neumann architecture with two busses. 

ann architecture is a computer architecture that uses a single 

 structure to hold both instructions and data. Instruction address stream and 

Data address stream are set on the same bus. Instruction stream and Data stream is so 

on. 

(c) von Neum

Memory CPU 
I/D-Data

I/D-Address

D-Address
D-Data

Inst. 

Memory

Data 

Memory 

CPU 
I-Data 
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CPU I/D-Address/DataMemory 

 
Fig. 2-3 von Neumann architecture with one bus. 

All streams are running on the sam ore signals to 

control stream operations. 

2.2  Related Works 

In this section, we would introduce the relative researches of low power bus 

encoding. F

2.2.1  Bus-Invert Bus Encoding  

We will consider the activity on a typical data bus to be characterized by a 

random

e bus. On this bus, it needs m

 

rom the beginning, we will have a brief subsection about Bus-Invert 

encoding. Bus-Invert encoding [12] is a traditional encoding at the early low power 

designs. It has the advantage of low cost hardware implementation. In Section 2.2.2, 

we will introduce Zero-Transition Activity encoding [15]. In Section 2.2.3, we will 

show a coding framework for low power address and data busses [16].  

 

 uniformly distributed sequence of values [13][14]. The assumption of random 

uniformly distributed inputs is also conveniently made by most of the statistical power 

estimation methods. With this assumption for any given time-slot the data on an n-bit 

wide bus can be any of 2n possible values with equal probability. The average number 

of transitions per time slot will be n/2. For example on an eight-bit bus there will be 
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an average of 4 transitions per time-slot or 0.5 transitions per bus-line per time-slot. 

ses one extra control bit called 

 differ) between 

, set invert = 1 and make the present bus 

nt bus value equal to the present data 

the decoder side, the contents of the bus must be conditionally inverted 

m number of 

trans

When all the bus-lines toggle at the same time (the probability of this happening in 

any time-slot is 1/2n) there will be a maximum of n transitions in a time-slot and thus 

the worst power dissipation is proportional with n.  

 The Bus-Invert method [12] proposed here u

invert. By convention then invert = 0 the bus value will equal the data value. When 

invert = 1 the bus value will be inverted. The worst power dissipation can then be 

decreased by half by coding the bus as follows (Bus-Invert method): 

(1) Compute the Hamming distance (the number of bits in which they

the present bus value and the last data value. 

(2) If the Hamming distance is larger than n/2

value equal to the inverted present data value. 

(3) Otherwise let invert = 0 and let the prese

value. 

(4) At 

according to the invert line. In any case the value of invert must be transmitted over 

the bus (the method increases the number of bus lines from n to n + 1). 

The Bus-Invert encoding has the advantage of that the maximu

itions per time-slot is reduced from n to n/2. Therefore the worst power 

dissipation for the bus is reduced by half. Fig. 2-4 shows the 16 bit data sequence 

using the Bus-Invert encoding in order to decrease the number of transitions. 
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Fig. 2-4. Bus-Invert Encoding. 

We can see the Hamm ata 1 is smaller than 

8, so invert =0. However the Hamm

2.2.2  Zero-Transition Activity Encoding  

The scheme we propose is related to the Bus-Invert encoding, both Bus-Invert 

encoding [

 that of 

avoiding the transfer of cons

ing distance between the data 0 and d

ing distance between the data 1 and data 2 is 

bigger than 8, so invert =1 and data 2 is inverted.  

 

12] and Zero-Transition Activity encoding [15] rely on the addition of a 

redundant line to reduce the total number of transitions that may happen when streams 

of patterns are transmitted over the bus. For example, Bus-Invert encoding use a 

redundant line INV that control data encoding for power reduction. 

In Zero-Transition Activity encoding scheme, called the T0 code, is

ecutive addresses on the bus by using a redundant line, 

INC, to transfer to the receiving sub-system the information on the sequentially of the 

addresses. When two addresses in the stream to be transmitted are consecutive, the 

INC line is set to 1, the address bus lines are frozen (to avoid unnecessary switch 

activities), and the new address is computed directly by the receiver. On the other 

hand, when two addresses are not consecutive, the INC line is driven to 0 and the bus 

lines operate normally. 

Data 0 : 1000000100110101 

Data 1 : 1000000010000001 

Data 2 : 1100000001111111 INV    : 0011111110000000 

Data 1 : 1000000010000001 Data 1 : 1000000010000001 

Data 0 : 1000000100110101 
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If all addresses of the ideal stream are consecutive, the INC line is always high, 

and 

ng (T0 code) scheme can be 

desc

,
( ( ),0);                            

the bus lines always have no transition. Consequently, the switch activity of our 

code is zero transitions per emitted consecutive address. 

More formally, our Zero-Transition Activity encodi

ribed as follows Eq. (2-2): 

          
(

( ( ), ( )) {
B( -1),1) ;  0  ( ) ( -1)t if t and b t b t S

b t otherwise
> = +

      (2-2) 

 the value on the encoded bus lines at time t ,INC(t) is the a

B t if INC

B t INC t =

where B(t) is dditional bus 

line, b(t) is the address value at time t and S is a constant  of increase, that we call 

stride. The corresponding decoding scheme can formally define as follows (2-3): 

                   
( -1) ;   1  0

( ) { ,
b t S if INC and t

b t
( );   0                     

+ = >
=              (2

=
-3) 

code retains its zero-transition property

are i

sition Activity encoding following above 

equa

r architecture is simple. At any given clock cycle, the last cycle's 

Notice that the T0  even if the addresses 

ncremented by a constant stride equal to a constant of two (as it is often the case 

for practical machines which are byte addressable, but that are able to access data or 

instructions aligned at word boundaries).  

We take an example shows Zero-Tran

tions (2-2) (2-3). Table 2-1 lists the switch activities with original data transfer, 

we can find the total transitions are 10 from cycle 0 to cycle 6. Table 2-2 lists the data 

transmission with Zero-Transition Activity encoding. At a given clock cycle t (t = [1,7] 

for table 2-2), the encoder computes the incremented address of cycle t and compares 

it to the address generated at cycle t - 1. If the incremented old (t - 1) address and the 

new ( t ) address are equal, the INC line is raised, and the old address is left on the bus. 

The encoder/decoder architecture is shown on Fig.2-5. The incrementer can be 

programmable, to be able to flexibly define the constant increment S. In Table 2-2, S 

is defined as 1. 

The decode
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addr

 

T

Continuous bus address transition 

ess is incremented. If the INC line is high, the old incremented value is used for 

addressing; otherwise, the value coming from the bus lines is selected. Finally, we can 

find the total transitions become 4. Zero-Transition Activity encoding make address 

value on bus be frozen when address is consecutive so that power dissipation will be 

reduced efficiently.  

 
Fig. 2-5. Zero-Transition Activity encoder/decoder. 

able 2-1 Without Zero-Transition Activity Encoding 

cycle Address to be transfer Address on BUS

0 00000000 00000000 

1 00000001 00000001 

2 00000010 00000010 

3 00000011 00000011 

4 00001000 00001000 

5 00001001 00001001 

6 00001010 00001010 

Total Transitions 10 

 

 

 

 

ENCODER 

 

DECODER 

BUS 

INC 

 11



 

Table 2-2 With Zero-Transition Activity Encoding 

Continuous bus address transition 

cyc  le Address to be transfer Address on BUS INC

0 00000000 00000000 0 

1 00000001 frozen 1 

2 00000010 frozen 1 

3 00000011 frozen 1 

4 00001000 00001000 0 

5 00001001 frozen 1 

6 00001010 frozen 1 

Total Transitions 4 

 

2.2.3  A Coding Framework for Low Power Address 

-coding framework for describing low power 

ploy the framework to develop new encoding schemes 

[16].

uited for the power dissipation depends on the 

num

and Data Busses  

In this section, we present a source

encoding schemes and then em

 In the framework proposed here, a data source is processed first by a 

decorrelating function f1. Next, a variant of entropy coding function f2 is employed, 

which reduces the transition activity. 

Signal samples have higher probability of occurrence are assigned code words 

with fewer ON bits. This scheme is s

ber of ON bits. In VLSI systems, however, power dissipation depends on the 

number of transitions rather than thee number of ON bits. 
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A general communication system in Fig. 2-6 consists of a source coder, a channel 

coder, a noisy channel, a channel decoder, and a source decoder. The source coder 

(deco

ad circuitry, driving (in case of the 

trans

ncies can been removed. 

The 

ng. 

der) compresses (decompresses) the input data so that the number of bits 

required in the representation of the source is minimized. While the source coder 

removes redundancy, the channel coder adds just enough of it to combat errors that 

may arise due to the noise in the physical channel. 

We consider the bus between two chips as the physical channel and the 

transmitter and receiver blocks to be a part of the p

mitting chip) or detecting (in case of the receiving chip) the data signals. We will 

assume here that the signal levels are sufficiently high so that the channel can be 

considered as be noiseless. The noiseless channel assumption allows us to eliminate 

the channel coder resulting in the system shown in Fig. 2-7. 

There have two functions f1, f2 in the source encoder shown in Fig. 2-8. The 

function f1 decorrelates the input so that all linear depende

function f2 employs a variant of encoding whereby, instead of minimizing the 

average number of bits at the output, it reduces the average number of transitions. 

Therefore, the function f1 decorrelates the input and adjusts the input probability 

distribution so that function f2 can reduce the transition activity by mapping encodi
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Encoder 

Channel 
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Source 

Decoder 

Channel 

Decoder 

Input 

Noisy channel 

 

Fig. 2-6. A general communication system. 
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Source 

Encoder 

Source 

Decoder 

Input 

Noiseless channel 

 

Fig. 2-7. A general communication system of noiseless channel. 

Input 

Noiseless channel 

F1 (decorrelator) 

F2 (encoder) 

F2
-1 (decoder) 

F1
-1(correlator) 

Source 

Encoder 

Source 

Decoder 

 

Fig. 2-8. A Practical communication system of noiseless channel. 
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In this thesis, we choose the Difference-Based Mapping as the function f1, the 

Probability-Based Mapping as the function f2. In the later chapter, we will use this 

encoding method to compare with other encoding schemes including Bus-Invert, 

XOR, XNOR, proposed scheme. 

The method of Difference-Based Mapping (dbm) is shown as follows Eq. 2-4. 

The x(n) is the input data, The prediction ( )x n , is a function of the past value of x(n). 

The dbm function returns the difference between x(n) and ( )x n  properly adjusted so 

that the output fits in the available B bits. 

  

                                (2-4) 

B

B-1

B

if  (x(n) x(n) & & 2x(n) x(n))

   dbm = 2x(n) - 2x(n);

else if  (x(n) < x(n) & & 2x(n) - x(n) < 2 )

   dbm = 2x(n) - 2x(n) - 1;

else if  (  x(n)  < 2 )
   dbm = x(n) ;
else
   dbm = 2  - 1 - x(n) ;

≥ ≥

 

In the Difference-Based Mapping ( dbm ), we define four ranges for mapping, 

{ }, {2-1( )   2Bx n < ( )x n  - B2 ≤  x(n) ≤  ( )x n }, { ( )x n  < x(n) < 2 ( )x n }, and 

others. We can choose proper calculation according to four mapping ranges. For an 

example is listed in Table 2.3, we see that the dbm output is 0 when the current x(n) is 

equal to the previous ( )x n  and the output value increases as the distance between 

the current x(n) and previous ( )x n  increases. The goal of dbm is convert the total 

data distribution to close to 0 so that the number of transitions would be reduced. We 

see the occurrence distribution at the output of dbm for EEG 8 bits data is shown in 
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Fig. 2-9 and Fig. 2-10.The dbm skew the original distribution for most of the data sets 

and hence enable function f2 ,Probability-Based Mapping (pbm) to reduce the number 

of transitions even more. 

 

Table 2-3 Example of Difference-Based Mapping ( dbm ) 

x(n)  X(n) Dbm(x(n), x(n) ) 

011 000 101 

011 001 011 

011 010 001 

011 011 000 

011 100 010 

011 101 100 

011 110 101 

011 111 111 
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Fig. 2-9. Occurrence distribution for EEG data before dbm. 

 

Fig. 2-10. Occurrence distribution for EEG data after dbm. 
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 The Probability-Based Mapping (pbm) is a method of sorting for reducing the 

number of ‘1’.It satisfies given below. 

                        (2-5) Pr( )  Pr( )   ( ) ( ) ( , )if i j then pbm i pbm j a b> ≤ ∀

The probabilities in (2-6) can be computed using a representative data sequence. If the 

most probable value is i, then pbm(i) = 0.Then the second most probable value is j, 

pbm(j) =1 and so on. Therefore all value are mapped to value in 2i (i=0…B-1) by pbm. 

We can make a sorting table according to probability. An example of pbm is listed in 

Table 2-4  

 

Table 2-4 Example of Probability-Based Mapping ( pbm ) 

i Pr(i) Pbm(i) 

000 0.37 000 

001 0.14 010 

010 0.22 001 

011 0.11 011 

100 0.05 101 

101 0.03 110 

110 0.06 100 

111 0.02 111 

 

 In summary, we can reduce transition activity by combining with dbm and pbm 

encoding schemes. It can make the value having higher probability of occurrence to 

be assigned code words with fewer ON bits. In VLSI circuits, power dissipation 

depends on the number of transitions occurring at the capacitive nodes of the circuit. 

But unfortunately, the dbm + pbm require more hardware for build the input 
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probability distribution table and more execution time for encoding. 

 

2.3  Power Aware Data Bus Codec 

According to different kinds of data properties and correlations, the various 

encoding schemes can be generated. Zero-Transition Activity encoding [15] that 

needs high correlation and tardy variation in data type is suitable for instruction 

memory. Bus-Invert encoding method [12] that needs low correlation and rapid 

variation in data type is suitable for data memory. Dbm and Pbm encoding schemes 

[16] have an advantage of that it can change correlation of data and choose proper 

value by probability mapping. Dbm and Pbm encoding scheme is suitable for specific 

data value range, but Dbm and Pbm encoding scheme pays a heavy penalty on 

hardware implementation cost.  

On the other hand, in general, although data width is constant, the variation of 

the most significant bit group (MSBG) is different from the variation of least 

significant bit group (LSBG). We define the MSBG is from 4th bit to 7th bit, the LSBG 

is from 0th bit to 3rd bit for 8 bits data bit width. For example, we choose the first ten 

decimal data sequences in Fig. 2-11 and the corresponding binary representation for 

observation in Table. 2-5. In Table 2-5, the data value ranges at between 115 and 150 

and the variation of the MSBG is smoother than that of LSBG. Fig. 2-12 shows the 

variation curve. 
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Fig. 2-11. Waveform of the classic music. 

Table 2-5 First Ten Data Sequences of Classic Music 

 Value(decimal) Value(binary)

1 140 1000_1100 

2 131 1000_0011 

3 146 1001_0010 

4 151 1001_0111 

5 136 1000_1000 

6 125 0101_1101 

7 115 0101_0011 

8 130 1000_0010 

9 145 1001_0001 

10 139 1000_1011 
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Fig.2-12. Data variation.  

 

Table 2-6 Data Variation 

 MSBG LSBG 

Total Hamming distance 126 200 

Average of variation 31.5% 50% 

 

 We can find the difference obviously between MSBG and LSBG in Fig. 2-12. 

Therefore, unlike in [19], we can separate specific blocks from data bit width such 

that the proper encoding can be applied to each block. The transition activity of data 

transmission can be reduced by encoding. 

2.3.1  Proposed Data Bus Codec  

The architecture of encoder have four kinds of encoding schemes, Invert, XOR 

[17][18], XNOR [17][18], original, and then we will introduce each encoding 

algorithm and proper data type for each a algorithm.  

 The Invert function is given in Eq. 2-6, where Hamming( x(n) , ( )x n ) returns the 

Hamming distance between the current data x(n) and the previous data ( )x n . If the 

Hamming distance exceeds half the number of bus lines, and then the input is inverted 
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and the inversion is signaled using an extra bit. An example of classic music before 

using Invert is listed in Table 2-7, and an example of classic music after using Invert 

is listed in Table 2-8.  

 

                     

 ( ( ( ) , ( ) ) 
2

    ( )  ( ( ) );

   ( )  ( );

Bitwidthif Hamming x n x n

y n inv x n
else

y n x n

>

=

=

           (2-6) 

 

Table 2-7 Example of Classic Music before Using Invert 

cycle x(n)  X(n) transitions 

1 00000000 10001100 3 

2 10001100 10000011 4 

3 10000011 10010010 2 

4 10010010 10010111 2 

5 10010111 10001000 5 

6 01110111 01011101 3 

7 01011101 01010011 3 

8 01010011 10000010 4 

9 10000010 10010001 3 

10 10010001 10101010 5 

Total transitions 34 
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Table 2-8 Example of Classic Music after Using Invert 

cycle x(n)  X(n)  ( ( ) , ( ))Hamming x n x n   Y(n) Inv transitions

1 00000000 10001100 3 10001100 off 3 

2 10001100 10000011 4 10000011 off 4 

3 10000011 10010010 2 10010010 off 2 

4 10010010 10010111 2 10010111 off 2 

5 10010111 10001000 5 01110111 on (*)3 

6 01110111 01011101 3 01011101 off 3 

7 01011101 01010011 3 01010011 off 3 

8 01010011 10000010 4 10000010 off 4 

9 10000010 10010001 3 10010001 off 3 

10 10010001 10101010 5 01010101 on (*)3 

Total transitions 30 

 

The block diagram of Invert encoding is sketched in Fig. 2-13, where Hamming 

function is composed of 8 exclusive-OR gates and adders for 8-bit length input.  
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Fig. 2-13. Block diagram of Invert coding. 

 

The XOR function is given in Eq. 2-7, where XOR( x(n), ( )x n ) returns the value 

of the current data x(n) exclusive-or the previous data ( )x n . If the value of 

) is smaller than , and then 

the output for transmission equals to XOR(x(n),

( ( ) , ( )Hamming x n x n ( ( ( ), ( )) , ( ))Hamming XOR x n x n x n

( )x n ) .Otherwise, the output for 

transmission will be unchanged.  

For example, classic music coding results using transparent and XOR coding 

schemes are listed in Table 2-9 and Table 2-10.  

 ( ( ( ) , ( ) )  ( ( ( ),  ( ) ) ,  ( ) )

    ( )  ( ( ),  ( ) );

    ( )  ( );

( ( ),  ( ) )  ( )  ( );

if Hamming x n x n Hamming XOR x n x n x n

y n XOR x n x n
else

y n x n

XOR x n x n x n x n

>

=

=

= ⊗

 

 (2-7) 

 

Table 2-9 Example of Classic Music before Using XOR 

cycle x(n)  X(n) Transitions 

1 00000000 10001100 3 
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2 10001100 10000011 4 

3 10000011 10010010 2 

4 10010010 10010111 2 

5 10010111 10001000 5 

6 01110111 01011101 3 

7 01011101 01010011 3 

8 01010011 10000010 4 

9 10000010 10010001 3 

10 10010001 10101010 5 

Total transitions 34 

 

Table 2-10 Example of Classic Music after Using XOR 

cycle x(n)  X(n)  ( ( ) , ( ))  Hamming x n x n (XOR( ( ) ) , ( ) )Hamming xn xn Y(n) XOR transitions

1 00000000 10001100 3 3 10001100 off 3 

2 10001100 10000011 4 3 00001111 on (*)3 

3 00001111 10010010 5 2 10011101 on (*)2 

4 10011101 10010111 2 5 10010111 off 2 

5 10010111 10001000 5 3 00011111 on (*)3 

6 00011111 01011101 2 5 01011101 off 3 

7 01011101 01010011 3 4 01010011 off 3 

8 01010011 10000010 4 2 11010001 on (*)2 

9 11010001 10010001 1 3 10010001 off 3 

10 10010001 10101010 5 4 00111011 on (*)4 

Total transitions 28 
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The block diagram of XOR encoding is sketched in Fig. 2-14. The conditional 

block will select optimal result which the function Hamming () has smallest value. 
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Fig. 2-14. Block diagram of XOR coding. 

The XNOR function is given in Eq. 2-8, where XNOR( x(n,), ( )x n ) returns the 

value of the current data x(n) exclusive-nor the previous data ( )x n . If the value of 

) is smaller than  ,and 

then the output for transmission equals to XNOR(x(n),

( ( ) , ( )Hamming x n x n ( ( ( ), ( ) ) , ( ) )Hamming XNOR x n x n x n  

( )x n ) .Otherwise, the output for 

transmission will be unchanged. The inversion is signaled using an extra bit.  

 

       (2-8) 

 ( ( ( ) , ( ) )  ( ( ( ), ( ) ) ,  ( ) )

    ( )  ( ( ), ( ) );

    ( )  ( );

( ( ) )  ~  ( ( )  ( ));

if Hamming x n x n Hamming XNOR x n x n x n

y n XNOR x n x n
else

y n x n

XNOR x n x n x n

>

=

=

= ⊗

 

 

The logic diagram is shown in Fig. 2-15. The conditional block will select 

optimal result which the function Hamming has smaller value. 
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Fig. 2-15. Block diagram of XNOR coding. 

 

 

2.3.2  Architecture of Codec  

The total codec system overview is shown in Fig. 2-16. The proposed codec 

architecture is placed between I/O, external memory interface and I/O, and external 

memory module. The extra bit line on bus is used for notify which function to 

decoding in decoder. 

The proposed encoder architecture is composed of four encoding functions. It 

targets at different kinds of data types and adaptively choose the optimal encoding 

way for transmission. According to the property that different bit group location has 

different kinds of variation, the transmission data would be separated into several 

blocks for encoding. 

The encoder architecture diagram is sketched in Fig. 2-17. 
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Fig. 2-16. System architecture. 
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Fig. 2-17. Block diagram of encoder. 
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The input data for transmission is separated into two or more bit groups. Each bit 

group has individual encoder for encoding its separated data. 

The current data Valuen and the previous data Valuen-1 enter the INV, XOR, XNOR 

functions, and then the comparator chooses the optimal encoding way that has the 

minimum Hamming distance and sends the encoded data for transmission on bus.  

 Our architecture of decoder is similar as architecture of encoder.  

It has two input source, transmission data on bus and extra bits. It depends on the 

extra bits from encoder to decode the data for transmission .Extra bits mean four 

decoding functions, INV, XOR, XNOR, and transparent. After decoding data by MUX, 

the data will be return to original form by suitable decoding functions. Fig. 2-18 

shows the decoder architecture diagram. 
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Fig. 2-18. Block diagram of decoder. 
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2.4  Power Aware Data Bus Codec Simulator 

To verify Power Aware Data Bus Codec and compare the performance with other 

encoding schemes like Bus-Invert, XOR, XNOR, Dbm (different based mapping) plus 

Pbm (probability based mapping). Our thesis has not only RTL model design but also 

a simulator by C++ language. The simulator can help us know the switch activity 

effect in different kinds of data variation. 

 

2.4.1  8 bits Power Aware Data Bus Codec Simulator  

In 8 bits Power Aware Data Bus Codec Simulator, we define our proposed codec 

which is separated into two 4-bit groups for 8-bit length data encoding. And we 

configure some variability parameters for simulation. 

 

Most significant bit group variability: the variability of the value 0 to 1 or 1 to 0 from 

4th to 7th bits  

Least significant bit group variability: the variability of the value 0 to 1 or 1 to 0 

from 0thto 3th bits  

 

When the simulator executes a test pattern, it would record the results about bit 

transitions below: 

switch_act     switch activity before encoding  

switch_act_BI_total         switch activity after Bus-Invert encoding  

switch_act_XOR _total       switch activity after XOR encoding 

switch_act_XNOR_total       switch activity after XNOR encoding 

switch_act_dbm    switch activity after dbm encoding 
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switch_act_dbm+pbm   switch activity after dbm + pbm encoding 

switch_act_1block_total  switch activity after 1 block encoding 

switch_act_2blocks_total  switch activity after 2 blocks encoding 

switch_act_BI_ctrl    switch activity on extra bits after Bus-Invert encoding 

switch_act_XOR_ctrl   switch activity on extra bits after XOR encoding 

switch_act_XNOR_ctrl  switch activity on extra bits after XNOR encoding 

 

switch_act_1block_ctrl_high  switch activity on extra bits in most significant bit 

group after 1 block encoding 

switch_act_1block _ctrl_low  switch activity on extra bits in least significant bit 

group after 1 block encoding 

switch_act_2blocks_ctrl_high  switch activity on extra bits in most significant bit 

group after 2 blocks encoding 

switch_act_proposal2_ctrl_low switch activity on extra bits in least significant bit 

group after 2 blocks encoding 

 

In Section 2.1, we know the dynamic power depends on transition activity α. 

Therefore, we can use switch activity reduction (SAR) as a measurement metric to 

signify the power reduction. 

     
   

 

 -      
SAR (%) =  ,before encoding after encoding control extra bit

before encoding

SA SA SA
SA

 +
    (2-9) 

Where SA denotes switch activity.  

We employee four encoding schemes, proposal and configure different 

variability parameters to simulate 100,000 data by in Fig. 2-19, Fig. 2-20, Fig. 2-21 

and Fig. 2-22. We define 1 block is proposed coding scheme with one 8 bits group; 2 

blocks is proposed coding scheme with two 4 bits groups; 
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The x-axis shows the group bits variability and the y-axis shows the switch 

activity reduction. For example, 25/50 means high level group bits have 25% 

variability and low level group bits have 50% variability. 
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 Fig.2-19. Switch activity reduction for 8-bit data. 
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Fig.2-20. Switch activity reduction for 8-bit data. 
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Fig.2-21. Switch activity reduction for 8-bit data. 
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Fig.2-22. Switch activity reduction for 8-bit data. 

 

We add the specific data and random data for simulation except above data. In 

the specific data, It has high probability in specific range. 

The data distribution is shown in Fig. 2-23. The most of general video and audio 

data distribution are like this figure.  
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Fig. 2-23. The Data Distribution. 

 

 Either in the specific data or in the random data, the switch activity reduction has 

15 ~ 18 percentages by proposal scheme. With the increasing of variability parameters, 

our proposal has more reduction in switch activity. In the variability parameters 25/75 

and 75/25, we have 20% in switch activity reduction and our proposal has greater 

improvement than other encoding schemes. 

 

2.4.2  16 bits Power Aware Data Bus Codec Simulator  

In 16 bits Power Aware Data Bus Codec Simulator, we define our proposed 

codec which is separated into two 8-bit groups and four 4-bit groups for 16-bit length 

data encoding. And we configure some variability parameters for simulation. 
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Most significant bit group variability: the variability of the value 0 to 1 or 1 to 0 from 

8th to 15th bits  

Least significant bit group variability: the variability of the value 0 to 1 or 1 to 0 

from 0thto 7th bits  

 

When the simulator executes a test pattern, it would record the results about bit 

transitions below: 

switch_act     switch activity before encoding  

switch_act_BI_total         switch activity after Bus-Invert encoding  

switch_act_XOR _total       switch activity after XOR encoding 

switch_act_XNOR_total       switch activity after XNOR encoding 

switch_act_dbm+pbm   switch activity after dbm + pbm encoding 

switch_act_1block_total      switch activity after proposal encoding by 1 blocks. 

switch_act_ 2blocks_total      switch activity after proposal encoding by 2 blocks. 

switch_act_4blocks_total      switch activity after proposal encoding by 4 blocks. 

switch_act_BI_ctrl    switch activity on extra bits after Bus-Invert encoding 

switch_act_XOR_ctrl   switch activity on extra bits after XOR encoding 

switch_act_XNOR_ctrl  switch activity on extra bits after XNOR encoding 

 

switch_act_1block_ctrl_high  switch activity on extra bits in high level group after 

proposal encoding by 1 block. 

switch_act_1block_ctrl_low  switch activity on extra bits in low level group after 

proposal encoding by 1 block. 

switch_act_ 2blocks_ctrl_high  switch activity on extra bits in high level group after 

proposal encoding by 2 blocks. 

switch_act_2blocks_ctrl_low  switch activity on extra bits in low level group after 
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proposal encoding by 2 blocks. 

switch_act_4blocks_ctrl_high  switch activity on extra bits in high level group after 

proposal encoding by 4 blocks. 

switch_act_4blocks_ctrl_low  switch activity on extra bits in low level group after 

proposal encoding by 4 blocks. 

 

We run 100,000 data by four encoding schemes,  proposal and configure 

different variability parameters in Fig.2-24, Fig.2-25, Fig.2-26 and Fig.2-27. 

Encoding schemes:  

Bus-Invert; XOR; XNOR; Dbm+Pbm; 

1 block: Proposed coding scheme with one 16 bits group; 

2 blocks: Proposed coding scheme with two 8 bits groups; 

4 blocks: Proposed coding scheme with four 4 bits groups; 
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Fig.2-24. Switch activity reduction for 16 bits data. 
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Fig.2-25. Switch activity reduction for 16 bits data. 
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Fig.2-26. Switch activity reduction for 16 bits data. 
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Fig.2-27. Switch activity reduction for 16 bits data. 

Either in the random data, the switch activity reduction has 20 percentages by 

proposed scheme. With the increasing of variability parameters, our proposed method 

has more reduction in switch activity and has greater improvement than other 

encoding schemes. 

 

 

2.5  Result and Analysis 
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Fig. 2-28. Simulation for Multi-Media data. 
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Proposed 1: Proposed coding scheme with one 8 bits group; 

Proposed 2: Proposed coding scheme with two 4 bits groups; 

 

The simulation for 8 bits multi-media data in Fig. 2-28 shows our proposal has 

20 % dynamic power reduction in average. In image data, we choose three 352x288 

pictures including mobile, table tennis, and Stefan for encoding. We can find that 

Table image has low data variability so that is suited for Dbm + Pbm encoding 

scheme. In other images, the high data variability is well for our proposed encoder can 

select optimal encoding scheme. 
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Chapter 3  
Low Power Embedded Processor 
Design 

In order to verify the codec function [20], we have performed the codec combine 

with a 32 bits embedded processor [21]. We will introduce the properties of processor, 

instruction set, tool chains and other specific designs in this Chapter. 

 

3.1 Architecture of the Low Power Embedded 

Processor 

3.1.1 Low Power Embedded Processor Core  

Our processor applies RISC architecture including low power designs, which are 

Master-Slave cache, low power phased cache controller, and power aware data bus 

codec. 

The low power embedded processor has seven-pipeline architecture. All 

instructions start by using the program counter (PC) to supply the instruction address 

to the instruction memory. After the instruction is fetched, ID stage decodes the 

instruction and specifies register operands. Once the operands have been fetched in 

ALU, they can be operated to compute a memory address, to compute an arithmetic 

result, or to compare. If the instruction is an arithmetic-logical instruction, the result 

from ALU must be written to a register. If the operation is a load or store, the result 

from ALU is used as an address to either store or load a value .The result from the 

ALU or memory is written back into the REG stage. Cache controller controls the 

Load/Store operation in the memory peripheral device. Fig. 3-1 shows the architecture 
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of processor.  
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Fig. 3-1. The architecture of processor. 
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Fig. 3-2. Pipeline processing flow. 

 

The processor has 7 pipeline architecture including Instruction fetch/Program 

Counter/Branch Prediction, MS cache(2 stages), Instruction decoder, Register file, 

ALU/Cache tag comparison, and Write back/Cache data access. 

 The seven stages are the following: 

 

PC Counter/Branch Predict/ Instruction Fetch：  In the top portion of 

hardware architecture, Program counter handles branch instructions and generates the 

PC address. The instruction is read from memory using the address in the PC and then 

is placed in the ID pipeline register. Due to some instructions need PC address to be 

computed in ALU stage, the PC address would be saved stage by stage. Therefore, PC 

address is saved in the next stage register. In order to avoid an instruction be fetched 

after branch instruction occurs, we set two flags to handle branch instructions. These 
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flags can show whether the pipeline is in stall state and decide the stage process. 

MS-cache (2 stages): The second portion of Fig. 3-2 shows the operation of 

instructions. If data miss occurs, it will replace data from main memory. The 

MS-cache design is based on phased cache. The phased cache compares Tag value in 

first cycle, and reads Hit data to ID stage in second cycle. By the way, MS-cache also 

enhances the hit rate for branch/jump instructions. 

Instruction Decoder：In ID stage, the instruction separates into two-source 

registers location, one destination register location. These locations can get source 

operands for the Register stage and provide destination operand for ALU stage. 

Register File: It provides 16 general-purpose registers, 16 interrupt registers for 

external interrupt, internal interrupt and other configuration. 

ALU/Cache Tag access：All operands computation from Register File are 

executed in ALU stage. Data forwarding is supported in ALU stage to eliminate RAW 

hazard. Meanwhile, the value in Tag cache is compared with memory address and is 

verified whether it is a cache hit or miss when Load/Store instructions are executed. 

Write-Back/Cache data access： The ALU writes data back to the Register file, 

cache or memory in this stage. In case of Load/Store instructions execution, it would 

access memory data according to a cache hit.  

 

Five specific hardware designs is supported for DSP: 

SIMD(Single Issue Multi Data) support: 8/16 bits SIMD instruction set is 

supported to improve multi-media processing, such as 8 bits image processing or 16 

bits speech processing. 

Bit Reverse：A memory addressing mode is designed for FFT. For example, 

address 01101 can be transformed to 10110. 

MAC can be finished in one cycle. 
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Effective Data forwarding [22]. 

Conditional Branch：Prediction – untaken method. 

 

3.1.2 Low Power Embedded Processor Instruction 

Set  
The instruction set has four categories: Data moving instructions, Arithmetic & 

Logic instructions, Branch/Jump instructions, SIMD instructions and others.  

6 addressing modes are supported:  Direct, Reg to Reg, Indirect, Displacement 

(base add), Index and Bit-Reverse addressing modes. 

     

Table 3-1 Data Moving Instructions List 

Instruction Opcode Example Mode 

MOVRC 000001 MOV rd,data Direct 

MOVRR 000010 MOV rd,rs Reg-Reg 

MOVRM 000011 MOV rd,address Direct 

MOVMR 000100 MOV address,rs Direct 

MOVMRR 000101 MOV @rs2,rs Indirect 

MOVRRM 000110 MOV rd,@rs Indirect 

MOVARR 100010 MOV rd(a),rs(b) Reg-Reg 

MOVB 101111 MOVB rd,base(rs) Displacement 

MOVI 110000 MOVI rd,rs1(rs2) Index 

MOVREVRM 101010 MOV rd,address Bit Reverse 

MOVREVMR 101011 MOV address,rs Bit Reverse 

MOVREVMRR 101100 MOV @rs2,rs Bit Reverse 
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MOVREVRRM 101101 MOV rd,@rs Bit Reverse 

 

Table 3-2 Arithmetic & Logic Instructions List 

Instruction Opcode Example 

ADDRR 001000 ADD rd,rs1,rs2 

SUBRR 001010 SUB rd,rs1,rs2 

MULRR 001100 MUL rd,rs1,rs2 

ADDRC 000111 ADD rd,data 

SUBRC 001001 SUB rd,data 

MULRC 001011 MUL rd,data 

MACR 100111 MAC rd,rs1,rs2 

MACC 110001 MAC rd,rs1,data 

ANDRR 001110 AND rd,rs1,rs2 

ORRR 001111 OR rd,rs1,rs2 

XORRR 010000 XOR rd,rs1,rs2 

INVR 010001 INV rd,rs 

 

Table 3-3 Branch/Jump Instructions List 

Instruction Opcode Example 

JMP 010010 JMP address 

JMPR 010011 JMP @rs 

JBE 010100 JBE  rs1,address 

JNE 010101 JNE rs1,address 

JMB 010110 JMB rs1,address 

JLB 010111 JLB rs1,address 
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JBER 011000 JBER rs1,rs2,address 

JNER 011001 JNBR rs1,rs2,address 

JMBR 011010 JMBR rs1,rs2,address 

JLBR 011011 JLBR rs1,rs2,address 

CALL 100011 CALL address 

RET 011110 RET 

 

Table 3-4 SIMD Instructions List 

Instruction Opcode Example 

MOVHLRC 110001 MOVHLRC rd,direct 

MOVHURC 110010 MOVHURC rd,direct 

ADDHRR 110011 ADDHRR rd,rs1,rs2 

SUBHRR 110100 SUBHRR rd,rs1,rs2 

MULHRR 110101 MULHRR rd,rs1,rs2 

MACHR 100110 MACHR  rd,rs1,rs2 

ANDHRR 110110 ANDHRR rd,rs1,rs2 

ORHRR 110111 ORHRR  rd,rs1,rs2 

XORHRR 111000 XORHRR rd,rs1,rs2 

ADDBRR    111001 ADDBRR rd,rs1,rs2 

SUBBRR    111010 SUBBRR rd,rs1,rs2 

MULBRR    111011 MULBRR rd,rs1,rs2 

ANDBRR    111100 ANDBRR rd,rs1,rs2 

ORBRR     111101 ORBRR  rd,rs1,rs2 

XORBRR    111110 XORBRR rd,rs1,rs2 
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In case of SIMD instructions, the 32 bits data in the register file is divided into 8 

bits or 16 bits blocks. Each block are parallel processed. Therefore, it can improve 8 

bits or 16 bits calculation. 

For example, the following is MACHR instruction, 

     1 1  2d 2R ACC ACC A B A B= = + × + ×  

 

ACC (32)

A1 (16) A2 (16)

X

B1 (16)

X

B2 (16)

∑

 

Fig. 3-3. MACHR operation. 

 

 

 

Table 3-5 Other Instructions List 

Instruction Opcode Example 

SET 011100 SET A,rs 

INTOK 011101 INTOK 

SHR 100000 SHR rs 

SHL 100001 SHL rs 

ENDC 011111 ENDC 
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SET: It can sets two extra 16 bits I/O ports. 

INTOK: Instructions for software interrupt. 

SHR: It would right shift 1 bit from rs. 

SHL: It would left shift 1 bit from rs. 

 

3.2 Configurable Master-Slave I-Cache Controller 

In general, 20%~30% of total power dissipation in the processor dissipated in 

instruction cache. Therefore, the configurable Master-Slave Instruction cache 

controller is designed for low power design.[24] 

 

3.2.1 The Proposal of Configurable Master-Slave 

I-Cache Controller  
The Configurable Master-Slave I-Cache controller is designed for increasing hit 

rate efficiently in large range of jump. The Configurable Master-Slave I-Cache 

controller algorithm is shown in Fig. 3-4. 
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Fig. 3-4. The Configurable Master-Slave I-Cache controller algorithm. 

3.2.2 The Performance of Configurable 

Master-Slave I-Cache  
Fig. 3-5 shows the total performance improvement in different kinds of 

CR_Ratio.  

 

Fig. 3-5. The improvement of MS-cache. 
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CR_Ratio: The ratio of returnable jump in total jump instructions 

Eff_Improve: A parameter of total performance improvement. 

 

When CR_Ratio increases, the value of Eff_Improve increases obviously.  

On the other hand, MS-cache uses the architecture of phased cache so that it can 

reduce 44% of power dissipation. 

 

3.3  High performance pipeline design of low power 

phased cache 
High performance pipeline design of low power phased cache is combined 

phased cache with specific pipeline. It takes advantages of that it can eliminate the set 

associate cache power and access the cache data one stage early by specific pipeline. 

Our approach can reduce 44%~70% (2 ~ 4way) cache power consumption without 

any time latency and only cost 6% total gate count in implementation.  

 

 IF ID REG ALU WB/MEM 

Reg 

file 
ALU 

L1 Tag L1 Data load 

other 

HIT 

MISS Main 

memory

Address 

calculator 

Fig. 3-6. The architecture of High performance pipeline design of low power phased 

cache. 

Fig. 3-7 reports the results of cache access cycle and total performance by 

Simplescalar. The time consumption of cache access is reduced 38% and power 
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consumption is reduced 40% - 70%. 

 

Fig. 3-7. Cache access cycles & Power consumption. 

3.4 Tool Chain 

3.4.1 Assembler  
The GUI assembler supports machine code translation, program ROM generation 

and debug information. User can debug and generate test bench by above information. 

The assembler figure is shown in Fig. 3-8. 

Assembler

Data RomMachine
Code

Debug
Information

Testbench

AssemblerAssembler

Data RomData RomMachine
Code

Debug
Information

TestbenchTestbench

 

Fig. 3-8. The assembler Figure. 
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We implemented the tool based on Visual C++ language in Fig. 3-9. The 

assembler generates files: 

Pop.txt : Hexadecimal program code for testing chip. 

Bin.txt : Binary program code for simulation. 

 

 

Direct

File 

Message 

Compile Build 

Edit 

Fig. 3-9. Assembler Interface. 

 

3.4.2 Simulator  
Our thesis provides a simulator implemented by Visual C++ language for 

different kinds of test patterns. We apply a method like software pipeline [13] for 

simulator so that each iteration is arranged in inverse order. An example for five 

pipeline RISC architecture is in Fig. 3-10. All stages sort in inverse order. 
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For(cycle++) 

{ 

  //5th stage Write Back 

   …. 

   //4th stage ALU 

   …. 

  //3rd stage Reg_File 

   …. 

  //2nd stage Decoder 

   …. 

       //1st stage Fetch 

 …. 

} 

Execution Way 

 

Fig. 3-10. Software pipeline design flow. 

 

The simulator provides the ability to view register value and memory content and 

calculate the number of hazard and total penalty cycle. 

These information can help programmer to analyze performance and debug 

easily. In Fig. 3-11, it shows assemble code, memory data, register value, total cycle 

count and total instruction count.  
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Fig. 3-11. The simulator interface. 

 

3.5 Verification  

In order to respond ISS(Information Systems and Sciences), our processor use 

some test pattern including F.I.R (Finite Impulse Response) ,D.C.T (Discrete Cosine 

Transform) and Sobel operator and the result of simulator to verify our processor’s 

function. We will introduce three kinds of test pattern and these results in the 

following paragraph. 

 

3.5.1 Finite Impulse Response  

FIR filtering is a general application in communication and multi-media field. 

Fig. 3-12 shows the 16 tap impulse response FIR filter.   
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Fig. 3-12. FIR RTL simulation and simulator result. 

For verify our proposed codec performance, we supports a module to calculate 

switch activity which data to external memory on bus. In Fig. 3-13, our proposed 

method can reduce 46.13 % of switch activity on data bus. 

 

W/O encoding 

With encoding 

Fig. 3-13. Switch activity for FIR. 
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3.5.2 Discrete Cosine Transform  

The 8 by 8 1-dimensional DCT algorithm is shown in Fig. 3-14. The 8 by 8 

2-dimensional DCT is implemented by applying 1-dimension DCT row-by-row and 

column by column. The simulation result is shown in Fig. 3-15. 

 

 

Fig. 3-14. 1 dimension 8 by 8 DCT. 

 

 

Fig. 3-15. 2 dimension 8-8 DCT RTL simulation and simulator result. 
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W/O encoding 

With encoding 

 

Fig. 3-16. Switch activity for DCT. 

In Fig. 3-16, our proposal can reduce 58.92 % of switch activity on data bus. 

 

3.5.3 Sobel Operator  

We use Sobel operator to verify the large data moving in data cache. The Sobel 

operator is an edge detection algorithm in image processing. It is a discrete 

differentiation operator technically and gets the gradient of the image intensity 

function. At each point in the image, the result of the Sobel operator is either the 

corresponding gradient vector or the norm of this vector. 

Sobel operator computes approximations of the derivatives for horizontal and 

vertical changes by using two 3x3 array which are convolved with the original image. 

We define A as the source image, Gx and Gy are two images which contain the 

horizontal and vertical derivative approximations. The equation is as: 
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⎥
⎥
⎥⎦

           (3-1) 

And then we calculate root mean square value to get the resulting gradient 

approximations, using 

2 2
x yG G G= +                                          (3-2) 

 

We implement edge detection for 64x64 pixels image in our processor and 

compare with MATLAB in Fig.3-17. 

 

Fig. 3-17. Sobel Operator simulation. 

 

3.6  Field-Programmable Gate Array (FPGA)  

In the internet product, communication, industry system and electrical system 

field, they usually use F

, FPGA has the 

 Processor     Source Image        MATLAB 

PGA to design their chip because FPGA has high flexibility so 

that user can make their logic function from Boolean function, register function, 

embedded memory and complex functional IP. In the other hand, it can easily place 

and fit in the platform for different kinds of application. 

 The processing time in FPGA is slower than ASIC. However
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adva

1500EBC652-1X and Quartus Ⅱ to floorplan, 

place

erator simulation in FPGA and Matlab simulation is shown in Fig. 

3-15

ntages include a shorter time to market, ability to re-program in the field to fix 

bugs. The designs are developed on regular FPGAs and then migrated into a fixed 

version that more resembles an ASIC. 

We use Altera APEX20KE EP20K

, and route. 

The Sobel op

 

 

 

 

Fig. 3-18. The Sobel operator result in FPGA and Matlab. 

3.7  Summary  

troduce a RISC embedded processor combined with 

conf

ext chapter, we will integrate it into a SOC chip. 

In this chapter, we in

igurable Master-Slave cache controller and High performance pipeline design of 

low power phased cache. The system not only prove the correctness of the algorithm 

but also take advantages of the ability of specific designs to reduce total power 

dissipation. 

In the n
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Chapter 4   
plementation and 

 the issues of the chip implementation and 

verification results. 

p Design Flow  

as shown in Fig. 4-1 for our chip 

imple

Chip Im
Verification Results 
4.1 Chip Fabrication 

In this chapter, we will debate

4.1.1. Chi

We refer to CIC cell-based design flow 

mentation and verification. 
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Fig. 4-1. Cell-based design flow. 
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4.1.2. Synthesis  

The behavior level hardware description language (HDL) of the embedded 

processor has been pre-simulated by Mentor-ModelSim and synthesized by 

Cadence-Design Compiler, where the timing constraint is 10 ns. The synthesis report 

using TSMC 0.18um CMOS technology is summarized in Table 4-1, where the 

98.25% fault coverage is measured. 

Table 4-1 Synthesis Report 

Area (mm2) ITEM Timing Fault coverage 

Processor 497524.31 10 ns 98.25 % 

 

4.1.3. Auto Placement and Routing (APR)  

Next, we use Cadence-SOC Encounter to place and route the gate level code 

automatically.  

Table 4-2 APR Report 

Chip name Bio-CAS Processor Version 1 (BP_v1) 

Technology TSMC 0.18um 1P6M CMOS 

Package 160 CQFP 

Chip Size 2.114× 2.114 mm2

Gate Count 47K gate count (Bus codec: 2.014K) 

Power Dissipation ~16mW 

Max. Frequency s） 100MHz （10 n

 

We use s inclu R and S ith Prim he average  test pattern de DCT, FI obel w ePower. T
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of power dissipation is 16mW. The chip layout is shown in Fig.4-2. The chip pin 

igs. 4-3, 4-4, description and 160 pin-CQFP bounding diagrams are revealed in F

respectively. 

 

Fig. 4-2. Chip Layout.  
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Fig. 4-3. Chip Pin Description Diagram. 

 

 

Fig. 4-4. 160 pin-CQFP Bounding Diagram. 

 64



 

 

Table 4-3 Chip Specification 

Technology Description 

Process TSMC 0.18μm 1P6M Mixed Signal 

Architecture 7-stage pipeline 

Synthesis Synopsys Design Compiler 

Gate Count  47K (Bus codec: 2.014K) 

Embedded Memory Cache_FIFO RAM(512x2)x1,  

Cache_DATA RAM(512x32)x2,  

Cache_TAG RAM(512x8)x2, 

MS_Cache RAM(512x32)x2, 

MS_Cache_TAG RAM(512x8)x2 

2.114 × 2.114 mm2Die size 

Supply 1.8V/3.3V ± 10% 

Input Delay Time Max 0.714ns/ Min 0.543ns 

Power consumption 16 mW 

Operating Frequency 100 MHz 

 

The chip characteristics are listed in Table 4-2, where the power consumption is 

16 mW. 

Finally, we still use Calibre DRC（Design Rule Check）and LVS （Layout VS 

Schematic）for our final check. 

In memory part, we generate 4 tag cache for address tag, 4 data caches for data 

by Cadence-Memory generator. The gate-level timing diagrams of DCT and Sobel 

benchmark are shown in Fig.4-5 and Fig. 4-6, respectively. 
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Fig. 4-5. DCT gate-level simulation. 

 

 

Fig. 4-6. Sobel gate-level simulation. 

 

4.2  Power Analysis 

The transparent un-coding power dissipation at the bus is given by (4-1) where P 

is power consumption, CL is the bus capacitance per bit,α  is transition activity, V is 

supply voltage, f is clock frequency. 
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2
,D uncoded uncoded LP C V fα=                                         (4-1) 

For our proposed encoding and decoding scheme, the power dissipation at the 

encoder, the bus, and the decoder is given by (4-2). 

               , , , ,   D coded D encoder D bus D decoderP P P P= + +             (4-2) 

If αcoded is the reduced transition activity at he bus after encoding then the total power 

dissipation is given by (4-3). 

                            (4-3) 

We estimate the power dissipation in the encoder and the decoder are 0.8mW by 

DCT function. 

In Fig. 4-7 we plot s capacitances, CL . The 

power dissipation was estimated using 75 samples of DCT data to memory. We see 

that for small bus capacitances (<0.3415 pF/bit) in Fig. 4-8, it is best to not encode the 

data at all. For capacitances above 0.3415 pF/bit, our proposed scheme provides a 

well reduction in power dissipation. The slope of the curve is determined only by the

reduced transition activity, αcoded, and is independent of the power dissipation in the 

encoder and decoder.  

 
2

, , ,    D coded D encoder coded L D decoderP P C V f Pα= + +

the power dissipation for different bu

 

 67



 

Fig. 4-7 Power dissipation for Proposed and Original 

 

Fig. 4-8 Power dissipation for Proposed and Original 
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Chapter 5   
Conclusions and Future Works 

In this thesis, we proposed a power aware data bus codec design that can reduces 

switch activity by 23% on average since adaptively choosing the optimal encoding 

scheme for different data types. The advised codec can save 68% area overhead 

compared with R-S-H’s design. From the FIR and DCT benchmark simulations, on 

average, 50%~60% power reductions can be guaranteed. In near future, the processor 

design adopting low power bus codec and phase-cache pipeline schemes will be tape 

out for completeness. At that time, we will integrate the proposed scheme with the 

operation amplifier, filter, and analog-to-digital converter for biomedical SOC design. 
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Appendix 

A. DRC and LVS Verification 

1. DRC 

 

DRC 驗證無誤 

2. LVS 

 

LVS 驗證無誤 
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B. CIC Tapeout Review Form 

1. 晶片概述： 

耗設計之嵌入式處理器1-1. 專題名稱：     具有快取及匯流排低功                  

 

-2. Top Cell 名稱：      SD_v3       1  

1-3. 使用 library 名稱： 

    CIC_CBDK35 

    CIC_CBDK25 

 v  CIC_CBDK18 

版本:   v1.0   

1-4. 是否使用CIC提供之Memory？  Yes   

1-5. 工作頻率：   100 MHz             

1-6. 功率消耗：    16mW             

1-7. 晶片面積： 2114  X  2114   

 

2. 設計合成： 

之合成軟體？    Synopsys design compiler      2-1. 使用  

2-2. 是否加入 boundary condition：  

  v  input drive strength、 v  input delay、 v  output loading、 v  output 

delay 

2-3. 是否加入 timing constraint：  

 v  specify clock (sequential design) 

    max delay、    min delay (combinational design)  

2-4. 是否加入area constraint？   Yes    

2-5. 合成後之report是否有timing violation？  No    

    有 setup time violation、    有 hold time violation 

2-6. 合成後之verilog是否含有assign描述？  No      

2-7. 合成後之verilog是否含有 *cell* 之instance name？   No    

2-8. 合成後之verilog是否含有反鈄線 \ 之instance name或net name？  No   

 

3. 可測試性設計(前瞻性晶片必填)： 

3-0. 使用之設計軟體？      DFT compiler               

3-2. 使用之ATPG軟體？      Tetramax                 

3-3. 使用Embedded memory數量: SRAM     5        ，ROM     0          

512x32  (Word x bit)x2  512x8 (Word x bit)x2  512x2Memory大小:        

(Word x bit)x1   
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測試方法: BIST      Yes        ，or 其他測試方法     N/A       

若使用BIST,其Test Algorithm為何?   Moving Inversion (13N March)  

同時有多個memory，是否共用BIST controller   Yes   ，BIST controller數量

  1  

3-4. Sca n I

lip-Flop 共有多少個？   2280      

n Chai nformation 

F

Sca n n chai 的數量共有多少條？     3       

Sca n .840 n chai length (Max.) ？ 25561

3-5. Unco erage是否超過 90% ？   Yes    llapsed fault cov ，為多少？   98.24%   

ATPG pattern的數目為多少？  272    

註 ys TetraMAX 來產生 ATPG pattern，請使用 set faults 

- 令指定 TetraMAX 產生 fault coverage information 

若 Sy ATPG pattern，請以 atpg 

p st

 

4. 佈局前模擬 

4-1.  gate level simulation是否有timing violation？    No   

：若使用 Synops

fault_coverage 指

使用 nTest TurboScan 之 asicgen 來產生

essimi ic fault coverage 的值為準 

  

    有 setup time violation、    有 hold time violation 

 

5. 實體佈局 

5-1. 使用之P&R軟體？     Apolo、 v  SE   

power ri5-2. ng寬度？   8     是否已考量current density(1mA/1um)？   Yes     

5-3. 是否 ut考慮o put loading？   Yes       

5-4. 是否加上Clock Tree？   Yes    

5-5. 是否加上Corner pad？  Yes    

5-6. 是否 IO加上  Filler？   Yes    

5-7. 是否 Co加上 re Filler？   Yes    

5-8. 是否上加 Bonding Pad？   Yes    

以下(A-1)為使用 Apollo 者才須回答 

A-1.   是否執行 Fill Notch and Gap 步驟？          

以下(S-1 至 S-2)為使用 SE 者才須回答 

S-1.   power ring上是否有overlap vias？   No    

S-2.   是否確定IO Row和Corner Row互相貼齊？   Yes  

 

6. 佈局後模擬 

6-1. 是否做過post-layout gate-level simulation？   Yes   

STA(static timing analysis) 軟 體 ？    Primetime / Modelsim                  
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6-2. 是否做過post-layout transistor-level simulation？    No    

6-3. 已針對以下環境狀態模擬：    SS、     TT、     FF 

6-4. 晶片取得時將以何種方式進行測試？         P600 of Agilent 93000                  

 

響？  Yes  6-5. 模擬時是否考量輸出負載影  

 

7. DRC/LVS

7-1. 

驗證 

是否有DRC錯誤？    No    錯誤原因：                                  

                                                                       

驗證DRC軟體？     Calibre               

是否有不作DRC的區域？   No   

7-2. 是否有LVS錯誤？   No     

驗  證LVS 軟體？      Calibre             

否有非CIC提供的BlackBox？是     No    

 

 

設計者簽名: 薛智文/黃德瑋                  指導教授簽名:  林進燈   
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