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Realization of Preisach Model Using Polynomial
Approximation with Applications for Micro
Piezoelectric Actuators

Student: Home-Young Win  Advisor: Dr. Mu-Huo Cheng

Institute of Electrical and Control Engineering
National Chiao-Tung University

Abstract

Modeling of systems with hysteresis nonlinearities hagixet considerable attention re-
cently due to the increasing accuracy requirement in eeging applications. Several models
have been developed to characterize systems with hystesssl the most popular one is the
Preisach model. The Preisach model to characterize theregst behavior can be represented by
infinite but countable first order reversal curves (FORC)ptactice, the conventional approach
to realize the Preisach model uses.;a déta table;.the dataioh whrrespond with the samples
of a finite number of FORC, then-the /madel-outputiis evaluatadhe linear interpolation from
the table data. This approach, however, sﬁfféfs from twwvlblagks: it requires a large amount
of memory in order to obtain an ‘accurate prediction of hstisr behavior and it is difficult or
even impossible to derive efficient ways to modify'the dabdetan order to reflect the aging or
timing effect of elements with hysteresis.” To overcome ¢hdrmwbacks, this thesis proposes to
use a set of polynomials instead of a data table for reatinaif the Preisach model. The proposed
approach reduces significantly the required memory bedtasly requires to store a small num-
ber of polynomial coefficients. Furthermore, the polyndne@efficients can be obtained using
the least-square approximation or the adaptive identificatlgorithm such that the tracking of
hysteresis model parameters is possible. The proposedagiphas been verified by the displace-
ment prediction and the tracking control of the micro pideogic actuator. We apply the least
mean square method to develop an adaptive algorithm fotifaation of the polynomial coeffi-
cients for the micro piezoelectric actuator; the resultieglization compared with the realization
via table method yields significant improvement in modelaacy as well as the reduction in the
required memory size.

Keywords Hysteresis, Preisach model, PZA, Polynomial
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Chapter 1

Introduction

1.1 Introduction of Hysteresis

Hysteresis is a nonlinear phenomenon occurring in manyneeging devices such as the
micro piezoelectric actuators (PZA), the shape memoryal{&MA), and the ferromagnetic ele-
ments [1, 3]. A system with hysteresis is usually difficulti@scribe accurately and may result in
unstable behaviors if not controlled apprbpriafely [3]efdfore, an accurate model of hysteresis is
critical in order to develop suitable:control algorithmsapplications with these systems [4]. The
Preisach model has been known-as'the mééfpbpular one tectdrara hysteresis behaviors [2, 7].
The model uses double integrals_‘With a relay‘_operatc‘)r, anghireg parameters to describe the
system input/output relation; this relation can be furtfegresented by an infinite but countable
first order reversal curves (FORC). The conventional apgrda realize the Preisach model for
a hysteresis system approximates the representation lsathpling of a finite number of FORC
and stores the sample data in a table [10, 13]. The model bistthen evaluated from the table
data and the given input by simple linear interpolation.sTdpproach, however, suffers from two
drawbacks: One is that it requires a large amount of memooyder to obtain an accurate pre-
diction of hysteresis behavior because the number of FORIte sampling resolution should
be increased. The other is that it is difficult or even implolesio derive efficient ways to adjust
the data table to reflect the parameter variations with agirigning effect. Hence, the realization
accuracy may degrade with time and eventually needs toldetha table.

To overcome these drawbacks, in this thesis we propose @ sesteof polynomials instead of a
data table for realization of the Preisach model. The pregapproach reduces the required mem-
ory because it only requires to store a small number of patyabcoefficients. Furthermore, the
polynomial coefficients can be obtained using the leasttsjapproximation [11] or the adaptive
identification algorithm [14] such that the tracking of lt&tsis model parameters is possible. The



proposed approach has been applied to model the displatefreemicro piezoelectric actuator.

We apply the least mean square (LMS) adaptive algorithm veldp an adaptive algorithm for

identification of the polynomial coefficients of the micreepoelectric actuator; the resulting re-
alization compared with the realization via table methadg significant improvement in model
accuracy as well as the reduction in the required memory size

1.2 Organization of this Thesis

The remainder of this thesis is divided to four chaptersuditlg conclusions. Chapter 2
reviews the hysteresis and the Preisach model. Chapteus?rdtes the difference between the
traditional method and our method to realize the PreisactiemoChapter 4 demonstrates the
applications of the micro piezoelectric actuators. The fthapter is the conclusions.



Chapter 2

Preisach Model Representation

In this chapter, the Preisach model to characterize thesre@s is discussed with the focus
on the representation of the model using FORC and its nualeémplementation via an infinite
number of FORC [2, 7].

2.1 Typical Properties of Hysteresis

Before introducing the Preisach moc‘le‘l,‘ we first review soypecal hysteresis properties
through few simple experiments-[9; 10]. ‘O;hie‘”can see that @sywith hysteresis is a nonlin-
ear system whose output depends not only on the cufrentlim;bﬂ:fhe past input [7]. Due to these
facts, it is difficult to express the hystereSis via‘a simp&thmematical form.

2.1.1 Hysteresis Loop

We begin to introduce hysteresis sketchily by a simpleftitatgon. Fig. 2.1(a) shows an input
of a system with hysteresis which increases to one valuelarmdecreases to the initial value;
Fig. 2.1(b) is the system response output and the systert/aybput relation, defined as the phase
transition, plotted on Fig. 2.2. As the input increasings #scending branch comes up in the
phase transition shown in Fig. 2.2; whereas the decreasmg results in descending branch. A
hysteresis loop is formed because of the ascending brasafyréies with the descending branch.
Hysteresis loops appear in the phase transition is one ofmtdger characteristics of a system
with hysteresis; it is obvious that a system with hysterssanonlinear system according to this
characteristic. Another major characteristic of a systdth twsteresis is that the output depends
on the past input. For instance, Fig. 2.3(b) has differeatéeding branches corresponding to the
same current input but the past input is different shown gn Ei3(a).
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system; (c) the phase transition of a hysteresis system.

2.1.2 Static Hysteresis Nonlinearity

Static hysteresis nonlinearity is also an important qualftstandard hysteresis systems [7].
What the term “static” means is that the output depends onlyhe past extremum values of
input. In another word, how fast does the input change doeshience on the phase transition.
Fig. 2.4 is an experiment which is used to illustrate thisngmeenon. Fig. 2.4(a) and Fig. 2.4(b)
are different inputs but they has the same extremum valueth [hase transitions are plotted on
Fig. 2.4(c), and one can find that their phase transition lanest overlapping.



2.2 Preisach Model

The Preisach model represents the input and output retatiba system with hysteresis by a
double integral formula as below

/ / (0, B s lu()] (1) dads (2.1)

wherew(t) denotes the input signaf,t) is the system response outpute, 3) is the weighting
function, andy.s[u(-)](¢) is an operator with two distinct output values, as discussied below.
The ideal of the Preisach model, therefore, is to regard tehs&s transducer as the sum of an
infinite set of weighted simplest hysteresis operajais, 5)v,s[u(-)] shown in Fig. 2.5 which
indicates that the inpui(t) is applied to a system of parallel connected weighted tw&itjom
relays, and then their individual outputs integrated oUeha values ol and g [7].

U(t) Pl Vo ["(')}(t)/i(ah@)

Y

Voo B1 [“()] (t)M(OQJ ﬁl) ‘

Vl""

o s a0, 51)

> Yans, W) () plan, Bn)

Figure 2.5: Block diagram interpretation of the Preisaclieto

2.2.1 Hysteresis Operator

The hysteresis operatoy,; is also called the relay operator where the valuesd 3 corre-
spond to “up” and “down” switching values of input, respeely [7, 8]. In this thesis, we assume
thata > (3. The operator is characterized by its switching valuesdj, and illustrated by a rect-
angular loop on the input-output phase diagram, depictédgn2.6(a). As shown in the figure,
the operator output of,s[u(-)] remains to be 0 until the input is above the valuand the output



remains to be 1 until the input is below the valileTo demonstrate further the operator function,
Fig. 2.6(b) shows the operator output when the input is a&ireg and Fig. 2.6(c) illustrates the
operator output when the input is decreasing.

Yap[u()](t)

(@) (0) ()

Figure 2.6: The hysteresis operator: (a) the phase diadi@rthe operator output when the input
u(t) is increasing; (c) the operator outptit whefithe inp(} is decreasing.

2.3 Preisach Plane

The relay operator is the core of fhe Preisach model; itstiomaan be clarified via the
geometric interpretation, called the Preisach plane. Tiaaedle regionP shown in Fig. 2.7 is
referred to as the Preisach plane, where the region is dedisi®d= {(«, ) | 0 < 8 < a,0 <
@ < Upaz, 0 < B < Upae }, With u,,,, denoting the maximum value of inputt). Because the
operator output is zero fdry, 3) outside the regiofP, we can assume that the weighting function
u(a, B) also equals zero outside the regiBn The relay operator output for a given input can be
described as to paint the Preisach plane into two subre@orend?~ whereP*(t) = {(«, ) €
P | vaplu(-)](t) is +1} andP~(t) = {(o, 5) € P | vaplu(-)](t) is 0}; henceP™ (1) UP~(t) = P
at all times. For a given input(t), there exits a one-to-one mapping between operatpsis(-)]
and each pointa, 5) of the Preisach plane. The poift, 5) corresponding to the relay operator
output, with switching values andg, is at state +1 if it lies infP™ and at state O if itis itP~. This
geometrical interpretation of the relay operator enablesafzation of the Preisach model using
the first-order reversal curves (FORC), as discussed lawzdtion 2.4.
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Figure 2.7: The Preisach plane.
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2.3.1 Geometric Interpretation of the Relay Operator

Assume first the system is initially at rest; that is, thesgsinput and output are both zero and
the values of alty,s[u(-)] are also zero, ;Asithe:input increases from zero to a vaJue,s|u(-)]

will be switched to the +1 state if the switehing valueare less than the current input value

In this case, the Preisach plane is divided into two régishewn in Fig. 2.8(a). When the input
changes direction and decreases fronio avalueu,, then the operator output,s[u(-)] will be
switched to the O state for the valilegreater t‘hamz. This direction change will result in the
change in the Preisach plane, as depicted in Fig. 2.8(b)refdre, as the input decreases, the

region’?~ widens or equivalently the regigRA™ narrows.

«

Yaplu()] (1)

Qy Uy

Figure 2.8: The interpretation of relay operator via Préisplane: (a) when the input increases
from zero touy; (b) when the input changes direction and decreases K0t w..



From the division of the Preisach plane, it can record asograhd descending changes of the
input u(¢) geometrically. By generalizing the previous analysis,régionP is divided intoP+
andP~ by the interface link; the interface link moves upd$) increases, and moves from right
to left asu(t) decreases as illustrated in Fig. 2.9. Using the resultshleatlay operator output is
0inP~ and 1inP* and the disjoint of the two subregions, the Preisach modelLb(2.1) can be
written as:

o= / e realu()()dads = / B)raslu()](#)dads
B / /p BPraslul))(D)dads + / / e B)vaglu())(t)dad
N / /p+ B)dads 2.2)

The integration region is constrained to beAn.

(‘Ml 7 Mo W ----- ( M, 7 my ) 7)_
My, p — — — — I / .

e e e e (M my )
(My ) my ) re

P+

My = = fm = = = = — — _—f = = — =

mg > t /8

Figure 2.9: A changing input and its memory formation mec$rarof the Preisach plane.

2.3.2 Wiping-Out Property

Next we discuss the wiping-out property; it clarifies thatdetermine the current Preisach
model output doesn’t have to memorize all the past inputeextim but only parts of them [2,
7]. This property is illustrated in Fig. 2.10. Assume theubp(¢) have reached to one local
maximum value)M; and thenu(t) reaches to another local maximum valug later. If M, is
smaller thanl/;, the Preisach plane as shown in Fig. 2.10(a) Mtheshould be record to determine
the interface link of the Preisach plant as stated in se¢@at1). If M, is equal to or greater
than M, however, the previous input maximuhi, in the Preisach plane would be wiped out as
illustrated in Fig. 2.10(b)(c).

The wiping-out property means that the input extremum wihietwiped out are not needed
to determine the interface link of the Preisach plane; whatneed to memorize are called the



My [---+f----N----

t B
(a)
u(t)
M,
) t 3
b)
u(t)
My |coo o _______
M f------
t I6]
()

Figure 2.10: Wiping out property: (&) < M; (b) My = M, (c) My > M;.

alternating series of the input extremum, explained asvbef@onsider a particular input(t) in
the time intervalt,, t'] shown in Fig. 2.11. Assume thatt,) = my, = 0. We use the notations
T,. for the time the global maximum/,, is reached and, for the time the global minimum,, is
reached as shown in Fig. 2.11. The alternating series onih extremum is defined as a tuple

10



s(to,u(t')) = {My,mq, ..., My, my,...} (k=1,2,...), where

M, = [max} u(t) = u(Ty) (2.3)
tp_1,t
and
my, = max u(t) = u(ty) (2.4)

Figure 2.11: Alternating series of the input extremum.

2.4 First Order Reversal Curve

The geometric interpretation of the relay operator via theidach plane poses a practical
way to determine the weighting parametefsy, 5) and to realize the Preisach model. The ap-
proach uses a set of first order reversal curves (FORC) wlaictbe obtained experimentally. A
FORC is composed of two branches, an ascending branch anscanding branch. When the
input increases from the initial 0 to some vallig the corresponding Preisach plane is shown
in Fig. 2.12(a), yielding an ascending branch on the phasgram. One practical demonstration
of a practical micro piezoelectric actuator for an incregsnput is also shown in Fig. 2.13(a).
The input, then, decreases frah to some valuen, the corresponding Preisach plane is shown
in Fig. 2.12(b), a descending branch is formed on the inpiiat phase diagram. One practical
measurement is also shown in Fig. 2.13(b). The term “firdedris used to emphasize the fact
that each of these curves is formed after the first reversleoinput.

11
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Figure 2.12: The change on the Preisach plane to yield a FQ&he input increases from 0 to
some valueV/; (b) then the input decreases fram to some valuen.
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Figure 2.13: First order reversal on the phase diagramn(@saending branch; (b) an descending
branch.

In order to connect FORC and the algebraic calculation of ehodtput, define a function
fap(M,m) is the output of the plant as the input increases from 0/tand then decreases #o.
Hence,f,3(M, m) denotes the ending value of a descending branch of FORC.va@hie can be
obtained using (2.2) and Fig. 2.12, yielding

Fag(M,m) = /L+ B)dads = /L/ dmmjfﬂw@@wm (2.5)

Substituting) for m in (2.5), we obtain

Fag(M, M) = /‘/ wM—/‘/ wm_/ / B)dBda (2.6)

The valuef,3(M, M) represents the beginning value of a descending branch amehtntly the
ending value of a ascending branch of FORC. This result esald to determine the weighting
parameters experimentally.

12



2.4.1 Experimental Determination of Weighting Function

The weightingu(a, 5) function can be determined from the FORC which can be obdaine
experimentally. That is, one can collect experimentallgta sf f,5( A/, m) with variousM andm
values by measuring the system output with an input inangasom 0 to), and then decreasing
from M to m. Since we can obtain the relation below by taking partiaivagives of (2.5),

O? fap(M, o (M[o [° o " — (M
J(;]Bw(amm) _GM/m {8m/m u(a,ﬁ)dﬁ} da 8M/m p(o, m)da = (M, m)
2.7)

It is clear from (2.7) that if thef,,5(M, m) is known for all point§ M, m), the weighting func-

tion (v, B) can be determined. Then, the Preisach model output can hex®@using:(a, )
and the model equation. The approach using weighting pdeaufiest to evaluate the model out-
put is unappealing because of two difficulties. First, toleate the Preisach model output using
w(car, B) requires numerical double integration, which is a complektme-consuming procedure.
Second, the determination pf«, ) requires the differentiations of experimental data, whey
amplify errors in the experimental data.:One practipal aoplar approach to evaluate model out-
put using FORC is discussed in the foIIow‘in‘g‘.

2.4.2 Numerical Realization of“the‘Preisach Model

We have seen that the evaluation of the Preisach model ousing .:(«, 3) is complex and
may amplify errors. An alternative method, called numériogplementation of the Preisach
model, is discussed. This method evaluates the Preisacklmeuhg f, s(M,m) directly. In
order to develop the numerical implementation of the Poisaodel, the ascending inputt)
is discussed first. The change of this input is from Qifp and then tan,, The corresponding
change on Preisach plane is shown in Fig. 2.14(a)(b)(c)ttmdutput of the Preisach model can
be written as:

o= | B |t yasae— | . [ e masda+ | " [ wlapasa 28

mi mi mi mi

Setm, = 0, from (2.5), (2.6) and (2.8), we derive the following exmies for f(¢) in the case of
increasing input:

(@)

[fap(My, My) — fop(Mi,mo)] — [fap(Mi, My) — fop(Mi,my)]
+  [fap(u(t),u(t)) — fap(u(t),m1)]
[fap(Mi,ma) = fap(My,mo)] + [fap(u(t), u(t)) — fap(u(t),m1)] (2.9)
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In general, as(t) is ascending,

n

F8) = [fap(M, My) = fap(Mi, mi1)] + [fap(u(t), u(t)) = fas(u(t),m,)]  (2.10)

k=1
wheremy = 0 and{M;, my, ..., M,, m,} is the alternating series of the input.
Next consider that the inpui?) is descending, the change of this input is from 04pand then
tom,, and then tal/,, the corresponding change on Preisach plane is shown i@ Eiya)(b)(c)(d).
Similarly, the output of the Preisach model can be written as

f(t)

[fap(Mi,m1) — fas(Mi,mg)]
+ [fap(Mz, Mz) = fop(Mz,m1)] — [fap(Mz, Ma) — fop(Ma,u(t))]
[fap(My,m1) = fap(Mi,mo)] + [fap(Ma, u(t)) — fap(Ma, my)] (2.11)

In general, as(t) is descending,

n

F) = [ fas(Mi,mx) = fas( My, pgi)iss fos(Mni1,u(t)) = fap(Mnyr,ma)] - (2.12)
k=1 e

wheremg = 0 and{ My, my, . .., Mu, ma, My} 1S the alternating series of the input.

In another aspect, we can also“ utili“zevthe alternating sésisimplify (2.10) and (2.12). As-
sumeu(t) is ascendings = {M;, mi,.. oy Fandu(t;) = m,; (2.10) can equivalently written
as: :

F(t) = F(ta) + nault). u(t)) — fup(u(t), m,) (2.13)

Assumeu(t) is descendings = {My,mq, ..., M,_1,my,_1, M,} andu(T,,+1) = M,1; (2.10)
can equivalently written as:

f(@t) = f(To) + [fas(Mn, u(t)) — fap(Mn, My,)] (2.14)

From the above discussion, the numerical implementatiahe®freisach model can be ob-
tained by combining the Preiasch plane gqd(A/, m), which can be used for evaluation of the

Preisach model output; this approach avoids the troubl&fefentiation and integration.
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M, / M, 4 JVEY Te— / M,
u(t) M,
3 951 | o)
my : y Ay 1B M ‘ ma wu(t) &
(@) (b) S (9 (d)

Figure 2.14: Corresponding change on Preisach plane ofpar:{ga) from 0O toM/;; (b) from M,
to my; () fromm, to u(t); (d) from M, to u(t).
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Chapter 3

Preisach Model Realization and Inverse
Preisach Model

This chapter investigates practical approaches to find)/, m), including the polynomial
approximation, our new approach. In Chapter 2, a numerimoglementation of the Preisach
model has been developed. The two formulations (2.13) aridi2xpressed witlf,, 3(M, m)
can be used for evaluating the Preisachimodéloeutput. Fremxperimental FORC measurement,
we can collect the data gf,s(M, m).which canbe uséd to predict the Preisach model oytput
In practice, however, it is impossible to c;JBtéinﬂall ‘valuészB(M, m) because the completed
information of f, (M, m) requiresinfinite and uncountable experiments. One rddézaethod to
determine values of,,5( 1, m) is to find Tifiite data offs s (1, m) and store it as a table. When we
need a value of,3(M, m), we can obtain its value by the interpolation using its neahs stored
in the table. In this chapter, we introduce three methodpfwaximatef,s(M,m). They are
the table method [10, 13], the polynomial approximation addptive polynomial approximation,
respectively.

The remainder of this chapter introduces inverse Preisamiten9, 13]. The control theory
is focus on determine an input feed to the system such thaedesutput has a good tracking
with system output. One way to achieve this goal is usingrseeystem; that is, to generate
a system has inverse relation between input and outputspmneling with the original system.
Realization the Preisach model using the polynomial appration can describe the system with
hysteresis via polynomial equations; it's possible to find inverse system with hysteresis by

solving polynomial equations.
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3.1 Table Method

Linear interpolation is a very intuitive way to estimatewes between two known values [11].

As an example, if you want to estimateshown in Fig. 3.1, a fundamental formula for finding

internal point of division is:
x=(1—-r)a+rb (3.1)

Figure 3.1: Linear interpolation betweerandb.

If a point (M, m) belongs to a rectangular cell formed by/;,my), (M, ms), (Ms, my),
(Mz,m2), and we havefos(Mi,m1) = farmys fapg(Mi,m2) = farmys fap(M2,ma) = farm,
Jap(Ma,m2) = farm, Shown in Fig. 3,2:Now'we want to approximate; (M, m) = fam [10].
Assume thaff,s (M, ), fas(Mi,-), fap(My ‘-)5 a‘reﬂline‘ar functions, changes frofy, ., t0 farm,
and from s, m, t0 fan,m, are also linear. Using-3.1,we.have:

(Ma M) fammgria( M= M) fryms

fr= ” LA - My ,
f — (M2 _ M)fM1m1+ (M - Ml)fMgml
R M, — M, ,

m—mq)fr+ (me—m)f

Fatm = | 1)mz — (mf )/ (3.2)
S fosl(Mr, )

A f4(M,) I[ ................. 3T g T I
Ir fym fr

szml

M, — M
< fop(M>,)

Fatym,

M- M
Iatym

Figure 3.2: Approximat¢,s(M, m) where (M,m) belongs to a rectangular cell.

If a point (M, m) belongs to a triangular cell formed B/, m;), (Ma, m1), (M2, ms), and
Fos(Mi,m10) = fanymys fas(Ma,m10) = farimys fas(Ma, ma) = fazym,, Shownin Fig. 3.3. Now we

17



want to approximatg,s(M, m) = far, [10]. Under the same assumption and a little modification,

we have:
f _ f f _ (MQ - M)fM1m2 + (M - Ml)fM2m2
R Momo v JL M2 _ Ml ’
Frtm = (m —mq)fr + (ma —m) fr (3.3)
mo — My
e T g :
I e fr

Figure 3.3: Approximatgcag(]\/[, m) where(M,m) belongs to a triangular cell.

3.2 Polynomial Approximation:=

It is convenient to investigate the measured data using atyzable function. This is also
called curve fitting and the polynomial function is commoused [11]. Our goal in this section is
to fit the samples of a finite number of FORC by polynomial fiorts.

3.2.1 Polynomial Curve Fitting

Consider the polynomial function given by
Fz)=cy+cx+...cpx"or F(z) = Z ¢z’ (3.4)
7=0

to fit & pairs of datd z;, v;), : = 1,... k. Here we define the difference between the data and the fit
function at each point is;, = F'(z;) — y;, wherer; is called the residual for the data point. We can
choose one nory_ ||, infinite normmax |r;| or two norm_ r? as the criterion for minimization.
For statistical and computational reasons [12], two normastly used and it is given by

k
> ot (3.5)

| =

p:
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and ,/p is called the root mean square (RMS) error. In other word, ahject is to find the

coefficientsc; of a polynomialF'(x) such that it can fit the datg in a least squares sense.

T
Denoter = [ 7, r, --- 1] ,and
_ " i
T >0 Gl — Y
n j
T2 Zj:() CjTy — Y2
Tr —= g .
n J
| Tk ijo Gl — Yk
1 oz a3 - af . U
1 @y 23 -+ ¥ ! Yo
— _ | —| 7 | =Ac—y (3.6)
1 x, 2% z} ' Yk
- Cn
Co
1 oz a2 - af o U
2 n
To Xy o Ty Y2
whereA = _ c=1|C |,y=1")
: e Lo
|=]
and now ‘ h
3 2
= Z —||r||2 —H\Ac ~yl3 (3.7)

=)

To find ¢, differentiate||r||3 = cTATAc=2yT Ac +yTy with respect ta and set it to zero.
2cTATA —2yTA =0 = ATAc = ATy = c = (ATA)'ATy (3.8)

Here we suppose thaj, # x; for h # [. Becauseéda = 0 is only valid under the conditioa = 0

ask > n, A is full rank implies thatA” A is nonsingular.

3.2.2 Polynomial Approximation

For an particulatM, f.5(M,m) is a monotonic decreasing function of single variable
shown in Fig. 3.4, so using quadratic polynomial functiaméitt f, (), m) is a suitable choice.
That is,

fap(M,m) = co(M) + 1 (M)m + co(M)m® (3.9)

wherec; (M) is a notation to indicate the coefficient corresponding with However, the coef-
ficients of curve fitting method varies with/, so to know all of them is also impossible. Hence
we also use the interpolation to approximate coefficierasdhe not derived from experiment. For
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My <M < My,
_ My1¢i(My) + Myci(Miiq)

ci(M) , Wherei =0, 1, 2. (3.10)
Mk+ 1 — Mk
35— T
*  measured data
fitting curve
30 1
25— -
€
2 20~ _
|5
£
Q
8
2 15 —
2
10+ 1
5l _
0 | | | | | | |
0 0.5 1 15 2 25 3 3.5 4

input voltage m (V)
Figure 3.4: Using a fu’h‘ct‘ion‘to fif, s (M, m).

According to (2.13) and (2.14), the Preisaéh model outpatoeadetermined by a storage part
and a update part. Now we substitute for The update part bygu8.9). If the inputu(t) is

ascending,
@)= Jtn)  + [faplult), ut)) — fap(u(t), mn)] (3.11)
—~—~ S ~ -
storage part update part

= flta) + [ea(u(t))u?(t) + e (ut))u(t) + co(w(t)] — lea(ut))my, + ex(ult))mn + co(u(t))]
= flta) + ca(u(t))(u®(t) — my) + cx(u(t)) (u(t) — ma) (3.12)

Definec;(pA) = ¢g(p], i = 0,1,2, foru(t) = pA+7r,0 <r < A,

ei(u(t)) = (1= Teailp] + Teailp+ 1 (3.13)
then (3.12) becomes
f@) = f(t,) + 072 (3.14)
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where

c[sz[p] ] (1- (&)((U(t) + ?)nn>
| e2lp+1 B B = (u(t) +my,
= e o] , andzy = (u(t) — my,) A (1= 1) (3.15)
Clep + 1] %
If the inputw(t) is descending,
fO) = f(Tn)  + [fap(Mn, ult)) = fap(Mn+, M,)] (3.16)
storage part updéfe part
= J(To) + ca(Ma)(u?(t) — M) + 1 (My) (u(t) — My) (3.17)
ForM, = pA+ R,0 < R <A,
(M) = (1= R)ealp] + Fealp + 1) (3.18)
then (3.17) becomes
F(8) = S(T) + 6, (3.19)
where , ) ! % 3
C[sﬂp] ] ~ FHNA R [ - (%)((;L(t)]\; J>\4n)
| clpt+1 ‘x: _ . (u(t) + M,
0= carp] ,aqd . ‘(u(t) ‘Mn)“ A (1- &) (3.20)
calp+1) | A T 4 n

For higher resolution, both the table method and the polyabapproximation needs more
memory; but the memory growth of the ‘polyn‘omial approximaiis less than the table method.
Consider a division of the input region into N parts, the nentf data should be storage%l\;Ll)
for table method andV for polynomial approximation.

3.3 Adaptive Polynomial Approximation

The polynomial approximation is easier with respect to rficaliion than the the table method.
In this section we develop an adaptive algorithm for idecdtion of polynomial coefficients which
can improve model accuracy [14]. Base on polynomial appnaxion method discussed in pre-
vious section, we obtain a set of coefficientthat can be use to descrilfg; (1, m), however,
these coefficients may be inaccurate. A system model wittturate parameters can be regulated
by update its parameters via adaptive filters such as LMS &, Rhown in Fig. 3.5, the adaptive
model output is compared with the plant output, and the ésnesed to update the adaptive system
parameters. So now we adopt adaptive filters to modify patyabapproximation Preisach model
for accuracy improvement.
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Plant output

Input data
u Plant f
/
Model output
fm _ 4t
Model —0
Error data

e

Adaptive algorithm

Figure 3.5: Block diagram of adaptive system identification

3.3.1 Adaptive Polynomial Approximation with LMS

Steepest descent algorithm is the most common and easesf @aaptive algorithms [16].
Assume the adaptive model outpfit(, «) is a function of parametersand the input;, and the
plant outputf(u) is a function of the input.. Definé:the error as

e £ A o) (3.21)

and a cost function

T2 S MUY= fiul, )’ (3.22)
The steepest descent algorithm is:

Or1 = Ok — Vo = O — 2epuNo(f(u) — frm(0,u)) = Op11 = O + 2eVo frn(0,u)  (3.23)
for an FIR, f,,(0,u) = 0Tu, thenV,f,,(0,u) = u, so the steepest descent algorithm can be
simplified as

Or+1 = 0 + 2ueu (3.24)

Using (3.14), (3.19), (3.24), we obtain following updatenfmilations:
If the inputu(t) is ascending,

Cs2,k[P) (1= X)(u(t) +mn)
Orr1 = Ok + 2pex; = Cozlp + 1] + 2pe(u(t) — my) alutt) tmn) (3.25)
Csl,k[p] (1- Z)
| Csl,k[p + 1] L % i
If the inputwu(t) is descending,
[ Coulp) [ (1 ;%)(U(t) +M,) ]
B = O 2peay = | 20T | opetuy = | AR (3.26)
L Csl,k[p + 1] L % J
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3.4 Inverse Preisach Model

We have seen that how does the Preisach model character dteemswith hysteresis and
introduced three methods to realize it. However, to esthlihe inverse Preisach model is also
an important problem in control aspect. As the Preisach inigdesalized by the polynomial
approximation, the system with hysteresis can be deschieaiseries of polynomial functions.
This section establishes the inverse Preisach model binggholynomial functions.

3.4.1 Cubic Equation

Before combining the inverse Preisach model with solvinigpamial functions, we prepare
formula for cubic equation which is needed in solving polyral functions later [15].
A cubic equationy?® + pu® + qu + r = 0 can be reduced to the simpler form,

P +ar+b=0 (3.27)
by substituting for: the valuez — ¢/3. \Where iz
a = g(3q =) anU;b‘j:_‘z—7(2p — 9pq + 27r) (3.28)

For solution, let

b Ly Sl b 2 B
AIS—— —_— ‘—’ B: _— J— J— 2
\/2+\/4+27 and \/2 Vit (3.29)

then the values of will be given by

A+B A-B A+B A-B
r=A+B, — ;r teg V3 - ;r -

V=3 (3.30)

However, only real roots are needed in our problem. For #ason, next we introduce trigono-
metric solutions of the cubic equation. Consider the tr@uaetric identity

4cos®f —3cosh —cos30 =0 (3.31)
Letx = mcos#, then
P Har+b=micos®d+amcosf+b=4cos® —3cos — cos30 =0 (3.32)
Hence
4 3 30 3b
Bl AL - —9,0083(9:—:D (3.33)
m3 am b 3 am

23



If « < 0and|D| <1, then

1 1 2
cos30 =D =0 = 3 arccos D , 0 = 3 arccos(D + g) (3.34)
and the cubic equation has three real roots:
1 1 2m
xr =mecosl = mcos(g arccos D) , mcos(g arccos(D + ?)) (3.35)

If a <0OandD > 1,
. 1 . 1 1 . -1 27T
cos 30 = D = cosh(j(30 + 2km)) = 0 = —3J cosh™ D, — 3/ cosh™ (D + E) (3.36)
and the cubic equation has one real root:
1
x =mcosf = mcosh jO = mcosh(g cosh™' D) (3.37)

If a < 0andD < —1,

B, 1 1
cos(30 —m) = —D = cosh(j(30 + (2k="1)7)) = 6.= —gj cosh™' D, — gj cosh (D % g)

HEQ ¢ (3.38)
and the cubic equation has one realroot: .~
x = mcost =acosh j'= mcqsh(g cosh™(=D)) (3.39)
If a > 0, then
3b 3b
m=2-2=jo ¢ —jm D=2 = ;22 — D (3.40)
3 3 am am/
: b 1 . 1
cos30 = D = jcos30 =D"= jsin((2k + 57?) — 30) = sinh(j[(2k + §7r) — 36))
1 1 1
= 0= % + §j sinh™' D', 5% + §j sinh™' D', 3% + §j sinh™' D’ (3.41)

and the cubic equation has one real root:

3
r = mcosh = mcos(77T - gj sinh ™' D)

3 1 3 1
= mcos(g) cos(gj sinh™' D) — msin(?ﬂ) sin(gj sinh™! D)

1 1 1
= msin(gj sinh™' D') = jm sinh(g sinh™' D) = m/ sinh(§ sinh ™' D) (3.42)
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3.4.2 Solving Polynomial of the Preisach Model

Because of the existence of formula for solving polynomualdtion, the input can be obtain
by solving (3.12) or (3.17) for the desired output.
As the desired output; is ascending, we have to solve (3.12). bt < u < (p+ 1)A,

oy (u=pAcslp+ 11+ ((p+ DA — u)cy[p]
ci(u) = A
Csin + 1] - Csi[p]
A

wt ((p+ Vealp] —pealp+1)) i = 1,2 (3.43)

Replace;(u(t)) in the (3.12) with (3.43)

B ((p + Vesalp] — pesalp + 1A+ calp +1] —calp] ,
Csop + 1] = cs2[p)]
N ((p+ Dealp] = pealp + 1A + (caalp] — calp + 1))mi + (calp] — cealp + ma
052[29 + 1] - 082[17]
N (pesalp + 1] = (p + Deso[p))m? + (pealp + 1] — (p + Dealp))mn + f(tn) — fa o
csalp + 1,‘]‘"— Cs2[p]

= CHpl+qu+r=0 4 (3.44)

This is a cubic equation, and can-be solve‘d‘ by“formula intteddast section.
As the desired outpyt; is descending, we'have to solve (3.17). Bbr=pA+R,0 < R < A,

CQ(Mn)u2 + Cl(Mn)u + f(Tn) - fd _C2(Mn)M'3_ ‘Cl (Mn)Mn = au’ +bu+c=0 (345)

wherec;(M,,) can be computed using (3.18). (3.45) is a quadratic equatiah

NI/
u= > e (3.46)
a
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Chapter 4

Applications for Piezoelectric Actuators

Piezoelectric actuators have advantages of high stiffrfass frequency response and high
precision [16] have been widely used in precise industpaliaations [17, 18]. The displacement
of a micro piezoelectric actuator varies with actuator agét and the relation between actuator
voltage and displacement is a kind of hysteresis phenomehothis chapter, we use different
realizations of Preisach model to predict the displacemaimicro piezoelectric actuator and the
inverse Preisach model introduced jri'this thesis to.coittrbi these applications, the input of the
Preisach model is actuator voltagé and thejoutput ofthedeimodel is displacement.

4.1 Experimental Setup

The micro piezoelectric actuator studied in these exparimis model PMT 150/40 Transla-
tion Stage PMT with Central Piezoelement, which has a mawirapplied voltage ot50V and
a maximum displacement d@bum. A dSPACE system (Model no. DS1104 PPC) is used for
acquisition digital data and real-time control. A power difrgy (Model no. PosiCon 150-3) with
a gain of 30 is used to drive the micro piezoelectric actyaorthe actuator voltage given from
PC-Based systemis~ 5V. The block diagram of the entire experimental system ses-spown
in Fig. 4.2 and the real system is shown in Fig. 4.1.

To implement the Preisach model, several first order relveusaes measured for micro piezo-
electric actuator first. Dividé ~ 5V into 10 segments, the input voltage of micro piezoelectric
actuator is increased frogl” to some divided point and then decreasedWo After the input
begins decreasing from some divided point to 0, we sampldiipacements of micro piezoelec-
tric actuator every).45V change of input voltage and store these sampling data ire abl The
first column denotes the value &f, and the first row denotes the valueraf In the predication
experiment we use a sinusoidal and input voltage that wite@uency of 1 rad/sec, an amplitude
of 2.25V and a bias 02.25V"; The input and output waveforms of micro piezoelectric atduof
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Figure 4.1: Real system for experiment.
At

the predication experiment shown rnll'—'lg 4.3, ,q‘rtdathe phasesition shown in Fig. 4.4. In the

tracking control experiment we ust alsm»eEéﬁdal deslgepmuhat with a frequency of 1 rad/sec,

an amplitude ofl 54m and a bias of@mq;;[ﬁe samplm;g time of the experiment is 0.01 sec., the

total time is 50 sec..

u piezoelectric f bl L PC with dSPACE

sensor
actuator AD Plug—in Board
power
amplifier D/A

Figure 4.2: The block diagram of the entire experimentaiesys

4.2 Table Method

The displacement of micro piezoelectric actuator and thpudwof Preisach model realized
via table method are plotted together in Fig. 4.5(a). Theedhce between these two outputs,
defined as the model error, are shown in Fig. 4.5(b). The pinassition of model and of plant
are plotted together in Fig. 4.6. The RMS of model errar.i®98,m, and the required number of
memory to store the table is 66.
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[M/m 0 [0.45[0.90 [1.35 |[1.80 [2.25 [ 2.70 | 3.15 [ 3.60 | 4.05 | 450 |
0 0
045 [ 0.02]3.43
0.90 [ 0.09]4.07]7.73
135 [ 0.11]5.28]9.38 | 12.76
1.80 | 0.14]5.36] 10.13] 14.11] 18.15
2.25 | 0.23]5.68] 10.79] 15.32] 19.34| 23.32
270 | 0.28]5.94] 11.31] 16.22| 20.58] 24.48] 28.03
3.15 | 0.36]6.17| 11.72] 16.68| 21.27| 25.41| 29.01| 32.65
3.60 | 0.45]6.35] 12.09] 17.29| 21.96| 26.27| 30.13| 33.51| 36.49
4.05 || 0.48]6.61| 12.35| 17.58] 22.40| 26.81| 30.74| 34.35| 37.47| 40.15
450 || 0.67]6.87| 12.87| 18.07| 22.98] 27.33| 31.38| 34.93| 38.13 40.96 43.18

Table 4.1: Sampling data of FORC.

input voltage (V)

output displacement (um)

0 5 10 15 20 25 30 35 40 45 50
time (sec)

Figure 4.3: The input and output of the micro piezoelectckuiator.

4.3 Polynomial Approximation

We apply the least-square approximation to sampling nusnbeifable 4.1 to identify the
polynomial coefficients directly in this experiment. Thdymwmial coefficients are stored in Ta-
ble 4.2. Base on (3.12) and (3.17), the polynomial coeffisienis not needed for the Preisach
model realization. The displacement of micro piezoeleaugtuator is compared with output of
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phase transition
45 T T T T T T T T

output displacement (um)

O i i I i I 1
0 0.5 1 1% 2 2:5 3 3.5 4 4.5
inputveltage (V)

Figure 4.4: The phase transition of micro piezoelectricaicir.

T T

displacement (um)
N w B
o o o

=
o

0 5 10 15 20 25 30 35 40 45 50
time (sec)

@

3 T

error (um)

) I I I I 1
0 5 10 15 20 25 30 35 40 45 50

time (sec)
(b)

Figure 4.5: Prediction of micro piezoelectric actuatomgsiPreisach model realization via table
method.
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Figure 4.6: Phase transition of micro piezoelectric aciuasing Preisach model realization via

table method.

Preisach model which is realized:via table method ShownérFﬁg. 4.7(a), and the model error
shownin the Fig. 4.7(b). The phasé transition of model arpdavft are plotted together in Fig. 4.8.
The RMS of model error i$.48174m, and-themnumber of memory for polynomial coefficients is

15 2
input voltage (V)

25

22.

(M| e o |«

0 0 0 0

045\ 0 7.5778| 0.02
0.90| -0.79012| 9.2 0.09
1.35| -2.2099 | 12.328| 0.1275
1.80| -1.1111 | 11.949| 0.174
2.25]| -1.0326 | 12.543| 0.2525
2.70| -1.117 | 13.302| 0.24619
3.15| -1.0256 | 13.439| 0.37625
3.60| -1.091 | 13.954| 0.39576
4.05| -1.058 | 14.075| 0.49745
4.50| -1.0752 | 14.269| 0.73091

Table 4.2: The coefficients of polynomial.
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Figure 4.7: Prediction of micro piezoelectric actuatomgsiPreisach model realization via poly-
nomial approximation.
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Figure 4.8: Phase transition of micro piezoelectric actuasing Preisach model realization via
polynomial approximation.

4.4 Polynomial Approximation with Adaptive Identification

In this experiment we develop the least mean square (LM)tagaalgorithm to obtain ac-
curacy polynomial coefficients and the data in Table 4.2 aeglas the initial parameters. We test
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the step sizeg = 1074, p = 1073 andy =

0.0005

and the process of each is shown in Fig. 4.9. The

14u(t)
polynomial coefficients obtained by LMS adaptive algorittvith step sizeu = 229% 3re stored
14-u(t)
in Table 4.3.
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Figure 4.9: Mean square error of the prediction of micro peectric actuator for varying step-size

0 using adaptive polynomial approximation.

(M e Ja |
0 0.5718 | 3.8438
0.45] -2.7323| 7.3383
0.90] -2.3325| 9.2038
1.35]| -2.1626| 10.8419
1.80| -1.7700| 11.8186
2.25] -1.4588| 12.3549
2.70 -1.1540| 12.4685
3.15]| -1.2125| 13.2395
3.60] -1.2565| 13.9011
4.05| -1.1797| 14.0324
4.50] -1.0938| 13.9965

Table 4.3: The coefficients of polynomial obtained by the L&ptive algorithm.
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Now we use new polynomial coefficients stored in Table 4.2redjgt the displacement of
micro piezoelectric actuator. The displacement of micezpelectric actuator is compared with
output of Preisach model which is realized shown in the Fig0é), and the model error shown
in the Fig. 4.10(b). The phase transition of model and of {péaa plotted together in Fig. 4.11.
The RMS of model error i$.5898 .

model

N
o

plant

30
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0 / / J J v - o8 B
0 5 10 15 20 25 30 35 40 45 50

time (sec)

@)

error (um)

0.5

| | | 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
time (sec)

(b)

Figure 4.10: Prediction of micro piezoelectric actuatangd’reisach model realization via adap-
tive polynomial approximation.

Obviously a bias is exists in the Fig. 4.10(b). If we survey.H.4 again, then we can observe
that there is another branch in the Fig. 4.4. This fact maam®teisach model should be modified
in the beginning of the micro piezoelectric actuator workeFig. 4.12 shows the phase transition
of the model error and the input in the beginning ascendilagdir. The relation between input
u(t) and errore(t) is roughly like a linear function:(t) = 0.83e(t) for 0 < wu(t) < 2.7; for
u(t) > 2.7, e(t) is roughly like a constant 2.2414. Then (3.12) in the begigrsiscending branch
is modified :

£(t) = { f(tn) + ca(u(®)(W?(t) — m?2) + c1(u(t)) (u(t) — my,) + 0.83u(t) if 0 < u(t) < 2.7,
f(tn) + ca(u(®) (W?(t) — m2) + cr(u(t)) (u(t) — my) +2.2414  if u(t) > 2.7

(4.2)

With this modification, we predict the displacement of mipiezoelectric actuator again. The

displacement of micro piezoelectric actuator is compargd @utput of Preisach model which is
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Figure 4.11: Phase transition of micro-piezoelectric’actuasing Preisach model realization via
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Figure 4.12: Phase transition of the model error and thetinpu

realized shown in the Fig. 4.10(a), and the model error showhe Fig. 4.13(b). The phase transi-
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tion of model and of plant are plotted together in Fig. 4.1de RMS of model error i8.4539m.
The model error of the Preisach model realization via theetatethod and the modified polyno-
mial approximation are plotted together in Fig. 4.15 for pamng.
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Figure 4.13: Prediction of micro piezoelectric actuatongs’reisach model realization via modi-
fied polynomial approximation.

4.5 Tracking Control

This section presents experiments of tracking control @itiicro piezoelectric actuator using
the inverse Preisach model introduced in chapter 3. Thekhl@agram of the tracking control
system is shown in Fig. 4.16. The desired output comparehl thvé displacement of the micro
piezoelectric of this experiment are plotted together p Bil7(a). The deference between these
two outputs, defined as the tracking error, are shown in ElgZ(4). The RMS of tracking error
IS 0.7079um. To reduce tracking error, we use combine the inverse Rteisedel with a PID
controller shown in Fig. 4.18 [9, 13]. The parameters of te Eontroller arek, = 0.0452,

K; = 29828 and K, = 0.0024. The desired output compared with the displacement of tleeami
piezoelectric of this experiment are plotted together on Bi19(a). The tracking error are shown
in Fig. 4.19(b). The RMS of tracking error s2438um.
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Figure 4.16: Block diagram of the tracking control systenimgsnverse Preisach model.
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Figure 4.17: Tracking of micro piezoelectric actuator gdmverse Preisach model.
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Figure 4.18: Block diagram of the tracking control systenmgsnverse Preisach model with PID
controller.
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Figure 4.19: Tracking of micro piezoelectric actuator ggmverse Preisach model with PID con-
troller.
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Chapter 5

Conclusions

A system with hysteresis nonlinearities is often difficoldescribe accurately and may result
in unstable behaviors if not controlled appropriately. Histthesis, we adopt the Preisach model
to characterize hysteresis behaviors and propose to ugegmial approximation to realize the
Preisach model; this approach is then used to model theadesplent of a real micro piezoelectric
actuator. The proposed approach can overcome the drawbbcksiventional table method,; it
requires less memory space and enables the parametenga[ﬂdhysteresis elements. We have
successfully obtained the polynomial coef;fiicijents to mmlu!eldisplacement of a micro piezoelec-
tric actuator; the obtained model cbmpared with that viat#ite method not only requires less
memory size but also yields a sma"er modelingRMS error fta98.m via the table method to
0.4539m. We also establish the inverse Preisach model base on theguolal approximation;
this model is combined with the PID controller used for tiagkcontrol and yields small tracking

RMS error0.2438um.
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