

國 立 交 通 大 學

電機與控制工程學系

碩士論文

功率感知資料匯流排編碼解碼器設計

Design of Power Aware Data Bus Codec

研究生：黃德瑋

指導教授：林進燈 教授

 陳右穎 教授

中華民國九十六年七月

功率感知資料匯流排編碼解碼器設計

Design of Power Aware Data Bus Codec

研 究 生：黃德瑋 Student：De-Wei Huang

指導教授：林進燈 教授 Advisor：Dr. Chin-Teng Lin

 陳右穎 教授 Dr. You-Yeng Chen

國立交通大學

電機與控制工程學系

碩士論文

A Thesis
Submitted to Institute of Electrical and Control Engineering

College of Electrical and Computer Engineering
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Electrical and Control Engineering

July 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年七月

 i

功率感知資料匯流排編碼解碼器設計

Design of Power Aware Data Bus Codec

學生：黃德瑋 指導教授：林進燈 博士

 陳右穎 博士

國立交通大學電機與控制工程研究所

t

中文摘要

本論文提出在匯流排傳輸上面，設計一個功率感知資料匯流排編碼解碼器，

來降低 transition activity，進而達到降低功耗輸出的效果。在 8 位元寬度以及外

部負載電容 50 pF 環境下模擬結果，分別與編碼前及 RSH 方法相比較可降低 23%

和 6%功率消耗，其設計特色在於：(1)編碼解碼端不需要花費龐大硬體成本以及

處理時間，便可達到迅速傳輸資料以及有效率降低功耗的目的；(2)針對不同應

用能自動挑選來做最合適的編碼處理。經由測試結果，只需要額外增加 6%硬體

成本，在多媒體資料傳輸，平均可降低 20%左右動態功率；在 DCT、FIR 程式中，

平均可降低 50~60%左右動態功率。

再者，我們將此低功耗匯流排整合至在已開發的嵌入式RISC/DSP單核心處理

器內，針對處理器系統架構上面，加入數位低功耗設計，有效率的降低功率消耗，

期望能在效能以及功耗上達到一個平衡點。此設計採用TSMC 0.18μm 製程，晶

片製作面積約 2.11x2.11 mm2，預估最大操作頻率在 100MHz，功率消耗約 16mW。

 ii

Design of Power Aware Data Bus Codec

Student：De-Wei Huang Advisor：Dr. Chin-Teng Lin

 Dr. You-Yeng Chen

Department of Electrical and Control Engineering

National Chiao-Tung University
t

Abstract

In this thesis, we propose a power-aware codec scheme to reduce transition

activity for data bus design. The low power data bus codec consisting of transparent,

inverter, XOR, and XNOR module can lead to 23 % & 6 % power reduction

compared with the un-coding and R-S-H’s methods under the 8-bit width and the 50

pF capacitance loading. The main features of this codec design are: (1) codec can save

68% area overhead compared with R-S-H’s design and (2) codec can adaptively

choose the optimal encoding scheme for different kinds of data types due to versatile

applications. From the FIR and DCT benchmark simulations, the power can be

reduced to 50%~60% on average.

Furthermore, we integrate this data bus codec into a RISC/DSP unit-core

processor with the tradeoff between cost and power. The chip fabricated in TSMC

0.18μm CMOS technology process with the total area of 2.11×2.11mm2 and has

power consumption of 16mW at 100MHz with 1.8V supply voltage.

 iii

誌謝
兩年的研究所生涯隨著論文的完成劃上了句號，這兩年間，要感謝許多人的

鼓勵和幫忙，使我獲得充實的專業能力並順利完成研究所的學業。

首先要感謝的是我的指導教授-林進燈老師。林老師是國內十分傑出的一位

教授，在不同領域內都有相當好的研究成果。感謝老師提供了很理想的研究環境

及正確的引導，使我在研究上非常順利。在老師悉心的指導下，讓我學習到解決

問題的能力及做研究應有的態度。

另外，最感謝資工系范倫達教授及鐘仁峰學長的教導，尤其是面臨畢業主題

方向模糊的壓力時，范教授在這上面給予我相當大的助力，而教授親切的態度及

學識的也讓我在討論論文時感到輕鬆而無壓力，獲益良多。此外在實驗室中，不

管大小疑難雜症，常常去請教仁峰學長，非常感謝學長不厭其煩地教導，使我增

進了對積體電路設計上的專業知識，開拓了我的視野。也感謝實驗室所有的夥

伴，經翔學長、紹航學長、峻谷學長、家昇學長、庭緯學長、有德學長、笑容甜

美頭髮捲捲的美女靜瑩、酷酷運動全能的智文、開朗運動全能的俊傑、可愛熱情

的正妹林玫、翰林大學士肇廷以及讓我論文不能早點寫完的學弟妹們等，感謝大

家在研究上的互相扶持及鼓勵。

也感謝我的爸爸、媽媽、奶奶、哥哥，你們的支持一直是我最溫暖的後盾；

你們的鼓勵是我信心的來源。

 iv

Table of Contents

Table of Contents v

List of Figures vii

List of Table x

Chapter 1 Introduction................................... 1

1.1 Brief Introduction...1
1.2 Organization of the Thesis ...3

Chapter 2 Power Aware Data Bus Codec 4

2.1 Motivation..4
2.2 Related Works ..7
2.2.1 Bus-Invert Bus Encoding...7
2.2.2 Zero-Transition Activity Encoding ..9
2.2.3 A Coding Framework for Low Power Address and Data Busses12
2.3 Power Aware Data Bus Codec ...20
2.3.1 Proposal of Codec ..22
2.3.2 Architecture of Codec ..28
2.4 Power Aware Data Bus Codec Simulator ..31
2.4.1 8 bits Power Aware Data Bus Codec Simulator.......................................31
2.4.2 16 bits Power Aware Data Bus Codec Simulator.....................................35
2.5 Result and Analysis..39

Chapter 3 Low Power Embedded Processor Design 41

3.1 Architecture of the Low Power Embedded Processor41
3.1.1 Low Power Embedded Processor Core..41
3.1.2 Low Power Embedded Processor Instruction Set....................................45
3.2 Configurable Master-Slave I-Cache Controller49
3.2.1 The Proposal of Configurable Master-Slave I-Cache Controller.............49
3.2.2 The Performance of Configurable Master-Slave I-Cache........................50

 v

3.3 High Performance Pipeline Design of Low Power Phased Cache51
3.4 Tool Chain..52
3.4.1 Assembler ..52
3.4.2 Simulator..53
3.5 Verification...55
3.5.1 Finite Impulse Response ..55
3.5.2 Discrete Cosine Transform ..57
3.5.3 Sobel Operator ...58
3.6 Field-Programmable Gate Array (FPGA)..59
3.7 Summary ..60

Chapter 4 Chip Implemenation and Verification Results 61

4.1 Chip Fabrication...61
4.1.1. Chip Design Flow ..61
4.1.2. Synthesis ..62
4.1.3. Auto Placement and Routing (APR)..62
4.2 Power Analysis...66

Chapter 5 Conclusions and Future works....................... 69

Appendix 73

A. DRC and LVS Verification..73
B. CIC Tapeout Review Form..74

 vi

List of Figures

Fig. 2-1. Harvard architecture with four busses...6

Fig. 2-2. von Neumann architecture with two busses....................................6

Fig. 2-3 von Neumann architecture with one bus. ...7

Fig. 2-4. Bus-Invert Encoding. ..9

Fig. 2-5. Zero-Transition Activity encoder/decoder.....................................11

Fig. 2-6. A general communication system..14

Fig. 2-7. A general communication system of noiseless channel.15

Fig. 2-8. A Practical communication system of noiseless channel.15

Fig. 2-9. Occurrence distribution for EEG data before dbm........................18

Fig. 2-10. Occurrence distribution for EEG data after dbm.18

Fig. 2-11. Waveform of the classic music..21

Fig. 2-12. Data variation. ...22

Fig. 2-13. Block diagram of Invert coding. ...25

Fig. 2-14. Block diagram of XOR coding..27

Fig. 2-15. Block diagram of XNOR coding...28

Fig. 2-16. System architecture. ..29

Fig. 2-17. Block diagram of encoder. ..29

Fig. 2-18. Block diagram of decoder. ..30

Fig. 2-19. Switch activity reduction for 8-bit data.......................................33

Fig. 2-20. Switch activity reduction for 8-bit data.......................................33

Fig.2-21. Switch activity reduction for 8-bit data..34

Fig. 2-22. Switch activity reduction for 8-bit data.......................................34

Fig. 2-23. The Data Distribution..35

 vii

Fig.2-24. Switch activity reduction for 16 bits data.....................................37

Fig.2-25. Switch activity reduction for 16 bits data.....................................38

Fig.2-26. Switch activity reduction for 16 bits data.....................................38

Fig.2-27. Switch activity reduction for 16 bits data.....................................39

Fig. 2-28. Simulation for Multi-Media data...39

Fig. 3-1 The architecture of processor ...42

Fig. 3-2 Pipeline processing flow ..43

Fig. 3-3 MACHR operation ...48

Fig. 3-4 The Configurable Master-Slave I-Cache controller algorithm.......50

Fig. 3-5 The improvement of MS-cache..50

Fig. 3-6 The architecture of High performance pipeline design of low power

phased cache ..51

Fig. 3-7 Cache access cycles & Power consumption...................................52

Fig. 3-8 The assembler Figure ...52

Fig. 3-9 Assembler Interface..53

Fig. 3-10 Software pipeline design flow..54

Fig. 3-11 The simulator interface...55

Fig. 3-12 FIR RTL simulation and simulator result.....................................56

Fig. 3-13 Switch activity for FIR...56

Fig. 3-14 1 dimension 8 by 8 DCT ..57

Fig. 3-15 2 dimension 8-8 DCT RTL simulation and simulator result57

Fig. 3-16 Switch activity for DCT ...58

Fig. 3-17 Sobel Operator simulation..59

Fig. 3-18 The Sobel operator result in FPGA and Matlab60

Fig. 4-1 Chip Design Flow...61

Fig. 4-2 Chip Layout Diagram...63
 viii

Fig. 4-3 Chip Pin Description Diagram ...64

Fig. 4-4 160pin-CQFP Bounding Diagram..64

Fig. 4-5 DCT gate-level simulation ...66

Fig. 4-6 Sobel gate-level simulation ..66

Fig. 4-7 Power dissipation for Proposed and Original.................................68

Fig. 4-8 Power dissipation for Proposed and Original.................................68

 ix

List of Table

Table 2-1 Without Zero-Transition Activity Encoding11

Table 2-2 With Zero-Transition Activity Encoding12

Table 2-3 Example of Difference-Based Mapping (dbm)17

Table 2-4 Example of Probability-Based Mapping (pbm).........................19

Table 2-5 First Ten Data Sequences of Classic Music.................................21

Table 2-6 Data Variation ..22

Table 2-7 Example of Classic Music before Using Invert23

Table 2-8 Example of Classic Music after Using Invert..............................24

Table 2-9 Example of Classic Music before Using XOR25

Table 2-10 Example of Classic Music after Using XOR.............................26

Table 3-1 Data Moving Instructions List ...45

Table 3-2 Arithmetic & Logic Instructions List...46

Table 3-3 Branch/Jump Instructions List ...46

Table 3-4 SIMD Instructions List ..47

Table 3-5 Other Instructions List ...48

Table 4-1 Synthesis Report ..62

Table 4-2 APR Report ..62

Table 4-3 Chip Specification ...65

 x

Chapter 1
Introduction

1.1 Brief Introduction

 In 3C integration era, the mobile phone does not only communicate with people

but also has various functions like digital camera, MP3 player, games, and etc.

Therefore, the multi-functions mobile phone just can acquire favor of consumers in

the information market.

 However, when the demand of performance and functions of the mobile phone

increases, the power consumption would be an important design issue. Most of

companies not only seek for high performance and low cost, but also focus on low

power design.

 In other words, low power is a primary consideration to System on Chip (SOC)

design, especially for handheld devices due to the limited battery life. In order to

accomplish such challenging tasks, many design techniques such as multi-Vth design

techniques [1][2], dynamic voltage scaling [3][4], gated clock [5], and low-power

on-chip memory architecture [6] have been proposed to reduce both dynamic power

and leakage power However, those design techniques require advanced design process

to reach the low power goal.

In the processor, it becomes increasingly limited by memory performance and

system power consumption [7]. The power associated with off-chip accesses can

dominate the overall power budget. The memory power problem is even more acute

for processors that possess memory intensive access patterns and require streaming

serial memory access that tends to exhibit low temporal locality.

 1

In terms of reducing memory power, one approach is to consider how optimally

to schedule off-chip accesses. The capacitance associated with the external bus is

much larger than the internal node capacitance inside a microprocessor. [7] For

example, a low-power embedded microprocessor system like an Analog Devices

ADSP-BF533 running at 500 MHz consumes about 374 mW on average during

normal execution. Assuming a 3.65 V supply voltage and 133 MHz bus frequency, the

average external power consumed is around 170 mW, which accounts for

approximately 30% of the overall system power dissipation. One factor affecting the

capacitance on external bus power is the bus width. For example, the power

dissipation on 16-bit bus is larger than 30% on 8-bit bus. As a consequence, the

design target like MP3 player, PDA and mobile phone always use low bit width bus

instead of the high bit width bus.

Recently, R-S-H proposed codec scheme to reduce power consumption for data

and address buses. However, the table size is proportional to bit width in [16]. That

means that while data width is larger, more power consumption certainly be induced.

In this thesis, we are motivated to design a power-aware data bus codec which can

reduce dynamic power for data transmission. This power-aware codec is composed of

transparent, inverter, XOR, and XNOR modules. We use the audio, image, EEG,,

random, and specific data to verify the codec characteristics via simulation results and

compare with other encoding schemes. In terms of codec implementation, a

RISC/DSP unit-core processor that integrates the proposed codec and low power

cache controller design is used for verification. The chip has been fabricated in TSMC

0.18μm CMOS technology with the total area of 2.11×2.11mm2. The maximum clock

frequency runs at 100MHz with a single 1.8V supply voltage.

The proposed codec design has following features:

(1)Low cost
 2

Codec does not need large hardware cost (just have 5% gate counts of total

processor) and one cycle processing time penalty.

(2)Low power

In the result of 8-bit simulation, our proposal has 23 % dynamic power

reduction in average on bus. For DSP function such as DCT and FIR, our proposal has

50-60% dynamic power reduction on bus. For power estimation, the proposed

encoder and decoder only have 0.8mW in PrimePower simulation.

(3)Awareness

 The general encoder is usually suitable for several specific data stream or data

property. For instance, Bus-Invert encoding scheme can only be used to acute data

variability. Our proposed method can compare the result of all encoding functions in

encoder and adaptively choose the optimal encoding scheme for different kinds of

data types due to versatile applications.

1.2 Organization of the Thesis

In this thesis, the organization is as follows. In Chapter 1, we give a brief

introduction for low power design. In Chapter 2, we propose a new power-aware

codec design for data bus. The integrated processor including our proposed bus codec,

and tool chains will be demonstrated in Chapter 3. The processor layout and simulated

result are shown in Chapter 4. Finally, conclusions and future work are remarked in

the last Chapter.

 3

Chapter 2
Power-Aware Data Bus Codec

We would present an adaptive data bus codec including proposal, architecture,

and performance comparison with the features of low power, low cost, and awareness.

2.1 Motivation

As we know, there are two major sources of power dissipation in digital CMOS

circuits, which are summarized as follows[8][9]

 (2-1) 2 leakageP a C V f I V= × × × + × ,

Where P, C, α , V, f denote power consumption, capacitance, transition activity,

supply voltage, and clock frequency, respectively. The first and second terms

represent the dynamic power and leakage power, respectively. In the second term,

leakage current that can be arisen from substrate injection and sub-threshold effects is

primarily determined by the fabrication technology.

 For the reduction of dynamic power, the main design principle is to minimize the

values of V, C, f and α in Eq. (2-1) [10]. Among the four parameters, supply

voltage V that has a quadratic effect and capacitance C are very efficient ways of

decreasing the power dissipation. However, for CMOS circuits, the designers usually

decrease V and C in layout level. For larger digital circuits and systems, decreasing V

and C is an annoying problem in cell-based design. On the other hand, lowering the

transition activity is a very promising way to reduce the power consumption in

cell-based design.

 4

Generally speaking, the percentage of power dissipation on bus is in the range of

10% and 80% for microprocessor. The category of bus is external bus and internal bus.

External bus includes external memory data transmission and I/O data transmission.

Internal bus includes internal memory, cache, and IP data transmission. The power

dissipation in external busses usually is larger than that of internal busses by hundred

times [8]. Thus, we are motivated to solve this critical power problem of data bus in

architecture and logic level. In this paper, we propose a power-aware encoder and

decoder to compress the data transition activity α , and thus the power can be saved.

There are four properties in bus stream [11] discussed as follows.

(1) Instruction address stream: Instructions addresses are often consecutive. As a

result, instruction address stream is very predictable.

(2) Data address stream: Data access may be consecutive while accessing arrays;

otherwise, the data address stream is random. Although data addresses are less

predictable, they still follow the principles of spatial and temporal locality.

(3) Instruction stream: Most ISAs (Instruction Set Architecture) exhibit some

regularity and instructions can be partitioned into fixed-location fields. As a result,

Instruction stream is predictable by fixed-location fields.

(4) Data stream: The sequence is not predictable. The values vary irregularly

with different kinds of applications and different kinds of algorithms.

The above properties in bus stream have been widely applied to three

off-the-shelf computer architectures.

(a) Harvard architecture with four busses:

 5

Fig. 2-1. Harvard architecture with four busses.

Harvard archit storage

and signal pathways for instructions and da

ann architecture with two busses:

The von Neum

storage

ann architecture with one bus:

ecture is a computer architecture with physically separate

ta. Each address bus and data bus is only

for instruction memory or data memory. As a result, each stream has independent bus

and been easily controlled.

(b) von Neum

Fig. 2-2. von Neumann architecture with two busses.

ann architecture is a computer architecture that uses a single

 structure to hold both instructions and data. Instruction address stream and

Data address stream are set on the same bus. Instruction stream and Data stream is so

on.

(c) von Neum

Memory CPU
I/D-Data

I/D-Address

D-Address
D-Data

Inst.

Memory

Data

Memory

CPU
I-Data

I-Address

 6

http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Computer_storage

CPU I/D-Address/DataMemory

Fig. 2-3 von Neumann architecture with one bus.

All streams are running on the sam ore signals to

control stream operations.

2.2 Related Works

In this section, we would introduce the relative researches of low power bus

encoding. F

2.2.1 Bus-Invert Bus Encoding

We will consider the activity on a typical data bus to be characterized by a

random

e bus. On this bus, it needs m

rom the beginning, we will have a brief subsection about Bus-Invert

encoding. Bus-Invert encoding [12] is a traditional encoding at the early low power

designs. It has the advantage of low cost hardware implementation. In Section 2.2.2,

we will introduce Zero-Transition Activity encoding [15]. In Section 2.2.3, we will

show a coding framework for low power address and data busses [16].

 uniformly distributed sequence of values [13][14]. The assumption of random

uniformly distributed inputs is also conveniently made by most of the statistical power

estimation methods. With this assumption for any given time-slot the data on an n-bit

wide bus can be any of 2n possible values with equal probability. The average number

of transitions per time slot will be n/2. For example on an eight-bit bus there will be

 7

an average of 4 transitions per time-slot or 0.5 transitions per bus-line per time-slot.

ses one extra control bit called

 differ) between

, set invert = 1 and make the present bus

nt bus value equal to the present data

the decoder side, the contents of the bus must be conditionally inverted

m number of

trans

When all the bus-lines toggle at the same time (the probability of this happening in

any time-slot is 1/2n) there will be a maximum of n transitions in a time-slot and thus

the worst power dissipation is proportional with n.

 The Bus-Invert method [12] proposed here u

invert. By convention then invert = 0 the bus value will equal the data value. When

invert = 1 the bus value will be inverted. The worst power dissipation can then be

decreased by half by coding the bus as follows (Bus-Invert method):

(1) Compute the Hamming distance (the number of bits in which they

the present bus value and the last data value.

(2) If the Hamming distance is larger than n/2

value equal to the inverted present data value.

(3) Otherwise let invert = 0 and let the prese

value.

(4) At

according to the invert line. In any case the value of invert must be transmitted over

the bus (the method increases the number of bus lines from n to n + 1).

The Bus-Invert encoding has the advantage of that the maximu

itions per time-slot is reduced from n to n/2. Therefore the worst power

dissipation for the bus is reduced by half. Fig. 2-4 shows the 16 bit data sequence

using the Bus-Invert encoding in order to decrease the number of transitions.

 8

Fig. 2-4. Bus-Invert Encoding.

We can see the Hamm ata 1 is smaller than

8, so invert =0. However the Hamm

2.2.2 Zero-Transition Activity Encoding

The scheme we propose is related to the Bus-Invert encoding, both Bus-Invert

encoding [

 that of

avoiding the transfer of cons

ing distance between the data 0 and d

ing distance between the data 1 and data 2 is

bigger than 8, so invert =1 and data 2 is inverted.

12] and Zero-Transition Activity encoding [15] rely on the addition of a

redundant line to reduce the total number of transitions that may happen when streams

of patterns are transmitted over the bus. For example, Bus-Invert encoding use a

redundant line INV that control data encoding for power reduction.

In Zero-Transition Activity encoding scheme, called the T0 code, is

ecutive addresses on the bus by using a redundant line,

INC, to transfer to the receiving sub-system the information on the sequentially of the

addresses. When two addresses in the stream to be transmitted are consecutive, the

INC line is set to 1, the address bus lines are frozen (to avoid unnecessary switch

activities), and the new address is computed directly by the receiver. On the other

hand, when two addresses are not consecutive, the INC line is driven to 0 and the bus

lines operate normally.

Data 0 : 1000000100110101

Data 1 : 1000000010000001

Data 2 : 1100000001111111 INV : 0011111110000000

Data 1 : 1000000010000001 Data 1 : 1000000010000001

Data 0 : 1000000100110101

 9

If all addresses of the ideal stream are consecutive, the INC line is always high,

and

ng (T0 code) scheme can be

desc

,
((),0);

the bus lines always have no transition. Consequently, the switch activity of our

code is zero transitions per emitted consecutive address.

More formally, our Zero-Transition Activity encodi

ribed as follows Eq. (2-2):

(

((), ()) {
B(-1),1) ; 0 () (-1)t if t and b t b t S

b t otherwise
> = +

 (2-2)

 the value on the encoded bus lines at time t ,INC(t) is the a

B t if INC

B t INC t =

where B(t) is dditional bus

line, b(t) is the address value at time t and S is a constant of increase, that we call

stride. The corresponding decoding scheme can formally define as follows (2-3):

(-1) ; 1 0

() { ,
b t S if INC and t

b t
(); 0

+ = >
= (2

=
-3)

code retains its zero-transition property

are i

sition Activity encoding following above

equa

r architecture is simple. At any given clock cycle, the last cycle's

Notice that the T0 even if the addresses

ncremented by a constant stride equal to a constant of two (as it is often the case

for practical machines which are byte addressable, but that are able to access data or

instructions aligned at word boundaries).

We take an example shows Zero-Tran

tions (2-2) (2-3). Table 2-1 lists the switch activities with original data transfer,

we can find the total transitions are 10 from cycle 0 to cycle 6. Table 2-2 lists the data

transmission with Zero-Transition Activity encoding. At a given clock cycle t (t = [1,7]

for table 2-2), the encoder computes the incremented address of cycle t and compares

it to the address generated at cycle t - 1. If the incremented old (t - 1) address and the

new (t) address are equal, the INC line is raised, and the old address is left on the bus.

The encoder/decoder architecture is shown on Fig.2-5. The incrementer can be

programmable, to be able to flexibly define the constant increment S. In Table 2-2, S

is defined as 1.

The decode

 10

addr

T

Continuous bus address transition

ess is incremented. If the INC line is high, the old incremented value is used for

addressing; otherwise, the value coming from the bus lines is selected. Finally, we can

find the total transitions become 4. Zero-Transition Activity encoding make address

value on bus be frozen when address is consecutive so that power dissipation will be

reduced efficiently.

Fig. 2-5. Zero-Transition Activity encoder/decoder.

able 2-1 Without Zero-Transition Activity Encoding

cycle Address to be transfer Address on BUS

0 00000000 00000000

1 00000001 00000001

2 00000010 00000010

3 00000011 00000011

4 00001000 00001000

5 00001001 00001001

6 00001010 00001010

Total Transitions 10

ENCODER

DECODER

BUS

INC

 11

Table 2-2 With Zero-Transition Activity Encoding

Continuous bus address transition

cyc le Address to be transfer Address on BUS INC

0 00000000 00000000 0

1 00000001 frozen 1

2 00000010 frozen 1

3 00000011 frozen 1

4 00001000 00001000 0

5 00001001 frozen 1

6 00001010 frozen 1

Total Transitions 4

2.2.3 A Coding Framework for Low Power Address

-coding framework for describing low power

ploy the framework to develop new encoding schemes

[16].

uited for the power dissipation depends on the

num

and Data Busses

In this section, we present a source

encoding schemes and then em

 In the framework proposed here, a data source is processed first by a

decorrelating function f1. Next, a variant of entropy coding function f2 is employed,

which reduces the transition activity.

Signal samples have higher probability of occurrence are assigned code words

with fewer ON bits. This scheme is s

ber of ON bits. In VLSI systems, however, power dissipation depends on the

number of transitions rather than thee number of ON bits.

 12

A general communication system in Fig. 2-6 consists of a source coder, a channel

coder, a noisy channel, a channel decoder, and a source decoder. The source coder

(deco

ad circuitry, driving (in case of the

trans

ncies can been removed.

The

ng.

der) compresses (decompresses) the input data so that the number of bits

required in the representation of the source is minimized. While the source coder

removes redundancy, the channel coder adds just enough of it to combat errors that

may arise due to the noise in the physical channel.

We consider the bus between two chips as the physical channel and the

transmitter and receiver blocks to be a part of the p

mitting chip) or detecting (in case of the receiving chip) the data signals. We will

assume here that the signal levels are sufficiently high so that the channel can be

considered as be noiseless. The noiseless channel assumption allows us to eliminate

the channel coder resulting in the system shown in Fig. 2-7.

There have two functions f1, f2 in the source encoder shown in Fig. 2-8. The

function f1 decorrelates the input so that all linear depende

function f2 employs a variant of encoding whereby, instead of minimizing the

average number of bits at the output, it reduces the average number of transitions.

Therefore, the function f1 decorrelates the input and adjusts the input probability

distribution so that function f2 can reduce the transition activity by mapping encodi

 13

Source

Encoder

Channel

Encoder

Source

Decoder

Channel

Decoder

Input

Noisy channel

Fig. 2-6. A general communication system.

 14

Source

Encoder

Source

Decoder

Input

Noiseless channel

Fig. 2-7. A general communication system of noiseless channel.

Input

Noiseless channel

F1 (decorrelator)

F2 (encoder)

F2
-1 (decoder)

F1
-1(correlator)

Source

Encoder

Source

Decoder

Fig. 2-8. A Practical communication system of noiseless channel.
 15

In this thesis, we choose the Difference-Based Mapping as the function f1, the

Probability-Based Mapping as the function f2. In the later chapter, we will use this

encoding method to compare with other encoding schemes including Bus-Invert,

XOR, XNOR, proposed scheme.

The method of Difference-Based Mapping (dbm) is shown as follows Eq. 2-4.

The x(n) is the input data, The prediction ()x n , is a function of the past value of x(n).

The dbm function returns the difference between x(n) and ()x n properly adjusted so

that the output fits in the available B bits.

 (2-4)

B

B-1

B

if (x(n) x(n) & & 2x(n) x(n))

 dbm = 2x(n) - 2x(n);

else if (x(n) < x(n) & & 2x(n) - x(n) < 2)

 dbm = 2x(n) - 2x(n) - 1;

else if (x(n) < 2)
 dbm = x(n) ;
else
 dbm = 2 - 1 - x(n) ;

≥ ≥

In the Difference-Based Mapping (dbm), we define four ranges for mapping,

{ }, {2-1() 2Bx n < ()x n - B2 ≤ x(n) ≤ ()x n }, { ()x n < x(n) < 2 ()x n }, and

others. We can choose proper calculation according to four mapping ranges. For an

example is listed in Table 2.3, we see that the dbm output is 0 when the current x(n) is

equal to the previous ()x n and the output value increases as the distance between

the current x(n) and previous ()x n increases. The goal of dbm is convert the total

data distribution to close to 0 so that the number of transitions would be reduced. We

see the occurrence distribution at the output of dbm for EEG 8 bits data is shown in

 16

Fig. 2-9 and Fig. 2-10.The dbm skew the original distribution for most of the data sets

and hence enable function f2 ,Probability-Based Mapping (pbm) to reduce the number

of transitions even more.

Table 2-3 Example of Difference-Based Mapping (dbm)

x(n) X(n) Dbm(x(n), x(n))

011 000 101

011 001 011

011 010 001

011 011 000

011 100 010

011 101 100

011 110 101

011 111 111

 17

Fig. 2-9. Occurrence distribution for EEG data before dbm.

Fig. 2-10. Occurrence distribution for EEG data after dbm.
 18

 The Probability-Based Mapping (pbm) is a method of sorting for reducing the

number of ‘1’.It satisfies given below.

 (2-5) Pr() Pr() () () (,)if i j then pbm i pbm j a b> ≤ ∀

The probabilities in (2-6) can be computed using a representative data sequence. If the

most probable value is i, then pbm(i) = 0.Then the second most probable value is j,

pbm(j) =1 and so on. Therefore all value are mapped to value in 2i (i=0…B-1) by pbm.

We can make a sorting table according to probability. An example of pbm is listed in

Table 2-4

Table 2-4 Example of Probability-Based Mapping (pbm)

i Pr(i) Pbm(i)

000 0.37 000

001 0.14 010

010 0.22 001

011 0.11 011

100 0.05 101

101 0.03 110

110 0.06 100

111 0.02 111

 In summary, we can reduce transition activity by combining with dbm and pbm

encoding schemes. It can make the value having higher probability of occurrence to

be assigned code words with fewer ON bits. In VLSI circuits, power dissipation

depends on the number of transitions occurring at the capacitive nodes of the circuit.

But unfortunately, the dbm + pbm require more hardware for build the input

 19

probability distribution table and more execution time for encoding.

2.3 Power Aware Data Bus Codec

According to different kinds of data properties and correlations, the various

encoding schemes can be generated. Zero-Transition Activity encoding [15] that

needs high correlation and tardy variation in data type is suitable for instruction

memory. Bus-Invert encoding method [12] that needs low correlation and rapid

variation in data type is suitable for data memory. Dbm and Pbm encoding schemes

[16] have an advantage of that it can change correlation of data and choose proper

value by probability mapping. Dbm and Pbm encoding scheme is suitable for specific

data value range, but Dbm and Pbm encoding scheme pays a heavy penalty on

hardware implementation cost.

On the other hand, in general, although data width is constant, the variation of

the most significant bit group (MSBG) is different from the variation of least

significant bit group (LSBG). We define the MSBG is from 4th bit to 7th bit, the LSBG

is from 0th bit to 3rd bit for 8 bits data bit width. For example, we choose the first ten

decimal data sequences in Fig. 2-11 and the corresponding binary representation for

observation in Table. 2-5. In Table 2-5, the data value ranges at between 115 and 150

and the variation of the MSBG is smoother than that of LSBG. Fig. 2-12 shows the

variation curve.

 20

Fig. 2-11. Waveform of the classic music.

Table 2-5 First Ten Data Sequences of Classic Music

 Value(decimal) Value(binary)

1 140 1000_1100

2 131 1000_0011

3 146 1001_0010

4 151 1001_0111

5 136 1000_1000

6 125 0101_1101

7 115 0101_0011

8 130 1000_0010

9 145 1001_0001

10 139 1000_1011

 21

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

cycle

va
ria

tio
n

(%
)

MSBG
LSBG

Fig.2-12. Data variation.

Table 2-6 Data Variation

 MSBG LSBG

Total Hamming distance 126 200

Average of variation 31.5% 50%

 We can find the difference obviously between MSBG and LSBG in Fig. 2-12.

Therefore, unlike in [19], we can separate specific blocks from data bit width such

that the proper encoding can be applied to each block. The transition activity of data

transmission can be reduced by encoding.

2.3.1 Proposed Data Bus Codec

The architecture of encoder have four kinds of encoding schemes, Invert, XOR

[17][18], XNOR [17][18], original, and then we will introduce each encoding

algorithm and proper data type for each a algorithm.

 The Invert function is given in Eq. 2-6, where Hamming(x(n) , ()x n) returns the

Hamming distance between the current data x(n) and the previous data ()x n . If the

Hamming distance exceeds half the number of bus lines, and then the input is inverted
 22

and the inversion is signaled using an extra bit. An example of classic music before

using Invert is listed in Table 2-7, and an example of classic music after using Invert

is listed in Table 2-8.

 ((() , ())
2

 () (());

 () ();

Bitwidthif Hamming x n x n

y n inv x n
else

y n x n

>

=

=

 (2-6)

Table 2-7 Example of Classic Music before Using Invert

cycle x(n) X(n) transitions

1 00000000 10001100 3

2 10001100 10000011 4

3 10000011 10010010 2

4 10010010 10010111 2

5 10010111 10001000 5

6 01110111 01011101 3

7 01011101 01010011 3

8 01010011 10000010 4

9 10000010 10010001 3

10 10010001 10101010 5

Total transitions 34

 23

Table 2-8 Example of Classic Music after Using Invert

cycle x(n) X(n) (() , ())Hamming x n x n Y(n) Inv transitions

1 00000000 10001100 3 10001100 off 3

2 10001100 10000011 4 10000011 off 4

3 10000011 10010010 2 10010010 off 2

4 10010010 10010111 2 10010111 off 2

5 10010111 10001000 5 01110111 on (*)3

6 01110111 01011101 3 01011101 off 3

7 01011101 01010011 3 01010011 off 3

8 01010011 10000010 4 10000010 off 4

9 10000010 10010001 3 10010001 off 3

10 10010001 10101010 5 01010101 on (*)3

Total transitions 30

The block diagram of Invert encoding is sketched in Fig. 2-13, where Hamming

function is composed of 8 exclusive-OR gates and adders for 8-bit length input.

 24

H
am

m
ing

Value n

Value n-1

>4?

Yes

No

INV

Value n

Value n

Output8

8
8

8

Fig. 2-13. Block diagram of Invert coding.

The XOR function is given in Eq. 2-7, where XOR(x(n), ()x n) returns the value

of the current data x(n) exclusive-or the previous data ()x n . If the value of

) is smaller than , and then

the output for transmission equals to XOR(x(n),

(() , ()Hamming x n x n (((), ()) , ())Hamming XOR x n x n x n

()x n) .Otherwise, the output for

transmission will be unchanged.

For example, classic music coding results using transparent and XOR coding

schemes are listed in Table 2-9 and Table 2-10.

 ((() , ()) (((), ()) , ())

 () ((), ());

 () ();

((), ()) () ();

if Hamming x n x n Hamming XOR x n x n x n

y n XOR x n x n
else

y n x n

XOR x n x n x n x n

>

=

=

= ⊗

 (2-7)

Table 2-9 Example of Classic Music before Using XOR

cycle x(n) X(n) Transitions

1 00000000 10001100 3

 25

2 10001100 10000011 4

3 10000011 10010010 2

4 10010010 10010111 2

5 10010111 10001000 5

6 01110111 01011101 3

7 01011101 01010011 3

8 01010011 10000010 4

9 10000010 10010001 3

10 10010001 10101010 5

Total transitions 34

Table 2-10 Example of Classic Music after Using XOR

cycle x(n) X(n) (() , ()) Hamming x n x n (XOR(()) , ())Hamming xn xn Y(n) XOR transitions

1 00000000 10001100 3 3 10001100 off 3

2 10001100 10000011 4 3 00001111 on (*)3

3 00001111 10010010 5 2 10011101 on (*)2

4 10011101 10010111 2 5 10010111 off 2

5 10010111 10001000 5 3 00011111 on (*)3

6 00011111 01011101 2 5 01011101 off 3

7 01011101 01010011 3 4 01010011 off 3

8 01010011 10000010 4 2 11010001 on (*)2

9 11010001 10010001 1 3 10010001 off 3

10 10010001 10101010 5 4 00111011 on (*)4

Total transitions 28

 26

The block diagram of XOR encoding is sketched in Fig. 2-14. The conditional

block will select optimal result which the function Hamming () has smallest value.

H
am

m
ing

Value n

Value n-1

A>B?

Yes

No

XOR

Value n

Value n

Output

8

8

XOR Value n

8

8

8

Fig. 2-14. Block diagram of XOR coding.

The XNOR function is given in Eq. 2-8, where XNOR(x(n,), ()x n) returns the

value of the current data x(n) exclusive-nor the previous data ()x n . If the value of

) is smaller than ,and

then the output for transmission equals to XNOR(x(n),

(() , ()Hamming x n x n (((), ()) , ())Hamming XNOR x n x n x n

()x n) .Otherwise, the output for

transmission will be unchanged. The inversion is signaled using an extra bit.

 (2-8)

 ((() , ()) (((), ()) , ())

 () ((), ());

 () ();

(()) ~ (() ());

if Hamming x n x n Hamming XNOR x n x n x n

y n XNOR x n x n
else

y n x n

XNOR x n x n x n

>

=

=

= ⊗

The logic diagram is shown in Fig. 2-15. The conditional block will select

optimal result which the function Hamming has smaller value.

 27

H
am

m
ing

Value n

Value n-1

A>B?

Yes

No

XNOR

Value n

Value n

Output

8

8

XNOR Value n

8

8

8

Fig. 2-15. Block diagram of XNOR coding.

2.3.2 Architecture of Codec

The total codec system overview is shown in Fig. 2-16. The proposed codec

architecture is placed between I/O, external memory interface and I/O, and external

memory module. The extra bit line on bus is used for notify which function to

decoding in decoder.

The proposed encoder architecture is composed of four encoding functions. It

targets at different kinds of data types and adaptively choose the optimal encoding

way for transmission. According to the property that different bit group location has

different kinds of variation, the transmission data would be separated into several

blocks for encoding.

The encoder architecture diagram is sketched in Fig. 2-17.

 28

I/O, External Memory

Decoder/Encoder

Encoder/Decoder

I/O, External MemoryInterface

Extra bits BUS

CPU

Fig. 2-16. System architecture.

Input Data

Encoder 1

Encoder 2

Data (N/2 bit)

Data (N/2 bit)

Output

Comparator

INV

XOR

XNOR

A

H

Q1

Q8

ENB

Register

Value n

Value n-1

Output
MUX

CLK

Fig. 2-17. Block diagram of encoder.
 29

The input data for transmission is separated into two or more bit groups. Each bit

group has individual encoder for encoding its separated data.

The current data Valuen and the previous data Valuen-1 enter the INV, XOR, XNOR

functions, and then the comparator chooses the optimal encoding way that has the

minimum Hamming distance and sends the encoded data for transmission on bus.

 Our architecture of decoder is similar as architecture of encoder.

It has two input source, transmission data on bus and extra bits. It depends on the

extra bits from encoder to decode the data for transmission .Extra bits mean four

decoding functions, INV, XOR, XNOR, and transparent. After decoding data by MUX,

the data will be return to original form by suitable decoding functions. Fig. 2-18

shows the decoder architecture diagram.

A

H

Q1

Q8

ENB

Register

Value n

Value n-1

MUX

Extra bits

Output

CLK

Fig. 2-18. Block diagram of decoder.

 30

2.4 Power Aware Data Bus Codec Simulator

To verify Power Aware Data Bus Codec and compare the performance with other

encoding schemes like Bus-Invert, XOR, XNOR, Dbm (different based mapping) plus

Pbm (probability based mapping). Our thesis has not only RTL model design but also

a simulator by C++ language. The simulator can help us know the switch activity

effect in different kinds of data variation.

2.4.1 8 bits Power Aware Data Bus Codec Simulator

In 8 bits Power Aware Data Bus Codec Simulator, we define our proposed codec

which is separated into two 4-bit groups for 8-bit length data encoding. And we

configure some variability parameters for simulation.

Most significant bit group variability: the variability of the value 0 to 1 or 1 to 0 from

4th to 7th bits

Least significant bit group variability: the variability of the value 0 to 1 or 1 to 0

from 0thto 3th bits

When the simulator executes a test pattern, it would record the results about bit

transitions below:

switch_act switch activity before encoding

switch_act_BI_total switch activity after Bus-Invert encoding

switch_act_XOR _total switch activity after XOR encoding

switch_act_XNOR_total switch activity after XNOR encoding

switch_act_dbm switch activity after dbm encoding
 31

switch_act_dbm+pbm switch activity after dbm + pbm encoding

switch_act_1block_total switch activity after 1 block encoding

switch_act_2blocks_total switch activity after 2 blocks encoding

switch_act_BI_ctrl switch activity on extra bits after Bus-Invert encoding

switch_act_XOR_ctrl switch activity on extra bits after XOR encoding

switch_act_XNOR_ctrl switch activity on extra bits after XNOR encoding

switch_act_1block_ctrl_high switch activity on extra bits in most significant bit

group after 1 block encoding

switch_act_1block _ctrl_low switch activity on extra bits in least significant bit

group after 1 block encoding

switch_act_2blocks_ctrl_high switch activity on extra bits in most significant bit

group after 2 blocks encoding

switch_act_proposal2_ctrl_low switch activity on extra bits in least significant bit

group after 2 blocks encoding

In Section 2.1, we know the dynamic power depends on transition activity α.

Therefore, we can use switch activity reduction (SAR) as a measurement metric to

signify the power reduction.

 -
SAR (%) = ,before encoding after encoding control extra bit

before encoding

SA SA SA
SA

 +
 (2-9)

Where SA denotes switch activity.

We employee four encoding schemes, proposal and configure different

variability parameters to simulate 100,000 data by in Fig. 2-19, Fig. 2-20, Fig. 2-21

and Fig. 2-22. We define 1 block is proposed coding scheme with one 8 bits group; 2

blocks is proposed coding scheme with two 4 bits groups;
 32

The x-axis shows the group bits variability and the y-axis shows the switch

activity reduction. For example, 25/50 means high level group bits have 25%

variability and low level group bits have 50% variability.

0

10
20

30

40
50

60

70

S
A

 r
ed

uc
tio

n(
%

)

specific random 25/25 25/50 25/75 25/100

MSBG/LSBG variability

8-bit

BI

XOR

XNOR

Dbm+pbm

1 block

2 blocks

 Fig.2-19. Switch activity reduction for 8-bit data.

0

10

20
30

40
50

60
70

S
A

 r
ed

uc
tio

n(
%

)

50/25 50/50 50/75 50/100

MSBG/LSBG variability

8-bit

BI

XOR

XNOR

Dbm+pbm

1 block

2 blocks

Fig.2-20. Switch activity reduction for 8-bit data.

 33

0
10
20
30
40
50
60
70
80

S
A

 r
ed

uc
tio

n(
%

)

75/25 75/50 75/75 75/100

MSBG/LSBG variability

8-bit

BI

XOR

XNOR

Dbm+pbm

1 block

2 blocks

Fig.2-21. Switch activity reduction for 8-bit data.

0

20

40

60

80

100

S
A

 r
ed

uc
tio

n(
%

)

100/25 100/50 100/75 100/100

MSBG/LSBG variability

8-bit

BI

XOR

XNOR

Dbm+pbm

1 block

2 blocks

Fig.2-22. Switch activity reduction for 8-bit data.

We add the specific data and random data for simulation except above data. In

the specific data, It has high probability in specific range.

The data distribution is shown in Fig. 2-23. The most of general video and audio

data distribution are like this figure.

 34

Fig. 2-23. The Data Distribution.

 Either in the specific data or in the random data, the switch activity reduction has

15 ~ 18 percentages by proposal scheme. With the increasing of variability parameters,

our proposal has more reduction in switch activity. In the variability parameters 25/75

and 75/25, we have 20% in switch activity reduction and our proposal has greater

improvement than other encoding schemes.

2.4.2 16 bits Power Aware Data Bus Codec Simulator

In 16 bits Power Aware Data Bus Codec Simulator, we define our proposed

codec which is separated into two 8-bit groups and four 4-bit groups for 16-bit length

data encoding. And we configure some variability parameters for simulation.

 35

Most significant bit group variability: the variability of the value 0 to 1 or 1 to 0 from

8th to 15th bits

Least significant bit group variability: the variability of the value 0 to 1 or 1 to 0

from 0thto 7th bits

When the simulator executes a test pattern, it would record the results about bit

transitions below:

switch_act switch activity before encoding

switch_act_BI_total switch activity after Bus-Invert encoding

switch_act_XOR _total switch activity after XOR encoding

switch_act_XNOR_total switch activity after XNOR encoding

switch_act_dbm+pbm switch activity after dbm + pbm encoding

switch_act_1block_total switch activity after proposal encoding by 1 blocks.

switch_act_ 2blocks_total switch activity after proposal encoding by 2 blocks.

switch_act_4blocks_total switch activity after proposal encoding by 4 blocks.

switch_act_BI_ctrl switch activity on extra bits after Bus-Invert encoding

switch_act_XOR_ctrl switch activity on extra bits after XOR encoding

switch_act_XNOR_ctrl switch activity on extra bits after XNOR encoding

switch_act_1block_ctrl_high switch activity on extra bits in high level group after

proposal encoding by 1 block.

switch_act_1block_ctrl_low switch activity on extra bits in low level group after

proposal encoding by 1 block.

switch_act_ 2blocks_ctrl_high switch activity on extra bits in high level group after

proposal encoding by 2 blocks.

switch_act_2blocks_ctrl_low switch activity on extra bits in low level group after
 36

proposal encoding by 2 blocks.

switch_act_4blocks_ctrl_high switch activity on extra bits in high level group after

proposal encoding by 4 blocks.

switch_act_4blocks_ctrl_low switch activity on extra bits in low level group after

proposal encoding by 4 blocks.

We run 100,000 data by four encoding schemes, proposal and configure

different variability parameters in Fig.2-24, Fig.2-25, Fig.2-26 and Fig.2-27.

Encoding schemes:

Bus-Invert; XOR; XNOR; Dbm+Pbm;

1 block: Proposed coding scheme with one 16 bits group;

2 blocks: Proposed coding scheme with two 8 bits groups;

4 blocks: Proposed coding scheme with four 4 bits groups;

0
10
20

30
40

50
60

70

S
A

 r
ed

uc
tio

n(
%

)

random 25/25 25/50 25/75 25/100

MSBG/LSBG variability

16-bit

BI

XOR

XNOR

Dbm+pbm

1 block

2 blocks

4 blocks

Fig.2-24. Switch activity reduction for 16 bits data.

 37

0
10

20
30

40

50
60

70

S
A

 r
ed

uc
tio

n(
%

)

50/25 50/50 50/75 50/100

MSBG/LSBG variability

16-bit

BI

XOR

XNOR

Dbm+pbm

1 block

2 blocks

4 blocks

Fig.2-25. Switch activity reduction for 16 bits data.

0
10
20
30
40
50
60
70
80

S
A

 r
ed

uc
tio

n(
%

)

75/25 75/50 75/75 75/100

MSBG/LSBG variability

16-bit

BI

XOR

XNOR

Dbm+pbm

1 block

2 blocks

4 blocks

Fig.2-26. Switch activity reduction for 16 bits data.

 38

0

20

40

60

80

100

S
A

 r
ed

uc
tio

n(
%

)

100/25 100/50 100/75 100/100

MSBG/LSBG variability

16-bit

BI

XOR

XNOR

Dbm+pbm

1 block

2 blocks

4 blocks

Fig.2-27. Switch activity reduction for 16 bits data.

Either in the random data, the switch activity reduction has 20 percentages by

proposed scheme. With the increasing of variability parameters, our proposed method

has more reduction in switch activity and has greater improvement than other

encoding schemes.

2.5 Result and Analysis

0

10

20

30

40

S
A

 r
ed

uc
tio

n(
%

)

Pop

music(2.68Mb

WAV)

Classic

music(3.81Mb

WAV)

mobile

pic(352x288)

stefan

pic(352x288)

table pic(352x288) EEG(8bit)

Audio & Image data simulation

BI

XOR

XNOR

Dbm+pbm

Proposed 1

Proposed 2

Fig. 2-28. Simulation for Multi-Media data.

 39

Proposed 1: Proposed coding scheme with one 8 bits group;

Proposed 2: Proposed coding scheme with two 4 bits groups;

The simulation for 8 bits multi-media data in Fig. 2-28 shows our proposal has

20 % dynamic power reduction in average. In image data, we choose three 352x288

pictures including mobile, table tennis, and Stefan for encoding. We can find that

Table image has low data variability so that is suited for Dbm + Pbm encoding

scheme. In other images, the high data variability is well for our proposed encoder can

select optimal encoding scheme.

 40

Chapter 3
Low Power Embedded Processor
Design

In order to verify the codec function [20], we have performed the codec combine

with a 32 bits embedded processor [21]. We will introduce the properties of processor,

instruction set, tool chains and other specific designs in this Chapter.

3.1 Architecture of the Low Power Embedded

Processor

3.1.1 Low Power Embedded Processor Core

Our processor applies RISC architecture including low power designs, which are

Master-Slave cache, low power phased cache controller, and power aware data bus

codec.

The low power embedded processor has seven-pipeline architecture. All

instructions start by using the program counter (PC) to supply the instruction address

to the instruction memory. After the instruction is fetched, ID stage decodes the

instruction and specifies register operands. Once the operands have been fetched in

ALU, they can be operated to compute a memory address, to compute an arithmetic

result, or to compare. If the instruction is an arithmetic-logical instruction, the result

from ALU must be written to a register. If the operation is a load or store, the result

from ALU is used as an address to either store or load a value .The result from the

ALU or memory is written back into the REG stage. Cache controller controls the

Load/Store operation in the memory peripheral device. Fig. 3-1 shows the architecture
 41

of processor.

RISC
Processor

4KB
Data Cache

4KB
Ins. Cache

Phased
D cache
Control

unit

MS
I cache
Control

unit

Main Memory

BUS Encoder/Decoder

I/O unit

BUS Encoder/Decoder

I/O unit

BUS Encoder/Decoder

AMBA BUS
BUS Encoder/Decoder

Fig. 3-1. The architecture of processor.

 42

Instruction Fetch /
Program Counter / Branch Prediction

MS-Cache

Instruction Decoder

Register File/ Cache address generator

ALU Cache tag comparison

W B / Cache Data Access

Main memory
BUS

Load

Instruction Fetch /
Program Counter / Branch Prediction

MS-Cache

Instruction Decoder

Register File/ Cache address generator

ALU Cache tag comparison

W B / Cache Data Access

Main memory
BUS

Load

BUS Encoder/Decoder

IO

Fig. 3-2. Pipeline processing flow.

The processor has 7 pipeline architecture including Instruction fetch/Program

Counter/Branch Prediction, MS cache(2 stages), Instruction decoder, Register file,

ALU/Cache tag comparison, and Write back/Cache data access.

 The seven stages are the following:

PC Counter/Branch Predict/ Instruction Fetch： In the top portion of

hardware architecture, Program counter handles branch instructions and generates the

PC address. The instruction is read from memory using the address in the PC and then

is placed in the ID pipeline register. Due to some instructions need PC address to be

computed in ALU stage, the PC address would be saved stage by stage. Therefore, PC

address is saved in the next stage register. In order to avoid an instruction be fetched

after branch instruction occurs, we set two flags to handle branch instructions. These
 43

flags can show whether the pipeline is in stall state and decide the stage process.

MS-cache (2 stages): The second portion of Fig. 3-2 shows the operation of

instructions. If data miss occurs, it will replace data from main memory. The

MS-cache design is based on phased cache. The phased cache compares Tag value in

first cycle, and reads Hit data to ID stage in second cycle. By the way, MS-cache also

enhances the hit rate for branch/jump instructions.

Instruction Decoder：In ID stage, the instruction separates into two-source

registers location, one destination register location. These locations can get source

operands for the Register stage and provide destination operand for ALU stage.

Register File: It provides 16 general-purpose registers, 16 interrupt registers for

external interrupt, internal interrupt and other configuration.

ALU/Cache Tag access：All operands computation from Register File are

executed in ALU stage. Data forwarding is supported in ALU stage to eliminate RAW

hazard. Meanwhile, the value in Tag cache is compared with memory address and is

verified whether it is a cache hit or miss when Load/Store instructions are executed.

Write-Back/Cache data access： The ALU writes data back to the Register file,

cache or memory in this stage. In case of Load/Store instructions execution, it would

access memory data according to a cache hit.

Five specific hardware designs is supported for DSP:

SIMD(Single Issue Multi Data) support: 8/16 bits SIMD instruction set is

supported to improve multi-media processing, such as 8 bits image processing or 16

bits speech processing.

Bit Reverse：A memory addressing mode is designed for FFT. For example,

address 01101 can be transformed to 10110.

MAC can be finished in one cycle.
 44

Effective Data forwarding [22].

Conditional Branch：Prediction – untaken method.

3.1.2 Low Power Embedded Processor Instruction

Set
The instruction set has four categories: Data moving instructions, Arithmetic &

Logic instructions, Branch/Jump instructions, SIMD instructions and others.

6 addressing modes are supported: Direct, Reg to Reg, Indirect, Displacement

(base add), Index and Bit-Reverse addressing modes.

Table 3-1 Data Moving Instructions List

Instruction Opcode Example Mode

MOVRC 000001 MOV rd,data Direct

MOVRR 000010 MOV rd,rs Reg-Reg

MOVRM 000011 MOV rd,address Direct

MOVMR 000100 MOV address,rs Direct

MOVMRR 000101 MOV @rs2,rs Indirect

MOVRRM 000110 MOV rd,@rs Indirect

MOVARR 100010 MOV rd(a),rs(b) Reg-Reg

MOVB 101111 MOVB rd,base(rs) Displacement

MOVI 110000 MOVI rd,rs1(rs2) Index

MOVREVRM 101010 MOV rd,address Bit Reverse

MOVREVMR 101011 MOV address,rs Bit Reverse

MOVREVMRR 101100 MOV @rs2,rs Bit Reverse

 45

MOVREVRRM 101101 MOV rd,@rs Bit Reverse

Table 3-2 Arithmetic & Logic Instructions List

Instruction Opcode Example

ADDRR 001000 ADD rd,rs1,rs2

SUBRR 001010 SUB rd,rs1,rs2

MULRR 001100 MUL rd,rs1,rs2

ADDRC 000111 ADD rd,data

SUBRC 001001 SUB rd,data

MULRC 001011 MUL rd,data

MACR 100111 MAC rd,rs1,rs2

MACC 110001 MAC rd,rs1,data

ANDRR 001110 AND rd,rs1,rs2

ORRR 001111 OR rd,rs1,rs2

XORRR 010000 XOR rd,rs1,rs2

INVR 010001 INV rd,rs

Table 3-3 Branch/Jump Instructions List

Instruction Opcode Example

JMP 010010 JMP address

JMPR 010011 JMP @rs

JBE 010100 JBE rs1,address

JNE 010101 JNE rs1,address

JMB 010110 JMB rs1,address

JLB 010111 JLB rs1,address

 46

JBER 011000 JBER rs1,rs2,address

JNER 011001 JNBR rs1,rs2,address

JMBR 011010 JMBR rs1,rs2,address

JLBR 011011 JLBR rs1,rs2,address

CALL 100011 CALL address

RET 011110 RET

Table 3-4 SIMD Instructions List

Instruction Opcode Example

MOVHLRC 110001 MOVHLRC rd,direct

MOVHURC 110010 MOVHURC rd,direct

ADDHRR 110011 ADDHRR rd,rs1,rs2

SUBHRR 110100 SUBHRR rd,rs1,rs2

MULHRR 110101 MULHRR rd,rs1,rs2

MACHR 100110 MACHR rd,rs1,rs2

ANDHRR 110110 ANDHRR rd,rs1,rs2

ORHRR 110111 ORHRR rd,rs1,rs2

XORHRR 111000 XORHRR rd,rs1,rs2

ADDBRR 111001 ADDBRR rd,rs1,rs2

SUBBRR 111010 SUBBRR rd,rs1,rs2

MULBRR 111011 MULBRR rd,rs1,rs2

ANDBRR 111100 ANDBRR rd,rs1,rs2

ORBRR 111101 ORBRR rd,rs1,rs2

XORBRR 111110 XORBRR rd,rs1,rs2

 47

In case of SIMD instructions, the 32 bits data in the register file is divided into 8

bits or 16 bits blocks. Each block are parallel processed. Therefore, it can improve 8

bits or 16 bits calculation.

For example, the following is MACHR instruction,

 1 1 2d 2R ACC ACC A B A B= = + × + ×

ACC (32)

A1 (16) A2 (16)

X

B1 (16)

X

B2 (16)

∑

Fig. 3-3. MACHR operation.

Table 3-5 Other Instructions List

Instruction Opcode Example

SET 011100 SET A,rs

INTOK 011101 INTOK

SHR 100000 SHR rs

SHL 100001 SHL rs

ENDC 011111 ENDC

 48

SET: It can sets two extra 16 bits I/O ports.

INTOK: Instructions for software interrupt.

SHR: It would right shift 1 bit from rs.

SHL: It would left shift 1 bit from rs.

3.2 Configurable Master-Slave I-Cache Controller

In general, 20%~30% of total power dissipation in the processor dissipated in

instruction cache. Therefore, the configurable Master-Slave Instruction cache

controller is designed for low power design.[24]

3.2.1 The Proposal of Configurable Master-Slave

I-Cache Controller
The Configurable Master-Slave I-Cache controller is designed for increasing hit

rate efficiently in large range of jump. The Configurable Master-Slave I-Cache

controller algorithm is shown in Fig. 3-4.

 49

Fig. 3-4. The Configurable Master-Slave I-Cache controller algorithm.

3.2.2 The Performance of Configurable

Master-Slave I-Cache
Fig. 3-5 shows the total performance improvement in different kinds of

CR_Ratio.

Fig. 3-5. The improvement of MS-cache.

 50

CR_Ratio: The ratio of returnable jump in total jump instructions

Eff_Improve: A parameter of total performance improvement.

When CR_Ratio increases, the value of Eff_Improve increases obviously.

On the other hand, MS-cache uses the architecture of phased cache so that it can

reduce 44% of power dissipation.

3.3 High performance pipeline design of low power

phased cache
High performance pipeline design of low power phased cache is combined

phased cache with specific pipeline. It takes advantages of that it can eliminate the set

associate cache power and access the cache data one stage early by specific pipeline.

Our approach can reduce 44%~70% (2 ~ 4way) cache power consumption without

any time latency and only cost 6% total gate count in implementation.

 IF ID REG ALU WB/MEM

Reg

file
ALU

L1 Tag L1 Data load

other

HIT

MISS Main

memory

Address

calculator

Fig. 3-6. The architecture of High performance pipeline design of low power phased

cache.

Fig. 3-7 reports the results of cache access cycle and total performance by

Simplescalar. The time consumption of cache access is reduced 38% and power

 51

consumption is reduced 40% - 70%.

Fig. 3-7. Cache access cycles & Power consumption.

3.4 Tool Chain

3.4.1 Assembler
The GUI assembler supports machine code translation, program ROM generation

and debug information. User can debug and generate test bench by above information.

The assembler figure is shown in Fig. 3-8.

Assembler

Data RomMachine
Code

Debug
Information

Testbench

AssemblerAssembler

Data RomData RomMachine
Code

Debug
Information

TestbenchTestbench

Fig. 3-8. The assembler Figure.

 52

We implemented the tool based on Visual C++ language in Fig. 3-9. The

assembler generates files:

Pop.txt : Hexadecimal program code for testing chip.

Bin.txt : Binary program code for simulation.

Direct

File

Message

Compile Build

Edit

Fig. 3-9. Assembler Interface.

3.4.2 Simulator
Our thesis provides a simulator implemented by Visual C++ language for

different kinds of test patterns. We apply a method like software pipeline [13] for

simulator so that each iteration is arranged in inverse order. An example for five

pipeline RISC architecture is in Fig. 3-10. All stages sort in inverse order.

 53

For(cycle++)

{

 //5th stage Write Back

 ….

 //4th stage ALU

 ….

 //3rd stage Reg_File

 ….

 //2nd stage Decoder

 ….

 //1st stage Fetch

 ….

}

Execution Way

Fig. 3-10. Software pipeline design flow.

The simulator provides the ability to view register value and memory content and

calculate the number of hazard and total penalty cycle.

These information can help programmer to analyze performance and debug

easily. In Fig. 3-11, it shows assemble code, memory data, register value, total cycle

count and total instruction count.

 54

Fig. 3-11. The simulator interface.

3.5 Verification

In order to respond ISS(Information Systems and Sciences), our processor use

some test pattern including F.I.R (Finite Impulse Response) ,D.C.T (Discrete Cosine

Transform) and Sobel operator and the result of simulator to verify our processor’s

function. We will introduce three kinds of test pattern and these results in the

following paragraph.

3.5.1 Finite Impulse Response

FIR filtering is a general application in communication and multi-media field.

Fig. 3-12 shows the 16 tap impulse response FIR filter.

 55

Fig. 3-12. FIR RTL simulation and simulator result.

For verify our proposed codec performance, we supports a module to calculate

switch activity which data to external memory on bus. In Fig. 3-13, our proposed

method can reduce 46.13 % of switch activity on data bus.

W/O encoding

With encoding

Fig. 3-13. Switch activity for FIR.

 56

3.5.2 Discrete Cosine Transform

The 8 by 8 1-dimensional DCT algorithm is shown in Fig. 3-14. The 8 by 8

2-dimensional DCT is implemented by applying 1-dimension DCT row-by-row and

column by column. The simulation result is shown in Fig. 3-15.

Fig. 3-14. 1 dimension 8 by 8 DCT.

Fig. 3-15. 2 dimension 8-8 DCT RTL simulation and simulator result.

 57

W/O encoding

With encoding

Fig. 3-16. Switch activity for DCT.

In Fig. 3-16, our proposal can reduce 58.92 % of switch activity on data bus.

3.5.3 Sobel Operator

We use Sobel operator to verify the large data moving in data cache. The Sobel

operator is an edge detection algorithm in image processing. It is a discrete

differentiation operator technically and gets the gradient of the image intensity

function. At each point in the image, the result of the Sobel operator is either the

corresponding gradient vector or the norm of this vector.

Sobel operator computes approximations of the derivatives for horizontal and

vertical changes by using two 3x3 array which are convolved with the original image.

We define A as the source image, Gx and Gy are two images which contain the

horizontal and vertical derivative approximations. The equation is as:

 58

-1 0 1 1 2 1
-2 0 2 * 0 0 0 *
-1 0 1 -1 -2 -1

x yG A and G A
+ + +⎡ ⎤ ⎡

⎢ ⎥ ⎢= + =⎢ ⎥ ⎢
+⎢ ⎥ ⎢⎣ ⎦ ⎣

+ ⎤
⎥
⎥
⎥⎦

 (3-1)

And then we calculate root mean square value to get the resulting gradient

approximations, using

2 2
x yG G G= + (3-2)

We implement edge detection for 64x64 pixels image in our processor and

compare with MATLAB in Fig.3-17.

Fig. 3-17. Sobel Operator simulation.

3.6 Field-Programmable Gate Array (FPGA)

In the internet product, communication, industry system and electrical system

field, they usually use F

, FPGA has the

 Processor Source Image MATLAB

PGA to design their chip because FPGA has high flexibility so

that user can make their logic function from Boolean function, register function,

embedded memory and complex functional IP. In the other hand, it can easily place

and fit in the platform for different kinds of application.

 The processing time in FPGA is slower than ASIC. However

 59

adva

1500EBC652-1X and Quartus Ⅱ to floorplan,

place

erator simulation in FPGA and Matlab simulation is shown in Fig.

3-15

ntages include a shorter time to market, ability to re-program in the field to fix

bugs. The designs are developed on regular FPGAs and then migrated into a fixed

version that more resembles an ASIC.

We use Altera APEX20KE EP20K

, and route.

The Sobel op

Fig. 3-18. The Sobel operator result in FPGA and Matlab.

3.7 Summary

troduce a RISC embedded processor combined with

conf

ext chapter, we will integrate it into a SOC chip.

In this chapter, we in

igurable Master-Slave cache controller and High performance pipeline design of

low power phased cache. The system not only prove the correctness of the algorithm

but also take advantages of the ability of specific designs to reduce total power

dissipation.

In the n

 60

Chapter 4
plementation and

 the issues of the chip implementation and

verification results.

p Design Flow

as shown in Fig. 4-1 for our chip

imple

Chip Im
Verification Results
4.1 Chip Fabrication

In this chapter, we will debate

4.1.1. Chi

We refer to CIC cell-based design flow

mentation and verification.

S p ec ific a tio n

A ssem b ler
D e sig n

In s tru c tio n s
D e sig n

H D L C o d e
D es ig n

M od e lS im

D esig n C o m p ile r
U M C 1 8 D esig n K it

H D L
S im u la tio n

H D L & S can -C h a in
S y n th esis

G ate lev e l
S im u la tio n

A u to
P lace & R o u te

P o s t-lay o u t
S im u la tio n

S R A M
B IS T

SO C E n cou n te r

M od e lS im

S yn tes t

M od e lS im

D F T C o m p ile r

D R C & L V S C alib re

T E X T E d ito r

C + +
V B

S p ec ific a tio n

A ssem b ler
D e sig n

In s tru c tio n s
D e sig n

H D L C o d e
D es ig n

H D L C o d e
D es ig n

M od e lS im

D esig n C o m p ile r
U M C 1 8 D esig n K it

H D L
S im u la tio n

H D L
S im u la tio n

H D L & S can -C h a in
S y n th esis

G ate lev e l
S im u la tio n
G ate lev e l
S im u la tio n

A u to
P lace & R o u te

A u to
P lace & R o u te

P o s t-lay o u t
S im u la tio n
P o s t-lay o u t
S im u la tio n

S R A M
B IS T

S R A M
B IS T

SO C E n cou n te r

M od e lS im

S yn tes t

M od e lS im

D F T C o m p ile r

D R C & L V SD R C & L V S C alib re

T E X T E d ito r

C + +
V B

FPGA timing
 simulation

FPGA verification

TSMC 18 Design Kit
Design Compiler
DFT Compiler

Quartus II

Fig. 4-1. Cell-based design flow.
 61

4.1.2. Synthesis

The behavior level hardware description language (HDL) of the embedded

processor has been pre-simulated by Mentor-ModelSim and synthesized by

Cadence-Design Compiler, where the timing constraint is 10 ns. The synthesis report

using TSMC 0.18um CMOS technology is summarized in Table 4-1, where the

98.25% fault coverage is measured.

Table 4-1 Synthesis Report

Area (mm2) ITEM Timing Fault coverage

Processor 497524.31 10 ns 98.25 %

4.1.3. Auto Placement and Routing (APR)

Next, we use Cadence-SOC Encounter to place and route the gate level code

automatically.

Table 4-2 APR Report

Chip name Bio-CAS Processor Version 1 (BP_v1)

Technology TSMC 0.18um 1P6M CMOS

Package 160 CQFP

Chip Size 2.114× 2.114 mm2

Gate Count 47K gate count (Bus codec: 2.014K)

Power Dissipation ~16mW

Max. Frequency s） 100MHz （10 n

We use s inclu R and S ith Prim he average test pattern de DCT, FI obel w ePower. T

 62

of power dissipation is 16mW. The chip layout is shown in Fig.4-2. The chip pin

igs. 4-3, 4-4, description and 160 pin-CQFP bounding diagrams are revealed in F

respectively.

Fig. 4-2. Chip Layout.

 63

PADI_DATA_MMr
6:31

P
AD

I_R
S

T
P

A
D

I_C
LK

P
AD

I_C
E

N
_M

M
r

IO
V

D
D

IO
VS

S

P
A

D
I_B

IS
TM

O
D

E
PA

D
I_tpclk

P
A

D
I_testm

ode

P
A

D
I_test_si

P
AD

I_test_se
PA

D
I_E

ncoder_S
el

P
AD

I_D
evice_Int

0

PADI_pro_mem_data_w
0:10

IOVDD
IOVSS

PADI_DATA_MMr
0:5

PADI_pro_mem_data_w
11:31

PADO_HAddr
0:7

PADO_HWDATA
0:31

PADO_HAddr
8:15

PADO_pro_mem_address_w
0:8

CoreVDD
CoreVSS

PADO_pro_mem_address_w
9:15

PADO_test_so

PADO_Finish
PADO_BistFail
PADO_BistFail

PADO_DATA_MISS
PADO_WEN
PADO_CEN

PADO_ctrl_sig_next_H

PADO_ctrl_sig_next_L
PADI_Device_Int

Fig. 4-3. Chip Pin Description Diagram.

Fig. 4-4. 160 pin-CQFP Bounding Diagram.

 64

Table 4-3 Chip Specification

Technology Description

Process TSMC 0.18μm 1P6M Mixed Signal

Architecture 7-stage pipeline

Synthesis Synopsys Design Compiler

Gate Count 47K (Bus codec: 2.014K)

Embedded Memory Cache_FIFO RAM(512x2)x1,

Cache_DATA RAM(512x32)x2,

Cache_TAG RAM(512x8)x2,

MS_Cache RAM(512x32)x2,

MS_Cache_TAG RAM(512x8)x2

2.114 × 2.114 mm2Die size

Supply 1.8V/3.3V ± 10%

Input Delay Time Max 0.714ns/ Min 0.543ns

Power consumption 16 mW

Operating Frequency 100 MHz

The chip characteristics are listed in Table 4-2, where the power consumption is

16 mW.

Finally, we still use Calibre DRC（Design Rule Check）and LVS （Layout VS

Schematic）for our final check.

In memory part, we generate 4 tag cache for address tag, 4 data caches for data

by Cadence-Memory generator. The gate-level timing diagrams of DCT and Sobel

benchmark are shown in Fig.4-5 and Fig. 4-6, respectively.

 65

Fig. 4-5. DCT gate-level simulation.

Fig. 4-6. Sobel gate-level simulation.

4.2 Power Analysis

The transparent un-coding power dissipation at the bus is given by (4-1) where P

is power consumption, CL is the bus capacitance per bit,α is transition activity, V is

supply voltage, f is clock frequency.
 66

2
,D uncoded uncoded LP C V fα= (4-1)

For our proposed encoding and decoding scheme, the power dissipation at the

encoder, the bus, and the decoder is given by (4-2).

 , , , , D coded D encoder D bus D decoderP P P P= + + (4-2)

If αcoded is the reduced transition activity at he bus after encoding then the total power

dissipation is given by (4-3).

 (4-3)

We estimate the power dissipation in the encoder and the decoder are 0.8mW by

DCT function.

In Fig. 4-7 we plot s capacitances, CL . The

power dissipation was estimated using 75 samples of DCT data to memory. We see

that for small bus capacitances (<0.3415 pF/bit) in Fig. 4-8, it is best to not encode the

data at all. For capacitances above 0.3415 pF/bit, our proposed scheme provides a

well reduction in power dissipation. The slope of the curve is determined only by the

reduced transition activity, αcoded, and is independent of the power dissipation in the

encoder and decoder.

2

, , , D coded D encoder coded L D decoderP P C V f Pα= + +

the power dissipation for different bu

 67

Fig. 4-7 Power dissipation for Proposed and Original

Fig. 4-8 Power dissipation for Proposed and Original
 68

Chapter 5
Conclusions and Future Works

In this thesis, we proposed a power aware data bus codec design that can reduces

switch activity by 23% on average since adaptively choosing the optimal encoding

scheme for different data types. The advised codec can save 68% area overhead

compared with R-S-H’s design. From the FIR and DCT benchmark simulations, on

average, 50%~60% power reductions can be guaranteed. In near future, the processor

design adopting low power bus codec and phase-cache pipeline schemes will be tape

out for completeness. At that time, we will integrate the proposed scheme with the

operation amplifier, filter, and analog-to-digital converter for biomedical SOC design.

 69

References
[1]

frequency management for a low-power embedded microprocessor,” IEEE Journal of
Solid

[2] A Khan, P Watson, G Kuo, D Le, T Nguyen, S Yang, P , “A 90-nm power optimization

[3]

415-420, Mar, 2000.

[4]
sequential circuits,” IEEE Design & Test of Computers, vol. 11, no.4, pp.32-41,

ctober, 1994.

[5] P. Petrov, A. Orailoglu, “Low-power data memory communication for
plication-specific embedded processors,” Proceedings of the 15th international
mposium on System Synthesis (ISSS '02) , pp. 219-224, October, 2002.

[6] Michael J. Flynn, Patrick Hung, “Microprocessor design issues: thoughts on the

ad ahead,” IEEE Computer Society, vol.25, no.3, pp. 16-31, MAY–JUNE 2005.

[7] Ke Ning, David Kaeli,“Power aware external bus arbitration for system-on-a-chip
bedded systems,” Proceedings of High performance embedded architectures and

compilers, vol. 3793, pp. 87-101, November, 2005

[8] A.P. Chandrakasan , S. Sheng , R.W. Brodersen , “Low power CMOS digital
design,” IEEE Journal of Solid-State Circuits, vol. 27, issue 4, pp473-484, April,

92.

[9] A.P. Chandrakasan and R.W. Brodersen, “Minimizing power consumption in digital
MOS circuits,” Proceedings of the IEEE, vol. 83, issue 4, pp.498-523, April, 1995.

[10] S. Komatsu, M. Ikeda, K. Asada, “Bus data encoding with coupling-driven adaptive

S. Takahiro, S. AKUI, K. SENO, M. NAKAI, T. MEGURO, “Dynamic voltage and

-State Circuits, vol. 40, no. 1, pp.28-35, January, 2005.

methodology with application to the ARM 1136JF-S microprocessor,” IEEE
Journal of Solid-State Circuits, vol. 41, issue 8, pp. 1707- 1717, August, 2006.

Qing Wu, M. Pedram , Xunwei Wu, “Clock-gating and its application to low power
design of sequential circuits,” IEEE Circuits and Systems I, vol. 47, issue 3, pp.

L. Benini, P. Siegel, G. De Micheli, “Saving power by synthesizing gated clocks for

O

ap
sy

ro

em

19

C

 70

co er data transmission,” IEEE Solid-State Circuits
C ber, 2001.

[12 r I/O,”IEEE Transactions
VLSI systems, 1995.

[13

oding,” NORSIG, 2004.

[14 h, Kevin Skadron, “Odd even bus invert with two phase transfer

r buses with coupling,” Proceedings of the 2002 international symposium on Low

stems,” IEEE 7 Great Lakes Symposium, 1997.

[16] S. Ramprasad, N. R. Shanbhag, I. N. Hajj, “A coding framework for low power

[17

bedded Computing Systems (TECS), vol.1, issue 1,pp.79- 105, November,

de-book method for low pow
onference, pp. 297-300, Septem

[11] 鍾崇斌, “Low-Power Computer Design :Slides,”國立交通大學，Sep, 2006.

] M.R. Stan, W.P. Burleson, “Bus-invert coding for low powe
on

] Tina Lindkvist, Jacob Lofvenberg, Oscar Gustafsson, “Deeo sub-micron bus invert

c

] Yan Zhang, John Lac

fo

power electronics and design, pp. 80-83, 2002.

[15] L.Benini, G.DeMicheli, E.Macii, D.Sciuto, and C.Silvano, “Asymptotic zero-

transition activity encoding for address busses in low-power microprocessor-based

thsy

address and data busses,” IEEE Transitions VLSI Systems, vol. 7, no. 2, pp. 212-221,

June 1999.

] J Yang, R Gupta, “Frequent value locality and its applications,” ACM Transactions

on Em

2002.

[18] J Yang, R Gupta, “Frequent value encoding for low power data buses,” ACM

 71

Transactions on Design Automation of Electronic Systems (TODAES),vol.9, issue

3,pp. 354 - 384, July, 2004.

, 2003.

ystems (TODAES), vol.5, issue 2, pp.115–192, April, 2000.

[21] Simon Segars, “Low power design techniques for microprocessors,” ISSCC, Feb,

[22] M. Sam

W embedded architectures,” IEEE VLSI Systems, vol. 10, issue 5,

[23] Nian Shyang Chang, erification, Chip

plementation Center, July, 2004.

[24

bedded Processor Using Configurable Master-Slave I-Cache

ontroller,” 國立交通大學，碩士論文，中華民國 95 年

[19] M. Muroyama, A. Hyodo, T. Okuma, H. Yasuura, “A power reduction scheme for
data buses by dynamic detection of active bits,” Digital System Design Proceedings,

berpp.408- 415, Septem

[20] Wolfgang Nebel, “System-level power optimization,” ACM Transactions on Design
Automation of Electronic S

2001.

i, D. Sciuto, C. Silvano, V. Zaccaria, R. Zafalon, “Low-power data

forwarding for VLI

pp.614-622, October, 2002.

Cell-Based IC Physical Design and V

Im

]周經翔、林進燈, “具有使用者可調性主從式指令快取記憶體控制器: Design of

Multi-Core Em

C

 72

Appendix

A. DRC and LVS Verification

1. DRC

DRC 驗證無誤

2. LVS

LVS 驗證無誤

 73

B. CIC Tapeout Review Form

1. 晶片概述：

耗設計之嵌入式處理器1-1. 專題名稱： 具有快取及匯流排低功

-2. Top Cell 名稱： SD_v3 1

1-3. 使用 library 名稱：

 CIC_CBDK35

 CIC_CBDK25

 v CIC_CBDK18

版本: v1.0

1-4. 是否使用CIC提供之Memory？ Yes

1-5. 工作頻率： 100 MHz

1-6. 功率消耗： 16mW

1-7. 晶片面積： 2114 X 2114

2. 設計合成：

之合成軟體？ Synopsys design compiler 2-1. 使用

2-2. 是否加入 boundary condition：

 v input drive strength、 v input delay、 v output loading、 v output

delay

2-3. 是否加入 timing constraint：

 v specify clock (sequential design)

 max delay、 min delay (combinational design)

2-4. 是否加入area constraint？ Yes

2-5. 合成後之report是否有timing violation？ No

 有 setup time violation、 有 hold time violation

2-6. 合成後之verilog是否含有assign描述？ No

2-7. 合成後之verilog是否含有 *cell* 之instance name？ No

2-8. 合成後之verilog是否含有反鈄線 \ 之instance name或net name？ No

3. 可測試性設計(前瞻性晶片必填)：

3-0. 使用之設計軟體？ DFT compiler

3-2. 使用之ATPG軟體？ Tetramax

3-3. 使用Embedded memory數量: SRAM 5 ，ROM 0

512x32 (Word x bit)x2 512x8 (Word x bit)x2 512x2Memory大小:

(Word x bit)x1

 74

測試方法: BIST Yes ，or 其他測試方法 N/A

若使用BIST,其Test Algorithm為何? Moving Inversion (13N March)

同時有多個memory，是否共用BIST controller Yes ，BIST controller數量

 1

3-4. Sca n I

lip-Flop 共有多少個？ 2280

n Chai nformation

F

Sca n n chai 的數量共有多少條？ 3

Sca n .840 n chai length (Max.) ？ 25561

3-5. Unco erage是否超過 90% ？ Yes llapsed fault cov ，為多少？ 98.24%

ATPG pattern的數目為多少？ 272

註 ys TetraMAX 來產生 ATPG pattern，請使用 set faults

- 令指定 TetraMAX 產生 fault coverage information

若 Sy ATPG pattern，請以 atpg

p st

4. 佈局前模擬

4-1. gate level simulation是否有timing violation？ No

：若使用 Synops

fault_coverage 指

使用 nTest TurboScan 之 asicgen 來產生

essimi ic fault coverage 的值為準

 有 setup time violation、 有 hold time violation

5. 實體佈局

5-1. 使用之P&R軟體？ Apolo、 v SE

power ri5-2. ng寬度？ 8 是否已考量current density(1mA/1um)？ Yes

5-3. 是否 ut考慮o put loading？ Yes

5-4. 是否加上Clock Tree？ Yes

5-5. 是否加上Corner pad？ Yes

5-6. 是否 IO加上 Filler？ Yes

5-7. 是否 Co加上 re Filler？ Yes

5-8. 是否上加 Bonding Pad？ Yes

以下(A-1)為使用 Apollo 者才須回答

A-1. 是否執行 Fill Notch and Gap 步驟？

以下(S-1 至 S-2)為使用 SE 者才須回答

S-1. power ring上是否有overlap vias？ No

S-2. 是否確定IO Row和Corner Row互相貼齊？ Yes

6. 佈局後模擬

6-1. 是否做過post-layout gate-level simulation？ Yes

STA(static timing analysis) 軟 體 ？ Primetime / Modelsim

 75

6-2. 是否做過post-layout transistor-level simulation？ No

6-3. 已針對以下環境狀態模擬： SS、 TT、 FF

6-4. 晶片取得時將以何種方式進行測試？ P600 of Agilent 93000

響？ Yes 6-5. 模擬時是否考量輸出負載影

7. DRC/LVS

7-1.

驗證

是否有DRC錯誤？ No 錯誤原因：

驗證DRC軟體？ Calibre

是否有不作DRC的區域？ No

7-2. 是否有LVS錯誤？ No

驗 證LVS 軟體？ Calibre

否有非CIC提供的BlackBox？是 No

設計者簽名: 薛智文/黃德瑋 指導教授簽名: 林進燈

 76

	Table of Contents
	List of Figures
	List of Table
	Chapter 1
	Introduction
	1.1 Brief Introduction
	1.2 Organization of the Thesis

	Chapter 2
	Power-Aware Data Bus Codec
	2.1 Motivation
	2.2 Related Works
	2.2.1 Bus-Invert Bus Encoding
	2.2.2 Zero-Transition Activity Encoding
	2.2.3 A Coding Framework for Low Power Address and Data Busses
	2.3 Power Aware Data Bus Codec
	2.3.1 Proposed Data Bus Codec
	2.3.2 Architecture of Codec
	2.4 Power Aware Data Bus Codec Simulator
	2.4.1 8 bits Power Aware Data Bus Codec Simulator
	2.4.2 16 bits Power Aware Data Bus Codec Simulator
	2.5 Result and Analysis

	Chapter 3
	Low Power Embedded Processor Design
	3.1 Architecture of the Low Power Embedded Processor
	3.1.1 Low Power Embedded Processor Core
	3.1.2 Low Power Embedded Processor Instruction Set
	3.2 Configurable Master-Slave I-Cache Controller
	3.2.1 The Proposal of Configurable Master-Slave I-Cache Controller
	3.2.2 The Performance of Configurable Master-Slave I-Cache
	3.3 High performance pipeline design of low power phased cache
	3.4 Tool Chain
	3.4.1 Assembler
	3.4.2 Simulator
	3.5 Verification
	3.5.1 Finite Impulse Response
	3.5.2 Discrete Cosine Transform
	3.5.3 Sobel Operator
	3.6 Field-Programmable Gate Array (FPGA)
	3.7 Summary

	Chapter 4
	Chip Implementation and Verification Results
	4.1 Chip Fabrication
	4.1.1. Chip Design Flow
	4.1.2. Synthesis
	4.1.3. Auto Placement and Routing (APR)
	4.2 Power Analysis

	Chapter 5
	Conclusions and Future Works
	Appendix
	A. DRC and LVS Verification
	B. CIC Tapeout Review Form

