

國 立 交 通 大 學

電 機 與 控 制 工 程 研 究 所

碩 士 論 文

用於多輸入輸出無線通訊之快速傅立葉轉換

加速器設計

Design of FFT Accelerator for MIMO Wireless

Communication Standards

中華民國九十六年九月

 研究生：呂俊衛

指導教授：董蘭榮 博士

Design of FFT Accelerator for MIMO Wireless

Communication Standards

Advisor: Dr. Lan-Rong Dung

Graduate Student: Chun-Way Lyu

September 2007

Graduate Institute of Electrical and Control

Engineering

National Chiao Tung University

Hsinchu, Taiwan, ROC

i

Design of FFT Accelerator for MIMO Wireless Communication Standards

Graduate Student: Chun-Way Lyu Advisor: Dr. Lan-Rong Dung

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

 FFT module is an indispensable part for wireless and mobile communication,

especially when broadband wireless systems require a high speed and low power

hardware module for its packet-based high-speed data transfer. This has made the

design of FFT processor a critical requirement for the next generation wireless

systems. In general, FFT module is designed for specific system. Therefore, it is

desirable to design an adaptive FFT module for different standards. This thesis adopts

processor flexible characteristic and ASIC accelerated mechanism to set up a flexible

FFT module which can meet IEEE 802.11n/16e standards. Besides, we propose

optimized time schedule in the SISO/MIMO systems. After processor computational

analysis, 64-point branch FFT of ASIC can be applied in proposed system and it

computes 16-bit input data at the 85 MHz throughput rate. After that, we compare

various pipeline-based FFT architectures of ASIC and analyze their characteristic.

Finally, it not only verifies the 64-point branch FFT on FPFA, but also checks

proposed time schedule which can satisfy IEEE 802.11n/16e specification.

ii

用於多輸入輸出無線通訊之快速傅立葉轉換

加速器設計

學生：呂俊衛 指導教授：董蘭榮 博士

國立交通大學

電機與控制工程學系研究所

摘要

對於無線和行動通訊系統，傅立葉轉換模組是不可或缺的部分，特別是當寬

頻無線系統需要一個高速且低功率硬體於高速封包式資料傳輸，這使得傅立葉轉

換成為下一代無線系統必要的需求。一般而言，傅立葉轉換模組的設計會針對特

定的系統，因此，希望能去設計一個可以適合不同標準規格的傅立葉轉換模組。

在此論文中採用處理器彈性的特色和硬體具有加速的機制去建立一個傅立葉轉

換模組，並且可以符合 IEEE 802.11n/16e 的規格要求。除此之外，我們提出對

於單輸入輸出/多輸入輸出系統的最佳排程。在經過處理器運算量分析後，64 點

分支傅立葉轉換以硬體實現於系統中，並且它已 16 位元及 85 MHz 產出率為規

格。之後，我們有針對用於系統的傅立葉轉換硬體架構做比較與分析其特性。最

後，不只有對 64 點分支傅立葉轉換於 FPGA 上做驗證，並且有針對所提出的排程

做驗證是可以滿足 IEEE 802.11n/16e 的規格。

iii

誌謝

 本篇論文得以順利完成，首先要感謝的是我的指導教授──董蘭榮教授，於

碩士班兩年內，對於我的指導，尤其是當遇到一些研究上的疑問時，老師都能不

厭其煩地給予方向與意見，使我能修正錯誤觀念，才能完成此篇碩士論文。並且

提供非常豐富的資源，讓我能更方便於學習研究上，使我在碩士班期間內受益良

多。

 特別要感謝實驗室學長──學之、盟淳，在研究中給予的意見與幫忙，以及

我的同學們──峻徹、仕捷、信丞、致惟，在這兩年內，於課業與生活上的互相

扶持照顧，給予我一段美好的研究時光。

 最後要感謝我的家人和女友──秀娟的支持，有了你們的鼓勵，讓我可以繼

續面對下一個問題，並且無後顧之憂的完成碩士學位。

 謹將此論文獻給所有關心我的人，在此致上最深的謝意。

iv

Contents

Abstract ...i

Contents ..iv

List of Tables...vi

List of Figures ..vii

Chapter 1 Introduction ..1

1.1 Motivation...1

1.2 Organization of This Thesis ..3

Chapter 2 Backgrounds...4

2.1 WLAN MIMO-OFDM System...4

2.2 Flexible FFT Processor ...6

2.3 Discrete Fourier Transform...7

2.4 Complexity Comparison ...9

2.5 Variable Length of FFT Architectures ..12

2.5.1 Memory Based Architectures...12

2.5.2 Pipeline Architectures ..13

Chapter 3 ASIC and Processor Co-Design Analysis ..14

3.1 Introduction...14

3.2 FFT Computational Complexity Analysis ..15

3.3 ASIC and Processor Timing Schedule..20

3.3.1 SISO System Timing Schedule..20

3.3.2 MIMO System Timing Schedule ...23

3.4 ASIC and Processor Performance Simulation ..25

v

Chapter 4 Implementation of the ASIC Architecture..30

4.1 Classification Pipeline-Based FFT Architectures30

4.1.1 Radix-2 Multipath Delay Commutator (R2MDC).........................30

4.1.2 Radix-4 Multipath Delay Commutator (R4MDC).........................31

4.1.3 Radix-22 Multipath Delay Commutator (R22MDC)32

4.1.4 Radix-8 Multipath Delay Commutator (R8MDC).........................32

4.1.5 Radix-23 Multipath Delay Commutator (R23MDC)33

4.1.6 Radix-2 Single-Path Delay Feedback (R2SDF)33

4.1.7 Radix-4 Single-Path Delay Feedback (R4SDF)34

4.1.8 Radix-22 Single-Path Delay Feedback (R22SDF)..........................35

4.1.9 Radix-8 Single-Path Delay Feedback (R8SDF)36

4.1.10 Radix-23 Single-Path Delay Feedback (R23SDF)........................36

4.2 Comparison of Pipeline-Based FFT Architectures37

4.3 ASIC Throughput Analysis...41

4.4 Implement the 64-point Branch FFT of ASIC ..42

4.4.1 Complex Multiplier..42

4.4.2 Twiddle Factor Coefficient of ROM Table43

4.5 Error Analysis ...48

Chapter 5 System Verification and Simulation Results ..50

5.1 System Environments ...50

5.2 The 64-point Branch FFT Verification..50

5.3 MATLAB Simulation and Analysis ..55

Chapter 6 Conclusion and Future Work..57

6.1 Conclusion ..57

6.2 Future Work ..58

Reference ...59

vi

List of Tables

Table 2.1 The comparison of the hardware complexity of the receiver......................6

Table 2.2 FFT sizes and sampling rates in various communication systems..............7

Table 2.3 Multiplication comparison [3]...10

Table 2.4 Multiplications and additions comparison [4]...10

Table 2.5 Equation of multiplications and additions comparison [5] 11

Table 3.1 Comparison operations of FFT size in IEEE 802.11n/16e standards........17

Table 3.2 Comparison of different length ASIC operations of a 128-point FFT18

Table 3.3 Comparison of different length ASIC operations of a 2048-point FFT18

Table 3.4 Approximately calculation of latency cycles ..25

Table 4.1 Hardware requirement comparisons of several pipeline structures37

Table 4.2 Hardware utilization comparisons of several pipeline structures38

Table 4.3 Comparison of switch number in different radix algorithm......................38

Table 4.4 Hardware requirement comparisons of 64-point FFT architectures38

Table 4.5 Interval regions of twiddle factor design ..44

Table 4.6 Description of twiddle factor parameters..45

Table 4.7 Twiddle factor coefficient values in the region 0......................................47

Table 5.1 Chip summary of 64-point R23SDF FFT..53

Table 5.2 Xilinx FPGA synthesis report ...54

vii

List of Figures

Fig. 2.1 Block diagram of IEEE 802.11n WLAN 2x2 transmitter system5

Fig. 2.2 Block diagram of IEEE 802.11n WLAN 2x2 receiver system......................5

Fig. 2.3 Complexity comparison of Table 2.5... 11

Fig. 2.4 Memory based architecture block diagram ...13

Fig. 2.5 Pipeline based of block diagram..13

Fig. 3.1 The butterfly signal flow graph of radix-2 DIF FFT15

Fig. 3.2 Radix-2 DIF FFT signal flow graph of a 16-point FFT...............................16

Fig. 3.3 Time scheduleⅠof the SISO system...20

Fig. 3.4 SISO system block diagram of the time scheduleⅠ21

Fig. 3.5 Time scheduleⅡ of the SISO system...22

Fig. 3.6 SISO system block diagram of the time scheduleⅡ22

Fig. 3.7 Time schedule of the MIMO system ...23

Fig. 3.8 MIMO system block diagram..24

Fig. 3.9 Processor operations analysis of scheduleⅠin the SISO system26

Fig. 3.10 Processor operations analysis of scheduleⅡ in the SISO system............27

Fig. 3.11 Processor operations analysis in the MIMO system..................................28

Fig. 3.12 Percentage of total operations in different FFT size..................................29

Fig. 4.1 R2MDC architecture..31

Fig. 4.2 R4MDC architecture..32

Fig. 4.3 R22MDC architecture ..32

Fig. 4.4 R8MDC architecture..33

Fig. 4.5 R23MDC architecture ..33

viii

Fig. 4.6 Operation mode1 and mode2...34

Fig. 4.7 16-point radix-2 DIF SDF architecture ...34

Fig. 4.8 R4SDF architecture ...35

Fig. 4.9 16-point R22SDF architecture ...35

Fig. 4.10 R8SDF architecture ...36

Fig. 4.11 R23SDF architecture ..36

Fig.4.12 Hardware gate count comparison of several pipelined structures39

Fig. 4.13 ASIC throughput analysis in different environments41

Fig. 4.14 Radix-23 FFT butterfly unit ...42

Fig. 4.15 Implementation hardware of multiplication with 2243

Fig. 4.16 Complex multiplier with four real multiplications and two real additions43

Fig. 4.17 Twiddle factor boundary diagram..45

Fig.4.18 R23SDF Pipelined FFT Architecture for N= 64 ...47

Fig. 4.19 Noise analysis with different FFT length ..49

Fig. 5.1 Flow chart of the branch FFT chip design...51

Fig. 5.2 Layout view of the 64-point R23SDF FFT structure52

Fig. 5.3 Test bench for the 64-point branch FFT ..54

Fig. 5.4 FPGA measurement plan ...55

Fig. 5.5 Test bench for proposed system...56

1

Chapter 1 Introduction

1.1 Motivation

 FFT module is one of the most utilized operations in digital signal processing

and communications. The FFT and its inverse transform-IFFT are key component in

modern communication systems. It is desirable that FFT module can flexibly adjust

FFT size to meet various standards. In general, FFT module is designed for specific

standard such as Ultra-Wide Band (UWB) system which needs high throughput FFT

module and Very High Data Rate DSL (VDSL) system which demands long length

FFT computation. Therefore, it is difficult to design a FFT module which is suitable

for any specification.

ASIC approaches have been used to achieve the high performance demands

which software or general purpose DSP implementations fail to deliver but custom

hardware are often less cost-effective and flexible than general processors. Hence, it

adopts ASIC and processor characteristic to set up FFT module in this thesis. ASIC

plays an accelerated role in the proposed system and it executes partial FFT algorithm.

Processor can flexibly execute the remaining FFT computation and it only takes

processor performance into consideration. Therefore, the proposed system can meet

different communication systems by reconfiguring computation of processor.

 First, we need to analyze computational complexity of FFT algorithm. Because

FFT algorithm is composed of addition and multiplication operations, it calculates

computational loading between processor and ASIC based on Million Operations Per

Second (MOPS) in this thesis. Therefore, in this thesis, the given processor can be

2

calculated that it needs to spare how much computational power for the proposed FFT

module in various standards. After that, the branch FFT of ASIC can be designed as

an accelerator to complete FFT algorithm.

3

1.2 Organization of This Thesis

In this thesis, the proposed FFT system can process IEEE 802.11n/16e standards

and we not only propose optimized time schedule, but also provide users ASIC and

processor computational allocation analysis which are shown in the following

chapters. The summary of each chapter can be listed as below：

Chapter 2 Backgrounds

 It introduces MIMO OFDM system standards and FFT algorithm. Different radix

FFT architectures are compared and variable length FFT architectures are described.

Chapter 3 ASIC and Processor Co-Design Analysis

 First, we calculate FFT computational complexity which can analyze processor

performance. After that, the proposed time schedule and architectures are applied in

the SISO/MIMO systems independently. Finally, we can analyze relationship between

ASIC and processor.

Chapter 4 Implementation of the ASIC Architecture

 It compares various pipeline-based FFT architectures and then introduces

detailed sub-module architectures. Then, it calculates error noise.

Chapter 5 System Verification and Simulation Results

 It shows verification of branch FFT which covers cell-based flow and FPGA

verification. After that, we model behavior of processor to verify variable-length FFT

computation and time schedule in the SISO/MIMO systems.

Chapter 6 Conclusion and Future Work

4

Chapter 2 Backgrounds

2.1 WLAN MIMO-OFDM System

 Orthogonal Frequency Division Multiplexing (OFDM) is widely applied in

high-speed Wireless Local Area Network (WLAN) such as IEEE 802.11a/g/n,

Hiperlan/2 and Wireless Personal Area Network (WPAN) such as Ultra-Wide Band

(UWB) system. OFDM is a special case of multicarrier transmission, where a single

data stream is transmitted over a number of lower rate subcarriers. OFDM can be seen

as either a modulation technique or a multiplexing technique. One of the main reasons

to use OFDM is to increase the robustness against frequency selective fading or

narrowband interference. To eliminate the banks of subcarriers oscillators and

coherent demodulators required by frequency division multiplex, Discrete Fourier

Transform (DFT) processor is essential to be implemented.

 Multiple-Input Multiple-Output (MIMO) system was instituted by Marconi in

1908. Channel fading can be suppressed by multiple antennas in both transmitter and

receiver, the so-called MIMO system, has received significant attention in recent

years owing to their potential to increase system capacity.

 The High Throughput Task Group which establishes IEEE 802.11n standard is

going to draw up the next-generation WLAN proposal based on the 802.11a/g which

is the current OFDM-based WLAN standards [1]. The IEEE 802.11n standard based

on the MIMO OFDM system provides very high data throughput rate from the

original data rate 54 Mb/s to the data rate in excess of 600 Mb/s because the technique

5

of the MIMO can increase the data rate by extending an OFDM-based system. A

block diagram of the 2x2 transceiver of IEEE 802.11n is shown in Fig. 2.1 and Fig.

2.2. Depending on the desired data rate, the modulation scheme can be Binary Phase

Shift Keying (BPSK), Quaternary Phase Shift Keying (QPSK), or Quadrature

Amplitude Modulation (QAM) with 1-6 bits. The encoding rates in this specification

are 1/2, 2/3, 3/4, or 5/6. The number of spatial sequence is supported by 1, 2, 3, or 4.

The guard interval period is 400 ns or 800 ns. The bandwidth of the transmitted signal

is 20 or 40 MHz. The FFT (Fast Fourier Transform) size is 64 points or 128 points.

Fig. 2.1 Block diagram of IEEE 802.11n WLAN 2x2 transmitter system

Fig. 2.2 Block diagram of IEEE 802.11n WLAN 2x2 receiver system

6

 However, the IEEE 802.11n standard also increases the computational and

hardware complexity greatly which is compared with the current WLAN standards.

The FFT/IFFT processor is one of the highest computational complexity modules in

the physical layer of the IEEE 802.11n standard, as shown in Table 2.1 [29]. Multiple

FFT modules are added to deal with multiple data sequences in the MIMO OFDM

system and therefore it causes a large increase in the hardware complexity and power

consumption.

Table 2.1 The comparison of the hardware complexity of the receiver

 Multiplier Adder Register Gate Count (K)

Packet Detection 4 4 50 50

AGC 1 1 1 30

Frequency Offset 4 18 96 80

Frame Detection 8 8 8 50

FFT 1 12 68 160

Channel Estimation 0 0 128 60

2.2 Flexible FFT Processor

 OFDM techniques play an important role in modern wireless and wireline

communication systems. The FFT processor is one of the highest computational

complexity modules and FFT sizes, sampling rates are different in various standards

which are shown in Table 2.2. It is desired to design a FFT processor which adapts to

various FFT sizes in different communication standards. This paper proposes an FFT

processor which can deal with the variable length FFT for different standards.

7

Table 2.2 FFT sizes and sampling rates in various communication systems

Communication System FFT Size (Sampling Rate)

802.11a 64 (20MHz)

802.11n 64 (20MHz)、128 (40MHz)

802.16e 2048 (20MHz)、1024 (10MHz)、512 (5MHz)、

128 (1.25MHz)

DAB 2048、1024、512、256 (2MHz)

DVB-T 8192、2048 (8MHz)

DVB-H 4096 (8MHz)

ADSL 512 (2.2MHz)

VDSL 8192 (34.5MHz)、4096 (17.3MHz)、2048

(8.6MHz)、1024 (4.3MHz)、512 (2.2MHz)

UWB 128 (528MHz)

2.3 Discrete Fourier Transform

The N-point Discrete Fourier Transform (DFT) X(k) of a complex data sequence

x(n) is defined as

}1...,,1,0{,)()(
1

0

−∈=∑
−

=

NkWnxkX
N

n

nk
N

where the twiddle factor is

)2(
N
nkjnk

N eW
π

−
=

If the periodic and symmetric properties of the twiddle factor nk
NW are exploited,

the computation of)(kX will be more efficient.

(1.1)

(1.2)

8

Symmetric： m
N

Nm
N WW −=+ 2/

Periodic： m
N

Nm
N WW =+

 According to equation (1.1), the computational complexity is O(N2) through

directly performing the required computation. It needs N2 complex multiplication and

N(N-1) complex addition. If using the FFT algorithm, the computational complexity

can be reduced to O(NlogrN), where r means the radix-r FFT. The radix-r FFT can be

derived from DFT by decomposing the N-point DFT into a set of recursively related

r-point transform. There are two types of FFT algorithm are Decimation in Time (DIT)

and Decimation in Frequency (DIF). The computational complexity is the same. The

DIT algorithm decomposes)(nx into radix-r module sequence

∑∑

∑∑

∑∑

∑

−

=

−

=

−

=

+
−

=

−

=

++=

++=

+=

=

12/

0
2/

12/

0
2/

12/

0

)12(
12/

0

2

1

0

)12()2(

)12()2(

)()(

)()(

N

r

rk
N

k
N

N

r

rk
N

N

r

kr
N

N

r

rk
N

oddn

kn
N

evenn

kn
N

N

n

nk
N

WrxWWrx

WrxWrx

WnxWnx

WnxkX

：：

and the DIF algorithm decomposes)(kX in the same way [2].

9

{ }

∑

∑

∑∑

∑

∑∑

∑∑

∑

∑

−

=

−

=

+

−

=

+
−

=

+

−

=

−

=

+−

=

−

=

−

=

−

=

−

=

⎭
⎬
⎫

⎩
⎨
⎧ +−=

⎭
⎬
⎫

⎩
⎨
⎧ +−=

+=+

⎭
⎬
⎫

⎩
⎨
⎧ ++=

++=

+=

−∈=

−∈=

12/

0
2/

12/

0

)12(

1

2/

)12(
12/

0

)12(

12/

0
2/

12/

0

)
2

(212/

0

2

1

2/

2
12/

0

2

1

0

2

1

0

)
2

()(

)
2

()(

)()()12(

)
2

()(

)
2

()(

)()(

1...,,1,0,)()2(

}1...,,1,0{,)()(

N

n

n
N

nr
N

N

n

rn
N

N

Nn

rn
N

N

n

rn
N

N

n

nr
N

N

n

rNn

N

N

n

nr
N

N

Nn

nr
N

N

n

nr
N

N

n

nr
N

N

n

nk
N

WWNnxnx

WNnxnx

WnxWnxrXtermodd

WNnxnx

WNnxWnx

WnxWnx

NrWnxrXtermeven

NkWnxkX

：

：

2.4 Complexity Comparison

 From Table 2.3 [3] and Table 2.4 [4], the multiplications and additions of radix-8

have the lowest complexity compared with radix-2 and radix-4. The constant

multiplication can be implemented by shifters and adders whose hardware is smaller

than real multiplication. Table 2.5 [5] is the complexity equation of multiplications

and additions. The radix-8 type-1 algorithm is the original radix-8 FFT algorithm. In

radix-8 type-2 algorithm, we replaced multiplication of 1
8W into p addition.

According to the hardware area and power consumption of complex number

multipliers, we only focus on the number of real number multiplications. In Fig. 2.3,

radix-8 type-2 has the lowest computational complexity, so we choose radix-8 type-2

as the building block to implement FFT algorithm.

10

Table 2.3 Multiplication comparison [3]

N-point Radix-2 Radix-4 Radix-8

Multiplier Multiplier Multiplier Multiplier Constant Multiplier

8 2 3 0 2

16 10 8 6 4

32 34 31 20 8

64 98 76 48 32

128 258 215 152 64

256 642 492 376 128

512 1538 1239 824 384

1024 3586 2732 2104 768

2048 8194 6487 4792 1536

4096 18434 13996 10168 4096

8192 40962 32087 23992 8192

Table 2.4 Multiplications and additions comparison [4]

 Real Multiplications Real Additions

N-point Radix-2 Radix-4 Radix-8 Radix-2 Radix-4 Radix-8

16 24 20 152 148

32 88 408

64 264 208 204 1032 976 972

128 720 2054

256 1800 1392 5896 5488

512 4360 3204 13566 12420

1024 10248 7856 30728 28336

11

Table 2.5 Equation of multiplications and additions comparison [5]

Algorithm Real Multiplication Real Addition

Radix-2 8
2
7log

2
3

2 +− NNN 8
2
7log

2
5

2 +− NNN

Radix-4 33log
8

9
2 +− NNN 33log

8
25

2 +− NNN

Radix-8

Type-1

4)3(log
24

25
2 +−NN 4

8
25log

24
73

2 +− NNN

Radix-8

Type-2

4
8
25log

24
21

2 +− NNN 4
8
25log

24
738

2 +−
+ NNNp

Fig. 2.3 Complexity comparison of Table 2.5

 Higher radix algorithm can reduce number multiplications, but it will let

controller and butterfly unit more difficult. Based on this consideration, radix-8 is the

highest radix algorithm mainly.

12

2.5 Variable Length of FFT Architectures

 FFT algorithm decomposes the fundamental calculation of the DFT of a

sequence of length N into continuously smaller subsequences (branch FFT). In section

2.3, the FFT algorithm is applied not only in DSP, image processing and digital data

transmission systems, but also in biomedical electronic engineering and home

networking. To meet various standards, designer must implement FFT module with

variable length. In general, we can classify two main architectures of variable length

FFT as following subsections.

 2.5.1 Memory Based Architectures

 The processing element in Fig. 2.4 and Fig. 2.5 performs butterfly operation. Fig.

2.4(a) shows the single-memory architecture. It has one processing element and one

memory element. Butterfly outputs are stored in the same memory location used by

butterfly inputs [6]. Fig. 2.4(b) shows the dual-memory architecture. One memory is

used to store butterfly inputs and the other is used for butterfly outputs. These two

architectures require small areas. However, they have low throughput and require high

clock frequency.

 Each stage requires reading and writing to N data words, and memory access is

considered to be one of the bottlenecks under the recursive architecture. Therefore,

variable length FFT researches proposed different memory address controller

[7][8][9][10][11].

13

(a) Single-memory architecture

Processing
Element Memory

(b) Dual-memory architecture

Processing
Element MemoryMemory

Fig. 2.4 Memory based architecture block diagram

 2.5.2 Pipeline Architectures

 For high throughput applications, pipeline architecture has been developed in

some literatures. Pipeline architecture is characterized by non-stopping processing on

a clock frequency of the input data sampling. However, the computational resource

costs are increased because of the requirements of logrN branch FFT and logrN+1

buffer memory, as shown in Fig. 2.5. Based on pipeline architecture, variable length

FFT literatures can cascade branch FFT to achieve different sizes computation [12].

Therefore, in the design of FFT processors for different systems, we should not only

enhance the speed by introducing more parallelism and pipelines, but also reduce the

hardware resource consumption as possible as we can.

B
uffer

B
uffer

Fig. 2.5 Pipeline based of block diagram

14

Chapter 3 ASIC and Processor

Co-Design Analysis

3.1 Introduction

 In recent years, the number and variety of products that include some form of

digital signal processing (DSP) has grown dramatically. They are often more

cost-effective (and less risky) than custom hardware, particularly for low-volume

applications, where the development cost of custom ICs may be prohibitive.

 In the MIMO OFDM system, multiple antennas need multiple FFT/IFFT

modules in transmitter and receiver, as shown in Fig. 2.1 and Fig. 2.2. Therefore, it

causes a large increase in the hardware complexity and power consumption. Besides,

based on various standards, designers need to re-design different sizes and throughput

of FFT modules shown in Table 2.2. Because processor application is popular in

recent years, we make use of processor advantages to propose a method that processor

and ASIC co-design which can enhance flexibility and utilize time schedule

efficiently to reduce ASIC cost. We can provide designers two deciding messages.

How much processor performance is required in different environments? How many

branch FFT need to be implemented by hardware in various processors?

15

3.2 FFT Computational Complexity Analysis

 In equations (3.1) and (3.2) are composed of two (N/2)-point DFTs. It is well

known that one can combine these two equations as one basic butterfly (BF) module

as shown in Fig. 3.1, where x(n) and x(n+N/2) are the input data.

)2.3()
2

()()12(

)1.3()
2

()()2(

}1...,,1,0{,)()(

12/

0
2/

12/

0
2/

1

0

∑

∑

∑

−

=

−

=

−

=

⎭
⎬
⎫

⎩
⎨
⎧ +−=+

⎭
⎬
⎫

⎩
⎨
⎧ ++=

−∈=

N

n

n
N

nr
N

N

n

nr
N

N

n

nk
N

WWNnxnxrXtermodd

WNnxnxrXtermeven

NkWnxkX

：

：

Fig. 3.1 The butterfly signal flow graph of radix-2 DIF FFT

By recursive decompositions, we can further partition small DFTs into even

smaller DFTs, and so on. For example, a 16-point radix-2 DIF FFT, in signal flow

graph, is shown in Fig. 3.2.

Long-length FFT can be decomposed into several branch FFT by different radix

algorithm. In section 2.4 simulation results, radix-8 FFT reduces the complexity more

than other radix algorithms. But FFT length is restricted to power of eight. In any

event, FFT architecture is composed of many butterfly units, and additions and

multiplications form butterfly units. Thus, we can analyze FFT computational

complexity by calculating number of additions and multiplications.

16

Fig. 3.2 Radix-2 DIF FFT signal flow graph of a 16-point FFT

Complex addition can be decomposed two real additions, and complex

multiplication can be decomposed two real additions and four real multiplications as

shown equation (3.3).

)3.3())2cos(Im)2sin((Re))2sin(Im)2cos((Re

))2sin()2(cos()Im(Re

N
nk

N
nkj

N
nk

N
nk

j
N
nk

N
nkj

ππππ

ππ

×+×+×−×=

+×+

Therefore, we try to evaluate computational complexity of different length FFT

algorithm which is a little difference to section 2.4. Because we calculate any

computation in terms of processor operations, it doesn’t include any hardware reduced

computation, just like 1
8W can be implemented by shifters and adders. In this thesis,

we take IEEE 802.11n/16e standards into consideration as shown in Table 2.2. FFT

length covers from 64-points to 2048-points. We regard real addition or real

17

multiplication as an operation in the analysis. In IEEE 802.11n/16e standards,

128-point/2048-point is the critical case separately, because of long-length FFT

increase operations dramatically and symbol durations are the same shown in Table

3.1. Therefore, we analyze these two cases and assume partial branch FFT which is

implemented by hardware and then processor computational loading can be shown in

Table 3.2 and Table 3.3.

Table 3.1 Comparison operations of FFT size in IEEE 802.11n/16e standards

802.11n FFT Size

(Sampling Rate)

Operations = Real additions +

Real multiplications

128 (40 MHz) 3142

64 (20 MHz) 1254

802.16e FFT Size

(Sampling Rate)

Operations = Real additions +

Real multiplications

2048 (20 MHz) 83462

1024 (10 MHz) 38150

512 (5 MHz) 16518

128 (1.25 MHz) 3142

⎩
⎨
⎧

∈

+×××+++×−×−

++×−×−++×−×−+××=

{1,2,3...}n , R-radixR
groups 8-radix ofNumber K , stages remaining ofNumber S , size FFTN

 where

)4.3()42(2
8

...)42()1()1(

)42()1()1()42()1()1(2operationsProcessor

nn

3
321

21

2
21

11
1

smultiplier 3group

smultiplier 2groupsmultiplier 1groupoperations

：

：：：

KNR
RRR

NRR

R
RR

NRR
R
NSN

addition

18

 In equation (3.4), processor computational operations can be divided into three

parts. Addition and multiplication operations, besides constant multiplication of

radix-8 must be taken into account. This analysis can be applied to others FFT sizes.

Table 3.2 Comparison of different length ASIC operations of a 128-point FFT

ASIC length of

128-point FFT

Processor Operations = Real additions + Real multiplications

128 0

64 2*128+63*(2+4) = 634

32 2*128*2+31*3*(2+4) = 1070

16 2*128*3+15*7*(2+4)+1*16*2*(2+4) = 1590

8 2*128*4+63*(2+4)+2*7*7*(2+4)+1*16*2*(2+4) = 2182

4 2*128*5+31*3*(2+4)+4*3*7*(2+4)+1*16*2*(2+4) = 2534

2 2*128*6+15*7*(2+4)+8*7*(2+4)+2*16*2*(2+4) = 2886

0 2*128*7+63*(2+4)+2*7*7*(2+4)+2*16*2*(2+4) = 3142

Table 3.3 Comparison of different length ASIC operations of a 2048-point FFT

ASIC length of

2048-point FFT

Processor Operations = Real additions + Real multiplications

2048 0

1024 2*2048+1023*(2+4) = 10234

512 2*2048*2+511*3*(2+4) = 17390

256 2*2048*3+255*7*(2+4)+256*2*(2+4) = 26070

128 2*2048*4+1023*(2+4)+2*127*7*(2+4)+256*2*(2+4) = 36262

64 74246-2*2048*6-32*7*7*(2+4)+1*256*2*(2+4) = 43334

19

32 2*2048*6+255*7*(2+4)+8*31*7*(2+4)+2*256*2*(2+4) = 51846

16 74246-2*2048*4+32*15*3*(2+4)-32*7*7*(2+4)+1*256*2*(2+4)

= 60166

8 74246-2*2048*3+2*256*2*(2+4) = 68102

4 2*2048*9+255*7*(2+4)+8*31*7*(2+4)+8*8*3*7*(2+4)+

3*256*2*(2+4) = 75270

2 74246-2*2048+256*1*3*(2+4)+2*256*2*(2+4) = 80902

0 2*2048*2+2*511*3+4*511*3+4*(10882+3332)+3*256*2*(2+4)

= 83462

20

3.3 ASIC and Processor Timing Schedule

 In this thesis, because we need to consider multiple antennas in our system, it let

time schedules needed to be deliberated independently. It tries to lower the length of

branch FFT and enhances processor and ASIC utilization.

 3.3.1 SISO System Timing Schedule

 We propose two schedules in SISO system. In scheduleⅠ, input sequences are

written into memory first which can receive continuous data and reorder data

sequences. Afterward it processes data sequences sequentially within one symbol

duration, and therefore processor and ASIC utilization are not 100% as shown in Fig.

3.3. Besides, processor has little time to operate because of ASIC also occupies partial

symbol duration. Therefore, processor needs better operation performance.

1

Symbol Duration

Processor
Process

Write Data from GPIO to
SRAM

ASIC

Data
to

GPIO

Symbol Duration Symbol Duration Symbol Duration

2

Processor
Process

Data
to

GPIO

3

Processor
Process

ASIC

Data
to

GPIO

ASIC

4

Processor
Process

ASIC

Data
to

GPIO

Write Data from GPIO to
SRAM

Write Data from GPIO to
SRAM

Fig. 3.3 Time scheduleⅠof the SISO system

21

 In Fig. 3.4, it shows system block diagram based on time scheduleⅠ. The

wrapper module is used to communicate On-Chip Peripheral Bus (OPB) handshaking

signals [13]. ASIC is responsible for branch FFT algorithm. Register module is stored

control signals which govern entire data flow.

Fig. 3.4 SISO system block diagram of the time scheduleⅠ

 In scheduleⅡ, it makes efforts to raise processor and ASIC utilization as shown

in Fig. 3.5. It not only decreases processor operations per second, but also lowers

power consumption because of decreasing clock frequency. Additional buffer is used

to increase processor and ASIC processing time up to one symbol duration, but it

causes more hardware cost shown in Fig. 3.6.

22

Fig. 3.5 Time scheduleⅡ of the SISO system

IO
P

B
D

O
P

B

Fig. 3.6 SISO system block diagram of the time scheduleⅡ

23

 3.3.2 MIMO System Timing Schedule

 In general, channel fading can be suppressed by multiple antennas in both

transmitter and receiver in the MIMO system, but it also increases hardware area

dramatically. Therefore, time schedule in the MIMO system, it tries to minimize

hardware area and enhances processor and ASIC utilization simultaneously. We find

that time scheduleⅠ in the SISO system which have many bubbles can be utilized to

process others computation. Based on this concept, we propose a suitable method for

the MIMO system which can eliminate bubbles by processing sequences of another

antenna which exchange processor and ASIC processing order as shown in Fig. 3.7

.

Fig. 3.7 Time schedule of the MIMO system

 ASIC and processor compute sequences of different antennas by turns within

half symbol duration. Therefore, comparison with scheduleⅡ in the SISO system,

24

processor needs two times operation performance per second in the MIMO system. It

can process sequences of two antennas simultaneously, and doesn’t need additional

hardware of branch FFT shown in Fig. 3.8.

Fig. 3.8 MIMO system block diagram

25

3.4 ASIC and Processor Performance Simulation

 Since SISO/MIMO schedules are proposed, an evaluation model is developed to

verify specification requirements. Base on IEEE 802.11n/16e standards, we can

introduce symbol period to calculate processor performance when different length of

branch FFT is implemented by hardware. ASIC plays an accelerative role in the

system. Increasing the length branch FFT of ASIC can release burden of processor,

and vice versa. Because 128-point/2048-point is the critical case in IEEE 802.11n/16e

separately, we just only calculate these two cases.

ScheduleⅠin the SISO system, ASIC occupies partial symbol duration as shown

in Fig. 3.3. Therefore, we need to calculate ASIC latency cycles approximately shown

in Table 3.4 [14] and assume clock frequency is 100 MHz for simulation, as shown in

Fig. 3.9. When length branch FFT of ASIC is too short, it cannot gain any benefits to

the processor. The length branch FFT of ASIC affects processor operations directly.

More length branch FFT is implemented by hardware will lower processor

computational loading, but it increases area cost.

Table 3.4 Approximately calculation of latency cycles

FFT Length Latency FFT Length Latency

0 0 64 103

2 2 128 208

4 4 256 336

8 8 512 592

16 26 1024 1616

32 44 2048 2640

26

 In Fig. 3.9, we can analyze relationship between processor operations and branch

FFT of ASIC. MOPS imply that processor computational loading divided by

redundant symbol duration. When our system processes FFT algorithm only by

processor, it shows that IEEE 802.11n needs more processor operations per second.

Therefore, we can calculate performance of processor probably by MOPS. For

instance, if processor can provide 700 MOPS for our system, we need to implement

the 16-point branch FFT of ASIC in order to match IEEE 802.11n/16e specifications.

Fig. 3.9 Processor operations analysis of scheduleⅠin the SISO system

 ScheduleⅡ in the SISO system, processor has a symbol duration to process

operations. Therefore, using the same processor as above, designer can implement the

4-point branch FFT of ASIC to reach specifications as shown in Fig. 3.10.

27

Fig. 3.10 Processor operations analysis of scheduleⅡ in the SISO system

Therefore, in the MIMO system, processor and ASIC own half a symbol duration

to complete operations. It can be expected that processor operations per second will

double that of scheduleⅡ in the SISO system. Using the same processor as above,

system requires ASIC which is 128-point branch FFT as shown in Fig.3.11.

 In this section, we introduce time scheduleⅠ、Ⅱ in the SISO system, and time

schedule in the MIMO system. Based on system block diagram, hardware cost in time

scheduleⅠis less than time scheduleⅡ, but utilization of time scheduleⅠis less than

time scheduleⅡ. In the MIMO system, bad utilization can be improved by changing

ASIC and processor order. In the 2x2 MIMO systems, it only needs a processor and a

branch FFT of ASIC. This time schedule not only lowers hardware cost, but also

increases utilization.

28

Fig. 3.11 Processor operations analysis in the MIMO system

In this article, we hope that proposed system can handle IEEE 802.11n/16e

specifications flexibly. We assume processor can provide proposed FFT system with

800 MOPS. Therefore, 64-point branch FFT of ASIC is used to increase operating

capacity as shown in Fig.3.11. In next chapter, we concentrate on how to implement

the 64-point branch FFT of ASIC.

 In Fig.3.12, it calculates computing loading ratio between processor and the

64-point branch FFT of ASIC. The FFT size includes IEEE 802.11n/16e standards. It

shows that ASIC executes above half operations except 2048-point FFT algorithm.

Therefore, we can regard the 64-point branch FFT of ASIC as an accelerator in the

proposed FFT system.

29

Fig. 3.12 Percentage of total operations in different FFT size

30

Chapter 4 Implementation of the

ASIC Architecture

4.1 Classification Pipeline-Based FFT Architectures

 In the domain of implementation of FFT processor, two architectures are

commonly used. One is pipelined-based FFT, the other is memory based FFT. The

pipelined architecture consumes a relatively large chip area compared with memory

based architecture, because the pipelined architecture may need more complex value

multipliers and complex value adders. But pipelined architecture lets clock rate is

comparatively low as the same frequency of the sampling rate to meet real-time FFT

processing. Because ASIC can be regarded as an accelerator and the length branch

FFT of ASIC is only 64-point FFT computation, we adopt pipelined branch FFT of

ASIC to promote throughput. In the following subsections, it introduces and compares

various pipelined-based FFT architectures.

4.1.1 Radix-2 Multipath Delay Commutator (R2MDC)

 The block diagram of N-point radix-2 DIF MDC pipelined FFT architecture is

shown in Fig.4.1 [15]. The elements between PEs consist of shift registers and a

commutator switch which are used to form a proper set of data for the next PE. First,

input subcarriers written into upper shift registers until (N/2+1)th subcarrier inserted,

31

and then input subcarriers go into butterfly directly by multiplexer.

Therefore, 1st and (N+1)th subcarriers go into butterfly simultaneously, and then

the adder processing results select upper path. The subtraction processing results

multiplied by twiddle factor which are written into lower N/4 shift registers and the

adder processing results written into upper N/4 shift registers at the same time. The

first butterfly adder results select lower path by switch. Therefore, the first butterfly

1st and (N/4+1)th results go into second butterfly and the first butterfly subtraction

results written into upper N/4 shift registers simultaneously. By the same way, process

entire subcarriers. The R2MDC architecture contains log2N-2 multipliers, 2log2N

adders and 1.5N-2 registers. Butterfly and multipliers only have 50% utilization rate.

B

utterfly

B
utterfly

Fig. 4.1 R2MDC architecture

4.1.2 Radix-4 Multipath Delay Commutator (R4MDC)

 The block diagram of N-point radix-4 DIF MDC pipelined FFT processor is

shown in Fig.4.2 [15]. It is similar to R2MDC architecture, but butterfly implement

radix-4 algorithm. Because it has four paths, butterfly and multipliers have 25%

utilization rate. It contains 3log4N-3 multipliers, 8log4N adders and 2.5N-4 registers.

32

B
utterfly

B
utterfly

Fig. 4.2 R4MDC architecture

4.1.3 Radix-22 Multipath Delay Commutator (R22MDC)

 In order to implement radix-4 algorithm, it uses cascade of radix-2 architectures

as shown in Fig.4.3 [16]. We can see that this architecture contains 2log4N-2

multipliers, 4log4N adders and 1.5N-2 registers. It is better than R4MDC.

B
utterfly

B
utterfly

Fig. 4.3 R22MDC architecture

4.1.4 Radix-8 Multipath Delay Commutator (R8MDC)

The block diagram of N-point radix-8 DIF MDC pipelined FFT processor is

shown in Fig.4.4. It is similar to R2MDC architecture, but butterfly implement radix-8

algorithm. It contains 7log8N-7 multipliers, (24+2T)log8N adders and 4.5N-8

registers.

33

R
adix-8 B

utterfly

Fig. 4.4 R8MDC architecture

4.1.5 Radix-23 Multipath Delay Commutator (R23MDC)

 In order to implement radix-8 algorithm, it uses cascade of radix-2 architectures

as shown in Fig.4.5 [16]. We can see that this architecture contains log2N/3-1

multipliers and 1.5N-2 registers.

Fig. 4.5 R23MDC architecture

4.1.6 Radix-2 Single-Path Delay Feedback (R2SDF)

 The butterfly unit in Fig.4.6 shows two kinds of operation modes. In operation

mode1, PE pushes input data into the last location of shift register and pops the data

from the first location to output port. In operation mode2, the output data of addition

part of butterfly unit is directly passed to the next stage and the output data from the

34

subtraction part of butterfly unit is written back to shift register. The block diagram of

16-point radix-2 DIF SDF pipelined FFT processor is shown in Fig.4.7 [17]. First, the

input subcarriers are stored into 1st shift registers until the 9th input subcarrier which

is sent to butterfly simultaneously. The adder processing results are sent into next

stage shift registers and the subtraction processing results are written into the same

stage shift registers.

Fig. 4.6 Operation mode1 and mode2

Fig. 4.7 16-point radix-2 DIF SDF architecture

Therefore, the butterfly unit provides a complete feedback loop. We can see that

this architecture contains log2N-2 multipliers, 2log2N adders and N-1 registers.

4.1.7 Radix-4 Single-Path Delay Feedback (R4SDF)

 R4SDF architecture is similar to R2SDF architecture is shown in Fig.4.8

35

[18][19]. It can be seen that radix-4 algorithm needs less multipliers than radix-2

algorithm, but the butterfly unit and multipliers only have 25% utilization rate. It

contains log4N-1 multipliers, 8log4N adders and N-1 registers.

OutputInput

N/4

Radix-4
Butterfly

W

N/4

N/4

N/16

Radix-4
Butterfly

N/16

N/16

Fig. 4.8 R4SDF architecture

4.1.8 Radix-22 Single-Path Delay Feedback (R22SDF)

 It uses cascade of two radix-2 butterflies to form radix-4 algorithm. Its’ shift

registers and multipliers are the same with R4SDF architecture as shown in Fig.4.9

[16].

Fig. 4.9 16-point R22SDF architecture

36

4.1.9 Radix-8 Single-Path Delay Feedback (R8SDF)

 It uses cascade of three radix-2 butterflies to form radix-8 algorithm as shown in

Fig.4.10. It contains log8N-1 multipliers, (24+2T)log8N adders and N-1 registers.

Fig. 4.10 R8SDF architecture

4.1.10 Radix-23 Single-Path Delay Feedback (R23SDF)

 It uses cascade of three radix-2 butterflies to form radix-8 algorithm as shown in

Fig.4.11 [16]. It contains log2(N)/3-1 multipliers and N-1 registers.

Fig. 4.11 R23SDF architecture

37

4.2 Comparison of Pipeline-Based FFT Architectures

 According to the previous subsections, we can compare several pipelined

architectures for FFT as shown in Table 4.1 and Table 4.2 [20]. One can find that SDF

architectures have less area cost and higher utilization rate, but longer FFT

computation time, compared with MDC architectures under the same operating clock

rate. Besides, the number of switch shows in equation (4.1), where N is number of

points, r is radix-r, and stage is total stage. The parameter p is the number of switch in

different radix. Afterwards, we can adopt their characteristic to analyze the 64-point

branch FFT of ASIC in Table 4.3 and Table 4.4.

())1.4(111
⎭
⎬
⎫

⎩
⎨
⎧

+−×⎟
⎠
⎞

⎜
⎝
⎛ −×= pstage

r
NswitchofNumber

Table 4.1 Hardware requirement comparisons of several pipeline structures

Architecture Complex

Multipliers

Complex

Adders

Memory Size Multiplicative

Complexity

R2MDC log2N-2 2log2N 1.5N-2 Radix-2

R4MDC 3log4N-3 8log4N 2.5N-4 Radix-4

R22MDC 2log4N-2 4log4N 1.5N-2 Radix-22

R8MDC 7log8N-7 (24+2T)log8N 4.5N-8 Radix-8

R23MDC log2N/3-1 2log2N 1.5N-2 Radix-23

R2SDF log2N-2 2log2N N-1 Radix-2

R4SDF log4N-1 8log4N N-1 Radix-4

R22SDF log4N-1 4log4N N-1 Radix-22

R8SDF log8N-1 (24+2T)log8N N-1 Radix-8

R23SDF log2(N)/3-1 (6+2T)log8N N-1 Radix-23

38

Table 4.2 Hardware utilization comparisons of several pipeline structures

Architecture Utilization of

Multipliers

Utilization of

Adders

Utilization of

Registers

R2MDC 50% 50% 50%

R4MDC 25% 25% 25%

R22MDC 37.5% 50% 50%

R8MDC 12.5% 12.5% 12.5%

R2SDF 50% 50% 100%

R4SDF 75% 25% 100%

R22SDF 75% 50% 100%

R8SDF 87.5% 12.5% 100%

Table 4.3 Comparison of switch number in different radix algorithm

N=64

Radix-r Stage Number of switch

2 6*(radix-2) 64*{(1-1/2)*5}=192

4 3*(radix-4) 64*{(1-1/4)*2}=96

8 2*(radix-8) 64*{(1-1/8)*1}=56

Table 4.4 Hardware requirement comparisons of 64-point FFT architectures

N=64

Architecture Registers Multipliers

R2MDC 94 5

R4MDC 154 6

R22MDC 94 4

39

R8MDC 280 7

R23MDC 94 2

R2SDF 63 5

R4SDF 63 2

R22SDF 63 2

R8SDF 63 1

R23SDF 63 1

 In Fig.4.12, it lets multipliers, adders and registers with the 16-bits precision to

calculate hardware gate count [28]. It is synthesized at 150 MHz for TSMC 0.18μm

single-poly six-metal CMOS technology using Synopsys Design Compiler.

Fig.4.12 Hardware gate count comparison of several pipelined structures

40

In our proposed system, the 64-point branch FFT of ASIC plays an accelerated

role. Therefore, the previous subsections we only analyze pipeline-based FFT

architectures which can process data sequence continuously. In Table 4.3, we can find

that high radix algorithm not only reduce multipliers, but also lower the number of

switch. In Table 4.4, it show that R23SDF architecture require less registers and

multipliers. Based on area issue, the 64-point branch FFT of ASIC is based on

R23SDF architecture as shown in Fig. 4.12.

41

4.3 ASIC Throughput Analysis

 If we decide the length branch FFT of ASIC based on section 3.4 analysis, we

need to know ASIC throughput requirement. After that, we can design appropriate

architecture. Because ASIC occupies partial symbol duration in the time scheduleⅠ,

we only take time scheduleⅡ in the SISO system into simulation as shown in

Fig.4.13. It shows that IEEE 802.11n handles 128-point FFT algorithm requires

highest throughput rate, no matter in the SISO/MIMO system. It implies that the

64-point branch FFT of ASIC requires 85 MHz throughput rate at least.

Fig. 4.13 ASIC throughput analysis in different environments

42

4.4 Implement the 64-point Branch FFT of ASIC

 In this section, we will introduce the R23SDF architecture of each sub-module in

great detail and calculate error analysis because of the fixed-point computation.

4.4.1 Complex Multiplier
 The 64-point FFT is based on two stage radix-23 butterfly and it needs 49 times

complex multiplications which excludes from 1
8W , 3

8W and 0
8W . We use the

radix-2 index map to divide the 8-point DFT into three steps. Fig.4.14 shows the

butterfly of the three-step DIT radix-8 FFT. The twiddle factors, 1
8W and 3

8W at the

second step are trivial complex multiplications, because they can be written as

()j−122 and ()j−−122 . Thus, a complex multiplication with one of the two

coefficients and a real multiplication, whose hardware can be realized by shifters and

adders in Fig.4.15 .

Fig. 4.14 Radix-23 FFT butterfly unit

43

986431 22222270710678.022 −−−−−− +++++==

Fig. 4.15 Implementation hardware of multiplication with 22

 The multiplication by –j can be realized with no extra hardware cost by simply

interchanging the real and imaginary part of the product as shown in equation (4.2).

() ())2.4(ajbjbja −=−×+

 One complex multiplier can be realized by four real multiplications and two real

additions as shown in Fig. 4.16. Its mathematical form can be expressed as equation

(4.3).

() () () ())3.4(adbcjbdacdjcbja ++−=+×+

Fig. 4.16 Complex multiplier with four real multiplications and two real additions

4.4.2 Twiddle Factor Coefficient of ROM Table

 N-point radix-8 FFT implementations can require seven complex twiddle factor

44

coefficients n
NW , n

NW 2 ,…, n
NW 7 . Such implementations can require a twiddle factor

ROM table to store the real and imaginary parts of these values which have phase

angles in the range (0, 2π) in the complex plane. If we store all required coefficient

values in a ROM table, we must use a large chip area. Thus, this subsection presents a

method to reduce the size of the twiddle factor ROM table.

 It is only necessary to store the twiddle factor coefficients between the interval

0~N/8 [21]. We denote the interval 0~N/8 as region 0. The remaining interval regions

are listed in Fig.4.17 and Table 4.5. The storage coefficients in region 0 are only in (0,

π/4) to save hardware cost because it can represent all the angles in (0, 2π) by

exploiting the symmetry of the sine and cosine functions. This means that the sine of

elements in (0,π/4) are equal to the cosine of elements in (π/4,π/2) and vice versa.

Thus, if the values in the region 0 are known (stored in a reduced size ROM), the

values from all the regions can be computed [30].

Table 4.5 Interval regions of twiddle factor design

No Region Interval Boundary

(a) 0 8/0 Nm ≤≤ Boundary0=0

Boundary1=N/8

(b) 1 14/18/ −≤≤+ NmN Boundary2=(N/4)-1

(c) 2 8/34/ NmN ≤≤ Boundary3=3N/8

(d) 3 12/18/3 −≤≤+ NmN Boundary4=(N/2)-1

(e) 4 8/52/ NmN ≤≤ Boundary5=5N/8

(f) 5 14/318/5 −≤≤+ NmN Boundary6=3N/4-1

(g) 6 8/74/3 NmN ≤≤ Boundary7=7N/8

(h) 7 118/7 −≤≤+ NmN

45

Fig. 4.17 Twiddle factor boundary diagram

 When the twiddle factor address generator calculates the address in each region,

the corresponding address of region 0 are given by equation (4.4) through equation

(4.11). Table 4.6 lists the parameters used in equation (4.4) through (4.11). After that,

we can get the twiddle factor coefficients of remaining region from region 0 as shown

in Table 4.7.

Table 4.6 Description of twiddle factor parameters

Parameter Description

N
nkjnk

N eW
π2

−
= Twiddle factor coefficient

N FFT length size

m The actual address

t 2/log2 N

Rregion0_addr The real data value of the region0 address

Iregion0_addr The image data value of the region0 address

‘~’ A complement operation

46

)11.4(][~][_

11
8

71]02[_~_0).(

)10.4(][][_
8

7
4

3]02[__0).(

)9.4(][][_

1
4

31
8

51]02[_~_0).(

)8.4(][~][~_
8

5
2

]02[__0).(

)7.4(][][~_

1
2

1
8

31]02[_~_0).(

)6.4(][~][_
8

3
4

]02[__0).(

)5.4(][~][~_

1
4

1
8

1]02[_~_0).(

)4.4(][][_
8

0]02[__0).(

_0_0

_0_0

_0_0

_0_0

_0_0

_0_0

_0_0

_0_0

addrregionaddrregion

addrregionaddrregion

addrregionaddrregion

addrregionaddrregion

addrregionaddrregion

addrregionaddrregion

addrregionaddrregion

addrregionaddrregion

IjRdataactual

NmNtaddractualaddrregionhNo

RjIdataactual

NmNtaddractualaddrregiongNo

RjIdataactual

NmNtaddractualaddrregionfNo

IjRdataactual

NmNtaddractualaddrregioneNo

IjRdataactual

NmNtaddractualaddrregiondNo

RjIdataactual

NmNtaddractualaddrregioncNo

RjIdataactual

NmNtaddractualaddrregionbNo

IjRdataactual

NmtaddractualaddrregionaNo

+=

−≤≤++−=

+−=

≤≤−=

+=

−≤≤++−=

+=

≤≤−=

+=

−≤≤++−=

+=

≤≤−=

+=

−≤≤++−=

+=

≤≤−=

：

：

：

：

：

：

：

：

47

Table 4.7 Twiddle factor coefficient values in the region 0

Coefficient 16-bits quantized coefficient Address

(m) Real Image Real Image

0 1.000000 0.000000 0100000000000000 0000000000000000

1 0.995185 -0.098017 0011111110110001 1111100110111010

2 0.980785 -0.195090 0011111011000101 1111001110000100

3 0.956940 -0.290285 0011110100111111 1110110101101100

4 0.923880 -0.382683 0011101100100001 1110011110000010

5 0.881921 -0.471397 0011100001110001 1110000111010101

6 0.831470 -0.555570 0011010100110111 1101110001110010

7 0.773010 -0.634393 0011000101111001 1101011101100110

8 0.707107 -0.707107 0010110101000001 1101001010111111

 Block diagram of the 64-point branch FFT is shown in Fig.4.18. BF2Ⅰimplies

that it has two modes as shown in Fig.4.6 and BF2Ⅱ needs to process (-j)

multiplication additionally. In this architecture, it only needs 63 registers and 1

multiplier.

Fig.4.18 R23SDF Pipelined FFT Architecture for N= 64

48

4.5 Error Analysis

 In the case of FFT hardware implementation, the finite bit-width must be

considered because of the fixed-point computation. Many statistical error analysis

papers on FFT implementations are proposed [22][23][24]. Assume the input

sequence of FFT x(n) is a sequence of finite-valued and white complex numbers. The

variance of x(n) can be expressed as

)12.4())((1))((1 1

0

2
1

0

22 ∑∑
−

=

−

=

=−=
N

n

N

n
xx nx

N
nx

N
μσ

where μx is the mean of x(n) andμx=0. The SQNR (Signal to Quantization Noise

Ratio) is defined as

)13.4(2

2

q

xSQNR
σ
σ

=

Where σx
2 is the variance of output andσq

2 is the variance of the quantization error.

For an N-point FFT module with input of which real and imaginary parts are

uniformly distributed in (NN
2

1,
2

1
−), the variance [23] of the output is

)14.4(
3
12

Nx =σ

From (4.13) and (4.14), the SQNR [24] of the conventional FFT implementation

can be carried out：

)15.4(
345

22

−−
=

mN
SQNR

B

FFT

Where B is the bit-width of the input sequence and m=log2N.

49

In Fig.4.19, it shows equation (4.15) with IEEE 802.11n/16e standards which

include five FFT sizes. The more rounding stages, the more noise will be produced.

Because long-length FFT will decrease SQNR, it needs to increase bit-width. It will

cause more power consumption and area cost.

In this chapter, we introduce various pipeline-based FFT architectures and then

compare their characteristic to evaluate our proposed system based on throughput rate

and hardware cost analysis. After that, it shows detailed sub-module architectures and

analyzes noise issue finally.

Fig. 4.19 Noise analysis with different FFT length

50

Chapter 5 System Verification and

Simulation Results

5.1 System Environments

 In the proposed system, the FFT module handles IEEE 802.11n/16e standards.

The FFT sizes include 64-point、128-point、512-point、1024-point and 2048-point FFT

computation. We hope that the proposed system can change FFT size flexibly and

meet specification requirements simultaneously. Therefore, system verification will

cover that the 64-point branch FFT of ASIC verification, variable-length FFT module

functional simulation and time schedule simulation.

5.2 The 64-point Branch FFT Verification

 After functional validation, the branch FFT is synthesized for TSMC 0.18μm

single-poly six-metal CMOS technology using Synopsys Design Compiler [25][26].

After synthesis, floor planning, P&R, and layout are carried out using Cadence SOC

Encounter. Finally, the post-simulation power analysis on the netlists exported from

SOC Encounter is carried out using Synopsys PrimePower. Fig.5.1 gives the design

flow chart and CAD tools used in the branch FFT of ASIC.

 In Fig.5.2, the die size of the 64-point branch FFT is 2270 x 2270 μm2. It

synthesizes with 46236 gate counts which include testing circuits and the minimum

clock period is 6.31 ns which is reported by Synopsys Design Compiler.

51

Fig. 5.1 Flow chart of the branch FFT chip design

52

We adopt full scan test for the chip. The test circuits are inserted during

compilation using Synopsys DFT Compiler. The existing flip-flops inside the chips

were replaced with scan flip-flops. Test vectors are generated by Synopsys TetraMax.

The fault coverage of the R23SDF FFT is up to 99.40%.

Based on throughput rate analysis, the 64-point branch FFT should work upon 85

MHz. Therefore, the chip summary can be listed in Table 5.1.

Fig. 5.2 Layout view of the 64-point R23SDF FFT structure

53

Table 5.1 Chip summary of 64-point R23SDF FFT

Design R23SDF

Clock rate 87 MHz

Datapath width 16 bits

Latency 71 cycles

Synthesized gate count 46236 (with testing circuits)

Core size 1195 x 1195 μm2

Die size 2270 x 2270 μm2

Core power 112.6mW @ 87 MHz

Die power 158.1mW @ 87 MHz

 In Fig.5.3, it shows test bench of the 64-point branch FFT. There are input

control and output compare. We can read input signal from in.txt which generated by

MATLAB, and output can be compared the 64-point branch FFT with MATLAB

behavior model output. This self-check test bench can verify a lot of test patterns and

we can check the output signal are within error thresh or not efficiently [27].

54

Fig. 5.3 Test bench for the 64-point branch FFT

We use FPGA to implement design and the synthesis report shown in Table 5.2,

the report of the FPGA timing is very different from the report of the ASIC timing,

which is only for reference. Because the characteristic of FPGA is for verification, the

timing is not very important by FPGA prototyping.

Table 5.2 Xilinx FPGA synthesis report

Target Device 3s400ft256-5

Slices 1554 (43%)

Slices Flip Flops 667 (9%)

4-Input LUTs 2611(36%)

Post-Map Timing 17.120ns (14.820ns logic,

2.300ns route)

Post-P&R Timing 30.268ns (12.899ns logic,

17.369ns route)

55

Block diagram of FPGA verification is shown in Fig.5.4. It shows that we

introduce an extra controller which generates memory address signals and rs-232

handshaking signals. It generates test patterns by MATLAB and checks the branch

FFT output sequences which are within error thresh or not.

Fig. 5.4 FPGA measurement plan

5.3 MATLAB Simulation and Analysis

 In the previous subsections, we only verify the 64-point branch FFT accelerator.

Therefore, we will model processor behavior to verify the proposed system as shown

in Fig.5.5. First, user needs to declare that FFT size and symbols number and then

MATLAB models processor behavior to generate decomposed sequences. The part of

algorithm check, it can verify variable length FFT computation which covers FFT

sizes of IEEE 802.11n/16e standards. We can compare the output signal with

golden.txt which are within error thresh or not.

 The part of schedule check part, we verify time schedule in the SISO/MIMO

56

systems as shown in Fig.3.3, Fig.3.5 and Fig.3.7. Schedule control module and test

pattern module control data flow. Therefore, processor and ASIC can process data

samples by turns based on the proposed time schedule.

Fig. 5.5 Test bench for proposed system

 In this chapter, it shows verification of 64-point branch FFT which covers

cell-based ASIC flow and FPGA measurement. After that, we model processor

behavior to verify variable length FFT computation and time schedule in the

SISO/MIMO systems. Therefore, proposed system can complete variable length FFT

algorithm and process multiple data streams to meet IEEE 802.11n/16e standards.

57

Chapter 6 Conclusion and Future

Work

6.1 Conclusion

Because processor is popular in recent years, we intend that the FFT module can

combine processor with ASIC to form the flexible system. ASIC plays an accelerated

role in the proposed system. Based on FFT computational complexity analysis, it

shows different length branch FFT of ASIC which affects processor performance.

Therefore, it can provide user two anticipation as below：

1) Processor needs to spare how much computational performance at least for

proposed FFT system.

2) In terms of processor computational performance, we can decide the branch

FFT length of ASIC.

Because we adopt processor can contribute 800 MOPS in this thesis, the

accelerated branch FFT is 64-point FFT algorithm. After that, we analyze various

pipeline-based FFT architectures. Based on area cost issue, the 64-point branch FFT is

implemented by R23SDF architecture. After throughput analysis, the accelerated

branch FFT must work upon 85 MHz to meet IEEE 802.11n/16e standards. The

branch FFT of ASIC has 16-bits wordlength and synthesized using Synopsys TSMC

0.18μm process. After that, physical design is carried out using Cadence SOC

Encounter and the chip summary is depicted in Table 5.1.

Finally, we not only verify the 64-point branch FFT on FPGA but also check the

58

proposed time schedule which covers 64-point、128-point、512-point、1024-point and

2048-point FFT algorithm in the SISO/MIMO systems.

6.2 Future Work

Because the processor is virtual in this thesis, we provide one method to setup up

proposed system. In Xilinx Spartn-3 FPGA, it has an embedded processor. Therefore,

the processor can be entirely built by writing C- language and the 64-point branch

FFT can be loaded to FPGA as an accelerator.

In this thesis, the processor performance analysis is based on radix-2/4/8

algorithms. Because processor computational loading is based on operations, we can

try to use higher radix algorithm to reduce multiplications. The branch FFT is

implemented with a high specification of 16-bits wordlength while the output is also

16-bits and 26 scaled. The datapath can be designed more carefully if a precise error

analysis was done. Hence, the resource cost will be reduced while keeping

specification requirements. The shift registers is another issue. For a bigger N, the

shift registers will cause more power consumption and area cost than using memory

access. Therefore, how to improve the efficiency and simplify the memory access

scheme in the long length branch FFT module is left for future work.

59

Reference

[1] Mujtaba et al., TGn Sync Proposal Tech. Specification for IEEE 802.11 Task

Group 2005, IEEE 802.11-04/0889r3.

[2] A.V. Oppenheim R.W. Schafer, Discrete Time Signal Processing, Prentice Hall

Inc., 1999.

[3] Chih-Wei Liu, “Introduce to FFT Processors,” VLSI Signal Processing Lab

Department of Electronics Engineering, National Chiao-Tung University.

[4] S. He and M. Torkelson, “Designing Pipeline FFT Processor for OFDM

(De)Modulation,” in Proc. URSI Int. Symp. Signals, Systems, and Electronics,

vol. 29, Oct. 1998, pp. 257-262.

[5] Ray Andraka, Andraka Consulting Group, Inc., 16 Arcadia Drive, North

Kingstown, RI “A Survey of CORDIC Algorithm for FPGA Based Computers,”

ACM Press, 1998 New York, NY, USA.

[6] “Supplement to IEEE Standard for Information Technology Telecommunications

and Information Exchange between Systems-Specific Requirements. Part 11：

Wireless LAN Medium Access Control and Physical Layer,” IEEE 802.11a,

1999.

[7] Hsin-Fu Lo, Ming-Der Shieh, and Chien-Ming Wu, “Design of An Efficient FFT

Processor for DAB System,” IEEE International Symposium on Circuits and

Systems, Vol. 4, pp. 654-657, 2001.

[8] Yutai Ma, “An Effective Memory Addressing Scheme for FFT Processors,” IEEE

Transactions on Signal Processing, Vol. 47 Issue：3, pp. 907-911, Mar. 1999.

[9] Yutai Ma and Lars Wanhammar, “A Hardware Efficient Control of Memory

60

Addressing for High-Performance FFT Processors,” IEEE Transactions on

Signal Processing, Vol. 48 Issue：3, pp. 917-921, Mar. 2000.

[10] C. L. Wang and C. H. Chang, “A New Memory-Based FFT Processor for VDSL

Transceivers,” IEEE International Symposium on Circuits and Systems, Vol. 4,

pp. 670-673, 2001.

[11] Kun-Lung Chen and Sau-Gee Chen, “FFT Processor Design for OFDM

Systems,” Department of Electronics Engineering & Institute of Electronics

College of Electrical Engineering and Computer Science, National Chiao Tung

University, June 2004.

[12] Li-Yun Lin and Tsern-Huei Lee, “Implementation of A Variable Length FFT

Processor for VDSL System,” Department of Communication Engineering,

National Chiao Tung University, June 2004.

[13] “On-Chip Peripheral Bus Architectures Specifications,” a complete description

of the bus by IBM, its inventor.

[14] S. Sukhsawas and K. Benkrid, “A High-Level Implementation of A High

Performance Pipeline FFT on Virtex-E FPGAs,” School of Computer Science,

Queen’s University Belfast, United Kingdom, 2004.

[15] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal

Processing. Englewood Cliffs, NJ：Prentice-Hall, 1975.

[16] S. He and M. Torkelson, “Designing Pipeline FFT Processor for OFDM

(De)Mddulation,” in Proc. ISSSE, pp.257-262, 1998.

[17] E. H. World and A. M. Design, “Pipeline and Parallel Pipeline FFT Processors

for VLSI Implementation,” IEEE Trans. Comput., vol. C-33, pp. 414-426, May

1984.

[18] A. M. Despain, “Fourier transform computer using CORDIC iterations,” IEEE

Trans. Comput., vol. C-23, pp.993-1001, Oct. 1974.

61

[19] G. BI and E. V. Jones, “A Pipelined FFT Processor for Word-Sequential Data,”

IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 1982-1985, Dec.

1989.

[20] Shousheng He and Mats Torkelson, “A New Approach to Pipeline FFT

Processor,” IEEE Parallel Processing Symposium, pp. 766-770, April 1996.

[21] M. Hasan, T. Arslan, “FFT Coefficient Memory Reduction Technique for

OFDM Applications,” IEEE International Conference on Acoustics, Speed,

and Signal Processing, vol. 1, pp. I-1085 – I-1088, May 2002.

[22] P.D. Welch, “A Fixed-Point Fast Fourier Transform Error Analysis,” IEEE

trans. on audio and electroacoustics, vol. AU-17, no. 2, pp. 151-157, Jun.

1969.

[23] A. V. Oppenheim and C. J. Weinstein, “Effects of Finite Register Length in

Digital Filtering and the Fast Fourier Transform,” pro. of the IEEE, vol. 60,

no.8, pp. 957-976, Aug. 1972.

[24] M. Sundaramurthy and V. U. Reddy, “Some Results in Fixed-Point Fast

Fourier Transform Error Analysis,” IEEE trans. on computers, pp. 305-308,

Mar. 1997.

[25] Synopsys Design Compiler User Guide, Version W-2004.12, Dec. 2004.

[26] Synopsys Design Compiler Reference Manual: Constraints and Timing,

Version W-2004.12, Dec. 2004.

[27] Chi-Wei Wu, “Study on Short-Length FFT Design for Recursive Long-Length

FFT Architecture,” Department of Electrical and Control Engineering,

National Chiao Tung University, July 2006.

[28] T. Sansaloni, “Efficient Pipeline FFT Processors for WLAN MIMO-OFDM

Systems,” IEE electronics letters 15th September 2005 vol. 41 no. 19.

[29] Bing-Juo Chuang, “Design and Implementation of IEEE 802.11n Based

62

Receiver,” Department of Communication Engineering, National Chiao Tung

University, July 2005.

[30] Li-Yun Lin, “Implementation of A Variable Length FFT Processor for VDSL

system,” Department of Communication Engineering, National Chiao Tung

University, June 2004.

