
國 立 交 通 大 學 
 

電機與控制工程系 

 

碩 士 論 文 
 

 

利用雜訊功率模型、非線性失真模型

與功率消耗模型，以最佳化離散時間

單迴路積分三角類比數位轉換器 

 

Design Optimization of Discrete-Time Single-Loop 

Sigma-Delta ADCs based on Analytical Models of Noises, 

Nonlinear Distortions, and Power Consumptions 

 

研 究 生：李孟學 

指導教授：陳福川  教授 

 

 

中 華 民 國 九 十 六 年 八 月 



利用雜訊功率模型、非線性失真模型與功率消耗模

型，以最佳化離散時間單迴路積分三角類比數位轉

換器 

 

Design Optimization of Discrete-Time Single-Loop 
Sigma-Delta ADCs based on Analytical Models of Noises, 

Nonlinear Distortions, and Power Consumptions 
 

研 究 生：李孟學          Student：Meng-Syue Li 

指導教授：陳福川          Advisor：Fu-Chuang Chen 

 
國 立 交 通 大 學 

電 機 與 控 制 工 程 系 
碩 士 論 文 

 
A Thesis 

Submitted to Department of Electrical and Control Engineering 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 
Electrical and Control Engineering 

 
August 2007 

 
Hsinchu, Taiwan, Republic of China 

 

中華民國九十六年八月 



利用雜訊功率模型、非線性失真模型與功率消耗

模型，以最佳化離散時間單迴路積分三角類比數

位轉換器 

 

研究生：李孟學                                指導教授：陳福川 教授 

 

國立交通大學 

電機與控制工程研究所 

 

摘要 

傳統的積分三角類比數位轉換器電路規格設計是一個相當耗時的工作，且需要不斷的

嘗試各種電路規格，以達到所需要的解析度。本篇論文分析了積分三角類比數位轉換器

的主要雜訊來源與非線性特性所造成的失真問題。藉由分析推導出的失真功率模型、雜

訊功率模型及絕對功率消耗模型，並以訊號對雜訊和失真比(SNDR)來當作我們的設計

規格，以做最佳化的設計。此最佳化設計意指在特定系統規格下(如頻寬、訊號對雜訊

和失真比)，找到一組最佳化的設計參數，使得類比數位轉換器的功率消耗最小以及訊

號對雜訊和失真比最大，並節省龐大制定電路規格的時間成本。最後我們將針對已發表

的設計結果來做驗證的工作。雖然現今已存在相當多行為模擬工具以自動化制定電路規

格，但較之下，本論文所提出的最佳化方法將快上許多。 
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ABSTRACT 

 

The conventional sigma-delta ADC design approach is a time consuming process and 

needs much trials and errors. This paper analyze the mainly noise sources and nonlinear 

distortions. Utilizing the noise power models, nonlinear distortion power models and 

accurate power consumption models derived in this paper, and the assigned signal to 

noise and distortion ratio (SNDR) to be the design goal, we can forward to do design 

optimization under the specific specifications. Design optimization means that under the 

specific specifications (signal bandwidth, SNDR), we find a set of optimal design 

parameters such that the power consumption of ADCs is minimum and SNDR is 

maximum, and reduce the huge time-cost to set up the circuit specifications. Finally, 

design optimization is tested against a published design result. Although design 

automation issues have been partially addressed by recent behavior- simulation–based 

methods, yet such methods can be slower than our analytical approach far. 
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1 

Introduction 

 

1.1 Current Status and Background 

Sigma-Delta A/D converters have become popular for high-resolution 

medium-to-low-speed applications such as digital audio [Bos 88][Nor 89], voice codec, and 

DSP chip. Recently, Σ∆  ADCs have been applied to higher bandwidth signals, and low 

power designs are frequently emphasized. For example, in ×DSL [Gag 03][Rio 04] 

applications, signals up to several MHz must be handled. Since significantly increasing the 

sampling rate is difficult, designers either seek to increase the order or the cascade stages [Oli 

02][Vle 01], or employ multi-bit quantization [Gri 02][Mil 03], or both, in order to achieve 

the required dynamic range. DAC linearity can be improved due to process technology 

advances, making the multi-bit architecture more popular. The Σ∆  modulator design is a 

complex and time consuming process because many coupled design parameters must be 

determined. Coming up with an acceptable design is very challenging with increasing design 

specification demands, previously described. Even an acceptable design may not be the best 

one. We propose an optimization approach to increase automation and reduce complexity in 

the single-loop Σ∆  ADCs design.   

 

1.2 Motivation and Aims 

To propose the design optimization for single-loop Σ∆  modulators, we need a complete 

set of important nonideality models and the power consumption model. Some issues 

concerning Σ∆  modulator noise and error modeling appeared in [Bos 88][Nor 89][Mal 03]. 

The performance of the Σ∆  ADCs is usually expressed in terms of SNR and SNDR. Circuit 

designers must take into consideration the nonidealities and decide the circuit and system 



2 

parameters to meet the desired specifications. A design optimization procedure is proposed in 

[Chu 05] to meet design specifications while minimizing power consumption. However, it 

didn’t consider the nonlinear distortions, so that the effectiveness of the proposed design 

optimization is limited. In this work, we discuss all the important nonlinear distortions, and 

incorporate relevant distortion powers into the optimization process in order to achieve more 

realistic designs. 

In a Σ∆  modulator, common causes for harmonic distortions are nonlinear 

finite-OTA-gain, settling error, nonlinear capacitances, quantizer nonlinearity, nonlinear 

switch resistance and unit-DAC mismatch. Operational amplifiers (op-amps) are the critical 

part of the Σ∆  modulators and its nonidealities such as nonlinear finite-OTA-gain and 

settling error may produce distortions significantly. Some analyses of the distortions resulting 

from nonlinear finite-OTA-gain and settling error are given in [Med 94][Dia 94]. In [Med 94], 

the settling distortion has been modeled. However, the model provides little insight on how 

settling distortion are related to circuit and system parameters and it had a mistake. In this 

work, we correct this mistake and discuss the harmonic distortion how to vary with circuit and 

system parameters and what condition it can be ignored. Then we will apply the model and 

discuss to our design optimization. The nonlinear finite-OTA-gain distortion is caused by the 

gain variation of op-amp, whose power model is not complete in [Med 94] [Dia 94][Gee02] 

and [Lee85], so we build the complete distortion power model for 0.18µm process, and 

involve it in optimization 

Recently, with the advanced technology, multi-bit modulators are used often because it 

offers many advantages. However, multi-bit modulators can introduce significant distortion 

into the modulator loop due to the unit-DAC mismatch. Any error in the DAC response will 

be directly subtracted from the input signal and hence it appears at the output without the 

benefit of noise shaping. Therefore any nonlinearity of the DAC will introduce a 

corresponding nonlinear signal distortion into the overall ADC response. Some analyses about 
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DAC nonlinearity appeared in [Stu 01][Bru 99]. The derived distortion models in [Stu 

01][Bru 99] are not expressed in harmonic power forms, and the relations between circuit 

parameters and distortion powers are not clear. In this work, we derive the harmonic 

distortions in terms of quantization level and standard deviation of capacitor mismatch, and 

the distortion model can help us do design optimization to determine the quantizer output 

level.  

One straightforward approach to improve the accuracy of the internal DAC is to improve 

the matching of the individual elements. The most common approach for improving the 

accuracy of a DAC is dynamic element matching (DEM). Many dynamic element matching 

algorithms have been proposed to convert the static error into a wide-band noise signal [Bai 

01][Kuo 95][Car 89]. Σ∆  modulators using DEM can reduce the distortion but it increases 

the extra hardware and consumes more power.  

These nonidealities described above are important when the specifications of the modulator 

are demanding because they can become the dominant error sources. In this work, we have 

the noise and distortion models of all important nonidealities and power consumption model 

for design optimization. The design of Σ∆  modulators is a complex and time consuming 

process. With these models for design optimization, we can increase the automation and 

reduce complexity in the single-loop Σ∆  ADCs design. 

 

1.3 Organization 

This work is organized as follows. In Chapter 2 and Chapter 3, systematic studies of 

fundamental theory and various architectures of Σ∆  modulator are presented first. In 

Chapter 4, analyses of several errors which may degrade system performance are proposed. In 

Chapter 5, analyses of several distortions are proposed. The accurate power consumption 

model is derived in Chapter 6. A design optimization scheme is proposed in Chapter 7. It 

essentially combines system and circuit level designs, and optimizes all design parameters at 
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the same time. The optimization scheme is verified in Chapter 8, and various issues are 

discussed. Conclusions and future works are presented in Chapter 9. 
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2 

Fundamental Theorems of Sigma-Delta 

Modulators 

 
Before we establish the error models of Σ∆  modulators, several important theorems and 

concepts must be known, such as Nyquist sampling theorem, quantization error and the two 

most critical techniques in a Σ∆  modulator: oversampling and noise shaping. All topologies 

of Σ∆  modulators are based on these two techniques. There also have some parameters we 

must to understand, such as OSR, SNR, and SNDR …etc. This chapter starts from 

fundamental theorems, and introduces several topologies of Σ∆  modulators. 

  We will illustrate quantization error and analyze quantization noise in an ideal A/D 

converter and then derives the peak signal-to-noise ratio. The resolution of an A/D converter 

is determined by signal-to-noise ratio, which is a very important specification in an A/D 

converter. 

 

2.1 Nyquist Sampling Theorem 

  In an analog-to-digital converter, the analog signal from external environment must be 

converted to discrete-time signal by sampling. However, the sampling rate (fs) and signal 

bandwidth (fB) must follow the Nyquist sampling theorem in (2.1): 

                      fS ≧ 2fB                     （2.1） 

The sampling rate must be higher or equal to twice of signal bandwidth in order to prevent 

from aliasing. We will illustrate the phenomenon of aliasing by Fig. 2.1. Fig. 2.1(a) and (b) 

are the spectrums of signal and sample function respectively; from fig. 2.1(c), when sampling 

rate is twice higher than signal bandwidth, the signal after sampling has no aliasing and it can 

be perfectly reconstructed by using low pass filters. However, in Fig. 2.1(d), when the 
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sampling rate is lower than twice of signal bandwidth, aliasing will appear in the signal after 

sampling. The signal having aliasing is difficult to reconstruct to original signal [Mach 96], 

like Fig. 2.1(e). 

   

(a) 

                        

(b) 

  

(c) 

                 

(d) 

                 

(e) 

Fig. 2.1（a）Original signal spectrum（b）Sample function when fs > 2fB（c）Signal spectrum that’ sampled 

by (b)（d）Sample function when fs < 2fB（e）Signal spectrum that sampled by (d) 
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2.2 Quantization noise and Peak SNR 

We can get a discrete-time signal by sampling a continuous-time signal, and this sampled 

signal can be converted to digital signal. Quantization will appear in this process, the basic 

concept of quantization is to classify the original signal to different levels according to its 

level to determine the bit number of this signal, as shown in Fig. 2.2 

 

Fig. 2.2 Quantization process 

  It will have quantization error even in an ideal analog-to-digital converter. As shown in 

Fig .2.3, we convert the digital signal B to analog signal V1 by a D/A converter, and then the 

signal V1 is subtracted by input signal Vin. The result is the quantization error VQ, as in (2.2) 

[Joh 97].  

                    VQ = Vin – V1                         （2.2） 

    

Fig. 2.3 Quantization error caused by A/D converter 

The range of quantization error is limited in ±VLSB/2 (as in Fig. 2.4), and we assume the 
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probability density function of quantization error is uniformly distributed between ±VLSB/2 

and its mean is zero, as shown in Fig. 2.5. From this assumption, we can easily get the 

quantization noise power VQ(rms)
2 

in (2.3). 

VQ(rms)
2
 = ∫

∞

∞−
⋅⋅ dx)x(fx Q

2
= ∫− ⋅

2/VLSB

2/VLSB

2

LSB

dxx
V

1
= 

12

V
2

LSB          （2.3） 

2

VLSB+
2

VLSB−

LSBV

1

 

Fig. 2.4 Quantization error range         Fig. 2.5 P.D.F of quantization error 

From (2.3) we can know the quantization noise power is proportional to square of VLSB, and 

VLSB can be represented as in (2.4). Therefore, we can say that the quatization noise will 

reduce by increasing quantization bit number. 

                VLSB = 
B2

FS
                           （2.4） 

            FS=Full scale = Vref+－Vref-   B：Quantization bit number 

Assume that input signal is sinusoidal, expressed as Vin(t) = A sinωt, so the input signal power 

Vin(rms)
2 
is as （2.5）. In （2.5）, we define the amplitude of input signal is the full scale of 

reference voltage, and from (2.3), (2.4) and (2.5), the peak SNR(Peak Signal-to-Noise Ratio) 

can be derived as in (2.6). 

           Vin(rms)
2
 = ∫− ⋅⋅

2/T

2/T

2 dt)tsinA(
T

1
ω = 

2

A2

= 
8

)A2( 2

= 
8

FS2

      （2.5） 

           PSNR = 10 log（
2

)rms(Q

2

)rms(in

V

V
）= 6.02B + 1.76 dB               （2.6） 

(2.6) is the result obtained by Nyquist sampling rate. From (2.6), we can know that each 
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additional bit number in quantizer increases 6dB in SNR. In Nyquist A/D converters, 

increasing the resolution of quantizer (decrease VLSB) while reducing the quantization noise is 

a general method to reach higher SNR, but this method is sensitive to mismatches of analog 

device. Therefore, the general Nyquist A/D converter is not easily to implement with high 

resolution. 

 

2.3 Techniques of Sigma-Delta Modulator  

  Σ∆  A/D converters are based on oversampling and noise shaping to reach high resolution. 

Oversampling means the sampling rate is much higher than Nyquist rate, about 8~512 times 

in general applications. The goal of oversampling is to expand quantization noise to wider 

range. It can reduce the quantization noise in signal bandwidth and increase the DR (Dynamic 

range) of input signal. Noise shaping is a technique that moves noise to high frequency, which 

is done by using discrete time filter and feedback technique. After noise shaping, the noise in 

high frequency can be filtered out by a digital filter [Nor 97]. 

   

2.3.1 Oversampling Technique 

 First, we made the assumption that quantization noise is a uniform distribution in sampling 

spectrum so its mean is zero and is a white noise [Raz 01]. The system in Fig. 2.6 just has 

oversampling function and does not have noise shaping effect. If a A/D converter is sampled 

in Nyquist rate, then the quantization noise is uniform distributed between ±fB ; if it is 

sampled by oversampling technique, then quantization noise is uniform distributed between± 

fS2/2s, which is much larger than fB. As shown in Fig. 2.7, if the signal bandwidth is between 

±fB, then quantization noise in this bandwidth will be reduced by using oversampling 

technique, which will raise PSNR significantly. 
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Fig. 2.6 Sampling system                                      
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Fig. 2.7 Noise distribution after sampling 

In the condition of oversampling, the PSD (Power Spectrum Density) of quantization noise is 

as Se2(f) in Fig. 2.7 and can be represented as: 

              kx
2
 = 

s

2

LSB

f12

V

⋅
= Se2

2
(f)                                （2.7） 

From (2.7) we can estimate the quantization noise in 2fB after oversampling 

              PQ = ∫− ⋅
B

B

f

f

2

x dfk = 
OSR212

FS

12

V

f

f2
B2

22

LSB

s

B

⋅⋅
=⋅          （2.8） 

In (2.8), we define a parameter OSR (Oversampling Ratio) as 

                          OSR = 
B

s

f2

f
                          （2.9） 

Finally, we can get PSNR from (2.5) and (2.8) 

          PSNR = 10 log（
Q

signal

P

P
）= 6.02B + 1.76 + 10 log（OSR）      （2.10） 

From (2.10), we can find that doubling OSR will increase 3dB in PSNR, which is about 0.5 

bit increase in resolution. Although oversampling can reduce quantization noise, it is difficult 
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to reach high SNR when using a low bit quantizer. For example, if we need a 16bit A/D 

converter, then SNR must be equal to 98dB, if the signal bandwidth is 20KHz, then the 

sampling rate must equal to 2 × 10
9
 × 20KHz, it is impossible to implement. Because at such 

high frequency, quantization noise is no longer a white noise, it is correlated with input signal. 

So there is not only oversampling technique, we must add noise shaping technique also, if we 

want to achieve high resolution.  

 

2.3.2 Noise Shaping 

  We can model a general Σ∆ modulator and its linear model as shown in Fig. 2.8. 

             

                                    （a） 

 

                                    （b） 

        Fig. 2.8 (a) General Σ∆  modulator (b) Linear model with quantization noise 

From Fig. 2.8(a), we can derive output Y(z) as (2.11) 

                  Y(z) = 
)z(H1

)z(H

+
X(z) + 

)z(H1

1

+
E(z)              （2.11） 

and define Signal Transfer Function STF and Noise transfer function NTF as 

                      STF (z)= 
)z(H1

)z(H

)z(X

)z(Y

+
=                     （2.12） 

                      NTF (z)= 
)z(H1

1

)z(E

)z(Y

+
=                     （2.13） 
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where H(z) is the transfer function of a discrete time filter. There have two important 

meanings in (2.12), (2.13). If we want to obtain highest SNR, STF must be equal to 1, that 

means the input signal can transfer to output without attenuating; and NTF (z) must be equal to 

0, because the quantization noise will not affect output SNR. 

  In order to make NTF (z) be a high pass filter, so at DC(z = 1), NTF must be 0, and z = 1 is a 

pole of H(z), so the transfer function H(z) of the discrete filter is as  

                           H(z) = 
1Z

1

−
 = 

1

1

Z1

Z
−

−

−
                （2.14） 

Substitute (2.14) into (2.12) and (2.13), we can get 

                            STF (z) = 
z

1
                         （2.15） 

                            NTF (z) = 
z

1
1−                        （2.16） 

And we substitute z with fs

f2
j

e

π

, then we can plot )f(STF

2
 and )f(NTF

2
 in frequency domain, 

as Fig. 2.9. We can find )f(NTF

2 
also increases with frequency, and )f(STF

2
 is always equal 

to 1, if we choose signal bandwidth in low frequency, then we can get highest signal power 

and lowest noise power, from this figure we see that quantization noise is moved to higher 

frequency significantly, this is the noise shaping effect.
 

2

TF )f(N

2

TF )f(S

                

Fig. 2.9 Noise shaping 

After noise shaping, we can filter out the noise in high frequency by using digital filter, and 

we will illustrate its architecture more detail in the next chapter. 
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3 

Architectures of Sigma-Delta Modulator  

 
 Before we introduce various architectures of Σ∆  modulators, we must to realize the basic 

architecture of a general Σ∆  A/D converter. Fig. 3.1 is a complete block diagram of a Σ∆  

A/D converter [Joh 97], and we can divide it into two different parts. First part is the Σ∆  

modulator. The main function of this part is doing oversampling and noise shaping to the 

input analog signal. Second part is the decimation filter. The main function of this part is to 

remove noise in high frequency and down sampling the sampling frequency to base band 

frequency. 

  

 

Fig. 3.1 Block diagram of Σ∆  A/D converter 

 

First, the input signal Xin(t) pass an Anti-aliasing filter, the 3dB frequency of this filter is 

about few times of Nyquist frequency, so signal and noise out of Nyquist frequency is filtered 

roughly, and this signal goes into the Σ∆  modulator after goes through a S/H circuit. 

However, in the circuits implement situation, the sample and hold function is included in the 

circuits of Σ∆  modulator, so the signal Xc(t) will pass this modulator and produces a high 

speed data code Xdsm(n), because of noise shaping, the quantization noise will appear in high 

frequency. Finally, we must filter the noise in high frequency and reduce the sampling 

frequency to Nyquist frequency by a decimator, and passes the digital signal to the output 
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[Joh 97].  

 In this chapter, we will focus on the architectures of Σ∆  modulator, because that the noise 

model and optimal method is focus on this part, we must understand the theorem, benefits and 

drawbacks of each kinds of Σ∆  modulators. In addition, the implement of decimator is very 

typical [Ner 02][Mok 94]. In today’s technology, DSP processors are also used to replace 

decimators, so we will introduce this part roughly. 

 

  3.1 First-Order Sigma-Delta Modulator 

 We recall that H(z) in (2.14) is 
1

1

Z1

Z
−

−

−
, substitute it into Fig. 2.8, then we can get a 

first-order Σ∆  modulator; Analyze transfer function H(z) from time-domain, it indicates that 

output signal m(t) is obtained by adding the delayed input signal n(t-1) and the delayed output 

signal m(t-1), so we can express a complete first-order Σ∆  modulator as Fig. 3.2. 

 

          

                          Fig. 3.2 First-order Σ∆  modulator 

 

  H(z) in Fig. 3.2 is indicated the effects of delay and accumulation, this is equivalent with an 

integrator in circuit design, so the three circuits components of Σ∆  modulator are integrator, 

quantizer and DAC in the feedback path. A first order Σ∆ modulator’s output can represent as  

                  Y(z) = z
-1

X(z) + (1－z
-1

)E(z)                        （3.1） 
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From (3.1) we can find the signal transfer function is as a delay function, and noise transfer 

function is as a high pass filter, moves the noise to high frequency. In order to derive PSNR of 

first order Σ∆  modulator, we must get the magnitude of NTF(z) and STF(z) in the frequency 

domain, so we substitute z with sf/f2j
e

⋅π
, and get (f)STF  and (f)NTF  respectively as: 

                sf/fj2π1

TF ez(f)S
⋅−− == = 1                           （3.2） 

                 NTF(f) = 1－ sf/f2j
e

⋅− π
= sf/fj

s

ej2)
f

f
sin(

⋅−×× ππ
 

            ⇒   )sin(2)(
s

TF
f

f
fN

π
⋅=                               （3.3）  

So the quantization noise in base band ±fB can obtain by (2.7) and (3.3)  

        PQ = df
f

f
sin2

f12

V
df)f(N)f(S

2

f

f
ss

2

LSB2

TF

f

f

2

e

B

B

B

B

⋅















⋅

⋅
=⋅ ∫∫ −−

π
         （3.4） 

Because that fB is much lower than fs, so sin(π f/fs) is approximate equal to (π f/fs), and PQ is 

as 

                PQ = 3
22

LSB )
OSR

1
(

36

V
⋅

π
= 

3B2

22

OSR236

FS

⋅⋅

⋅π
             （3.5） 

From (2.5) and (3.5), if we have the maximum signal power, then PSNR is as (3.6) 

          PSNR = 10 log(
Q

signal

P

P
) = 10 log( B22

2

3
) + 10 log[ 3

2
)OSR(

3

π
] 

               = 6.02B + 1.76－5.17 + 30 log(OSR)                  （3.6） 

(&)From (3.6), we find that each octave of OSR, PSNR will increase 9dB, increase 1.5 bit in 

resolution. Compare (3.6) with (2.10) that only has oversampling effect; we can find that 1
st
 

order noise shaping increases the performance of Σ∆  modulator. 
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3.2 Single-Loop Second-Order Sigma-Delta Modulator 

When the discrete time filter in Fig. 2.8 is replaced by two cascade integrator, then it is a 

second order Σ∆  modulator, output of the first integrator is only connecting with the input 

of the second integrator, it is shown in Fig. 3.3 

 

Z-1 Z-1x(n) y(n)

Quantizer

H(z) H(z)

D/A

                                   

Fig. 3.3 Single loop second order Σ∆ modulator 

 

Then the output of it can easily be derived as 

                     Y(z) = z
-2

X(z) + (1－z
-1

)
2
E(z)                  （3.7） 

where STF and NTF is as 

                        STF(z) = z
-2

                              （3.8） 

                        NTF(z) = (1- z
-1

)
2
                          （3.9） 

Using the same method in (3.3) (3.4), we can obtain 

                      1)f(STF =                                 （3.10） 

                      

2

s

TF
f

f
sin2)f(N 
















⋅=

π
                     （3.11） 

                 PQ = 
5

42

LSB

OSR60

V

⋅

⋅π
= 

5B2

42

OSR602

FS

⋅⋅

⋅π
                  （3.12） 

So finally, PSNR of the second order Σ∆  modulator is as 

        PSNR = 10 log(
Q

signal

P

P
) = 10 log(

B22
2

3
) + 10 log[

5

4
)OSR(

5

π
] 
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             = 6.02B + 1.76－12.9 + 50 log(OSR)                    （3.13） 

In the single loop second order architecture, each octave of OSR can increase PSNR by 15 dB, 

it is equivalent to 2.5 bit in resolution. If we compare (3.13), (3.11) with )f(NTF =1 that 

without noise shaping, as Fig. 3.4, we can find that in our needed signal bandwidth, the 

quantization noise is highest when )f(NTF =1, and that with second order noise shaping is 

smallest among this figure [Joh 97]. 

 

TFN

2

fS

 

Fig. 3.4 Comparison of noise shaping techniques 

 

3.3 Single-Loop High Order Sigma-Delta Modulator 

Fig. 3.5 is a single loop high order Σ∆  modulator, from the derivation in Section 3.1 and 

Section 3.2, we can get the quantization noise PQ in signal bandwidth is as      

               PQ = 1L2
L22

LSB )
OSR

1
(

1L212

V +⋅
+

⋅
π

 ，L：order             （3.14） 

and its PSNR is   

       PSNR = 6.02B＋1.76－10 log(
1L2

L2

+

π
)＋(20L＋10) log(OSR)       （3.15） 

In the application of high order Σ∆  modulator, (6L+3)dB increases in SNR when OSR is 

octave, so PSNR can be raised by increasing the order of the system, especially at large 

oversampling ratio. But sometimes in high order architecture, the performance will be worsen 
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than result predicted by (3.13), because of the stability problem, it will make less effective 

noise shaping function, so the quantization noise will not be suppressed completely. 

 

 

                     Fig 3.5 Single-loop high order Σ∆  modulator 

 

3.4 Interpolative Sigma-Delta Modulator 

  Interpolative is a kind of high order Σ∆  modulator, it changes connection of some stages, 

adds some feedforward paths and feedback paths in order to suppose more aggressive noise 

shaping effect, Fig. 3.6 is a four-order interpolative architecture Σ∆  modulator [Cha 90]. 
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Fig. 3.6 Four-order interpolative architecture 

This architecture also has stability problem, when the order L increases, each integrator 

produces one pole, and when the order is higher, poles of this system will also increase, and it 

will cause unstable situation, so the range of integrator gain will be limited; if the range of 

integrator gain is small, oscillation will appear in the circuits. Another is the considerations of 

clock control, when we use SC (switched-capacitor) to implement the integrator, each 

integrator needs two clocks to control its operation, and we will need more clock to control 
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the integrator when the order of system increases, it will produce more problems.     

 

3.5 MASH Architecture 

  MASH (Multi-stage noise shaping) architecture is also called cascade architecture, which 

is a method that cascades several low order loops modulator in order to get high order noise 

shaping effect. The fundamental ideal of MASH is delivering quantization noise of front stage 

to input of next stage, and combining the digital outputs of all the stages with proper transfer 

function in digital domain, only the quantization noise of last stage will appear at the output, 

and the orders of NTF is the same with total orders in the cascade Σ∆  modulator. Fig 3.7 is a 

three-order cascade Σ∆  modulator, its is the combination of a second-order and first-order 

Σ∆  modulator, so also called 2-1 cascade architecture [Wil 94]. 

 

1−
Z

1−
Z

1−
Z

 

Fig. 3.7 2-1 architecture MASH Σ∆  modulator 

From Fig. 3.7, we can derive the first stage output Y1(z) can be represented as 

                   Y1(z) = z
-2

X1(z) + (1－z
-1

)
2
E1(z)                  （3.16） 

Output of second stage Y2(z) is as 

                   Y2(z) = z
-1

X2(z) + (1－z
-1

)E2(z)                   （3.17） 
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and overall output of MASH Y(z) is as 

                   Y(z) = H1(z)Y1(z) + H2(z)Y2(z)                   （3.18） 

and we can say that second stage input X2(z) is almost the same with E1(z), in order to 

eliminate first stage quantization noise E1(z), from (3.16) ~ (3.18), we can define the error 

cancellation functions H1(z) and H2(z) as 

                           H1(z) = z
-1

                            （3.19） 

                         H2(z) = (1－z
-1

)
2
                         （3.20） 

From (3.16)~(3.20), E1(z) can be eliminated, and second stage quantization noise E2(z) is 

shaped by third-order noise shaping function, and the MASH output Y(z) is as  

                     Y(z) = z
-3

X1(z) + (1－z
-1

)
3
E2(z)                 （3.21） 

The most significant advantage of this architecture is that stability is not an issue, because it is 

composed by several low-order systems, and the quantization noise will not be amplified 

stage by stage, so its stability is good. Most important, the noise shaping function is 

equivalent as high order Σ∆  modulator, so it is popular in recent publications [Rio 04][Vle 

01].  However, there also have some drawbacks of this topology; it is sensitive to the 

circuits’ imperfections, such as finite DC gain of OTA, variance of integrator gain due to 

capacitor mismatch and non-zero switch resistance. These are all practical considerations 

when we design a MASH architecture Σ∆  modulator [Gag 03]. 

 

3.6 Multi-bit Quantizer Sigma-Delta Modulator 

   The demands of high resolution and high bandwidth ADC are more and more in recent 

years. In a high signal bandwidth, OSR of Σ∆  ADC can’t be too high, and the peak SNR of 

a Σ∆  modulator with such limited OSR can’t satisfy of high resolution applications, if we 

use higher order architecture, then the performance will degrade due to instability. So the 

most general method to increase performance is to use multibit quantizer. The most obvious 

advantage of using multibit quantizer is that the distance between quantizer level VLSB in (2.4) 
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is much smaller due to increasing of B, and according to (2.3), the power of quantization 

noise is attenuated. Fig. 3.8 is the results of theoretical peak SNR of Σ∆  modulator versus 

oversampling ratio, with different order and quantizer bits, it is noted that peak SNR of the 

same OSR is increase 6 dB with each additional bit number in quantizer, and at low OSR, low 

order higher bit number architecture has equivalent performance as high order architecture. 

This result is usable for high bandwidth applications, and the power consumption of digital 

circuit in Σ∆  modulator is reduced due to lower sampling rate [Pel 99]. 
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Fig. 3.8 SNR vs. OSR with different quantizer bit number 

Because of using multi-bit quantizer, so we also need to use multi-bit DAC(Digital-to Analog 

Converter) to transfer the digital output to analog signal, and feed it back to integrator. The 

most significant disadvantage is the non-linearities introduced by multi-bit DAC can degrade 

the performance of Σ∆  converter, like Fig. 3.9. It is a linear model of multi-bit Σ∆  

modulator, where E(Q) and E(D) represent the quantization noise and feedback DAC noise 

respectively. The values of these capacitor elements in DAC will not equal to ideal values that 

we need, it is due to process variation, typical value of mismatch in modern CMOS 

technology is about 0.05% ~ 0.5%. In recent years, so many researches are make efforts on 
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reduce DAC noise due to mismatch, such as trimming [Nor97], Dynamic element 

matching(DEM)[Mil 03][Reb 90], although trimming is effective, but it has a expensive 

production step. So, DEM becomes more and more popular because of its efficiency and 

cheaper cost. 

H(z)X(n) Y(n)

Multi-bit

Quantizer

Discrete time Filter

Multi-bit

D/A

E(Q)

E(D)

 

                        Fig. 3.9 Multi-bit architecture 

 

3.7 Multi-bit Sigma-Delta Modulator use DEM Technique 

   Dynamic element matching is a different approach to decrease the DAC noise, it is used to 

improve the linearity of pure DACs [Pla 79], but now it is most used in inner DAC of 

multi-bit Σ∆  modulator. A DAC with DEM technique is illustrated in Fig. 3.10, B2  bits 

thermometer code is put into the element selection logic block, and the function of element 

selection logic is try to select DAC elements in such way let the errors introduced by DAC 

average to zero for several operation periods. Because the DEM block is located in feedback 

loop, so its delay must be very small prevent to degrade the performance of Σ∆  converter, 

therefore the algorithm used in the DEM block must be simple. There are several techniques 

of DEM, such as Randomization [Car 89], Clocked Averaging (CLA) [Pla 79], Individual 

Level Averaging (ILA) [Che 95], Data Weighted Averaging (DWA) [Bai 95], Randomization 
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is the first approach to use DEM technique in Σ∆  ADC, and DWA offers a good 

performance to reduce DAC error, in this section, an overview introduction of these two 

algorithms will be presented, and the operation principle of them will be explained.  

12 −B

1

2

B
2

B2

 

Fig. 3.10 A B-bit DAC with DEM technique 

 

3.7.1 Randomization Technique 

 The main operation principle of randomization is that the element selection logic performs as 

a randomizer. In each clock period, the randomizer selects DAC elements randomly to 

generate the output of DAC. If the randomizer is ideal, then the DAC noise will become 

uncorrelated with each other. Simulation results show that randomization DEM technique 

reduces the noise floor from DAC error by several dB, but it still be a white noise in low 

frequency. Fig. 3.12 is the output spectrum of a second-order Σ∆  modulator with a 0.1% 

capacitor mismatch, it is notable that the noise floor of randomization DEM is lower than that 

without any calibration technique in the feedback DAC. 

 

3.7.2 Data Weighted Averaging (DWA) 

  DWA is a efficiently method to reduce DAC mismatch noise, it uses one register to 

remember the capacitor last time used, and always points to the first unused unit capacitor in 

this clock, so DWA rotates through all the unit capacitors such that all capacitors are used at 

the maximum possible rate. From this algorithm, each elements is used the same number of 
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times in long interval, this ensures that the errors caused by the DAC average to zero quickly. 

In Fig. 3.11, it is a 4-bit DAC and the shaded boxes are the number of 1’s in the thermometer 

code. Assumes that the input codes sequence is 8, 8, 10, 9, 10, 10, 11, 11, 12, 11, 14, 11, 14, 

13, 12, 15... Fig. 3.12 is the simulation results of a third order Σ∆  modulator, we can see that 

without DEM has highest noise floor and DWA works as a first order noise shaping function 

of DAC noise, ideal DAC only with quantization noise has third-order noise shaping. 

 

Fig. 3.11 Operation principle of the DWA algorithm 
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Fig. 3.12 Output spectrum with three kinds of DAC 

 

  Another consideration is the sub-ADC(quantizer) of the Σ∆  modulator, we usually use 

Flash A/D as the multi-bit quantizer because of its high speed, but Flash A/D has a significant 

disadvantage is that the number of comparators of it is proportional to 2
B
. That means a 6 bit 

quantizer needs 64 comparators, the occupied area of comparator may not much, but in 

modern SOC applications, the problems of power and area are important, so it becomes one 
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limitation of multi-bit quantization.  

    Σ∆  A/D converter is attractive for high resolution application, for higher signal 

bandwidth, we increase system order to raise SNR, but it still have stability problem. So 

people develop MASH and multi-bit architecture to improve its performance. Finally, we 

classify they into low order, high order, MASH and multi-bit four kinds of architecture, and 

compare their advantage and disadvantage as Fig. 3.13 [Med 99]  

 

Σ∆

 

Fig. 3.13 Comparison of Σ∆  modulator architectures 

 

3.8 Decimator 

  In Σ∆  A/D converter, digital decimator is used to process digital signal of the quantizer 

output, the high speed data word after oversampling modulation can’t be used directly. 

Because there have original signal and quantization noise among it, so the main function of 

decimator is to convert the oversampled B-bit output words of the quantizer at a sampling rate 

of fs to N-bit words at Nyquist rate of input, and removes the noise out of signal band. In 

order to prevent the noise introduced by other frequency, the decimator filter must have very 
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flat signal pass-band, and sharp transition region and enough signal attenuation in stop band. 

Two-stage decimator is used in a general situation, because that single stage decimator is 

difficult to convert sampling rate to Nyquist rate in 1 time and without degrading SNR. In the 

first stage, we can down-sample the sample frequency to 2~4 times of Nyquist frequency, and 

in the second stage, we can use IIR or FIR filter that have high linearity [Nor 97]. For a large 

OSR, multi-stage decimator is used. 

3.9 Performance Metrics for a Σ∆  Modulator 

  In order to understand the performance merits used to specify the behavior of Σ∆  

modulator, several specifications concerning the performance are discussed [Gee 02]. 

 ․Signal to Noise Ratio: The SNR of a data converter is the ratio of the signal power to the 

noise power, measured at the output of the converter for a certain input amplitude. The 

maximum SNR that a converter can achieve is called the peak SNR. 

․Signal to Noise and Distortion Ratio: The SNDR of a converter is the ratio of the signal 

power to the power of the noise and the distortion components, measured at the output of 

the converter for a certain input amplitude. The maximum SNDR that a converter can 

achieve is called the peak SNDR. 

․Dynamic Range at the input: The DRi is the ratio between the power of the largest input 

signal that can be applied without significantly degrading the performance of the converter, 

and the power of the smallest detectable input signal. The level of significantly degrading 

the performance is defined as the point where the SNDR is 6 dB bellow the peak SNDR. 

The smallest detectable input signal is determined by the noise floor of the converter.  

․Dynamic Range at the output: The dynamic range can also be considered at the output of 

the converter. The ratio between maximum and minimum output power is the dynamic 

range at the output DRo, which is exactly equal to peak SNR.  

․Effective Number of Bits: ENOB gives an indication of how many bits would be required 

in an ideal quantizer to get the same performance as the converter. This numbers also 
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includes the distortion components and can be calculated from (2.6) as              

                   
02.6

76.1
ENOB

−
=

SNR
                           (3.22) 

․Overload Level: OL is defined as the relative input amplitude where the SNDR is 

decreased by 6dB compared to peak SNDR 

 Typically, these specifications are reported using plots like Fig. 3.14. This figure shows the 

SNR and SNDR of the Σ∆  converter versus the amplitude of the sinusoidal wave applied to 

the input of the converter. For small input levels, the distortion components are submerged in 

the noise floor of the converter. Consequently, the SNDR and SNR curves coincide for small 

input levels. When the input level increases, the distortion components start to degrade the 

modulator performance. Therefore, the SNDR will be smaller than the SNR for large input 

signals. Note that these specifications are dependent on the frequency of the input signal and 

the clock frequency of the converter. Fig. 3.14 also shows that SNDR curves drop very fast 

once the overload point is achieved. This is due to the overloading effect of the quantizer 

which results in instabilities. 

 

Fig. 3.14 Performance characteristic of a Σ∆  converter 
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4 

Models of Sigma-Delta Modulator Noises 

and Power 

 
  Proposing an optimization algorithm for searching design parameters which maximize Σ∆  

ADC SNR while minimize power consumption, is one of the primary purposes of this paper. 

Related model completeness determines success of this goal. The Σ∆  modulator 

nonidealities are categorized into five parts in this chapter; finite OTA gain error, thermal 

noise, settling error, multi-bit DAC noise, and jitter noise. All nonideality models are 

expressed in noise power form, which can directly add to ideal quantization noise power. All 

noise power models discussed in the following are based on the integrator scheme, as shown 

in Fig. 4.1. In Fig. 4.1, 
u

C  is the unit capacitor whose capacitance value is 
B

S
C

2
. The power 

consumption model is presented as the last part of this chapter. 
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Fig. 4.1 Integrator and the DAC branches 
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4.1 Finite OTA Gain Error 

Finite OTA Gain is an important error when we analyze a real integrator. Typical value of 

OTA gain is about 50 ~ 80 dB in modern CMOS technology. For a general single-loop n th 

order Σ∆  modulator with finite OTA gain 0A , the modified quantization noise is expressed 

as [Med 99]:  
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AVQ PP +=                                     （4.1） 

where QP  is the original quantization noise, and ∆  is the quantizer step size. The AVP  in

（4.1）is due to finite OTA gain, and can be considered as an additive quantization noise 

power. It can be verified using （4.1）that, for a single-loop topology, A = 50 dB is sufficient 

to avoid SNR degrades, in the sense that a higher 0A  would not significantly reduce 

.)(modQP . 

 

4.2 Thermal noise (Switch, OTA, Reference circuits) 

There are three thermal noise sources in the Σ∆  modulator, in MOS switches, OTAs and 

reference voltage. We will analyze them separately as follows. 

For a fully differential implementation, the in band switch thermal noise during the 

sampling phase results in output noise power [Med 99] 

                        







⋅=

S

1
C

4kT1

OSR
Psw

                         （4.2） 

where k  is Boltzman constant and T  is the absolute temperature. Additional thermal noise 

is introduced by the switches during the integration phase, resulting in the output noise power 

[Gee 02] 
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Since the thermal noise voltages introduced during these two phases are uncorrelated, the 

total output switches thermal noise power from the switched capacitor integrator is 
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                    （4.4） 

Half of 
sw

P  is from the input branch, and the other half is from the DAC branch. 

The OTA transistor thermal noise can be modeled as an equivalent noise source noV  at 

OTA input shown in Fig. 4.2. In deep submicron process 
gm1

kT10
Vno

⋅
≅

α
Hz

V2

 [Gra 01], 

where α  is a noise factor depending on OTA topology. In a two-stage OTA, 2≈α . During 

the sampling phase (Fig. 4.2(a)), the circuit looks like a voltage follower. However, due to 

OTA finite gain bandwidth, noise at OV  has an equivalent bandwidth, so thermal noise 

power at integrator output in the sampling phase is 

L
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sampP
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22
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During the integration phase (Fig. 4.2(b)), the circuit looks like a non-inverting amplifier, 

with 
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where A
GBW

 is the 3dB frequency of the non-inverting amplifier. Then the OTA noise 

power at the first integrator output can be expressed as 

dffPOTA

2

no

O

0
no )(

V

V
V(int) ⋅≅ ∫

∞

                           （4.7） 
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           (a) sampling phase                     (b) Integration phase 

Fig. 4.2 Equivalent circuits of sampling and integration phases 

 

Finally, the total OTA thermal noise power at the Σ∆  ADC output can be obtained as 
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The reference voltage circuit is implemented by transistors, so the thermal noise device will 

appear at the reference circuit output and influence the system directly. Consider the bandgap 

reference circuit in Fig. 4.3 [Raz 01]. Reference output noise is nearly equivalent to OTA 

input referred noise [Raz 01], so we can express it as 
gm1

kT10
Vno

2 α⋅
=≈refV . Different 

integrator schemes can introduce reference noise in different ways [Gag 03][Mil 03][Gee 00]. 

We consider the case shown in Fig. 4.4, where this noise is introduced only in the sampling 

phase. If the reference noise is unbuffered, its noise power at the Σ∆  ADC output can be 

derived as 
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            （4.9） 

We usually add buffers between the bandgap circuits [Pie 02] and the DAC paths. Denote 

the 3dB buffer bandwidth as 
b

BW . If 
b

BW is smaller than

S
RC4

1
, the 

ref
P  in（4.9）is changed 

to be  
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                                   （4.10） 

If 
b

BW is larger than 
SRC4

1 , the 
ref

P  in（4.9）is applied. 

  

ddV

 

Fig. 4.3 A bandgap voltage reference circuit 

 

2

refV ±
B2×

uC

uC

SC

IC

LC

inV
oV

 

Fig. 4.4 Equivalent circuit while considering reference voltage noise 

 

4.3  Settling Problem 

As Σ∆  modulator sampling frequency increases, and multi-bit quantization becomes a 

high resolution and high-speed application trend, the dynamic settling problem of switched 

capacitor integrator becomes a more dominant factor. Previous articles have mentioned the 

settling error [Mal 03][Gri 02][Rio 00]. References [Mal 03] and [Rio 00] provide behavior 
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models, which are tedious and integrate poorly with noise-power models of other noises or 

errors. The noise-power model of [Gri 02] is very primitive since it assumes the pdf 

(probability density function) settling error is uniformly distributed, and does not consider 

multi-bit quantization. We only consider the integrator at the first stage. Settling errors at later 

stages are less influential due to noise shaping. 

Now consider a switched capacitor integrator in Fig. 4.5. Assume the MOS switch has an 

on-resistance R, and gm1  is the transconductance of OTA. Let the output parasitic capacitor 

IL CC ⋅≅ η , where η  is the percentage of bottom plate parasitic, assumed to be 20% [Rab 

99]. In Fig. 4.5(a), the voltage SV  represents the difference between the sinusoid input signal 

and the feedback signal from DAC. It is sampled by 
S

C , so 
S

C  is charged in the half clock 

period 
2

T
 to the voltage CSV : 

)]
2

exp(1[
1τ⋅

−−⋅=
T

VV SCS
                      （4.11） 

where 
S

CR ⋅=
1

τ  is the time constant in the input branch. So the setting error during the 

sampling phase is: 
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(a) Sampling phase                           (b) Integration phase 

Fig. 4.5 Switched capacitor integrator diagrams  

In order to obtain settling noise power during the sampling phase from（4.12）, we need to 

find the SV  statistical property. Simulations results (using SIMULINK) on a second-order 

Σ∆  modulator with 5.01 =a , 22 =a , 10-level quantization, reference voltage 1±=
ref

V , and 

a full scale sinusoidal input signal, are shown in Fig. 4.6. The result is close to a Gaussian 
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distribution. Therefore, we assume SV  is Gaussian distributed with a zero mean. The 

standard deviations VSσ  of SV  under different quantizer levels are tabulated in Table 4.1. 

We observed that when the quantizer level N increases, VSσ  decreases. From this table, the 

relation between standard deviation VSσ  and quantizer levels B2  can be approximated by                

  refV1.42 ⋅≈⋅ vs
B σ                          （4.13） 

 

 

Fig. 4.6 Simulated results of SV  distribution 

 

Std. deviation 

( VSσ ) 
Variance 

Quantizer 

level (N) 

Bit number 

(B) 

0.706 0.498 2 1 

0.476 0.227 3 1.585 

0.282 0.080 5 2.322 

0.198 0.040 7 2.808 

0.152 0.023 9 3.17 

0.124 0.016 11 3.46 

0.047 0.002 31 4.95 

TABLE 4.1 Standard deviations of SV  vs. different quantizer bit numbers 

 

The settling noise can reasonably assumed to be white, and its power spectral density constant 

and distributed over )2,2( SS ff−  as: 



35 

                )exp(
2

V4.11

1

2

ref
1

τ
ε

T

f
S

B

S

−
⋅







 ⋅
⋅=                     （4.14） 

Due to oversampling, noise power can be obtained by integrating（4.14）in the signal band 

),( BB ff− , which is: 
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 Next, we consider the integration phase shown in Fig 4.5(b), where the 
B2  unit 

capacitors are combined into 
S

C , and the 
B2  DAC switches are neglected. The charge 

stored in sampling capacitor will be added to the integration capacitor and this charge current 

is supplied by OTA. So when the slew rate and gain bandwidth are not large enough, the 

settling error 2ε  will be produced. The statistical properties of SV  have been summarized 

in Table I. Then, according to Fig. 4.7, three types of settling conditions can happen in the 

integrator output during this phase, and the corresponding voltage errors of these three 

conditions are [Mal 03]: 

1. Linear settling: When the initial change rate of the integrator output voltage ( OV ) is 

smaller than the OTA slew rate ( SR ). 

    )
2

exp(
2

12
τ

ε
⋅

−⋅⋅=
T

Va S , when 
2

1

1
0 τ⋅⋅<< SR

a
VS

                    （4.16） 

2. Partial slewing: The initial change rate of OV  is larger than SR , but it gradually 

decreases until it is below the slew rate. 
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3. Fully slewing: The initial change rate of OV  is larger than SR , and it maintains above 

SR  in the 
2

T  interval. 
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where SR  is the slew rate of OTA, and 
GBW

CsRGBW

⋅

⋅⋅⋅+
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π

π
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2

[Gee 99a] is the time 
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constant in the integration phase, with GBW  being the equivalent gain bandwidth in the 

integration phase. The capacitor loading in OTA output during this phase is heavier than in the 

sampling phase, and is [Gee 02] 
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Fig. 4.7 Three types of settling conditions in integration phase 

 

The GBW  is given by  

                          
π2
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=

LC
GBW                         （4.20） 

In order to estimate settling noise in this phase, we must analyze the occurrence probability 

for each of the three conditions defined by（4.16）-（4.18）. The probability of SV  in the linear 

settling region is   
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Let max2ε  be the maximum linear settling error, and it can be obtained by substituting 

2

1

1
τ⋅⋅= SR

a
VS

 into（4.16）. Since SV  is approximately Gaussian, it is reasonable to assume 

that the linear settling error in （4.16） also has a Gaussian distribution in ( )
max2max2 ,εε− . So 

the average linear settling noise power in the integration phase is approximately  
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Before calculating the partial settling probability, we must check the possibility of this 
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condition. If 
ref2
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V2
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≥⋅⋅ τSR
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, a partial and fully slewing condition does not need to be 

considered. If ref2

1
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, partial slewing probability is  
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  Now we calculate noise power under the partial slewing condition. The pdf of SV  when 
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The 2ε  here is no longer Gaussian distributed, and its pdf can be computed from 
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where 
2εd

dVS  can be obtained by（4.17）, and its value is 
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. Then the average noise power 

of partial slewing is 
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Finally, we analyze the settling noise in a fully slewing condition using the same procedure. 

First, if 
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The p.d.f of SV  when 
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The p.d.f of 2ε  is 
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So, the average noise power of fully slewing is 
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The total average settling noise in the integration phase can be obtained by（4.21）, （4.22）,

（4.23）,（4.26）,（4.27）and（4.30）as 
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2

⋅+⋅+⋅
=ε                  （4.31） 

 

Fig. 4.8 Comparison of our theoretical result with behavior simulation result 

In order to verify the result in（4.31）, we use SIMULINK to build a second-order Σ∆  

modulator with a 4-bit quantizer. The behavioral settling model in [Mal 03] is used. We 

assume that 5.01 =a , Ω= 300R , 7.1=
S

C pF, 100=GBW MHz, 300=Bf kHz and SR = 

100V/µs, and use a 300 kHz sinusoidal input signal. In an ideal behavior simulation with a 

sinusoidal input, the error 
2

ε  can not be observed at modulator output, because 
2

ε  is highly 

correlated with 
S

V , so that 
2

ε  is compensated in the steady state by the integrator. However, 

adding a small noise to the input signal can eliminate the effects of feedback and integration. 

The Gaussian white noise added to the input has a small variance 0.04. After performing FFT 

to the Σ∆  modulator output data which exclude the input signal and Gaussian noise, we 

obtain simulated noise power, which is a combination of quantization noise and settling noise. 

The theoretical noise power is obtained by adding the theoretical settling noise power from
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（4.31）to the theoretical quantization noise power. The simulated and theoretical noise 

powers are both shown in Fig. 4.8 v.s. OSR. The two lines are closely related. When OSR<50, 

quantization noise dominates. When OSR>50, settling noise dominates. Notice that increasing 

SR and GBW will reduce settling noise and increase SNR, but will also increase analog power 

consumption and the design challenges. On the other hand, multi-bit quantizers can reduce the 

slew rate requirement, since a multi-bit structure makes the output feedback signal closer to 

the input signal. 

 

4.4  Multi-bit DAC noise 

There are several advantages in using a multi-bit structure. One is that when the 

quantization step ∆  decreases, quantization and settling noise reduce. Another is that a 

multi-bit structure improves stability and provides a higher overload level and more 

aggressive noise shaping function. However, due to CMOS process variations, there can be 

mismatches in the B2  unit capacitors uC  of a B-bit DAC shown in Fig. 4.4. Assume that 

each unit capacitor distribution is Gaussian [Pel 89] around a nominal value. Let the 

normalized capacitance be 
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where iC  is the capacitance of the i th unit capacitor. Define the deviation of ic  as 
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Then voltage error caused by unit capacitor mismatches is given by [Gee 02] 

                      









−= ∑∑

+==

B

kxi

i

kx

i

idac eeke
2

1)(

)(

1

refV)(                  （4.34） 

where )(kx  represents the number of 1’s in the feedback thermometer code at the time step 
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k . The )(kedac  can be treated as an additive Gaussian noise in the Σ∆  modulator feedback 

path, the variance of which is 
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where capσ  is the standard deviation of unit capacitor. Assuming the )(kedac  is also white, 

the average DAC noise power at the modulator output becomes 
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Apparently the dominating factor is B, since dacP  increases exponentially with respect to B. 

In order to reduce DAC error due to unit capacitor mismatch, several techniques have been 

proposed. The most efficient among these is the Data Weighted Averaging (DWA) [Bai 95], 

and it is shown in [Nys 96] that the DWA effect is a first-order noise shaping of the DAC 

noise. If the DWA is employed, the average DAC noise power at the modulator output is 

modified to be   

3

2
22

ref
3

2V)(
OSR

DWAP cap

B

dac
⋅

⋅⋅⋅≅
π

σ             （4.37） 

Equations（4.36）and（4.37）will be used to estimate the DAC noise power in the optimization 

process. 

 

4.5  Clock Jitter Effects 

As both the signal bandwidth and the required output SNR increase, clock jitter problems 

become more obvious. Jitter is usually defined as a random variation in clock signal period 

around the ideal value, and the value of jitter can be reasonably assumed as a Gaussian 

random variable with zero mean and standard deviation jitσ . If there is some variation in 

clock high time, the input signal will be sampled at the wrong instant and receive a 

consequent voltage error. For a sinusoidal input signal with maximum amplitude iA  and 
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frequency inf , if it is sampled by a clock which has a jitter variation, then the voltage error is 

[Bos 88]: 

                     TtfAfV iniin ∆⋅⋅⋅≅∆ ⋅ )2cos(2 ππ              （4.38） 

where T∆  is the variation of clock period with standard deviation jitσ . Then the jitter noise 

power becomes: 

                        
OSR

Af
P

jitiin
jitter

22

2

)2( σπ
⋅

⋅⋅
=                 （4.39）   

   We consider the worst case in this work. That is, inf  and iA  are replaced by Bf  and 

ref
V  respectively. 

Before discussing power consumption modeling, we summarize the nonideality modeling 

as follows. The leakage noise due to finite OTA gain can be considered as an additional 

quantization noise, so the total quantization noise will be higher than theoretical quantization 

noise, appearing at D2 in Fig. 4.9. All other nonidealities are modeled at D1 in Fig. 4.9, 

because we have modeled them as input-referred noise in the integrator input. 

 

 

− −

 

Fig. 4.9 Main nonidealities sources in the Σ∆  modulator 
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5 

Models of Sigma-Delta Modulator 

Nonlinear Distortion 

 

5.1  Settling Distortion 

We analyze incomplete transfer of charge in a SC integrator to obtain analytical models to 

represent harmonic distortion as function of the operational amplifier finite gain-bandwidth 

(GBW), slew-rate (SR). The model developed here assumes the effect of the SR in a SC 

integrator may be interpreted as a nonlinear gain. Consider the integrator operates in the 

integration phase. As discussed in Chapter 4, there are three settling conditions depending on 

the absolute value of 
S

V  [Mal 03]. 

1. Linear settling   

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
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We can represent integrator output voltage during the nth integration interval as  

)1()()( 2

)
2

(

1

τ

T
nTt

SOO
eVaTnTVtV

+−−

−+−=  , nTt
T

nT <<−
2

               （5.1） 

2. Partial slewing   
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（5.2） 

where 
0

t  is the time instant when 
O

V  rate becomes less than SR. The full slewing case is not 

considered here because it is not significant. Note that（5.1）and（5.2）at end of each integration 

interval can be rewritten as 

LSSO

T
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which is the integrator gain. Harmonic distortions are produced at the modulator output when 

op-amps operate in the partial slewing region, because in the partial slewing region the 

integrator gain is a function of input 
S

V . In order not to produce harmonic distortion, op-amps 

should always operate in the linear region. From （5.4）, we can see that if 
LS

VV ≤  is 

satisfied all the time, the modulator always operates in linear region and harmonic distortion 

would not be produced. 
LS

VV ≤  can be further derived as: 

             
LS

VV ≤  
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12102 −×= , it leads to the following equation: 
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OSR

π
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We then plot（5.5）as shown in Fig. 5.1 which shows that OSR is inverse proportional to SR 

and is almost independent to GBW. 
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Fig. 5.1 3D plot of（5.5） 

 

Fig. 5.1 indicates that if we design SR and GBW above the curve with desired OSR, the 

modulator would have no harmonic distortion. It shows that the op-amp slew rate needs to be 

at least 200V/us, then the modulator can have no harmonic distortions with OSR larger than 

15. Although op-amps operate in linear region can have no harmonic distortion, it may 

consume more power dissipation (because large slew rate). Therefore, there has a trade off 

between power consumption and harmonic distortion. In general, one can choose smaller slew 

rate to let power consumption lower and have negligible harmonic distortions. In the 

following, we analyses the influences of slew rate on harmonic distortion when op-amps 

operate in partial slewing region. 

Assume that )(vg
i

 can be approximated by 

)()( 4

5

2

311
vvavp

i
ααα ++⋅=                      （5.6） 

In this point, the problem of estimating harmonic distortion consists of searching for the curve 

with the form shown in （5.6） which best fits （5.4） for a specific interval. We will use the 
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least square method to determine the coefficient 
31

, αα  and 
5

α  to fit （5.4）. The )(vp
i

 

should be fitted through all the points in that specific interval so that the sum of the squares of 

the distances of those points from the )(vp
i

 is minimum. The sum of the squares is 
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With this method, the calculation of the coefficients in （5.6） becomes the solution of the 

following system of linear equations: 
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where hV  is the maximum distribution range of the first integrator input 
S

V , which is assumed 

in worst case as [Med 94] 

refh VV ⋅= 2                                                      (5.7)                    
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The amplitudes of the third and fifth harmonics of the modulator output are: 

16
;

4

5

5

5

3

3

3

VSVS
A

A
A

A
αα

≅≅                             （5.9） 

where 
VS

A  is the amplitude of 
S

V . However, in [Med 94], 
in

A  instead of 
VS

A  is employed 

in （5.8）, where 
in

A  is the amplitude of a sinusoidal modulator input signal. It is intuitively 

clear that using 
in

A is not correct, and our simulation shows that（5.8）is correct and precise. 

Next we need to obtain an expression for 
VS

A . 

)()()( zYzXzV
S

−=                                     （5.10） 

In a second-order Σ∆  modulator, modulator output signal Y(z) is the time delay version of 

X(z) plus high-pass filtered (noise shaped) quantization noise E(z). Therefore, 

)()1()()(
212

zEzzXzzY
−− −+=                          （5.11） 

Combining（5.10）and（5.11）, )(zV
S

 can be written as 
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Ignoring the quantization noise and taking the inverse z-transform, one obtains 

            )2()2()()( TtuTtxtxtV
S

−−−=                               

                 )2())2(sin()sin( TtuTtAtA
inin

−⋅−−= ωω          （5.12） 

Then, the amplitude of 
S

V  can be obtained as 

TATATxTVA
ininSVS

⋅⋅≅⋅=== ωω 2)2sin()2()2(          （5.13） 

Note that 
VS

A  is not related to quantizer bit number B which can only affect the level of 

noise floor )(ωE . The result（5.13）has been verified by behavior simulation under different 

B values, as shown in Fig. 5.2. From（5.9）（5.13）, we can see that input signal amplitude 
in

A , 

input signal frequency ω  and sampling time T are the critical parameters to impact the 

harmonic distortion. 

 

Fig. 5.2 Spectrum of 
S

V  with different quantizer bit number 

In order to verify the result in （5.9）, we use SIMULINK to build a second-order Σ∆  

modulator with a multi-bit quantizer. The behavioral settling model in [Mal 03] is employed. 

We assume that SR = 70 sV µ/ , GBW = 100MHz, R = 300Ω , OSR = 16, 
B

f  = 1MHz and 

S
C  = 2pF, and a 1MHz sinusoidal input signal is used. After performing FFT to the output 

data of the Σ∆  modulator, we obtain the simulated PSD (Power Spectrum Density) which is 
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shown in Fig. 5.3. It shows that HD3 is -112.5dB and HD5 is -117.5dB. The theoretical 

harmonic powers calculated from（5.8）and（5.9）are HD3 = -112.4dB and HD5 = -117.3dB. 

The simulated and theoretical results are very close, and this confirms that our settling 

distortion model is reasonably precise. 

 

 

Fig. 5.3 Output spectrum of a second-order Σ∆  modulator with harmonic distortion 

 

In order to provide insight on how settling distortions are related to circuit and system 

parameters, we further analyze the 3
rd

 and 5
th

 harmonic powers as follows: 


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From （5.14） we can see that OSR can effectively influence settling harmonic powers. The

（5.8）reveals that 
3

α  and 
5

α  are functions of T, GBW, R,
S

C  and SR. Using the 

parameters designed in Chapter 8 with 
S

f  = 52MHz, R = 300ohm, 
S

C = 1.7pF, and setting 

GBW and SR at medium values as GBW = 250MHz and SR = 250V/ sµ , we plot 
3

log20 α  

vs. SR in Fig. 5.4 and 
3

log20 α  vs. GBW in Fig. 5.5. 

 

 

Fig. 5.4 
3

log20 α  vs. SR 

 

Fig. 5.5 
3

log20 α  vs. GBW 
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In general, harmonic distortion less than -110dB can be ignored because it is below the 

noise floor of modulator output spectrum. From（5.14）, Fig. 5.4 and Fig. 5.5, we can obtain 

the minimum required SR and GBW w. r. t. a specific OSR. The results are summarized in 

Table 5.1. 

 

OSR HD3(dB) 
SR 

)/( sV µ  

GBW 

(MHz) 

8 3
log20 α -24 500≥  380≥  

16 3
log20 α -42 200≥  180≥  

32 3
log20 α -60 120≥  70≥  

50 3
log20 α -72 110≥  60≥  

64 3
log20 α -78 100≥  50≥  

96 3
log20 α -89 90≥  40≥  

Table 5.1 Minimum SR and GBW required w. r. t. OSR 

 

It is clear from Table 5.1 that as OSR decreases, SR and GBW have to increase dramatically 

so that the effect of settling distortion can be contained. This can be explained by（5.13）, since 

T increases when OSR decreases. 

 

5.2  Nonlinear Finite OTA Gain Distortion 

An ideal OTA with infinite gain doesn’t introduce any noise or distortion. Practical OTAs 

not only have the characteristics of finite DC gain, but also the gain is nonlinear. Fig. 5.6 

shows general behavior of MOSFET output resistance based on BSIM3v3.2.2 [Bsi99]. 

Different DC biases 
DSQV  and 

GSQV  determine different outR . This makes DC gain of OTAs 

changes with 
DSv  and GSv  of the output-stage transistors since the DC gain is directly 

related to outR  [Gee02]. 
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Fig. 5.6. General behavior of MOSFET output resistance 

 

A typical OTA’s configuration schematic considering nonlinear DC gain is shown in Fig. 5.7 

[Zar05]. In this figure outR  of the output-stage transistors are the functions of output voltage 

oV  since 
oV  directly affects 

DSv  of the output-stage transistors, hence the nonlinearity of 

the gain is manifested by its dependency on amplifier output voltage 
oV . Fig. 5.7 shows a 

typical relationship between DC gain and 
oV , in which the maximum DC gain 0A  appears at  

  

Fig. 5.7. A typical op-amp’s configuration schematic considering nonlinear DC gain 

GSQv  

2
DDV  

2
DDV−  

oV  
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Fig. 5.8. A typical relationship between DC gain and oV  

center of scale and decreases as the magnitude of output voltage increases. This nonlinear 

gain introduces error components as distortion in the sigma-delta modulator output spectrum. 

Furthermore our HSPICE simulation based on TSMC 0.18µm process model reveals that 

GSQV  of the output-stage transistors and the maximum DC gain 0A  also affect the shape of  

 

    
Fig. 5.9. Two nonlinear gain curves with identical 

OSV  but different 
0A  

)(VVo
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 Fig. 5.10. Two nonlinear gain curves with similar
0A  but different 

OSV  

 

the nonlinear curves. The relationship between the range of maximum output swing )( osV  

and nonlinear curves replace the one between GSQV  and nonlinear curves. Thus, in dealing 

with OTA distortions, we are basically faced with a family of nonlinearities. 

It is discussed in [Gee02] and [Lee85] about the distortion due to a particular nonlinear 

curve approximated by the polynomial 

)1()( 4

4

3

3

2

210 L+++++= oooooV VqVqVqVqAVA                        (5.15) 

where )( oV vA  is finite DC gain of OTAs, and 0A
 

is the maximum finite DC gain when 
oV  

is in the neighborhood of 0V. Although some expressions for harmonic distortions are derived 

in [Gee02] and [Lee85], these result are not completed. They are also of little use for 

optimization purpose since they did not relate harmonic distortions to design parameters. In 

this subsection, we will drive a complete OTA gain distortion model for 0.18µm process. 

There are two steps. In the first step, we try to model the family of nonlinear curves. Next, 

based on this nonlinear curve model, we derive the distortion model. The behavior simulation 

model offered by [Zar05] is applied to verify this model. 

    VVA
OS

6.1,3310 ==  

    VVA OS 1,3210 ==  

2
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For the first step, our HSPICE simulation based on TSMC 0.18µm process model reveals 

that, in addition to output voltage Vo, both the GSV  of output stage transistors and the 

maximum DC gain 0A  can affect the shape of the nonlinear curves. Thus, in dealing with 

OTA distortions, we are basically faced with a family of nonlinearities. Since 
GSQV  is 

inversely proportional to the range of maximum output swing OSV , we identify oV , 0A  and 

OSV  as the three parameters that can affect OTA DC gain VA . We simulated on a simple 

two-stage operation amplifier shown in Fig. 5.11 to produce two specific cases shown in Fig. 

5.9 and Fig. 5.10. Figure 5.9 shows how variation in 0A  can affect the curve shape. Figure 

5.10 demonstrate the case when variation is mainly in OSV . In order to model the nonlinear 

DC gain VA , we tried various combination of 0A
 
and OSV  to the curve shape. In order to 

model the nonlinear DC gain VA , we tried various combination of 0A  and 
OSV  to create a 

set of representative curves for the family of nonlinear DC gain curves. Then, after intensive  

 

 

Fig. 5.11. A simple two-stage operation amplifier 
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trials we tried various combination of 0A
 
and OSV  to the curve shape. In order to model the 

nonlinear DC gain VA , we tried various combination of 0A  and 
OSV  to create a set of 

representative curves for the family of nonlinear DC gain curves. Then, after intensive trials 

and errors, we come up with the following function to fit the nonlinear curves. 

]}2)443.0()443.0([5.01{),,(
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03.0

0

2.1

03.0

0

00 −⋅−+⋅⋅−⋅= o

os

o
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oOSV V
V

A
EXPV

V

A
EXPAVVAA  (5.16) 

After performing Taylor’s series expansion on (14) over oV , the model we arrive at is of the 

form 

)1()( 4

4

2

20 oooV VqVqAVA ++=                                  (5.17) 

where 2q and 4q  in (5.17) are  

2
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A
q ⋅⋅−=                                             (5.18) 

4

2.1

03.0

0

4 )443.0(
24

1

OSV

A
q ⋅⋅−=                                             (5.19) 

 

Fig. 5.12. A comparison between simulation of nonlinear curve function and practical design 

 

In Fig. 5.12, VVA OS 6.1,3310 == , when 
oV  swing in (+1V ~ -1V), the simulation result of 

nonlinear curve function is close to the practical one. Although the two curves swing in (+1V 
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~ -1V) shown in this figure seems close, the 2nd order nonlinear coefficient of the nonlinear 

curve function 1387.02 −=q  is close to that of the practical case 1106.02 −=q , but the 4th 

order nonlinear coefficient of the nonlinear curve function 0032.04 −=q  is much larger than 

that of practical case 0451.04 −=q  since 4q  is very sensitive and difficult to be estimated, 

it causes that the 5
th

 harmonic distortion estimation is not accurate, and we shall discuss later. 

   

       (a) sampling phase                           (b) integration phase 

Fig. 5.13. Switch-capacitor integrator with finite-gain amplifier 

 

The next work is to obtain the expressions to estimate harmonic distortions introduced by 

integrators with a nonlinear finite OTA gain OTA. Fig. 5.13 shows a model of a 

switched-capacitor integrator with a finite OTA gain amplifier [Gee02]. If 
PC  and 

LC  in 

Fig. 5.13. are neglected, the charge transfer can be expressed as  

SSaoIaSaoI VCVVCVCVVC ⋅+−⋅=⋅−−⋅ −−+++ )()(                         (5.20) 

Notations ±
oV , ±

aV  and SV  represent ))
2

1
(( TnVo ± , ))

2

1
(( TnVa ± and the difference between 

modulators input and feedback signal respectively [Gee02]. The relationship between the 

input and output voltage of the OTA is given by 

±±± ⋅−= aoo VVAV )(                                                 (5.21) 

Substituting (5.16) and (5.21) into (5.20), one obtains the following expression 
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In order to simplify (5.22), it is assumed in [Gee02] that 1)
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1(
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≅
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C  and the final expression can be derived as  

 ])()[(1{ 22

0

2 −+−+−+ +++⋅≅− oooo

I

S
oo VVVV

A

q

C

C
VV  

soooooooo VVVVVVVVV
A

q
⋅+++++ −−+−+−++ ]})()()()()()[( 432234

0

4         (5.23) 

In (5.23) the nonlinear term is  
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In order to build a mathematical expression related to input signal magnitude for 

estimating the distortion caused by nonlinear DC gain, ±
oV  and 

SV  must be expressed as 

functions of inA . In single-loop second-order sigma-delta modulator, when a signal 

)(wnTSin  apply to modulator input and quantization noise is not considered, 
SV  can be 

represented as  
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The output signal of the first integrator can be represented as [Gee02] 
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From (5.26) and (5.27) we can obtain the following equations 
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Substituting (5.25)-(5.33) into (5.24), the harmonic distortion formulas are 
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)5cos()5sin(5 2_51_5 wnTAwnTAHD HDHD +=                            (5.35) 
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Substituting (5.18) and (5.19) into (5.36), (5.37), (5.38), (5.39) can obtain the complete 3
rd

 

and 5
th

 harmonic distortion expressions as  
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The power of the 3
rd

 and 5
th

 harmonic distortions are  
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In (5.40)-(5.43) we can obtain the relationships between the each parameter and power of 

the harmonic distortions, which are listed in Table 5.2. 

 

 IC ↑ 
SC ↑ 

inA ↑ 
0A ↑ 

osV ↑ OSR ↑ 

Distortion 

size 
↓ ↑ ↑ ↓ ↓ ↓ 

Table 5.2 The relationship between the each parameter and power of the harmonic distortions 

 

For a single-loop second-order sigma-delta modulator the behavior simulation result with 

input signal bandwidth=0.1MHz and V1=inA , osV =1.38V, 0A =52.5dB, OSR=24 and very small 

quantization interval is shown in Fig 5.14. It is clearly to observe that the even harmonic 

distortions are eliminated by fully differential output. Using behavior simulation for two cases 

to verify the above distortion models, the simulation based on a second-order Σ∆  ADC with 

input bandwidth 0.1 MHz, 0A  of case A and case B are 55.1 dB and 63.8 dB respectively, 



60 

and osV  of case A and case B are 1V and 1.38V respectively. The simulation results are listed 

in Table 5.3 and Table 5.4. In these tables, 
NFDCGHD3  represents the power of the 3

rd
 

harmonic distortion,  5 _ ANFDCGHD  and  5 _ BNFDCGHD represent the powers of the 5
th

 

harmonic distortions,  5 _ ANFDCGHD employ (5.18) and (5.19) to estimate 2q  and 4q , the 

practical nonlinear coefficients 2q  and 4q  are employed in  5 _ BNFDCGHD . The two tables 

show that  5 _ ANFDCGHD  and simulation results for SIMULINK are not close, because it 

(5.19) difficultly approach to 4q  closely. It is clearly observe that  5 _ BNFDCGHD and 

simulation results for SIMULINK are closer. Although  5 _ ANFDCGHD
 

is not accurate, the 

power of HD5 can be neglected since it is too small and usually covered by noise floor. Fig. 

5.14 shows the simulation results based on 0A =52.7dB, OSV =1.38V, OSR=16 and 

inA =0.7v. In Table 5.3 and Table 5.4, NFDCGHD5  is too small and covered by noise floor 

when VAin 2.0= . 

 

 

Fig. 5.14 Output spectrum of a second-order Σ∆  modulator with 3
rd

 and 5
th

 harmonic distortion 
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Fig. 5.15 Output spectrum of a second-order Σ∆  modulator with obvious 3
rd

 harmonic distortion 
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Ain = 0.2V 

OSR = 24 
 137.1- 3 =NFDCGHD  139.2- 3 =NFDCGHD  

Ain = 0.2V 
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451-3 =NFDCGHD  148- 3 =NFDCGHD  
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OSR = 100 
5.149-3 =NFDCGHD   152.1- 3 =NFDCGHD  

Ain = 0.5V 

OSR = 24 

 113.2- 3 =NFDCGHD

 165.3- 5 _ =ANFDCGHD

143.1- 5 _ =BNFDCGHD  

 115- 3 =NFDCGHD  

 147.7- 5 =NFDCGHD  

Ain = 0.5V 

OSR = 60 

121.2- 3 =NFDCGHD

173.2- 5 _ =ANFDCGHD

151- 5 _ =BNFDCGHD  

123.6- 3 =NFDCGHD  

 156- 5 =NFDCGHD  

Ain = 0.5V 

OSR = 100 

125.6- 3 =NFDCGHD

177.6- 5 _ =ANFDCGHD

155.9- 5 _ =BNFDCGHD  

 127.1- 3 =NFDCGHD  

 158- 5 =NFDCGHD  

Table 5.3 Comparison of theoretic result and behavior simulation for case A 
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VV

dBA

os 38.1

8.630

=

=
 Theoretic (dB) Simulation (dB) 

Ain = 0.2V 

OSR = 24 
 151.9- 3 =NFDCGHD  151- 3 =NFDCGHD  

Ain = 0.2V 

OSR = 60 
159.9- 3 =NFDCGHD   159.8- 3 =NFDCGHD  

Ain = 0.2V 

OSR = 100 
 164.3- 3 =NFDCGHD   163.5- 3 =NFDCGHD  

Ain = 0.5V 

OSR = 24 

 128.1- 3 =NFDCGHD  

 186.3- 5 _ =ANFDCGHD  

150.4- 5 _ =BNFDCGHD  

126.3- 3 =NFDCGHD  

 155- 5 =NFDCGHD  

Ain = 0.5V 

OSR = 60 

 136- 3 =NFDCGHD  

 194.3- 5 _ =ANFDCGHD  

158.4- 5 _ =BNFDCGHD  

 135- 3 =NFDCGHD  

 163.4- 5 =NFDCGHD  

Ain = 0.5V 

OSR = 100 

 140.4- 3 =NFDCGHD  

 198.7- 5 _ =ANFDCGHD  

162.8- 5 _ =BNFDCGHD  

 138.6- 3 =NFDCGHD  

 168- 5 =NFDCGHD  

Table 5.4 Comparison of theoretic result and behavior simulation for case B 

 

 

 

5.3  Multi-bit DAC Distortion 

Recently, multi-bit modulators are used often because it offers many advantages. However, 

multi-bit modulators using multi-bit DACs can introduce significant distortion into the 

modulator loop. Any error in the DAC response will be directly subtracted from the input 

signal and hence it appears at the output without the benefit of noise shaping. And any 

nonlinearity of the DAC will introduce a corresponding nonlinear signal distortion into the 

overall ADC response.  
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Fig. 5.16 A block diagram of a B-bit flash DAC 

 

Fig. 5.16 shows a block diagram of a common B-bit flash DAC that relies on matched 

components between the unit DACs [Stu 01]. We define the output )(nTy
k

 of the kth unit 

DAC as 


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where 
k

a  and 
k

d  are the values of the activated and deactivated kth unit DAC, respectively. 

If a  and d  are defined as the average values of the activated and deactivated unit DACs, 

respectively, )(nTy
k

 can also be rewritten as  
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where 
k

h  is the activated mismatch error of the kth unit DAC, and 
k

l  is the deactivated 

mismatch error of the kth unit DAC. These errors 
k

h  and 
k

l  are random variables and they 

have the same standard deviations. The DAC’s analog output )(nTy  can be written as 

∑
−

=

=
12

0

)()(
B

k
k

nTynTy                                （5.45） 

For a particular DAC input level, the DAC output will produce a corresponding value which 

is the sum of the unit DACs. Therefore, the DAC output value will contain the sum of the 

random variables 
k

h  and 
k

l . Assuming the thermometer encoder activates )(nχ  unit DACs 
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and deactivates the remaining )(2 nB χ−  unit DACs, （5.45）can be written as 

[ ] ( ) [ ]
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k
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      ( ) ( )
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B
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B
lnhnddan )(2)(2)( χχχ −+++−⋅=     （5.46） 

Because 
k

h  and 
k

l  are random variables and have the same standard deviations, （5.46）can 

be written as 

( )
k

BB
lddannTy 22)()( ++−⋅= χ                   （5.47） 

where 
k

B
l2  is the DAC output error and it is proportional to the unit DAC number B2  and 

mismatch error 
k

l . As shown in Fig. 5.17 (a) is an ideal DAC and Fig. 5.17(b) is a DAC with 

mismatch. The DAC output level is the DAC unit number plus one. From Fig. 5.17(b) we can 

see that the DAC output levels are not equally spaced which results in the harmonic distortion, 

undesirable tones, as well as noise.  

 

 

                                                  

         Fig. 5.17(a) Ideal DAC            Fig. 5.17(b) DAC with mismatch 
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(a)                                 (b) 

Fig. 5.18 DAC transfer curve: (a) DAC with larger DAC output error, and (b) DAC with smaller DAC output 

error 

           

(a)                                  (b) 

Fig. 5.19 DAC transfer curve: (a) DAC with smaller output level, and (b) DAC with larger output level 

Fig. 5.18 describes the DAC transfer curves with different DAC output error 
k

B
l2 . From 

Fig. 5.18 we can see that the deviation of the non-ideal output level from the ideal one is 

equal to the DAC output error so that the deviation is related to the mismatch error 
k

h , 
k

l  

and unit DAC number B2 . The larger the DAC output error is, the larger the deviation. Fig. 

5.19 describes DAC transfer curves with different output levels. From Fig. 5.19 we can see 

that the frequency of levels oscillating up or below the ideal ones is relative to DAC output 

level. The larger the output level is, the larger the oscillation frequency, but they are 
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independent of the deviations. The discussions in Fig. 5.18 and Fig. 5.19 can provide us the 

tendency of deviations and frequencies of DAC transfer curves and what parameters they 

related to. 

Therefore, assuming the deviation is A and frequency is a, from the above discussions, we 

assume the DAC output value can be written as 

))(sin()()( θ+⋅+= nTxaAnTxnTy                  （5.48） 

where )(nTx  is the DAC input, θ  is a uniformly distributed random variable in ]2,0[ π  

and ))(sin( θ+⋅ nTxaA  represent the effect of random variables 
k

h  and 
k

l  on the transfer 

curve. In Σ∆  modulator, )(nTx  is also the modulator output so it is usually a sinusoid 

)sin( nTA
in

ω . From Fig. 5.18 and the DAC output error 
k

B
l2 , we can expect the value of A is 

a function of the unit DAC number and standard deviation of capacitor mismatch, and the 

larger the DAC output error is, the larger the A. From Fig. 5.19 we expect a is a function of 

DAC output level and in a fixed input range the larger the output level is, the larger the radian 

frequency a .  

In（5.48）, )sin( θ+axA representing mismatches errors 
k

h  and 
k

l  can be further derived 

as: 
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Utilizing Taylor’s series,（5.49）can be expanded as follows: 
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Therefore, when a sine-wave is applied to the modulator input such that )(nTx = )sin( nTA
in

ω , 

the modulator output will produce harmonics due to the high order terms. These harmonics 
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are represented in power form below: 
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Because θ  is a uniformly distributed random variable in ]2,0[ π , the expected value of these 

harmonic powers can be further represent 
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where ][sin 2 θE , ][cos 2 θE  is equivalent to 0.5. Finally, we further derive these 

harmonic distortions as a function of A and a and express in dB as follows. 

664422 0003255.0010415.0125.0log20]2[ inininDAC AaAaAaAHDE −+−⋅≅  

  5533 00130208.002083.0log20]3[ ininDAC AaAaAHDE +−⋅≅  

  6644 00013021.0002604.0log20]4[ ininDAC AaAaAHDE −⋅≅                     （5.50） 

In order to obtain A and a, we build a behavioral model of DAC including the mismatch of 

unit-elements and the unit-elements mismatches are assigned a Gaussian distribution with a 

specific standard deviation. By use of this DAC model and behavior simulation, simulations 

results on a second-order Σ∆  modulator with input frequency 0.1MHz, input amplitude 1V, 

9-level quantization and standard deviation 
cap
σ  = 0.316%, are shown in Fig. 5.20. 

Simulation results of the standard deviations of capacitance mismatch under different unit 

DAC number are tabulated in Table 5.5. These harmonic distortions are obtained by averaging 
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Fig. 5.20 Simulation results of DAC harmonic distortion 

 

ten simulation results in a specific standard deviation and unit DAC number. We observe that 

when the unit DAC number increases, the harmonic distortions increase. Comparing（5.50）

with Table 5.5 and expecting A is a function of the unit DAC number and standard deviation 

of capacitor mismatch and a is a function of unit DAC number, we conclude the following 

equations: 

cap
uA σ××= 566.0  

2
0021.00625.04667.1 uua ⋅+⋅+=                  （5.51） 

where u  is the unit DAC number, 
cap
σ is the standard deviation of capacitor mismatch.  
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Std. deviation 

(
cap
σ ) 

Unit DAC 

number 

(u) 

HD2 

(dB) 

HD3 

(dB) 

HD4 

(dB) 

0.316% 8 -54.59 -60.315 -67.63 

0.316% 10 -53.93 -59.13 -61.69 

0.316% 12 -50.3 -58.62 -60.29 

0.316% 16 -48.97 -53.82 -61.635 

0.1% 8 -65.79 -74.42 -74.48 

0.1% 10 -63.39 -70.63 -80.70 

0.1% 12 -62.98 -67.26 -73.49 

0.1% 16 -59.62 -65.22 -73.44 

Table 5.5 Simulation results of standard deviation of capacitor mismatch vs. unit DAC number with 1=
in

A  

 

Next, in order to check our model if it is correct in other cases, we calculate our model

（5.50）（5.51）and simulate the behavior DAC model to see if they are equal to each other. 

Theoritical results of harmonic distortion according to our model（5.50）（5.51）are tabulated 

in Table 5.6 and the corresponding simulation results are tabulated in Table 5.7. From Table 

5.6 and Table 5.7, the two results are mostly close and they confirm that our DAC distortion 

model is reasonably precise. From（5.50）（5.51）, we can plot ][HDE  vs. standard deviation 

of capacitance mismatch and DAC output level. It is shown in Fig. 5.21 and Fig. 5.22. 

 

Std. deviation 

(
cap
σ ) 

Unit DAC 

number 

(u) 

HD2 

(dB) 

HD3 

(dB) 

HD4 

(dB) 

0.05% 8 -79.945 -94.89 -112.4 

0.05% 12 -75.39 -88.69 -104.56 

0.05% 16 -71.58 -83.27 -97.51 

0.025% 8 -85.97 -100.915 -118.42 

0.025% 12 -81.41 -94.71 -110.58 

0.025% 16 -77.60 -89.29 -103.53 

Table 5.6 Theoretical results of standard deviation of capacitor mismatch vs. unit DAC number with 5.0=inA  
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Std. deviation 

(
cap
σ ) 

Unit DAC 

number 

(u) 

HD2 

(dB) 

HD3 

(dB) 

HD4 

(dB) 

0.05% 8 -77.02 -90.77 -98.80 

0.05% 12 -76.34 -86.75 -97.98 

0.05% 16 -70.88 -78.53 -77.80 

0.025% 8 -89.46 -102.44 -110.64 

0.025% 12 -79.88 -89.56 -93.61 

0.025% 16 -74.13 -87.48 -91.5 

Table 5.7 Simulation results corresponding to Table 5.6 
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Fig. 5.21 HD2 vs. std. of mismatch with 3 Bit DAC and 2.0=
in

A  
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-97

 

Fig. 5.22 HD2 vs. DAC output level with std. = 0.04% and 2.0=inA  

From Fig. 5.22, we can see that multi-bit DACs produce significant harmonic distortion when 

its output level is large. 
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5.4  Quantizer Nonlinearity Distortion 

The quantization operation is inherently nonlinear because the quantizer error is determined 

from the quantizer input signal. For convenience, we usually model the quantizer as a linear 

model and approximate the quantization noise as a white noise. This approximation is made 

when the quantization error has the following properties, which we refer to collectively as the 

“input-independent additive white noise approximation” [Nor 97]: 

Property 1. nε  is statistically independent of the input signal or 
n

ε  is uncorrelated with 

the input signal. 

Property 2. 
n

ε  is uniformly distributed in ]2,2[ ∆∆− . 

Property 3. 
n

ε  is an independent identically distributed sequence or 
n

ε  has a flat power 

spectral density. 

where 
n

ε  is the error sequence and ∆  is the distance between output levels. Therefore, the 

quantization error from Σ∆  modulators is typically not white. For dc inputs, the quantization 

error is periodic, generating idle channel tones or pattern noise. For ac inputs, the quantization 

error is also periodic, containing components harmonically related to the input frequency and 

amplitude. One can view this effect as a time-domain distortion and therefore argue that the 

converter actually has less resolution than rms measurements. From the properties described 

above, one can see that multi-bit quantizers are closer to the linear model than single-bit ones 

and the time-domain distortions of multi-bit quantizers can be ignored, as shown in Fig. 5.23. 

From Fig. 5.23, we can see that the quantization noise is almost white and harmonic distortion 

is unapparent. 
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Fig. 5.23 PSD of second-order Σ∆  modulator with 5 quantization levels 

 

5.5  Nonlinear Capacitance Distortion 

Recently metal-insulator-metal(MIM) capacitor structure is the most popular capacitor 

fabrication in integrated circuits, which are widely used in analog, mixed-signal and RF 

circuits [Chu 05a]. Due to MIM capacitors in integrate circuits occupy a large portion of chip 

area, hence the high-K dielectrics into MIM capacitors is highly expected in near future [Kim 

04a]. The stability of MIM capacitances are affected by three factors, which are bias voltage, 

operation frequency and temperature. Harmonic distortions occur at modulator output 

spectrum while these nonlinearities appear at integrators in Σ∆  modulators. Fortunately, 

there are several popular high-K dielectric materials studied to substitute the conventional 

2SiO  and 
43NSi , which are 52OTa , 2HfO  and 32OAl . They suppress these nonlinearities 

effectively [Jeo 04]. In addition to the above mentioned three materials, [Kim 04b] provides a 

multi-layered dielectric, which is 22 SiOHfO −  stacked dielectric. Fig. 5.24 shows the 

capacitance variation versus bias voltage can be reduced by employing 22 SiOHfO − , the 

capacitance versus bias voltage is the most stable while )4(/)12( 22 nmSiOnmHfO  is 
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employed. Fig. 5.25 shows that capacitance is increased follow the rise of temperature. This 

structure dielectric also offers an excellent improvement to reduce the impact of temperature 

for 25 / OSHfO i . Due to the existing technique of capacitors fabrication exhibits the excellent 

linearity, hence the distortion cause by nonlinear capacitance in Σ∆  modulators can be 

neglected reasonable. 

 
Fig. 5.24. Normalized C-V curves (△C/C) of MIM capacitors with single )12(2 nmHfO , single 

)4(2 nmSiO  and 
22 / SiOHfO  stack. 

 

 
Fig. 5.25. Normalized capacitance vs. temperature 

 

 

5.6  Nonlinear Switch Resistance Distortion 

In Σ∆  modulators, the MOS switches in integrators introduce harmonic distortion since 

the resistances of the MOS switches depends on the voltages across the terminals. Fig. 26(a) 

shows a simple sample and hold circuit for NMOS [Hun04], and its resistance is given by 
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( )
tngsOXn

on

VV
W

L
C

R

−

=

µ

1                                            (5.52) 

where ( )FSBFttn VVV φφγ 220 −++= . (5.52) shows that the resistance varies with inV  

and the body effect ( SBV ) also contribute nonlinearity, especially in low voltage. There 

several techniques for improving this nonlinearity were proposed in [Hun04], [Ste99] and 

[Ong00]. [Hun04] mention a new sample-and-hold circuit, which is shown in Fig. 26(b). In 

order to avoid the variation of resistance, this proposed circuit can fix gsV  in ddV  and 

VVSB 0= . Hence the resistance of the switch can be given by   

( )0

1

tddOXn

on

VV
W

L
C

R

−

=

µ
                                         (5.53)  

[Ste99], [Ong00] and [Kim02] also proposed several techniques to improve the effects of 

inV . According to the above discussion, due to there are several existed methods to reduce 

this nonlinear phenomenon effectively, hence we don’t involve the distortion into final 

optimization. 

 

 
Fig. 5.26(a). A simple sample and hold circuit. 
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Fig. 26(b). The proposed switch circuit 
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6  

Models of Sigma-Delta Modulator Power 

Consumption 
The power estimation can be derived into the analog power consumption and the digital 

power consumption. The analog power consumption mainly is from the OTAs of the 

integrators, quantizer, and DAC. The digital power consumption is mainly from CMOS 

switches and clock generator. 

Table 6.1. OTAk  for three common OTA structures. 

 

6.1  Analog Power Consumption 

In Σ∆  modulator, the power dissipation from integrators occupies the largest portion of 

analog power consumption. The power consumption of OTAs can be presented as 

DDBOTADDOTAOTA VIkVIPOW ⋅⋅=⋅=          

where OTA
I  represents the total current of the OTA, BI  represents the bias current of each 

transistor of the input differential pair of OTA, OTAk  represents the ratio of the total current of 

the OTA to this bias current, and it depends on the chosen OTA architecture. The values of 

OTAk  for three common OTA structures are listed in Table 6.1[Hsu 07]. 
DD

V  represents the 

supply voltage of the OTA. BI  can be written as 

reffLclreffB VCfVgmI ⋅⋅⋅=⋅⋅= 22
2

1
π                      

where 
2clf  is the GBW of the OTAs, 2LC  is the effective close-loop capacitance, and reffV  

Basic 

OTA 

structures 
Single-stage telescope 

Folded 

cascade 

two-stage Miller 

-compensated 

OTAk  2 4 7.76 
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is the overdrive voltage of the transistor of the input differential pair of OTA. Hence the 

power consumption of an integrator can be written as 

 
reffLclOTADDOTA VCfkVPOW ⋅⋅⋅⋅⋅= 22 π          

The total power consumption of integrators in Σ∆  modulator can be presented as  

 Σ∆Σ∆ ⋅⋅⋅⋅⋅⋅= kVCfkVPOW reffLclOTADDOTA 22_ π                            (6.1) 

where Σ∆k  represents the ratio between the total power consumption of all the integrators 

and the first integrator. Observing clearly that it increases significantly as the order of the 

converter increases since an extra integrator is required.  

A common DAC branch in Σ∆  modulator is shown in Fig. 6.1. If the sampling period and 

integration period are both assumed by 
2

T , the power consumption of an unit capacitor uC  

in the multi-bit DAC is 









⋅−⋅= ∫∫ dttItVdttItV

T
POW

T

T CuCu

T

CuCuCu
2

2

0
)()()()(

1                        (6.2) 

Employing 
dt

dV
CI Cu

uCu ⋅=  to replace CuI  in (6.2), 

then (6.2) can be simplified as 

surefCu fCVPOW ⋅⋅=
2

 

If 
SBu CC ⋅=

−12

1
 is assumed, then the total power consumption of DAC in Σ∆  modulator 

can be written as 

 
sSrefCsDAC fCVkPOW ⋅⋅⋅⋅=

2
2                                          (6.3) 

where Csk  is the ratio between the summation capacitance of SC  in all stages and the one 

in the first stage. 

For quantizer power consumption, [Lau02] offers an good accuracy model as  

)838.41525.0(

Smin

2

10

)f(
+×−

+××
=

B

BDD
Quantizer

fLV
POW                                     (6.4) 
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where 
minL  is the minimum channel length of the technology associated. According to the 

above discussion, the total analog power consumption of Σ∆  modulator is  

 QuantizerDACOTAana POWpOWPOWPOW ++=log                            (6.5) 

 

6.2 Digital Power Consumption 

The digital power consumption is mainly from the clock generator when decimation filter 

and anti-filter doesn’t be considered. As we know the dynamic power dissipation is the 

mainly power dissipation of CMOS logic gates and related to their loading capacitors. Fig. 6.1 

shows a clock generator with non-overlapping clocks which is connected to an external 

oscillator, and observing obviously that it is mainly composed of a lot of inverters [Gee02]. 

The average dynamic power consumption of a CMOS inverter gate can be written as 

2

DDLogicSdynamic VCfPOW ⋅⋅=  

where 
LogicC  is the loading capacitors of CMOS logic gates. Assuming a clock generator has 

CN  CMOS inverters and all inverters have identical capacitance of 
LogicC , then the dynamic 

power consumption of clock generator is 

 2

DDLogicSCCLOCK VCfNPOW ⋅⋅⋅≅  

Another important source of the digital power dissipation is from CMOS transmission gates 

in the switched-capacitor circuits. The output of the clock generator is connected to the gate 

of the CMOS switches in the switched-capacitor circuits. The CMOS switch is shown in Fig. 

6.2. Assuming that the number of the CMOS transmission gate in Σ∆  modulator is SN  and 

the gate capacitances of all CMOS transmission gates are 
LogicC , and which can be written as 
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Fig. 6.1. A clock generator with non-overlapping clocks 

 

LWCC OXgate ⋅⋅=                                                 (6.6) 

where 
OXC  is the capacitance per unit area of the gate oxide. W and L  are the width and 

length of the gate oxide respectively. 
OXC  can be written as 

 
OX

OX

OX
t

C
ε

=                                   

where the permittivity 09.3 εε =OX  for 2OS i  and 0ε  is the permittivity of free space, 

141085.8 −× F/cm. The parallel resistance for the of NMOS and PMOS is 

 

( )tptnDD

n

OXn

switch

VVV
L

W
C

R

−−⋅







⋅⋅

=

µ

1                                   (6.7) 

(6.6) employs the supposition as  

p

OXp

n

OXn
L

W
C

L

W
C 








⋅⋅=








⋅⋅ µµ  

Combining (6.6) with (6.7) gateC  can be expressed as 
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( )

2

min
gate

n CMOS DD tn tp

L
C

R V V Vµ
=

⋅ ⋅ − −
 

The power consumption for all the transmission gates is 

 2

DDgateSSSwitch VCfNPOW ⋅⋅⋅=                                         (6.8) 

Finally, the total digital power consumption is 

 
SwitchCLOCKdigital POWPOWPOW +=                                     (6.9) 

The total power consumption in signal-loop Σ∆  modulator is 

digitalanatotal POWPOWPOW += log                                     (6.10) 
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7 

Design Optimization of Sigma-Delta ADCs 

Design 

 
Power, noise and distortion models derived in Chapter 4, 5 and 6 are employed to 

systematically discuss how each design parameter affects the SNDR and power consumption. 

After identifying critical parameters, we will use them to do design optimization, in order to 

search for parameter optimal combinations. Before the discussions, we formally define the 

peak SNDR at Σ∆  ADC output as              

DACNFDCGsettlingOTAswjitterdacAVQ

in

HDHDHDPPPPPPPP

A

SNDR
++++++++++

=
21

2

2
)2(

εε

（7.1） 

 

7.1 Design Parameters Discussions 

 

  Based on models in Chapter 4, 5, and 6 the influences of each design parameter to the 

SNDR and Power are discussed in the following: 

  1. OSR can influence the behavior of all nonidealities and power consumption. Higher 

OSR is helpful to reduce settling distortion. But, OSR is proportional to the digital power 

consumption according to（4.42）. 

  2. B is an important system parameter. Higher bit number results in smaller quantizer level 

and relaxes the dynamic requirement of OTA. But, the settling distortion doesn’t change 

with B and higher B will introduce significant DAC distortion. Both the DAC noise 

power （4.36）and the digital power consumption（4.43）increase exponentially with B. 

  3. n is the order of a Σ∆  modulator. Increasing n will increase the value of 
VS

A  such that 

it will increase the settling distortion. 
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4. 0A  is the open loop gain of OTA. Finite 0A  will cause nonlinear op-amp gain 

distortion. Simulation shows that a minimum required A is about 60 dB. 

  5. 
S I

C C=
1

a  is the gain coefficient of the first integrator, and usually varies from 0.1 to 1.  

  6. R is the on-resistance of switches. The on-resistance of switch S1 is dependent on the 

input signal, so it produces harmonic distortions. Appropriate design can be obtained to 

have negligible harmonic distortions. 

  7. GBW means the effective gain bandwidth of OTA during integration phase. A larger 

GBW can reduce the settling distortion, but increase analog power consumption（4.41）. 

  8. 
S

C  is the capacitance of sampling capacitor. Its value depends on the stored voltage 

slightly so it produces little harmonic distortions. 

  9. OSV  is the maximum output swing of OTA. It effects nonlinear finite OTA gain 

distortion size. 

  10. SR is the OTA slew rate and plays an important role in integrator output settling 

performance. The larger SR, the smaller settling noise and distortion is.  

  11. 
cap
σ  is the standard deviation of unit capacitor and its value depends on process 

technology. Recently, double poly and metal-insulator-metal (MIM) capacitor are the 

two main methods to implement capacitors in analog integrators circuits. These two 

types of capacitors have high linearity and good matching accuracy, and 
cap
σ  of them 

are all below 0.05%. The main influence of 
cap
σ  on Σ∆  modulators is the multi-bit 

DAC linearity. 
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Q
P

AV
P

ref
P

OTA
P

sw
P

jitter
P

dac
P

1ε
P

2εP

DAC
HD

cap
σ

S
C

NFDCGHD

OSV

settlingHD

 

Table 7.1 Summary of noise and distortion-power and power-rating when design parameters increase 

 

In Table 7.1, QP  is the quantization noise. AVP  is the leaky quantization noise. 
1εP  is the 

setting error during the sampling phase. 
2εP  is the setting error during the integration phase. 

dac
P  is the DAC noise. 

jitter
P  is the jitter noise. 

sw
P  is the switch thermal noise. 

OTA
P  is the 

OTA thermal noise. 
ref

P  is the reference circuits thermal noise. settlingHD  is the settling 

distortion. NFDCGHD  is the nonlinear finite-OTA-gain distortion. 
DAC

HD  is the DAC 

distortion. Table 7.1 summarizes the above discussions. Basically we identify B, OSR, n, R, 

GBW, 
S

C  and SR as the optimization process design parameters. Table 7.1 shows 

qualitatively how distortion and power are affected when a particular design parameter 

increases, and it reveals that the Σ∆  ADC design task is a very complex one. 
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7.2 Design Optimization 

  In the following we describe the design optimization approach and it will help designers 

reach an optimal design quickly. It is based on the noise, distortion and power models 

described in Chapter 4, 5 and 6. The complete flow of the optimization methodology is shown 

in Fig. 7.1. The input signal bandwidth (Hz) and the output signal SNDR (dB) are treated as 

design specifications. We modify the figure-of-merit (FOM) [Sch 05] function by multiplying 

a variable K to the SNDR term of FOM, to become our weighting function. 

Weighting Function = 







+⋅

Power

f
SNDRK Blog10

dB
          （7.2） 

                        

 

Fig. 7.1 Proposed design optimization for the Σ∆  modulator design 

 

In（7.2）the SNDR and the inverse of Power are both expressed in log scale. The design 

optimization approach basically searches through the entire parameter space to find the set of 

design parameters which maximize the Weighting Function. By maximizing the Weighting 

Function we can increase SNDR（7.1）and reduce Power（4.45）at the same time. The constant 

K serves as the relative weighting between SNDR and Power. A larger K would result in a 

larger SNDR and Power. Some optimization iterations may be required. Typically, if we prefer 

high resolution designs, we set K higher and SNDR plays a more important role than Power; 
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on the other hand, if we prefer low power designs, we can set K lower. After an optimization 

process, the set of design parameters resulting in the largest Weighting Function value is the 

process outcome and is evaluated. If not acceptable, the K is adjusted and the optimization 

process is repeated. The parameter searching space is specified to be 

� OSR : 8 ~ 
Bf⋅2

MHz80
 

� B : 1 ~ 6  

� n : 1 ~ 3 

� R : 100 Ω ~ 300 Ω 

� GBW : 50 MHz ~ 500 MHz 

� SR : 50 V/µs ~ 500 V/µs 

� 
S

C  : 1 pF ~ 10 pF 

The parameters 
cap
σ  and 

ref
V  depend on the technology, so they are set before the 

optimization. During the optimization process, the gain coefficients ia  are specified 

according to the rules provided in [Mar 98b]. The optimization algorithm systematically 

searches the entire parameter space listed above. 
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8 

Simulation Results 

 
The design optimization described above is implemented by Mathematica®. In order to 

demonstrate the accuracy and practicability of our models, we apply it to a published design 

case, which is a Σ∆  modulator in 0.18-um CMOS technology for ADSL-CO application 

[Gag 03]. Its peak SNDR can reach 78dB over 276kHz signal bandwidth.  

  To compare with the design of [Gag 03], the optimization algorithm uses the same 

specifications as those in [Gag 03]. They are: 

� Peak SNDR : 78 dB 

� Signal bandwidth : 276 kHz 

  The OTA gain 0A  is set at 60 dB and the 
ref

V  is set at 0.9 V for a 1.8 V power supply in 

0.18-µm CMOS technology. The matching of capacitor 
cap
σ  is set at 0.04% for the MIM 

capacitance. 
OSV  is set at 1V. The parameter variable ranges are also specified as follows. For 

the signal bandwidth of 276 kHz, the range of OSR is set between 8 ~ 128, and the quantizer 

bit B is between 1 ~ 5. The order n  is between 1 ~ 3, since using a n  higher than 3 may 

cause instability. The R range is between 100 Ω ~ 300Ω. 
S

C  is between 1 pF and 10 pF. The 

minimum size of 
S

C  is usually determined by process technology. Finally, GBW and SR are 

between 50 MHz ~ 500 MHz and 50 V/µs ~ 500 V/µs respectively. The results published in 

[Gag 03] and those obtained from our optimization methodology are all listed in Table 8.1, 

which includes three optimization results corresponding to K=0.5, K=2, and K=5. 
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circuit parameters Ref [Gag03] K=0.5 K=2 K=5 Unit 

OSR 96 32 64 128 - 

B 3 3 3 3 - 

n 2 2 2 2 - 

R 300 300 100 100 Ω 

SC  1.7 1 1 1.2 Pf 

L2
C  7.2 5.8 5.8 6.2 pF 

GBW 400 70 130 280 MHz 

SR 500 88 163 352 V/µs 

jit
σ  9 9 9 9 Ps 

inA  at peak SNDR 0.75 0.9 0.9 0.75 V 

Peak SNDR 77.2 74.5 76.4 77.7 dB 

SNDR 

(SIMULINK) 
78 75 77.2 78.2 dB 

totalPOW  14 3.4 6.7 13.9 mW 

 Table 8.1. Comparisons of our design results with the measurement in [6] 

 

  From Table 8.1, when K = 0.5 and K=2, the SNDR are lower than the specification. In order 

to increase SNDR, we need to increase K. When K=5, the theoretic result of SNDR = 77.7dB 

approach the specification, and the behavior simulation result of SNDR = 78.2dB satisfy the 

specification. The totalPOW = 13.9mW for K=5 is almost equal to totalPOW  for Ref[Gag03]. 

When K=5, although OSR needs to be larger than the one in Ref[Gag03], but the demands for 

GBW and SR are much lower, and reduce the complexity for OTA design. 

    Table 8.2 shows the corresponding noise and distortion powers for the four design cases 

shown in Table 8.1. In the design of [Gag 03], and in our designs for K=0.5, 2, 5, the 

dominating power is dacP  and 
DACHD2 . Due to the DEM is not employed, so the above two 

nonlinearities power can’t be reduced effectively. Although SNDR of our theoretic result can’t 

be higher obviously in this case, but our proposed optimization result offers another way to 

obtain the suitable circuit specifications fast. 
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Table 8.2. The corresponding noise powers for the design parameters listed in Table 8.1 

 

 

 

 

 

   

Table 8.3 Listing the details of power consumption. 

 

Table 8.3 lists the power consumption details. In 
logana

POW , OTAPOW _Σ∆  consumes the most 

much power, hence we analysis the analog power consumption for OTAs. From（6.1）, we can 

see that the OTAPOW _Σ∆  is proportional to the GBW and 
2L

C . The 
2L

C  （4.19） is 

proportional to the sampling capacitance 
S

C . From Table 8.1, we can see that the GBW of 

[Gag 03] is larger than that of K=0.5, K=2 and K=5 and 
S

C  of [Gag 03] is larger than those 

of the all theoretic results. Hence, the OTAPOW _Σ∆  of [Gag 03] is the largest among the four 

cases. From（6.8）, we can see that the 
ClockPOW  and 

SwitchPOW  are both proportional to the 

sampling frequency 
Sf , hence 

digital
POW  for K=5 is the largest among the for cases since 

Nonlinearities 

Power 
Ref [Gag06] K=0.5 K=2 K=5 Unit 

QP  - 109.8 - 84.9  - 89.8  - 105.8  dB 

AVP  -141.1 - 123.6  - 126.5  - 141.0  dB 

1εP  - 196.5 - 681.7 - 551.5 - 258.4 dB 

2εP  - 119.3 - 103.9 - 104.5 - 120.0  dB 

swP  - 96.9 - 90.8  - 91.8  - 95.6 dB 

refP  - 114.7 - 101.0 - 103.1  - 109.1  dB 

OTAP  - 117.0  - 110.9  - 111.9  - 115.7  dB 

dacP  -79.6 -74.9 -78 -81 dB 

NFDCGHD3  -108  -91.2  -96.6  -110.5  dB 

settlingHD3  -130.6  -108.6  -17.6  -110.7  dB 

settlingHD5  -145  -131  -126.6  -127.6  dB 

DACHD2  -80.1  -77.7  -77.7 -80.1  dB 

DACHD3  -91.7  -87.6  -87.7  -91.8  dB 

DACHD4  -106  -100.2  -100.2  -106.1  dB 

 Ref [Gag06] K=0.5 K=2 K=5 Unit 

logana
POW  8 1.4 2.7 5.9 mW 

digital
POW  6 2 4 8 mW 
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which has the largest OSR.. If SNDR must to be increased,  dacP  can be reduced effectively 

and 
DACHD  can be eliminated by employing DEM techniques, but 

digital
POW  becomes 

larger. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 

9 

Conclusions and Future Works 

  
In order to increase the speed of circuit design for Σ∆ ADCs, this paper offers an efficient 

optimization method to obtain the most suitable circuit specifications. All the nonlinearity 

power also can be obtained after an complete optimization, and the dominating nonlinearity 

power can be reduced by adjusting the design specifications. Our proposed method has 

acceptable accuracy and nice speed, and the flexibility can be enhanced by building more 

nonlinearity models for different circuit structures.  

Further, in order to reduce the time-cost for optimization, the algorithm efficiently search 

the entire design parameters space to find the parameter set which satisfies the specifications 

must to be established.  
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