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中文摘要

近年來由於工程應用上對精準度要求的增加, 磁滯非線性系統的建模已受到相當的注意。 在現今

已發展的數種描述磁滯系統的模型, Preisach模型是最廣為人知的一種。 磁滯行為的描述可以被

Preisach模型的無限多組可計算的一階逆曲線 (First Order Reversal Curves, FORC)表示。 實現

方面, 傳統的方法是以資料表格實現 Preisach模型; 其資料相應 FORC的有限數量的取樣點,而透

過表格資料的線性內插計算模型輸出。 然而,這種方法有兩個缺點: 為了準確地預測磁滯行為需要

大量的記憶體, 以及發展有效的方法調整表格資料以反映磁滯元件的老化或時間效應是困難的, 或

說甚至是不可能的。 為了克服這些缺點, 本論文提出使用一組多項式取代資料表格來實現 Preisach

模型。 這樣的方式明顯地減少所需的記憶體因為只需儲存多項式的少量係數。 再者, 多項式的係數

可以使用最小平方法或是適應性鑑別演算法取得, 因此可以追蹤磁滯系統的參數。 我們提出的方

法已經被驗證在微壓電致動器的位移預測與追跡控制上。 我們應用最小平均平方的方法發展一種

適應性的演算法來鑑別微壓電致動器的多項式係數; 以此結果實現並與表格實現的方式相比較,在

模型準確度與減少所需記憶體大小方面有顯著的改善。

關鍵詞: 磁滯, Preisach模型, 壓電致動器, 多項式
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Student: Home-Young Win Advisor: Dr. Mu-Huo Cheng

Institute of Electrical and Control Engineering
National Chiao-Tung University

Abstract

Modeling of systems with hysteresis nonlinearities has received considerable attention re-

cently due to the increasing accuracy requirement in engineering applications. Several models

have been developed to characterize systems with hysteresis, and the most popular one is the

Preisach model. The Preisach model to characterize the hysteresis behavior can be represented by

infinite but countable first order reversal curves (FORC). Inpractice, the conventional approach

to realize the Preisach model uses a data table; the data of which correspond with the samples

of a finite number of FORC, then the model output is evaluated via the linear interpolation from

the table data. This approach, however, suffers from two drawbacks: it requires a large amount

of memory in order to obtain an accurate prediction of hysteresis behavior and it is difficult or

even impossible to derive efficient ways to modify the data table in order to reflect the aging or

timing effect of elements with hysteresis. To overcome these drawbacks, this thesis proposes to

use a set of polynomials instead of a data table for realization of the Preisach model. The proposed

approach reduces significantly the required memory becauseit only requires to store a small num-

ber of polynomial coefficients. Furthermore, the polynomial coefficients can be obtained using

the least-square approximation or the adaptive identification algorithm such that the tracking of

hysteresis model parameters is possible. The proposed approach has been verified by the displace-

ment prediction and the tracking control of the micro piezoelectric actuator. We apply the least

mean square method to develop an adaptive algorithm for identification of the polynomial coeffi-

cients for the micro piezoelectric actuator; the resultingrealization compared with the realization

via table method yields significant improvement in model accuracy as well as the reduction in the

required memory size.

Keywords: Hysteresis, Preisach model, PZA, Polynomial
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Chapter 1

Introduction

1.1 Introduction of Hysteresis

Hysteresis is a nonlinear phenomenon occurring in many engineering devices such as the

micro piezoelectric actuators (PZA), the shape memory alloys (SMA), and the ferromagnetic ele-

ments [1, 3]. A system with hysteresis is usually difficult todescribe accurately and may result in

unstable behaviors if not controlled appropriately [3]. Therefore, an accurate model of hysteresis is

critical in order to develop suitable control algorithms orapplications with these systems [4]. The

Preisach model has been known as the most popular one to characterize hysteresis behaviors [2, 7].

The model uses double integrals with a relay operator, and weighting parameters to describe the

system input/output relation; this relation can be furtherrepresented by an infinite but countable

first order reversal curves (FORC). The conventional approach to realize the Preisach model for

a hysteresis system approximates the representation by thesampling of a finite number of FORC

and stores the sample data in a table [10, 13]. The model output is then evaluated from the table

data and the given input by simple linear interpolation. This approach, however, suffers from two

drawbacks: One is that it requires a large amount of memory inorder to obtain an accurate pre-

diction of hysteresis behavior because the number of FORC and the sampling resolution should

be increased. The other is that it is difficult or even impossible to derive efficient ways to adjust

the data table to reflect the parameter variations with agingor timing effect. Hence, the realization

accuracy may degrade with time and eventually needs to rebuild the table.

To overcome these drawbacks, in this thesis we propose to usea set of polynomials instead of a

data table for realization of the Preisach model. The proposed approach reduces the required mem-

ory because it only requires to store a small number of polynomial coefficients. Furthermore, the

polynomial coefficients can be obtained using the least-square approximation [11] or the adaptive

identification algorithm [14] such that the tracking of hysteresis model parameters is possible. The
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proposed approach has been applied to model the displacement of a micro piezoelectric actuator.

We apply the least mean square (LMS) adaptive algorithm to develop an adaptive algorithm for

identification of the polynomial coefficients of the micro piezoelectric actuator; the resulting re-

alization compared with the realization via table method yields significant improvement in model

accuracy as well as the reduction in the required memory size.

1.2 Organization of this Thesis

The remainder of this thesis is divided to four chapters including conclusions. Chapter 2

reviews the hysteresis and the Preisach model. Chapter 3 illustrates the difference between the

traditional method and our method to realize the Preisach model. Chapter 4 demonstrates the

applications of the micro piezoelectric actuators. The final chapter is the conclusions.
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Chapter 2

Preisach Model Representation

In this chapter, the Preisach model to characterize the hysteresis is discussed with the focus

on the representation of the model using FORC and its numerical implementation via an infinite

number of FORC [2, 7].

2.1 Typical Properties of Hysteresis

Before introducing the Preisach model, we first review some typical hysteresis properties

through few simple experiments [9, 10]. One can see that a system with hysteresis is a nonlin-

ear system whose output depends not only on the current inputbut the past input [7]. Due to these

facts, it is difficult to express the hysteresis via a simple mathematical form.

2.1.1 Hysteresis Loop

We begin to introduce hysteresis sketchily by a simple illustration. Fig. 2.1(a) shows an input

of a system with hysteresis which increases to one value and then decreases to the initial value;

Fig. 2.1(b) is the system response output and the system input/output relation, defined as the phase

transition, plotted on Fig. 2.2. As the input increasing, the ascending branch comes up in the

phase transition shown in Fig. 2.2; whereas the decreasing input results in descending branch. A

hysteresis loop is formed because of the ascending branch disagrees with the descending branch.

Hysteresis loops appear in the phase transition is one of themajor characteristics of a system

with hysteresis; it is obvious that a system with hysteresisis a nonlinear system according to this

characteristic. Another major characteristic of a system with hysteresis is that the output depends

on the past input. For instance, Fig. 2.3(b) has different descending branches corresponding to the

same current input but the past input is different shown in Fig. 2.3(a).

3
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Figure 2.1: Hysteresis behavior: (a) the input of a hysteresis system; (b) the output of a hysteresis
system.
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Figure 2.2: Phase transition of a hysteresis system.
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Figure 2.3: Hysteresis behavior: (a) the input of a hysteresis system; (b) the phase transition of a
hysteresis system.
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Figure 2.4: Hysteresis behavior: (a) the input of a hysteresis system; (b) the input of a hysteresis
system; (c) the phase transition of a hysteresis system.

2.1.2 Static Hysteresis Nonlinearity

Static hysteresis nonlinearity is also an important quality of standard hysteresis systems [7].

What the term “static” means is that the output depends only on the past extremum values of

input. In another word, how fast does the input change doesn’t influence on the phase transition.

Fig. 2.4 is an experiment which is used to illustrate this phenomenon. Fig. 2.4(a) and Fig. 2.4(b)

are different inputs but they has the same extremum values. Both phase transitions are plotted on

Fig. 2.4(c), and one can find that their phase transition are almost overlapping.
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2.2 Preisach Model

The Preisach model represents the input and output relations of a system with hysteresis by a

double integral formula as below

f(t) =

∫ ∫

α≥β

µ(α, β)γαβ[u(·)](t)dαdβ (2.1)

whereu(t) denotes the input signal,f(t) is the system response output,µ(α, β) is the weighting

function, andγαβ[u(·)](t) is an operator with two distinct output values, as discussedlater below.

The ideal of the Preisach model, therefore, is to regard a hysteresis transducer as the sum of an

infinite set of weighted simplest hysteresis operatorsµ(α, β)γαβ[u(·)] shown in Fig. 2.5 which

indicates that the inputu(t) is applied to a system of parallel connected weighted two-position

relays, and then their individual outputs integrated over all the values ofα andβ [7].

u(t)

f(t)
∑

γα1β1
[u(·)](t)µ(α1, β1)

γα2β1
[u(·)](t)µ(α2, β1)

γα2β2
[u(·)](t)µ(α1, β1)

γαnβn
[u(·)](t)µ(αn, βn)

Figure 2.5: Block diagram interpretation of the Preisach model.

2.2.1 Hysteresis Operator

The hysteresis operatorγαβ is also called the relay operator where the valuesα andβ corre-

spond to “up” and “down” switching values of input, respectively [7, 8]. In this thesis, we assume

thatα ≥ β. The operator is characterized by its switching valuesα andβ, and illustrated by a rect-

angular loop on the input-output phase diagram, depicted inFig. 2.6(a). As shown in the figure,

the operator output ofγαβ[u(·)] remains to be 0 until the input is above the valueα and the output

6



remains to be 1 until the input is below the valueβ. To demonstrate further the operator function,

Fig. 2.6(b) shows the operator output when the input is increasing and Fig. 2.6(c) illustrates the

operator output when the input is decreasing.

t

1

0

t

1

0

1

0

(a) (b) (c)

α α

α

β
β

β

γαβ[u(·)](t)

γαβ[u(·)](t)γαβ[u(·)](t)

u(t) u(t)

u(t)

u(t)

u(t)

Figure 2.6: The hysteresis operator: (a) the phase diagram;(b) the operator output when the input
u(t) is increasing; (c) the operator output when the inputu(t) is decreasing.

2.3 Preisach Plane

The relay operator is the core of the Preisach model; its function can be clarified via the

geometric interpretation, called the Preisach plane. The triangle regionP shown in Fig. 2.7 is

referred to as the Preisach plane, where the region is definedasP = {(α, β) | 0 ≤ β ≤ α, 0 ≤
α ≤ umax, 0 ≤ β ≤ umax}, with umax denoting the maximum value of inputu(t). Because the

operator output is zero for(α, β) outside the regionP, we can assume that the weighting function

µ(α, β) also equals zero outside the regionP. The relay operator output for a given input can be

described as to paint the Preisach plane into two subregionsP+ andP− whereP+(t) = {(α, β) ∈
P | γαβ[u(·)](t) is + 1} andP−(t) = {(α, β) ∈ P | γαβ[u(·)](t) is 0}; henceP+(t)∪P−(t) = P
at all times. For a given inputu(t), there exits a one-to-one mapping between operatorsγαβ[u(·)]
and each point(α, β) of the Preisach plane. The point(α, β) corresponding to the relay operator

output, with switching valuesα andβ, is at state +1 if it lies inP+ and at state 0 if it is inP−. This

geometrical interpretation of the relay operator enables arealization of the Preisach model using

the first-order reversal curves (FORC), as discussed later in section 2.4.

7
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β
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u(t)

umax

P

Figure 2.7: The Preisach plane.

2.3.1 Geometric Interpretation of the Relay Operator

Assume first the system is initially at rest; that is, the system input and output are both zero and

the values of allγαβ[u(·)] are also zero. As the input increases from zero to a valueu1, γαβ[u(·)]
will be switched to the +1 state if the switching valueα are less than the current input valueu1.

In this case, the Preisach plane is divided into two regions,shown in Fig. 2.8(a). When the input

changes direction and decreases fromu1 to a valueu2, then the operator outputγαβ[u(·)] will be

switched to the 0 state for the valueβ greater thanu2. This direction change will result in the

change in the Preisach plane, as depicted in Fig. 2.8(b). Therefore, as the input decreases, the

regionP− widens or equivalently the regionP+ narrows.

( ),

( ),

( ),

( ),

(a) (b)

αα

ββ

α1
α1

α1

α2

α2

α2

β1

β1

β1

β1

β2

β2

γαβ[u(·)](t)

γαβ[u(·)](t)γαβ[u(·)](t)

γαβ[u(·)](t)

u(t)

u(t)u(t)

u(t)
u1

u1

u1 u2

u2

u2

P−

P−

P+P+

Figure 2.8: The interpretation of relay operator via Preisach plane: (a) when the input increases
from zero tou1; (b) when the input changes direction and decreases fromu1 to u2.
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From the division of the Preisach plane, it can record ascending and descending changes of the

input u(t) geometrically. By generalizing the previous analysis, theregionP is divided intoP+

andP− by the interface link; the interface link moves up asu(t) increases, and moves from right

to left asu(t) decreases as illustrated in Fig. 2.9. Using the results thatthe relay operator output is

0 inP− and 1 inP+ and the disjoint of the two subregions, the Preisach model output (2.1) can be

written as:

f(t) =

∫ ∫

α≥β

µ(α, β)γαβ[u(·)](t)dαdβ =

∫ ∫

P

µ(α, β)γαβ[u(·)](t)dαdβ

=

∫ ∫

P+

µ(α, β)γαβ[u(·)](t)dαdβ +

∫ ∫

P−

µ(α, β)γαβ[u(·)](t)dαdβ

=

∫ ∫

P+

µ(α, β)dαdβ (2.2)

The integration region is constrained to be inP+.

( ),( ),

( ),
( ),

α

βm0

m0

M1

M1 M1

M2

M2

M2

m1

m1

m1

m2

m2

u(t)

t

P−

P+

Figure 2.9: A changing input and its memory formation mechanism of the Preisach plane.

2.3.2 Wiping-Out Property

Next we discuss the wiping-out property; it clarifies that todetermine the current Preisach

model output doesn’t have to memorize all the past input extremum but only parts of them [2,

7]. This property is illustrated in Fig. 2.10. Assume the input u(t) have reached to one local

maximum valueM1 and thenu(t) reaches to another local maximum valueM2 later. If M2 is

smaller thanM1, the Preisach plane as shown in Fig. 2.10(a), theM1 should be record to determine

the interface link of the Preisach plant as stated in section(2.3.1). If M2 is equal to or greater

thanM1, however, the previous input maximumM1 in the Preisach plane would be wiped out as

illustrated in Fig. 2.10(b)(c).

The wiping-out property means that the input extremum whichbe wiped out are not needed

to determine the interface link of the Preisach plane; what we need to memorize are called the

9



(a)

(b)

(c)

α

α

α

β

β

β

M1

M1

M1

M1

M1

M1

M2

M2

M2M2

u(t)

u(t)

u(t)

t

t

t

P−

P−

P−

P+

P+

P+

Figure 2.10: Wiping out property: (a)M2 < M1 (b) M2 = M1 (c) M2 > M1.

alternating series of the input extremum, explained as below. Consider a particular inputu(t) in

the time interval[t0, t′] shown in Fig. 2.11. Assume thatu(t0) = m0 = 0. We use the notations

Tk for the time the global maximumMk is reached andtk for the time the global minimummk is

reached as shown in Fig. 2.11. The alternating series of the input extremum is defined as a tuple

10



s(t0, u(t′)) = {M1, m1, . . . , Mk, mk, . . .} (k = 1, 2, . . .), where

Mk = max
[tk−1,t′]

u(t) = u(Tk) (2.3)

and

mk = max
[Tk,t′]

u(t) = u(tk) (2.4)

u(t)

t
t1 t2 tkT1 T2 Tk

M1

M2 Mk

m1

m2

mk

t0

Figure 2.11: Alternating series of the input extremum.

2.4 First Order Reversal Curve

The geometric interpretation of the relay operator via the Preisach plane poses a practical

way to determine the weighting parametersµ(α, β) and to realize the Preisach model. The ap-

proach uses a set of first order reversal curves (FORC) which can be obtained experimentally. A

FORC is composed of two branches, an ascending branch and a descending branch. When the

input increases from the initial 0 to some valueM , the corresponding Preisach plane is shown

in Fig. 2.12(a), yielding an ascending branch on the phase diagram. One practical demonstration

of a practical micro piezoelectric actuator for an increasing input is also shown in Fig. 2.13(a).

The input, then, decreases fromM to some valuem, the corresponding Preisach plane is shown

in Fig. 2.12(b), a descending branch is formed on the input-output phase diagram. One practical

measurement is also shown in Fig. 2.13(b). The term “first-order” is used to emphasize the fact

that each of these curves is formed after the first reversal ofthe input.
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(a) (b)

αα

ββ
m

MM

P+ P+

Figure 2.12: The change on the Preisach plane to yield a FORC:(a) the input increases from 0 to
some valueM ; (b) then the input decreases fromM to some valuem.
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Figure 2.13: First order reversal on the phase diagram:(a) an ascending branch; (b) an descending
branch.

In order to connect FORC and the algebraic calculation of model output, define a function

fαβ(M, m) is the output of the plant as the input increases from 0 toM and then decreases tom.

Hence,fαβ(M, m) denotes the ending value of a descending branch of FORC. Thisvalue can be

obtained using (2.2) and Fig. 2.12, yielding

fαβ(M, m) =

∫ ∫

P+

µ(α, β)dαdβ =

∫ M

0

∫ α

0

µ(α, β)dβdα−
∫ M

m

∫ α

m

µ(α, β)dβdα (2.5)

SubstitutingM for m in (2.5), we obtain

fαβ(M, M) =

∫ M

0

∫ α

0

µ(α, β)dβdα −
∫ M

M

∫ α

M

µ(α, β)dβdα =

∫ M

0

∫ α

0

µ(α, β)dβdα (2.6)

The valuefαβ(M, M) represents the beginning value of a descending branch and equivalently the

ending value of a ascending branch of FORC. This result enables us to determine the weighting

parameters experimentally.
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2.4.1 Experimental Determination of Weighting Function

The weightingµ(α, β) function can be determined from the FORC which can be obtained

experimentally. That is, one can collect experimentally a sets offαβ(M, m) with variousM andm

values by measuring the system output with an input increasing from 0 toM , and then decreasing

from M to m. Since we can obtain the relation below by taking partial derivatives of (2.5),

∂2fαβ(M, m)

∂M∂m
= − ∂

∂M

∫ M

m

[
∂

∂m

∫ α

m

µ(α, β)dβ

]

dα =
∂

∂M

∫ M

m

µ(α, m)dα = µ(M, m)

(2.7)

It is clear from (2.7) that if thefαβ(M, m) is known for all points(M, m), the weighting func-

tion µ(α, β) can be determined. Then, the Preisach model output can be evaluated usingµ(α, β)

and the model equation. The approach using weighting parameter first to evaluate the model out-

put is unappealing because of two difficulties. First, to evaluate the Preisach model output using

µ(α, β) requires numerical double integration, which is a complex and time-consuming procedure.

Second, the determination ofµ(α, β) requires the differentiations of experimental data, whichmay

amplify errors in the experimental data. One practical and popular approach to evaluate model out-

put using FORC is discussed in the following.

2.4.2 Numerical Realization of the Preisach Model

We have seen that the evaluation of the Preisach model outputusingµ(α, β) is complex and

may amplify errors. An alternative method, called numerical implementation of the Preisach

model, is discussed. This method evaluates the Preisach model usingfα,β(M, m) directly. In

order to develop the numerical implementation of the Preisach model, the ascending inputu(t)

is discussed first. The change of this input is from 0 toM1 and then tom1, The corresponding

change on Preisach plane is shown in Fig. 2.14(a)(b)(c), andthe output of the Preisach model can

be written as:

f(t) =

∫ M1

0

∫ α

0

µ(α, β)dβdα−
∫ M1

m1

∫ α

m1

µ(α, β)dβdα +

∫ u(t)

m1

∫ α

m1

µ(α, β)dβdα (2.8)

Setm0 = 0, from (2.5), (2.6) and (2.8), we derive the following expression forf(t) in the case of

increasing input:

f(t) = [fαβ(M1, M1) − fαβ(M1, m0)] − [fαβ(M1, M1) − fαβ(M1, m1)]

+ [fαβ(u(t), u(t)) − fαβ(u(t), m1)]

= [fαβ(M1, m1) − fαβ(M1, m0)] + [fαβ(u(t), u(t)) − fαβ(u(t), m1)] (2.9)
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In general, asu(t) is ascending,

f(t) =
n∑

k=1

[fαβ(Mk, Mk) − fαβ(Mk, mk−1)] + [fαβ(u(t), u(t)) − fαβ(u(t), mn)] (2.10)

wherem0 = 0 and{M1, m1, . . . , Mn, mn} is the alternating series of the input.

Next consider that the inputu(t) is descending, the change of this input is from 0 toM1 and then

tom1, and then toM2, the corresponding change on Preisach plane is shown in Fig.2.14(a)(b)(c)(d).

Similarly, the output of the Preisach model can be written as:

f(t) = [fαβ(M1, m1) − fαβ(M1, m0)]

+ [fαβ(M2, M2) − fαβ(M2, m1)] − [fαβ(M2, M2) − fαβ(M2, u(t))]

= [fαβ(M1, m1) − fαβ(M1, m0)] + [fαβ(M2, u(t)) − fαβ(M2, m1)] (2.11)

In general, asu(t) is descending,

f(t) =

n∑

k=1

[fαβ(Mk, mk) − fαβ(Mk, mk−1)] + [fαβ(Mn+1, u(t)) − fαβ(Mn+1, mn)] (2.12)

wherem0 = 0 and{M1, m1, . . . , Mn, mn, Mn+1} is the alternating series of the input.

In another aspect, we can also utilize the alternating series to simplify (2.10) and (2.12). As-

sumeu(t) is ascending,s = {M1, m1, . . . , mn} andu(tn) = mn; (2.10) can equivalently written

as:

f(t) = f(tn) + [fαβ(u(t), u(t)) − fαβ(u(t), mn)] (2.13)

Assumeu(t) is descending,s = {M1, m1, . . . , Mn−1, mn−1, Mn} andu(Tn+1) = Mn+1; (2.10)

can equivalently written as:

f(t) = f(Tn) + [fαβ(Mn, u(t)) − fαβ(Mn, Mn)] (2.14)

From the above discussion, the numerical implementation ofthe Preisach model can be ob-

tained by combining the Preiasch plane andfαβ(M, m), which can be used for evaluation of the

Preisach model output; this approach avoids the trouble of differentiation and integration.
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(a) (b) (c) (d)

αααα

ββββ
u(t)

u(t)

m1m1m1

M1M1M1M1

M2

Figure 2.14: Corresponding change on Preisach plane of an input:(a) from 0 toM1; (b) from M1

to m1; (c) fromm1 to u(t); (d) fromM2 to u(t).
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Chapter 3

Preisach Model Realization and Inverse
Preisach Model

This chapter investigates practical approaches to findfαβ(M, m), including the polynomial

approximation, our new approach. In Chapter 2, a numerical implementation of the Preisach

model has been developed. The two formulations (2.13) and (2.14) expressed withfα,β(M, m)

can be used for evaluating the Preisach model output. From the experimental FORC measurement,

we can collect the data offαβ(M, m) which can be used to predict the Preisach model outputf(t).

In practice, however, it is impossible to obtain all values of fαβ(M, m) because the completed

information offαβ(M, m) requires infinite and uncountable experiments. One realizable method to

determine values offαβ(M, m) is to find finite data offαβ(M, m) and store it as a table. When we

need a value offαβ(M, m), we can obtain its value by the interpolation using its neighbors stored

in the table. In this chapter, we introduce three methods to approximatefαβ(M, m). They are

the table method [10, 13], the polynomial approximation andadaptive polynomial approximation,

respectively.

The remainder of this chapter introduces inverse Preisach model [9, 13]. The control theory

is focus on determine an input feed to the system such that desired output has a good tracking

with system output. One way to achieve this goal is using inverse system; that is, to generate

a system has inverse relation between input and output corresponding with the original system.

Realization the Preisach model using the polynomial approximation can describe the system with

hysteresis via polynomial equations; it’s possible to find the inverse system with hysteresis by

solving polynomial equations.
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3.1 Table Method

Linear interpolation is a very intuitive way to estimate values between two known values [11].

As an example, if you want to estimatex shown in Fig. 3.1, a fundamental formula for finding

internal point of division is:

x = (1 − r)a + rb (3.1)

a bx

r 1 − r

Figure 3.1: Linear interpolation betweena andb.

If a point (M, m) belongs to a rectangular cell formed by(M1, m1), (M1, m2), (M2, m1),

(M2, m2), and we havefαβ(M1, m1) = fM1m1
, fαβ(M1, m2) = fM1m2

, fαβ(M2, m1) = fM1m1
,

fαβ(M2, m2) = fM2m2
shown in Fig. 3.2. Now we want to approximatefαβ(M, m) = fMm [10].

Assume thatfαβ(M1, ·), fαβ(M1, ·), fαβ(M1, ·) are linear functions, changes fromfM1m1
to fM2m1

and fromfM1m2
to fM2m2

are also linear. Using 3.1, we have:

fL =
(M2 − M)fM1m2

+ (M − M1)fM2m2

M2 − M1
,

fR =
(M2 − M)fM1m1

+ (M − M1)fM2m1

M2 − M1
,

fMm =
(m − m1)fL + (m2 − m)fR

m2 − m1
(3.2)

fM1m2

fM1m1

fM2m2

fM2m1 fLfR

fMm

fMm

M2 − M

M − M1

m2 − m m − m1

fαβ(M1, ·)

fαβ(M, ·)

fαβ(M2, ·)

Figure 3.2: Approximatefαβ(M, m) where (M,m) belongs to a rectangular cell.

If a point (M, m) belongs to a triangular cell formed by(M1, m1), (M2, m1), (M2, m2), and

fαβ(M1, m1) = fM1m1
, fαβ(M2, m1) = fM1m1

, fαβ(M2, m2) = fM2m2
, shown in Fig. 3.3. Now we
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want to approximatefαβ(M, m) = fMm [10]. Under the same assumption and a little modification,

we have:

fR = fM2m2
, fL =

(M2 − M)fM1m2
+ (M − M1)fM2m2

M2 − M1
,

fMm =
(m − m1)fL + (m2 − m)fR

m2 − m1
(3.3)

fM1m1

fM2m2

fM2m1

fLfR

fMm

fMm

M2 − M

M − M1

m2 − m m − m1

Figure 3.3: Approximatefαβ(M, m) where (M,m) belongs to a triangular cell.

3.2 Polynomial Approximation

It is convenient to investigate the measured data using an analyzable function. This is also

called curve fitting and the polynomial function is commonlyused [11]. Our goal in this section is

to fit the samples of a finite number of FORC by polynomial functions.

3.2.1 Polynomial Curve Fitting

Consider the polynomial function given by

F (x) = c0 + c1x + . . . cnxn or F (x) =

n∑

j=0

cjx
j (3.4)

to fit k pairs of data(xi, yi), i = 1, . . . k. Here we define the difference between the data and the fit

function at each point isri = F (xi) − yi, whereri is called the residual for the data point. We can

choose one norm
∑

|ri|, infinite normmax
all i

|ri| or two norm
∑

r2
i as the criterion for minimization.

For statistical and computational reasons [12], two norm ismostly used and it is given by

ρ =
1

k

k∑

i=1

r2
i (3.5)
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and
√

ρ is called the root mean square (RMS) error. In other word, ourobject is to find the

coefficientscj of a polynomialF (x) such that it can fit the datayi in a least squares sense.

Denoter =
[

r1 r2 · · · rk

]T
, and

r =








r1

r2
...
rk








=








∑n

j=0 cjx
j
1 − y1

∑n

j=0 cjx
j
2 − y2

...
∑n

j=0 cjx
j
k − yk








=








1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2
...

1 xk x2
k · · · xn

k

















c0

c1

c2
...
cn










−








y1

y2
...
yk








= Ac − y (3.6)

whereA =








1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2
...

1 xk x2
k · · · xn

k








, c =










c0

c1

c2
...
cn










, y =








y1

y2
...
yk








.

and now

ρ =
1

k

k∑

i=1

r2
i =

1

k
‖r‖2

2 =
1

k
‖Ac − y‖2

2 (3.7)

To findc, differentiate‖r‖2
2 = cTATAc− 2yTAc + yTy with respect toc and set it to zero.

2cTATA − 2yTA = 0 ⇒ ATAc = ATy ⇒ c = (ATA)−1ATy (3.8)

Here we suppose thatxh 6= xl for h 6= l. BecauseAa = 0 is only valid under the conditiona = 0

ask ≥ n, A is full rank implies thatATA is nonsingular.

3.2.2 Polynomial Approximation

For an particularM , fαβ(M, m) is a monotonic decreasing function of single variablem

shown in Fig. 3.4, so using quadratic polynomial functions to fit fαβ(M, m) is a suitable choice.

That is,

fαβ(M, m) = c0(M) + c1(M)m + c2(M)m2 (3.9)

whereci(M) is a notation to indicate the coefficient corresponding withM . However, the coef-

ficients of curve fitting method varies withM , so to know all of them is also impossible. Hence

we also use the interpolation to approximate coefficients that are not derived from experiment. For
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Mk < M < Mk+1,

ci(M) =
Mk+1ci(Mk) + Mkci(Mk+1)

Mk+1 − Mk

, wherei = 0, 1, 2. (3.10)
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Figure 3.4: Using a function to fitfαβ(M, m).

According to (2.13) and (2.14), the Preisach model output can be determined by a storage part

and a update part. Now we substitute for The update part by using (3.9). If the inputu(t) is

ascending,

f(t) = f(tn)
︸ ︷︷ ︸

storage part

+ [fαβ(u(t), u(t)) − fαβ(u(t), mn)]
︸ ︷︷ ︸

update part

(3.11)

= f(tn) + [c2(u(t))u2(t) + c1(u(t))u(t) + c0(u(t))] − [c2(u(t))m2
n + c1(u(t))mn + c0(u(t))]

= f(tn) + c2(u(t))(u2(t) − m2
n) + c1(u(t))(u(t) − mn) (3.12)

Defineci(p∆) = csi[p], i = 0, 1, 2, for u(t) = p∆ + r, 0 ≤ r < ∆,

ci(u(t)) = (1 − r

∆
)csi[p] +

r

∆
csi[p + 1] (3.13)

then (3.12) becomes

f(t) = f(tn) + θT x1 (3.14)
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where

θ =







cs2[p]
cs2[p + 1]

cs1[p]
cs1[p + 1]







, andx1 = (u(t) − mn)







(1 − r
∆

)(u(t) + mn)
r
∆

(u(t) + mn)
(1 − r

∆
)

r
∆







(3.15)

If the inputu(t) is descending,

f(t) = f(Tn)
︸ ︷︷ ︸

storage part

+ [fαβ(Mn, u(t)) − fαβ(Mn+, Mn)]
︸ ︷︷ ︸

update part

(3.16)

= f(Tn) + c2(Mn)(u2(t) − M2
n) + c1(Mn)(u(t) − Mn) (3.17)

ForMn = p∆ + R, 0 ≤ R < ∆,

ci(Mn) = (1 − R

∆
)csi[p] +

R

∆
csi[p + 1] (3.18)

then (3.17) becomes

f(t) = f(Tn) + θT x2 (3.19)

where

θ =







cs2[p]
cs2[p + 1]

cs1[p]
cs1[p + 1]







, andx2 = (u(t) − Mn)







(1 − R
∆

)(u(t) + Mn)
r
∆

(u(t) + Mn)
(1 − R

∆
)

R
∆







(3.20)

For higher resolution, both the table method and the polynomial approximation needs more

memory; but the memory growth of the polynomial approximation is less than the table method.

Consider a division of the input region into N parts, the number of data should be storage isN(N+1)
2

for table method and2N for polynomial approximation.

3.3 Adaptive Polynomial Approximation

The polynomial approximation is easier with respect to modification than the the table method.

In this section we develop an adaptive algorithm for identification of polynomial coefficients which

can improve model accuracy [14]. Base on polynomial approximation method discussed in pre-

vious section, we obtain a set of coefficientsc that can be use to describefαβ(M, m), however,

these coefficients may be inaccurate. A system model with inaccurate parameters can be regulated

by update its parameters via adaptive filters such as LMS or RLS, shown in Fig. 3.5, the adaptive

model output is compared with the plant output, and the erroris used to update the adaptive system

parameters. So now we adopt adaptive filters to modify polynomial approximation Preisach model

for accuracy improvement.
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fInput data
u

Plant output

fm
Model output

Error data
e

Plant 

Model 

Adaptive algorithm

Figure 3.5: Block diagram of adaptive system identification.

3.3.1 Adaptive Polynomial Approximation with LMS

Steepest descent algorithm is the most common and easiest one of adaptive algorithms [16].

Assume the adaptive model outputfm(θ, u) is a function of parametersθ and the inputu, and the

plant outputf(u) is a function of the inputu. Define the error as

e = f(u) − fm(θ, u) (3.21)

and a cost function

J = e2 = (f(u) − fm(θ, u))2 (3.22)

The steepest descent algorithm is:

θk+1 = θk − µ∇θJ = θk − 2eµ∇θ(f(u) − fm(θ, u)) ⇒ θk+1 = θk + 2µe∇θfm(θ, u) (3.23)

for an FIR,fm(θ, u) = θT u, then∇θfm(θ, u) = u, so the steepest descent algorithm can be

simplified as

θk+1 = θk + 2µeu (3.24)

Using (3.14), (3.19), (3.24), we obtain following update formulations:

If the inputu(t) is ascending,

θk+1 = θk + 2µex1 =







cs2,k[p]
cs2,k[p + 1]

cs1,k[p]
cs1,k[p + 1]







+ 2µe(u(t) − mn)







(1 − r
∆

)(u(t) + mn)
r
∆

(u(t) + mn)
(1 − r

∆
)

r
∆







(3.25)

If the inputu(t) is descending,

θk+1 = θk + 2µex2 =







cs2,k[p]
cs2,k[p + 1]

cs1,k[p]
cs1,k[p + 1]







+ 2µe(u(t) − Mn)







(1 − R
∆

)(u(t) + Mn)
R
∆

(u(t) + Mn)
(1 − R

∆
)

R
∆







(3.26)
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3.4 Inverse Preisach Model

We have seen that how does the Preisach model character the system with hysteresis and

introduced three methods to realize it. However, to establish the inverse Preisach model is also

an important problem in control aspect. As the Preisach model is realized by the polynomial

approximation, the system with hysteresis can be describedby a series of polynomial functions.

This section establishes the inverse Preisach model by solving polynomial functions.

3.4.1 Cubic Equation

Before combining the inverse Preisach model with solving polynomial functions, we prepare

formula for cubic equation which is needed in solving polynomial functions later [15].

A cubic equation,u3 + pu2 + qu + r = 0 can be reduced to the simpler form,

x3 + ax + b = 0 (3.27)

by substituting foru the value,x − q/3. Where

a =
1

3
(3q − p2) , andb =

1

27
(2p3 − 9pq + 27r) (3.28)

For solution, let

A =
3

√

− b

2
+

√

b2

4
+

a3

27
, andB =

3

√

− b

2
−

√

b2

4
+

a3

27
(3.29)

then the values ofx will be given by

x = A + B , − A + B

2
+

A − B

2

√
−3 , − A + B

2
− A − B

2

√
−3 (3.30)

However, only real roots are needed in our problem. For this reason, next we introduce trigono-

metric solutions of the cubic equation. Consider the trigonometric identity

4 cos3 θ − 3 cos θ − cos 3θ ≡ 0 (3.31)

Let x = m cos θ, then

x3 + ax + b ≡ m3 cos3 θ + am cos θ + b ≡ 4 cos3 θ − 3 cos θ − cos 3θ ≡ 0 (3.32)

Hence
4

m3
= − 3

am
= −cos 3θ

b
⇒ m = 2

√

−a

3
, cos 3θ =

3b

am
= D (3.33)
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If a < 0 and|D| ≤ 1, then

cos 3θ = D ⇒ θ =
1

3
arccos D , θ =

1

3
arccos(D ± 2π

3
) (3.34)

and the cubic equation has three real roots:

x = m cos θ = m cos(
1

3
arccos D) , m cos(

1

3
arccos(D ± 2π

3
)) (3.35)

If a < 0 andD > 1,

cos 3θ = D = cosh(j(3θ + 2kπ)) ⇒ θ = −1

3
j cosh−1 D , − 1

3
j cosh−1(D ± 2π

3
) (3.36)

and the cubic equation has one real root:

x = m cos θ = m cosh jθ = m cosh(
1

3
cosh−1 D) (3.37)

If a < 0 andD < −1,

cos(3θ − π) = −D = cosh(j(3θ + (2k − 1)π)) ⇒ θ = −1

3
j cosh−1 D , − 1

3
j cosh−1(D ± π

3
)

(3.38)

and the cubic equation has one real root:

x = m cos θ = m cosh jθ = m cosh(
1

3
cosh−1(−D)) (3.39)

If a > 0, then

m = 2

√

−a

3
= j2

√
a

3
= jm′ , D =

3b

am
= −j

3b

am′
= −jD′ (3.40)

cos 3θ = D ⇒ j cos 3θ = D′ = j sin((2k +
1

2
π) − 3θ) = sinh(j[(2k +

1

2
π) − 3θ])

⇒ θ =
π

6
+

1

3
j sinh−1 D′ ,

5π

6
+

1

3
j sinh−1 D′ ,

3π

2
+

1

3
j sinh−1 D′ (3.41)

and the cubic equation has one real root:

x = m cos θ = m cos(
3π

2
+

1

3
j sinh−1 D′)

= m cos(
3π

2
) cos(

1

3
j sinh−1 D′) − m sin(

3π

2
) sin(

1

3
j sinh−1 D′)

= m sin(
1

3
j sinh−1 D′) = jm sinh(

1

3
sinh−1 D′) = m′ sinh(

1

3
sinh−1 D′) (3.42)
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3.4.2 Solving Polynomial of the Preisach Model

Because of the existence of formula for solving polynomial function, the input can be obtain

by solving (3.12) or (3.17) for the desired output.

As the desired outputfd is ascending, we have to solve (3.12). Forp∆ ≤ u < (p + 1)∆,

ci(u) =
(u − p∆)csi[p + 1] + ((p + 1)∆ − u)csi[p]

∆

=
csi[p + 1] − csi[p]

∆
u + ((p + 1)csi[p] − pcsi[p + 1]) , i = 1, 2 (3.43)

Replaceci(u(t)) in the (3.12) with (3.43)

u3 +
((p + 1)cs2[p] − pcs2[p + 1])∆ + cs1[p + 1] − cs1[p]

cs2[p + 1] − cs2[p]
u2

+
((p + 1)cs1[p] − pcs1[p + 1])∆ + (cs2[p] − cs2[p + 1])m2

n + (cs1[p] − cs2[p + 1])mn

cs2[p + 1] − cs2[p]
u

+
(pcs2[p + 1] − (p + 1)cs2[p])m2

n + (pcs1[p + 1] − (p + 1)cs1[p])mn + f(tn) − fd

cs2[p + 1] − cs2[p]
∆

= u3 + pu2 + qu + r = 0 (3.44)

This is a cubic equation, and can be solved by formula introduced last section.

As the desired outputfd is descending, we have to solve (3.17). ForM = p∆+R, 0 ≤ R < ∆,

c2(Mn)u2 + c1(Mn)u + f(Tn) − fd − c2(Mn)M2
n − c1(Mn)Mn = au2 + bu + c = 0 (3.45)

whereci(Mn) can be computed using (3.18). (3.45) is a quadratic equation, and

u =
−b ±

√
b2 − 4ac

2a
(3.46)
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Chapter 4

Applications for Piezoelectric Actuators

Piezoelectric actuators have advantages of high stiffness, fast frequency response and high

precision [16] have been widely used in precise industrial applications [17, 18]. The displacement

of a micro piezoelectric actuator varies with actuator voltage and the relation between actuator

voltage and displacement is a kind of hysteresis phenomenon. In this chapter, we use different

realizations of Preisach model to predict the displacementof a micro piezoelectric actuator and the

inverse Preisach model introduced in this thesis to controlit. In these applications, the input of the

Preisach model is actuator voltage and the output of the Preisach model is displacement.

4.1 Experimental Setup

The micro piezoelectric actuator studied in these experiments is model PMT 150/40 Transla-

tion Stage PMT with Central Piezoelement, which has a maximum applied voltage of150V and

a maximum displacement of45µm. A dSPACE system (Model no. DS1104 PPC) is used for

acquisition digital data and real-time control. A power amplifier (Model no. PosiCon 150-3) with

a gain of 30 is used to drive the micro piezoelectric actuator, so the actuator voltage given from

PC-Based system is0 ∼ 5V . The block diagram of the entire experimental system set-upis shown

in Fig. 4.2 and the real system is shown in Fig. 4.1.

To implement the Preisach model, several first order reversal curves measured for micro piezo-

electric actuator first. Divide0 ∼ 5V into 10 segments, the input voltage of micro piezoelectric

actuator is increased from0V to some divided point and then decreased to0V . After the input

begins decreasing from some divided point to 0, we sample thedisplacements of micro piezoelec-

tric actuator every0.45V change of input voltage and store these sampling data in Table 4.1. The

first column denotes the value ofM , and the first row denotes the value ofm. In the predication

experiment we use a sinusoidal and input voltage that with a frequency of 1 rad/sec, an amplitude

of 2.25V and a bias of2.25V ; The input and output waveforms of micro piezoelectric actuator of
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Figure 4.1: Real system for experiment.

the predication experiment shown in Fig. 4.3, and the phase transition shown in Fig. 4.4. In the

tracking control experiment we use a sinusoidal desired output that with a frequency of 1 rad/sec,

an amplitude of15µm and a bias of16µm. The sampling time of the experiment is 0.01 sec., the

total time is 50 sec..

u fpiezoelectric

   actuator
sensor A/D

D/A

PC with dSPACE

   Plug−in Board

  power

amplifier

Figure 4.2: The block diagram of the entire experimental system.

4.2 Table Method

The displacement of micro piezoelectric actuator and the output of Preisach model realized

via table method are plotted together in Fig. 4.5(a). The difference between these two outputs,

defined as the model error, are shown in Fig. 4.5(b). The phasetransition of model and of plant

are plotted together in Fig. 4.6. The RMS of model error is1.0098µm, and the required number of

memory to store the table is 66.
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M/m 0 0.45 0.90 1.35 1.80 2.25 2.70 3.15 3.60 4.05 4.50

0 0
0.45 0.02 3.43
0.90 0.09 4.07 7.73
1.35 0.11 5.28 9.38 12.76
1.80 0.14 5.36 10.13 14.11 18.15
2.25 0.23 5.68 10.79 15.32 19.34 23.32
2.70 0.28 5.94 11.31 16.22 20.58 24.48 28.03
3.15 0.36 6.17 11.72 16.68 21.27 25.41 29.01 32.65
3.60 0.45 6.35 12.09 17.29 21.96 26.27 30.13 33.51 36.49
4.05 0.48 6.61 12.35 17.58 22.40 26.81 30.74 34.35 37.47 40.15
4.50 0.67 6.87 12.87 18.07 22.98 27.33 31.38 34.93 38.13 40.96 43.18

Table 4.1: Sampling data of FORC.
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Figure 4.3: The input and output of the micro piezoelectric actuator.

4.3 Polynomial Approximation

We apply the least-square approximation to sampling numbers of Table 4.1 to identify the

polynomial coefficients directly in this experiment. The polynomial coefficients are stored in Ta-

ble 4.2. Base on (3.12) and (3.17), the polynomial coefficients c0 is not needed for the Preisach

model realization. The displacement of micro piezoelectric actuator is compared with output of
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Figure 4.4: The phase transition of micro piezoelectric actuator.
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Figure 4.5: Prediction of micro piezoelectric actuator using Preisach model realization via table
method.
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Figure 4.6: Phase transition of micro piezoelectric actuator using Preisach model realization via
table method.

Preisach model which is realized via table method shown in the Fig. 4.7(a), and the model error

shown in the Fig. 4.7(b). The phase transition of model and ofplant are plotted together in Fig. 4.8.

The RMS of model error is1.4817µm, and the number of memory for polynomial coefficients is

22.

M c2 c1 c0

0 0 0 0
0.45 0 7.5778 0.02
0.90 -0.79012 9.2 0.09
1.35 -2.2099 12.328 0.1275
1.80 -1.1111 11.949 0.174
2.25 -1.0326 12.543 0.2525
2.70 -1.117 13.302 0.24619
3.15 -1.0256 13.439 0.37625
3.60 -1.091 13.954 0.39576
4.05 -1.058 14.075 0.49745
4.50 -1.0752 14.269 0.73091

Table 4.2: The coefficients of polynomial.
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Figure 4.7: Prediction of micro piezoelectric actuator using Preisach model realization via poly-
nomial approximation.
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Figure 4.8: Phase transition of micro piezoelectric actuator using Preisach model realization via
polynomial approximation.

4.4 Polynomial Approximation with Adaptive Identification

In this experiment we develop the least mean square (LMS) adaptive algorithm to obtain ac-

curacy polynomial coefficients and the data in Table 4.2 are used as the initial parameters. We test
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the step sizeµ = 10−4, µ = 10−3 andµ = 0.0005
1+u(t)

and the process of each is shown in Fig. 4.9. The

polynomial coefficients obtained by LMS adaptive algorithmwith step sizeµ = 0.0005
1+u(t)

are stored

in Table 4.3.
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Figure 4.9: Mean square error of the prediction of micro piezoelectric actuator for varying step-size
µ using adaptive polynomial approximation.

M c2 c1

0 0.5718 3.8438
0.45 -2.7323 7.3383
0.90 -2.3325 9.2038
1.35 -2.1626 10.8419
1.80 -1.7700 11.8186
2.25 -1.4588 12.3549
2.70 -1.1540 12.4685
3.15 -1.2125 13.2395
3.60 -1.2565 13.9011
4.05 -1.1797 14.0324
4.50 -1.0938 13.9965

Table 4.3: The coefficients of polynomial obtained by the LMSadaptive algorithm.
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Now we use new polynomial coefficients stored in Table 4.2 to predict the displacement of

micro piezoelectric actuator. The displacement of micro piezoelectric actuator is compared with

output of Preisach model which is realized shown in the Fig. 4.10(a), and the model error shown

in the Fig. 4.10(b). The phase transition of model and of plant are plotted together in Fig. 4.11.

The RMS of model error is1.5898µm.
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Figure 4.10: Prediction of micro piezoelectric actuator using Preisach model realization via adap-
tive polynomial approximation.

Obviously a bias is exists in the Fig. 4.10(b). If we survey Fig. 4.4 again, then we can observe

that there is another branch in the Fig. 4.4. This fact means the Preisach model should be modified

in the beginning of the micro piezoelectric actuator work. The Fig. 4.12 shows the phase transition

of the model error and the input in the beginning ascending branch. The relation between input

u(t) and errore(t) is roughly like a linear functionu(t) = 0.83e(t) for 0 < u(t) < 2.7; for

u(t) > 2.7, e(t) is roughly like a constant 2.2414. Then (3.12) in the beginning ascending branch

is modified :

f(t) =

{
f(tn) + c2(u(t))(u2(t) − m2

n) + c1(u(t))(u(t) − mn) + 0.83u(t) if 0 < u(t) < 2.7,
f(tn) + c2(u(t))(u2(t) − m2

n) + c1(u(t))(u(t) − mn) + 2.2414 if u(t) > 2.7
(4.1)

With this modification, we predict the displacement of micropiezoelectric actuator again. The

displacement of micro piezoelectric actuator is compared with output of Preisach model which is

33



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−5

0

5

10

15

20

25

30

35

40

45

input voltage (V)

ou
tp

ut
 d

is
pl

ac
em

en
t (

µm
)

model

plant

Figure 4.11: Phase transition of micro piezoelectric actuator using Preisach model realization via
adaptive polynomial approximation.
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Figure 4.12: Phase transition of the model error and the input.

realized shown in the Fig. 4.10(a), and the model error shownin the Fig. 4.13(b). The phase transi-
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tion of model and of plant are plotted together in Fig. 4.14. The RMS of model error is0.4539µm.

The model error of the Preisach model realization via the table method and the modified polyno-

mial approximation are plotted together in Fig. 4.15 for comparing.
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Figure 4.13: Prediction of micro piezoelectric actuator using Preisach model realization via modi-
fied polynomial approximation.

4.5 Tracking Control

This section presents experiments of tracking control of the micro piezoelectric actuator using

the inverse Preisach model introduced in chapter 3. The block diagram of the tracking control

system is shown in Fig. 4.16. The desired output compared with the displacement of the micro

piezoelectric of this experiment are plotted together in Fig. 4.17(a). The deference between these

two outputs, defined as the tracking error, are shown in Fig. 4.17(a). The RMS of tracking error

is 0.7079µm. To reduce tracking error, we use combine the inverse Preisach model with a PID

controller shown in Fig. 4.18 [9, 13]. The parameters of the PID controller areKp = 0.0452,

Ki = 2.9828 andKd = 0.0024. The desired output compared with the displacement of the micro

piezoelectric of this experiment are plotted together in Fig. 4.19(a). The tracking error are shown

in Fig. 4.19(b). The RMS of tracking error is0.2438µm.
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Figure 4.14: Phase transition of micro piezoelectric actuator using Preisach model realization via
modified polynomial approximation.
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Figure 4.15: Model error of the Preisach model realization via the table method and the modified
polynomial approximation.
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Figure 4.16: Block diagram of the tracking control system using inverse Preisach model.
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Figure 4.17: Tracking of micro piezoelectric actuator using inverse Preisach model.
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Figure 4.18: Block diagram of the tracking control system using inverse Preisach model with PID
controller.
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Figure 4.19: Tracking of micro piezoelectric actuator using inverse Preisach model with PID con-
troller.
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Chapter 5

Conclusions

A system with hysteresis nonlinearities is often difficult to describe accurately and may result

in unstable behaviors if not controlled appropriately. In this thesis, we adopt the Preisach model

to characterize hysteresis behaviors and propose to use polynomial approximation to realize the

Preisach model; this approach is then used to model the displacement of a real micro piezoelectric

actuator. The proposed approach can overcome the drawbacksof conventional table method; it

requires less memory space and enables the parameter tracking of hysteresis elements. We have

successfully obtained the polynomial coefficients to modelthe displacement of a micro piezoelec-

tric actuator; the obtained model compared with that via thetable method not only requires less

memory size but also yields a smaller modeling RMS error from1.0098µm via the table method to

0.4539µm. We also establish the inverse Preisach model base on the polynomial approximation;

this model is combined with the PID controller used for tracking control and yields small tracking

RMS error0.2438µm.
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