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模糊 K-最近相鄰點分類法於蛋白質可溶性預測 

 

學生:施逸祥                         指導教授:張志永博士 

 

 

國立交通大學電機與控制工程研究所 

 

 

摘要 

 

    蛋白質在生物體中一直扮演著很重要的角色，蛋白質被發現的數量及其結構

逐年增加。隨著蛋白質的應用越來越廣泛，待解決的課題也就越來越多。例如：

蛋白質二級結構預測問題、蛋白質相對溶劑可接觸性預測問題等。 

 

    本篇論文，我們利用修改的模糊 K-最近相鄰點法，混合從 PSI-BLAST 產生

的位置加權矩陣，針對蛋白質相對溶劑可接觸性預測問題進行研究。最近 Sim 等

人 [31]，應用模糊 K-最近相鄰點法於蛋白質可溶性預測有顯著的效果。我們提

出改進之模糊 K-最近相鄰點法，應用在三態相對溶劑可接觸性預測和二態相對

溶劑可接觸性預測，所得到的實驗結果與近幾年的其它方法比較，有較佳的預測

正確率。我們並與歐等人 [52] 所發表的快速輻射半徑基底函數網路演算法做結

合。最後，將這兩種方法之結果做資訊融合以有效地提高預測的準確度。六種修

正方法包括:(1) 模糊 K-最近相鄰點法、(2) 改進的模糊 K-最近相鄰點法、(3) 
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快速輻射半徑基底函數網路演算法、(4) 第一種線性相加合併法、(5) 第二種線

性相加合併法、以及(6) 信心指數合併法。在大部分條件表現最佳的情況下，我

們建議選擇第二種線性相加合併法。 
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Fuzzy K-Nearest Neighbor Classifier to Predict Protein 

Solvent Accessibility 

                         

 

STUDENT: YI-XIANG SHI          ADVISOR: JYH-YEONG CHANG 

           

Institute of Electrical and Control Engineering 

National Chiao-Tung University 

 

Abstract 

    Proteins have been played an important role in a creature and the numbers of 

proteins and their structures have been increased with years. Since protein 

applications are more widely used, there will be a lot of problems to be solved. 

 

Using a position-specific scoring matrix (PSSM) generated from PSI-BLAST in 

this thesis, we develop the modified fuzzy k-nearest neighbor method to predict the 

protein relative solvent accessibility. By modifying the membership functions of the 

fuzzy k-nearest neighbor method by Sim et al. [31], has recently been applied to 

protein solvent accessibility prediction with excellent results. Our modified fuzzy 

k-nearest neighbor method is applied on three-state, E, I, and B, and two-state, E, and 

B, relative solvent accessibility predictions, and its prediction accuracy compares 

favorly with those by the fuzzy k-NN and QuickRBF approaches. At last, we combine 
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the prediction results of modified fuzzy k-nearest neighbor method and QuickRBF 

approach to improve the performance. Six modification approaches include: (1) Fuzzy 

K-Nearest Neighbor Method, (2) Modified Fuzzy K-Nearest Neighbor Method, (3) 

QuickRBF, (4) Linear Combination Fusion 1, (5) Linear Combination Fusion 2, and 

(6) Reliability Index Fusion. We recommend the Linear Combination Fusion 2 

approach which has shown the best performance in most cases. 
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Chapter 1.  Introduction  

 

1.1  Motivation and the Background of this Research 

 

The solvent accessibility of amino acid residues plays an important role in 

tertiary structure prediction, especially in the absence of significant sequence 

similarity of a query protein to those with known structures. The prediction of solvent 

accessibility is less accurate than secondary structure prediction in spite of 

improvements in recent researches.  

 

Predicting the three-dimensional (3D) structure of a protein from its sequence is 

an important issue because the gap between the enormous number of protein 

sequences and the number of experimentally determined structures has increased [1], 

[2]. However, the prediction of the complete 3D structure of a protein is still a big 

challenge, especially in the case where there is no significant sequence similarity of a 

query protein to those with known structures [3]–[6]. The prediction of solvent 

accessibility and secondary structure has been studied as an intermediate step for 

predicting the tertiary structure of proteins, and the development of knowledge-based 

approaches has helped to solve these problems [7]–[11]. 

 

Secondary structures and solvent accessibilities of amino acid residues give a 

useful insight into the structure and function of a protein [11]–[14]. In particular, the 

knowledge of solvent accessibility has assisted alignments in regions of remote 

sequence identity for threading [1], [15]. However, in contrast to the secondary 

structure, there is no widely accepted criterion for classifying the experimentally 
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determined solvent accessibility into a finite number of discrete states such as buried, 

intermediate and exposed states. Also, the prediction accuracies of solvent 

accessibilities are lower than those for secondary structure prediction, since the 

solvent accessibility is less conserved than secondary structure [1], although there has 

been some progress recently. 

 

The prediction of solvent accessibility, as well as that of the secondary structure, 

is a typical pattern classification problem. The first step for solving such a problem is 

the feature extraction, where the important features of the data are extracted and 

expressed as a set of numbers, called feature vectors. The performance of the pattern 

classifier depends crucially on the judicious choice of the feature vectors. In the case 

of the solvent accessibility prediction, using evolutionary information such as 

multiple sequence alignment and position-specific scoring matrix generally has given 

good prediction results [16], [17]. Once an appropriate feature vector has been chosen, 

a classification algorithm is used to partition the feature space into disjoint regions 

with decision boundaries. The decision boundaries are determined using feature 

vectors of a reference sample with known classes, which are also called the reference 

dataset or training set. The class of a query data is then assigned depending on the 

region it belongs to. 

 

Various classification algorithms have been developed. Bayesian statistics is a 

parametric method where the functional form of the probability density is assumed for 

each class, and its parameters are estimated from the reference data. 

 

In nonparametric methods, no specific functional form for the probability density 

is assumed. There are various nonparametric methods such as, for example, neural 
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networks, support vector machines and nearest neighbor methods. In the neural 

network methods, the decision boundaries are set up before the prediction using a 

training set. Support vector machines are similar to neural networks in that the 

decision boundaries are determined before the prediction, but in contrast to neural 

network methods where the overall error function between the predicted and observed 

class for the training set is minimized, the margin in the boundary is maximized. 

 

In the k-nearest neighbor methods, the decision boundaries are determined 

implicitly during the prediction, where the prediction is performed by assigning the 

query data the class most matched represented among the k-nearest reference data. 

The standard k-nearest neighbor rule is to place equal weights on the k-nearest 

reference data for determining the class of the query, but a more general rule is to use 

weights proportional to a certain power of distance. Also, by assigning the fuzzy 

membership to the query data instead of a definite class, one can estimate the 

confidence level of the prediction. The method employing these more general rules is 

called the fuzzy k-nearest neighbor methods [18]. 

 

Neural network methods are very popular and have been widely used for solvent 

accessibility prediction [1], [7], [19]–[22], and support vector machines, a recently 

developed method, shows comparable results to neural network methods [23]–[25]. 

Bayesian statistics has also been used by Thompson and Goldstein (1996). 

 

The k-nearest neighbor method has been frequently used for the classification of 

biological and medical data, and despite its simplicity, the performances are 

competitive compared to many other methods. However, the k-nearest neighbor 

method has few been applied for predicting solvent accessibility, although it has been 



 15

used to predict protein secondary structure [26]–[28]. 

 

In this thesis, we apply the modified fuzzy k-nearest neighbor method to the 

prediction of solvent accessibility where PSI-BLAST [29] profiles are used as the 

feature vectors. We obtain relatively high accuracy on various benchmark tests. 

 

1.2  Thesis Outline 

 

The organization of this thesis is structured as follows. Chapter 1 introduces the 

motivation and the background of this thesis. In Chapter 2, we will first introduce the 

data set and the definition of protein solvent accessibility. Then the k-nearest neighbor 

algorithm and quick radial basis function network will be described. Moreover, we 

will propose five different methods to predict protein relative solvent accessibility in 

Chapter 3. In Chapter 4, the experiment of computer simulation and the results are 

conducted and compared with other methods. Finally, the conclusion and discussion 

of this thesis is presented in Chapter 5.  
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Chapter 2.  The Data Set Used and Previous Algorithms 

 

2.1 Training and Data Set 

 

    The set of 126 nonhomologous globular protein chains used in the experiment of 

Rost and Sander [1] and referred to as the RS126 set was used to evaluate the 

accuracy of the prediction. The proteins in the RS126 data set have less than 25% 

pairwise sequence identity. This set was used to evaluate different methods of relative 

solvent accessibility prediction, for example, PHDacc [1] and other methods [23], 

[30], [31]. In this paper, we performed a sevenfold cross-validation test on this set as 

defined in Table 2.1 [53]. In order to avoid the selection of extremely biased partitions, 

the RS126 set was divided into subsets of approximately same composition of each 

type of RSA state. One subset was chosen as the testing set while the rest was merged 

into the training set. This procedure was repeated seven times to cover whole RS126 

data set. 
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Table 2.1. The database of non-homologous proteins used for seven-fold cross 
validation. All proteins have less than 25% pairwise similarity for lengths greater than 
80 residues. 

 

256b_A 2aat 8abp 6acn 1acx 8adh 3ait 

2ak3_A 2alp 9api_A 9api_B 1azu 1cyo 1bbp_AFold_A 

1bds 1bmv_1 1bmv_2 3blm 4bp2  

2cab 7cat_A 1cbh 1cc5 2ccy_A 1cdh 1cdt_A

3cla 3cln 4cms 4cpa_I 6cpa 6cpp 4cpv Fold_B 

1crn 1cse_I 6cts 2cyp 5cyt_R  

1eca 6dfr 3ebx 5er2_E 1etu 1fc2_C 1fdl_H

1dur 1fkf 1fnd 2fxb 1fxi_A 2fox 1g6n_AFold_C 

2gbp 1a45 1gd1_O 2gls_A 2gn5  

1gpl 4gr1 1hip 6hir 3hmg_A 3hmg_B 2hmz_A

5hvp_A 2i1b 3icb 7icd 1il8_A 9ins_B 1l58 Fold_D 

1lap 5ldh 1gdj 2lhb 1lmb_3  

2ltn_A 2ltn_B 5lyz 1mcp_L 2mev_4 2or1_L 1ovo_A

1paz 9pap 2pcy 4pfk 3pgm 2phh 1pyp Fold_E 

1r09_2 2pab_A 2mhu 1mrt 1ppt  

1rbp 1rhd 4rhv_1 4rhv_3 4rhv_4 3rnt 7rsa 

2rsp_A 4rxn 1s01 3sdh_A 4sgb_I 1sh1 2sns Fold_F 

2sod_B 2stv 2tgp_I 1tgs_I 3tim_A  

1bks_A 1bks_B 1tnf_A 1ubq 2tmv_P 2tsc_A 2utg_A
Fold_G 

2wrp_R 4ts1_A 4xia_A 6tmn_E 9wga_A  
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2.2 The Definition of Protein Solvent Accessibility 

 

2.2.1 Static Residue Solvent Accessibility  

 

The native structure of globular proteins exists only in the presence of water, and 

therefore the analysis of their interactions with water is central to the theory of protein 

structure. The term “accessible surface area” was introduced by Lee and Richards [32] 

to quantitatively describe the extent to which atoms on the protein surface can form 

contacts with water. For a particular protein atom it is defined as the area over which 

the center of a water molecule can be placed while retaining van der Waals contacts 

with that atom and not penetrating any other atom. The principal goal is to predict the 

extent to which a residue embedded in a protein structure is accessible to solvent. 

Solvent accessibility can be described in several ways [32]–[34]. The most detailed 

fast method compiles solvent accessibility by estimating the volume of a residue 

embedded in a structure that is exposed to solvent as shown in Fig. 2.1; note: this 

method was developed by Lee and Richards [32] and later implemented in DSSP [35]. 

Different residues have a different possible accessible area. 

 

Studies of solvent accessibility in proteins have led to many new insights into 

protein structure [32]–[37]. Knowledge of solvent accessibility has proved useful for 

identifying protein function, sequence motifs, and domains, and for formulating 

hypotheses about antigenic determinants, site-directed mutagenesis, humanization of 

antibodies, and on the correctness of designed or experimentally determined protein 

structures. Furthermore, knowledge of solvent accessibility has assisted alignments in 

regions of remote sequence identity.  
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Fig. 2.1. Measure accessibility. Residue solvent accessibility is usually measured by 
rolling a spherical water molecule over a protein surface and summing the area that 
can be accessed by this molecule on each residue (typical values range from 0－300 
Å2 ). To allow comparisons between the accessibility of long extended and spherical 
amino acids, typically relative values are compiled (actual area as percentage of 
maximally accessible area). A more simplified description distinguishes two states: 
exposed (here residues numbered 1－3 and 10－12) and buried (here residues 4－9) 
residues. Since the packing density of native proteins resembles the crystals, values 
for solvent accessibility provide upper and lower limits to the number of possible 
inter-residue contacts. 
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2.2.2 Residue Relative Solvent Accessibility  

 

How can the solvent accessibility of a residue embedded in a 3D structure be cast 

into a simple number? One simple way is to count the number of water molecules in 

direct contact with the residue, as estimated by the program DSSP for the first 

hydration shell. For comparison between amino acids of different sizes, the relative 

solvent accessibility is a useful quantity as defined in Table 2.2.  

 

Amino acid relative solvent accessibility is the degree to which a residue in a 

protein is accessible to a solvent module. The relative solvent accessibility can be 

calculated by the formula as follows: 

(%)
(%)

MaxAcc
Acc100cRelAc ×

= ,                       (2.1) 

where Acc is the solvent accessible surface area of the residue observed in the 3D 

structure, given in Angstrom units, calculated from coordinates by the dictionary of 

protein secondary structure (DSSP) program [35]. The number of water molecules 

around a residue can be approximated by Acc/10, and MaxAcc is the maximum value 

of solvent accessible surface area of each kind of residue for a Gly-X-Gly extended 

tripeptide conformation.  
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Table 2.2. Definition of solvent accessibility states. 
 

 Solvent accessibility: 
Acc = solvent accessibility of a residue (given in Å2) calculated from coordinates 
using DSSP [35]. W ≈Acc/10, approximates the number of water molecules 
around the residue. 

 
 Relative solvent accessibility:  

RelAcc = Acc/MaxAcc, with maximal accessibility (measured in Å2) for the 
amino acids given by the table following (amino acids in one-letter code; B 
stands for D or N; Z for E or Q, and X for an undetermined amino acid) [37][38]. 
 

AA A B C D E F G H I K L M 

MaxAcc 106 160 135 163 194 197 84 184 169 205 164 188

AA N P Q R S T V W X Y Z 

MaxAcc 157 136 198 248 130 142 142 227 180 222 196 
 

 
 Two-state (binary) model for accessibility (B/E) : 

 
 Buried (B) Exposed (E) 

RelAcc ≤  0% RelAcc > 0% 

RelAcc < 5% RelAcc ≥  5% 

RelAcc < 9% RelAcc ≥  9% 

RelAcc < 16% RelAcc ≥  16% 

Thresholds to distinguish two states

RelAcc < 25% RelAcc ≥  25% 

 
 Three-state (ternary) model for accessibility (B/I/E) : 

 
 Buried (B) Intermediate (I) Exposed (E) 

Thresholds to distinguish three states RelAcc < 9% 9% ≤  RelAcc < 36% RelAcc ≥  36% 

 
 Measure for evaluation of conservation and accuracy of prediction: 

Q2 percentage of conserved, or correctly predicted, residues in two states defined 
by thresholds given above. 
Q3 percentage of conserved, or correctly predicted, residues in three states 
defined by thresholds given above. 
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RelAcc can hence adopt values between 0% and 100%, with 0% corresponding 

to a fully buried and 100% to a fully accessible residue, respectively. Different 

arbitrary threshold values of relative solvent accessibility are chose to define 

categories: buried and exposed as shown in Fig. 2.2, or ternary categories: buried, 

intermediate, or exposed. The precise choice of the threshold is not well defined [1].  

 

We used two kind of class definitions: (1) buried (B) and exposed (E); and (2) 

buried (B), intermediate (I), and exposed (E). For the two-state, B and E definition, 

we chose various thresholds of the relative solvent accessibility such as 25%, 16%, 

9%, 5%, and 0%. For the three-state, B, I, and E, description of relative solvent 

accessibility, one set of thresholds that we selected is the same as those in Rost and 

Sander [1]: 

Buried (B): RelAcc < 9% 

Intermediate (I): 9% ≤  RelAcc < 36% 

Exposed (E): RelAcc ≥  36% 
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Fig 2.2. Binary model: thick and dark line is buried residues; thin and light line is 
exposed residues [39]. 
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2.3 PSI-BLAST Profiles 

 

 It is well known that evolutionary information in the form of multiple alignments 

and profiles significantly improves the accuracy of, for instance, secondary structure 

prediction methods [2], [9], [40]–[42]. This is so because the secondary structure of a 

family is more conserved than the primary amino acid sequence. Similar effects have 

been reported for the prediction of contact number and relative solvent accessibility. 

For relative solvent accessibility, a corresponding increase of 5% has been described 

both with neural networks [40] and Bayesian methods.  

 

 PSI-BLAST [29] generates the profile of a protein in the form of an N×20 

position-specific scoring matrix as shown in Fig. 2.3, where N is the length of the 

sequence. PSI-BLAST is run with default options, -j 3, -h 0.001, and -e 10.0, and the 

non-redundant protein sequence database (ftp://ncbi.nlm.nih.gov/blast/db) filtered by 

PFILT [9] to mask out regions of low complexity sequence, the coiled coil regions 

and transmembrane spans. The BLOSUM62 [43] substitution matrix as shown in Fig. 

2.4, is used for PSI-BLAST. These profiles were scaled to the required 0 – 1 range 

using the standard logistic function: 

,
)(

)(
xexp1

1xf
−+

=                        (2.2) 

where x is the raw profile matrix value.  
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Fig. 2.3. Raw profile from PSI-Blast log file 

 

 

 
Fig. 2.4. BLOSUM 62 substitution matrix (Lower) and difference matrix (Upper) 
obtained by subtracting the PAM 160 matrix position by position. These matrices 
have identical relative entropies (0.70); the expected value of BLOSUM 62 is - 0.52; 
that for PAM 160 is - 0.57. 
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2.4 K-Nearest Neighbor Algorithm 

 

Nearest neighbor methods are based on learning by analogy. The training 

samples are described by n-dimensional numeric attributes. Each sample represents a 

point in an n-dimensional space. In this way, all of the training samples are stored in 

an n-dimensional pattern space. When given an unknown sample, a k-nearest 

neighbor classifier searches the pattern space for k training samples that are closest to 

the unknown sample. The k training samples are the k “nearest neighbors” of the 

unknown sample. “Closeness” is defined in terms of Euclidean distance, where the 

Euclidean distance between two points, ),...,,( 21 nxxxX =
r

 and ,...,,( 21 yyY =
r

 )ny  

is 

∑
=

−=
n

i
ii yxYXd

1

2)(),(
rr

                     (2.3) 

 

Consider the case of m classes m
iiC 1}{ =  and a set of N sample patterns N

iiz 1}{ =
r

 

whose classification is a priori known. Let xr  denote an arbitrary incoming pattern. 

The nearest neighbor classification approach classifies xr  in the pattern class of its 

nearest neighbor in the set N
iiz 1}{ =

r
, i.e., if  i

Ni
j zxzx rrrr

−=−
≤≤1

min  then jCx∈r  

if .jj Cz ∈
r

 This scheme which is basically another type of minimum-distance 

classification, can be modified by considering the k nearest neighbors to xr  and using 

a majority-rule type classifier. Its advantage is overcoming class noise in the training 

set. And the example is shown in Fig. 2.5 : 
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y 

 

 

 
 

x  

Fig. 2.5. Simple 2-D case, each instance is described only by two values (x, y 

coordinates). The class is either     or    . 

 

Inside the circle of Fig. 2.5, we can easily see that the class of simple-NN (1-NN) 

is , and the class of 5-NN is      (     is the testing data). 

 

    Nearest neighbor classifiers are instance-based or lazy-learners in that they store 

all of the training samples and do not build a classifier until a new (unlabeled) sample 

needs to be classified. This contrasts with eager learning methods, such as decision 

tree induction and back propagation, which construct a generalization model before 

receiving new samples to classify. Lazy learners can incur expensive computational 

costs when the number of potential neighbors ( i.e., stored training samples) with 

which to compare a given unlabeled sample is large. Therefore, they require efficient 

indexing techniques. As expected, lazy learning methods are faster at training than 

eager methods, but slower at classification since all computation is delayed to that 

time. Unlike decision tree induction and back propagation, nearest neighbor classifiers 

assign equal weight to each attribute. This may cause confusion when there are many 

irrelevant attributes in the data. 
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Nearest neighbor classifiers can also be used for prediction, that is, to return a 

real-valued prediction for a given unknown sample. In this case, the classifier returns 

the average value of the real-valued labels associated with the k-nearest neighbors of 

the unknown sample. 
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2.5 Quick Radial Basis Function Network 

 

Networks based on radial basis functions have been developed to address some 

of the problems encountered with training multilayer perceptrons: radial basis 

functions are usually able to converge and the training is much more rapid. Both are 

feed-forward networks with similar-looking diagrams and their applications are 

similar; however, the principles of action of radial basis function networks and the 

way they are trained are quite different from multilayer perceptrons. 

 

A RBFN (radial basis function network) consists of three layers, namely the 

input layer, the hidden layer and the output layer. The input layer broadcasts the 

coordinates of the input vector to each of the nodes in the hidden layer. Each node in 

the hidden layer then produces an activation based on the associated radial basis 

function. Finally, each node in the output layer computes a linear combination of the 

activations of the hidden nodes.  

 

For radial basis function networks, each hidden unit represents the center of a 

cluster in the data space. Input to a hidden unit in a radial basis function is not the 

weighted sum of its inputs but a distance measure: a measure of how far the input 

vector is from the center of the basis function for that hidden unit. Various distance 

measures are used, but perhaps the most common is the well-known Eculidean 

distance measure. 

 

The Eculidean distance between them is given by 

∑ −=−=
i

jiijj yxxD 2)(μrr
              (2.4) 
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if xr  is an input vector and jμr  is the location vector of the basis function for hidden 

node j. The hidden node then computes its outputs as a function of the distance 

between the input vector and its center. For the Gaussian radial basis function the 

hidden unit output is  

         =)( 2
jj Dh  

2
j

2
j 2De σ/−                      (2.5) 

where jD  is the Euclidean distance between an input vector and the location vector 

for hidden unit j; jh  is the output of hidden j and jσ  is a measure of the size of the 

cluster j ( in statistical terms it is called the variance or the square of the standard 

deviation ).  

 

How a RBFN reacts to a given input stimulus is completely determined by the 

activation functions associated with the hidden nodes and the weights associated with 

the links between the hidden layer and the output layer. The general mathematical 

form of the output nodes in an RBFN is as follows:  

( )∑
=

−=
k

j
jjiirjr x  wxc

1
;)( σμφr

                  (2.6) 

where )(xcr
r

 is the function corresponding to the r-th output unit (class r) and is a 

linear combination of k radial basis function )  ( ⋅φ  with center jμr  and bandwidth 

component jσ . Also, rwr  is the weight vector of class r and rjw  is the weight 

corresponding to the r-th class and j-th center. The general architecture of RBFN is 

shown as follows. 
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Fig. 2.6.  General Architecture of Radial Basis Function Networks. 

 

We can see that constructing an RBFN involves determining the values of three 

sets of parameters: the centers ( jμr ), the bandwidths ( jσ ) and the weights ( rjw ), in 

order to minimize a suitable cost function. 

 

In QuickRBF package, the centers are randomly selected and bandwidth are 

fixed and set as 5 for each kernel function for conducting the simplest method. The 

transformation between the inputs and the corresponding outputs of the hidden units is 

now fixed. The network can thus be viewed as an equivalent single-layer network 

with linear output units. Then, the LMSE method is used to determine the weights 

associated with the links between the hidden layer and the output layer. 

 

Assume h is the output of the hidden layer. 
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[ ]    )x(    ,)x(   x T
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K
rr φφφ ,,)(1=h               (2.7) 

where k is the number of centers, )(1  xrφ  is the output value of first kernel function 

with input xr . Then, the discriminant function )(xcr
r  of class r can be expressed by 

the following: 

   m  r     ,wxc T
rr ,,2,1)( K
rr

== h                  (2.8) 

where m is the number of class, and rwr  is the weight vector of class r. We can show 

rwr  as:  

[ ]    xw    ,xw   xw w
T

rkrrr )(,)(,)( 21
r

K
rrr

=          (2.9) 

After calculating the discriminant function value of each class, we choose the class 

with the biggest discriminant function value as the classification result. We will 

discuss how to get the weight vectors by using least mean square error method in the 

following. 

 

For a classification problem with m classes, let rV
r

 designate the r-th column 

vector of an m × m identity matrix and W be an k × m  matrix of weights: 

                          W = [ ]mwww rrr ,...,, 21                   (2.10) 

Then the objective function to be minimized  

        V EPJ
m

r
r

T
rr∑

= ⎭
⎬
⎫

⎩
⎨
⎧ −=

1

2
)(

r
hWW               (2.11) 

where rP  and }{   Er ⋅  are the a priori probability and the expected value of class r, 

respectively. 

 

To find the optimal W that minimizes J, the gradient of )(WJ  is set to be zero:  
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where [0] is a k × m  null matrix. Let rK  denote the class-conditional matrix of the 

second-order moments of h, i.e. 

{ }T
rr  E hhK =                              (2.13) 

If K denotes the matrix of the second-order moments under the mixture distribution, 

we have 

          ∑
=

=
m

1r
rrP KK                               (2.14) 

Then Eq. (2.12) becomes 

        MKW =                                (2.15) 

where 

      { }   V EP
m

r

T
rrr∑

=

=
1

r
hM                      (2.16) 

If K is nonsingular, the optimal W can be calculated by 

        MKW* 1-=                             (2.17) 

 

However, there is a critical drawback of this method. That is, K may be singular 

and this will crash the whole procedure. By observing the matrix Thh , we are aware 

of that the matrix Thh is symmetric positive semi-definite (PSD) matrix with rank 

equal to 1. Since K is the summation of Thh  for each training instance, K is also a 

PSD matrix with rank smaller than n. However, PSD matrix may be a singular matrix, 

so we should add the regularization term to make sure the matrix will be invertible. In 

the regularization theory, it consists in replacing the objective function as follows: 

    r
T

r

m

r

m

r
r

T
rr ww   V EPJ rrr

∑∑
==

+
⎭
⎬
⎫

⎩
⎨
⎧ −=

11

2
)( λhWW         (2.18) 



 34

where λ  is the regularization parameter.  

Then the Eq. (2.15) becomes 

           ( ) MWIK =+  λ                          (2.19) 

 

If we set 0>λ , ( )IK λ+  will be a positive definite (PD) matrix and therefore 

is nonsingular. The optimal *W  can be calculated by 

     ( ) MIKW  -1* λ+=                        (2.20) 

 

However, the PD matrix has many good properties, and one of them is a special 

and efficient triangular decomposition, Cholesky decomposition. By using Cholesky 

decomposition, we can decompose the ( )IK λ+  matrix as follows: 

        ( ) TLLIK =+ λ                           (2.21) 

where L is a lower triangular matrix. Then, the Eq. (2.19) becomes 

    ( ) MWLL =  T                            (2.22) 

 

Actually, the linear system can be solved efficiently by using back-substitution 

twice. Finally, we can get the optimal *
rW  for class r from *W , and then the 

optimal discriminant function )(xcr
r  for class r is derived. By using the 

regularization theory, the optimal weights can be obtained analytically and efficiently. 
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Chapter 3. Protein Relative Solvent Accessibility Prediction 

 

3.1  Fuzzy K-Nearest Neighbor Approach 

 

    The nearest neighbor algorithm is a simple classification algorithm; a query data 

is classified according to the classification of the nearest neighbor from a database of 

known classifications. A natural generalization of the nearest neighbor algorithm is 

the so-called k-nearest neighbor algorithm, where the k-nearest samples are selected 

and the query data is assigned the class most frequently represented among them. A 

further extension is to weight the k-nearest samples with a certain power of the 

distance from the query data. Also, instead of assigning a definite class to the query 

data, one can calculate the fuzzy membership (see below), which can be used to 

reflect the confidence level of each nearest neighbor in its prediction. The algorithm 

incorporating these generalizations is called the fuzzy k-nearest neighbor algorithm 

[18]. 

 

    Despite its simplicity, nearest neighbor methods can give competitive 

performance compared to many other methods. The nearest neighbor methods have 

been used to predict protein secondary structure [26]–[28] and classify biological and 

medical data. Also it has been reported that performances of classification were 

improved by using fuzzy k-nearest neighbor algorithms [44]–[49]. However the 

k-nearest neighbor method has few been used to predict protein solvent accessibility. 

 

    As with Hua and Sun’s work [50], the present analysis used the classical local 

coding scheme of the protein sequences with a sliding window. PSI-BLAST matrix 
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with n rows and 20 columns can be defined for single sequence with n residues. Each 

residue is represented using 20 components in a vector, based on the PSSM. Then, 

each input vector has 20×w components, where w is a sliding window size. 

 

    They constructed a window of size 15 centered on a target residue [9], [23], [24], 

and use the profile that falls within this window, a 15×20 matrix, as a feature vector. 

Then, the distance between two feature vectors A and B is defined as 

                      ∑ −=
ji

B
ij

A
ijiAB PPWD

,

)()( ,                     (3.1) 

where )( A
ijP ( i = 1, 2,…, 15;  j = 1, 2,…, 20) is a component of the feature vector A, 

and iW  is a weight parameter. Since it is expected that the profile elements for 

residues nearer to the target residue to be more important in determining the local 

environment of the target residue, weights iW  are set to .)88( 2iWi −−=  

 

    In their work, they applied the fuzzy k-nearest neighbor method to the solvent 

accessibility prediction. In the fuzzy k-nearest neighbor method, the fuzzy class 

membership )(xui  to the class i is assigned to the query data x according to the 

following equation: 

              ,
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where m is a fuzzy strength parameter, which determines how heavily the distance is 

weighted when calculating each neighbor’s contribution to the membership value, k is 

the number of nearest neighbors, and c is the number of classes. Also, jD  is the 

distance between the feature vector of the query data x and the feature vector of its 

j th nearest reference data )( jx , and )( )( j
i xu  is the membership value of )( jx  to 
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the i th class, which is 1 if )( jx  belongs to the i th class, and 0 otherwise. The 

advantage of the fuzzy k-nearest neighbor algorithm over the standard k-nearest 

neighbor method is quite clear. Modulating the ith neighbor’s fuzzy class membership 

)(xui  through its percentile distance to the query residue can be considered as the 

estimate of the probability that the query data belongs to class i, and provides us with 

more information than a definite prediction of the class for the query data. Moreover, 

the reference samples which are closer to the query data are given more weight, and 

an optimal value of m can be chosen along with that for k, in contrast to the standard 

k-nearest neighbor method with a fixed value of 2/(m－1) = 0. In fact, the optimal 

value of k and m are found from the leave-one-out cross-validation procedure, and the 

resulting value for 2/(m－1) is indeed nonzero. 

 

    We adopt the optimal values of m and k in [31], which are (m, k) = (1.33, 65) for 

the 3-state prediction ( for both 9% and 36% thresholds ) and (m, k) = (1.50, 40), (1.25, 

75), (1.29, 65) and (1.33, 65) for the 2-state predictions ( for 0, 5, 16, and 25% 

thresholds, respectively). Moreover, we use (m, k) = (1.27, 70) for the 9% threshold,  

whose prediction accuracy is slightly higher than other (m, k) values. 

 

 

3.2 Modified Fuzzy K-Nearest Neighbor Approach 

 

In Sec. 3.1 above, we can see )( )( j
i xu  is defined as the membership value of 

)( jx  to the i th class, which is 1 if )( jx  belongs to the i th class, and 0 otherwise. 

Here, we modify the definition of )( )( j
i xu  in Eq. (3.2). It is expected that a neighbor 

residue close to the threshold RelAcc chosen is not as decisive in determining query 
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values as a neighbor residue far from the residue’s RelAcc state. For two-state model 

for accessibility, as shown in Table 2.2, we have to choose a threshold to distinguish 

the two states (Buried and Exposed). If we choose a value Th (must between 0 and 1) 

as our threshold, the residues where Relacc values range from 0 to Th will be 

classified to the buried state, and others (from Th to 100%) will be classified to the 

exposed state. So the two boundaries of buried class are 0 and Th, and the two of 

buried one are Th and 1. The range lies in [0, Th] for the buried state and [Th, 1] for 

the exposed state. 

 

It is known that 0 is the minimum for RelAcc value, and 1, 100%, is the 

maximum. That means 0 is the most buried point and 100% is the most exposed one. 

For each residue of a protein sequence, we can calculate a “buried distance, BD ” 

which represents the “distance” from present residue to 0 and a “exposed distance, 

ED ” which represents the “distance” from present residue to 1. If the RelAcc value of 

a residue is smaller than Th, then we calculate its BD  and ED  values by the 

following equations: 

,
Th

RelAccDB =                                 

                   
Th
RelAccTh1DE

−
+= .                         

 

In contrast, if the RelAcc value is larger than Th, we calculate the BD  and ED  

values by the equation shown below: 

                       ,
Th1

ThRelAcc1DB
−

−
+=                          

                       
Th1

RelAcc1DE
−

−
= . 

In both conditions, if the value of BD  is larger, then the “buried degree” of this 
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residue should be small. That is, BD  is inversely proportional to the “buried degree.” 

Similarly, ED  value is also inversely proportional to the “exposed degree.” With this 

concept in mind, we can use BD  and ED  to calculate membership values )( )( j
i xu : 

,
//

/)()( )()(

BE

Ej
E

j
1

D1D1
D1xuxu
+

==   
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j
2

D1D1
D1xuxu
+

==  

 

Obviously, if we let 5.0)()( )()( == j
E

j
B xuxu  in both conditions ( buried an 

exposed ) to calculate RelAcc value, then we will obtain that RelAcc = Th. That means 

the membership values of both classes at the threshod Th are 50%. The membership 

functions are shown in Fig. 3.1. The flowchart to calculate 2-state membership 

values )( )( j
E xu  and )( )( j

B xu  is shown in Fig. 3.2. 

 

 

Fig. 3.1. The 2-state membership functions )( )( j
E xu  and )( )( j

B xu  with Th = 16%. 
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Fig. 3.2. The flowchart to calculate 2-state membership values )( )(
1

jxu  and 

 )( )(
2

jxu . 

 

For the three-state model for accessibility, as shown in Table 2.2, we know that 
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the boundaries are 0 and 9% for the buried state, 9% and 36% for the intermediate 

state, 36% and 100% for the exposed state, so the center value of the intermediate 

class, ,..
2

360090 +  is 0.225. )( )( j
B xu  is set to zero when the RelAcc value of a 

residue is greater than 0.225, so we can calculate )( )( j
I xu  and )( )( j

E xu  by 

two-class method given above. In the same manner, we set the )( )( j
E xu  to zero 

when RelAcc value is smaller than 0.225, and we can calculate )( )( j
I xu  and 

)( )( j
B xu  as above. The three-state membership functions are shown in Fig. 3.3. The 

flowchart to calculate 3-state membership values is shown in Fig. 3.4. 

 

 

Fig. 3.3. The 3-state membership functions )( )( j
E xu , )( )( j

I xu , and )( )( j
B xu  with 

Ths = 9% and 36%. 

 

Therefore, in this setting of membership functions, the values of )( )( j
i xu  in Eq. 

(3.2) is not only a crisp value 0 or 1, but a membership degree in [0, 1], and satisfy 
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∑
=

=
c

i

j
i xu

1

)( 1)( . After this modification, we continue to calculate all the )(xui  by Eq. 

(3.2) by the method shown in Sec. 3.1, and the maximal )(xui  class is assumed to be 

the target class of the residue x. 

 

 

 

 

Fig. 3.4. The flowchart to calculate 3-state membership values )( )( j
E xu , )( )( j

I xu ,  

and )( )( j
B xu . 
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3.3 QuickRBF Approach 

 

A QuickRBF structure used for solvent accessibility prediction system are shown 

in Fig. 3.5. The QuickRBF classifier classifies each residue of each sequence into the 

three relative solvent accessibility states, E, I, or B, by using the values of matrices of 

PSI-BLAST profile as the inputs. The outputs represent the tendency that the residue 

belongs to that state. The one-against-rest strategy was used for the multiclass 

classification, so each residue was classified into the state with the largest output 

value for a QuickRBF approach. 
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Fig. 3.5. Architecture of QuickRBF method. The system includes two parts: the 
PSI-BLAST profile, and the classifier. The profile is transformed into a number of 
21*17 dimension vectors using the slide-window method. These vectors are input into 
the QuickRBF classifier. The outputs of the QuickRBF classifier are a number of 3D 
vectors representing the tendency that the residue belongs to that state. The 
one-against-rest strategy was used to classify each residue into the state with the largest 
value. 

PSI-BLAST Profile 

Coding : transform the 17*20 matrix into a 17*21 dimension vector 

QuickRBF Classifier 

Data Normalization 

Classifier 

outputs of the classifier 
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3.4 Fusion Method 

 

3.4.1 Linear Combination Fusion 1 

 

We have proposed modified fuzzy k-NN approach and QuickRBF approach, 

both based on the PSSM profiles, to predict the protein relative solvent accessibility. 

We have found the differences of predictive results between the two approaches are 

somewhat distinct. This motivates us to design a fusion scheme combining the results 

of both approaches in order to raise the overall accuracy. 

 

After observing the output values of modified fuzzy k-NN and QuickRBF, we 

found their dynamic ranges are different. In modified fuzzy k-NN approach shown in 

Sec. 3.2, the membership values )( )( j
i xu  of all the two or three classes calculated 

range between 0 to 1, but the outputs of the QuickRBF approach do not vary in this 

range. We need to normalize them first before we can make the fusion. Here, we 

calculated the mean of each class in three-state prediction result for each method, 

respectively. For each method, these three values ( ,, IE mm  and Bm ) were used as the 

“normalization factor.” We divided all the prediction results of each class by its mean 

to get normalized output. At last, we combined by adding the normalized output of 

both methods, and the final output class of each residue is assigned to the one with the 

largest output value. This normalization procedure is shown in Fig. 3.6. The 

normalization was done similarly in the two-state case. 
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Fig. 3.6. The normalization procedure in Linear Combination Fusion 1. 

 

Referring to Table 3.1, each residue of the present sequence has three target 

labels denoted as E, I and B. The respective results of each label are the linear 

combination of results of the normalized QuickRBF and modified fuzzy k-NN. Then 

the final output class of each residue is assigned to the one with the largest output 

value. Namely, it applies 

 

  ),...,2,1},,,{()(maxarg)( )()( mjBIElxfxP j
l

l

j
l =∈=       (3.3) 

where lf  are the linearly combined values shown below: 
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Table 3.1.  Fusion method : Linear combination. 

 

 

 

3.4.2 Linear Combination Fusion 2 

 

We have also developed a different normalization method in this section. We 

obtained the absolute values of a residue in QuickRBF output data, and summed them 

up as the “normalization factor.” Then, we divided all the three prediction values E, I, 

and B of the residue by the normalization factor to obtain their respective normalized 

outputs. After the normalization, we combined the normalized output by adding the  

modified fuzzy k-NN and QuickRBF in the same method shown in Sec. 3.4.1. This 

normalization procedure is shown in Fig. 3.7. 
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Fig. 3.7. The normalization procedure in Linear Combination Fusion 2. 

 

 

3.4.3 Reliability Index 

 

    The prediction reliability index (RI) was used to access the effectiveness of the 

approaches for the prediction of the secondary structure of a new sequence. The RI 

offers an excellent tool for focusing on key regions having high prediction accuracy. 

Hence, we used reliability index in protein relative solvent accessibility prediction. 

There are different definitions of the RI. Here we used a definition similar to that 

proposed by Rost and Sander: RI = maximal_output(I)－Second_largest_output(I) 

[51]. If the value of RI > 0.9, then set RI = 0.9, so the value of RI is between 0 and 0.9. 

The prediction accuracy of residues with higher RI values is much better than those 

with lower RI values. Therefore, the definition of RI reflects the prediction reliability. 

 

 In this research, to combine the output from modified fuzzy k-NN and 
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QuickRBF (after normalization shown in 3.4.2), we developed a new classifier design 

using RI. In this scheme, the classifier with a maximum RI is chosen as the arbiter 

classifier for the decision of the class. The final class is chosen to the largest output 

class of this arbiter classifier. For example, if the E/I/B output of the decision function 

of QuickRBF: E/I/B, modified fuzzy k-NN: E/I/B are 0.1/0.2/0.7 and 0.3/0.2/0.5, 

their RI’s are 0.5, 0.7－0.2, and 0.2, 0.5－0.3, respectively. Therefore, the classifier 

with highest RI, here QuickRBF, is chosen as the arbiter. In this example, the query 

residue is assigned to be buried since it is the largest class value of the QuickRBF 

classifier. 
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Chapter 4.  Experiment and Simulation Results 
 

4.1 Datasets 

     

    The set 126 nonhomologous globular protein chains used in the experiment of 

Rost and Sander [1], referred to as the RS126 set, was utilized to evaluate the 

accuracy of the classifiers. The RS126 dataset contains 23606 residues. Fuzzy 

K-Nearest Neighbor approaches and QuickRBF approaches were implemented with 

multiple sequence alignments, and tested on the dataset using a seven-fold cross 

validation technique to estimate the prediction accuracy. With seven-fold cross 

validation, approximately six-seventh of the RS126 dataset was selected for training 

and, after training, the left one-seventh of the dataset was used for testing. In order to 

avoid the selection of extremely biased partitions, the RS126 set was divided, by [53] 

previously, into seven subsets with each subset having similar size as shown in Table 

2.1. 
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4.2 Results 

 

4.2.1 Results of Fuzzy K-NN and Modified Fuzzy K- NN Classifiers 

 

    Fuzzy k-nearest neighbor approaches are applied on three-state, E, I, and B, and 

two-state, E and B, relative solvent accessibility predictions. For both classifiers, each 

residue of sequences is coded as a 20-dimensional vector, which the 20 elements of 

the vector are the corresponding elements in PSI-BLAST matrix. The window length 

is 15 and the dimension of the feature vector is 20×15. 

 

The results and the comparison of the fuzzy k-nearest neighbor approach and 

modified fuzzy k-nearest neighbor approach on RS126 data set are listed in Table 4.1. 

On the RS126 data set processed by ourselves, fuzzy k-nearest neighbor approach [31] 

led to the overall prediction accuracy 58.14% for the three-state prediction with 

respect to thresholds: 9% and 36%; and 87.93%, 79.18%, 77.59%, 75.35%, 73.49% 

for the two-state prediction with the thresholds of 0%, 5%, 9%, 16%, and 25%, 

repectively. 

 

Modified fuzzy k-nearest neighbor approach gave the overall prediction accuracy 

58.57% for the three-state prediction with respect to the following two thresholds 

chosen: 9% and 36%; and 87.93%, 79.84%, 77.76%, 76.34%, 75.26% for the 

two-state prediction with the chosen thresholds of 0%, 5%, 9%, 16%, and 25%, 

respectively. 
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Table 4.1. RSA classification accuracy of ours and previous fuzzy k-nearest neighbor 
methods on the RS126 data set with PSI-BLAST pssm profiles. 

 

Fuzzy k-NN classifiers [31] 

Accuracy: % 

thresholds

  

dataset 

3-state 

(9% ; 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Fold_A 58.33 86.37 78.63 76.10 75.00 73.97 

Fold_B 58.22 88.93 79.84 78.76 76.14 73.17 

Fold_C 61.23 87.93 80.11 79.22 77.74 76.18 

Fold_D 57.01 88.38 78.28 77.30 74.26 72.65 

Fold_E 58.52 88.75 79.90 79.21 76.21 73.15 

Fold_F 55.90 88.99 79.54 77.19 73.22 71.20 

Fold_G 57.30 86.38 78.09 75.39 74.52 73.66 

Average 58.14 87.93 79.18 77.59 75.35 73.49 

 

 

Ours modified fuzzy k-NN classifiers 

Accuracy: % 

thresholds

  

dataset 

3-state 

(9% ; 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Fold_A 59.14 86.37 77.90 77.50 77.27 76.61 

Fold_B 59.00 88.93 81.35 78.52 77.03 75.49 

Fold_C 60.39 87.93 80.92 78.52 77.71 77.08 

Fold_D 57.99 88.38 80.33 77.30 75.40 74.81 

Fold_E 59.84 88.75 81.54 77.99 76.21 74.99 

Fold_F 56.95 88.99 79.54 77.59 74.31 72.54 

Fold_G 55.80 86.38 77.26 76.77 75.72 74.22 

Average 58.57 87.93 79.84 77.76 76.34 75.26 
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4.2.2 Results of QuickRBF approach and the Fusion Methods 

 

For QuickRBF approach, each residue is coded as a 21-dimensional vector, 

where the first 20 elements of the vector are the corresponding elements in 

PSI-BLAST matrix and the last element was added in order to allow a window to 

extend over the N- and the C-terminus. The window length is 17 and the dimension of 

the feature vector is 21×17. The number of the centers randomly selected from the 

training data set is 2000 and the bandwidth is five for each kernel function. The 

architecture of QuickRBF in the three-state prediction is shown in Fig. 3.5, Sec. 3.3. 

 

QuickRBF approach produced the overall prediction accuracy 60.36% for the 

three-state prediction with respect to thresholds: 9% and 36%; and 87.76%, 81.15%, 

79.06%, 77.64%, 76.17% for the two-state prediction with the thresholds of 0%, 5%, 

9%, 16%, and 25%, respectively. 

 

Linear Combination Fusion 1, column mean normalization and then adding, gave 

the overall prediction accuracy 61.30% for the three-state prediction with respect to 

thresholds: 9% and 36%; and 71.38%, 75.35%, 77.18%, 77.90%, 76.60% for the 

two-state prediction with the thresholds of 0%, 5%, 9%, 16%, and 25%, respectively. 

Obviously, the two-state prediction accuracies of thresholds 0%, 5%, and 9% are 

lower than those by QuickRBF approach.  

 

Linear Combination Fusion 2, row-wise normalization and then adding, led to 

the overall prediction accuracy 61.06% for the three-state prediction with respect to 

thresholds: 9% and 36%; and 87.97%, 81.28%, 79.77%, 78.23%, 76.96% for the 

two-state prediction with the thresholds of 0%, 5%, 9%, 16%, and 25%, respectively. 
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Reliability Index Fusion, maximal relative index, gave the overall prediction 

accuracy 61.09% for the three-state prediction with respect to thresholds: 9% and 

36%; and 87.97%, 81.24%, 79.73%, 78.16%, 77.01% for the two-state prediction with 

the thresholds of 0%, 5%, 9%, 16%, and 25%, respectively. The prediction accuracies 

of QuickRBF and the fusion methods on RS126 data set are listed in Table 4.2. 

 

Table 4.2. RSA classification accuracies by QuickRBF and the fusion methods. 
QuickRBF 

accuracy: % 

thresholds

  

dataset 

3-state 

(9% ＆ 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Fold_A 60.71 86.51 79.40 78.30 77.64 76.38 

Fold_B 60.67 89.15 81.35 79.60 78.06 76.38 

Fold_C 61.81 87.59 80.92 80.25 78.90 77.17 

Fold_D 59.16 88.01 81.29 78.46 76.96 75.51 

Fold_E 60.85 88.51 82.76 80.53 78.65 76.07 

Fold_F 58.90 88.74 81.13 78.02 76.00 74.27 

Fold_G 60.23 85.85 78.35 78.35 77.00 77.26 

Average 60.36 87.76 81.15 79.06 77.64 76.17 

 

Linear Combination Fusion 1 

of accuracy: % 

thresholds

  

dataset 

3-state 

(9% ＆ 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Fold_A 62.14 72.08 75.91 77.39 78.46 77.15 

Fold_B 61.16 71.15 76.03 77.25 78.22 77.11 

Fold_C 63.97 72.89 76.73 78.72 79.27 77.83 

Fold_D 59.91 70.47 74.00 75.22 76.91 75.95 

Fold_E 62.21 70.74 75.72 78.13 78.61 76.77 

Fold_F 59.22 71.02 75.57 76.25 75.60 75.10 

Fold_G 59.89 70.99 76.59 77.56 77.79 75.72 

Average 61.30 71.38 75.75 77.18 77.90 76.60 

 



 55

 
 

Linear Combination Fusion 2 
accuracy: % 

thresholds

  

dataset 

3-state 

(9% ＆ 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Fold_A 61.48 86.53 80.12 78.95 78.51 77.88 

Fold_B 61.13 89.45 81.48 80.59 78.60 77.11 

Fold_C 63.66 87.73 82.48 81.06 79.22 78.44 

Fold_D 60.09 88.30 81.03 79.01 77.71 76.16 

Fold_E 61.83 88.61 83.32 80.91 78.75 76.63 

Fold_F 59.18 89.07 81.20 79.00 76.54 75.17 

Fold_G 59.48 86.27 79.59 78.91 77.90 76.74 

Average 61.06 87.97 81.28 79.77 78.23 76.96 

 
 
 

Reliability Index Method 
accuracy: % 

thresholds

  

dataset 

3-state 

(9% ＆ 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Fold_A 61.58 86.53 80.17 78.95 78.27 78.04 

Fold_B 60.95 89.42 81.40 80.54 78.68 77.06 

Fold_C 63.22 87.64 82.45 80.95 79.10 78.55 

Fold_D 60.15 88.32 80.88 78.88 77.66 76.28 

Fold_E 62.07 88.58 83.14 80.88 78.75 76.73 

Fold_F 59.58 89.07 81.05 79.11 76.40 75.03 

Fold_G 59.63 86.27 79.85 78.95 77.94 76.70 

Average 61.09 87.96 81.24 79.73 78.16 77.01 

 
 
 

In summary, the accuracies of six methods are tabulated in Table 4.3. 
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Table 4.3. Comparison of performance of the six approaches in RSA prediction on the 
RS126 data set with PSSMs generated by PSI-BLAST. 
 

Comparison of six methods 

accuracy: %

        thresholds 

method 

3-state 

(9% ＆ 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Fuzzy k-NN 58.14 87.93 79.18 77.59 75.35 73.49 

Modified fuzzy k-NN 58.57 87.93 79.84 77.76 76.34 75.26 

QuickRBF 60.36 87.76 81.15 79.06 77.64 76.17 

Linear Combination Fusion 1 61.30 71.38 75.75 77.18 77.90 76.60 

Linear Combination Fusion 2 61.06 87.97 81.28 79.77 78.23 76.96 

Reliability Index 61.09 87.96 81.24 79.73 78.16 77.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 57

4.3 Matthew’s Correlation Coefficients of Modified Fuzzy K-NN Approach 

 

Another measure used to evaluate the performance of prediction methods is the 

Matthew’s Correlation Coefficient (MCC). It can be calculated from an accuracy table 

A by the following equations: 

ijA  = number of residues predicted to be in type j and observed to be in type i,  

))()()(( iiiiiiii

iiii
i onunopup

ounp
MCC

++++

−
= ,  

ip  = iiA ,  

in  = ,
3 3

∑∑
≠ ≠ij ik

jkA  

io  = ,
3

∑
≠ij

jiA  

iu  = ,
3

∑
≠ij

ijA  for i = E, I, B. 

Also, pi , ni , oi and ui are the number of true positives, true negatives, false positives 

and false negatives for class i, respectively. The MCCs have the same value for the 

two classes in the case of the two-state prediction, i.e. MCCE = MCCB. 

 

First, the accuracy tables A of modified fuzzy k-NN approach on each fold and 

the RS126 data set is shown in Table 4.3. Then, the MCCs of five methods on the 

RS126 data set is shown in Table 4.4. In a similar trend as Table 4.2, MCC’s of Linear 

Combination Fusion 2 usually perform well, although not always the best, in 

comparison to other approaches. 
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Table 4.4. The accuracy tables A of modified fuzzy k-NN on each fold and RS126. 

 

3-state (9%; 36%) 

 AEE AII ABB AEI AEB AIE AIB ABE ABI 

Fold_A 1073 525 931 384 67 432 263 253 348 

Fold_B 1068 419 699 313 60 442 229 186 289 

Fold_C 847 467 778 356 66 314 245 134 257 

Fold_D 1003 491 741 336 97 439 266 182 299 

Fold_E 737 376 605 288 56 276 177 135 221 

Fold_F 755 320 503 229 52 356 159 168 229 

Fold_G 724 435 827 375 172 367 402 167 382 

RS126 6207 3033 5084 2281 570 2626 1741 1225 2025 

 

 

2-state (25%) 

 AEE ABB AEB ABE 

Fold_A 1515 1761 468 532 

Fold_B 1456 1341 388 520 

Fold_C 1209 1461 420 374 

Fold_D 1389 1494 453 518 

Fold_E 1021 1132 379 339 

Fold_F 1031 979 335 426 

Fold_G 880 1098 354 333 

RS126 8501 9266 2797 3042 

 

 

2-state (16%) 

 AEE ABB AEB ABE 

Fold_A 1942 1362 431 541 

Fold_B 1832 1022 399 452 

Fold_C 1563 1129 414 358 

Fold_D 1790 1116 471 477 

Fold_E 1327 861 352 331 

Fold_F 1330 729 300 412 

Fold_G 1147 871 320 327 

RS126 10931 7090 2687 2898 
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Table 4.4. (continued) 
 

2-state (9%) 

 AEE ABB AEB ABE 

Fold_A 2294 1014 450 518 

Fold_B 2151 758 380 416 

Fold_C 1877 844 418 325 

Fold_D 2164 811 468 411 

Fold_E 1580 659 330 302 

Fold_F 1595 554 276 346 

Fold_G 1375 675 313 302 

RS126 13036 5315 2635 2620 

 

 

2-state (5%) 

 AEE ABB AEB ABE 

Fold_A 2588 774 440 474 

Fold_B 2369 589 400 347 

Fold_C 2104 671 398 291 

Fold_D 2412 605 454 383 

Fold_E 1771 523 327 250 

Fold_F 1782 422 266 301 

Fold_G 1558 523 315 269 

RS126 14584 4107 2600 2315 

 

 

2-state (0%) 

 AEE ABB AEB ABE 

Fold_A 3612 81 40 543 

Fold_B 3263 32 34 376 

Fold_C 2961 85 49 369 

Fold_D 3355 51 23 425 

Fold_E 2499 49 37 286 

Fold_F 2425 41 26 279 

Fold_G 2261 41 17 346 

RS126 20376 380 226 2624 
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Table 4.5. Matthew’s Correlation Coefficients of the five approaches on RS126. 

 

 

3-state (9%; 36%) 

MCC

method 
MCCE MCCI MCCB 

Fuzzy k-NN 0.439 0.133 0.499 

Modified fuzzy k-NN 0.432 0.163 0.485 

QuickRBF 0.478 0.138 0.529 

Linear Combination Fusion 1 0.491 0.176 0.533 

Linear Combination Fusion 2 0.487 0.171 0.533 

 

 

2-state (25%) 

MCC

method 
MCCE = MCCB 

Fuzzy k-NN 0.492 

Modified fuzzy k-NN 0.505 

QuickRBF 0.530 

Linear Combination Fusion 1 0.539 

Linear Combination Fusion 2 0.543 

 

 

2-state (16%) 

MCC

method 
MCCE = MCCB 

Fuzzy k-NN 0.492 

Modified fuzzy k-NN 0.514 

QuickRBF 0.538 

Linear Combination Fusion 1 0.549 

Linear Combination Fusion 2 0.550 
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Table 4.5. (continued) 
 

 

2-state (9%) 

MCC

method 
MCCE = MCCB 

Fuzzy k-NN 0.470 

Modified fuzzy k-NN 0.501 

QuickRBF 0.510 

Linear Combination Fusion 1 0.529 

Linear Combination Fusion 2 0.532 

 

 

2-state (5%) 

MCC

method 
MCCE = MCCB 

Fuzzy k-NN 0.439 

Modified fuzzy k-NN 0.482 

QuickRBF 0.472 

Linear Combination Fusion 1 0.500 

Linear Combination Fusion 2 0.501 

 

 

2-state (0%) 

MCC

method 
MCCE = MCCB 

Fuzzy k-NN 0.243 

Modified fuzzy k-NN 0.243 

QuickRBF 0.219 

Linear Combination Fusion 1 0.368 

Linear Combination Fusion 2 0.237 

 

 

 

After comparing the prediction results of three fusion methods, we can find that 

the two-state prediction accuracies of Linear Combination Fusion 1 are lower than 
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those by the other two fusion methods with thresholds 0%, 5%, and 9%. In our 

opinion, this maybe due to the normalization step used in Linear Combination Fusion 

1. If the chosen threshold Th is close to zero in two-state modified fuzzy k-NN 

prediction, then the )( )( j
B xu  values for most residues will be very low. And hence, 

Bm  will be close to zero, as shown in Fig. 3.6. After dividing all )( )( j
B xu  values by 

Bm , the new )( )( j
B xu  values will become very large, and this will cause the faulty 

classification after the fusion. 

 

 

4.4 Comparison with other Approaches 

 

For RSA prediction on the RS126 data set, the performance comparison of our 

approach to other methods is shown in Table 4.6. The Linear Common Fusion 2 is the 

best in most cases. It is reported 61.1% for the three-state prediction with respect to 

thresholds of 9% and 36%; 88.0%, 81.3%, 79.8%, 78.2%, and 77.0% for the two-state 

predictions with the thresholds of 0%, 5%, 9%, 16%, and 25%, respectively. 

 

Sim et al. has led to slightly better prediction accuracies than other methods by 

fuzzy k-nearest neighbor method using PSI-BLAST profiles on the RS126 data set 

produced by them. In [31], they reported 63.8% for the three-state prediction with 

respect to thresholds of 9% and 36%; 87.2%, 82.2%, 79.0%, and 78.3% for the 

two-state predictions with the thresholds of 0%, 5%, 16%, and 25%, respectively. 

Using the same method and best parameter settings on our produced RS126 data set, 

we just obtained 58.1% for the three-state prediction; 87.9%, 79.2%, 75.4%, and 

73.5% for the two-state predictions with the thresholds of 0%, 5%, 16%, and 25%, 
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respectively. 

 

PHDacc [1] used a neural network method using evolutionary profiles of amino 

acid substitutions derived from multiple sequence alignments, and reported 57.5% for 

the three-state prediction with respect to thresholds of 9% and 36%; 86.0%, 74.6%, 

and 75.0% for the two-state predictions with the thresholds of 0%, 9%, and 16%, 

respectively.  

 

SVMpsi [23] was based on a support vector machine using the position-specific 

scoring matrix generated from PSI-BLAST, and reported 59.6% accuracy for the 

three-state prediction with respect to thresholds of 9% and 36%; 86.2%, 79.8%, 

77.8%, and 76.8% for the two-state predictions with the thresholds of 0%, 5%, 16%, 

and 25%, respectively. 

 

Two-Stage SVMpsi [30] used a Two-Stage SVMpsi approach using the 

position-specific scoring matrix generated from PSI-BLAST. It is reported 90.2%, 

83.5%, 81.3%, and 79.4% for the two-state predictions with the thresholds of 0%, 5%, 

9%, and 16%, respectively. These prediction accuracies are obtained from their 

published results.  
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Table 4.6. Comparison of performance of modified fuzzy k-NN approach with other 
methods in RSA prediction on the RS126 data set with PSSMs generated by 
PSI-BLAST. 
 

accuracy: %

        thresholds 

method 

3-state 

(9% ; 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Linear Combimation Fusion 2 61.1 88.0 81.3 79.8 78.2 77.0 

Fuzzy k-NN (on our dataset) 58.1 87.9 79.2 77.6 75.4 73.5 

Modified fuzzy k-NN (on our dataset) 58.6 87.9 79.8 77.8 76.3 75.3 

Fuzzy k-NN (on their dataset [31]) 63.8 87.2 82.2 ─ 79.0 78.3 

PHDacc 57.5 86.0 ─ 74.6 75.0 ─ 

SVMpsi 59.6 86.2 79.8 ─ 77.8 76.8 

Two-Stage SVMpsi ─ 90.2 83.5 81.3 79.4 ─ 

 
 
 
Fuzzy k-NN (Sim, Kim and Lee, 2005) used fuzzy k-nearest neighbor method [31]. 

PHDacc (Rost and Sander, 1994) used neural networks [1]. 

SVMpsi (Kim and Park, 2004) was based on support vector machine [23]. 

Two-Stage SVMpsi (Nguyen and Rajapakse, 2005) used a two-stage SVM approach [30]. 
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Chapter 5.  Conclusion and Discussion 
 

Using PSI-BLAST profiles as feature vectors in this study, we have proposed six 

approaches, which are Fuzzy K-NN, Modified Fuzzy K-NN, QuickRBF, Linear 

Combination Fusion 1, Linear Combination Fusion 2, and Reliability Index Fusion, to 

predict relative solvent accessibility of RS126 data set. 

 

In the future study, we can apply dimensionality reduction technique [54] to 

reflect the structure existent in the data set. Then we can find more reliable distance 

metrics faithfully from PSSM table to improve the classification accuracy of our 

fuzzy k-NN method. Besides, we can apply our method on a larger data set, like 

CB513. Data set growth can give an indirect advantage to our method. And our better 

modified fuzzy k-NN approach can be selected as a promising approach for various 

protein applications. 
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