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Abstract 
     Many traffic accidents on the highway are caused by the driver’s inattention due 

to drowsiness. Hence, many researchers have devoted to develop algorithms to 

prevent drowsiness. Recently, several studies have shown that drowsiness related 

information is available in eye closures, heart rate and electroencephalogram (EEG). 

In this study, we developed a drowsiness detection system based on EEG recordings 

and data analysis. One of the biggest challenges in EEG-based system lies on the 

contaminations from inevitable EEG artifacts from eye movements, blinks, muscle, 

heart, and line noise. Independent component analysis (ICA) has been proven to be an 

effective technique to remove various types of artifacts. However, most of the ICA 

was performed offline on personal computers instead of an online analysis. Here, we 

design, develop and demonstrate an embedded wireless brain computer interface (BCI) 

including three functional blocks: EEG acquisition, amplification and wireless 

transmission, on-line ICA process and spectral analysis, and real-time drowsiness 

detection and feedback delivery to accurately and continuously detect and report 

subject drowsiness level based on the EEG data. 

 

KEYWORD: Brain Computer Interface, Brain Signal Processing, Digital Signal 

Processor, Drowsiness Detection and Warning, Embedded System, 

Independent Component Analysis, Wireless transmission 
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以獨立成份分析應用於瞌睡偵測之即時嵌入式 

無線腦機介面系統 

 

學生：林真如    指導教授：林進燈 博士 

 

國立交通大學電機與控制工程研究所 

 

中文摘要 
 近年來，有許多高速公路車禍發生的原因是由於駕駛者精神狀態不佳所造

成。因此許多學者都在針對疲勞狀態偵測開發演算法。近年來，許多研究發現疲

勞的特徵可以從眨眼的頻率、心跳頻率與腦波中萃取出來。這本研究中，我們開

發一套基於腦波的量測與分析的疲勞偵測系統。而以腦波量測與分析的為主的系

統最大的挑戰，就是腦波中的雜訊。腦波的量測與分析中不可避免的雜訊是眼

動、眨眼、肌肉的雜訊、心跳的雜訊以及室電的干擾。而有研究證明獨立成分分

析可以有效的移除多種的雜訊。然而大多數的獨立成份分析都是在電腦上進行離

線分析而不是即時線上分析。 
本論文以數位訊號處理器為基礎，搭配無線傳輸模組、生理訊號放大器，來

實現一套即時可攜式無線腦機介面系統，包含三大發展主軸，分別為「腦電位訊

號量測與無線傳輸」、「線上獨立成份分析演算法」及「即時疲勞狀態偵測與提醒

演算法」。最後這套系統展示了連續並準確地偵測受測者的腦波中的精神狀態。 
 
 
 
 
 
 
 
 
 
關鍵字：腦機介面，腦波訊號處理，數位訊號處理器，疲勞狀態偵測與提醒，嵌 
    入式系統，獨立成份分析，無線傳輸 
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Chapter 1 Introduction 

1.1 Motivation and Problems 

     Driver’s fatigue is a causal factor in many accidents because of the marked 

decline in the driver’s abilities of perception, recognition, and vehicle control abilities 

while sleepy. Hence, the development of the drowsiness monitoring technology to 

prevent accidents behind the steering wheel has received increasing interest in the 

field of automotive safety. Lately, several studies have shown that drowsiness related 

information is available in eye closures, heart rate and electroencephalogram (EEG) 

Previous studies showed that the eye blink duration and the blink rate typically 

increase while blink amplitude decreases as a function of the cumulative time, and the 

saccade frequencies and velocities of electrooculogram (EOG) decline when people 

get drowsy [25]. Although these studies showed that eye-activity variations were 

highly correlated with the human fatigue and could accurately and quantitatively 

estimate alertness levels, the step size (temporal resolution) of these eye-activity 

based methods was too slow (10s or longer) to track momentary changes in vigilance. 

Contrarily, the temporal resolution of EEG-based methods could reach 1-2 sec that 

makes them faster enough to track second-to-second fluctuations in the subject’s 

performance. Although EEG signals have been proved to index the cognitive states of 

a person, signal analysis is very challenge in EEG-based systems because of the 

pervasive contaminations from eye movements, blinks, muscle, heart, and line noise 

to the EEG. Independent component analysis (ICA) has been proved to be an effective 

technique to remove various types of artifacts [23][24]. However, most of the ICA in 

these studies was performed offline on personal computers instead of an online 

system. For eventual practical acceptance in the workplace, it is highly desirable to 

make all data acquisition and analysis on-lined. Here, we report our work in the 
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design and test of a wireless embedded brain computer interface (BCI) that comprises 

three functional modules: (1) EEG acquisition, amplification and wireless 

transmission; (2) on-line ICA process, and (3) real-time drowsiness detection to 

accurately and continuously detect subject drowsiness level based on the EEG data 

and feedback delivery. 

 

1.2 Organization of Thesis 

The organization of this thesis goes as follows: 

 Chapter 2 

In chapter 2 we briefly describe the history of BCI, ICA and other drowsiness 

detection methods. Three kinds of drowsiness detection methods will be 

described here. 

 Chapter 3 

In chapter 3 we briefly describe the basic architecture of BCI. Then we will 

propose a new embedded BCI system that can assess subject drowsiness levels in 

near real time. In this chapter we will address the following issues: 

 Hardware specification: The hardware specification of the embedded 

BCI system will be described here. Hardware specification includes an 

EEG recording, amplification and wireless transmitting unit and an 

embedded digital signal processing (DSP) board. 

 The operating system (OS): The OS for the embedded DSP board will 

be described here. 

 The applications implemented on the embedded digital signal 

processor: The applications on the signal processor include an on-line 

ICA process, spectral estimation and a real-time drowsiness detection 



 

 3

algorithm. The techniques used to verify the application will be 

described here as well. 

 Chapter 4 

In chapter 4 we briefly describe the theory of ICA and the technique for 

improving the convergence of ICA algorithm. 

 Chapter 5  

In chapter 5 we describe the experimental design. The experiments are designed 

to simulate highway driving during which drivers often struggle to maintain their 

alertness and attention. The correspondence between a driver’s behavioral and 

estimated performance obtained by the embedded DSP will be shown and 

discussed here. 

 Chapter 6 

We will conclude our work in Chapter 6. 

 

1.3 Notation 

Abbreviation Original text Chinese Translation 

A/D Analog to Digital 類比數位訊轉換 

API Application Program Interface 應用程式介面 

BCI Brain Computer Interface 大腦人機介面 

DMA Direct Memory Access 直接記憶體存取 

DSP Digital Signal Processor 數位訊號處理器 

ECG Electrocardiogram 心電圖 
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EEG Electroencephalogram 腦電波 

EMG Electromyogram 肌電圖 

EOG Electro-oculogram 眼電圖 

FHSS Frequency Hopping Spread Spectrum 跳頻展頻 

FPGA Field Programmable Array 可程式化邏輯閘陣列 

FSK Frequency Shift Keying 頻率鍵移 

GCC GNU Compiler Collection GNU 編譯器 

GSM 
Global System for Mobile 

Communication 
全球行動通訊系統 

GPRS General Packet Radio Service 通用分組無線服務 

IDE Integrated Development Environment 整合發展環境 

IP Internet Protocol 網際網路通訊協定 

ICA Independent Component Analysis 獨立成份分析 

LCD Liquid Crystal Display 液晶平面顯示器 

MMU Memory Management Unit 記憶體管理單元 

OS Operating System 作業系統 

PCA Principle component analysis 主成分分析 

PDA Personal Digital Assistant 個人數位助理 

RF Radio Frequency 射頻 
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SoC System on Chip 系統晶片 

STFFT Short-Time FFT 短時快速傅立葉轉換 

TCP Transmission Control Protocol 傳輸控制協定 

TCS Telephone Control Service 電話傳送控制協定 

UART 
Universal Asynchronous Receiver 

Transmitter 
通用異步收發器 

USB Universal Serial Bus 通用串列匯流排 
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Chapter 2 Background and Previous Works 

2.1 Brain Computer Interface 

Brain computer interface (BCI) is an interface between human and computer. It 

is based on the specific brain activity generated by a specific thought of a human. 

That is, we can obtain information from brain activity via signal processing and use 

the recognized pattern to control a computer. At the beginning, the purpose of BCI is 

not only prosthesis but also is to help handicapped people [48], gradually. Because of 

the disability of muscle, handicapped people can not do things independently. For 

example, handicapped people cannot move, control devices without aid. Hence, to 

help these handicapped people, many researchers have devoted themselves to develop 

BCI. That is, as long as handicapped people are still cognitively healthy, they might 

able to move on an automatic wheel chair, and control the on/off switches of lamps 

via EEG recording and analysis. Through decades, it have been found in many studies 

that the cognitive state of a person can be extracted from brain activity [1][2]. More 

and more researchers are devoted to the study of BCI. BCI has helped handicapped to 

live independent. Recent studies in primates, human subjects of Serruya et al. and 

Taylor et al. [3][4] have demonstrated that animals can learn to utilize their brain 

activity to control the displacements of computer cursors. Chapin et al. and Wessberg 

et al. also demonstrated that animals can learn to utilize their brain activity to control 

one- (1D) to three-dimensional (3D) movements of simple and elaborate robot arms 

[5][6]. However, many domestic researches were focusing on EEG data recording 

instead of EEG analysis [7]-[13]. Gao et al. have developed wireless BCI based on 

steady-state visual evoked potential (SSVEP) [14]. They used twelve buttons 

illuminated at different rates on a computer monitor to simulate a telephone. Users 

could input phone numbers by gazing at these buttons. The frequency-coded SSVEP 
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was used to judge which button the user attended to. Another study of Gao et al. used 

digital signal processor (DSP) to process EEG signals and wirelessly controlled 

appliances with visual evoked stimulus [15]. Pfurtscheller et al. have designed and 

implemented an EEG-based communication device called “Virtual Keyboard” (VK). 

Classification of the EEG patterns was based on band power estimates and hidden 

Markov models (HMMs) [16][17]. Another research of Pfurtscheller et al. proposed 

an EEG-based Pocket BCI system that converted brain activity into control signals 

left and right direction of a wheelchair [18]. Ashwin et al. described [19] a system that 

monitored EEG of epileptic patients to improve the quality of their lives and also 

helped healthcare providers to make a better diagnosis for patients with neurological 

disorders. The use of Bluetooth connectivity helps physicians to monitor patient 

activity while the patient resumes his or her normal activity. 

     Compared to the portability, many other applications using ECG are always 

based on embedded systems. The EEG-based application on embedded systems is 

rarely seen. Han-Nam et al. have developed a system which enabled a patient to be 

treated at home through digital telemetry and public communication line. ECG signals 

were transmitted wirelessly and not hindering a patient's movement [20]. Other ECG 

systems only record ECG signals and leave the signal analysis to doctors [21][22]. 

Traditionally, a BCI system can be divided into two functional blocks. One is 

data acquisition and recognition part, another is control part. An example of BCI is 

shown as Fig.2-1. Jose. et al. demonstrate that primates can learn to reach and grasp 

virtual objects by controlling a robot arm through a closed-loop brain–machine 

interface (BMIc) [30]. It uses multiple mathematical models to extract several motor 

parameters (i.e., hand position, velocity, gripping force, and the EMGs of multiple 

arm muscles) from the electrical activity of frontal parietal neuronal ensembles. Using 

visual feedback, monkeys succeeded in producing robot reach-and-grasp movements 
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even when their arms did not move. 

 

Fig.2- 1 Learning to Control a BMIc for Reaching and Grasping by Primates 

 

2.2 Independent Component Analysis 

     The original ICA was used for voice signal separation. A classical application of 

ICA is the “cocktail party problem”, where a number of people are talking 

simultaneously in a room (like at a cocktail party), and one is trying to follow one of 

the discussions. The human brain can handle this sort of auditory source separation 

problem, but it is a very difficult problem in digital signal processing.  

     EEG is a non-invasive record of brain electrical activity measured as changes in 

potential difference between pairs of electrodes placed on the human scalp. Because 

of volume conduction through brain tissue, cerebrospinal fluid, skull, and scalp, EEG 

data collected anywhere on the scalp mixes signals from multiple suitably-oriented 

cortical areas. Thus, the analysis of EEG signals is also a “cocktail party problem” 

and often very challenging. One of the most pervasive problems in EEG analysis and 

interpretation is the interference in the data produced by often large and distracting 

artifacts arising from eye movements, eye blinks, muscle noise, heart signals, and line 

noise.  One common strategy for avoiding EEG artifacts is to reject all EEG 

recordings containing artifacts larger than some arbitrarily selected EEG voltage value. 
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However, when limited data are available, or when blinks and muscle movements 

occur too frequently as in children and some patient groups, the amount of data lost to 

artifact rejection may be unacceptable. Use of principal component analysis (PCA) 

has been proposed to remove eye artifacts from multi-channel EEG. However, PCA 

cannot completely separate eye artifacts from brain signals, especially when they have 

comparable amplitudes. Jung et al. [23][24] use ICA for removing a wide variety of 

artifacts from EEG records. Their results on EEG data collected from normal and 

autistic subjects show that ICA can effectively detect, separate, and remove 

contamination from a wide variety of artificial sources in EEG records with results 

comparing favorably with those obtained using regression and PCA methods. 

Nevertheless, most ICA was done off-line on PCs, hindering portability and on-line 

BCI. This study reports an implementation of an ICA algorithm, making on-line blind 

source separation of the multi-channel EEG a reality. 

 

2.3 Drowsiness Detection Methods 

     With the increasing causalities on highway due to drowsiness, many researchers 

have devoted to develop algorithms to prevent drowsiness. One method is to detect 

drowsiness based on changes in blink behavior. The drowsiness detection Ulrika 

proposed was based on changes in blink behavior and classification was made on a 

four graded scale using MATLAB [25]. Although several studies showed that 

eye-activity variations were highly correlated with the human fatigue and can 

accurately and quantitatively estimate alertness levels, the step size (temporal 

resolution) of those eye-activity based methods is often too slow (10s or longer) to 

track fast changes in vigilance. Another method is to detect drowsiness information by 

heart rate monitoring sensors placed in the steering wheel [26]. But the drowsiness 
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classification needs coordination, its not autonomy parameter.. Matsushita et al. have 

developed a wearable fatigue monitoring system with a 2-axis accelerometer and an 

on-board signal processing microcontroller [27]. As a result, the measured values of 

the acceleration trace length showed some inconsistency with user-interviews consist 

of subjective questionnaires about the user's fatigue [27].  

     It has also been known for more than half a century that signal changes related 

to alertness, arousal, sleep, and cognition are present in EEG signals, but relatively 

little has been done to capture this information in real time [25]. Recently, Lin et al. 

have developed a drowsiness-estimation system based on EEG by combining ICA, 

power-spectrum analysis, correlation evaluations, and linear regression model to 

estimate a driver’s cognitive state when he/she drove a car in a virtual reality 

(VR)-based dynamic simulator [28][29]. The proposed ICA-based method applied to 

power spectrum of ICA components successfully removed most of EEG artifacts and 

estimated the driver’s drowsiness fluctuation indexed by the driving performance 

measure. However, their drowsiness detection was still performed off-line on a 

personal computer. For eventual practical acceptance in the workplace, it is highly 

desirable to make all data acquisition and analysis on-lined. In this study, we design, 

develop and demonstrate an embedded wireless BCI that comprises three functional 

modules: EEG recordings, amplification, digitization and wireless transmission, 

on-line ICA process and spectral estimation, and real-time drowsiness detection 

algorithm to accurately and continuously detect subject drowsiness level based on the 

EEG data in near real time. 
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Chapter 3 Embedded Brain Computer Interface Architecture 

3.1 System Overview 

Fig.3-1 shows the three major components of the developed embedded wireless 

BCI system: EEG amplifying and transmitting unit, EEG receiving and processing 

unit, and display unit. The amplifying and transmitting unit, which is also called EEG 

signal pre-processing unit, is capable of handling 4 channels of EEG data. In the 

beginning, the subject will be attached to six electrodes: five on forehead (one ground 

and four EEG channels), one on mastoid bone after ear. Then the EEG data is 

amplified by 5000 times, converted to digital signals, and then transfer via radio 

frequency (RF) module. All the process on the amplifying and transmitting unit is 

controlled by a Field-Programmable Gate Array (FPGA). After receiving EEG data 

from the amplifying and transmitting unit, the EEG data is processed by receiving and 

processing unit then the result is sent to the display unit. 

 

Fig.3-1 System architecture 
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3.2 System Function Block 

     The architecture of the embedded wireless BCI system we proposed can be 

divided into three modules: signal acquisition and amplification unit, wireless data 

transmission unit, and processing and display unit. The block diagram of the proposed 

system is given in Fig.3-2. The data flow of the system is divided into two paths. (1) 

The EEG signal is first acquired by signal acquisition and amplifying unit, and then 

transmitted from wireless data transmission unit to wireless data receiver. Second, the 

data processing unit will process the EEG data and transmit the raw data to remote PC 

by TCP/IP at the same time; (2) after processing EEG data, the system will transmit 

the result to remote PC by Ethernet. 

 

Fig.3-2 Data flow of the system 

 

(a) Signal Acquisition and Amplifying Unit 

The signal acquisition and amplifying unit is used to measure the EEG signal 

and filter out the noise. This block diagram is shown in Fig.3-3. The EEG amplifying 

circuit is constructed of a pre-amplifier with the gain of 100, an isolation amplifier to 

protect the subject, a band-pass filter which was composed of a low-pass filter and a 

high-pass filter to reserve 1-100Hz, , a differential amplifier which had the gain of 

fifty. 
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Fig.3-3 Block diagram of the signal acquisition and amplification unit 

(b) Wireless Data Transmission Unit 

Fig.3-4 shows the wireless data transmission unit which converts analog signals 

to digital signals, and then encodes and transmits through the wireless transmitter and 

receiver. To do that, we use CPLD (Complex Programmable Logic Device) to control 

the A/D converter and encode the data for the transmitter. 

 

Fig.3-4 Block diagram of the wireless data transmission unit 

(c) Processing, Display and Feedback Unit 

The processing and display unit is the main part of the wireless brain computer 

interface. The operating core is ADI (Analog Devices Instruments) BF (Blackfin) 533. 

The DSP processor is helpful for EEG data processing with a large number of 

mathematical calculations. In this thesis, the DSP processor processes EEG data after 

managing of peripheral devices, such as wireless receiving devices and network. Then 

the result will be display and the feedback signal will be outputted. 
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3.3 Requirement Analysis of Hardware and Software 

3.3.1 EEG Acquisition Circuit 

     Generally speaking, the amplitude of bio-signal of human is very small for data 

processing. Recording EEG is also difficult, because the amplitude of brain wave is 

wakened through meninges, cerebrospinal fluid, and the scalp. The normal peak-to- 

peak amplitude of EEG is 1～150μV and frequency band is 1～100Hz. Hence, 

identically before processing the EEG signal, we should amplify the EEG signal first. 

In addition, a filter circuit was also designed to extract signals at desired frequency 

bands. Moreover, the materials of sensors also affect the recording quality because 

EEG signals are always easily contaminated. The signal flow of our EEG acquisition 

circuit and the picture of the EEG amplifier are shown below. First of all, the EEG 

signals are amplified by 99 times. Then the signals are filtered by a 1-100 Hz band 

pass. Third, the signals are amplified again by of 51 times. That is, the totally gain is 

about 5,000. Finally, the processed EEG data are converted to 8-bit digital EEG 

signals by an analog to digital signal converter. The range of digital EEG signals is 

0~254. 

 

Fig.3-5 The signal flow of EEG signal recording circuit 
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Fig.3- 6 The picture of EEG signal recording circuit 

 

3.3.2 Wireless Transmitting Module 

     With the digital EEG signal output of A/D converter, we use Complex 

Programmab1e Logic Device (CPLD) to encode the digital EEG signals for wireless 

transmission. The encoded wireless packages are transmitted through wireless module 

RF3105 to RF3100. Here, we use low- power Radio Frequency (RF) wireless 

transmission protocol. The data flow of wireless transmitting and physical photos are 

shown in Fig.3-7 and Fig.3-8, respectively. The package format of the wireless 

transmission is shown in Table 3-1. To ensure the integrity of the EEG data, each 

converted 8-bit digital EEG signal is embraced in 13-bit transmitting interval. The 

baud rate of the wireless module we chose is 19200 bit/sec. The total size of the 

package is 5x13bits = 65 bits. That is, the highest transmitting rate is 19200/65 = 

295Hz. 

 

Fig.3-7 The data flow from the A/D converter to the wireless receiver 
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Fig.3-8 The picture of the integrated signal acquisition circuit 

 

Table 3-1 Wireless package definition 

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 

Identification 

code 

EEG 

Channel 1 

EEG 

Channel 2 

EEG 

Channel 3 

EEG 

Channel 4 

     RF3105/RF3100 Wireless RS232 Converter converts traditional RS232 to 

wireless communication [36][37]. There are three selections of frequencies: 433~435 

MHz, 868~870 MHz, or 902~928 MHz. It is a transparent transceiver module that 

integrates low transmission power and high receiving sensitivity designs. 

RF3105/RF3100 provides high communication speeds up to 76.8 Kbps and long 

distances up to 600 meters. It meets the wireless regulation and saves the application 

for approval of frequencies [36][37]. Compared to Bluetooth, RF3105/RF3100 

consumes less power (12dBm, which is smaller than 24dBm of Global System for 

Mobile Communication, GSM) and longer transmission range. The picture of RF3105 

and RF3100 is shown below. The specification of RF3105 and RF3100 are listed in 

Table below. 
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Fig.3-9 RF3105/RF3100 module 

 

Table 3- 2 RF3105/RF3100 modules 

Model RF3100 - C RF3105 - C 

Working Frequency 915MHz 

Modulation FSK 

Channels At least 25 channels 

Functions Half-Duplex, Bi-direction, Transparent wireless 

data transmit and receive 

Transmission Power 12dBm 

Baud Rates 19200 Kbps 

Communication 

Distance 

200-600m (Whip antenna, outdoor, depending on 

different communication speeds) 

Port Data Format 8N1 

Type Connector RS232 (9 pins, D-Sub, Female) Connector 

LED Red: Transmitting, Green: Receiving 

     The flowchart of receiving procedure on wireless receiver is described in 

Fig.3-10. After reading the ID code which is 255, we continuously read 4 channels of 

EEG data. Then feed them to the data analysis procedure. To simplify the 

transmission procedure, our half-duplex transmitting module allows only one 
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direction during transmission. 

 

Fig.3- 10 flowchart of receiving procedure 

 

3.3.3 Embedded Digital Signal Processor 

     In this thesis, the selected core processor is ADSP-BF533 (Blackfin 533) 

developed by Analog Devices Inc. The system diagram of the board we designed is 

shown in Fig.3-11 below and the picture of the board is shown in Fig.3-12. The 

Blackfin processor provides both microcontroller (MCU) and DSP functionality in a 

unified architecture, allowing flexible partitioning between the needs of control and 

signal processing. If the application demands, the Blackfin processor can act as 100% 

MCU (with code density on par with industry standards), 100% DSP (with clock rates 

at the leading edge of DSP technology), or a combination of the two. The maximum 

high performance of BF533 processor can be up to 500MHz. It has two 16-bit MACs, 

two 40-bit ALUs, four 8-bit video ALUs, and 40-bit shifter. One of its features is 

RISC-like register and instruction model for ease of programming and 

compiler-friendly support. The board is designed to support the development and 

porting of open-source μClinux applications and includes the full complement of 

memory along with serial and network interfaces. Besides an ADSP-BF533 500 MHz 

Blackfin processor, the board includes: 
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 16 MB SDRAM (64M x 16 bits) and 4 MB FLASH memory 

 RS-232 serial interface 

 6 Keypads and 240*320 pixels LCD 

 JTAG interface for debug and FLASH programming 

 Bluetooth transmitting/ receiving module 

 

Fig.3-11 The system diagram of the board 

 

Fig.3-12 Picture of the board (upside and downside) 
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3.4 Development of the System 

3.4.1 Boot Loader 

     Boot loader is executed before entering operating system. It initializes 

processor stack, register, and basic peripheral devices and brings up the operating 

system. The setting of Boot loader is concerned with processor type and operating 

system, and its function is similar to BIOS of PCs. As a result, each boot loader 

should’ve been modified and ported properly according to different types of 

processors. The boot loader we use is U-Boot. The U-Boot boot up flow is described 

in Fig.3-13 The U-boot entry which is u-boot_1.1.3/cpu/bf533/start.o is defined in 

u-boot_1.1.3/board/stamp/u-boot.lds. 

Power up/ 
Reboot

U-boot Entry

Set Exception 
Vector and 
Mask all 
interrupts

Initialize I/O, 
Timer, Register

Clean Up 
Cache

Set Up Stack

Check Other 
Hardware

Show Test 
Message and 
boot menu

Relocate to 
SDRAM

 

Fig.3-13 U-Boot boot up flow 

 

[may@brc2 stamp]$ make stamp_config             

[may@brc2 stamp]$ make                   

(1) 

(2) 

     To obtain U-boot, configure settings for BF533 STAMP as Step (1).Then type 

‘make’ to compile U-Boot image. After compiling the U-Boot image, u-boot.bin 

will be generated. The u-boot.bin is a binary file that can be used to upgrade U-Boot 

if an older version of U-Boot is already installed on the target system. Finally, the 

U-Boot image should be downloaded to the target board. There are three methods to 
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download U-Boot image. One is to download image via ICE, others are downloading 

via network or UART (Universal Asynchronous Receiver Transmitter) port. The 

detailed steps are described below. 

(a) Downloading Image via VDSP++ 

Before downloading U-Boot, u-boot.hex must be generated 

first. The u-boot.hex file is not created at that time when U-Boot was compiled. It 

is necessary if we want to use Analog Device’s VDSP++ programmer to program 

U-Boot into a platform. We can create u-boot.hex with Step (3): 

[may@brc2 stamp]$ bfin-elf-objcopy -I binary -O ihex u-boot.bin u-boot.hex  (3)

     To download u-boot.hex image, first open the VDSP++ (version 

4.0 or higher version is recommended) and set up a session for BF533 STAMP and 

connect the JTAG line between the host PC and the target. After setting up and 

successfully open a session, use the Toos  Flash Programmer to modify the contents 

of flash. 

     The flash programmer allows users to erase and modify the contents of flash 

ROM. First, we should load a driver. Downloading the flash device driver program 

(.dxe) onto the processor facilitates loading the flash image onto the flash chip. To 

make sure that there are no others un-cleaned fracture on the flash ROM, we can 

enable the advanced options and erase all segment on the flash ROM. Finally, we load 

the u-boot.hex. onto the target, the bar below shows the programming progress. 

Programming virgin flash will be slow (approximately twenty minutes). After that, 

unplug the JTAG and connect the UART line between the host PC and the target, and 

start a hyper terminal. Use 57600 (default baud rate) , 8 data bits, no parity check, one 

stop bit, and flow control disabled to connect as in Fig.3-14. After resetting the target 

board, the boot message will be shown as Fig.3-15. If the boot message does not show, 

make sure the S1 shown in Fig.8 is set to 00 (booting from external memory). 



 

 22

.  

Fig.3- 14 Setting the UART port 

 

Fig.3-15 Boot up message 

 

(b) Downloading Image from UART 

     If there already a U-Boot image exists in flash ROM, then we can use the 

original U-Boot to erase flash and download new U-Boot image. Before erasing 

U-Boot image via console, the new U-boot must be assured to be feasible, because if 

the new U-boot is not feasible and you do not have ICE, the target will not boot up 

normally. To load image via UART, type loadb via console as Step (4), the system 

will be halted to wait for image transfer. Then use Transfer Transfer files to select 

u-boot.bin file to download. In the meantime, Kermit protocol should be selected. 

After transferring the u-boot.bin, the U-Boot image will be temporally loaded in 
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SDRAM. An example map of U-Boot image location (assume image size is 

0x1B800h) after transferring is shown in Fig.3-16 . To write U-Boot image to flash 

ROM, disable flash write protection as step (5). Then erase entire flash by step (6). 

stamp>load 

stamp>protect off all 

stamp>erase all 

(4) 

(5) 

(6) 

    After erasing entire flash ROM, copy U-Boot image from memory to flash as 

step (7). The $(filesize) parameter which is the size of new U-Boot is determined by 

original U-Boot. The map of U-Boot image location after writing U-boot image and 

target resetting is shown in Fig.3-17. 

stamp> cp.b 0x1000000 0x20000000 $(filesize)                    

stamp> reset                                 

(7) 

(8) 

 

Fig. 3-16 Map of U-boot in external memory 
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Fig.3- 17 Map of U-boot in external memory after loading U-boot and resetting 

 
 

(c) Downloading Image Network (TFTP) 

     Downloading image via TFTP is far faster than downloading image via UART, 

hence, technical personnel tend to use TFTP to download image. In the first place, 

tftpd packages should be installed on host PC. After that, put u-boot.bin on host to 

directory /tftpboot on target U-Boot then do as step (9) to download image. 

Stamp> tftp 0x1000000 u-boot.bin                               (9) 

 

3.4.2 Operating System 

     μClinux is an operating system that is derived from the Linux kernel. It is 

intended for microcontrollers without Memory Management Units (MMU’s). It is 

available on many processor architectures, including the Blackfin processor. The basic 

compiling step is listed as step (10) to (16). First, decompress μClinux kernel source 

code, then configure μClinux and a configuration prompt will show up. Second, 

choose “BF533-STAMP” as “Vendor/Product Selection” and exit from 

“Vendor/Product Selection”. Third, enter “Kernel/Library/Defaults Selection” and 

Check “Customize Vendor/User Settings” and”Customize Vendor/User Settings”, 

after that, save and exit from main configuration menu. Finally, we should set kernel 



 

 25

and user application. Do step (11) to clean up all prior object code. Next, do Step (12) 

to compile kernel objects. Do Step (13) to compile user application. After Step (14), 

we can customize romfs. The file in romfs will be described in later. There will be 

some error after step (15), it could be ignore here. After step (32), repeat Step (14) to 

(16) to obtain final kernel image. Kernel image is in directory uCliunx-dist/images. 

[may@brc2 stamp]$make menuconfig                            

[may@brc2 stamp]$make clean                                 

[may@brc2 stamp]$make lib_only                              

[may@brc2 stamp]$make user_only                             

[may@brc2 stamp]$make romfs                                

[may@brc2 stamp]$make image                                

[may@brc2 stamp]$make  

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

After downloading the kernel image, do the step (17) to erase address 

0x20020000 to 0x203FFFFF. Then copy the kernel image to address 0x20020000. 

After that, use U-Boot boot command as step (19) to set auto booting, getting kernel 

from 0x20020000. Then save changed U-Boot environment variables and reset target. 

Since the U-Boot image locates before address 0x20020000, we can take advantage of 

the rest space of flash ROM bank 0 and other flash ROM banks to load the kernel 

image. Take RAM based file system which means that the kernel contains file system 

for example, its map (assume image size is 0x180000h) after writing the kernel image 

and resetting the target is shown in Fig.3-18. 

stamp> erase 0x20020000 0x203FFFFF                          

stamp> cp.b 0x1000000 0x20020000 $(filesize)                    

stamp> setenv bootcmd bootm 0x20020000                       

stamp> save                                                

(17) 

(18) 

(19) 

(20) 
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stamp> reset (21) 

 

 

Fig.3-18 Map of kernel in external memory after loading kernel and resetting 

One of the most important features of Linux is its support for many different 

file systems. This makes it very flexible and well able to coexist with many other 

operating systems. In Linux file system, everything starts from the root directory, 

represented by '/', and then expands into sub-directories. A summary of the directories 

in this Linux file system are given below:  

• /bin - (Binaries) This directory contains the executable binaries for programs 

that were selected in the application configuration window when compiling 

the kernel. 

• /dev - (Devices) On the target system this directory will contain the device 

files for the system. For more information see Device Files. 

• /etc - (Etc.) This directory contains various system configuration files. 

• /home - (Home) This directory provides a location for system users to store 

their files. 

• /lib - (Libraries) This directory is for shared libraries. 

• /mnt - (Mount) This directory contains any mounted file systems. 
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• /proc - (Processes) This directory stores virtual files which contain 

information on system processes. 

• /tmp - (Temporary) In μClinux this directory is a link to /var/tmp. 

• /usr - (User) This directory stores various user programs. 

• /var - (Various) Unlike the other directories which exist on the device 

/dev/root, this directory exists on the device /dev/ram0, this makes it the 

only writable directory as the other directories exist on a read-only file system. 

 

Fig.3- 19 Map of kernel and JFFS2 

     If we compile the kernel without any change, the kernel will be too big to fit in 

flash memory; hence, to control the size of kernel image is very important. The first 

image I compiled was too big. (3.5M is larger than the rest flash space on BF533. ) 

We have to erase more sectors on the flash. As shown in Fig.3-20 below, Four 

ASYNC MEMORY BANKS were available. But the first bank is restored for U-Boot. 

So we take advantage of the rest space of bank 1, the start address of the rest space 

could be the start address of kernel. For safety, we keep a space between U-Boot’s end 

address and kernel’s start address. On the other side, some unneeded settings must be 

removed from the kernel configuration such us expand, version, crontab, ftp, telnet, 

wget, tar, etc. That is, the smaller the kernel image is, the lower the cost is. 
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Fig.3- 20 Map of rest external memory 

 

    Linux is one of the most prominent examples of free software and open source 

development; its underlying source code can be modified, used, and redistributed by 

anyone, freely. The original uClinux was a derivative of Linux 2.0 kernel intended for 

microcontrollers without Memory Management Units (MMUs). However, the 

Linux/Microcontroller Project has grown both in brand recognition and coverage of 

processor architectures. Today's uClinux as an operating system includes Linux kernel 

releases for 2.0 2.4 and 2.6 as well as a collection of user applications, libraries and 

tool chains. It’s popular for its portability and strong support for many applications. 

Compare to other operating system, as describe in Table.3-1, uClinux perform better 

on BF533 than others. 

 

Table 3- 3 Comparison to Other Operating Systems 

Remark\OS μClinux WinCE uC/OS-II 

Scheduling round robin preemptive preemptive 

Network good good inferior 

Stability good inferior good 

Totally 3,875MB 
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Open source yes no yes 

Cross platform easy no difficult 

System Resource larger largest small 

Prices free expensive No free 

 

3.4.3 User Program 

     Cross-platform development and programming techniques are used for 

developing embedded applications. The cross-platform development framework is 

shown as Fig.3-21. Owing to the lack of available resources on embedded systems, 

the cross-compilation, code editing, code linking, and source debugging are 

performed on powerful host PC. The system software, operating system, and 

application programs are first compiled as object codes. Then the linker on the host 

links up object codes and forms an executable image. Thus we have to understand 

thoroughly how executable images were downloaded to the target embedded systems. 

Executable image can be downloaded via internet, UART (Universal Asynchronous 

Receiver Transmitter), and ICE (In- Circuit Emulator). 

 

Fig.3- 21 Cross-platform development framework 
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To run user application on target board, the program must be cross-compiled 

first. We use the cross-compiler to cross-compile an example program as described in 

step (22). Following steps are executed on target operating system. With the network 

file system or RAM-based file system described before, we can execute the program 

without a doubt. The flow to create an executable image on a host PC is described in 

Fig.3-22.  

[may@brc2 stamp]$ bfin-uclinux-gcc -Wl,-elf2flt hello.c -o hello 

root:~>chmod 777 hello 

root:~>./hello 

(22) 

(23) 

(24) 

 

Fig.3- 22 Flow to create an executable image 

 

3.5 Optimization of the System 

3.5.1 Floating Point to Integer 

     With the hardware constraint of embedded systems, plenty modification of 

source code was made. The main issue on the embedded DSP (digital signal processor) 

was lack of FPU (Floating Point Unit). Due to the floating point of non-FPU DSP is 

emulated, the original execution time takes 22 seconds because there are large 

numbers of floating variables of original source code. The solution is to make 

commonly used variable integer. That is to multiply the floating with 100000 to 

preserve decimal points. After that, divide 100000 to retain the integer result. This 
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method speed up execution time to 24% the original execution time. 

3.5.2 Programming 

(a) TLU (Table-Look-Up Techniques) 

     A lookup table is a data structure, usually an array or associative array, used to 

replace a runtime computation with a simpler lookup operation. The speed gain can be 

significant, since retrieving a value from memory is often faster than undergoing an 

expensive computation. 

(b) Loop Unrolling 

     Loop unrolling is a technique for optimizing parts of computer programs — a 

member of the loop transformation family. The idea is to save time by reducing the 

number of overhead instructions that the computer has to execute in a loop. For 

example, for the modification of loop unrolling, the unrolled program has to make 

only 20 loops, instead of 100. 

3.5.3 Variable Regulation 

     The rest modification was made on variables of ICA. Five modifications is 

done, First the initial learning rate is modified to 0.001. Second, the stop weight 

change is modified to 0.001, too. In addition, momentum = 0.4 is added to ICA. With 

loading the last weight matrix, max steps can be restricted and the training steps in 

once can be separated into other times. 
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3.6 Comparison to Past BCI Systems 

     A comparison table is listed below. The system we proposed is with online ICA 

and drowsiness detection. Moreover, it’s provided with 4 channel EEG analysis. 

Table 3-4 Comparison top past BCI systems 

 PC 2004 

(OMAP) 

30cm*20cm

2005, 2006

(OMAP) 

30cm*20cm

2007 

(BF533) 

18cm*13cm 

2007 

(BF533) 

 

6.5cm*4cm

Our 

Applicatio

n 

N/A ICA Drowsy 

detection 

+Multi-task 

scheduling

ICA+ 

Drowsy 

detection 

ICA+ 

Drowsy 

detection 

EEG 

Channels 

N/A N/A 2 channels 4 channels 4 channels

Data 

Processing 

N/A Offline Online Online Offline 

# of CPU Single-cor

e 

Dual-core Single-core 

CPU 

Core 

1.3v 1.5v 0.8 V to 1.26 V 
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Voltage 

Maximum 

Frequency 

3GHz DSP:192MHz 

ARM:168Hz 

DSP:600Hz 

Prices $119 $15 $5 
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Chapter 4 On-line Independent Component Analysis Implementation 

Flowchart of the EEG signal processing is shown in Fig.4-1. The 4-channel 

EEG data was first recorded via the EEG amplifier we designed. Then change the 

sampling rate to 64Hz. It consists of down sampling, independent component analysis, 

useless component rejection, short time FFT and online drowsiness detection. The 

independent component analysis is applied to the down sampled EEG signals to 

obtain the independent components. After that, the useless components are rejected 

according to the standard deviation of independent components. The effectiveness of 

eye blinking and other artifacts removal by using ICA had been demonstrated in the 

Jung et al.’s study[1][2]. The short time FFT is then applied to the useful independent 

components to calculate the frequency response of ICA components. Finally, the 

feature of drowsiness symptoms can be evaluated by the online drowsiness detection 

analysis. 

 

Fig.4- 1 Flowchart of the EEG signal procedure 
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4.1 Independent Component Analysis 

Independent component analysis (ICA) is a case of blind source separation, that 

is, we assume the signals may be mutually statistically independent or decorrelated. 

The goal of ICA is to separate signals (components) from a set of mixed signals 

without the aid of information (or with very little information) about the nature of the 

signals. A familiar case of ICA is the “cocktail party problem”, where the underlying 

speech signals are separated from a sample data consisting of people talking 

simultaneously in a room. Usually the problem is simplified by assuming no time 

delays and echoes. An important note is to consider that if N sources are present, at 

least N observations (i.e. microphones) are needed to get the original signals. Figure 

4-2 shows that we have N sources and mix them with a mixing matrix to get observed 

signals.  

 

Fig.4- 2 N mixed signals and N sources 

     The processing flow shown in Fig.4-1 of EEG signals is backwards. Its linear 

expression is represented in Fig.4-2, where A is described in 4-2. Where the s is 

unknown independent component and the element a is unknown mixing coefficient. 

The expression 4-1 can be rewritten as 4-3. This is called ICA model. After ICA, the 
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mixing matrix will be estimated; its inverse matrix is call unmixing matrix as 

described in expression 4-4. Hence the original sources can be obtained via Eq. 4-5. 

x1 = a11s1+ a12s2 + …+ a1n-1sn-1 + a1nsn 

x2 = a21s1+ a22s2 + …+ a2n-1sn-1 + a2nsn ......................................................................................

…                                  

xn-1 = an-1,1s1+ an-1,2s2 + …+ an-1,n-1sn-1 + an-1,nsn 

xn = an,1s1+ an,2s2 + …+ an,n-1sn-1 + an,nsn 

 

(4-1)

A = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−−−−

−

−

nnnnnn

nnnnnn

nn

nn

aaaa
aaaa

aaaa
aaaa

,1,2,1,

,11,12,11,1

,21,22221

,11,11211

MMLMM       

(4-2)

X = AS (4-3)

W = A-1 (4-4)

A-1 X = A-1AS  S = W X (4-5)

     One approach with some information on the statistical properties of the signal S 

is to use to estimate A and to find solution of Eq. 4-5. The statistical method finds the 

independent components (aka factors, latent variables or sources) by maximizing the 

statistical independence of the estimated components. Non-Gaussianity, motivated by 

the central limit theorem, is one method for measuring the independence of the 

components with kurtosis or approximations of negentropy [49]. Mutual information 
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is another popular criterion for measuring statistical independence of signals. The 

kurtosis of y is classically defined by  

kurt(y) = E{y4} – 3(E{y2})2 (4-6)

     We assume that y is of unit variance, the expression can be simplified to 

E{y4} – 3. For a Gaussian y, the E{y4} equals 3(E{y2})2 . Thus, kurtosis is zero for a 

Gaussian random variables, kurtosis is nonzero. Kurtosis can be both negative and 

negative. Random variables that have a negative kurtosis are called sub Gaussian, and 

those with positive kurtosis are called super Gaussian. Super Gaussian has a spiky 

probability density function with heavy tail. For example, brain waves are super 

Gaussian variables while sinusoid and cosine waves are sub Gaussian variables. 

 

Fig.4- 3 The figure of typical super Gaussian, normal Gaussian, and sub Gaussian 

      

     A second important measure of nongaussianity is given by negentropy. 
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Negentropy is based on the information-theoretic quantity of entropy. Entropy H is 

defined for a discrete random variable Y as 

H(Y) = -∑P(Y = ai)logP(Y = ai) (4-7)

where ai are the possible values of Y. The differential entropy is defined as 

H(y) = -∫f(y)logf(y)dy (4-8)

Another often used version is called negentropy. Negentropy J is defined as 

follows 

J(y) = H(ygauss) – H(y) (4-9)

     The J can be simplified as 

J(y)
12
1

≈ E{y3}2+ 
48
1 kurt(y) 2 (4-10)

or 

J(y) ∑
=

≈
P

i 1
ki[E{Gi(y)}-E{Gi(v)}]2, (4-11)

where ki are some positive constants, and v is a Gaussian variable of zero mean and 

unit variance. The variable y is assumed to be of zero mean and unit variance, and the 

functions Gi are some nonquadratic functions. Commonly used G are 

G1(u) = 
1

1
a

log(cosh(a1u)) (4-12)

and 

G2(u) = -exp(-u2/2) (4-13)
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and 

G3 = tanh(a1u), (4-14)

where 21 1 ≤≤ a  is some suitable constant. 

Typical algorithms for ICA use centering, whitening and dimensionality 

reduction as preprocessing steps in order to simplify and reduce the complexity of the 

problem for the actual iterative algorithm. Without loss of generality, we can assume 

that both the mixture variables and the independent components have zero mean: If 

this is not true, then the observed signals can always be centered by subtracting the 

sample mean, which makes the model zero-mean. Whitening and dimension reduction 

can be achieved with principal component analysis or singular value decomposition. 

Whitening ensures that all dimensions are treated equally a priori before the algorithm 

is run. Algorithms for ICA include infomax [50], FastICA [51] and JADE [52], but 

there are many others also. 

Most ICA methods are not able to extract the actual number of source signals, 

the order of neither the source signals, nor the signs or the scales of the sources. ICA 

is important to blind signal separation and has many practical applications. It is 

closely related to (or even a special case of) the search for a factorial code of the data, 

i. e., a new vector-valued representation of each data vector such that it gets uniquely 

encoded by the resulting code vector (loss-free coding), but the code components are 

statistically independent. 

Similarly, we consider electrical recordings of brain activity as given by an EEG. 

The EEG data consists of recordings of electrical potentials in many different 

locations on the scalp. These potentials are presumably generated by mixing some 



 

 40

underlying components of brain activity. This situation is similar to the cocktail-party 

problem: we would like to find the original components of brain activity, but we only 

observe mixtures of the components. ICA can reveal interesting information on brain 

activity by giving access to its independent components. 

As shown in Fig.4-4, the brain activity recorded at one point on the scalp is the 

mixture of electrical potentials from many different locations in the brain. 

 

Fig.4-4 The brain activity recorded at one point 

The general framework for independent component analysis was introduced by 

Herault and Jutten in 1986 [53] and was most clearly stated by P. Comon in 1994 [54]. 

In 1995, T. Bell and T. Sejnowski introduced a fast and efficient ICA algorithm based 

on infomax [50], a principle introduced by R. Linsker in 1992. In 1997 [55], S. Amari 

realized that the infomax ICA algorithm could be improved by using the natural 

gradient [56], which was independently discovered by J.F. Cardoso [52]. However, 

the original infomax ICA algorithm with sigmoidal nonlinearities was only suitable 

for super-Gaussian sources. T.W. Lee, in collaboration with M. Girolami, developed 

an efficient extended version of the infomax ICA algorithm that is suitable for general 

non-Gaussian signals [57]. 
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The flow of Infomax ICA is shown is Fig.4-5. Centering the data can simplify 

the ICA algorithm, and the mean can be added back to the data. Whitening means that 

we remove any correlations in the data, i.e. the different channels are forced to be 

uncorrelated. Then initialize the weight, and after random permutation, find the 

maximization entropy output. If the weight change is smaller than the desired weight 

change then the training is stopped. 

 

Fig.4- 5 Flow of ICA training 

4.2 Rejecting Components with Standard Deviation 

Here, we use the art of standard deviation to remove components from 

estimated components. To be briefed, the standard deviation is a measure of the 

spread of its values. The standard deviation of the original signal is very big. That is, 

we can’t get much information in such noisy signals. After ICA, the unwanted 

components can be easily rejected by experienced EEG analysis researchers. However, 
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artificial rejection of unwanted components can only be done offline. With standard 

deviation, we can reject components with bigger standard deviation such as eye 

blinking judged by its standard deviation. As we can see in Fig.4-6, the observed 

signals are heavily contaminated by eye blinking. The standard deviation is also very 

big. After ICA, the estimated components are shown in Fig.4-7. Evidently, the eye 

blinking can be rejected due to its biggest standard deviation. 

 

Fig.4- 6 The observed 4-channel mixtures signals 

 

Fig.4- 7 The result of informax ICA, estimated by the signals in Fig.4-6 

STD = 55.5014 

= 63.3425 

= 58.1312 

= 55.1832 

STD = 2.0303 

= 1.8379 

= 1.7848 

= 1.7694 
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Fig.4- 8 The observed 5-channel mixtures signals 

 

Fig.4- 9The result of informax ICA, estimated by the signals in Fig.4-8 

 

     As we can see in Fig.4-8, the observed signals are heavily contaminated by 

movement. The standard deviation is also very big. After ICA, the estimated 

components are shown in Fig.4-9. Evidently, the swing noise can be rejected with its 

biggest standard deviation. 

 

4.3 Testing 

4.3.1 Testing of Artificial Mixed Data 

We have tested various waveforms to prove the performance of ICA. First of all, 

take Fig.4-10 for example, this is of course not realistic recorded signals, but 

STD = 34.5188 

= 34.4399 

= 16.8680 

= 10.6988 

= 10.4836 

STD = 1.7773 

= 1.7356 

= 2.0387 

= 1.9501 

= 2.1136 
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sufficient for this example. The original signal is shown in Fig.4-10 while the mixed 

signal is shown in Fig.4-11. Figure 4-12 gives the two signals estimated by fast ICA. 

Figure 4-13 shows the signals estimated by Information maximization ICA. As can be 

seen, these are very close to the original source signals. 

 

Fig.4- 10The original signals 

 

Fig.4- 11The observed mixtures of the source signals in Fig.4-10 
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Fig.4- 12 The result of fast ICA, estimated using only the observed signals in Fig.4-11 

 

Fig.4- 13 The result of Information Maximization ICA, estimated using only the 
observed signals in Fig.4-11 

 

4.3.2 Testing of Real EEG Data 

    A set of ICA component after ICA is listed in the flowing table. With the 

modifying of ICA variables, we successfully speed up ICA. And the result shows 

good components after modified ICA. 

Table 4- 1 The result of each ICA with different variables 

Figure Attributes Execution 

time 



 

 46

 

The 320- point Raw EEG Data 

Sampling rate: 250Hz N/A 

 

The Estimated ICA Components

Sampling rate: 250Hz 142.04s 

 

The 320-point Raw EEG Data 

Sampling rate: 64Hz N/A 

 

The Estimated ICA Components 

Extended 

Initial learning rate: 0.001 

Block size: 10 

Anneal step :0.98 

Anneal deg : 60 

Max steps: 512 

43.22s 
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The Estimated ICA Component

Not extended 

Initial learning rate: 0.001 

Block size: 10 

Anneal step :0.98 

Anneal deg : 60 

Max steps: 512 

27.61s 

 

 

The Estimated ICA Component

Not extended 

Initial learning rate: 0.001 

Block size: 29 

Anneal step :0.90 

Anneal deg : 60 

Max steps: 512 

Momentum: 0.4 

Verbose: off 

 

12.51s 

 

The Estimated ICA Component

Not extended 

Initial learning rate: 0.001 

Block size: 29 

Anneal step :0.90 

Anneal deg : 60 

Max steps: 512 

Momentum: 0.4 

Verbose: on 

Stop at wchange less than 0.001

8.25s 
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Chapter 5 Experiment Designs and Results 

5.1 The Experiment Design 

5.1.1 Experimental Setup 

For the purpose of safety, a VR-based dynamic driving environment was 

developed for the drowsiness experiments to mimic realistic highway. The developed 

VR dynamical simulation system mainly consists of three elements: (1) a 

six-degree-of-freedom motion platform, (2) a real car, and (3) an interactive VR scene. 

The subjects are asked to sit inside the car on the platform with their hands holding 

the steering wheel to control the car in the VR scene. Seven projectors are used in the 

experiment to construct a 360-degree 3D scene as shown in Fig. 5-1. The movements 

of the platform are according to the operation of the subject and the condition of the 

road surface. 

The VR-based four-lane highway scene is shown in Fig. 5-2. It is projected on a 

°120 -surround screen (304.1-cm wide and 228.1-cm high), which is 350 cm away 

from the driving cabin. The four lanes from left to right are separated by a median 

stripe. The distance from the left side to the right side of the road is equally divided 

into 256 points (digitized into values 0–255), where the width of each lane and the car 

is 60 and 32 units, respectively. The refresh rate of highway scene was set properly to 

emulate a car driving at a fixed speed of 100 km/hr on the highway. The car is 

randomly drifted (triggered from the WorldToolKit (WTK) program and the on-set 

time is recorded) away from the center of the cruising lane to mimic the consequences 

of a non-ideal road surface. The subject’s driving error is defined as the deviation 

between the center of the vehicle and the center of the cruising (third) lane and it was 

continuously and simultaneously measured by the WTK program and recorded in the 

physiological measurement system accompanying with EEG/EOG/ECG physiological 
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signals. 

It has been shown that human fatigue or drowsiness most commonly occurs late 

at night and during the afternoon. During these periods, alertness deficits would most 

likely take place in 1-h monotonous working [32], [33]. Thus, we conducted all 

driving experiments in the early afternoon hours after lunch to maximize the 

opportunities to collect data during which subject driving performance became 

intermittent. All the subjects were instructed to keep the car at the center of the 

cruising lane by controlling the steering wheel. For each session, the subject started 

with a min calibration procedure and then was asked to drive the car continuously for 

45 min. The EEG/EOG/ECG data and the driving errors were measured and recorded 

simultaneously. We had collected successfully EEG data of 5 subjects (ages from 20 

to 35 yr) participated in the VR-based driving task. We select participants who had 

two or more micro-sleep episodes based on the measured response time which is 

shown in Fig.5-3 and confirmed by video recordings in at least two driving sessions 

for further analysis. Based on these criteria, five subjects were selected for further 

on-line algorithm testing and verification. 

 

Fig.5-1 A 360-degree 3D VR dynamic driving environment. 
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Fig.5- 2 The VR-based four-lane highway scene 

 

Fig.5- 3 The Response Time in One Session 

 

5.2 Drowsiness Detection Algorithm 

There are four major types of continuous rhythmic sinusoidal EEG activity. 

They are recognized as alpha (8-12Hz), beta (above 12Hz), delta (below 4Hz) and 

theta (4-8Hz) and are listed in Table 5-1: 

Table 5- 1 Characteristics of EEG bands 

Types Band range Description 
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γ 

(gamma) 

30Hz~ Gamma rhythms may be involved in 

higher mental activity, including 

perception, problem solving, fear, and 

consciousness. 

β 

(beta) 

13 – 30Hz Beta with low amplitude beta with 

multiple and varying frequencies is 

often associated with active, busy or 

anxious thinking and active 

concentration. Rhythmic beta with a 

dominant set of frequencies is 

associated with various pathologies and 

drug effects, especially benzodiazepines.

α  

(alpha) 

8 – 12 Hz Alpha is characteristic of a relaxed, 

alert state of consciousness. For alpha 

rhythms to arise, usually the eyes need 

to be closed. Alpha attenuates with 

drowsiness and open eyes, and typically 

come from the occipital (visual) cortex. 

An alpha-like normal variant called mu 

is sometimes seen over the motor cortex 

(central scalp) and attenuates with 

movement, or rather with the intention 

to move. 

θ  4 - 8 Hz Theta is associated with drowsiness, 
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(theta) 

 

childhood, adolescence and young 

adulthood. This EEG frequency can 

sometimes be produced by 

hyperventilation. Theta waves can be 

seen during hypnagogic states such as 

trances, hypnosis, deep day dreams, 

lucid dreaming and light sleep and the 

preconscious state just upon waking, 

and just before falling asleep. 

δ 

(delta) 

~ 4 Hz 

 

Delta is often associated with the very 

young and certain encephalopathies 

and underlying lesions. It is seen in 

stage 3 and 4 sleep. 

     As the characteristic of EEG activity described above, there is an important 

phenomenon found by the team of brain research center (BRC), NCTU (National 

Chao Tung University) while recording EEG from forehead. That is, if a person is 

mild drowsiness, the alpha wave will tend to be superior in EEG activity, and its 

power will increase time after time. After that, if the person tends to fall asleep, the 

theta wave will tend to be superior in EEG activity, and the power of alpha will 

decrease while the theta will still increase time after time. With the phenomenon, the 

algorithm can be mapped in to a table listed below. 

Table 5- 2 Criterion of Drowsiness 

State of EEG band State of consciousness 

alpha ↑ theta↑ Mild drowsiness 
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alpha ↓ theta↑ Deep drowsiness 

alpha ↑ theta↓ Conscious 

alpha ↓ theta↓ Conscious 

For the criterion of drowsiness is based on the changes of EEG activity in the 

frequency domain. We use the short-time Fourier transform (STFT), or alternatively 

short-term Fourier transform, which is a Fourier-related transform used to determine 

the sinusoidal frequency and phase content of local sections of a signal as it changes 

over time. Here we have tested the short-time Fourier transform on the embedded 

processor we use. It has produced good results while processing both lower frequency 

sinusoid (theta band from 4 to 8 Hz) and higher frequency sinusoid (alpha band from 

8 to 12 Hz) of the frequency band we desired(4 to 12 Hz). As shown in Fig.5-4, the 

power of 4Hz and 5Hz sinusoid showed in Fig.5-5 result in peak of 4Hz and 5Hz. 

Also, in Fig.5-6, the power of 10Hz and 12Hz sinusoid showed in Fig.5-7 result in 

peak of 10Hz and 12Hz. 

 
Fig.5- 4 The original signal of 4Hz & 5Hz sinusoid 

 

Fig.5- 5 The power spectrum of 4Hz & 5Hz sinusoid 
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Fig.5- 6 The original signal of 10Hz & 12Hz sinusoid 

 

Fig.5- 7 The power spectrum of 10Hz & 12Hz sinusoid 

The flowchart of our algorithm is described in Fig.5-8. First, the 4-channel EEG 

data is re-sampled to sampling rate 64Hz. After gathering 512 points of EEG data, the 

data was fed into ICA. After that, some estimated components are rejected with the 

criterion of standard deviation described before. We select the last 192 points of ICA 

component from rest components and use FFT to estimate the power of EEG data. 

Finally with the online drowsiness detection algorithm, we recognized the drowsiness 

index. The detail of the FFT procedure is shown in Fig.5-9. The 192-point EEG data 

of each channel is overlapped with 64-point update for each sec. Then the 192 points 

are divided into 32 points sub-windows with overlap 24 points. Then The first 16 

points and the last 16 points of 64-point FFT were padded with zero.  
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Fig.5- 8 The flowchart of our algorithm 

 

 

Fig.5- 9 The procedure of FFT 

     After we take 1~13 Hz of the decibel value of FFT and find the trend of alpha 

and theta band power, we can estimate drowsiness index with a 20 seconds time 

window. The flow of from FFT to estimation of drowsiness index is shown in 

Fig.5-10. The moving window size we use is 20sec. Since each time we update 2 

seconds. We calculate the whole slope of ten 2-sec power when each time we update 
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the alpha and theta power value. Choosing the moving window of 20 seconds is the 

middle-of-the-road policy here because whether the window is too big or too small 

isn’t good for drowsiness index estimation. If the window is too big, the change of 

drowsiness index will be too slow. On the contrary, if the window is too small, the 

change of drowsiness index will be too soon. 

 

Fig.5- 10 The flow of drowsiness estimation algorithm 

5.3 The Results 

5.3.1 Result of 4 Channel Online EEG Analysis System 

A demonstration of our system is shown in Fig.5-11. First, the preprocessing 

unit records the 4-channel EEG and sends wirelessly raw digital EEG to processing 

unit. Then after the drowsiness index is estimated, it sends result to a display unit 

through internet. The display unit could be PC or laptop and the displayed stuff is 

shown in Fig.5-12. The preprocessing can also be placed on to a hat as shown in 

Fig.5-13. This is convenient for users. Figure 5-14 shows the developed wireless BCI 

using RF. Figure 5-15 shows the developed wireless BCI using Bluetooth. 
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Fig.5- 11A Demonstration of Our System 

 

Fig.5- 12 A Demonstration of EEG Hat 

 

Fig.5- 13 The Result of GUI 
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Fig.5- 14 wireless BCI using RF 

 

Fig.5- 15 wireless BCI using Bluetooth 
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Chapter 6 Conclusions and Future Works 
We propose an ICA-based embedded wireless BCI (Brain Computer Interface) 

system for real-time drowsiness detection to improve the imperfections of offline 

analysis. The embedded wireless BCI has been implemented. It includes three 

functional blocks: wireless transmission and EEG recording, real-time transmission 

online ICA, and online drowsiness detection algorithm. This BCI system achieves two 

major targets. One is that the wireless overcomes the problem of long distance and 

inconvenient of connection lines; another is that the modified online ICA and 

drowsiness detection algorithms are implemented on the embedded DSP board to e 

give warning to drivers in real-time. 

After that, the performance of the embedded wireless BCI system can still be 

improved in time, transmission and the problem of algorithm stability as follows. 

 The hardware of Bf533 is provided with hardware interrupt and DMA 

(Direct Memory Access), this speed the time handing peripheral.  

 The transmission protocol can be replaced with high speed Bluetooth. 

 The selection of components now is artificial. The rejection of estimated 

components is not completed correct. Most important of all is the selection 

of components. 
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