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Abstract

Many traffic accidents on the highway are caused by the driver’s inattention due
to drowsiness. Hence, many researchers have devoted to develop algorithms to
prevent drowsiness. Recently, “several studies have®shown that drowsiness related
information is available in eye closures;-heart-rate and electroencephalogram (EEG).
In this study, we developed a drowsiness detection system based on EEG recordings
and data analysis. One of the biggest challenges in EEG-based system lies on the
contaminations from inevitable EEG artifacts from eye movements, blinks, muscle,
heart, and line noise. Independent component analysis (ICA) has been proven to be an
effective technique to remove various types of artifacts. However, most of the ICA
was performed offline on personal computers instead of an online analysis. Here, we
design, develop and demonstrate an embedded wireless brain computer interface (BCI)
including three functional blocks: EEG acquisition, amplification and wireless
transmission, on-line ICA process and spectral analysis, and real-time drowsiness
detection and feedback delivery to accurately and continuously detect and report

subject drowsiness level based on the EEG data.

KEYWORD: Brain Computer Interface, Brain Signal Processing, Digital Signal
Processor, Drowsiness Detection and Warning, Embedded System,

Independent Component Analysis, Wireless transmission

il



PR S A SRR Rl TR N 5

L 2 e % %
-,1!*.-"551”‘ ﬁgﬁ i G

- ERER B g e L

2
|4
<k
(=

M-
5
&
=
%
o
pisa
[
S
j59
it
o+
X

IR

FEKR FHFIFENRIFE L DRFIES ERFHA LT T
= oo FlptF 5?? AR o T8/ S P T2 S B E I G "’F”“’?If’uﬁ
¥ e T KR GRS s QI S R R B R o s AT R AP
B B AL 2 AT ISR G R B8 e e
Yid % PRk ﬁ%q\\g—,,pir’ S o P e g RIET 44T AV W A g FpR
B8 PR LR SR s S PPESR AR A T R o n AT EP B AL
117 50 oenfs g S faeit o B S el e S AR AT R e
RAFrm d ETEERE AT o
Ahe I REAGRILE L A B RR B - B AgR B &
FHR-ETETHAERGH A kA Z A FEid AL THT R
%ia«ﬂ'*’ﬂ@‘il@%“ TR R AR E R  F Wk Yk R R R R
WEE o iR KILET Y B R R RIF M P A A R e

218

BAET B A G 0 Gk UBLAST > Bo UBLASL E o R ¥R 0 Rl A
SRR AR R i £

il



B #

A~ IR = F] itﬁifip%'?{ﬁf#?ij Tﬂi.l ,’Ei\,%ﬂ El ;/; %
Fenird o AFEZ T F L L F s o Fobd BR M LR
UCSD s+ T 1 ¢ L A B AL 2 A Feopjm gL

R CEE L E R ek RE AR LK -

ER AL O REIFRFREFR CRBPE Y R EE

EP s FRAOPIRG > N2 F T RS BT~ FF
FR R AZE A2 G FE A~ F 2 s Julien B Y EAR

BTSSR S
BB 9 A kA Bk 2 AR a4 Lt A e T e RS
AHEA ST e L3 R R B A N o gl rhd B

TRIE 307 SR o 2 R o

WA ?}E&fg}\mﬁ& EoATg B s A enfE £ R A0 o

v



Table of Contents

DN 11 3 o Tt ii
LA 2 S iii
R BB ietiiiiietiiiietiateneeiatantonstsntsnsonsssntonsosatantonsonstsntonsosntsnsonssnnsasssanosanes iv
TADIC.ueeeeeieiiiiirittecttectteceeecteectteestteesstessstesssnesssasssstsssssassssesssssnsssssassssasnes vii
FIGUI@ auueeriinniiiiiinntiiininttiensnnnnicsssnsnnssssssssnessssssnssssssssssssssssnsssssssssssssssssssssssssnssssnsans viii
Chapter 1 INtroduction.........eeiccicsniicsissnnncssisnrncssssssnesssssssssssssssssssssssssssssssssssssssssssssssss 1
1.1 Motivation and Problems .........eeiiiiviiiiseiiisnneinssnencsssnensnecsssecsssecssssecsssecnns 1
1.2 Organization Of ThesSiS.....ciierirnricrsssnricssssnniecsssnsecsssssnssssssssssessssssssssssssssssssnns 2
1.3 NOtALION ccueeieieeeeineecinrecssnneisaeicsanecsstesssseesssseesssseessssesssssesssssesssssessssssssssssssssassss 3
Chapter 2 Background and Previous WOrKS ........ieiicvvercnisnncnsnncssnncssnnncsssnncsnnns 6
2.1 Brain Computer Interface 6
2.2 Independent Component ANMALYSiS i esasiecstsserecssssecsssrecsssresssssessssessssrossssrossnsees 8
2.3 Drowsiness Detection Methods....oi.liciiciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiecne. 9
Chapter 3 Embedded Brain Computer-Interface Architecture 11
3.1 SYSEEIM O VEIVIEW ccuuureriirssrsinsisessionccsssaseecsssiinsiosssssesssssssssssssssssssssssssssssssssssssssssss 11
3.2 System Function BIOCK ........ccoviiiiiimneiiiniiicnmnniisnmsiisssssssessssssssssssssss 12
3.3 Requirement Analysis of Hardware and Software...........cccoecverecccccnnecccccnnnes 14
3.3.1 EEG AcquiSition CIrcCUit ....ccccceieeeiivnerccssssnnicssssnnrscsssssscsssssssssssssssssssssssssses 14
3.3.2 Wireless Transmitting Module.........cccocveerecsivnriccsisnrncssssnssecsssnsssscssssssees 15
3.3.3 Embedded Digital Signal Processor .........cccceceeeecscsnnrccsssnreccssssssscssssssseces 18
3.4 Development of the SYStem ......eciccecveiicsisnnrcnsssnniccsssnniscssssssesssssssessssssasssssanss 20
3.4.1 BOOt LOAAEL ..uucceuuneeecneinineenineensnnecsnnecssnnessssescssnesssssesssssesssssessssnsssssnsses 20

3.4.2 Operating System 24

3.4.3 USer Prog@ram ........eiecccceeiccsssnnicssssnsnecsssssssesssssssssssssssssssssssssssssssssssssssases 29

3.5 Optimization of the SYSteM ......ccicrcccriiisivnricnsssnnricssssnniscssssssscsssssssessssssssssssssass 30
3.5.1 Floating Point to INtEGET ......cccceeerrrrurricsssnnrccsssnnrrcsssssssessssssssssssssssssssssssse 30
3.5.2 Prog@ramming.....c.eeeiccccssseeccsssssessssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssss 31
3.5.3 Variable Regulation ..........ccoueeiiciisnniccscsnnicsssnniecssssnsscssssssssssssssssssssssssssses 31
3.6 Comparison to Past BCI SyStemS ......cccercverrcssssanrecsssnsresssssssssssssnsssssssssssssssnnss 32
Chapter 4 On-line Independent Component Analysis Implementation ............... 34
4.1 Independent Component ANALYSiS.....cccceeveressrrcssnicssanecsssnessssnesssnesssssssssssssenss 35



4.2 Rejecting Components with Standard Deviation ..........oeeeeeenseecsensseecsennnne 41

4.3 TESHINE cuvvvrerrurrersrrecssnnecsssnessssnesssnesssssosssssossssssssssssssssssssssesssssssssssssssssessssssssnsssssnss 43
4.3.1 Testing of Artificial Mixed Data .......c.cceevverivvvnrinsnrcnvnrcssnrcssnnrcssnsncsenns 43

4.3.2 Testing of Real EEG Data 45
Chapter 5 Experiment Designs and Results ..........cccovvvericsvvnniccsssnnricssssnnsccssssnsscsans 48
5.1 The Experiment DeSi@N .....ccccceeieeiirnricsssrnnnccssssnrncsssssnsesssssssssssssssssssssssssassssssss 48
5.1.1 Experimental SEtUP .....cccccecvvunricssssnnnccscsnnsrcsssssssecssssssscssssssssssssssssssssssss 48

5.2 Drowsiness Detection AlZOrithM.......ccooeeiiicnisniicnissnnriccsssnnnicsssnnresssssssnccssnnnes 50
5.3 The ReESUILS ...uuueeeueerineiiiiniicsnieiiteinsteecsinnecsssnecsssnesssssesssssssssseessssesssssssssssssssssses 56
5.3.1 Result of 4 Channel Online EEG Analysis System........ccccceeecvunreccscnnnes 56
Chapter 6 Conclusions and Future Works..........ieeeicciseccssencssnrcsssncssssncssnsecnes 59
REFCIEICES cuueeiurerinnirernricrtreisneecinticiaeenisniesssenessssessssnesssssesssssessssssssssssssssasssssasssssssses 60

vi



Table 3-1 Wireless package definition...........cceeeeiieiiiieeiiieeiieeeeeeeee e 16
Table 3- 2 RF3105/RF3100 module.........ccoeoiiiieiiiieiieieceeeeeee e 17
Table 3- 3 Comparison to Other Operating SYSteMS ........c.ceevcveeeriieerireeerieeenieeeeieens 28
Table 3- 4 Comparison top past BCI SyStemS.........ccccvvieriiiieiiieeiiieeciee e 32
Table 4- 1 The result of each ICA with different variables............ccccceeevvieeriieenneennns 45
Table 5- 1 Characteristics Of EEG bands ............cccvviiiiiiiiieeiiiecieeceecee e 50
Table 5- 2 Criterion Of DIOWSINESS .....uviercviieiiieieiieecieeecieeesteeeeeeeaeeesaeeesreeeseree e 52

vii



Figure

Fig.2- 1 Learning to Control a BMIc for Reaching and Grasping by Primates............. 8
Fig.3- 1 System architecture. ...........ooviiiiiii i 11
Fig.3-2 Data flow of the SYStemM........cccviiiiiiiiiiiiiciie et 12
Fig.3-3 Block diagram of the signal acquisition and amplification unit...................... 13
Fig.3-4 Block diagram of the wireless data transmission Unit...........cccceeeuveerveeereveennns 13
Fig.3-5 The signal flow of EEG signal recording Circuit..........cccccveeerveeenveennieeennneenns 14
Fig.3- 6 The picture of EEG signal recording Circuit ...........cccceeeveieeiiieeniieenieenreeens 15
Fig.3-7 The data flow from A/D converter to wireless reCeiver ..........ccevvvvrervreerereens 15
Fig.3-8 The picture of the integrated signal recording circuit ............cceeeecvveeeieeernnennn. 16
Fig.3-9 RF3105/RF3100 MOAUIE........coiuieiiiiiiieieciieieee ettt 17
Fig.3- 10 flowchart of receiving procedure ..........c.ceovueeeriieeiieeeiieeeiee e evee e 18
Fig.3-11 The system diagram of the board .............ccecvieriiieiiiiiicieee e 19
Fig.3-12 Picture of the board (upside and downside) ..........ccccveeeeiiieniiiiiniiieeiiieeieens 19
Fig.3-13 U-B00t bOOt UP flOW ...eoouiiieiiiieciieece e 20
Fig.3- 14 Setting the UART port....... .ot Bllilima coerieeiieiieeeeieeeee e 22
Fig.3-15 BOOt UP MESSAZE. ....c..vveioiheenere smmssmssesiie e essasheseeessseesssseesssssesssesessseeesssesssssesnnns 22
Fig. 3-16 Map of U-boot in external MemOTY. . ..cci. iite v eereeeiieeiieie et 23
Fig.3- 17 Map of U-boot in extérnal memory after loading U-boot and resetting ...... 24
Fig.3- 18 Map of kernel in external memory after loading kernel and resetting.......... 26
Fig.3- 19 Map of kernel and JEFS2: i nniieeciiteiie et 27
Fig.3- 20 Map of rest external MemOTY .......coocuvieeiiieeeiieeeiie et eeree e 28
Fig.3- 21 Cross-platform development framework ............cccccveeiiieniiiencieeeieeeeeens 29
Fig.3- 22 Flow to create an executable 1mMage .........ccccvveeriieerieeeiiieeiieeeee e 30
Fig.4- 1 Flowchart of the EEG signal procedure ............ccccceeeviieeiiieeiieeeie e 34
Fig.4- 2 N mixed signals and N SOUICES ........cccueeeruieeriiieeeiieeniieeeieeeereeesveeeeveeenaee e 35
Fig.4- 3 The typical super Gaussian variables is spiky. For comparison, the normal
Gaussian is given by a dashed line. The other is sub Gaussian one. ................... 37
Fig.4- 4 The brain activity recorded at 0Ne POINt........ceeecvreerieeeiiieniieeriee e eree s 40
Fig.4- 5 FIoW Of ICA tralninNg .....cccvveeeuieeeiieeeiieeeieeeeieeesiveeeseteeeieeesaeeeesaeeessseeesneeenns 41
Fig.4- 6 The observed 4-channel mixtures signals ..........cccceeeeeeeiiieniiieeniee e 42
Fig.4- 7 The result of informax ICA, estimated by the signals in Fig.4 -6.................. 42
Fig.4- 8 The observed 5-channel mixtures signals ..........cccceeeveeriiieniiieeniie e 43
Fig.4- 9The result of informax ICA, estimated by the signals in Fig.4-§.................... 43
Fig.4- 10The original SINAlS ........cc.ccevuiiiriiiiiiiie ettt 44
Fig.4- 11The observed mixtures of the source signals in Fig.4-10..........c.cccccvveennenn. 44

viii



Fig.4- 12 The result of fast ICA, estimated using only the observed signals in Fig.4-11

.............................................................................................................................. 45
Fig.4- 13 The result of Information Maximization ICA, estimated using only the

observed signals 1N Fig.4-11 ....ccoooiiiiiiieeeeeee e 45
Fig.5- 1 A 360-degree 3D VR dynamic driving environment.....................ceenn.. 49
Fig.5- 2 The VR-based four-lane highway SCENe ..........cccveeveiiieeciiiiiciieeciie e 50
Fig.5- 3 The Response Time in ONe SESSI0N ......cccveeeruveeeiuieeeiieeeiieeeieeesreeesreeeneveeens 50
Fig.5- 4 The original signal of 4Hz & SHz Sinusoid............ccccveeriieeiiieniieeeieeeeeens 53
Fig.5- 5 The power spectrum of 4Hz & SHz sinusoid.........cccceeeeiiieeiiienciieciieeiees 53
Fig.5- 6 The original signal of 10Hz & 12Hz sinusoid...........cccceevveeviiencieenieenieeens 54
Fig.5- 7 The power spectrum of 10Hz & 12Hz Sinusoid...........ccccvveeevvieeciieeniieenieenns 54
Fig.5- 8 The flowchart of our algorithm .............ccccuveeiiieeiiiieieceeee e 55
Fig.5- 9 The procedure of FFT.........cooiiiriiee et 55
Fig.5- 10 The flow of drowsiness estimation algorithm..............cccoevvieicieeniieenneens 56
Fig.5- 11A Demonstration of Our SYStEM ........cceevieiiiieiiiieeciieeciee e eivee s 57
Fig.5- 12 A Demonstration of EEG Hat..........ccccoooiiiiiiiiiiiececeeeeeeeee e 57
Fig.5- 13 The Result of GUI .......oooee et BIE S a1 57

X



Chapter 1 Introduction
1.1 Motivation and Problems

Driver’s fatigue is a causal factor in many accidents because of the marked
decline in the driver’s abilities of perception, recognition, and vehicle control abilities
while sleepy. Hence, the development of the drowsiness monitoring technology to
prevent accidents behind the steering wheel has received increasing interest in the
field of automotive safety. Lately, several studies have shown that drowsiness related
information is available in eye closures, heart rate and electroencephalogram (EEQG)
Previous studies showed that the eye blink duration and the blink rate typically
increase while blink amplitude decreases as a function of the cumulative time, and the
saccade frequencies and velocities:of electrooculogram (EOG) decline when people
get drowsy [25]. Although thése_studies ‘showed' that eye-activity variations were
highly correlated with the human fatigue and could accurately and quantitatively
estimate alertness levels, the step . size (temporal resolution) of these eye-activity
based methods was too slow (10s or longer) to track momentary changes in vigilance.
Contrarily, the temporal resolution of EEG-based methods could reach 1-2 sec that
makes them faster enough to track second-to-second fluctuations in the subject’s
performance. Although EEG signals have been proved to index the cognitive states of
a person, signal analysis is very challenge in EEG-based systems because of the
pervasive contaminations from eye movements, blinks, muscle, heart, and line noise
to the EEG. Independent component analysis (ICA) has been proved to be an effective
technique to remove various types of artifacts [23][24]. However, most of the ICA in
these studies was performed offline on personal computers instead of an online
system. For eventual practical acceptance in the workplace, it is highly desirable to
make all data acquisition and analysis on-lined. Here, we report our work in the
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design and test of a wireless embedded brain computer interface (BCI) that comprises
three functional modules: (1) EEG acquisition, amplification and wireless
transmission; (2) on-line ICA process, and (3) real-time drowsiness detection to
accurately and continuously detect subject drowsiness level based on the EEG data

and feedback delivery.

1.2 Organization of Thesis

The organization of this thesis goes as follows:
® Chapter 2
In chapter 2 we briefly describe the history of BCI, ICA and other drowsiness
detection methods. Three kinds\'of drewsiness detection methods will be
described here.
® Chapter 3
In chapter 3 we briefly describe the basic architecture of BCI. Then we will
propose a new embedded BCI system that can assess subject drowsiness levels in
near real time. In this chapter we will address the following issues:
Q Hardware specification: The hardware specification of the embedded
BCI system will be described here. Hardware specification includes an
EEG recording, amplification and wireless transmitting unit and an
embedded digital signal processing (DSP) board.
Q  The operating system (OS): The OS for the embedded DSP board will
be described here.
Q The applications implemented on the embedded digital signal
processor: The applications on the signal processor include an on-line

ICA process, spectral estimation and a real-time drowsiness detection



algorithm. The techniques used to verify the application will be
described here as well.
® Chapter 4
In chapter 4 we briefly describe the theory of ICA and the technique for
improving the convergence of ICA algorithm.
® Chapter 5
In chapter 5 we describe the experimental design. The experiments are designed
to simulate highway driving during which drivers often struggle to maintain their
alertness and attention. The correspondence between a driver’s behavioral and
estimated performance obtained by the embedded DSP will be shown and
discussed here.
® Chapter 6

We will conclude our work-in.Chapter 6.

1.3 Notation

Abbreviation Original text Chinese Translation
A/D Analog to Digital R LA E
API Application Program Interface B 240w

BCI Brain Computer Interface ApA e

DMA Direct Memory Access EETBRE
DSP Digital Signal Processor A AL R
ECG Electrocardiogram N



EEG

EMG

EOG

FHSS

FPGA

FSK

GCC

GSM

GPRS

IDE

IP

ICA

LCD

MMU

oS

PCA

PDA

RF

Electroencephalogram

Electromyogram

Electro-oculogram

Frequency Hopping Spread Spectrum

Field Programmable Array

Frequency Shift Keying

GNU Compiler Collection

Global System for Mobile

Communication

General Packet Radio Service

Integrated Development-Environment

Internet Protocol

Independent Component Analysis

Liquid Crystal Display

Memory Management Unit

Operating System

Principle component analysis

Personal Digital Assistant

Radio Frequency

BeAE B 4E
T AES 1 BARF L5
A 4

GNU #% 3%

EEo R RTINS

WA | MPRTE
FLEERR

EL Z N ST &
b B NR A
Rk BT R
TR EREA
13- -3
ERENPANAE S

B A #impszg
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SoC System on Chip S B

STFFT Short-Time FFT EpE R 2 E
TCP Transmission Control Protocol L @?J bt 1N
TCS Telephone Control Service TRBERIE T

Universal Asynchronous Receiver
UART TR EE
Transmitter

USB Universal Serial Bus W g F| gt



Chapter 2 Background and Previous Works

2.1 Brain Computer Interface

Brain computer interface (BCI) is an interface between human and computer. It
is based on the specific brain activity generated by a specific thought of a human.
That is, we can obtain information from brain activity via signal processing and use
the recognized pattern to control a computer. At the beginning, the purpose of BCI is
not only prosthesis but also is to help handicapped people [48], gradually. Because of
the disability of muscle, handicapped people can not do things independently. For
example, handicapped people cannot move, control devices without aid. Hence, to
help these handicapped people, many researchers have devoted themselves to develop
BCI. That is, as long as handicapped people ate, still cognitively healthy, they might
able to move on an automatic wheel chair,-and control the on/off switches of lamps
via EEG recording and analysis. Throughdecades, it have been found in many studies
that the cognitive state of a person can be extracted from brain activity [1][2]. More
and more researchers are devoted to the study of BCI. BCI has helped handicapped to
live independent. Recent studies in primates, human subjects of Serruya et al. and
Taylor et al. [3][4] have demonstrated that animals can learn to utilize their brain
activity to control the displacements of computer cursors. Chapin et al. and Wessberg
et al. also demonstrated that animals can learn to utilize their brain activity to control
one- (1D) to three-dimensional (3D) movements of simple and elaborate robot arms
[5][6]. However, many domestic researches were focusing on EEG data recording
instead of EEG analysis [7]-[13]. Gao et al. have developed wireless BCI based on
steady-state visual evoked potential (SSVEP) [14]. They used twelve buttons
illuminated at different rates on a computer monitor to simulate a telephone. Users

could input phone numbers by gazing at these buttons. The frequency-coded SSVEP



was used to judge which button the user attended to. Another study of Gao et al. used
digital signal processor (DSP) to process EEG signals and wirelessly controlled
appliances with visual evoked stimulus [15]. Pfurtscheller et al. have designed and
implemented an EEG-based communication device called “Virtual Keyboard” (VK).
Classification of the EEG patterns was based on band power estimates and hidden
Markov models (HMMs) [16][17]. Another research of Pfurtscheller et al. proposed
an EEG-based Pocket BCI system that converted brain activity into control signals
left and right direction of a wheelchair [18]. Ashwin et al. described [19] a system that
monitored EEG of epileptic patients to improve the quality of their lives and also
helped healthcare providers to make a better diagnosis for patients with neurological
disorders. The use of Bluetooth connectivity helps physicians to monitor patient
activity while the patient resumes his or her normal activity.

Compared to the portability,.many' other applications using ECG are always
based on embedded systems. The EEG-based. application on embedded systems is
rarely seen. Han-Nam et al. have developed.a system which enabled a patient to be
treated at home through digital telemetry and public communication line. ECG signals
were transmitted wirelessly and not hindering a patient's movement [20]. Other ECG
systems only record ECG signals and leave the signal analysis to doctors [21][22].

Traditionally, a BCI system can be divided into two functional blocks. One is
data acquisition and recognition part, another is control part. An example of BCI is
shown as Fig.2-1. Jose. et al. demonstrate that primates can learn to reach and grasp
virtual objects by controlling a robot arm through a closed-loop brain—machine
interface (BMIc) [30]. It uses multiple mathematical models to extract several motor
parameters (i.e., hand position, velocity, gripping force, and the EMGs of multiple
arm muscles) from the electrical activity of frontal parietal neuronal ensembles. Using

visual feedback, monkeys succeeded in producing robot reach-and-grasp movements
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even when their arms did not move.
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Fig.2- 1 Learning to Control a BMIc for Reaching and Grasping by Primates

2.2 Independent Component Analysis

The original ICA was used for voicessignal separation. A classical application of
ICA is the “cocktail party problem’?, where a+number of people are talking
simultaneously in a room (like:at a cocktail party), and one is trying to follow one of
the discussions. The human brain can‘handlethis sort of auditory source separation
problem, but it is a very difficult problem'in"digital signal processing.

EEG is a non-invasive record of brain electrical activity measured as changes in
potential difference between pairs of electrodes placed on the human scalp. Because
of volume conduction through brain tissue, cerebrospinal fluid, skull, and scalp, EEG
data collected anywhere on the scalp mixes signals from multiple suitably-oriented
cortical areas. Thus, the analysis of EEG signals is also a “cocktail party problem”
and often very challenging. One of the most pervasive problems in EEG analysis and
interpretation is the interference in the data produced by often large and distracting
artifacts arising from eye movements, eye blinks, muscle noise, heart signals, and line
noise. One common strategy for avoiding EEG artifacts is to reject all EEG

recordings containing artifacts larger than some arbitrarily selected EEG voltage value.



However, when limited data are available, or when blinks and muscle movements
occur too frequently as in children and some patient groups, the amount of data lost to
artifact rejection may be unacceptable. Use of principal component analysis (PCA)
has been proposed to remove eye artifacts from multi-channel EEG. However, PCA
cannot completely separate eye artifacts from brain signals, especially when they have
comparable amplitudes. Jung et al. [23][24] use ICA for removing a wide variety of
artifacts from EEG records. Their results on EEG data collected from normal and
autistic subjects show that ICA can effectively detect, separate, and remove
contamination from a wide variety of artificial sources in EEG records with results
comparing favorably with those obtained using regression and PCA methods.
Nevertheless, most ICA was done off-line on PCs, hindering portability and on-line
BCI. This study reports an implementation of an ICA algorithm, making on-line blind

source separation of the multi-channel EEG a reality.

2.3 Drowsiness Detection Methods

With the increasing causalities on highway due to drowsiness, many researchers
have devoted to develop algorithms to prevent drowsiness. One method is to detect
drowsiness based on changes in blink behavior. The drowsiness detection Ulrika
proposed was based on changes in blink behavior and classification was made on a
four graded scale using MATLAB [25]. Although several studies showed that
eye-activity variations were highly correlated with the human fatigue and can
accurately and quantitatively estimate alertness levels, the step size (temporal
resolution) of those eye-activity based methods is often too slow (10s or longer) to
track fast changes in vigilance. Another method is to detect drowsiness information by

heart rate monitoring sensors placed in the steering wheel [26]. But the drowsiness



classification needs coordination, its not autonomy parameter.. Matsushita et al. have
developed a wearable fatigue monitoring system with a 2-axis accelerometer and an
on-board signal processing microcontroller [27]. As a result, the measured values of
the acceleration trace length showed some inconsistency with user-interviews consist
of subjective questionnaires about the user's fatigue [27].

It has also been known for more than half a century that signal changes related
to alertness, arousal, sleep, and cognition are present in EEG signals, but relatively
little has been done to capture this information in real time [25]. Recently, Lin et al.
have developed a drowsiness-estimation system based on EEG by combining ICA,
power-spectrum analysis, correlation evaluations, and linear regression model to
estimate a driver’s cognitive state when he/she drove a car in a virtual reality
(VR)-based dynamic simulator [28][29]. The proposed ICA-based method applied to
power spectrum of ICA components successfully removed most of EEG artifacts and
estimated the driver’s drowsiness fluctuation indexed by the driving performance
measure. However, their drowsiness-detection was still performed off-line on a
personal computer. For eventual practical acceptance in the workplace, it is highly
desirable to make all data acquisition and analysis on-lined. In this study, we design,
develop and demonstrate an embedded wireless BCI that comprises three functional
modules: EEG recordings, amplification, digitization and wireless transmission,
on-line ICA process and spectral estimation, and real-time drowsiness detection
algorithm to accurately and continuously detect subject drowsiness level based on the

EEG data in near real time.
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Chapter 3 Embedded Brain Computer Interface Architecture

3.1 System Overview

Fig.3-1 shows the three major components of the developed embedded wireless
BCI system: EEG amplifying and transmitting unit, EEG receiving and processing
unit, and display unit. The amplifying and transmitting unit, which is also called EEG
signal pre-processing unit, is capable of handling 4 channels of EEG data. In the
beginning, the subject will be attached to six electrodes: five on forehead (one ground
and four EEG channels), one on mastoid bone after ear. Then the EEG data is
amplified by 5000 times, converted to digital signals, and then transfer via radio
frequency (RF) module. All the process on the amplifying and transmitting unit is
controlled by a Field-Programmable Gate, Array (FPGA). After receiving EEG data

from the amplifying and transmitting unit;ithe:/EEG data is processed by receiving and

processing unit then the result is sent to the display unit.

GND

A A EEC

. . “= | 4-channel EEG
— |input from forehead
FER <4t

reamp
T\
|
[ EEG Signal

Pre-processing Unit

FPGA

Raw EEG data &

ICA Frequency Response &

Drowsy Index

g,
Wireless Transmissicnn“j/7
/

|
V

‘ Wireless Transmission control ‘

RF
J L

‘ Display Control ‘

TCP/Ii

J_L

‘ Network control ‘ EEG data

<

Drowsy est

BF533
(DSP)
Biomedical
Signal
Processing
Unit

Fig.3-1 System architecture
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3.2 System Function Block

The architecture of the embedded wireless BCI system we proposed can be
divided into three modules: signal acquisition and amplification unit, wireless data
transmission unit, and processing and display unit. The block diagram of the proposed
system is given in Fig.3-2. The data flow of the system is divided into two paths. (1)
The EEG signal is first acquired by signal acquisition and amplifying unit, and then
transmitted from wireless data transmission unit to wireless data receiver. Second, the
data processing unit will process the EEG data and transmit the raw data to remote PC
by TCP/IP at the same time; (2) after processing EEG data, the system will transmit

the result to remote PC by Ethernet.

EEG signal
EEG acquisition Wireless Data. Display Sound
. — .. — | Processing | — . —
and amplifier Transmission unit unit Feedback

Fig.3-2 Data flowof the system

(a) Signal Acquisition and Amplifying Unit

The signal acquisition and amplifying unit is used to measure the EEG signal
and filter out the noise. This block diagram is shown in Fig.3-3. The EEG amplifying
circuit is constructed of a pre-amplifier with the gain of 100, an isolation amplifier to
protect the subject, a band-pass filter which was composed of a low-pass filter and a
high-pass filter to reserve 1-100Hz, , a differential amplifier which had the gain of

fifty.
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EEC signal

l

EEG Pre- isolation
electrode amplifier amplifier
Band-pass
Amp “ filter
Analog
signal ont

Fig.3-3 Block diagram of the signal acquisition and amplification unit
(b) Wireless Data Transmission Unit
Fig.3-4 shows the wireless data transmission unit which converts analog signals
to digital signals, and then encodes and transmits through the wireless transmitter and
receiver. To do that, we use CPLDy(ComplexProgrammable Logic Device) to control

the A/D converter and encode the data for-thetransmitter.

A/D CPLD wireless wireless
converter (Data encoding) transmitter receiver

Fig.3-4 Block diagram of the wireless data transmission unit

(¢) Processing, Display and Feedback Unit

The processing and display unit is the main part of the wireless brain computer
interface. The operating core is ADI (Analog Devices Instruments) BF (Blackfin) 533.
The DSP processor is helpful for EEG data processing with a large number of
mathematical calculations. In this thesis, the DSP processor processes EEG data after
managing of peripheral devices, such as wireless receiving devices and network. Then

the result will be display and the feedback signal will be outputted.
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3.3 Requirement Analysis of Hardware and Software
3.3.1 EEG Acquisition Circuit

Generally speaking, the amplitude of bio-signal of human is very small for data
processing. Recording EEG is also difficult, because the amplitude of brain wave is
wakened through meninges, cerebrospinal fluid, and the scalp. The normal peak-to-
peak amplitude of EEG is 1~150uV and frequency band is 1~100Hz. Hence,
identically before processing the EEG signal, we should amplify the EEG signal first.
In addition, a filter circuit was also designed to extract signals at desired frequency
bands. Moreover, the materials of sensors also affect the recording quality because
EEG signals are always easily contaminated. The signal flow of our EEG acquisition
circuit and the picture of the EEG amplifier are shown below. First of all, the EEG
signals are amplified by 99 times."Then the signals are filtered by a 1-100 Hz band
pass. Third, the signals are amplified again by of 51 times. That is, the totally gain is
about 5,000. Finally, the processed: EEG-data are converted to 8-bit digital EEG

signals by an analog to digital sighal converter. The range of digital EEG signals is

0~254.
EEG signal
Pre-amp Band-pass filter Amp
99 times the EEG signal | 1Hz~100Hz | 51 times the EEG signal

l

8-bit digital EEG signal +— A/D converter

Fig.3-5 The signal flow of EEG signal recording circuit
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Fig.3- 6 The picture of EEG signal recording circuit

3.3.2 Wireless Transmitting Module

With the digital EEG signal output of A/D converter, we use Complex
Programmable Logic Device (CPLD) to encode the digital EEG signals for wireless
transmission. The encoded w1reless packages are. transmltted through wireless module

RF3105 to RF3100. Here, we use lo{V' power Radlo Frequency (RF) wireless

transmission protocol. The data, ﬂow (i)f ‘w1reless transmlttmg and physical photos are

'.r"

shown in Fig.3-7 and F1g.3-8, r‘-e?gectw@y. Thf:' package format of the wireless

transmission is shown in Table 3-1. To ensure the integrity of the EEG data, each
converted 8-bit digital EEG signal is embraced in 13-bit transmitting interval. The
baud rate of the wireless module we chose is 19200 bit/sec. The total size of the
package is 5x13bits = 65 bits. That is, the highest transmitting rate is 19200/65 =
295Hz.

> =

CPLD Wireless transmitter || |/ Wireless receiver
(Data encoding) (RF3100) [ (RF3105)

A/D converter | —»

Fig.3-7 The data flow from the A/D converter to the wireless receiver
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Fig.3-8 The picture of the integrated signal acquisition circuit

Table 3-1 Wireless package definition

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
Identification EEG EEG EEG EEG
code Channel 1 _.Chan.n_el 2 Channel 3 | Channel 4

RF3105/RF3100 ereless RS232|—|Converter converts traditional RS232 to
—— . | i ) e _t

wireless communication [36][37] There are three selectlons of frequencies: 433~435

—

MHz, 868~870 MHz, or 902~928 MHZ 1t is a transparent transceiver module that
integrates low transmission power and hrgh receiving sensitivity designs.
RF3105/RF3100 provides high communication speeds up to 76.8 Kbps and long
distances up to 600 meters. It meets the wireless regulation and saves the application
for approval of frequencies [36][37]. Compared to Bluetooth, RF3105/RF3100
consumes less power (12dBm, which is smaller than 24dBm of Global System for
Mobile Communication, GSM) and longer transmission range. The picture of RF3105
and RF3100 is shown below. The specification of RF3105 and RF3100 are listed in

Table below.
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Fig.3-9 RF3105/RF3100 module

Table 3- 2 RF3105/RF3100 modules

Model RF3100 - C RF3105-C
Working Frequency 915MHz

Modulation FSK

Channels At .l,e'as'.t 25 qhgnne'ls L

Functions Hz_ﬂf-Duple)I(,l I;'i:direc-ti.(:m, Transparent wireless

data transmit-and receive

12dBm"

Transmission Power

Baud Rates 19200 Kbps

Communication 200-600m (Whip antenna, outdoor, depending on
Distance different communication speeds)

Port Data Format

8N1

Type Connector

RS232 (9 pins, D-Sub, Female) Connector

LED

Red: Transmitting, Green: Receiving

The flowchart of receiving procedure on wireless receiver is described in
Fig.3-10. After reading the ID code which is 255, we continuously read 4 channels of
EEG data. Then feed them to the data analysis procedure. To simplify the

transmission procedure, our half-duplex transmitting module allows only one
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direction during transmission.

Read EEG data from RS-232

Identification
code = 2557

Read EEG data from RS-232

Process data

Fig.3- 10 flowchart of receiving procedure

3.3.3 Embedded Digital Signal Processor

In this thesis, the selected core;processor is ADSP-BF533 (Blackfin 533)
developed by Analog Devices In¢. Thersystem, diagram of the board we designed is
shown in Fig.3-11 below and:the picture of the board is shown in Fig.3-12. The
Blackfin processor provides both.microcontroller (MCU) and DSP functionality in a
unified architecture, allowing flexible ‘partitioning between the needs of control and
signal processing. If the application demands, the Blackfin processor can act as 100%
MCU (with code density on par with industry standards), 100% DSP (with clock rates
at the leading edge of DSP technology), or a combination of the two. The maximum
high performance of BF533 processor can be up to S00MHz. It has two 16-bit MAC:s,
two 40-bit ALUs, four 8-bit video ALUs, and 40-bit shifter. One of its features is
RISC-like register and instruction model for ease of programming and
compiler-friendly support. The board is designed to support the development and
porting of open-source uClinux applications and includes the full complement of
memory along with serial and network interfaces. Besides an ADSP-BF533 500 MHz

Blackfin processor, the board includes:
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<4 16 MB SDRAM (64M x 16 bits) and 4 MB FLASH memory
4 RS-232 serial interface

4 6 Keypads and 240*320 pixels LCD

4 JTAG interface for debug and FLASH programming

4 Bluetooth transmitting/ receiving module

TFTLCD
240*320

BLUETOOTH| «— BF-533 KEIEAD

SPI
POWER S_FBRMABM FLASH
4MB

Fig.3-11 The system diagram of the board

‘ Ii,’”'”'!l""|”2i”““'2l'"""!I”"ﬂ‘L‘]'i'””21””“'211"”"@ ['mnpn:lunlug'u'|||iag|'.||.1|||ulnn|1||E|Ii:||1||Tﬁ;linl1mﬂlmpi

Fig.3-12 Picture of the board (upside and downside)
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3.4 Development of the System
3.4.1 Boot Loader

Boot loader is executed before entering operating system. It initializes
processor stack, register, and basic peripheral devices and brings up the operating
system. The setting of Boot loader is concerned with processor type and operating
system, and its function is similar to BIOS of PCs. As a result, each boot loader
should’ve been modified and ported properly according to different types of
processors. The boot loader we use is U-Boot. The U-Boot boot up flow is described
in Fig.3-13 The U-boot entry which is u-boot 1.1.3/cpu/bf533/start.o is defined in

u-boot_1.1.3/board/stamp/u-boot.1ds.

Power up/ }
Reboot o l Set Up Stack
v Initialize I/O,
Timer, Register
U-boot Entry Check Other
v Clean Up Hardware
Set Exception Cache v
Vector and v Show Test
Mask all Relocate to Message and
interrupts SDRAM boot menu
Fig.3-13 U-Boot boot up flow
[may@brc2 stamp]$ make stamp_config (1)
[may@brc2 stamp]$ make (2)

To obtain U-boot, configure settings for BF533 STAMP as Step (1).Then type
‘make’ to compile U-Boot image. After compiling the U-Boot image, u-boot.bin
will be generated. The u-boot.bin is a binary file that can be used to upgrade U-Boot
if an older version of U-Boot is already installed on the target system. Finally, the

U-Boot image should be downloaded to the target board. There are three methods to
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download U-Boot image. One is to download image via ICE, others are downloading
via network or UART (Universal Asynchronous Receiver Transmitter) port. The
detailed steps are described below.
(a) Downloading Image via VDSP++

Before downloading U-Boot, u-boot.hex must be generated
first. The u-boot.hex file is not created at that time when U-Boot was compiled. It
1s necessary if we want to use Analog Device’s VDSP++ programmer to program

U-Boot into a platform. We can create U-boot.hex with Step (3):

[may@brc2 stamp]$ bfin-elf-objcopy -1 binary -O ihex u-boot.bin u-boot.hex  (3)

To download u-boot.hex image, first open the VDSP++ (version
4.0 or higher version is recommended) and set up a session for BF533 STAMP and
connect the JTAG line between the host PCafid the target. After setting up and
successfully open a session, use-the-Toos= Flash Programmer to modify the contents
of flash.

The flash programmer allows users.to-€rase and modify the contents of flash
ROM. First, we should load a driver. Downloading the flash device driver program
(.dxe) onto the processor facilitates loading the flash image onto the flash chip. To
make sure that there are no others un-cleaned fracture on the flash ROM, we can
enable the advanced options and erase all segment on the flash ROM. Finally, we load
the u-boot.hex. onto the target, the bar below shows the programming progress.
Programming virgin flash will be slow (approximately twenty minutes). After that,
unplug the JTAG and connect the UART line between the host PC and the target, and
start a hyper terminal. Use 57600 (default baud rate) , 8 data bits, no parity check, one
stop bit, and flow control disabled to connect as in Fig.3-14. After resetting the target
board, the boot message will be shown as Fig.3-15. If the boot message does not show,

make sure the S1 shown in Fig.8 is set to 00 (booting from external memory).

21



COM4 A%
SEIEIRSRTE

SHERAITE: 57600 v
THERED: |8 V]
RAirEe: & V]
BEERE: [1 7]
MEEHE

EERESRER
TEE BaiH ERW

Fig.3- 14 Setting the UART port

\Q 456 - BRERE

[BE<]

#HRE REE ®RE U0 WEO HAE

0=

L

CPU:

In:

Out:
Err:
Net:
I2C:

U-Boot-1.1.3-ADI-2006R1 (Aug 30 2086 - 14:10:53)

Board:

Clock:
SDRAM :
FLASH:

Hit any key to stop autoboot: @
stamp>

ADSP BF533 Rev.: 0.3
ADT BF533 Stamp board
Support: http://blackfin.uclinux.org/
VCO: 398 MHz, Core: 398 MHz, Svstem: 79 HHz
128 MB
4 MB
serial
serial
serial
SHC91111 at 0x20300300
ready

FERR 00:0005  EIEHAE  576008-N-1

Fig.3-15 Boot up message

(b) Downloading Image from UART

If there already a U-Boot image exists in flash ROM, then we can use the
original U-Boot to erase flash and download new U-Boot image. Before erasing
U-Boot image via console, the new U-boot must be assured to be feasible, because if
the new U-boot is not feasible and you do not have ICE, the target will not boot up
normally. To load image via UART, type loadb via console as Step (4), the system
will be halted to wait for image transfer. Then use Transfer->Transfer files to select
u-boot.bin file to download. In the meantime, Kermit protocol should be selected.

After transferring the u-boot.bin, the U-Boot image will be temporally loaded in
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SDRAM. An example map of U-Boot image location (assume image size is
0x1B800h) after transferring is shown in Fig.3-16 . To write U-Boot image to flash

ROM, disable flash write protection as step (5). Then erase entire flash by step (6).

stamp>load 4)
stamp>protect off all (5)
stamp>erase all (6)

After erasing entire flash ROM, copy U-Boot image from memory to flash as
step (7). The $(filesize) parameter which is the size of new U-Boot is determined by

original U-Boot. The map of U-Boot image location after writing U-boot image and

target resetting is shown in Fig.3-17.

stamp> cp.b 0x1000000 0x20000000 $(filesize) (7)
stamp> reset (8)
0xEF00 0000 >
0x0800 0000 —> —_—
0x0101 B80O —— U-B : — SDRAM
0x0100 0000 > -Boot image
0x0000 0000 >

Fig. 3-16 Map of U-boot in external memory
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OxEF00 0000 —

0x2001 BROO >
O 2000 0000 —

O OB OO QOO0 > .
Ox 0000 | SDRAM

U-Boot image

Fig.3- 17 Map of U-boot in external memory after loading U-boot and resetting

(c) Downloading Image Network (TFTP)

Downloading image via TFTP is far faster than downloading image via UART,
hence, technical personnel tend to use, TETP, to download image. In the first place,
tftpd packages should be installed on host PC. After that, put u-boot.bin on host to

directory /tftpboot on target U-Boot then do as step (9) to download image.

Stamp> tftp 0x1000000 u-boot.bin 9)

3.4.2 Operating System

uClinux is an operating system that is derived from the Linux kernel. It is
intended for microcontrollers without Memory Management Units (MMU’s). It is
available on many processor architectures, including the Blackfin processor. The basic
compiling step is listed as step (10) to (16). First, decompress pClinux kernel source
code, then configure uClinux and a configuration prompt will show up. Second,
choose “BF533-STAMP” as “Vendor/Product Selection” and exit from
“Vendor/Product Selection”. Third, enter “Kernel/Library/Defaults Selection” and
Check “Customize Vendor/User Settings” and”Customize Vendor/User Settings”,

after that, save and exit from main configuration menu. Finally, we should set kernel
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and user application. Do step (11) to clean up all prior object code. Next, do Step (12)
to compile kernel objects. Do Step (13) to compile user application. After Step (14),
we can customize romfs. The file in romfs will be described in later. There will be
some error after step (15), it could be ignore here. After step (32), repeat Step (14) to

(16) to obtain final kernel image. Kernel image is in directory uCliunx-dist/images.

[may@brc2 stamp]$make menuconfig (10)
[may@brc2 stamp]$make clean (11)
[may@brc2 stamp]$make lib_only (12)
[may@brc2 stamp]|$make user_only (13)
[may@brc2 stamp]$make romfs (14)
[may@brc2 stamp]$make image (15)
[may@brc2 stamp]$make (16)

After downloading the *kernel image; do 'the step (17) to erase address
0x20020000 to 0x203FFFFF. Then ‘copy-the-kernel image to address 0x20020000.
After that, use U-Boot boot command-as step(19) to set auto booting, getting kernel
from 0x20020000. Then save changed U-Boot environment variables and reset target.
Since the U-Boot image locates before address 0x20020000, we can take advantage of
the rest space of flash ROM bank 0 and other flash ROM banks to load the kernel
image. Take RAM based file system which means that the kernel contains file system
for example, its map (assume image size is 0x180000h) after writing the kernel image

and resetting the target is shown in Fig.3-18.

stamp> erase 0x20020000 0x203FFFFF (17)
stamp> cp.b 0x1000000 0x20020000 $(filesize) (18)
stamp> setenv bootcmd bootm 0x20020000 (19)
stamp> save (20)
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stamp> reset (21)

0xEFQ0 0000 —
0x203F FFFR——
0201 A DO0F—

Kernel image

L Flash ROM
0x2002 0000
0x2001 BROO™ " j_Boot image
Ox 2000 0000 —
O8O0 0000 —> I SDRAM

Ox 0000 0000 >

Fig.3-18 Map of kernel in external memory after loading kernel and resetting

One of the most important features of Linux is its support for many different
file systems. This makes it very flexiblerand well able to coexist with many other
operating systems. In Linux file system, everything starts from the root directory,
represented by '/', and then expands into sub-directories. A summary of the directories

in this Linux file system are given below:

e /bin - (Binaries) This directory contains the executable binaries for programs
that were selected in the application configuration window when compiling
the kernel.

e /dev - (Devices) On the target system this directory will contain the device
files for the system. For more information see Device Files.

e /ete - (Etc.) This directory contains various system configuration files.

e /home - (Home) This directory provides a location for system users to store
their files.

e /lib - (Libraries) This directory is for shared libraries.

e /mnt - (Mount) This directory contains any mounted file systems.
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e /proc - (Processes) This directory stores virtual files which contain

information on system processes.

e /tmp - (Temporary) In pClinux this directory is a link to /var/tmp.

e /usr - (User) This directory stores various user programs.

e /var - (Various) Unlike the other directories which exist on the device

/dev/root, this directory exists on the device /dev/ram0, this makes it the

only writable directory as the other directories exist on a read-only file system.

OxEF00 0000 ——

0x203F FFFF -
0x201D CCCE—

JFFS2 image

Ox2007 (OO0

¥ ¥

0x200F 5C00
0w 2004 0000 —
0x2001 BROO—*
(e 2000 Q) —»

0x0800 0000 —
O 0000 0000 L

Kernel image

L-Boot image

| Flash ROM

[ SDRAM

Fig.3- 19 Map of kernel-and JFFS2

If we compile the kernel without any change, the kernel will be too big to fit in

flash memory; hence, to control the size of kernel image is very important. The first

image I compiled was too big. (3.5M is larger than the rest flash space on BF533. )

We have to erase more sectors on the flash. As shown in Fig.3-20 below, Four

ASYNC MEMORY BANKS were available. But the first bank is restored for U-Boot.

So we take advantage of the rest space of bank 1, the start address of the rest space

could be the start address of kernel. For safety, we keep a space between U-Boot’s end

address and kernel’s start address. On the other side, some unneeded settings must be

removed from the kernel configuration such us expand, version, crontab, ftp, telnet,

wget, tar, etc. That is, the smaller the kernel image is, the lower the cost is.
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CoeEFOD 0000 —=

Totally 3,875MB
2040 0000 —»

ASYNC MEMORY BANK 2 (1M EYTE)
2030 0000 —=

ASYNC MEMORY BANK 2 (1M EYTE)
O0x2020 0000 —=

ASYNC MEMORY BANK 1 (1M BEYTE)

2010 0000 —

2000 0000 —»
RESERVED

o000 0000 —

EXTERMNAL MEMORY M|

SDRAM MEMORY (16M BYTE - 128M BEYTE)

Ox 0000 0000 —»

Fig.3- 20 Map of rest external memory

Linux is one of the most prominent examples of free software and open source
development; its underlying source code can be modified, used, and redistributed by
anyone, freely. The original uClinux was a derivative of Linux 2.0 kernel intended for
microcontrollers without Memory Management Units (MMUs). However, the
Linux/Microcontroller Project has. grown both7in brand recognition and coverage of
processor architectures. Today's uClinux-as-an operating system includes Linux kernel
releases for 2.0 2.4 and 2.6 as well as a collection of user applications, libraries and
tool chains. It’s popular for its portability and strong support for many applications.
Compare to other operating system, as describe in Table.3-1, uClinux perform better

on BF533 than others.

Table 3- 3 Comparison to Other Operating Systems

Remark\OS pClinux WinCE uC/OS-11
Scheduling round robin | preemptive preemptive
Network good good inferior

Stability good inferior good
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Open source yes no yes
Cross platform easy no difficult
System Resource larger largest small
Prices free expensive No free

3.4.3 User Program

Cross-platform development and programming techniques are used for
developing embedded applications. The cross-platform development framework is
shown as Fig.3-21. Owing to the lack of available resources on embedded systems,
the cross-compilation, code editing, code linking, and source debugging are
performed on powerful host PC. The system software, operating system, and
application programs are first cqmﬁiled as objéct‘ codes. Then the linker on the host
links up object codes and formé an exeéutgblé iﬁage. Thus we have to understand
thoroughly how executable imégés wéte 'downloaded“to the target embedded systems.

Executable image can be downloaded via internét; UART (Universal Asynchronous

Receiver Transmitter), and ICE (In- Circuit Emulator).

Host

—

Target

ICE

@

Connection

JTAG >

Fig.3- 21 Cross-platform development framework
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To run user application on target board, the program must be cross-compiled
first. We use the cross-compiler to cross-compile an example program as described in
step (22). Following steps are executed on target operating system. With the network
file system or RAM-based file system described before, we can execute the program

without a doubt. The flow to create an executable image on a host PC is described in

' <Assembly source Code Linker/ I|(elocator :

(S

Fig.3-22.
[may@brc2 stamp]$ bfin-uclinux-gcc -W1,-elf2flt hello.c -0 hello (22)
root:~>chmod 777 hello (23)
root:~>./hello (24)
T T T T T T ——— ] |
! C/C++ source Code |
| < (.C, .CPP) G> (a) |
! Header file Object file |
| (H) (:0) i
! |
! |

Executable image
(.0, .out)

Fig.3- 22 Flow to create an executable image

3.5 Optimization of the System
3.5.1 Floating Point to Integer

With the hardware constraint of embedded systems, plenty modification of
source code was made. The main issue on the embedded DSP (digital signal processor)
was lack of FPU (Floating Point Unit). Due to the floating point of non-FPU DSP is
emulated, the original execution time takes 22 seconds because there are large
numbers of floating variables of original source code. The solution is to make
commonly used variable integer. That is to multiply the floating with 100000 to

preserve decimal points. After that, divide 100000 to retain the integer result. This
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method speed up execution time to 24% the original execution time.
3.5.2 Programming
(a) TLU (Table-Look-Up Techniques)

A lookup table is a data structure, usually an array or associative array, used to
replace a runtime computation with a simpler lookup operation. The speed gain can be
significant, since retrieving a value from memory is often faster than undergoing an
expensive computation.

(b) Loop Unrolling

Loop unrolling is a technique for optimizing parts of computer programs — a
member of the loop transformation family. The idea is to save time by reducing the
number of overhead instructions that the computer has to execute in a loop. For
example, for the modification of Jeop unrolling; the unrolled program has to make
only 20 loops, instead of 100.

3.5.3 Variable Regulation

The rest modification was made. on variables of ICA. Five modifications is
done, First the initial learning rate is modified to 0.001. Second, the stop weight
change is modified to 0.001, too. In addition, momentum = 0.4 is added to ICA. With
loading the last weight matrix, max steps can be restricted and the training steps in

once can be separated into other times.
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3.6 Comparison to Past BCI Systems

A comparison table is listed below. The system we proposed is with online ICA

and drowsiness detection. Moreover, it’s provided with 4 channel EEG analysis.

Table 3-4 Comparison top past BCI systems

PC 2004 2005, 2006 2007 2007
(OMAP) (OMAP) (BF533) (BF533)
18cm*13cm
6.5cm*4cm
30cm*20cm | 30cm*20cm
Our N/A ICA Drowsy ICA+ ICA+
Applicatio detection Drowsy Drowsy
n +Multi-task | detection detection
scheduling
EEG N/A N/A 2 channels | 4 channels | 4 channels
Channels
Data N/A Offline Online Online Offline
Processing
# of CPU | Single-cor Dual-core Single-core
e
CPU 1.3v 1.5v 0.8Vtol.26 V
Core
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Voltage

Maximum 3GHz DSP:192MHz DSP:600Hz
Frequency
ARM:168Hz
Prices $119 $15 $5
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Chapter 4 On-line Independent Component Analysis Implementation
Flowchart of the EEG signal processing is shown in Fig.4-1. The 4-channel
EEG data was first recorded via the EEG amplifier we designed. Then change the
sampling rate to 64Hz. It consists of down sampling, independent component analysis,
useless component rejection, short time FFT and online drowsiness detection. The
independent component analysis is applied to the down sampled EEG signals to
obtain the independent components. After that, the useless components are rejected
according to the standard deviation of independent components. The effectiveness of
eye blinking and other artifacts removal by using ICA had been demonstrated in the
Jung et al.’s study[1][2]. The short time FFT is then applied to the useful independent
components to calculate the frequency, response of ICA components. Finally, the
feature of drowsiness symptoms.¢an be evaluated by the online drowsiness detection

analysis.

4-channel EEG data

! |

Down
Sampling

g

Independent
Component
Analysis

! |

Useless Component Rejection

! |

Short Time
FFT

ICA Frequency Response u

Online Drowsy
Detection

Fig.4- 1 Flowchart of the EEG signal procedure
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4.1 Independent Component Analysis

Independent component analysis (ICA) is a case of blind source separation, that
is, we assume the signals may be mutually statistically independent or decorrelated.
The goal of ICA is to separate signals (components) from a set of mixed signals
without the aid of information (or with very little information) about the nature of the
signals. A familiar case of ICA is the “cocktail party problem”, where the underlying
speech signals are separated from a sample data consisting of people talking
simultaneously in a room. Usually the problem is simplified by assuming no time
delays and echoes. An important note is to consider that if N sources are present, at
least N observations (i.e. microphones) are needed to get the original signals. Figure

4-2 shows that we have N sources anhd mix them/with a mixing matrix to get observed

signals.
§1 X,
32\_ /
N sources h&iﬁf — N observed signals
,’iri’_ﬁ_# A |

Fig.4- 2 N mixed signals and N sources

The processing flow shown in Fig.4-1 of EEG signals is backwards. Its linear
expression is represented in Fig.4-2, where A is described in 4-2. Where the s is
unknown independent component and the element a is unknown mixing coefficient.

The expression 4-1 can be rewritten as 4-3. This is called ICA model. After ICA, the
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mixing matrix will be estimated; its inverse matrix is call unmixing matrix as

described in expression 4-4. Hence the original sources can be obtained via Eq. 4-5.

X1 = a1181+ 1282 t ...t A1n-1Sp-1 + A1nSn

Xz = 22151+ 22282 T ...t 224-1Sn-1 T A2nSn

Xp-1 = Ap-1,181F Ap1,282 T oot Ap1,p-180-1 T An-1,080

Xp = an,lsl+ ay,282 + ...t An,n-15n-1 + Ap,nSn

a, a,;, ay ity a ,
a,, a,, a, a,,
A= . . . .
e R S ) A ing Qg
L a'n,l an,2 a'n,n—l a'n,n |
X =AS
S|
W=A

ATX=ATASD>S=WX

-1

4-2)

(4-3)
(4-4)

(4-5)

One approach with some information on the statistical properties of the signal S

is to use to estimate A and to find solution of Eq. 4-5. The statistical method finds the

independent components (aka factors, latent variables or sources) by maximizing the

statistical independence of the estimated components. Non-Gaussianity, motivated by

the central limit theorem, is one method for measuring the independence of the

components with kurtosis or approximations of negentropy [49]. Mutual information
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is another popular criterion for measuring statistical independence of signals. The

kurtosis of y is classically defined by

kurt(y) = E{y*} - 3(E{y’})’ (4-6)

We assume that y is of unit variance, the expression can be simplified to
E{y4} — 3. For a Gaussian y, the E{y4} equals 3(E{y2})2 . Thus, kurtosis is zero for a
Gaussian random variables, kurtosis is nonzero. Kurtosis can be both negative and
negative. Random variables that have a negative kurtosis are called sub Gaussian, and
those with positive kurtosis are called super Gaussian. Super Gaussian has a spiky
probability density function with heavy tail. For example, brain waves are super

Gaussian variables while sinusoid and cosine waves are sub Gaussian variables.

Lk T T T
[l
Ul
0&f
| I|

k=) 3
| |

ozt i

01F - , ""“-,_ .

Fig.4- 3 The figure of typical super Gaussian, normal Gaussian, and sub Gaussian

A second important measure of nongaussianity is given by negentropy.
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Negentropy is based on the information-theoretic quantity of entropy. Entropy H is

defined for a discrete random variable Y as

H(Y) =-) P(Y = aplogP(Y = a;) 4-7)

where a; are the possible values of Y. The differential entropy is defined as

H(y) =-If(y)logf(y)dy (4-8)

Another often used version is called negentropy. Negentropy J is defined as

follows

J(¥) = H(Ygauss) — H(Y) 4-9)

The J can be simplified as

sl gz 1 2 4-10)
J(y) 5 E{y "} — kurt(y)
or
P
IO KIEG)-EGWHT, (4-11)
i=1

where k; are some positive constants, and v is a Gaussian variable of zero mean and
unit variance. The variable y is assumed to be of zero mean and unit variance, and the

functions Gi are some nonquadratic functions. Commonly used G are

Gi(w) = - log(cosh(aru) (@12)

1

and
G1(u) = -exp(-u*/2) (4-13)
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and

G3 = tanh(au), 4-14)

where 1<a, <2 issome suitable constant.

Typical algorithms for ICA use centering, whitening and dimensionality
reduction as preprocessing steps in order to simplify and reduce the complexity of the
problem for the actual iterative algorithm. Without loss of generality, we can assume
that both the mixture variables and the independent components have zero mean: If
this is not true, then the observed signals can always be centered by subtracting the
sample mean, which makes the model zero-mean. Whitening and dimension reduction
can be achieved with principal compenentanalysis or singular value decomposition.
Whitening ensures that all dimensions are-treated equally a priori before the algorithm
is run. Algorithms for ICA include infomax [50], FastICA [51] and JADE [52], but

there are many others also.

Most ICA methods are not able to extract the actual number of source signals,
the order of neither the source signals, nor the signs or the scales of the sources. ICA
is important to blind signal separation and has many practical applications. It is
closely related to (or even a special case of) the search for a factorial code of the data,
i. e., a new vector-valued representation of each data vector such that it gets uniquely
encoded by the resulting code vector (loss-free coding), but the code components are

statistically independent.

Similarly, we consider electrical recordings of brain activity as given by an EEG.
The EEG data consists of recordings of electrical potentials in many different

locations on the scalp. These potentials are presumably generated by mixing some
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underlying components of brain activity. This situation is similar to the cocktail-party
problem: we would like to find the original components of brain activity, but we only
observe mixtures of the components. ICA can reveal interesting information on brain
activity by giving access to its independent components.

As shown in Fig.4-4, the brain activity recorded at one point on the scalp is the

mixture of electrical potentials from many different locations in the brain.

Fig.4-4 The'brain activity recorded at one point

The general framework for independent component analysis was introduced by
Herault and Jutten in 1986 [53] and was most clearly stated by P. Comon in 1994 [54].
In 1995, T. Bell and T. Sejnowski introduced a fast and efficient ICA algorithm based
on infomax [50], a principle introduced by R. Linsker in 1992. In 1997 [55], S. Amari
realized that the infomax ICA algorithm could be improved by using the natural
gradient [56], which was independently discovered by J.F. Cardoso [52]. However,
the original infomax ICA algorithm with sigmoidal nonlinearities was only suitable
for super-Gaussian sources. T.W. Lee, in collaboration with M. Girolami, developed
an efficient extended version of the infomax ICA algorithm that is suitable for general

non-Gaussian signals [57].
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The flow of Infomax ICA is shown is Fig.4-5. Centering the data can simplify
the ICA algorithm, and the mean can be added back to the data. Whitening means that
we remove any correlations in the data, i.e. the different channels are forced to be
uncorrelated. Then initialize the weight, and after random permutation, find the
maximization entropy output. If the weight change is smaller than the desired weight

change then the training is stopped.

Centering

v

Whitening

Runica v
Initialize weight

!

Random permutation of data
'

Apply weight change

eight converged?

ICA components

F 3

Fig.4- 5 Flow of ICA training

4.2 Rejecting Components with Standard Deviation

Here, we use the art of standard deviation to remove components from
estimated components. To be briefed, the standard deviation is a measure of the
spread of its values. The standard deviation of the original signal is very big. That is,
we can’t get much information in such noisy signals. After ICA, the unwanted
components can be easily rejected by experienced EEG analysis researchers. However,
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artificial rejection of unwanted components can only be done offline. With standard
deviation, we can reject components with bigger standard deviation such as eye
blinking judged by its standard deviation. As we can see in Fig.4-6, the observed
signals are heavily contaminated by eye blinking. The standard deviation is also very
big. After ICA, the estimated components are shown in Fig.4-7. Evidently, the eye

blinking can be rejected due to its biggest standard deviation.

Mixed signals
00 T T T T T T
0 [ i il N STD =55.5014
500 . . . . . .
1} a0 100 150 200 250 300 a0
00 T T T T T T
0 MMM . = 63.3425
-500 : : : : : :
1} a0 100 150 200 250 300 a0
00 T T T T T T
] SN AT, (ISR LS =58.1312
500 | L L L L L
1} a0 100 150 200 250 300 a0
500
] WWMM B = 55. 1 832
500 L L L L L L
1} a0 100 150 z00 250 300 a0

Fig.4- 6 The observed4-channel mixtures signals
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1] 50 100 150 200 250 300 350
5
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1] S0 100 150 200 za0 300 350
g T T T T T T
0 MWMWMWW i
=1.7848
i 50 100 150 200 250 300 350
5 . . . . ’ '
T e T AR W — 1.7694
i 50 100 150 200 250 300 350

Fig.4- 7 The result of informax ICA, estimated by the signals in Fig.4-6
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Fig.4- 8 The observed 5-channel mixtures signals

=1.9501

=
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5]

Fig.4- 9The result of informax ICA, estimated by the signals in Fig.4-8

As we can see in Fig.4-8, the observed signals are heavily contaminated by
movement. The standard deviation is also very big. After ICA, the estimated
components are shown in Fig.4-9. Evidently, the swing noise can be rejected with its

biggest standard deviation.

4.3 Testing

4.3.1 Testing of Artificial Mixed Data
We have tested various waveforms to prove the performance of ICA. First of all,
take Fig.4-10 for example, this is of course not realistic recorded signals, but
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sufficient for this example. The original signal is shown in Fig.4-10 while the mixed
signal is shown in Fig.4-11. Figure 4-12 gives the two signals estimated by fast ICA.
Figure 4-13 shows the signals estimated by Information maximization ICA. As can be

seen, these are very close to the original source signals.

1

05

L L L L L L
1] a0 a0 150 200 240 300 a0

Fig.4- 10The original signals

Mixed signals

350

350

Fig.4- 11The observed mixtures of the source signals in Fig.4-10
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0 a0 oo 150 200 240 300 3a0

Fig.4- 12 The result of fast ICA, estimated using only the observed signals in Fig.4-11
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Fig.4- 13 The result of Information. Maximization ICA, estimated using only the

observed signals in Fig.4-11

4.3.2 Testing of Real EEG Data

A set of ICA component after ICA is listed in the flowing table. With the
modifying of ICA variables, we successfully speed up ICA. And the result shows
good components after modified ICA.

Table 4- 1 The result of each ICA with different variables

Figure Attributes Execution

time
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Chapter S Experiment Designs and Results

5.1 The Experiment Design

5.1.1 Experimental Setup

For the purpose of safety, a VR-based dynamic driving environment was
developed for the drowsiness experiments to mimic realistic highway. The developed
VR dynamical simulation system mainly consists of three elements: (1) a
six-degree-of-freedom motion platform, (2) a real car, and (3) an interactive VR scene.
The subjects are asked to sit inside the car on the platform with their hands holding
the steering wheel to control the car in the VR scene. Seven projectors are used in the
experiment to construct a 360-degree 3D scene as shown in Fig. 5-1. The movements
of the platform are according to the operation ‘of the subject and the condition of the
road surface.

The VR-based four-lane highway scene is shown in Fig. 5-2. It is projected on a
120° -surround screen (304.1-cm"wide and 228:1-cm high), which is 350 cm away
from the driving cabin. The four lanes from left to right are separated by a median
stripe. The distance from the left side to the right side of the road is equally divided
into 256 points (digitized into values 0-255), where the width of each lane and the car
is 60 and 32 units, respectively. The refresh rate of highway scene was set properly to
emulate a car driving at a fixed speed of 100 km/hr on the highway. The car is
randomly drifted (triggered from the WorldToolKit (WTK) program and the on-set
time is recorded) away from the center of the cruising lane to mimic the consequences
of a non-ideal road surface. The subject’s driving error is defined as the deviation
between the center of the vehicle and the center of the cruising (third) lane and it was
continuously and simultaneously measured by the WTK program and recorded in the

physiological measurement system accompanying with EEG/EOG/ECG physiological
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signals.

It has been shown that human fatigue or drowsiness most commonly occurs late
at night and during the afternoon. During these periods, alertness deficits would most
likely take place in 1-h monotonous working [32], [33]. Thus, we conducted all
driving experiments in the early afternoon hours after lunch to maximize the
opportunities to collect data during which subject driving performance became
intermittent. All the subjects were instructed to keep the car at the center of the
cruising lane by controlling the steering wheel. For each session, the subject started
with a min calibration procedure and then was asked to drive the car continuously for
45 min. The EEG/EOG/ECG data and the driving errors were measured and recorded
simultaneously. We had collected successfully EEG data of 5 subjects (ages from 20

F_r1

b,
to 35 yr) participated in the VR- b&sed dr1V1n tgsk We select participants who had

by, 'i.-‘
-\!t _,-"' M.

two or more micro-sleep eplsodes rbs‘éj— bm.thé mgasured response time which is

| ~l, ,.-F-"

et |.
shown in Fig.5-3 and conﬁrmea by VL_?_':' I 192:5 in at least two driving sessions
-;'- 5 l\."»"_'. Lk ST

¢ N &
for further analysis. Based on theﬁa‘cmtma { ve subjects were selected for further

on-line algorithm testing and verification.

Fig.5-1 A 360-degree 3D VR dynamic driving environment.
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Fig.5- 2 The VR-based four-lane highway scene
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Fig.5- 3 The Response Time in One Session

5.2 Drowsiness Detection Algorithm

There are four major types of continuous rhythmic sinusoidal EEG activity.
They are recognized as alpha (8-12Hz), beta (above 12Hz), delta (below 4Hz) and

theta (4-8Hz) and are listed in Table 5-1:

Table 5- 1 Characteristics of EEG bands

Types Band range Description
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Gamma rhythms may be involved in
higher mental activity, including
perception, problem solving, fear, and

consciousness.

(beta)

13 - 30Hz

'I
.
MM
iy
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Mo oA
ML AN
Vv

Beta with low amplitude beta with

multiple and varying frequencies is

.| often associated with active, busy or

anxious thinking and active
concentration. Rhythmic beta with a
dominant set of frequencies is
associated with various pathologies and

drug effects, especially benzodiazepines.

(alpha)

Alpha /is characteristic of a relaxed,

alert state of consciousness. For alpha

.| rhythms to arise, usually the eyes need

to be closed. Alpha attenuates with
drowsiness and open eyes, and typically
come from the occipital (visual) cortex.
An alpha-like normal variant called mu
is sometimes seen over the motor cortex
(central scalp) and attenuates with
movement, or rather with the intention

to move.

4-8 Hz

Theta is associated with drowsiness,




—

childhood, adolescence and young

'| adulthood. This EEG frequency can

sometimes be produced by
hyperventilation. Theta waves can be
seen during hypnagogic states such as
trances, hypnosis, deep day dreams,
lucid dreaming and light sleep and the
preconscious state just upon waking,

and just before falling asleep.

(thet)) | I~ A~/
S ~4 Hz
(delta)

Delta is often associated with the very
young and certain encephalopathies
and underlying lesions. It is seen in

stage 3 and 4 sleep.

As the characteristic of EEG "activity-described above, there is an important

phenomenon found by the team of brain research center (BRC), NCTU (National

Chao Tung University) while recording EEG from forehead. That is, if a person is

mild drowsiness, the alpha wave will tend to be superior in EEG activity, and its

power will increase time after time. After that, if the person tends to fall asleep, the

theta wave will tend to be superior in EEG activity, and the power of alpha will

decrease while the theta will still increase time after time. With the phenomenon, the

algorithm can be mapped in to a table listed below.

Table 5- 2 Criterion of Drowsiness

State of EEG band

State of consciousness

alpha 1 theta?

Mild drowsiness
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alpha | theta?

Deep drowsiness

alpha 1 theta|

Conscious

alpha | theta|

Conscious

For the criterion of drowsiness is based on the changes of EEG activity in the
frequency domain. We use the short-time Fourier transform (STFT), or alternatively
short-term Fourier transform, which is a Fourier-related transform used to determine
the sinusoidal frequency and phase content of local sections of a signal as it changes
over time. Here we have tested the short-time Fourier transform on the embedded
processor we use. It has produced good results while processing both lower frequency
sinusoid (theta band from 4 to 8 Hz) and higher frequency sinusoid (alpha band from
8 to 12 Hz) of the frequency band we desired(4 te. 12 Hz). As shown in Fig.5-4, the
power of 4Hz and 5Hz sinusoid showed in.Fig.5-5 result in peak of 4Hz and 5Hz.
Also, in Fig.5-6, the power of 10Hzand-12Hz sinusoid showed in Fig.5-7 result in
peak of 10Hz and 12Hz.
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Fig.5- 4 The original signal of 4Hz & 5Hz sinusoid
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Fig.5- 5 The power spectrum of 4Hz & 5Hz sinusoid
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Fig.5- 7 The power spectrum of 10Hz & 12Hz sinusoid

The flowchart of our algorithm is described in Fig.5-8. First, the 4-channel EEG
data is re-sampled to sampling rate 64Hz! After gathering 512 points of EEG data, the
data was fed into ICA. After that, somé estimated components are rejected with the
criterion of standard deviation described before. We select the last 192 points of ICA
component from rest components and use FFT to-estimate the power of EEG data.
Finally with the online drowsiness detection algorithm, we recognized the drowsiness
index. The detail of the FFT procedure is shown in Fig.5-9. The 192-point EEG data
of each channel is overlapped with 64-point update for each sec. Then the 192 points
are divided into 32 points sub-windows with overlap 24 points. Then The first 16

points and the last 16 points of 64-point FFT were padded with zero.
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4-channel EEG data
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Fig.5- 8 The flowchart of our algorithm
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Fig.5- 9 The procedure of FFT
After we take 1~13 Hz of the decibel value of FFT and find the trend of alpha
and theta band power, we can estimate drowsiness index with a 20 seconds time
window. The flow of from FFT to estimation of drowsiness index is shown in
Fig.5-10. The moving window size we use is 20sec. Since each time we update 2

seconds. We calculate the whole slope of ten 2-sec power when each time we update
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the alpha and theta power value. Choosing the moving window of 20 seconds is the
middle-of-the-road policy here because whether the window is too big or too small
isn’t good for drowsiness index estimation. If the window is too big, the change of
drowsiness index will be too slow. On the contrary, if the window is too small, the

change of drowsiness index will be too soon.

ICA components

¥
Hanning Short-time ;

e - i — | Estimated Index
Window FFT

Select 1-13 Hz Find trend

Fig.5- 10 The flow of drowsiness.estimation algorithm

5.3 The Results

5.3.1 Result of 4 Channel Online' EEG Analysis System

A demonstration of our system is shown in Fig.5-11. First, the preprocessing
unit records the 4-channel EEG and sends wirelessly raw digital EEG to processing
unit. Then after the drowsiness index is estimated, it sends result to a display unit
through internet. The display unit could be PC or laptop and the displayed stuff is
shown in Fig.5-12. The preprocessing can also be placed on to a hat as shown in
Fig.5-13. This is convenient for users. Figure 5-14 shows the developed wireless BCI

using RF. Figure 5-15 shows the developed wireless BCI using Bluetooth.
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Fig.5- 11A Demonstration of Our System
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Fig.5- 13 The Result of GUI
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Fig.5- 15 wireless!BCE using Bluetooth
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Chapter 6 Conclusions and Future Works

We propose an ICA-based embedded wireless BCI (Brain Computer Interface)
system for real-time drowsiness detection to improve the imperfections of offline
analysis. The embedded wireless BCI has been implemented. It includes three
functional blocks: wireless transmission and EEG recording, real-time transmission
online ICA, and online drowsiness detection algorithm. This BCI system achieves two
major targets. One is that the wireless overcomes the problem of long distance and
inconvenient of connection lines; another is that the modified online ICA and
drowsiness detection algorithms are implemented on the embedded DSP board to e
give warning to drivers in real-time.

After that, the performance of the embedded wireless BCI system can still be
improved in time, transmission aid the problem, of algorithm stability as follows.

€ The hardware of Bf533 is provided with hardware interrupt and DMA
(Direct Memory Acce$s), this speed'the time handing peripheral.

€ The transmission protocol can‘'be replaced with high speed Bluetooth.

€ The selection of components now is artificial. The rejection of estimated
components is not completed correct. Most important of all is the selection

of components.
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