5O A R it Yo RS fEAD B

Design of Power'Aware Data Bus Codec

e N A1V
iR R R
rﬁéﬂ%ﬁ P

PERREY A ES T

o g e R R A RS 5
Design of Power Aware Data Bus Codec
S e A Student : De-Wei Huang
to EHcHe D HREE K Advisor ¢ Dr. Chin-Teng Lin

R+ R Dr. You-Yeng Chen

A Thesis
Submitted to Institute of Electrical and Control Engineering
College of Electrical.and Computer Engineering
National Chiae-Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Electrical and Control Engineering
July 2007

Hsinchu, Taiwan, Republic of China

PEARAY S A

3:4 = f\."Fl ’}«- Fron /;IL;JH'—: EIJ'{”% ﬁ:’:}z’% ‘\:;

Design of Power Aware Data Bus Codec

CERE PR g Rt B4
é’l"{a%ﬁ £ L

B2 il ~ F AR g1 A28 g 07

¢ fER

AT RN BRI BEY G R - B SR OT R R G 8 E

R 'E X transition activity - i& @ i T M e ek o B 8 AR A

FRE YR F 00 pF R T Hik g K o0 Bl gn s 2 RSH > 2 4p vt g0 TR I 23%

Fo %7 Fi 4 Bk a0 LUDRABIRBER A FETR R A A2

FJLPER 0 VTR g @R WA R SIS L0 s (D8 H T R

P B PE RS AR - 5 RIS 0 R B R 4 6% B

ko B HRETR B T K20 v & 50 & DCTFIR A25% ¢ >
T 307 ' K 50~60% = & 5 fL oo

B A SRR AL T e B it~ SSRISC/DSPE o i

p)

R EHRILE SR G e~ Bl KA IR G ook et K S
PP ferki v 2 s LT BT R o 23k 4R TOMC 0. 18 um AT - &

ST R 2. 11x2. 11 mm’ > TE B B B IEAE S A 100MHZ > # F 4<% 16mW -

i1

Design of Power Aware Data Bus Codec

Student : De-Wei Huang Advisor : Dr. Chin-Teng Lin
Dr. You-Yeng Chen

Department of Electrical and Control Engineering

National Chiao-Tung University

Abstract

In this thesis, we propose a power-aware codec scheme to reduce transition
activity for data bus design. The low power data bus codec consisting of transparent,
inverter, XOR, and XNOR module can lead to 23 % & 6 % power reduction
compared with the un-coding and«R-S-H’s methods under the 8-bit width and the 50
pF capacitance loading. The main features of this codec design are: (1) codec can save
68% area overhead compared ‘with':R-S-H’s-design and (2) codec can adaptively
choose the optimal encoding scheme for.different kinds of data types due to versatile
applications. From the FIR and DCT benchmark simulations, the power can be
reduced to 50%~60% on average.

Furthermore, we integrate this data bus codec into a RISC/DSP unit-core
processor with the tradeoff between cost and power. The chip fabricated in TSMC
0.18um CMOS technology process with the total area of 2.11x2.11mm” and has

power consumption of 16mW at 100MHz with 1.8V supply voltage.

AEGET Y ARG EH Y SR T A A B BRARF S A
Ejl/]ﬁ"frf”f y RABEAG R E 4 T OEN R ST s R

FOLE R e Al SRR R o R RN A B -
P B RATB PN G ARE FOE] A R o BT BT R ST] R
5B AR A R A e b gl BT A Y 5k
AT 4 2 B BT R

ek Ep E*TF‘ ESTE

—\

AR MRS E RS £ L5 Rl E A
SR RS PR FRE A 6 0 AR X Hm s R Sl R A

-~

B, FAANSLGYEFRIEM ZRS S EF LS o AF%E? 2

Faolaiier FA I HRCEEL AV RITE 2 REES KFE # A

1 H T B RG D nh EATR . Bapa NEILE - 4 B R R T 4 o

UogmEE . RSl P BE FABE SRR L T E 25

&
SFEABNELEY RREH LRSS VB PER 2 e BT

Gk
-l
%

EENE I SN /oE S R SERVE - & -7 S TR T SR
FLFT Y LT AR IR 2 R
dRHADE G B R P - B AN SRER SR

P

ERAEET SRR

v

Chapter 1

1.1
1.2

Chapter 2

2.1
2.2
2.2.1
222
223
23
23.1
232
24
24.1
242
2.5

Chapter 3

3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2

Table of Contents

Table of Contents V

List of Figures Vil

List of Table X
Introduction, . . v v v v vttt e et ettt et e |
Brief INtrOAUCTION. c.eeeeeeeee e e e e e e e e e et e e e e e e eeeenaens 1
Organization Of the TheSIScc.eevcuiieriiiieciieeeeeee e 3
Power Aware Data Bus Codet i hrvn v v v v v v v v e e oo oo e o enn 4
IMOTIVALION ..c.eeeeeeeee et ottt te e e e e ettt e et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 4
Related WOTKS ..o e e 7
Bus-Invert Bus Encoding /i v e 7
Zero-Transition Activity BACOAING ...it0t . veeiiieiiiiiieiiecieeieeeee e 9
A Coding Framework for Low Power Address and Data Busses............ 12
Power Aware Data Bus COAECoovvvvveveiiieieeeieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 20
Proposal 0f Codec......cccuiiiiiiiiiiiieeiieeeee et 22
ATCRITECTUTE OF COUEC e 28
Power Aware Data Bus Codec SIMulatoroovveveveieeieeeeeeeeeieieeeeeeeenene. 31
8 bits Power Aware Data Bus Codec SImulator.......ccooeveveeeeeeeeeeeeeeeeeennn. 31
16 bits Power Aware Data Bus Codec SImulator...........cooovveeveveeeeeenennnn.. 35
Result and ANalySiS.......oooieeiieiieiiieieeeieecee e 39
Low Power Embedded Processor Design 41
Architecture of the Low Power Embedded Processor..........covvvveuunenn.... 41
Low Power Embedded ProcesSor COTe....ouuumnaeeieeieeeeeeeeeeeeeeeeeeeeeeeenen 41
Low Power Embedded Processor Instruction Set........eueeeeeeeeeeeeeuieaenn... 45
Configurable Master-Slave [-Cache Controller...........cccccevvcvieenciieennnnnn. 49
The Proposal of Configurable Master-Slave [-Cache Controller............. 49
The Performance of Configurable Master-Slave I-Cache........................ 50

33 High Performance Pipeline Design of Low Power Phased Cache 51
34 TOOL CRAIN ...t 52
341 ASSEMDIET ..o 52
342 SIMUIALOTeiiiiiiii e et 53
3.5 VETTHICAtION. ..ttt st 55
3.5.1 Finite Impulse RESPONSE........eeevviiieiiieiieecieeeieeee e 55
3.5.2 Discrete Cosine Transformcoccevueeiiiniiiiieiieeeeeeeeeeee e 57
3.5.3 SODEl OPEIatorcceceiieeiieeciie ettt 58
3.6 Field-Programmable Gate Array (FPGA)......cccccevevieviiieeiieceeeeee e, 59
3.7 SUMMATY ...etieeiiiiee e e e e e e st e e e s sabeeesenneeeeenas 60
Chapter 4 Chip Implemenation and Verification Results 61
4.1 Chip FabriCation.......cccuieiiiiiieiiieeie ettt 61
4.1.1. Chip Design FIOWcccooiiiiiiiiiiiiiiciiee et 61
41,2, SYNERESIS teoueiiiiiieiieeieee et et 62
4.1.3. Auto Placement and Routing (APR).........cccooviiiiiiniiiiiiieeeeee, 62
4.2 Power ANalysis...........aliniieiio i e 66
Chapter 5 Conclusions and Fututeworks . < ¢ . . o, o o v v i v i v e v vt 69
AppendiX s e e e e e e e e e e e 73
A. DRC and LVS VerifiCation.........cccccuieriieriienieeiieniie ettt 73
B. CIC Tapeout Review FOrm..........cocueeiiiiiiiiiiiiiiiciiece e 74

vi

List of Figures

Fig. 2-1. Harvard architecture with four busses..........ccccceveuiriiiniiieneniinenne 6
Fig. 2-2. von Neumann architecture with two busses.cccceeevverierveenene 6
Fig. 2-3 von Neumann architecture with one bus.cccceevieriiienienienienne 7
Fig. 2-4. Bus-Invert ENcoding.cccoocvieviiriiiiiieeiieeecie e 9
Fig. 2-5. Zero-Transition Activity encoder/decoder............ccccceevveruennnennne. 11
Fig. 2-6. A general communication SYSteM..........c.cecveeeveerieeieeneenneenneennes 14
Fig. 2-7. A general communication system of noiseless channel. 15
Fig. 2-8. A Practical communication system of noiseless channel. 15
Fig. 2-9. Occurrence distribution, for EEG data before dbm........................ 18
Fig. 2-10. Occurrence distribution fot. EEG data after dbm. 18
Fig. 2-11. Waveform of the classicmusic. ..c........ccoceevervinieniniinciicniene 21
Fig. 2-12. Data variation: .. ki s i deie e e 22
Fig. 2-13. Block diagram of Tnvert coding.cccccoevieniiniieninniieeeee, 25
Fig. 2-14. Block diagram of XOR coding...........cccceevveeerierienciienieeieeneennn 27
Fig. 2-15. Block diagram of XNOR coding.........ccceceevuervienieneniieneeniennenne. 28
Fig. 2-16. System architeCture.cccocveeeuierieeiiieie e 29
Fig. 2-17. Block diagram of encoder.c.cecceeriieniiniiienieiieeeeceeeee 29
Fig. 2-18. Block diagram of decoder.c.covveeiienieeiienieeieeeecee e 30
Fig. 2-19. Switch activity reduction for 8-bit data............ccceeeervinirncnnene. 33
Fig. 2-20. Switch activity reduction for 8-bit data............ccceeevvevvervrenennne. 33
Fig.2-21. Switch activity reduction for 8-bit data............ccoceeveriinennenene. 34
Fig. 2-22. Switch activity reduction for 8-bit data............ccceevververvrennnnnne. 34
Fig. 2-23. The Data DiStribution.cccceeevuierieiiiienie e 35

Fig.2-24. Switch activity reduction for 16 bits data.............cccceevereenennnne. 37

Fig.2-25. Switch activity reduction for 16 bits data..........c..cccervererncnnenne. 38
Fig.2-26. Switch activity reduction for 16 bits data.............cccceevervenennnne. 38
Fig.2-27. Switch activity reduction for 16 bits data..........c..ccccervvevernennenne. 39
Fig. 2-28. Simulation for Multi-Media data..................ccceeiiiriererennee, 39
Fig. 3-1 The architecture of processor...............ccocevvevvevveceeieceeeceeeeeee, 42
Fig. 3-2 Pipeline processing flowc.ccccooioiiiiiiiiiceceeeeeeeeee 43
Fig. 3-3 MACHR 0perationcccceeeereeiinieneniineeieeieneeie e 48
Fig. 3-4 The Configurable Master-Slave I-Cache controller algorithm....... 50
Fig. 3-5 The improvement of MS-cache...........coccoviiiiiiiniinininiicee, 50

Fig. 3-6 The architecture of High performance pipeline design of low power

phased cache ...l i 51
Fig. 3-7 Cache access-cycles & Power consumption.................cccccveveeenenn.. 52
Fig. 3-8 The assembler FIZUI€ oo ioereneeeeeeceeeeceeeeeeceeeeeee e 52
Fig. 3-9 Assembler Interface ...ttt 53
Fig. 3-10 Software pipeline design flow..............c.ooovevieoiioeeeeeeeeeeeee 54
Fig. 3-11 The simulator interface..................ccccocveevieiieeiiicececeeeeeeee 55
Fig. 3-12 FIR RTL simulation and simulator result.....................cc..cceve..... 56
Fig. 3-13 Switch activity for FIRccccoooiiiiiiccecececeeeea 56
Fig. 3-14 1 dimension 8 by 8 DCTcccooiviiiiiiieieceeceeeeeeeee, 57

Fig. 3-15 2 dimension 8-8 DCT RTL simulation and simulator result 57

Fig. 3-16 Switch activity for DCTccoooviiiiiiiiececceeeeceee, 58
Fig. 3-17 Sobel Operator Simulation.............cceeeeeuereenieerienienenieseeieeee 59
Fig. 3-18 The Sobel operator result in FPGA and Matlab 60
Fig. 4-1 Chip Design FIOW........cociiiiiiiiiiiiiieeeeeeeeeee e 61
Fig. 4-2 Chip Layout Diagram.........c..cccceeveriineriinienenicneeniceeeseceeeeee 63

Fig. 4-3 Chip Pin Description Diagramccccceceveeneeieneenenieneeieeeene 64

Fig. 4-4 160pin-CQFP Bounding Diagram............ccccceeeviineeneniinennennenne. 64
Fig. 4-5 DCT gate-level simulationccceeeveeeiienieeciienieeieeiecee e 66
Fig. 4-6 Sobel gate-level sSimulationcocevervieniininiiniencnienecceeee 66
Fig. 4-7 Power dissipation for Proposed and Original.............cccccecveruennnenee. 68
Fig. 4-8 Power dissipation for Proposed and Original............c.cccoceevuennnne. 68

1X

List of Table

Table 2-1 Without Zero-Transition Activity Encoding............ccccoevvvienenee. 11
Table 2-2 With Zero-Transition Activity Encodingccccceevveeveenennne. 12
Table 2-3 Example of Difference-Based Mapping (dbm)ccceeeneeeneee. 17
Table 2-4 Example of Probability-Based Mapping (pbm).........cccvvennnneee. 19
Table 2-5 First Ten Data Sequences of Classic MUSIC.........cccceveereeuennnenne. 21
Table 2-6 Data Variationccceeeerueeierieneeiesienieeie e 22
Table 2-7 Example of Classic Music before Using Invert.............cccceuee.e. 23
Table 2-8 Example of Classic Music after Using Invert.............cccccevueeneenee. 24
Table 2-9 Example of Classic, Music before Using XORcccccevueennenne. 25
Table 2-10 Example of.€lassiciMusi¢.after Using XORcccocevvenneennee. 26
Table 3-1 Data Moving Instructions List .. .5................c.ocoooeiiiiiiee, 45
Table 3-2 Arithmetic & Logic Instractions-List.......................c.ccocoeevinennnn, 46
Table 3-3 Branch/Jump Instructions Listccoooeiiiiiiiiiieee, 46
Table 3-4 SIMD Instructions Listccccooiiirrnniienccee e, 47
Table 3-5 Other Instructions Listccccooeiiiiiiiiiieeeceeeeeee 48
Table 4-1 Synthesis REPOTt.........cccvieeiiiiiieiiieiiecieeeee e 62
Table 4-2 APR REPOTT....ccueiiiiiiiieiieee e 62
Table 4-3 Chip SPecifiCationcccueeviieiieeiiieeiieieeeie e 65

Chapter 1
Introduction

1.1 Brief Introduction

In 3C integration era, the mobile phone does not only communicate with people
but also has various functions like digital camera, MP3 player, games, and etc.
Therefore, the multi-functions mobile phone just can acquire favor of consumers in
the information market.

However, when the demand of performance and functions of the mobile phone
increases, the power consumption would,be an important design issue. Most of
companies not only seek for high perfofmance and low cost, but also focus on low
power design.

In other words, low power’is a primary-consideration to System on Chip (SOC)
design, especially for handheld devices'due to the limited battery life. In order to
accomplish such challenging tasks, many design techniques such as multi-Vth design
techniques [1][2], dynamic voltage scaling [3][4], gated clock [5], and low-power
on-chip memory architecture [6] have been proposed to reduce both dynamic power
and leakage power However, those design techniques require advanced design process
to reach the low power goal.

In the processor, it becomes increasingly limited by memory performance and
system power consumption [7]. The power associated with off-chip accesses can
dominate the overall power budget. The memory power problem is even more acute
for processors that possess memory intensive access patterns and require streaming

serial memory access that tends to exhibit low temporal locality.

In terms of reducing memory power, one approach is to consider how optimally
to schedule off-chip accesses. The capacitance associated with the external bus is
much larger than the internal node capacitance inside a microprocessor. [7] For
example, a low-power embedded microprocessor system like an Analog Devices
ADSP-BF533 running at 500 MHz consumes about 374 mW on average during
normal execution. Assuming a 3.65 V supply voltage and 133 MHz bus frequency, the
average external power consumed is around 170 mW, which accounts for
approximately 30% of the overall system power dissipation. One factor affecting the
capacitance on external bus power is the bus width. For example, the power
dissipation on 16-bit bus is larger than 30% on 8-bit bus. As a consequence, the
design target like MP3 player, PDA and mobile phone always use low bit width bus
instead of the high bit width bus.

Recently, R-S-H proposed-codec scheme to reduce power consumption for data
and address buses. However, the table size-is-proportional to bit width in [16]. That
means that while data width is larger, more power consumption certainly be induced.
In this thesis, we are motivated to design a power-aware data bus codec which can
reduce dynamic power for data transmission. This power-aware codec is composed of
transparent, inverter, XOR, and XNOR modules. We use the audio, image, EEG,
random, and specific data to verify the codec characteristics via simulation results and
compare with other encoding schemes. In terms of codec implementation, a
RISC/DSP unit-core processor that integrates the proposed codec and low power
cache controller design is used for verification. The chip has been fabricated in TSMC
0.18um CMOS technology with the total area of 2.11x2.11mm?. The maximum clock
frequency runs at 100MHz with a single 1.8V supply voltage.

The proposed codec design has following features:

(1)Low cost

Codec does not need large hardware cost (just have 5% gate counts of total

processor) and one cycle processing time penalty.

(2)Low power

In the result of 8-bit simulation, our proposal has 23 % dynamic power
reduction in average on bus. For DSP function such as DCT and FIR, our proposal has
50-60% dynamic power reduction on bus. For power estimation, the proposed

encoder and decoder only have 0.8mW in PrimePower simulation.

(3)Awareness

The general encoder is usually suitable for several specific data stream or data
property. For instance, Bus-Invertiencoding scheme can only be used to acute data
variability. Our proposed method can compare the result of all encoding functions in
encoder and adaptively choose-the optimal-encoding scheme for different kinds of

data types due to versatile applications:

1.2 Organization of the Thesis

In this thesis, the organization is as follows. In Chapter 1, we give a brief
introduction for low power design. In Chapter 2, we propose a new power-aware
codec design for data bus. The integrated processor including our proposed bus codec,
and tool chains will be demonstrated in Chapter 3. The processor layout and simulated
result are shown in Chapter 4. Finally, conclusions and future work are remarked in

the last Chapter.

Chapter 2
Power-Aware Data Bus Codec

We would present an adaptive data bus codec including proposal, architecture,

and performance comparison with the features of low power, low cost, and awareness.

2.1 Motivation

As we know, there are two major sources of power dissipation in digital CMOS
circuits, which are summarized as follows[8]{9]

P=axCxV3xf &0l 2. <V, (2-1)

eakage

Where P, C, &, ¥, f denote power.consumption; capacitance, transition activity,
supply voltage, and clock frequency, respectively. The first and second terms
represent the dynamic power and leakage power, respectively. In the second term,
leakage current that can be arisen from substrate injection and sub-threshold effects is
primarily determined by the fabrication technology.

For the reduction of dynamic power, the main design principle is to minimize the
values of ¥, C, fand a in Eq. (2-1) [10]. Among the four parameters, supply
voltage V' that has a quadratic effect and capacitance C are very efficient ways of
decreasing the power dissipation. However, for CMOS circuits, the designers usually
decrease V and C in layout level. For larger digital circuits and systems, decreasing V'
and C is an annoying problem in cell-based design. On the other hand, lowering the
transition activity is a very promising way to reduce the power consumption in

cell-based design.

Generally speaking, the percentage of power dissipation on bus is in the range of
10% and 80% for microprocessor. The category of bus is external bus and internal bus.
External bus includes external memory data transmission and I/O data transmission.
Internal bus includes internal memory, cache, and IP data transmission. The power
dissipation in external busses usually is larger than that of internal busses by hundred
times [8]. Thus, we are motivated to solve this critical power problem of data bus in
architecture and logic level. In this paper, we propose a power-aware encoder and
decoder to compress the data transition activity &, and thus the power can be saved.

There are four properties in bus stream [11] discussed as follows.

(1) Instruction address stream: Instructions addresses are often consecutive. As a
result, instruction address stream is very predictable.

(2) Data address stream: Data‘access may be‘consecutive while accessing arrays;
otherwise, the data address stream is randem. Although data addresses are less
predictable, they still follow theprinc¢iples-of-spatial and temporal locality.

(3) Instruction stream: Most TSAs. (Instruction Set Architecture) exhibit some
regularity and instructions can be partitioned into fixed-location fields. As a result,
Instruction stream is predictable by fixed-location fields.

(4) Data stream: The sequence is not predictable. The values vary irregularly
with different kinds of applications and different kinds of algorithms.

The above properties in bus stream have been widely applied to three
off-the-shelf computer architectures.

(a) Harvard architecture with four busses:

_ N A Advaca
I-Address CPU

I-Data > D-Data >

A 4

Data

Memory

Fig. 2-1. Harvard architecture with four busses.
Harvard architecture is a computer architecture with physically separate storage
and signal pathways for instructions and data. Each address bus and data bus is only
for instruction memory or data memory. As a result, each stream has independent bus

and been easily controlled.

(b) von Neumann architecture with two 'b'usse_s:

F I . .]
1 [[
i -
i

I/D—Addness CPU
1/D-Data*. i

Fig. 2-2. von Neumann architecture with two busses.
The von Neumann architecture is a computer architecture that uses a single
storage structure to hold both instructions and data. Instruction address stream and
Data address stream are set on the same bus. Instruction stream and Data stream is so

on.

(c) von Neumann architecture with one bus:

http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Computer_storage

I/D-Address/Data CPU

Fig. 2-3 von Neumann architecture with one bus.
All streams are running on the same bus. On this bus, it needs more signals to

control stream operations.

2.2 Related Works

In this section, we would introduce the welative researches of low power bus
encoding. From the beginning,> we| will- have ‘a brief subsection about Bus-Invert
encoding. Bus-Invert encodingz[12] is atraditional encoding at the early low power
designs. It has the advantage of low: cost hardwate implementation. In Section 2.2.2,
we will introduce Zero-Transition Activity encoding [15]. In Section 2.2.3, we will

show a coding framework for low power address and data busses [16].

2.2.1 Bus-Invert Bus Encoding

We will consider the activity on a typical data bus to be characterized by a
random uniformly distributed sequence of values [13][14]. The assumption of random
uniformly distributed inputs is also conveniently made by most of the statistical power
estimation methods. With this assumption for any given time-slot the data on an n-bit
wide bus can be any of 2" possible values with equal probability. The average number

of transitions per time slot will be n/2. For example on an eight-bit bus there will be

an average of 4 transitions per time-slot or 0.5 transitions per bus-line per time-slot.
When all the bus-lines toggle at the same time (the probability of this happening in
any time-slot is 1/2") there will be a maximum of n transitions in a time-slot and thus
the worst power dissipation is proportional with n.

The Bus-Invert method [12] proposed here uses one extra control bit called
invert. By convention then invert = 0 the bus value will equal the data value. When
invert = 1 the bus value will be inverted. The worst power dissipation can then be
decreased by half by coding the bus as follows (Bus-Invert method):

(1) Compute the Hamming distance (the number of bits in which they differ) between
the present bus value and the last data value.

(2) If the Hamming distance is larger than n/2, set invert = 1 and make the present bus
value equal to the inverted present.data value.

(3) Otherwise let invert = 0 and let the present bus: value equal to the present data
value.

(4) At the decoder side, the contents. of the bus must be conditionally inverted
according to the invert line. In any case the value of invert must be transmitted over
the bus (the method increases the number of bus lines from n to n + 1).

The Bus-Invert encoding has the advantage of that the maximum number of
transitions per time-slot is reduced from n to n/2. Therefore the worst power
dissipation for the bus is reduced by half. Fig. 2-4 shows the 16 bit data sequence

using the Bus-Invert encoding in order to decrease the number of transitions.

Data 0 : 1000000100110101 |:> Data 0 : 1000000100110101
Data 1 : 1000000010000001 |:>] Data 1 : 1000000010000001

Data 2 : 1100000001111111 |:> INV :0011111110000000

Fig. 2-4. Bus-Invert Encoding.
We can see the Hamming distance between the data 0 and data 1 is smaller than
8, so invert =0. However the Hamming distance between the data 1 and data 2 is

bigger than 8, so invert =1 and data 2 is inverted.

2.2.2 Zero-Transition Activity. Encoding

The scheme we propose is related.to-the-Bus-Invert encoding, both Bus-Invert
encoding [12] and Zero-Transition ‘Activity.encoding [15] rely on the addition of a
redundant line to reduce the total number of transitions that may happen when streams
of patterns are transmitted over the bus. For example, Bus-Invert encoding use a
redundant line INV that control data encoding for power reduction.

In Zero-Transition Activity encoding scheme, called the TO code, is that of
avoiding the transfer of consecutive addresses on the bus by using a redundant line,
INC, to transfer to the receiving sub-system the information on the sequentially of the
addresses. When two addresses in the stream to be transmitted are consecutive, the
INC line is set to 1, the address bus lines are frozen (to avoid unnecessary switch
activities), and the new address is computed directly by the receiver. On the other
hand, when two addresses are not consecutive, the INC line is driven to 0 and the bus

lines operate normally.

If all addresses of the ideal stream are consecutive, the INC line is always high,
and the bus lines always have no transition. Consequently, the switch activity of our
code is zero transitions per emitted consecutive address.

More formally, our Zero-Transition Activity encoding (TO code) scheme can be

described as follows Eq. (2-2):

(B(t-1),1) ;if t>0 and b(t)=b(t-1)+S

(B(1),INC(1)) = { (b(£).0): otherwise

(2-2)

where B(?) is the value on the encoded bus lines at time t ,/NC(t) is the additional bus
line, b(?) is the address value at time t and S is a constant of increase, that we call

stride. The corresponding decoding scheme can formally define as follows (2-3):

b(t-1)+S; if INC=1and t>0

PO=1 . if INC=0 ’ 2-3)

Notice that the TO code retains dts zero-transition property even if the addresses
are incremented by a constant stride equal to ‘a constant of two (as it is often the case
for practical machines which ate byte addressable, but that are able to access data or
instructions aligned at word boundaries).

We take an example shows Zero-Transition Activity encoding following above
equations (2-2) (2-3). Table 2-1 lists the switch activities with original data transfer,
we can find the total transitions are 10 from cycle 0 to cycle 6. Table 2-2 lists the data
transmission with Zero-Transition Activity encoding. At a given clock cycle ¢ (t =[1,7]
for table 2-2), the encoder computes the incremented address of cycle t and compares
it to the address generated at cycle ¢ - /. If the incremented old (7 - /) address and the
new (¢) address are equal, the INC line is raised, and the old address is left on the bus.
The encoder/decoder architecture is shown on Fig.2-5. The incrementer can be
programmable, to be able to flexibly define the constant increment S. In Table 2-2, S
is defined as 1.

The decoder architecture is simple. At any given clock cycle, the last cycle's

10

address is incremented. If the INC line is high, the old incremented value is used for
addressing; otherwise, the value coming from the bus lines is selected. Finally, we can
find the total transitions become 4. Zero-Transition Activity encoding make address
value on bus be frozen when address is consecutive so that power dissipation will be

reduced efficiently.

BUS

ENCODER INC DECODER

Fig. 2-5. Zero-Transition Activity encoder/decoder.

Table 2-1 Without Zero-Transition Activity Encoding

Continuous bus addtess transition
cycle | Address to be transfer| Address on BUS

0 00000000 00000000

1 00000001 00000001

2 00000010 00000010

3 00000011 00000011

4 00001000 00001000

5 00001001 00001001

6 00001010 00001010
Total Transitions 10

11

Table 2-2 With Zero-Transition Activity Encoding

Continuous bus address transition
cycle | Address to be transfer | Address on BUS | INC

0 00000000 00000000 0
1 00000001 frozen 1
2 00000010 frozen 1
3 00000011 frozen 1
4 00001000 00001000 0
5 00001001 frozen 1
6 00001010 frozen 1
Total Transitions 4

2.2.3 A Coding Framework for Low Power Address

and Data Busses

In this section, we present a source-coding framework for describing low power
encoding schemes and then employ the framework to develop new encoding schemes
[16]. In the framework proposed here, a data source is processed first by a
decorrelating function f;. Next, a variant of entropy coding function f; is employed,
which reduces the transition activity.

Signal samples have higher probability of occurrence are assigned code words
with fewer ON bits. This scheme is suited for the power dissipation depends on the
number of ON bits. In VLSI systems, however, power dissipation depends on the

number of transitions rather than thee number of ON bits.

12

A general communication system in Fig. 2-6 consists of a source coder, a channel
coder, a noisy channel, a channel decoder, and a source decoder. The source coder
(decoder) compresses (decompresses) the input data so that the number of bits
required in the representation of the source is minimized. While the source coder
removes redundancy, the channel coder adds just enough of it to combat errors that
may arise due to the noise in the physical channel.

We consider the bus between two chips as the physical channel and the
transmitter and receiver blocks to be a part of the pad circuitry, driving (in case of the
transmitting chip) or detecting (in case of the receiving chip) the data signals. We will
assume here that the signal levels are sufficiently high so that the channel can be
considered as be noiseless. The noiseless channel assumption allows us to eliminate
the channel coder resulting in the system shown in.Fig. 2-7.

There have two functions«f;,.f> in the source encoder shown in Fig. 2-8. The
function f; decorrelates the input soithat-all-linear dependencies can been removed.
The function f, employs a variant «0f -encoding whereby, instead of minimizing the
average number of bits at the output, it reduces the average number of transitions.

Therefore, the function f; decorrelates the input and adjusts the input probability

distribution so that function f> can reduce the transition activity by mapping encoding.

13

Input

Source

Encoder

\ 4

Channel

Encoder

* . Noisy channel

Source

Decoder

Y

Channel

Decoder

\

Fig. 2-6. A general communication system.

14

Input

Source

Encoder

Noiseless channel

Source

Decoder

Fig. 2-7. A general communication §ystem of noiseless channel.

Input

i r h i

i F, (decorrelator) i Source
L)

i - v ~ i Encoder
i F, (encoder) i

AN J
| Noiseless channel

E e ~ !

! F," (decoder) i

i N 3 = i Source

! e N .

I F ' (correlator) i Decoder

__

Fig. 2-8. A Practical communication system of noiseless channel.

15

In this thesis, we choose the Difference-Based Mapping as the function f;, the
Probability-Based Mapping as the function f>. In the later chapter, we will use this
encoding method to compare with other encoding schemes including Bus-Invert,
XOR, XNOR, proposed scheme.

The method of Difference-Based Mapping (dbm) is shown as follows Eq. 2-4.

The x(n) is the input data, The prediction)Ac(n) , 1s a function of the past value of x(n).

The dbm function returns the difference between x(n) and)Ac(n) properly adjusted so

that the output fits in the available B bits.

if (x(n) = x(n) & & 2x(n) > x(n))
dbm = 2x(n)~2%(n);
else if (x(n) < x(u).& & 2%(n) - x(n) < 2*)

dbm = 2x(n) - 2x(n) ~1; (2-4)
elseif(;c(n))

dbm = x(n)’;
else

dbm=2%-1-x(n);

In the Difference-Based Mapping (dbm), we define four ranges for mapping,
(x(n) < 2%, 25%m) - 2°< x(m) < x(n)}, {x(n) < x(n) < 2%(n)}, and
others. We can choose proper calculation according to four mapping ranges. For an

example is listed in Table 2.3, we see that the dbm output is 0 when the current x(n) is

equal to the previous x(n) and the output value increases as the distance between

the current x(n) and previous x(7) increases. The goal of dbm is convert the total

data distribution to close to 0 so that the number of transitions would be reduced. We
see the occurrence distribution at the output of dbm for EEG 8 bits data is shown in

16

Fig. 2-9 and Fig. 2-10.The dbm skew the original distribution for most of the data sets
and hence enable function f2 ,Probability-Based Mapping (pbm) to reduce the number

of transitions even more.

Table 2-3 Example of Difference-Based Mapping (dbm)

X(n) X(n) Dbm(x(n), x(n))
011 000 101
011 001 011
011 010 001
011 011 000
011 100 010
011 101 100
011 110 101
011 111 111

17

the occurence of number

the occurence of numkber

G000

S000

4000

3000

2000

1000 -

0 50 100 150 200
value

Fig. 2-9. Occurrenee distributionfor EEG data before dbm.

14000 T T T

250

12000

10000

g000

G000

4000

2000

| 1
100 150
value

Fig. 2-10. Occurrence distribution for EEG data after dbm.

200

18

The Probability-Based Mapping (pbm) is a method of sorting for reducing the
number of ‘1°.1t satisfies given below.
if Pr(i) > Pr(j) then pbm(i) < pbm(j) V(a,b) (2-5)
The probabilities in (2-6) can be computed using a representative data sequence. If the
most probable value is i, then pbm(i) = 0.Then the second most probable value is j,
pbm(j) =1 and so on. Therefore all value are mapped to value in 2' (i=0...B-1) by pbm.

We can make a sorting table according to probability. An example of pbm is listed in

Table 2-4
Table 2-4 Example of Probability-Based Mapping (pbm)

i Pr(7) Pbm(7)
000 0.37 000
001 0.14 010
010 0.22 001
011 0.11 011
100 0.05 101
101 0.03 110
110 0.06 100
111 0.02 111

In summary, we can reduce transition activity by combining with dbm and pbm
encoding schemes. It can make the value having higher probability of occurrence to
be assigned code words with fewer ON bits. In VLSI circuits, power dissipation
depends on the number of transitions occurring at the capacitive nodes of the circuit.

But unfortunately, the dbm + pbm require more hardware for build the input

19

probability distribution table and more execution time for encoding.

2.3 Power Aware Data Bus Codec

According to different kinds of data properties and correlations, the various
encoding schemes can be generated. Zero-Transition Activity encoding [15] that
needs high correlation and tardy variation in data type is suitable for instruction
memory. Bus-Invert encoding method [12] that needs low correlation and rapid
variation in data type is suitable for data memory. Dbm and Pbm encoding schemes
[16] have an advantage of that it can change correlation of data and choose proper
value by probability mapping. Dbm and Pbm encoding scheme is suitable for specific
data value range, but Dbm and Pbm encoding'.scheme pays a heavy penalty on
hardware implementation cost.

On the other hand, in general, although-data width is constant, the variation of
the most significant bit group (MSBG) is-different from the variation of least
significant bit group (LSBG). We define the MSBG is from 4™ bit to 7" bit, the LSBG
is from 0™ bit to 3™ bit for 8 bits data bit width. For example, we choose the first ten
decimal data sequences in Fig. 2-11 and the corresponding binary representation for
observation in Table. 2-5. In Table 2-5, the data value ranges at between 115 and 150
and the variation of the MSBG is smoother than that of LSBG. Fig. 2-12 shows the

variation curve.

20

valle

250

200

150

100

50

Fig. 2-11:=Waveform of:the classic music.

Table 2-5 First TeniData-Sequences of Classic Music

time(s)

Value(decimal) | Value(binary)
1 | 140 1000 1100
2 | 131 1000 0011
3 | 146 1001 _0010
4 | 151 1001 0111
5 1136 10001000
6 | 125 0101 1101
7 | 115 0101_0011
8 130 1000_0010
9 | 145 1001 0001
10| 139 1000 1011

21

120

100 » e »

AT e

VLT WL \J

S

variation (%’

S

7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

cycle

Fig.2-12. Data variation.

Table 2-6 Data Variation

MSBG LSBG
Total Hamming distance 126 200
Average of variation 31.5% 50%

We can find the difference-obviously-betweenr MSBG and LSBG in Fig. 2-12.
Therefore, unlike in [19], we can separate specific blocks from data bit width such
that the proper encoding can be applied to each block. The transition activity of data

transmission can be reduced by encoding.

2.3.1 Proposed Data Bus Codec

The architecture of encoder have four kinds of encoding schemes, Invert, XOR
[17][18], XNOR [17][18], original, and then we will introduce each encoding

algorithm and proper data type for each a algorithm.
The Invert function is given in Eq. 2-6, where Hamming(x(n) ,)Ac(n)) returns the

Hamming distance between the current data x(n) and the previous data ;c(n). If the

Hamming distance exceeds half the number of bus lines, and then the input is inverted
22

and the inversion is signaled using an extra bit. An example of classic music before
using Invert is listed in Table 2-7, and an example of classic music after using Invert

is listed in Table 2-8.

if (Hamming(x(n) ,;c(n)) >—Bitv;idth

y(n) = inv(x(n)); (2-6)
else

y(n) = x(n);

Table 2-7 Example of Classic Music before Using Invert

cycle | ¢ (n) X(n) transitions
1 00000000 { 10001100 | 3
2 10001100-{ 10000011 | 4
3 10000011/ +10010010 | 2
4 10010010 | 100101111 2
5 10010111 | 10001000 | 5
6 01110111 | 01011101 |3
7 01011101 | 01010011 | 3
8 01010011 | 10000010 | 4
9 10000010 | 10010001 | 3
10 10010001 | 10101010 | 5
Total transitions 34

23

Table 2-8 Example of Classic Music after Using Invert

cycle ;((n) X(n) Hamming(x(n) ,)Ac(n)) Y(n) Inv | transitions
1 00000000 | 10001100 | 3 10001100 | off | 3
2 10001100 | 10000011 | 4 10000011 | off | 4
3 10000011 | 10010010 | 2 10010010 | off |2
4 10010010 | 10010111 | 2 10010111 | off | 2
5 10010111 | 10001000 | 5 01110111 |on | (*)3
6 01110111 | 01011101 | 3 01011101 | off | 3
7 01011101 | 01010011 |3 01010011 | off |3
8 01010011 | 10000010 | 4 10000010 | off | 4
9 10000010 | 10010001 | 3 10010001 | off | 3
10 10010001 | 10101010 | 5 01010101 | on | (*)3
Total transitions 30

The block diagram of Invert encoding is sketched in Fig. 2-13, where Hamming

function is composed of 8 exclusive-OR gates and adders for 8-bit length input.

24

Value ,,

8

Value
—

8

Suruwey

Value ,,

>
No 8
>47 Output
Value ,
» INV —>»
Yes 8

Fig. 2-13. Block diagram of Invert coding.

The XOR function is given in Eq. 2-7, where XOR(x(n),)Ac(n)) returns the value

of the current data x(n) exclusive-or the previous data ;c(n). If the value of

Hamming(x(n) ,x(n)) is smaller than Hamming(XOR(x(n),x(n)) ,x(n)), and then

the output for transmission equdls to XOR(x(n),;c(n)) .Otherwise, the output for

transmission will be unchanged.

For example, classic music coding results using transparent and XOR coding

schemes are listed in Table 2-9 and Table 2-10.

if (Hamming(x(n) ,x(n)) > Hamming(XOR(x(n), x(n)), x(n))
y(n) = XOR(x(n), x(n));

else

y(n) = x(n);

XOR(x(n), x(n)) = x(n) ® x(n);

(2-7)

Table 2-9 Example of Classic Music before Using XOR

cycle

x(n)

X(n) Transitions

00000000

10001100 | 3

25

2 10001100 | 10000011 | 4
3 10000011 | 10010010 | 2
4 10010010 | 10010111 | 2
5 10010111 | 10001000 | 5
6 01110111 | 01011101 |3
7 01011101 | 01010011 | 3
8 01010011 | 10000010 | 4
9 10000010 | 10010001 | 3
10 10010001 | 10101010 | 5
Total transitions 34

Table 2-10 Example of ClassicAMusSic after Using XOR

cycle | 7 (n) X(n) Hidmming(x(n) .300) | HumingXRO()), x09) | Y (1) XOR | transitions
1 00000000 | 10001100 | 3 3 10001100 | off 3

2 10001100 | 10000011 | 4 3 00001111 | on (*)3
3 00001111 | 10010010 | 5 2 10011101 | on (*)2
4 10011101 | 10010111 | 2 5 10010111 | off 2

5 10010111 | 10001000 | 5 3 00011111 | on (*)3
6 00011111 | 01011101 |2 5 01011101 | off 3

7 01011101 | 01010011 | 3 4 01010011 | off 3

8 01010011 | 10000010 | 4 2 11010001 | on (*)2
9 11010001 | 10010001 | 1 3 10010001 | off 3
10 10010001 | 10101010 | 5 4 00111011 | on (*)4
Total transitions 28

26

The block diagram of XOR encoding is sketched in Fig. 2-14. The conditional

block will select optimal result which the function Hamming () has smallest value.

Value ,,

8 Value ,,
No 8

Value

8 Output

Suruwey

XOR Value , Value ,

— > > XOR —»
8 Yes 8

Fig. 2-14. Block diagram of XOR coding.

The XNOR function is given in Eq. 2-8, where XNOR(x(n,), ;c(n)) returns the
value of the current data x(n) exclusive-nor. the previous data)Ac(n). If the value of
Hamming(x(n) ,x(n)) is smaller than Hamming(XNOR(x(n),x(n)) ,x(n)) ,and

then the output for transmission equals to XNOR{(x(n), ;c(n)) .Otherwise, the output for

transmission will be unchanged. The inversion is signaled using an extra bit.

if (Hamming(x(n) ,x(n)) > Hamming(XNOR(x(n),x(n)) , x(n))
y(n) = XNOR(x(n),x(n));

else (2-8)
y(n) = x(n);
XNOR(x(n)) = ~ (x(n) ® x(n)):

The logic diagram is shown in Fig. 2-15. The conditional block will select

optimal result which the function Hamming has smaller value.

27

Value ,,
8 Value ,, -
No 8
Value :F:
8 5 — Output
=
(4]
XNOR Value ,, Value
R | XNOR |—»
8 Yes 8

Fig. 2-15. Block diagram of XNOR coding.

2.3.2 Architecture of Codec

The total codec system overview is shown 1 Fig. 2-16. The proposed codec
architecture is placed between 1/O, external memory interface and 1/0, and external
memory module. The extra bit “line. on bus is‘used for notify which function to
decoding in decoder.

The proposed encoder architecture is composed of four encoding functions. It
targets at different kinds of data types and adaptively choose the optimal encoding
way for transmission. According to the property that different bit group location has
different kinds of variation, the transmission data would be separated into several
blocks for encoding.

The encoder architecture diagram is sketched in Fig. 2-17.

28

CPU

|

I/0, External MemorylInterface

|

Encoder/Decoder

Extra bits

Decoder/Encoder

|

/O, External Memory

Input Data

/

P

Fig. .?_,-. 16w S>étr’i- %trchiffg%:cture.

Data (N/2 bit) |

Output
Data (N/2 bit)

Comparator

Value , I \L

Output

\ Value | /
——CLK

Fig. 2-17. Block diagram of encoder.
29

The input data for transmission is separated into two or more bit groups. Each bit

group has individual encoder for encoding its separated data.

The current data Value, and the previous data Value, ; enter the INV, XOR, XNOR

functions, and then the comparator chooses the optimal encoding way that has the

minimum Hamming distance and sends the encoded data for transmission on bus.

Our architecture of decoder is similar as architecture of encoder.

It has two input source, transmission data on bus and extra bits. It depends on the

extra bits from encoder to decode the data for transmission .Extra bits mean four

decoding functions, INV, XOR, XNOR, and transparent. After decoding data by MUX,

the data will be return to original form by suitable decoding functions. Fig. 2-18

shows the decoder architecture diagram.

Extra bits
Value ,
-
—» MUX Output
Q: A /
Value .1 |, :

<+— (CLK

Fig. 2-18. Block diagram of decoder.

30

2.4 Power Aware Data Bus Codec Simulator

To verify Power Aware Data Bus Codec and compare the performance with other
encoding schemes like Bus-Invert, XOR, XNOR, Dbm (different based mapping) plus
Pbm (probability based mapping). Our thesis has not only RTL model design but also
a simulator by C++ language. The simulator can help us know the switch activity

effect in different kinds of data variation.

2.4.1 8 bits Power Aware Data Bus Codec Simulator

In 8 bits Power Aware Data Bus Codec Simulator, we define our proposed codec
which is separated into two 4-bit: groups for 8=bit length data encoding. And we

configure some variability parameters for simulation.

Most significant bit group variability: the variability of the value 0 to 1 or 1 to 0 from
4" to 7™ bits
Least significant bit group variability: the variability of the value 0 to 1 or 1 to 0

from 0Mto 3™ bits

When the simulator executes a test pattern, it would record the results about bit

transitions below:

switch_act switch activity before encoding
switch_act_BI _total switch activity after Bus-Invert encoding
switch_act XOR _total switch activity after XOR encoding
switch_act XNOR_total switch activity after XNOR encoding
switch_act_dbm switch activity after dbm encoding

31

switch_act_dbm+pbm switch activity after dbm + pbm encoding
switch_act_1block_total switch activity after 1 block encoding
switch_act_2blocks_total switch activity after 2 blocks encoding
switch_act_BI_ctrl switch activity on extra bits after Bus-Invert encoding
switch_act XOR_ctrl switch activity on extra bits after XOR encoding

switch_act_ XNOR_ctrl switch activity on extra bits after XNOR encoding

switch_act_1block_ctrl_high switch activity on extra bits in most significant bit
group after 1 block encoding
switch_act_1block _ctrl_low switch activity on extra bits in least significant bit
group after 1 block encoding
switch_act_2blocks_ctrl_high switch activity en extra bits in most significant bit
group after 2 blocks encoding
switch_act_proposal2_ctrl_low=switch activity- on extra bits in least significant bit

group after 2 blocks encoding

In Section 2.1, we know the dynamic power depends on transition activity a.
Therefore, we can use switch activity reduction (SAR) as a measurement metric to

signify the power reduction.

SA, -S4 o+ 54 _
_ efore encodin, after encodin control extra bi
SAR (%) = g < f g AT (29)

before encoding
Where SA denotes switch activity.

We employee four encoding schemes, proposal and configure different
variability parameters to simulate 100,000 data by in Fig. 2-19, Fig. 2-20, Fig. 2-21
and Fig. 2-22. We define 1 block is proposed coding scheme with one 8 bits group; 2

blocks is proposed coding scheme with two 4 bits groups;
32

The x-axis shows the group bits variability and the y-axis shows the switch

activity reduction. For example, 25/50 means high level group bits have 25%

variability and low level group bits have 50% variability.

8-bit
70 il
~ 60 s
% 350 N O BI
2 40 i B XOR
?3 30 i O XNOR
5 %8/ ﬂ I N O Dbm+pbm
0u) B] block
specific random 25/25 25/50 25/75 25/100 @ 2 blocks
MSBG/LSBG variability
Fig.2-19. Switeh activity reduction for 8-bit data.
8-bit
70
~ 60
240 B XOR
=]
B 30 0 XNOR
(</c) %8) U Dbm+pbm
M | block
5025 50/50 50/75 50/100 0 2 blocks
MSBG/LSBG variability

Fig.2-20. Switch activity reduction for 8-bit data.

33

&-bit

&0
~ 10
SN 0 BI
5 50
S 40 B XOR
B 30 1 L XNOR
= 20Z U] Dbm+pbm

n B | block

75/25 75/50 75/75 75/100 O 2 blocks
MSBG/LSBG variability
Fig.2-21. Switch activity reduction for 8-bit data.
8-bit

100
S &0 @ BI
g 60 B XOR
S 40f 0 XNOR
5 20 U Dbm-+pbm

4 M | block
10025 100/50 100/75 100/100 B 2 blocks
MSBG/LSBG variability

Fig.2-22. Switch activity reduction for 8-bit data.

We add the specific data and random data for simulation except above data. In

the specific data, It has high probability in specific range.

The data distribution is shown in Fig. 2-23. The most of general video and audio

data distribution are like this figure.

34

14':":' T T T T T

1200

1000

800

B0

400

200

1] 100 150 200 2400 300

Fig. 2-23. The Data‘Distribution.

Either in the specific data or in‘the random data, the switch activity reduction has
15 ~ 18 percentages by proposal scheme. With the increasing of variability parameters,
our proposal has more reduction in switch activity. In the variability parameters 25/75
and 75/25, we have 20% in switch activity reduction and our proposal has greater

improvement than other encoding schemes.

2.4.2 16 bits Power Aware Data Bus Codec Simulator

In 16 bits Power Aware Data Bus Codec Simulator, we define our proposed
codec which is separated into two 8-bit groups and four 4-bit groups for 16-bit length

data encoding. And we configure some variability parameters for simulation.

35

Most significant bit group variability: the variability of the value 0 to 1 or 1 to 0 from
8™ to 15™ bits
Least significant bit group variability: the variability of the value 0 to 1 or 1 to 0

from 0Mto 7™ bits

When the simulator executes a test pattern, it would record the results about bit

transitions below:

switch_act switch activity before encoding

switch_act_BI _total switch activity after Bus-Invert encoding
switch_act XOR _total switch activity after XOR encoding

switch_act XNOR_total switch activity after XNOR encoding
switch_act_dbm-+pbm switch activity after dbom + pbm encoding
switch_act_1block_total switch activity after proposal encoding by 1 blocks.
switch_act_ 2blocks_total switch-activity, after proposal encoding by 2 blocks.
switch_act_4blocks_total switch.activity after proposal encoding by 4 blocks.
switch_act_BI_ctrl switch activity on extra bits after Bus-Invert encoding

switch_act XOR_ctrl switch activity on extra bits after XOR encoding

switch_act_ XNOR_ctrl switch activity on extra bits after XNOR encoding

switch_act_1block_ctrl_high switch activity on extra bits in high level group after
proposal encoding by 1 block.
switch_act_1block_ctrl_low switch activity on extra bits in low level group after
proposal encoding by 1 block.
switch_act_ 2blocks_ctrl_high switch activity on extra bits in high level group after
proposal encoding by 2 blocks.

switch_act_2blocks_ctrl_low switch activity on extra bits in low level group after
36

proposal encoding by

switch_act_4blocks_ctrl_high

proposal encoding by

switch_act_4blocks_ctrl_low

proposal encoding by

2 blocks.

4 blocks.

4 blocks.

We run 100,000 data by four encoding schemes,

switch activity on extra bits in high level group after

switch activity on extra bits in low level group after

proposal and configure

different wvariability parameters in Fig.2-24, Fig.2-25, Fig.2-26 and Fig.2-27.

Encoding schemes:

Bus-Invert; XOR; XNOR; Dbm+Pbm,;

1 block: Proposed coding scheme with one 16 bits group;

2 blocks: Proposed coding scheme with two 8 bits groups;

4 blocks: Proposed coding scheme with four 4-bits, groups;

70
60
50
40
30
20
10

SA reduction(%)

16-bit

Lt

random 25/25 25/50 25/75 25/100
MSBG/LSBG variability

O BI

B XOR

0 XNOR

U] Dbm+pbm
M | block

O 2 blocks

M 4 blocks

Fig.2-24. Switch activity reduction for 16 bits data.

37

16-bit

70

60

50

40

30

SA reduction(%)

20

50125 50/50 50775 507100

MSBG/LSBG variability

B BI

B XOR

0 XNOR

U Dbm+pbm
M | block

0 2 blocks

M 4 blocks

Fig.2-25. Switch activity reduction for 16 bits data.

80
70
60
50
40
30
20
10

SA reduction(%)

16-bit

7525 75/50 T5/75 75/100
MSBG/LSBG variability

O BI

B XOR

0 XNOR

U Dbm+pbm
B | block

O 2 blocks

B 4 blocks

Fig.2-26. Switch activity reduction for 16 bits data.

38

16-bit

100
SEER:U 0 Bl
=
g o W XOR
g a0 OO XNOR
:Cd O Dbm-+pbm
o B | block
0" -
10025 10050 100175 100/100 2 blocks
B 4 blocks

MSBG/LSBG variability

Fig.2-27. Switch activity reduction for 16 bits data.

Either in the random data, the switch activity reduction has 20 percentages by

proposed scheme. With the increasing of Vafiability parameters, our proposed method

has more reduction in switch‘ractivity and has greater improvement than other

encoding schemes.

2.5

Result and Analysis

SA reduction(%)

40

30

20

10

Audio & Image data simulation

]

B XOR

O XNOR

O Dbm+pbm
B Proposed 1

O Proposed 2

L

Pop Classic mobile stefan table pic(352x288) EEG(8bit)
music(2.68Mb music(3.81Mb pic(352x288) pic(352x288)
WAV) WAV)

Fig. 2-28. Simulation for Multi-Media data.

39

Proposed 1: Proposed coding scheme with one 8 bits group;

Proposed 2: Proposed coding scheme with two 4 bits groups;

The simulation for 8 bits multi-media data in Fig. 2-28 shows our proposal has
20 % dynamic power reduction in average. In image data, we choose three 352x288
pictures including mobile, table tennis, and Stefan for encoding. We can find that
Table image has low data variability so that is suited for Dbm + Pbm encoding
scheme. In other images, the high data variability is well for our proposed encoder can

select optimal encoding scheme.

40

Chapter 3
Low Power Embedded Processor
Design

In order to verify the codec function [20], we have performed the codec combine
with a 32 bits embedded processor [21]. We will introduce the properties of processor,

instruction set, tool chains and other specific designs in this Chapter.

3.1 Architecture of the Low Power Embedded

Processor

3.1.1 Low Power Embedded:Processor Core

Our processor applies RIS€ architecture.including low power designs, which are
Master-Slave cache, low power phased cache controller, and power aware data bus
codec.

The low power embedded processor has seven-pipeline architecture. All
instructions start by using the program counter (PC) to supply the instruction address
to the instruction memory. After the instruction is fetched, ID stage decodes the
instruction and specifies register operands. Once the operands have been fetched in
ALU, they can be operated to compute a memory address, to compute an arithmetic
result, or to compare. If the instruction is an arithmetic-logical instruction, the result
from ALU must be written to a register. If the operation is a load or store, the result
from ALU is used as an address to either store or load a value .The result from the
ALU or memory is written back into the REG stage. Cache controller controls the

Load/Store operation in the memory peripheral device. Fig. 3-1 shows the architecture
41

of processor.

-

=

BUS Encoder/Decoder

1l

1l

BUS Encoder/Decoder

BUS Encodler/Decoder

Main Memory

I/O unit

~agEgEe-

Fig. 3-1. The architecture of processor.

42

~

[Instruction Fetch /
Program Counter / Branch Prediction

[MS-Cache
[Instruction Decoder

i B

[Register File/ Cache address generator]

L W Load

[ALU]- [Cache tag Comparison]
W B / Cache Data Access]

[BUS Encoder/Decoder]

10 Bus

[mainmemory] | 0

Fig. 3-2. Pipeline processing flow.

The processor has 7 pipelin¢+architecture including Instruction fetch/Program
Counter/Branch Prediction, MS cache(2 stages), Instruction decoder, Register file,
ALU/Cache tag comparison, and Write back/Cache data access.

The seven stages are the following:

PC Counter/Branch Predict/ Instruction Fetch : In the top portion of
hardware architecture, Program counter handles branch instructions and generates the
PC address. The instruction is read from memory using the address in the PC and then
is placed in the ID pipeline register. Due to some instructions need PC address to be
computed in ALU stage, the PC address would be saved stage by stage. Therefore, PC
address is saved in the next stage register. In order to avoid an instruction be fetched

after branch instruction occurs, we set two flags to handle branch instructions. These
43

flags can show whether the pipeline is in stall state and decide the stage process.

MS-cache (2 stages): The second portion of Fig. 3-2 shows the operation of
instructions. If data miss occurs, it will replace data from main memory. The
MS-cache design is based on phased cache. The phased cache compares Tag value in
first cycle, and reads Hit data to ID stage in second cycle. By the way, MS-cache also
enhances the hit rate for branch/jump instructions.

Instruction Decoder : In ID stage, the instruction separates into two-source
registers location, one destination register location. These locations can get source
operands for the Register stage and provide destination operand for ALU stage.

Register File: It provides 16 general-purpose registers, 16 interrupt registers for
external interrupt, internal interrupt and other configuration.

ALU/Cache Tag access : All operands ‘computation from Register File are
executed in ALU stage. Data forwarding is supported-in ALU stage to eliminate RAW
hazard. Meanwhile, the value in Tag cache-is-compared with memory address and is
verified whether it is a cache hit or miss.when-oad/Store instructions are executed.

Write-Back/Cache data access: The ALU writes data back to the Register file,
cache or memory in this stage. In case of Load/Store instructions execution, it would

access memory data according to a cache hit.

Five specific hardware designs is supported for DSP:

SIMD(Single Issue Multi Data) support: 8/16 bits SIMD instruction set is
supported to improve multi-media processing, such as 8 bits image processing or 16
bits speech processing.

Bit Reverse : A memory addressing mode is designed for FFT. For example,
address 01101 can be transformed to 10110.

MAC can be finished in one cycle.
44

Effective Data forwarding [22].

Conditional Branch : Prediction — untaken method.

3.1.2 Low Power Embedded Processor Instruction

Set

The instruction set has four categories: Data moving instructions, Arithmetic &
Logic instructions, Branch/Jump instructions, SIMD instructions and others.
6 addressing modes are supported: Direct, Reg to Reg, Indirect, Displacement

(base add), Index and Bit-Reverse addressing modes.

Table 3-1 DataMoving Instructions List

Instruction Opcode Example Mode
MOVRC 000001 MOV rd,data Direct
MOVRR 000010 MOV rd,rsS Reg-Reg
MOVRM 000011 |MOV rd,address Direct
MOVMR 000100 |MOV address,rs Direct
MOVMRR 000101 |MOV @rs2,rs Indirect
MOVRRM 000110 MOV rd,@rs Indirect
MOVARR 100010 MOV rd(a),rs(b) Reg-Reg
MOVB 101111 MOVB rd,base(rs) Displacement
MOV I 110000 MOVI rd,rsl(rs2) Index
MOVREVRM 101010 |MOV rd,address Bit Reverse
MOVREVMR 101011 |MOV address,rs Bit Reverse
MOVREVMRR 101100 |MOV @rs2,rs Bit Reverse

45

MOVREVRRM

101101

MOV rd,@rs

Bit Reverse

Table 3-2 Arithmetic & Logic Instructions List

Instruction Opcode Example
ADDRR 001000 ADD rd,rsl1,rs2
SUBRR 001010 SUB rd,rsl,rs2
MULRR 001100 MUL rd,rsl,rs2
ADDRC 000111 ADD rd,data
SUBRC 001001 SUB rd,data
MULRC 001011 MUL rd,data
MACR 100111 MAC rd,rsl,rs2
MACC 110001 MAC rd,rsl,data
ANDRR 001110 AND- rd,rsl1,rs2
ORRR 001111 OR rd,rsl,rs2
XORRR 010000 XOR rd,rsl,rs2
INVR 010001 INV rd,rs

Table 3-3 Branch/Jump Instructions List
Instruction Opcode Example
JMP 010010 JMP address
JIMPR 010011 JMP @rs
JBE 010100 JBE rsl,address
JNE 010101 JNE rsl,address
JMB 010110 JMB rsl,address
JLB 010111 JLB rsl,address

46

JBER 011000 JBER rsl1,rs2,address
JNER 011001 JINBR rsl1,rs2,address
JMBR 011010 JMBR rsl1,rs2,address
JLBR 011011 JLBR rsl1,rs2,address
CALL 100011 CALL address
RET 011110 RET

Table 3-4 SIMD Instructions List
Instruction Opcode Example
MOVHLRC 110001 MOVHLRC rd,direct
MOVHURC 110010 MOVHURC rd,direct
ADDHRR 110011 ADDHRR rd,rsl,rs2
SUBHRR 110100 SUBHRR rd,rs1,rs2
MULHRR 119101 MULHRR rd,rsl,rs2
MACHR 100110 MACHR rd,rsl,rs2
ANDHRR 110110 ANDHRR rd,rsl1,rs2
ORHRR 110111 ORHRR rd,rsl,rs2
XORHRR 111000 XORHRR rd,rsl,rs2
ADDBRR 111001 ADDBRR rd,rsl1,rs2
SUBBRR 111010 SUBBRR rd,rsl,rs2
MULBRR 111011 MULBRR rd,rsl,rs2
ANDBRR 111100 ANDBRR rd,rsl1,rs2
ORBRR 111101 ORBRR rd,rsl,rs2
XORBRR 111110 XORBRR rd,rsl1,rs2

47

In case of SIMD instructions, the 32 bits data in the register file is divided into 8
bits or 16 bits blocks. Each block are parallel processed. Therefore, it can improve 8
bits or 16 bits calculation.

For example, the following is MACHR instruction,

R,= ACC = ACC + AlxBl + A2x B2

Al (16) A2 (16)
—p ACC(32) X X
B1 (16) B2 (16)

Fig. 3-3. MACHR ‘operation.

Table 3-5 Other Instructions List

Instruction Opcode Example
SET 011100 SET A,rs
INTOK 011101 INTOK

SHR 100000 SHR rs
SHL 100001 SHL rs
ENDC 011111 ENDC

48

SET: It can sets two extra 16 bits I/O ports.
INTOK: Instructions for software interrupt.
SHR: It would right shift 1 bit from rs.

SHL: It would left shift 1 bit from rs.

3.2 Configurable Master-Slave I-Cache Controller

In general, 20%~30% of total power dissipation in the processor dissipated in
instruction cache. Therefore, the configurable Master-Slave Instruction cache

controller is designed for low power design.[24]

3.2.1 The Proposal: of .Configurable Master-Slave

I-Cache Controller

The Configurable Master-Slave [-Cache controller is designed for increasing hit
rate efficiently in large range of jump. The Configurable Master-Slave I-Cache

controller algorithm is shown in Fig. 3-4.

49

Instruction

provide v’

instruction
Send instruction Send
O Processor top sor
set the sub-cache
master

Fig. 3-5 shows the total performance improvement in different kinds of

CR_Ratio.

Eff Improve (%)

0-10% 11- 21- 31- 41- 51- 6l- 71- 8l- 91-
20% 30% 40% 0% 60% V0% 80% 0% 100%

CE_Ratin

Fig. 3-5. The improvement of MS-cache.

50

CR_Ratio: The ratio of returnable jump in total jump instructions

Eff Improve: A parameter of total performance improvement.

When CR_Ratio increases, the value of Eff Improve increases obviously.
On the other hand, MS-cache uses the architecture of phased cache so that it can

reduce 44% of power dissipation.

3.3 High performance pipeline design of low power

phased cache

High performance pipeline design of low power phased cache is combined
phased cache with specific pipeline., It takes advantages of that it can eliminate the set
associate cache power and access the cache data one stage early by specific pipeline.
Our approach can reduce 44%~70% (2.~ 4way) cache power consumption without

any time latency and only cost 6%:total gate count in implementation.

m® N EEEEEEEEEEEE N HESSEEEEEEEEEENEER
— _— — —— — _— — _—

L1 Tag H L1 Data

ALy 5 I\“SS Main
)

| memory
ALU WB/MEM

p—_—
o
QD

IF 1D REG

Fig. 3-6. The architecture of High performance pipeline design of low power phased

cache.
Fig. 3-7 reports the results of cache access cycle and total performance by
Simplescalar. The time consumption of cache access is reduced 38% and power

51

consumption is reduced 40% - 70%.

BConventional Cache ®Phased Cache OThis work (4Way 8KB)

200

150

= 100
50

: . I

Cache access cycles Power consumption

Fig. 3-7. Cache access cycles & Power consumption.

3.4 Tool Chain
3.4.1 Assembler

The GUI assembler supports machine code translation, program ROM generation
and debug information. User can debug and-generate test bench by above information.

The assembler figure is shown in ‘Fig. 3-8.

Assembler i
! Machine Debug ;
Code Data Rom Information !

Testbench

Fig. 3-8. The assembler Figure.

52

We implemented the tool based on Visual C++ language in Fig. 3-9. The

assembler generates files:

Pop.txt : Hexadecimal program code for testing chip.

Bin.txt : Binary program code for simulation.

B3 Eile Edit Window Help
) 5 e s
|LABEL:input
|Se: | fovecro
MOVIME 0.R0
MOVRC RO
MOVIMR 1.R0
MOVRC RO.2
MOVIMR 2,50
MOVRC RO,3
MOVIMR 3.R0
MOVRC RO.4
= MOVIMR 4.50
DlreCt MOVRC RO5
MOVIMR 5.R0 .
MOVRC RILE Edit
MOVIMR B.R0
MOVRC RO,7
MOVMR 7.R0
DkAA_mem_mow T A || IMOVRC R0.8
DA _mem_mow_test] Tx | IMOVIR B.RD
DbAA,_meam_mov_test] TxT bak MOWVRC R0,9
Dida_TEST.THT MOWVMR 9.R0
FFT £« . MOWVRC R010
FFT_kud File MOVMR 10RD
FFTwith SObAL 1t MOVRC RO
frnAbiout frm MOVIME 11.R0
frmabout frc MOWVRC R012
frmabout. OB MOVIME T12.R0
frimDocfrm MOWVRC R013
frmDioc.0Bd
frmMine? frm
Starting Compile ..
Mo etrar. Compile successtul @essage
Full Campile Finish
Status 20074743 F4F 06:00

Fig. 3-9. Assembler Interface.

3.4.2 Simulator

Our thesis provides a simulator implemented by Visual C++ language for
different kinds of test patterns. We apply a method like software pipeline [13] for
simulator so that each iteration is arranged in inverse order. An example for five

pipeline RISC architecture is in Fig. 3-10. All stages sort in inverse order.

53

For(cyclet+t)

{
//5" stage Write Back
//4" stage ALU
Execution Way
//3" stage Reg File
//2" stage Decoder
//1%" stage Fetch
}

Fig. 3-10. Software pipeline design flow.

The simulator provides the ability to view register value and memory content and
calculate the number of hazard and total penalty cycle.

These information can help programmer to analyze performance and debug
easily. In Fig. 3-11, it shows assemble code, memory data, register value, total cycle

count and total instruction count.

54

data ~ [Data Memony
inc file indata hex 000 DAY EDIA 0839 1237 13DE F173 FB43 3108 ~
008 1552 0B84 FFSF EG2E 1463 F4EE F736 F148]
text 016 DDFO ED3B F556 1974 E397 EEDD FBCC 0920
DCT starts 024 E143 F4B4 0D25 268 EBDC 1030 OC7S O9F2
: 032 EFEE DRO6 26B5 E1B1 F778 FFF5 F419 0503
" Pass 1: process tows, */ 040; 0537 FATC 1091 FBEE 1516 FEA 0011 E924
ADDIR1. RO, #84 048 FE44 FF71 040 F3DA 032F FEOC 007 0074
056 41F2 F860 1377 0554 0687 FB74 OE94 3558
054 0000 0000 0000 0000 0000 0000 0OOO OOOD
LOOP1: 072 0000 0000 0000 00O 0000 O0OOO 0000 OOOD
ADDIR1.R1. #8 050 0000 0000 0000 0000 0000 0000 Q000 0000
LHRZ0[R1) 056 0000 0000 0000 QOO0 0000 0000 QOO0 0000
LHR37[R1) ; : 09 0000 0000 0000 0000 0000 00O 0000 000D
ADD R4,R2,R3 Amp0 = infil0] + infi[7] 104 0000 0ODO 0DOD OOOO 0000 00O 0000 OOOD
SUB A5 A2 A3 Arop7 = in{i[0] - infi][7] 112 0000 0000 00O 0000 0000 0000 OOOO 0000
LHR21(R1) 120 0000 0000 0000 QOO0 OOQO 0000 QOO0 OOOD
LHR3 A1) L 128 0000 0000 OO0 O0OO 0000 0000 000D 00O
ADD RE, A2, R3 Amp1 = infil[1] + infi[6] 136 0000 0000 0000 0000 0000 0000 0000 0000
SUB R7.R2,R3 AmpE = infil[1] - in{i](E] 144 0000 0000 0000 0000 0000 0000 0000 0000
LHR2 2[R1) 152 0000 0000 0000 0000 0000 0000 OODO 000D
LH R35(R1) e et 160 0000 0000 0000 0000 0000 0000 0OOO 000D
ADD R8.R2.R3 Amp2 = infil2] + infi[5] 163 0000 0000 0000 0000 0000 0000 0000 0000
SUB R9. A2, A3 AmpS = infil2] - infi[5] 176 0000 0000 0000 0000 0000 0000 0000 0000
LHR23(R1) 184 0000 0000 0000 0000 0000 0000 0000 0000
LH R3 4R1] 192 0000 0000 0000 0000 0000 0000 0ODO 000D
ADD R10.R2. R3 Amp3 =infil[3] + nfi)[4] 200 0000 0000 0000 0OOD 0000 0000 OODO 0000
SUBR11,R2.R3 Ampd = infil3] - infi[[4] 208 0000 0000 0000 0000 0000 0000 0000 0000
216 0000 0000 0000 0000 0000 0000 0000 0000
: *Evenpant */ 224, 0000 0000 0000 0000 0000 0000 0000 0000
ADD R12. R4, R10 tmp10 = tmpl) + tmp3 232 0000 0000 000D 0000 0000 0000 0000 000D
SUB R13, R4 R10 tmp13 = tmpll - tmp3 240 0000 0000 0000 0000 0000 0000 0000 0000
ADD R14.RE RS Amp11 =tmp1 + tmp2 248 0000 0000 0000 OOOO 0000 0000 0000 OOOO
SUB R15.RE.RE Amp12 = tmp - tmp2 256, 0000 0000 0000 0000 0000 0000 0000 0000
264 0000 0000 0000 0000 0000 0000 0000
ADD R2.R12.R14 - ./}
Statistics
Total cycle 498 Instruction label address : Register
LOOPT => 1 RO: 0000 R1: 0000 R2 0537 R3 E143
e free nEORE mT n
i i . 3 1 10: 2BA, 11:
ek et AL R1Z: 2044 A13 278D A14: 2056 R15: FBOZ
Used Py Mum}nrny label address
in =

T 04400

he _%_ﬁlnulé“tof T_ihj[erface.
.II | -».‘ ‘h-’ 1

T

3.5 Verification

In order to respond ISS(Information Systems and Sciences), our processor use
some test pattern including F.I.LR (Finite Impulse Response) ,D.C.T (Discrete Cosine
Transform) and Sobel operator and the result of simulator to verify our processor’s
function. We will introduce three kinds of test pattern and these results in the

following paragraph.

3.5.1 Finite Impulse Response

FIR filtering is a general application in communication and multi-media field.

Fig. 3-12 shows the 16 tap impulse response FIR filter.

55

SDDI R RO, #40

fiiff372
fitif5eb i I Do
fFfe5 | SOOI

)
133
Wh=
203

1. -1
ol #16
1. a1

ADDI R2. R2. #-1
ADDI RZ RS 81

LH R4 inlF =)

LH RS coeffilR2]

MAC RE. R4. RS

BME Rz RO LO0OFP2 CEnd of Loop2
SALI RG. RE. #3

SH RE.0OUTR1]

ADDI RE. RO,

BMNE R1. RO, LOOP1 (End of Loop®

TRarP
Data Memary

024 0000 OODO OO0 OOOO QOOO OOOO OOOO 1833

I (032 4115 SDeD 1Fee (544 0401 OF1A EBIS DBES

00000470 (. . 9EAS CBSE 2ECT 7273 GEIE FAdD EVZ1 1769

noreern ;2437 EFBE CBDD BC75 DSO7 4BEC 4405

EBOD oE42
BECO

00ce / 0236
FFD3 (143 (E2 FCE®

AFRT A T LA
! | e y Vi

FE81 01D4 (09FC 0734

Fig. 3-12. FIR RTL simulation and simulator result.

For verify our proposed codéc' pepflqil'maﬁce,f\’w supports a module to calculate
i - "'l-l ' ' k' i

switch activity which data to _é-)itemal mqrﬁ&y on ii)us. In Fig. 3-13, our proposed

”
| k]

method can reduce 46.13 % of s.thcﬁ.‘a'c’t_iVit'y-‘on da‘_i_fé bus.

F

== wave - defanlt

File Edit View Insert Format Tools Window
BHE $RBA DX iND @G QPR ELEIE 3
tCHIFD: SAC S

With encoding

File Edit Wiew [nsert Format Tools Window

Fig. 3-13. Switch activity for FIR.

56

3.5.2 Discrete Cosine Transform

The 8 by 8 1-dimensional DCT algorithm is shown in Fig. 3-14. The 8 by 8
2-dimensional DCT is implemented by applying 1-dimension DCT row-by-row and

column by column. The simulation result is shown in Fig. 3-15.

[b -CD S Y
[) S, \‘\f’f %‘? = f?:} Ea
N ARER O 7o —x]
E—y————V/ P O =]
[~ | .fll ¥ fff =)‘3 = wCE [< |
[=] /— f>§3 A SO E
o O~ Preo—I=]
= | ol =]
Fig. 3-i;4. | dim!é_li_léiéﬁ 8.by§ DCT.

el IO Shatiztics

ffffbce it bt e

ffeedd HNE-EdU Tatal cycle count :438 e

ffife397 _ _ . an OF2= 53

EIIJLIfﬂ T Tatal instruchion count :117

356 S0 Used memary size b4 h_m

e ed®a e

;:;fdd:l; 10 m:jdnll

fifff1 48 fffes |

r:m4b 7750 77 T — Data Nemoy

woe T TR T

e i e O 1 (R4 P R 3 FEE FE IR

ST TR () D% f% 94 CN (0 AL K

ms] pommm 0 CA9 R4 0B BEOERC W00 (R

#'f:'ﬂ;;}cﬂ 'th#i R O 1 T O Y T A I

A et Uy 0 AT 9 FEE o feER 00T EOA

i Mk OFR A0 FA IF ORK OE N

"T'WW“ 00730z 11 T O 7

e O (ISR GRS (. () () ()) O 00 00 00

e D DWW W

Fig. 3-15. 2 dimension 8-8 DCT RTL simulation and simulator result.

57

o= /wave - default

Eile Edit Yiew [nsert Format Teols Window . .
SHE JBRA LK NG QA T ANBE With encoding

e_HWDATA
testCHIP0423/Cal_SAD/SA_count |
C 100000 100000 1o0oopo |1|1 00000} 100000 100000 opoon 0o0po

CHIPDL23/CaliSAN RS OO0 100000 100000 100000 100000 100000] §1000a0 j1oaoao 100000 100000 100000

File Edit Wiew Insert Format Tools Window .
W/O encoding

l
|
|
|
|
I

01100000 [100000 1100000 100000 J100000] 100000 }100000 100000 100000 10

__

Fig. 3-16. Switch activity for DCT.

In Fig. 3-16, our proposal can reduce 58.92 % of switch activity on data bus.

3.5.3 Sobel Operator

We use Sobel operator to Vérify fhe large data moving in data cache. The Sobel
operator is an edge detection algorithm in image processing. It is a discrete
differentiation operator technically and gets the gradient of the image intensity
function. At each point in the image, the result of the Sobel operator is either the
corresponding gradient vector or the norm of this vector.

Sobel operator computes approximations of the derivatives for horizontal and
vertical changes by using two 3x3 array which are convolved with the original image.
We define 4 as the source image, G, and G, are two images which contain the

horizontal and vertical derivative approximations. The equation is as:

58

-1 0 +1 +1 +2 +1
G =|-2 0 +2 *Aandez 0O 0 0 |*4

x (3-1)
-1 0 +1 -1 -2 -1

And then we calculate root mean square value to get the resulting gradient

approximations, using

2 2
G - Gx + Gy (3_2)

We implement edge detection for 64x64 pixels image in our processor and

compare with MATLAB in Fig.3-17.

Processor Source Image MATLAB

Fig. 3-17. Sobel Operator simulation.

3.6 Field-Programmable Gate Array (FPGA)

In the internet product, communication, industry system and electrical system
field, they usually use FPGA to design their chip because FPGA has high flexibility so
that user can make their logic function from Boolean function, register function,
embedded memory and complex functional IP. In the other hand, it can easily place
and fit in the platform for different kinds of application.

The processing time in FPGA is slower than ASIC. However, FPGA has the

59

advantages include a shorter time to market, ability to re-program in the field to fix

bugs. The designs are developed on regular FPGAs and then migrated into a fixed

version that more resembles an ASIC.

We use Altera APEX20KE EP20K1500EBC652-1X and Quartus II to floorplan,

place, and route.

The Sobel operator simulation in FPGA and Matlab simulation is shown in Fig.

3-15

hing;roml iy

[@lelelelelelel

b fileReg file Dbz B(]DDDDDDDDDDDDDDDDDDDDDDI 11111700000000000000000000001 11111 mDDDDDDDDDDDDDDDDDDDDDDIDDIDDEXJDDDDDDDDDDDD
b fileReg file Dheg? (000000000000000000000001 1111111 /000000000000000000000001001 1[)KIJIJUUDDDDDDDDDDDDDDDDDDUUUDDDDDDD

b fileReg_file Ohegh 0000000000000 100000000000 00000000000 T 11014 0000000000000 000000000000 1007 000000000 000000000000
, fil=Reg fils Oz [0y TOOANOOOONGO0000R00A00T 1 L1 LT T00A00AN0DAI0a0a00na0aT0 B0TTY,__ (D00DAa0n000a0 a0 000000

) fileReg file Okegld TR K ° Ro Ko K & Ko Km)k o o)
TEMNIEI I N G GEES B &8 '8 C3 €} &N Ci

-:*'u_l Array Editor: out
Edit View 'Web Window Help
3 [| Murnetic farmat |shorts | | Size: |57 by |50

File

18 19 20 21 22 o3 24 25 26 2 28 20 Ell Ell 2 22

-2 -36 -116 -218 -249 -188 -85 29 93 135 168 183 194 a0k 208 210

Fig. 3-18. The Sobel operator result in FPGA and Matlab.

3.7 Summary

In this chapter, we introduce a RISC embedded processor combined with

configurable Master-Slave cache controller and High performance pipeline design of

low power phased cache. The system not only prove the correctness of the algorithm

but also take advantages of the ability of specific designs to reduce total power

dissipation.

In the next chapter, we will integrate it into a SOC chip.

60

Chapter 4
Chip Implementation and
Verification Results

4.1Chip Fabrication

In this chapter, we will debate the issues of the chip implementation and

verification results.

4.1.1. Chip Design Flow

We refer to CIC cell-based design flow as shown in Fig. 4-1 for our chip

implementation and verification.

Specification

¥ L

Assembler s b Instructions
Design i o) Design

I " ¥ g I
T t " TEXT Editor
o kL
HDL Code SRAM
Design BIST
Quartus 11 >
’ Syntest
FPGA timing HDL
simulation Simulation ModelSim
* HDL & Scan-Chain TSMC 18 Design Kit
Synthesis Design Compiler
FPGA verification DET Compiler
Gate level
Simulation ModelSim
Auto
Place & Route SOCEncounter
Post-layout
Simulation ModelSim
| DRC & LVS I Calibre

Fig. 4-1. Cell-based design flow.
61

4.1.2. Synthesis

The behavior level hardware description language (HDL) of the embedded
processor has been pre-simulated by Mentor-ModelSim and synthesized by
Cadence-Design Compiler, where the timing constraint is 10 ns. The synthesis report
using TSMC 0.18um CMOS technology is summarized in Table 4-1, where the
98.25% fault coverage is measured.

Table 4-1 Synthesis Report

ITEM Area (mm?) Timing Fault coverage

Processor 497524 .31 10 ns 98.25 %

4.1.3. Auto Placement and Routing (APR)

Next, we use Cadence-SOC . Encounter-to place and route the gate level code

automatically.
Table 4-2 APR Report
Chip name Bio-CAS Processor Version 1 (BP_v1)
Technology TSMC 0.18um 1P6M CMOS
Package 160 CQFP
Chip Size 2.114x 2.114 mm?
Gate Count 47K gate count (Bus codec: 2.014K)
Power Dissipation ~16mW
Max. Frequency 100MHz (10ns)

We use test patterns include DCT, FIR and Sobel with PrimePower. The average

62

of power dissipation is 16mW. The chip layout is shown in Fig.4-2. The chip pin
description and 160 pin-CQFP bounding diagrams are revealed in Figs. 4-3, 4-4,

respectively.

Fig. 4-2. Chip Layout.

63

PADI_DATA_MMr
6:31

1s73s8Y 1avd

PADO_HAddr
PADI_pro_mem_data_w 8:15
0:10
10VDD =0 = - TR L - PADO_pro_mem_address_w
IOVSS — 0:8

CoreVDD
CoreVSS

PADO_pro_mem_address_w
PADI_pro_mem_data_w 9:

PADO_test_so

PADO_CEN
PADO_ctrl_sig_next_H

PADI_DATA_MMr
0:5

PADO_HWDATA PADO_HAddr

0.7

Fig. 4-3.-Chip Pin Deseription-Diagram.

Fig. 4-4. 160 pin-CQFP Bounding Diagram.

64

Table 4-3 Chip Specification

Technology Description

Process TSMC 0.18um 1P6M Mixed Signal
Architecture 7-stage pipeline

Synthesis Synopsys Design Compiler

Gate Count 47K (Bus codec: 2.014K)
Embedded Memory Cache FIFO RAM(512x2)x1,

Cache DATA RAM(512x32)x2,
Cache TAG RAM(512x8)x2,
MS Cache RAM(512x32)x2,

MS_Cache TAG RAM(512x8)x2

Die size 2.114 x 2.114 mm’

Supply 1.8V/33Vit 10%

Input Delay Time Max 0.714ns/ Min 0.543ns
Power consumption 16 mW

Operating Frequency 100 MHz

The chip characteristics are listed in Table 4-2, where the power consumption is
16 mW.

Finally, we still use Calibre DRC (Design Rule Check) and LVS (Layout VS
Schematic) for our final check.

In memory part, we generate 4 tag cache for address tag, 4 data caches for data
by Cadence-Memory generator. The gate-level timing diagrams of DCT and Sobel

benchmark are shown in Fig.4-5 and Fig. 4-6, respectively.

65

T
|

mode (30 Sim:/testCHIFO42Z3/CHIP/datal/Dataramd/
ffffdassd

Array Editor: out

File Edit ¥iew Web Window Help

& @ | Mumeric format | short v| Size |5? |by|5g |
18 19 20 21 22 23 24 25 2f 27 28 20 il kil a2 x]
1 0 -2 0 -1 -9 -94 -221 -306 -364 -383 -371 -341 -319 -305 -207) -289
2 -2 -2 -1 -83 -204 -287 -315 -278 -209 -105 -7 a7 115 141 157 164
3 -2 -36 -116 -219 -249 -189 -85 20 a3 135 168 183 194 203 208 210

Fig. 4-6. Sobel gate-level simulation.

4.2 Power Analysis

The transparent un-coding power dissipation at the bus is given by (4-1) where P
is power consumption, C; is the bus capacitance per bit, is transition activity, V' is

supply voltage, fis clock frequency.
66

2
P D ,uncoded = auncoded CLV f (4'1)
For our proposed encoding and decoding scheme, the power dissipation at the

encoder, the bus, and the decoder is given by (4-2).

PD,coded = PD,encoder + PD,bus + PD,decoder (4'2)

If acodeq 18 the reduced transition activity at he bus after encoding then the total power
dissipation is given by (4-3).

P

D,coded =

P

D,encoder + acodedCLsz + PD (4_3)

,decoder

We estimate the power dissipation in the encoder and the decoder are 0.8mW by
DCT function.

In Fig. 4-7 we plot the power dissipation for different bus capacitances, C;. The
power dissipation was estimated using 75 samples of DCT data to memory. We see
that for small bus capacitances (<0.3415 pF/bit) in.Fig. 4-8, it is best to not encode the
data at all. For capacitances above 0:3415-pE/bit, our proposed scheme provides a
well reduction in power dissipation: The slope of the curve is determined only by the
reduced transition activity, o.q.4, and is independent of the power dissipation in the

encoder and decoder.

67

— Froposed (36 bits)
—— Original {32 hits)

sed and Original

— Proposed (36 bits)
—— Original (32 hits)

Fig. 4-8 Power dissipation for Proposed and Original
68

Chapter 5
Conclusions and Future Works

In this thesis, we proposed a power aware data bus codec design that can reduces
switch activity by 23% on average since adaptively choosing the optimal encoding
scheme for different data types. The advised codec can save 68% area overhead
compared with R-S-H’s design. From the FIR and DCT benchmark simulations, on
average, 50%~60% power reductions can be guaranteed. In near future, the processor
design adopting low power bus codec and phase-cache pipeline schemes will be tape
out for completeness. At that time, we will integrate the proposed scheme with the

operation amplifier, filter, and analog-to-digital converter for biomedical SOC design.

69

References

[1] S. Takahiro, S. AKUI, K. SENO, M. NAKAI, T. MEGURO, “Dynamic voltage and
frequency management for a low-power embedded microprocessor,” IEEE Journal of
Solid-State Circuits, vol. 40, no. 1, pp.28-35, January, 2005.

[2] A Khan, P Watson, G Kuo, D Le, T Nguyen, S Yang, P, “A 90-nm power optimization
methodology with application to the ARM 1136JF-S microprocessor,” [EEE
Journal of Solid-State Circuits, vol. 41, issue 8, pp. 1707- 1717, August, 2006.

[3] Qing Wu, M. Pedram , Xunwei Wu, “Clock-gating and its application to low power
design of sequential circuits,” IEEE Circuits and Systems 1, vol. 47, issue 3, pp.
415-420, Mar, 2000.

[4] L. Benini, P. Siegel, G. De Micheli, “Saving power by synthesizing gated clocks for
sequential circuits,” /[EEE Design &ulestiof- Computers, vol. 11, no.4, pp.32-41,
October, 1994,

[5] P. Petrov, A. Orailoglu, = “Low-power data Smemory communication for
application-specific embedded ‘processors; - Proceedings of the 15th international
symposium on System Synthesis (IS88:'02) , pp..219-224, October, 2002.

[6] Michael J. Flynn, Patrick Hung, “Microprocessor design issues: thoughts on the
road ahead,” IEEE Computer Society, vol.25, no.3, pp. 16-31, MAY-JUNE 2005.

[7] Ke Ning, David Kaeli, “Power aware external bus arbitration for system-on-a-chip

embedded systems,” Proceedings of High performance embedded architectures and
compilers, vol. 3793, pp. 87-101, November, 2005

[8] A.P. Chandrakasan , S. Sheng , R.W. Brodersen , “Low power CMOS digital
design,” IEEE Journal of Solid-State Circuits, vol. 27, issue 4, pp473-484, April,
1992.

[9] A.P. Chandrakasan and R.W. Brodersen, “Minimizing power consumption in digital
CMOS circuits,” Proceedings of the IEEE, vol. 83, issue 4, pp.498-523, April, 1995.

[10] S. Komatsu, M. Ikeda, K. Asada, “Bus data encoding with coupling-driven adaptive

70

code-book method for low power data transmission,” [EEE Solid-State Circuits
Conference, pp. 297-300, September, 2001.

[11] 4.4, “Low-Power Computer Design :Slides,”® > % & * & » Sep, 2006.

[12] M.R. Stan, W.P. Burleson, “Bus-invert coding for low power 1/O,”IEEE Transactions
on VLSI systems, 1995.

[13] Tina Lindkvist, Jacob Lofvenberg, Oscar Gustafsson, “Deeo sub-micron bus invert

coding,” NORSIG, 2004.

[14] Yan Zhang, John Lach, Kevin Skadron, “Odd even bus invert with two phase transfer
for buses with coupling,” Proceedings of the 2002 international symposium on Low

power electronics and design, pp. 80-83,2002.

[15] L.Benini, G.DeMicheli, E.Maci, D.Sciuto, and- C.Silvano, “Asymptotic zero-
transition activity encoding for-address busses in low-power microprocessor-based

systems,” IEEE 7" Great Lakes Symposiumy, 1997.

[16] S. Ramprasad, N. R. Shanbhag, I. N. Hajj, “A coding framework for low power
address and data busses,” IEEE Transitions VLSI Systems, vol. 7, no. 2, pp. 212-221,

June 1999.

[17] J Yang, R Gupta, “Frequent value locality and its applications,” ACM Transactions
on Embedded Computing Systems (TECS), vol.1, issue 1,pp.79- 105, November,

2002.

[18] J Yang, R Gupta, “Frequent value encoding for low power data buses,” ACM

71

Transactions on Design Automation of Electronic Systems (TODAES),vol.9, issue

3,pp. 354 - 384, July, 2004.

[19] M. Muroyama, A. Hyodo, T. Okuma, H. Yasuura, “A power reduction scheme for
data buses by dynamic detection of active bits,” Digital System Design Proceedings,
pp.408- 415, September, 2003.

[20] Wolfgang Nebel, “System-level power optimization,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol.5, issue 2, pp.115-192, April, 2000.

[21] Simon Segars, “Low power design techniques for microprocessors,” ISSCC, Feb,

2001.

[22] M. Sami, D. Sciuto, C. Silvano," V. Zaccaria, R. Zafalon, “Low-power data
forwarding for VLIW embedded architectures,” /EEE VLSI Systems, vol. 10, issue 5,

pp.614-622, October, 2002.

[23] Nian Shyang Chang, Cell-Based IC Physical Design and Verification, Chip

Implementation Center, July, 2004.
[24]% 530 ~ R, "B R ¥ FF AL G 4 BPe iz d] B Design of

Multi-Core Embedded Processor Using Configurable Master-Slave I-Cache

Controller,” W= il ~ & » st h~ » ¢ FIARIS &

72

Appendix

A. DRC and LVS Verification

Highlight Setup Help
e « H » Z
[=] B 3 Exrors (in 3 of 322 Checks) [E]| ® cen - Top)
=] Bl Cell SD_v3 - 3 Eaxars| /
[+] Check PO.R.3 - 1 Exvor
[+] Check M2 R.1 - 1 Exvor
Check M&T.R.1 - 1 Exvor
H 1= o | =] q
Checktext
=1 1= |
Cell 3D_v3 : 3 Errors
> & = { =
DRC % 3% & 3% 5
Ha CALIEBERE SYSTEMHM HH
HH HH
HH L W5 REPORT HH

REPORT FILE MAME:
LAYOUT MAME:
SOURCE MAME:

RULE FILE:

HCELL FILE:
CREATION TIME:
CURREWT DIRECTORY:
USER MAME:

CALIERE WERSIOM:

LVS =& & 3%

Tws.rep
Sh_w3.spi (7SD_w37)

Sh_w3.spi (7SD_w372
calibre.lvs

[—automatch)

Sun Jul 8 19:54:22 2007
iuserfkufcachetEStfca11bra!LUS
u
w2004.2_5.19

OVERALL COMPARISON RESULTS

H# H#
H CORRECT H
#

e

HH# HH
HitHHE R RS SR R

Tue Jun 23 19:44:37 PDT 2004

73

B. CIC Tapeout Review Form

Lo 8 ¥t

1-1. A LA L3 BB 2 R 2 o T R

1-2. Top Cell &4 SD_v3
1-3. & * library &4
__ CIC_CBDK35
__ CIC_CBDK25
v CIC_CBDK18
Wkt vll
1-4. A 7 & * CIC#H 2 Memory ? Yes
1-5. 3R 100 MHz
1-6. AR 16mf
p

1-7. f PR AR 2114 X 2114

2. ESa
2-1. B 2 & e ? Synopsys design compiler
2-2. £_% 4> boundary condition:

v input drive strength™ w7 Tinput delay ~ v output loading ~ v output
delay
2-3. £ % 4~ timing constraint :
_v_specify clock (sequential design)
max delay ~ min delay (combinational design)
2-4. &_F 4v ~area constraint? _ Yes
2-5. & = {s 2 reportE_% F timing violation ? _ Mo
__ 7 setup time violation~__ 7 hold time violation
2-6. &=tz verilogd® 7 7 assignfait ? Mo

2-1. &= ts2verilog®® 77 *cell* z instance name? _ Mo
27

B

2-8. & = {82 verilog® % F 4l \ 2z instance nameznet name ? Mo

¥ ,P'];é'ﬁ’_}:k;‘l'(ﬂ a'ﬁ'—sﬂa B ,d.;l::g'_) :

3-0. i 2 Wt ? DFT compiler
3-2. i * 2 ATPG#c %8 ? Tetramax
3-3. ¢ * Embedded memory#c& : SRAM 5 » ROM 0
Memory = | : 512x32 (Word x bit)x2 512x8 (Word x bit)x2 512x2

(Word x bit)xl

T4

Bl3# > % BIST Yes vor B pIRE 2 NA

i¢ * BIST, # Test Algorithmi ®? Moving Inversion (13N March)

e P % Bmemory > & % £ * BIST controller _ Yes - BIST controller#& &
1

3-4. Scan Chain Information
Flip-Flop £ 3 %> ®?__ 2280
Scan chain #&E® £ 5 % > iE ? 3
Scan chain length (Max.) ? _25561. 840
3-5. Uncollapsed fault coverage®_% 42:& 90% ? Yes R 52 98245
ATPG patternengkep % %> 2 272
it F i@ * Synopsys TetraMAX % & # ATPG pattern - 3 i¢ * set faults
-fault_coverage 4p 4 4p T TetralAX # # fault coverage information
i * SynTest TurboScan 2 asicgen * # # ATPG pattern > 31 atpg
pessimistic fault coverage #ig % #
ERCIE =3
4-1. gate level simulation®_ % gutiming.violation? No
___ 7 setup time violation ;... 3 hold time violation
FHE R
5-1. i@ * 2 P&R#c%E 7 _ v Apolo~TwiSE
5-2. power ring% & ? &8 £ % ¢ ¥ Feurrent density(ImA/1um) ? Yes
5-3. 4% % joutput loading? _ Fes
5-4. A % 4r + Clock Tree? _ Jes
5-b. §_F 4c t Corner pad? JYes
5-6. A F 4t [0 Filler? _ Jes
5-T. 4 %4+ Core Filler? _ Yes
5-8. £_% + 4c Bonding Pad ? Yes

(A1) #®* Apollo 4 Fw ¥

A-1.

£ %3417 Fill Notch and Gap # 2% ?

MT(S-12SDFe* SEFA A E

S-1. power ringt & % j overlap vias? _ Mo

S-2. £ F =10 RowfrCorner Row3 ApRt%E ? _ Fes

TR =3

6-1. £_7 #aiEpost-layout gate-level simulation? Yes

STA(static timing analysis) # 4% 2 Primetime / Modelsim

Ib)

6-2. 4_% #aEpost-layout transistor-level simulation ? No

6-3. M THREMKEER: _ SS~_ T~ FF
6-4. & BB E R A N TR D P600 of Agilent 93000

6-5. HEELF Y EHILLRE? Yes

DRC/LVS 5z
T-1. L3 FDRCHE? _ Mo MER T

e DRCH 48 ? Calibre

234 7 “DRCEAERE 2 Mo
7-2. £33 HLUSE®? Mo

@ LVS #ictg ? Calibre

£ 7 3 2CIC# # s BlackBox ? No

K & BT /3 1R R R b thew

76

	Table of Contents
	List of Figures
	List of Table
	Chapter 1
	Introduction
	1.1 Brief Introduction
	1.2 Organization of the Thesis

	Chapter 2
	Power-Aware Data Bus Codec
	2.1 Motivation
	2.2 Related Works
	2.2.1 Bus-Invert Bus Encoding
	2.2.2 Zero-Transition Activity Encoding
	2.2.3 A Coding Framework for Low Power Address and Data Busses
	2.3 Power Aware Data Bus Codec
	2.3.1 Proposed Data Bus Codec
	2.3.2 Architecture of Codec
	2.4 Power Aware Data Bus Codec Simulator
	2.4.1 8 bits Power Aware Data Bus Codec Simulator
	2.4.2 16 bits Power Aware Data Bus Codec Simulator
	2.5 Result and Analysis

	Chapter 3
	Low Power Embedded Processor Design
	3.1 Architecture of the Low Power Embedded Processor
	3.1.1 Low Power Embedded Processor Core
	3.1.2 Low Power Embedded Processor Instruction Set
	3.2 Configurable Master-Slave I-Cache Controller
	3.2.1 The Proposal of Configurable Master-Slave I-Cache Controller
	3.2.2 The Performance of Configurable Master-Slave I-Cache
	3.3 High performance pipeline design of low power phased cache
	3.4 Tool Chain
	3.4.1 Assembler
	3.4.2 Simulator
	3.5 Verification
	3.5.1 Finite Impulse Response
	3.5.2 Discrete Cosine Transform
	3.5.3 Sobel Operator
	3.6 Field-Programmable Gate Array (FPGA)
	3.7 Summary

	Chapter 4
	Chip Implementation and Verification Results
	4.1 Chip Fabrication
	4.1.1. Chip Design Flow
	4.1.2. Synthesis
	4.1.3. Auto Placement and Routing (APR)
	4.2 Power Analysis

	Chapter 5
	Conclusions and Future Works
	Appendix
	A. DRC and LVS Verification
	B. CIC Tapeout Review Form

