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HSV 色彩空間前景物體抽取 

及其於人體動作辨識系統應用 

 

學生: 駱易辰            指導教授: 張志永博士 

 

國立交通大學電機與控制工程研究所 

 

摘要 

 

利用串流影像資訊於人類行動辨識能在許多地方應用，如:人機介面、安全監控、

居家安全照護等系統，本論文的提出一個可以自動監控、追蹤辨識人類動作的系統。

在一般前、後景色彩深淺差別大時，可以簡單的使用亮度的資訊將前後景分離，但當

前後景亮度接近時，例如; 當辨識的目標穿著和背景相似的衣服時，若只使用灰階影

像並無法將完整的前景資訊分離，因此我們使用 HSV 色彩空間加入像素點色彩成分的

考慮建立背景模型，達到前、後景的分離，且能對陰影的問題加以消除改進。但是使

用 HSV 色彩空間必須先解決色調一些不穩定的問題，所以我們在色調不穩定的區域加

以限制，以增加抽取前景影像的準確性。  

將抽取的影像以二值化，再將經過特徵空間以及標準空間轉換，投影至標準空

間。經由樣板比對的方法將三張影像合為一個姿態變化序列，此影像序列乃從動作視

訊 5:1 減低抽樣獲得。接著，利用模糊法則的推論方法，將這組時序姿態序列分類為

某一個動作類別。跟單用亮度成分的方法比較，實驗證明，HSV 色彩空間不但在前景

影像抽取有明顯的改進,而且在人體動作辨識結果也有顯著的改進。 
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Extracting the Foreground Subject in the HSV Color Space and Its 

Application to Human Activity Recognition System 

 
STUDENT: Yi-Cheng Luo       ADVISOR: Dr. Jyh-Yeong Chang 

 
Institute of Electrical and Control Engineering 

National Chiao-Tung University 
 

ABSTRACT 

 

Human activity recognition from video streams has a wide range of application such as 

human-machine interface, security surveillance, home care system, etc. The objective of this 

thesis is to provide a human-like system to auto-survey and then to track people and identify 

their activities. When the foreground color is different from the background color, the 

foreground subject can be extracted easily by the luminance component. When the 

foreground color is similar to the background color, we cannot extract the foreground image 

completely by the luminance component. To solve this, we utilize the HSV color space to 

build the background model, in line with similar spirit of W4 segmentation algorithm, which 

can not only extract foreground image but also be helpful to shadow removal. Since H and 

S component are not reliable in some conditions, we make use of three criteria to obtain 

reliable and static hue values.    

A foreground subject is first converted to a binary image and transformed to a new 

space by eigenspace and canonical space transformations. Recognition is done in canonical 

space. A three image frame sequence, 5:1 down sampling from the video, is converted to a 

posture sequence by template matching. The posture sequence is classified to an action by 

fuzzy rules inference. In our experiment, extracting the foreground image in the HSV space 

improves not only the accuracy of foreground image but also human activity recognition 

accuracy. 
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Chapter 1  Introduction 

 

1.1 Motivation 
 

Human activity recognition from video streams has many applications such as 

home care system, human-machine interface, and automatic surveillance, etc. 

However, there is no rigid syntax and well-defined structure in human action 

recognition system; therefore, it makes human activity recognition a very challenging 

task. 

Several human activity recognition methods have been proposed in the past few 

years. Yamato et al. [1] turn image frames into a symbol sequence and use HMM to 

recognize human action. Bobick and Davis [2] recognize human activities by 

comparing motion-energy and motion-history of template images with temporal 

images. Cohen and Li [3] use a view-independent 3-D shape description for 

classifying and identifying human activity using SVMs. There have been some 

significant projects on detecting, tracking people and recognizing their activities. W4 

[4] is one of them. W4 can detect people (single person or people in group) by 

adopting an adaptive background model and identify the activities by finding the body 

parts on the silhouette boundary. 

The objective of this thesis is to provide a human-like system to 

auto-surveillance and to track people and identify their activities. This system can tell 

where the foreground subject is in an image, and what the subject is doing. 

The system flowchart is illustrated in Fig. 1.1 Our system can be separated into 

three components. The first component is foreground subject extraction. The second 

component is the transformation of image data in a space smaller and easier for 
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posture recognition. The third component is the posture classification of an image 

frame and activity recognition using frame sequences. 

 

 

 

Fig. 1.1 The flowchart of our human activity recognition system.  

 

1.2 Foreground subject extraction 

 

 Foreground subject extraction is an important step of the vision-based human 

activity recognition system. Many authors have developed methods of detecting 

people in images. Park and Aggarwal subtracted foreground pixels from background 

by computing Mahalanobis distance in each pixel in the HSV color model [5]. Leung 

and Yang built a human body outline labeling system [6]. Jabri and Duric [7] used 

color and edge information to improve the quality and reliability of the results. They 

all try to find out the real poses a human did by human body outline or by silhouettes.  
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 Background subtraction is widely used for detecting moving objects from image 

frames of static cameras. Most of this work has been based on background subtraction 

using color or luminance information. In these approaches, difference between the 

coming frame and the background image is performed to detect foreground objects. 

   If we only use the luminance information to do background subtraction, we 

cannot detect a foreground pixel correctly when it is similar to the background pixel. 

To make fully use of the spectrum of a pixel, it is imperative to do the segmentation in 

the color domain. To the end, foreground subject extraction is done in the HSV color 

space. We can have both the luminance information and the chromatic information in 

the background subtraction task. 

 Background subtraction is extremely sensitive to dynamic scene changes due to 

illumination change. In order to solve the effect of varying luminance conditions, we 

develop a method which is robust to the illumination changes. The method utilizes 

frame ratio rather than frame difference in luminance component. 

 Furthermore, the moving cast shadows mostly exhibit a challenge for accurate 

foreground subject detection. A lot of attempts have been developed to tackle the 

shadow suppression [8] [13] encountered in background subtraction. Horprasert et al. 

[8] and Cucchiara et al. [9] utilized the rationale that shadows have similar 

chromaticity, but lower brightness than the background model. Under the proposed 

frame work in the HSV color space, we can effectively identify the shadow existent in 

our detected foreground subject. 

−

After building a background model, we can extract foreground subjects from 

video frames by subtracting each pixel value of background model from that of 

current image frame. The resulting image is converted to a binary one by setting a 

threshold. The binary image mainly contains foreground subjects with only little noise. 

Therefore, we can set a threshold in the histogram of the binary image to extract a 
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rectangle image, which is a good representation resemble shape of a person, of the 

target subject. The rectangle image is normalized to a uniform benchmark . 

 

1.3 Eigenspace and Canonical Space Transformation 

 

In most video and image processing, the size of frame is usually very large and it 

usually has some redundancy. The redundancy possesses no information of an image. 

Hence, some space transformations are introduced to reduce redundancy of an image 

by reducing the data size of the image. The first step of redundancy reduction often 

transforms an image from spatiotemporal space to another data space. The 

transformation can use fewer dimensions to approximate the original image. There are 

many well-known transformation methods such as Fourier Transformation, Wavelet 

Transformation, Principal Component Analysis and so on. Our transformation method 

combines eigenspace transformation and canonical space transformation which are 

described as follows. 

Eigenspace transformation (EST), based on Principal Component Analysis, has 

been demonstrated to be a potent scheme used widely as shown below: automatic face 

recognition proposed in [14], [15]; gait analysis proposed in [16]; and action 

recognition proposed in [17]. The subsequent transformation, Canonical space 

transformation (CST) based on Canonical Analysis, is mainly to optimize the class 

separability and improve the classification performance. Unfortunately, CST approach 

needs high computation efforts when the image is large. Therefore, we combine EST 

and CST in order to improve the classification performance and reduce the dimension 

as well. Thus each image can be projected from a high-dimensional spatiotemporal 

space to a low-dimensional canonical space. In this new space the recognition of 
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human activities becomes much simpler and easier. 

 

1.4 Image frame classification and activity recognition 

 

In this thesis each in a video segmentation, images are transformed into an image 

feature vector by extracting features from images. We utilize eigenspace and 

canonical space transformation used to extract image features. If we only adopt the 

shape-based features to recognize an activity, many activities remain unidentified 

since the temporal information is discarded. Hence, we group three consecutive image 

feature vectors from three contiguous, but down-sampled images. Consequently, the 

time-sequential images are converted to a posture sequence by using these three 

feature vectors. The posture sequence is dignified by the index number of the posture 

template. In the learning phase, we build a transition model in terms of three 

consecutive posture sequences which are the category symbols of the posture template. 

For human action recognition, the model which best matches the observed posture 

sequence is chosen as the recognized action category. 

The most famous method to model transition model of time-sequential data is 

Hidden Markov Models (HMMs). Hidden Markov Models can deal with 

time-sequential data and can provide time-scale invariability for recognition. The 

basic concept of Hidden Markov Models is described in [18]. Hidden Markov Models 

have been successfully used for speech recognition because of their capability of 

recognizing spoken words independent of their duration [18]− [20]. Hidden Markov 

Models also have been used in hand gestures recognition [21] and activity recognition 

[1]. The price paid for the efficiency in this case is that we have to collect a great 

amount of data and a lot of time is required to estimate the corresponding parameters 
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in HMMs. 

After transforming image frames to eigenspace and canonical space domain, 

some data information have been omitted. By using fuzzy rule-base techniques, the 

activity analysis task is tolerant to uncertainty, ambiguity and irregularity. Relevant 

articles using the fuzzy theory are described as follows. Wang and Mendel [22] 

proposed that fuzzy rules to be generated by learning from examples. Su [23] 

presented a fuzzy rule-based approach to spatio-temporal hand gesture recognition. 

He employed a powerful method based on hyperrectangular composite neural 

networks (HRCNNs) for selecting templates.  

In our system, we propose a fuzzy rule-base approach for human activity 

recognition. Each activity is represented in the form of crisp IF-THEN rules, extracted 

from the posture sequences of the training data. Each crisp IF-THEN rule is then 

fuzzified by employing an innovative membership function in order to represent the 

degree indicating the similarity between a pattern and the corresponding antecedent 

part in the training data. When an unknown activity is to be classified, sampled image 

of the unknown activity is tested by each fuzzy rule. The accumulated similarity 

measure associated with these three consecutive postures is to match the posture 

sequence representing activity model of the training database, and the unknown 

activity is classified to the activity yielding the highest accumulative similarity. 

 

1.5 Thesis outlines 

 

The thesis is organized as follows. Before introducing the technique of our 

human activity recognition system, the basic concepts concerning the HSV color 

space, eigenspace transform, and canonical space transform are introduced in 
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Chapter2. In this chapter, we introduce the HSV color space and discuss the process 

of how to transform a high dimensional image to eigenspace and canonical space. 

Chapter 3 describes our human activity recognition system in detail. In Chapter 4, the 

experiment results of our recognition system are shown. At last, we conclude this 

thesis with a discussion in Chapter 5.  
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Chapter 2   BASIC CONCEPT 
 

In this chapter, we briefly explain the basic concepts of eigenspace and canonical 

space transform. Then HSV color space concept is introduced. 

 

2.1 Fundamentals of Eigenspace and Canonical Space 

Transform 

 

In video and image processing, the dimensions of image data are often extremely 

large. There are many well-known transformation methods to reduce the size of data 

such as Fourier transformation, wavelet, principal component analysis (PCA), 

eigenspace transformation (EST) and so on. However, PCA based on the global 

covariance matrix of the full set of image data is not sensitive to the class structure 

existent in the data. In order to increase the discriminatory power of various activity 

features, Etemad and Chellappa [24] used linear discriminant analysis (LDA), also 

called canonical analysis (CA), which can be used to optimize the class separability of 

different activity classes and improve the classification performance. The features are 

obtained by maximizing between-class and minimizing within-class variations. Here 

we call this approach canonical space transformation (CST). Combining EST with 

CST, our approach reduces the data dimensionality and optimizes the class 

separability among classes.  

Image data in high-dimensional space are converted to low-dimensional 

eigenspace using PCA. The obtained vector thus is futher projected to a smaller 

canonical space using CST. Action Recognition is accomplished in the canonical 

space. 
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Assume that there are c classes to be learned. Each class represents a specific 

posture, which assumes of testers various forms existing in the training image data. 

 is the j-th image in class i, and Ni,jx′ i is the number of images in the i-th class. The 

total number of images in training set is cT NNNN +++= L21 . This training set can 

be written as 

                 [ ]cNcN ,1,2,11,1  , , , , , , 1 xxxx ′′′′ LLL               (1) 

where each  is an image. ji,x′

At first, the intensity of each sample image is normalized by 

                       .
,

,
,

ji

ji
ji x

x
x

′
′

=                     (2) 

Then we can get the mean pixel value for training image as 

                      .1
1 1

,x ∑∑
= =

=
c

i

N

j
ji

T

i

N
xm                 (3) 

The training set can be rewritten as an TNn×  matrix X. And each image  forms 

a column of X, that is 

ji,x

 [ ].  , , , , x,x,1x1,1 1 mxmxmxX −−−= cNcN LL  (4) 
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2.1.1 Eigenspace Transformation (EST) 

 

Basically EST is widely used to reduce the dimensionality of an input space by 

mapping the data from a correlated high-dimensional space to an uncorrelated 

low-dimensional space while maintaining the minimum mean-square error to avoid  

information loss. EST uses the eigenvalues and eigenvectors generated by the data 

covariance matrix to retain the original data coordinates along the directions of 

maximal variance sequentially. 

If the rank of the matrix XX T  is K, then K nonzero eigenvalues of 

XX T , Kλλλ ,  ,  , 21 L , and their associated eigenvectors, , satisfy the 

fundamental relationship 

Keee  , , , 21 L

                    2 1         ,  K,,,iiii L==λ eRe                (5) 

where TXXR =  and R is a square, symmetric matrix. In order to solve Eq. (5), we 

need to calculate the eigenvalues and eigenvectors of the nn×  matrix . But 

the dimensionality of  is the image size, it is usually too large to be computed 

easily. Based on singular value decomposition, we can get the eigenvalues and 

eigenvectors by computing the matrix 

TXX

TXX

R~  instead, that is 

                 data matrix           

(6) 

T          :  =R X X X%

in which the matrix sizes of R~  are TT NN ×  which is much smaller than  of 

R. Still matrix 

nn×

R~  has K nonzero eigenvalues K
~,,~,~ λλλ L21  and K associated 

eigenvectors  which are related to those in R by K
~,,~,~ eee L21
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( )⎪⎩

⎪
⎨
⎧

λ=

λ=λ
−

iii

ii

eXe ~~ 

~ 

2
1      K,,,i L21  =         (7) 

These K eigenvectors are used as an orthogonal basis to span a new vector space. 

Each image can be projected to a point in this K-dimensional space. Based on the 

theory of PCA, each image can be approximated by taking only the largest 

eigenvalues kλλλ ≥≥≥ L21 , Kk ≤ , and their associated eigenvectors 

. This partial set of k eigenvectors spans an eigenspace in which  are 

the points that are the projections of the original images  by the equation 

keee  , , , 21 L ji ,y

j,ix

  (8) [ ]
T

, 1 2 , ,  , ,         1, 2,...,   ;  1, 2,...,i j k i j ci c j= =y e e e xL N=

]We called this matrix [  the eigenspace transformation matrix. After 

this transformation, each image can be approximated by the linear combination of 

these k eigenvectors and  is a one-dimensional vector with k elements which are 

their associated coefficients. 

T
21 ,,, keee L

ji,x

ji,y

 

2.1.2 Canonical Space Transformation (CST) 

 

Based on canonical analysis in [25], we suppose that { }cφφφ ,,, 21 L  represents 

the classes of transformed vectors by eigenspace transformation and  is the j-th 

vector in class i. The mean vector of entire set can be written as 

ji,y

             ,
1   1,  2, , ;  1,  2, ,y i j

i jT

i c j
N

= = =∑∑m y K iNK        (9) 

The mean vector of the i-th class can be presented by 
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Φ

,∑
∈

=
ii,j

ji
i

i
N y

ym                       (10) 

Let St denote the total scatter matrix, Sw denote the within-class matrix and Sb 

denote the between-class matrix, then 

 

( )( )
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  1
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,

mmmmS
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mymyS

y

b

w

t

  

where Sw  represents the mean of within-class vectors distance and Sb  represents the 

mean of between-class distance vectors distance. The objective is to minimize Sw  and 

maximize Sb  simultaneously, which is known as the generalized Fisher linear 

discriminant function and is given by 

                    ( ) .T

T

WSW
WSWWJ

w

b=                   (11) 

The ratio of variances in the new space is maximized by the selection of feature 

transformation W if 

                         .0=
∂
∂
W
J                    (12) 

Suppose that W* is the optimal solution where the column vector  is a 

generated eigenvector corresponding to the i-th largest eigenvalues 

*
iw

iλ . According to 

the theory presented in [25], we can solve Eq. (12) as follows 

                                        (13) * .i i iλ=S w S wb w
*
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After solving (11), we will obtain c–1 nonzero eigenvalues and their corresponding 

eigenvectors  that create another orthogonal basis and span a 

(c–1)-dimensional canonical space. By using these bases, each point in eigenspace 

can be projected to another point in canonical space by 

[ c,,, vvv L21 ]

                   [ ] jicji ,
T

121,  ,,, yvvvz −= L                (14) 

where  represents the new point and the orthogonal basis ji,z [ ] T
121  ,,, −cvvv L  is 

called the canonical space transformation matrix. By merging equation (8) and (14), 

each image can be projected into a point in the new (c－1)-dimensional space by 

                       i,jj,i x Hz = .                  (15) 
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2.2 The HSV color space 

The HSV (hue, saturation and value) color space corresponds closely to the 

human perception of color. Conceptually, the HSV color space is a cone. Viewed from 

the circular side of the cone, the hues are represented by the angle of each color in the 

cone relative to the 0o line, which is traditionally assigned to be red. The saturation is 

represent as the distance from the center of the circle. Highly saturation color are on 

the outer edge of the cone, whereas gray tones (which have no saturation) are at the 

very center. The brightness is determined by the colors vertical position in the cone. 

At the point end of the cone, there is no brightness, so all colors are blacks. At the fat 

end of the cone are the brightness colors. 

 

 

 

Fig. 2.1  The HSV Cone 

 

The hue parameter is the value which represents color information without 
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brightness. Therefore, the hue is not affected by change of the illumination brightness 

and direction. Although hue is the most useful attribute, there are three problems in 

using hue attribute for color segmentation: (1) hue is meaningless when the intensity 

value is very low; (2) hue is unstable when the saturation is very low; and (3) 

saturation is meaningless when the intensity value is very low [11]. Accordingly, 

Ohba et al. [26] use three criteria (intensity value, saturation, and hue) to obtain the 

hue value reliably. 

 Intensity Threshold Value: 

If , then , where , , and tV V< 0H = V tV H are an intensity value, the 

intensity threshold value, and a hue value, respectively. If measured color is not 

bright enough, the color is discarded. Then, the hue value is set to a 

predetermined value, i.e., 0. 

 Saturation Threshold Value: 

If , then , where , , and tS S< 0H = S tS H are an saturation value, the 

saturation threshold value, and a hue value, respectively. Using this equation, 

measured color close to gray is discarded in the image. 

 Hue Threshold Value: 

If  or tH < ΔP 2 tH Pπ− < Δ , then 0H = . The range of hue value is 

from 0 to 2π , and it has discontinuity at 0 and 2π . We use the phase threshold 

value  to avoid the discontinuity effect. tPΔ
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Chapter 3  Human Activity Recognition System 
 

3.1  Object extraction 

 

3.1.1 The intensity of the image  

 

We assume the intensity of the image captured by a camera can be described as 

 
( , ) ( , ) ( , ),i i iI x y S x y r x y=                          (16) 

 

where Ii is the intensity of the image, Si is the spatial distribution of source 

illumination, ri is the distribution of scene reflectance, (x,y) is the location of a pixel 

in the image, and i is the image sequence index. Now we can compare the difference 

caused by illumination change between frame difference and frame ratio. If we hold 

the camera still with no foreground subjects pass by, the reflectance of this 

background should be the same at any time. That is, 

 

( ) ( ), ,ir x y r x y= .                          (17) 

 

Although the reflectance is not changed, the effect of illumination is still going 

on. The frame difference and frame ratio between two consecutive frames can 

respectively be written as 

       
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )
1 1

1

, , , , , ,

, , , ,

d d d d
i i i i

d d
i i

I x y I x y S x y r x y S x y r x y

S x y S x y r x y

− −

−

− = −

= −
        (18) 
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1
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i i
r r
i i

r
i
r
i

r r
i i

I x y S x y r x y

S x y
S x y

S x y S x y

− −

−

−

=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

= −

, , ,r rI x y S x y r x y⎛ ⎞ ⎛ ⎞

         (19)             

where Id  is the intensity of scene captured by camera of frame difference, Sd  is the 

spatial distribution of source illumination of frame difference, and I r  and Sr  is of 

frame ratio. Comparing Eqs. (18) and (19), we can find that the problems cause by 

reflectance still remains in the frame difference approach; nevertheless, the influence 

of reflectance is eliminated in the frame ratio approach.  

 Fig.3.1 shows a comparison between frame ratio and frame difference. Fig.3.1(a) 

is a background image and Fig. 3.1(b) is an image frame with a human. By using 

frame difference and frame ratio approach, we obtain Fig. 3.1(c) and Fig. 3.1(d), 

respectively. Gray level of the resulting images distributed from 0 to 255. Fig. 3.1(e) 

is the histogram of Fig. 3.1(c) and Fig. 3.1(f) is the histogram of Fig. 3.1(d). 

Comparing the histograms of Fig. 3.1(d) and Fig. 3.1(e), we find out that there was 

less noise in the region of low gray level by using frame ratio method. The Fig. 3.1(g) 

and Fig. 3.1(h) are the binary image of extraction images which simply took a 

threshold value 15 at gray level against Fig. 3.1(c) and Fig. 3.1(d). 
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(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 
(g) 

 
(h) 

 

Fig. 3.1  The comparison between frame ratio and frame difference. (a) Background 

image, (b) image frame with a human, (c) frame difference, (d) frame ratio, (e) 

histogram of frame difference, (f) histogram of frame ratio, (g) foreground pixels of 

frame difference after simply taking a threshold, and (h) foreground pixels of frame 

ratio after simply taking a threshold
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3.1.2 Background model 

 

If we only use the luminance component to do background subtraction, we 

cannot detect reliably those foreground pixel whose luminance component close to 

background pixel. In order to solve this problem, we build our background model in 

the HSV color space. The HSV color space corresponds closely to the human 

perception of color. We can have the luminance information and the chromatic 

information simultaneously. Hue is unreliable in some condition, so we use the three 

criteria (intensity value, saturation, and hue) described in Chapter 2 to obtain the 

hue value reliably.  

In the previous section, we have seen the advantage of using frame ratio 

approach to counter the luminance change. Hence, we propose to utilize the frame 

ratio to build the background model in the luminance component. We build our 

background model with the minimum value ( ) and 

maximum value ([ ) in each HSV domain. Besides, we 

also record the inter-frame ratio in the brightness information and the inter-frame 

different in the chromatic information.  

[ ( , ), ( , ), ( , )]H S Vn x y n x y n x y

( , ), ( , ), ( , )]H S Vm x y m x y m x y

We need a background video, without any moving objects, for background 

model training. Suppose the observed image frame sequence contains N consecutive 

images. ( ,H
i )I x y  be the pixel’s hue value at ( )yx,  of the i-th image frame. 

( ,S
i )I x y  be the pixel’s saturation value at ( )yx,  of the i-th image frame. 

( ,V
i )I x y  be the pixel’s brightness value at ( )yx,  of the i-th image frame. The 

background model of a pixel is obtained by 
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                                                                (22) 

where . 1, 2,...,i N=

 

3.1.3 Foreground subject extraction and shadow detection 

 

Fig.3.2 shows the framework we apply to foreground subject extraction. Our 

framework of foreground subject extraction is composed of four components. The 

first component is foreground subject extraction by luminance. The second 

component is the shadow suppression. The third component is the object 

segmentation. And the finally component is the color compensation to recover the 

foreground pixels wrongly classified to the background due to their high luminance 
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similarly. 

 

 

 

Fig.3.2   The framework we apply to foreground subject extraction 

 

A. Foreground subject detection by luminance  

 

Foreground objects can be segmented from every frame of the video stream. 

Each pixel of the video frame is classified to either a background or a foreground 

pixel by the difference between the background model and a captured image frame. 

We utilize the maximum luminance ( ),  Vm x y , minimum luminance ( ),  Vn x y  and 
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maximum inter-frame luminance ratio ( ),  Vd x y  of the training background model 

to segment the foreground pixel by 

 

    0,           if  ( , ) ( , ) ( , )  

                 or ( , ) ( , ) ( , )( , )

255,          otherwise                                        

V V V
i V

V V V
i V

I x y m x y k d x y

I x y n x y k d x yB x y

⎧ <
⎪

<⎪= ⎨
⎪
⎪⎩

             (23) 

 

where ( ),  V
iI x y  is the intensity of a pixel which is located at ( )yx, ,  is 

the gray level of a pixel in a binary image, and  is a threshold, determined by 

light sufficiency of the scene. The value of  is normally set to 1.3 for normal 

light condition, and  will be reduced for in-sufficient light condition and 

increased otherwise. 

( yxB  , )

Vk

Vk

Vk

 

B. Shadow suppression 

 

The pixels of the moving cast shadows are easily detected as the foreground 

pixel in normal condition. Because the shadow pixels and the object pixels share two 

important visual features: motion model and detectability. For this reason, the 

moving shadows cause object merging and object shape distortion. Horprasert et al. 

[8] and Cucchiara et al. [9] utilize the rationale that shadows have similar 

chromaticity, but lower brightness than the background model. Hence, we can detect 

the shadow from foreground subject in the HSV color space. We analyze only points 

belonging to possible moving object that are detected in step A. We define a shadow 

mask  for each S ( , )x y  point as follows: 
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shadow,           if     ( , ) ( , ) 0

                       and  ( , ) ( , ) (x,y) 

( , )                        and  ( , ) ( , ) (x,y)                        

   
  object,    
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i

H H H
i H

S S S
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I x y n x y

I x y m x y k d
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= − <

        otherwise                                                                      
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⎪
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⎪
⎨
⎪
⎪
⎪
⎩

 

 (24) 

 

where ( , )H
iI x y , ( , )S

iI x y , and ( ),  V
iI x y  are respectively the HSV channel of a 

pixel located at , and  is the shadow mask to class the pixel in the 

moving cast shadow. Values  and 

( yx, ) )( ,  S x y

Sk Hk  are selected threshold values used to 

measure the similarities of the hue and saturation between the background image 

and the current observed image. We can utilize the shadow mask  to change 

the shadow pixels into background in 

( , )S x y

( , )B x y .  

 

C. Object segmentation 

 

According to the binary image B segmented by above, we extract the region of 

foreground object to minimize the image size. Foreground region extraction can be 

accomplished by simply introducing a threshold on the histograms in X and Y 

direction. Fig. 3.3 shows an example of foreground region extraction. We utilize the 

binary image and project it to X and Y directions. The interested section has higher 

counts in the histogram. We obtain the boundary coordinates x1, x2 of X axis and y1, 

y2 of Y axis from the projection histogram. We can use these boundary coordinates 

as the corner of a rectangle to extract foreground region ( sB ). Fig. 3.4 is the 

extracted foreground region. 
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Fig. 3.3  Histogram of binary image projection in X and Y direction. 
 

 

 
 

Fig. 3.4  The binary image of extracted foreground region. 
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D. Color compensation 

 

Some colors such as yellow, pink, and light blue have similar luminance value. 

If we only use the luminance component to do background subtraction, we cannot 

detect foreground pixel correctly when its luminance is similar to that of a 

background pixel. In order to improve detectability, background subtraction is 

computed by taking into account not only a point’s luminance, but also its 

chromaticity. We want to use the chromaticity to enhance the accuracy of the 

foreground object. We only analyze the region sB  obtained in subsection C above. 

Based on the amount of the chromaticity change, we reanalyze its background in 

sB  to be changed to a foreground of object, by 

 

255,          if  ( , ) ( , ) (x,y)  

                or ( , ) ( , ) (x,y) ( , )

0,          otherwise                                       

S S S
i S

H H H
i H

f

I x y m x y k d

I x y m x y k dB x y

⎧ − >
⎪
⎪ − >= ⎨
⎪
⎪
⎩

 

(25) 
 

where ( , )H
iI x y and ( , )S

iI x y are respectively the hue and saturation components of a 

pixel at ( ) ,  and yx, Sk Hk  are selected threshold values. fB  is the final 

foreground object after the refined step of Eq. (25). 
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3.2  Activity template selection 

 

A human body is a rigid body, thus has its natural frequency; namely, it has 

restriction on action speed when doing some specific actions. Because cameras 

usually capture image frames in a high frequency, there are few differences between 

two postural image frames in a short interval. Therefore, we select some key frames 

from a sequence to represent an activity. In our approach, we select one image frame, 

called as the essential template image, with a fixed interval instead of each image. 

An example is shown in Fig. 3.5. After determining the templates, each activity is 

represented by several essential templates.  

 

 

Fig. 3.5 One image frame is selected as template with an interval. 

 

These essential templates are transformed to a new space by eigenspace 

transformation (EST) and canonical space transformation (CST). The approximation 

can decrease data dimension, but it would also lose slight information of image with 

few differences. However, two similar image frames will converge to two near 

points after eigenspace and canonical space transformation. The images of similar 

postures done by difference people also barely converge to one point. Consequently, 

we select only essential templates rather than use all sequences for human activity 
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recognition. 

As described in Chapter 2, each image frame is transformed to a 

(c–1)-dimensional vector by EST and CST methods. Assume that there are n training 

models and c clusters in the system. Therefore, we have Nt templates, where Nt is 

equal to n multiplied by c. Let  be a vector of template image of the j-th 

training model and the i-th category and  be the transformed vector of . 

 is computed by 

ji,g

ji ,t ji ,g

ji ,t

 

, , , 1,  2,  ,  ; 1,  2,  , i j i j i c j= × = =t H g L nL             (26) 

 

where H denote the transformation matrix combing EST and CST and n is the total 

number of posture images in the i-th cluster.  is a (c–1)-dimensional vector and 

each dimension is supposed to be independent. Hence,  is rewritten as 

ji ,t

ji ,t

 
T1 2 1

, , , ,,  , ,  .c
i j i j i j i jt t t −⎡ ⎤= ⎣ ⎦t L                       (27) 

 

The transformation of each training model’s templates is treated as a mean vector. 

That is, 

 

,i j i j=μ t ,                              (28) 

 

where i is the number of template categories. The standard deviation vector of the 

m-th dimension is computed by 
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3.3  Construction of fuzzy rules form video stream 

 

Transitional relationships of postures in a temporal sequence are important 

information for human activity classification. If we only utilize one image frame to 

classify the action, classification result may be failed easily because human’s actions 

may have similar postures in two different activity sequences. For example, the 

action of “jumping” and “crouching” both have the same postures called common 

states as shown in Fig. 3.6. Besides, the posture sequence of each activity is 

dissimilar in different people. 

 
 

Fig. 3.6 Common states of two different activites. 

 

 Hence, we propose a method which not only combines temporal sequence 

 28



information for recognition but also is tolerant to variations of different people. We 

use the fuzzy rule-base approach to design our system. The fuzzy rule-base approach 

also has been proposed in gesture recognition in [23]; it has ability to absorb data 

difference by learning. 

 We use the membership function to represent the feature’s possibility of 

each cluster. Many types of membership functions, e.g., bell-shaped, triangular, and 

trapezoid ones, are frequently used in a fuzzy system. We choose the Gaussian type 

membership function to represent the features because the Gaussian type 

membership function can reflect the similarity via the first order and second order 

statistics of clusters and is differentiable.  

Firstly, when the k-th training image frame xk is inputted, the feature vector ak 

is extracted by 

 
                     . kk xHa =                               (30) 

 

As the same as ti,j in Eq.(27), ak can be rewritten as 

 

                                              (31) [ . ,, , T 1
,

21 −= c
jikkk aaa La ]

 

If we assume the dimensions of the feature vectors are independent, a local 

measure of similarity between the training vector and each template vectors can be 

computed. Let Σ denote the covariance matrix of all essential template vectors and 

Ci denote the i-th class of essential templates. The membership function is given by 
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(32)

 

where j is the training model number.  denotes the grade of membership 

function in category i of the k-th image frame. Besides, we can obtain which 

category each image belongs to by 

kir ,

 

,i
arg  max  k ip kr=                          (33) 

 

 The membership function describes the probability of which one it is like most. 

But it just contains the information of a single image. Hence, we collect three 

images to form a basis for temporal information. If we use too many images to form 

a basis, the data may contain too many images of other activity. If we use too few 

images, it may not have enough timing information to represent an activity. 

Assume we have c linguistic labels, each linguistic label represent a category of 

essential template. Each image frame can be represented by one of these c linguistic 

labels. In our approach, we combine three contiguous images to a group ( ,1 2 3I , )I I

]

, ]a a a

. 

The transformation of the image group can form a feature vector .There 

are c

1, 2 3[ ,a a a

3 combinations of the feature vector. Each combination represents the possible 

transition states of the three images. We use Eqs. (32) and (33) to class each image 

frame. Hence, we can represent the feature vector ([ , ) by linguistic label 

sequence ( ). An image sequence with linguistic label sequence is 

associated with its output of corresponding activity. 

1 2 3

1 2 3[ , , ]i i ia a a
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 As developed by Wang and Mendel [22], fuzzy rules can be generated by 

learning from examples. Such image sequence constitutes an input-output pair to be 

learned in the fuzzy rule base. In this setting, the generated rules are a series of 

associations of the form  

 

“IF antecedent conditions hold, THEN consequent conditions hold.” 

 

The number of antecedent conditions equals the number of features. Note that 

antecedent conditions are connected by “AND.” For example, an image sequence, 

its transformations of image 1, image 2, image 3 and belonging categories being 

concatenated as vector format, is given by 

 

[ ]1
1
3

1
2

1
1 ;,, Daaa                         (34) 

 

           

 

Suppose that Image 1, Image2 and Image 3 belong to category 1, category 2 and 

category 3 respectively. Therefore, we assign the image sequences, whose feature 

vector is [ , , ], to the linguistic labels Posture 1, Posture 2 and Posture 3 

respectively. Finally, a rule is produced from the feature-target vector. Hence this 

image sequence supports the rule of 

1
1a 1

2a 1
3a
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Rule 1. IF the activity’s I1 is P1 AND its I2 is P2 AND its I3 is P3, THEN the 

activity is D1. (35) 

where Ii is Image i and Pj is Posture j. 

 Our system is able to learn the hidden transition modes of activities from data. 

This is an advantage of our system and it will also improve the correct rate in 

classification. For example, the Posture 1 is a posture of activity D1 but D4, the 

system still learn a sequence with Posture 1 as the activity D4. We regard Posture 1 

as a common state of the two activities D1 and D4. Therefore the fuzzy rules induce 

tolerant to some ambiguous postures of different activities and classify the image 

sequence to an activity more correctly. 

 Sometimes conflicting rules may be generated; they have the same image 

sequence but refer to different activity. Therefore, we have to choose one from the 

two or more conflicting rules from each qualified cluster. To this end, we choose the 

rule that is supported by a maximum number of examples. Furthermore, to prune 

redundant or inefficient fuzzy rules, if the supporting actions of a rule are less than a 

threshold, the rule is excluded from defining an IF-THEN rule. 

 

3.4  Classification algorithm 

 

After constructing the rule base, we can grade the input image sequence with 

each fuzzy rule by grade of membership function. Let Σ denote the covariance 

matrix of all essential template vectors, Ci denote the i-th class of essential templates 

and sk denote the image frame transformed by EST and CST. The membership 

function is given by 
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where j is the training model number.  denotes the grade of membership 

function in category i of the k-th image frame. σ is the standard deviation of all 

essential templates. These membership functions are just the results of one image 

frame. We need to collect three images as a group for recognizing an activity. 

Therefore, we use two more transformed vector of passed image frames, which are 

called  and . These three vectors form a feature vector [ , , ]. 

We compute the membership functions of the three vectors respectively. The 

procedures of calculating membership functions of  and  are the same as 

the process used for  in Eq. (36). 

kir ,

2−ka 1−ka 2−ka 1−ka ka

2−ka 1−ka

ka

 In order to calculate the similarity between image sequence and each postural 

sequence in the training data base, we take out the membership functions , 

 and  which are corresponding to the three category of linguistic labels, 

,  and , in the rule and have been calculated by Eq. (36). The summation 

of ,  and  is the similarity between current image sequence and the 

postural sequence of this rule. We can obtain the similarity related to all fuzzy rules 

of training data base in the same manner. The rule, which has the highest value of 

similarity, is selected and the unknown activity is classified to the activity recorded 

in this rule. Fig. 3.7 shows the structure of the classification algorithm.   

1,2 nkr −

2,1 nkr − 3,nkr

1Pn 2Pn 3Pn

1,2 nkr − 2,1 nkr − 3,nkr
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Fig. 3.7  The structure of classification algorithm. 
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Chapter 4   Experimental Result 

 
In our experiment, we tested our system on videos taken by digital camera. We 

took the video in our laboratory at the 5th Engineering Building in NCTU campus. 

The camera has a frame rate of thirty frames per second and image resolution is 

 pixels. The experimental environment is shown in Fig. 4.1. 320 240×

 

 

Fig. 4.1  The experimental environment. 
 

The background is not complex and we equipped a table in the scene. The light 

source is fluorescent lamps and is stable. Each person performed six actions: 

“walking from left to right,” “walking from right to left,” “jumping,” “crouching,” 

“climbing up” and “climb down.”  The action “climbing up” is to climb up on the 

table from the ground. The action “climbing down” is to climb down to the ground 

from the table. 

We test the foreground detection capability and then the action recognition 

accuracy in two cases depending on the color of clothing worn by action subjects. 

That the action subject wore the clothing with color different from that of 

background is first case. And the second case is that the action subject wore the 

clothing with color similar to that of background. When the color of clothing and 
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background are similar in the second case, a moving object, such as human body, 

may not be segmented easily from image frame. We compare the result in these two 

cases and the color compensation in our action recognition system demonstrates 

eminent improvement in the segmentation quality. We classify our model into two 

groups: Group A has six models in which the subject wears clothing with color 

different from the background, and Group B has three models in which the subject 

wears clothing similar to the background. Fig. 4.2 shows our models in the 

experiment.  
 

   

   

   

 

Fig. 4.2  Various images of our models. 
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4.1 Background model construction 

  

 We built the background model in the HSV color space. The value of H or 

S or V is between 0 and 255. Figs. 4.3(a), 4.3(b), and 4.3(c) show the background 

image in the H, S, and V component, respectively. We can find from these three 

figures that the hue value is relatively unstable when the saturation is close to zero. 

We make an experiment to test the changes in the HSV components in constructing 

the background model. Fig. 4.4 represents the H, S, and V variations of two pixels at 

coordinates ( , )x y = (10, 10) and ( , )x y = (120, 160) during the first 300 frames in 

the background video. From Fig. 4.4, we can see that V component is most stable of 

the background model. H and S components are less stable than V. Hence, we need 

to solve this problem.  

 

 

     

         (a)                     (b)                   (c) 

 

Fig. 4.3  Background images. (a) Background image in the H component, (b) 

Background image in the S component, and (c) Background image in the V 

component. 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 

 
(e) 

 
(f) 

 

Fig. 4.4 H, S, and V variations versus frame index of background video frome 

frame 1 to frame 300. (a) H at (10, 10), (b) H at (120, 160), (c) S at (10, 10), (d) S at 

(10, 10), (e) V at (10, 10), and (f) V at (10, 10). 
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In Sec. 2.2, we know that hue is unreliable when the color is close to the gray 

tones. Hence, we use three criteria ( ) to obtain the hue value reliably in 

building the background model. In our experiment, we set three criteria by  

, ,t t tV S H

 
50,  50, and 25t t tV S H= = =  

 

to make hue value reliably. 

Fig. 4.5 shows the background image in the H color components after we use 

criterion to redefine it. We can find that the hue values in the background image are 

almost be set to zero. The reason is that our background is simple and the color is 

similar to the gray tones. 

  

 
 

Fig. 4.5  Background image in the redefined H color components.  

 

 

 

 

 

 

 

 

 39



4.2  Foreground subjects extraction 

 

The V color component is stable and reliable, but it has two drawbacks: the 

illumination change make it change and the similar color such as yellow, pink, and 

light blue has the similar value in it. In normal condition, the subjects wear the 

clothing with the color different from the background, so we can do background 

subtraction with good performance in the V color component.   

 In the first step, we use the frame ration in the V color component to get the 

binary image ( , )B x y in Eq. (23) described in Sec. 3.1.3. The value  is chosen 

by experiments and varies with different trials. Hence, we ran a series of 

experiments to determine the optimal threshold . Fig. 4.6 shows the binary image 

Vk

Vk

( , )B x y  got by different i with subject’s clothing color different from the 

background. Fig. 4.7 shows the binary image 

Vk

( , )B x y  got by different  with 

subject’s clothing color similar to the background. Comparing Figs. 4.6 and 4.7, we 

can find that if the color is different from the background, we can use the threshold 

value  to get a good foreground subject extraction. But we cannot adjust  to 

get a complete and noise-free foreground subject when the clothing color is similar 

to the background. After the experiment, we set 

Vk

Vk Vk

1.3Vk =  in our system. 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 
(f) 

 

Fig. 4.6  An example of foreground extraction at different  thresholds. Vk

(a) An image frame with subject’s clothing color different from the background, 

(b) (f) foreground detected images, (b) − 1.0Vk = , (c) 1.1Vk = , (d) , (e) 

, and (f)  

1.2Vk =

1.3Vk = 1.4Vk =
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 
(f) 

 

Fig. 4.7  An example of foreground region extraction at different  threshold. Vk

(a) An image frame with subject’s clothing color similar to the background, (b)− (f) 

foreground detected images, (b) 1.0Vk = , (c) 1.1Vk = , (d) 1.2Vk = , (e) , 

and (f) ,  

1.3Vk =

1.4Vk =

 

 The influence of shadow makes the foreground subjects distort and influence 

the recognition result. We use the shadow mask in Eq. (24) described in Sec. 3.1.3 to 

classify the pixels whether it is a shadow point or not. Fig. 4.8 shows the process 

result in shadow suppression. Fig. 4.8 (a) and (b) are two input images. Fig. 4.8 (c) 

and (d) are the foreground subject without shadow detection. The foreground subject 
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with shadow detection is shown in Fig. 4.8 (e) and (f). 

 

 

(a) 
 

(b) 
 

 

(c) 
 

(d) 
 

 

(e) 

 

 

(f) 
 

Fig. 4.8  The example of the shadow detection. 

 

 The model in Group B contains three action subjects wear light blue clothing, 

yellow clothing, and pink clothing, respectively. In the previous experiment, we 

cannot adjust  to get a complete and clean foreground subject in Group B. 

Hence, we do the color compensation in Eq. (25) described in Sec. 3.1.3. In what 

follows, the effectiveness of color compensation in obtaining a more accurate 

foreground is described. In Fig. 4.9, the left column contains input images; the 

middle column contains the resulting foreground images, without color com- 

Vk
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pensation step; and the right column is the foreground images detected with color 

compensation step. From the Fig.4.9, we have found that we can get good 

compensation when the clothing color is light blue and yellow, but cannot obtain 

good compensation when the clothing color is pink. The reason is that when pink 

color pixels are transformed from RGB color space to HSV color space, the 

saturation of pink is lower than the set criterion . Hence, we cannot recover those 

pixels from background to foreground for such small chromaticity difference in this 

space. 

tS

 

 
(a) 

 

   
(a1) 

 
(a2) 

 
(b) 

 

   
(b1) 

 
(b2) 

 
(c) 

 

   
(c1) 

 
(c2) 
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(d) 

   
(d1) 

 

 
(d2) 

 
(e) 

   
(e1) 

 

 
(e2) 

 
(f) 

   
(f1) 

 
(f2) 

 

Fig. 4.9.  Foreground detection without and with color compensation. (a) (f) is the 

input images, (a1) (f1) the foreground images, without color compensation, 

(a2) (f2) the foreground images detected with color compensation. 

−

−

−

 

We randomly selected 100 frames from the video sequence of the model with a 

subject wearing clothing similar to the background color. The “ foreground subject 

ground truths” of these 100 frames were generated manually. Let A be a detected 

foreground subject region and B be the corresponding “ground truth.” Then we test 

the pixel accuracy by the following two metrics. Metric 1 is a measure concerning 

whole segmented region pixels relative to these pixels in A the same with in B. To 

this end, we calculate the accuracy rate by 
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1Accuracy rate  = 100%,s

total

N
N

×                   (37) 

 

where  is the pixel number of segmented foreground image, and totalN sN  is the 

pixel number that the pixel in A is the same as that in B, i.e., such of true positive 

and false negative pixels of A relative to B. Metric 2 is adopted from [27] by 

 

2Accuracy rate 100%,A B
A B
∩

= ×
∪

                (38) 

 

This measure counts the percentage of the mutual positive pixels to expanded 

positive pixels. Table I shows the accuracy rate in metric 1 and metric 2 of 100 

frames, and demonstrates the improvement of color compensation over that without 

color compensation. 

TABLE I 

COMPARISON RESULT OF THE PIXEL ACCURACY RATES OVER 100 IMAGES 

 

 Without color compensation With color compensation 

Metric 1 78.81% 89.13% 

Metric 2 59.61% 81.23% 

 

4.3 Fuzzy rule construction for action recognition 
 

We construct the template model matrix and the fuzzy rule database with the 

Group A. We chose six kinds of essential templates for “walking from left to right,” 

“walking from right to left,” and “climb down,” respectively; five for “climbing up,” 

three for “crouching” and two for “jumping.” There are total 28 kinds of essential 

templates, and called 28 classes. The essential template numbers of each activity 
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depend on how long it takes. Each essential template is a cluster with five template 

images which are from five different training person’s and have similar postures. Fig 

4.10 and Fig. 4.11 are two examples of some templates of two training model. 

 

 
Class 3 

 
Class 5 

 
Class 8 

 
Class 12 

 
Class 15 

 
Class 19 

 
Class 21 

 
Class 23 

 
Class 25 

Fig. 4.10  Some “essential templates of posture” of model A. 
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Class 3 

 
Class 5 

 
Class 8 

 
Class 12 

 
Class 15 

 
Class 19 

 
Class 21 

 
Class 23 

 
Class 25 

 

Fig. 4.11  Corresponding “essential templates of posture,” Fig. 4.10, of model B. 

 

The template images are transformed to canonical space by the methods 

described in Chapter 2. The mean vectors and the standard deviation vectors of all 

templates were computed by Eq. (29). Each template image of a training model was 

treated as a center. Hence, there were 140 mean vectors because of five training 

models and 28 classes of templates. Besides, there were six groups of standard 

deviation vectors and mean vectors because of six kinds of different training models. 

After determining the standard deviation vectors, the corresponding training 

video frames are inputted. The relationship between each image frame and each 

template is calculated by using Eq. (32) in Section 3.3. We gathered three images as 
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a group in order to include temporal information. The interval between each of these 

three images is five image frames which is the same as in template selection. 

Training is accomplished in off-line situation. Therefore, we gathered three images 

from different start points to train fuzzy rules. For examples: the first frame, the 6-th 

frame and 11-th frame are gathered together as an input training data; the second 

frame, the 7-th frame and 12-th frame are gathered together as another input training 

data; the third frame, the 8-th frame and the 13-th frame are gathered together as an 

other input training data etc. Different start points of image frames are used for 

training fuzzy rules in our experiment, because the starting posture of testing video 

and of training video may not be the same. By utilizing different start points, the 

system is able to learn much more combinations of image frames and increase 

accuracy of fuzzy rules. 

The group of the three images is converted to the posture sequence which has 

the maximum summation of three membership function values in Eq. (32). Each 

posture sequence will trigger a corresponding rule one time. If the corresponding 

rule is not existent, a new rule is built in the form of IF-THEN which is represented 

in Section 3.3. Table II shows some fuzzy rules in the experiment. Where WLR is the 

activity “walking form lest to right,” WRL is the activity “walking from right to left,” 

JUMP is the activity “jumping,” CROUCH is the activity “crouching,” CUP is the activity 

“climbing up” and CDOWN is the activity “climbing down.”  are the 

linguistic labels that represent the templates of the activities. Two of the fuzzy rules 

are represented in the view of template images in Fig. 4.12. 

1 2 28P ,P ,...,P
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TABLE II 
SOME OF THE OBTAINED FUZZY RULE BASE 

 
Number Image 1 Image 2 Image 3 Class 

1 P1 P1 P1 WLR

2 P1 P1 P2 WLR

3 P1 P1 P3 WLR

M  M  M  M  M  
30 P4 P11 P12 WRL

M  M  M  M  M  
60 P3 P13 P14 JUMP

M  M  M  M  M  
80 P13 P16 P17 CROUCH

M  M  M  M  M  
91 P2 P18 P18 CUP

M  M  M  M  M  
129 P27 P28 P10 CDOWN

130 P28 P7 P7 CDOWN

131 P28 P28 P10 CDOWN

 

 
 (a) 

 
 (b) 

Fig. 4.12  Two examples of fuzzy rules (a) Walking from left to right  

and (b) Climbing down. 
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4.4 The recognition rate of activities 

 

The activity recognition system in our experiment is off-line presented and 

tested; therefore, the testing video is not done in real time phase. We input the 

testing video from different starting frames which is similar to the way for the 

training fuzzy rules. Namely, we recognize the video from the first frame, the second 

frame, the third frame and the fourth frame, etc. with the sampling intervals of five 

frames. We experimented in Group A and Group B. When experimenting in Group A, 

the testing video was not used for constructing templates and fuzzy rules. Hence, 

there are six corresponding databases for the video of the six models. But in Group 

B, we constructed the templates and fuzzy rules by used the six model in Group A 

and compared the recognition rate after the color compensation. 

 

 Experiment in Group A models 

 

The frame numbers in each activity of every model are shown in Table III. The 

total number of testing frames is 2685. Table IV. shows the recognition rate in Group 

A, and the average action accuracy rate is 93.51%. 
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TABLE III. 

THE FRAME NUMBER OF EACH ACTIVITY IN GROUP A MODELS 
 

Frame numbers 
Testing data 

WLR WRL CROUCH JUMP CUP CDOWN

Model A1 90 86 74 80 70 50 

Model A2 83 93 94 78 67 55 

Model A3 84 84 81 76 65 50 

Model A4 87 84 80 75 59 60 

Model A5 79 78 87 76 62 61 

Model A6 81 84 75 76 68 53 

 

TABLE IV 
THE RECOGNITION RATE OF EACH ACTIVITY IN GROUP A MODELS 

 

Recognition rate (%) 
Testing data 

WLR WRL CROUCH JUMP CUP CDOWN

Model A1 100.00 100.00 100.00 77.5 97.56 90.97 

Model A2 100.00 82.46 97.14 85.76 100.00 94.29 

Model A3 100.00 85.58 74.36 94.12 100.00 74.43 

Model A4 100.00 93.65 86.17 91.30 93.62 76.67 

Model A5 100.00 97.06 100.00 97.89 90.67 97.75 

Model A6 100.00 95.31 92.59 96.84 100.00 100.00 

Average 93.51 
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 Experiment in Group B models 

 

Table V shows the recognition rate of the model wear yellow clothing in 

Group B. Table VI shows the recognition rate of the model wear light blue 

clothing in Group B. Table VII shows the recognition rate of the model wear 

pink clothing in Group B. In these three tables, we can find that the recognition 

rate can be improve when the color compensable. 

 

TABLE V 
THE RECOGNITION RATE WITH THE MODEL WEARING YELLOW CLOTHING 

 

Recognition rate (%)  

Without color compensation With color compensation 

WLR 93.55 100 

WRL 31.43 75.71 

CROUCH 51.72 96.13 

JUMP 0 78.49 

CUP 56.94 78.78 

CDOWN 63.89 72.78 

Average 48.10 84.01 
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TABLE VI 
THE RECOGNITION RATE WITH THE MODEL WEARING LIGHT BLUE CLOTHING 

 

Recognition rate (%)  

Without color compensation With color compensation 

WLR 84.44 95.56 

WRL 11.65 73.55 

CROUCH 71.82 84.76 

JUMP 0 75.36 

CUP 90.77 93.84 

CDOWN 90.24 97.56 

Average 53.13 85.18 

 

TABLE VII 
THE RECOGNITION RATE WITH THE MODEL WEARING PINK CLOTHING 

 

Recognition rate (%)  

Without color compensation With color compensation 

WLR 81.54 86.15 

WRL 6.25 14.63 

CROUCH 39.43 50 

JUMP 0 0 

CUP 50.76 55.69 

CDOWN 71.01 76.32 

Average 42.63 45.86 
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Chapter 5   Conclusion 

 
 In this thesis, we proposed the foreground subject extraction in the HSV color 

space to improve the human activity recognition system and define three criteria to 

reduce the hue instability effects on the chromatic channels of pixels. In the HSV 

color space, we can utilize not only the luminance component but also the chromatic 

component existent in the background image. In this way, we can reliably extract the 

foreground subject, even when the foreground luminance is similar to that of the 

background. Experimental results have shown that we get good results in the 

foreground subject extraction.  

 In our action recognition system, CST and EST are used to reduce data 

dimensionality and optimize the class separability simultaneously. Fuzzy rule base 

for activity recognition is obtained by learning from three temporal postures 

extracted and down sample from tracing video. In the testing phase, a three posture 

sequences is processed by fuzzy rule base, and the recognition result is determined 

as the action which best matches the posture sequence in the fuzzy rules. 

 Experiment results have shown that extracting the foreground image in the 

HSV space improves not only the pixel accuracy of the foreground image segmented 

but also the recognition accuracy of human activity. 

Some subjects wearing light color clothing, e.g., pink, still cannot be extracted 

well, which deserves to be investigated further. In addition, recognition from a 

different viewing direction, extensions of various test environments, more 

complicated surrounding, and more complicated activity are our future work. 
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