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Abstract

FFT module is an indispensable part for wireless and mobile communication,
especially when broadband wireless systems require a high speed and low power
hardware module for its packet-based high-speed data transfer. This has made the
design of FFT processor a critical requirement, for the next generation wireless
systems. In general, FFT module is designed’ for specific system. Therefore, it is
desirable to design an adaptive EFT module for different standards. This thesis adopts
processor flexible characteristic and ASIC accelerated mechanism to set up a flexible
FFT module which can meet IEEE 802.11n/16e standards. Besides, we propose
optimized time schedule in the SISO/MIMO systems. After processor computational
analysis, 64-point branch FFT of ASIC can be applied in proposed system and it
computes 16-bit input data at the 85 MHz throughput rate. After that, we compare
various pipeline-based FFT architectures of ASIC and analyze their characteristic.
Finally, it not only verifies the 64-point branch FFT on FPFA, but also checks

proposed time schedule which can satisfy IEEE 802.11n/16e specification.
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Chapter 1 Introduction

1.1 Motivation

FFT module is one of the most utilized operations in digital signal processing
and communications. The FFT and its inverse transform-IFFT are key component in
modern communication systems. It is desirable that FFT module can flexibly adjust
FFT size to meet various standards. In general, FFT module is designed for specific
standard such as Ultra-Wide Band (UWB) system which needs high throughput FFT
module and Very High Data RatesDSL (VDSL) system which demands long length
FFT computation. Therefore, it:is difficult to.design-a FFT module which is suitable
for any specification.

ASIC approaches have been‘used to achieve the high performance demands
which software or general purpose DSP implementations fail to deliver but custom
hardware are often less cost-effective and flexible than general processors. Hence, it
adopts ASIC and processor characteristic to set up FFT module in this thesis. ASIC
plays an accelerated role in the proposed system and it executes partial FFT algorithm.
Processor can flexibly execute the remaining FFT computation and it only takes
processor performance into consideration. Therefore, the proposed system can meet
different communication systems by reconfiguring computation of processor.

First, we need to analyze computational complexity of FFT algorithm. Because
FFT algorithm is composed of addition and multiplication operations, it calculates
computational loading between processor and ASIC based on Million Operations Per

Second (MOPS) in this thesis. Therefore, in this thesis, the given processor can be
1



calculated that it needs to spare how much computational power for the proposed FFT
module in various standards. After that, the branch FFT of ASIC can be designed as

an accelerator to complete FFT algorithm.



1.2 Organization of This Thesis

In this thesis, the proposed FFT system can process IEEE 802.11n/16e standards
and we not only propose optimized time schedule, but also provide users ASIC and
processor computational allocation analysis which are shown in the following
chapters. The summary of each chapter can be listed as below :

Chapter 2 Backgrounds
It introduces MIMO OFDM system standards and FFT algorithm. Different radix

FFT architectures are compared and variable length FFT architectures are described.

Chapter 3  ASIC and Processor Co-Design Analysis

First, we calculate FFT computational complexity which can analyze processor
performance. After that, the proposed time schedule and architectures are applied in
the SISO/MIMO systems independently. Finally, we can analyze relationship between

ASIC and processor.

Chapter 4 Implementation of the ASIC Architecture
It compares various pipeline-based FFT architectures and then introduces

detailed sub-module architectures. Then, it calculates error noise.

Chapter 5 System Verification and Simulation Results
It shows verification of branch FFT which covers cell-based flow and FPGA
verification. After that, we model behavior of processor to verify variable-length FFT

computation and time schedule in the SISO/MIMO systems.

Chapter 6 Conclusion and Future Work



Chapter 2 Backgrounds

2.1 WLAN MIMO-OFDM System

Orthogonal Frequency Division Multiplexing (OFDM) is widely applied in
high-speed Wireless Local Area Network (WLAN) such as IEEE 802.11a/g/n,
Hiperlan/2 and Wireless Personal Area Network (WPAN) such as Ultra-Wide Band
(UWB) system. OFDM is a special case of multicarrier transmission, where a single
data stream is transmitted over a nuimber of lowet-tate subcarriers. OFDM can be seen
as either a modulation technique or a multiplexing technique. One of the main reasons
to use OFDM is to increase the robustness against frequency selective fading or
narrowband interference. To eliminate the banks of subcarriers oscillators and
coherent demodulators required by frequency division multiplex, Discrete Fourier
Transform (DFT) processor is essential to be implemented.

Multiple-Input Multiple-Output (MIMO) system was instituted by Marconi in
1908. Channel fading can be suppressed by multiple antennas in both transmitter and
receiver, the so-called MIMO system, has received significant attention in recent
years owing to their potential to increase system capacity.

The High Throughput Task Group which establishes IEEE 802.11n standard is
going to draw up the next-generation WLAN proposal based on the 802.11a/g which
is the current OFDM-based WLAN standards [1]. The IEEE 802.11n standard based
on the MIMO OFDM system provides very high data throughput rate from the

original data rate 54 Mb/s to the data rate in excess of 600 Mb/s because the technique
4



of the MIMO can increase the data rate by extending an OFDM-based system. A

block diagram of the 2x2 transceiver of IEEE 802.11n is shown in Fig. 2.1 and Fig.

2.2. Depending on the desired data rate, the modulation scheme can be Binary Phase

Shift Keying (BPSK), Quaternary Phase Shift Keying (QPSK), or Quadrature

Amplitude Modulation (QAM) with 1-6 bits. The encoding rates in this specification

are 1/2, 2/3, 3/4, or 5/6. The number of spatial sequence is supported by 1, 2, 3, or 4.

The guard interval period is 400 ns or 800 ns. The bandwidth of the transmitted signal

1s 20 or 40 MHz. The FFT (Fast Fourier Transform) size is 64 points or 128 points.
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However, the IEEE 802.11n standard also increases the computational and
hardware complexity greatly which is compared with the current WLAN standards.
The FFT/IFFT processor is one of the highest computational complexity modules in
the physical layer of the IEEE 802.11n standard, as shown in Table 2.1 [29]. Multiple
FFT modules are added to deal with multiple data sequences in the MIMO OFDM
system and therefore it causes a large increase in the hardware complexity and power

consumption.

Table 2.1 The comparison of the hardware complexity of the receiver

Multiplier | Adder Register | Gate Count (K)
Packet Detection 4 4 50 50
AGC 1 1 1 30
Frequency Offset 4 18 96 80
Frame Detection 8 8 8 50
FFT 1 12 68 160
Channel Estimation 0 0 128 60

2.2 Flexible FFT Processor

OFDM techniques play an important role in modern wireless and wireline
communication systems. The FFT processor is one of the highest computational
complexity modules and FFT sizes, sampling rates are different in various standards
which are shown in Table 2.2. It is desired to design a FFT processor which adapts to
various FFT sizes in different communication standards. This paper proposes an FFT

processor which can deal with the variable length FFT for different standards.



Table 2.2 FFT sizes and sampling rates in various communication systems

Communication System FFT Size (Sampling Rate)
802.11a 64 (20MHz)
802.11n 64 (20MHz) ~ 128 (40MHz)
802.16¢ 2048 (20MHz) ~ 1024 (10MHz) ~ 512 (5SMHz) -

128 (1.25MHz)

DAB 2048 ~ 1024 ~ 512 ~ 256 (2MHz)
DVB-T 8192 ~ 2048 (8MHz)
DVB-H 4096 (8MHz)
ADSL 512 (2.2MHz)
VDSL 8192 (34.5MHz) - 4096 (17.3MHz) ~ 2048

(8:6MHz) - 1024 (4.3MHz) ~ 512 (2.2MHz)

UWB 1281(528MHz)

2.3 Discrete Fourier Transform

The N-point Discrete Fourier Transform (DFT) X(k) of a complex data sequence

x(n) is defined as
N-1
X(K)=D x(MW, ke{0,1,...,N-1} (1.1)
n=0

where the twiddle factor is

Wk =e = N (1.2)

If the periodic and symmetric properties of the twiddle factor W, are exploited,

the computation of X (k) will be more efficient.



Symmetric : W% = —W"
Periodic : W™ =W,!

According to equation (1.1), the computational complexity is O(N®) through
directly performing the required computation. It needs N* complex multiplication and
N(N-1) complex addition. If using the FFT algorithm, the computational complexity
can be reduced to O(Nlog,N), where r means the radix-r FFT. The radix-r FFT can be
derived from DFT by decomposing the N-point DFT into a set of recursively related
r-point transform. There are two types of FFT algorithm are Decimation in Time (DIT)
and Decimation in Frequency (DIF). The computational complexity is the same. The

DIT algorithm decomposes X(Nn) into radix-r module sequence

X (K) = fx(n)WN“k

= D XMW XMW,

n: even n:.odd
N/2-1 N/2-1
= D XEOWES+ > X(@2F + W
r=0 r=0
N/2-1 N72-1
= Y XQOWETFWE > x2r + HW,,
r=0 r=0

and the DIF algorithm decomposes X (k) in the same way [2].



N-1
X(K)=Dx( MW, kef0,1,...,N-1}
n=0
N-1

eventerm : X(2r) =Y x(MW;", re{0,1..,N-1}

n=
N/2-1 N-1
= D XMW+ D XMW
n=0 n=N/2
N/2-1 N/2-1 N 2+
= Y XMW+ D> x(n+— )W, 2
n=0 n=0 2
N/2-

= 1{x(n) +X(n +%)}WN“52

n=0

N/2-1 N-1

odd term : X(2r —I—l) = Zx(n)wl\"‘@”l) + ZX(n)W,\T(er)
n=0 n=N/2

N/2-1

I
1M

{x(n) —x(n+ %)}WN"(””’

- Soafaa xS

2.4 Complexity Comparisen

From Table 2.3 [3] and Table 2.4 [4], the multiplications and additions of radix-8
have the lowest complexity compared with radix-2 and radix-4. The constant
multiplication can be implemented by shifters and adders whose hardware is smaller
than real multiplication. Table 2.5 [5] is the complexity equation of multiplications
and additions. The radix-8 type-1 algorithm is the original radix-8 FFT algorithm. In
radix-8 type-2 algorithm, we replaced multiplication of W, into p addition.

According to the hardware area and power consumption of complex number
multipliers, we only focus on the number of real number multiplications. In Fig. 2.3,
radix-8 type-2 has the lowest computational complexity, so we choose radix-8 type-2

as the building block to implement FFT algorithm.



Table 2.3 Multiplication comparison [3]

N-point Radix-2 Radix-4 Radix-8
Multiplier | Multiplier | Multiplier | Multiplier | Constant Multiplier

8 2 3 0 2

16 10 8 6 4

32 34 31 20 8

64 98 76 48 32

128 258 215 152 64

256 642 492 376 128

512 1538 1239 824 384

1024 3586 2732 2104 768

2048 8194 6487 4792 1536

4096 18434 13996 10168 4096

8192 40962 32087 23992 8192

Table 2.4 Multiplications and additions comparison [4]
Real Multiplications Real Additions
N-point | Radix-2 | Radix-4 | Radix-8 | Radix-2 | Radix-4 | Radix-8

16 24 20 152 148
32 88 408
64 264 208 204 1032 976 972
128 720 2054
256 1800 1392 5896 5488
512 4360 3204 13566 12420
1024 10248 7856 30728 | 28336

10




Table 2.5 Equation of multiplications and additions comparison [5]

Algorithm Real Multiplication Real Addition
. 3N 7 5N 7
- —1 N-——N+8 —log, N-—N+8
Radix-2 5 log, N—2 5 log; N -~
Radix-4 %logzN -3N +3 %logsz3N +3
. 25N 73N 25
- —(log, N -3)+4 ——Ilog, N—-—N +4
Radix-8 5 logN-3) o log N ==
Type-1
. 21N 25 8p+73N 25
- —Ilog, N-—N +4 —log, N-—N +4
Radix-8 5 08 N-= g . N-T
Type-2
8 Camplexity Comparison of Real Mumber Multiplications and Additions
107 gz

10°

e
v

et

10° —+— Mult Radix-4
hult Radix-3 Type-1 £33

—=— bult Radix-8 Type-2 |7

Murnber of Cormputational Operatar

; -~ 4--- Add Radix-2
i ---+--- Add Radix-4 e
Add Radix8 Type-1  [F3]

---@--- Add Rading Type2 |1

1P AL A PR R S A e A R A R

32 54 128 256 512 1024 2048 4096 §192
M-paint FFT

Fig. 2.3 Complexity comparison of Table 2.5

Higher radix algorithm can reduce number multiplications, but it will let
controller and butterfly unit more difficult. Based on this consideration, radix-8 is the

highest radix algorithm mainly.
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2.5 Variable Length of FFT Architectures

FFT algorithm decomposes the fundamental calculation of the DFT of a
sequence of length N into continuously smaller subsequences (branch FFT). In section
2.3, the FFT algorithm is applied not only in DSP, image processing and digital data
transmission systems, but also in biomedical electronic engineering and home
networking. To meet various standards, designer must implement FFT module with
variable length. In general, we can classify two main architectures of variable length

FFT as following subsections.

2.5.1 Memory Based Architectures

The processing element in Fig. 2.4 and Fig. 2.5 performs butterfly operation. Fig.
2.4(a) shows the single-memory architecture, It has-one processing element and one
memory element. Butterfly outputs ate stored-in the same memory location used by
butterfly inputs [6]. Fig. 2.4(b) shows the dual-memory architecture. One memory is
used to store butterfly inputs and the other is used for butterfly outputs. These two
architectures require small areas. However, they have low throughput and require high
clock frequency.

Each stage requires reading and writing to N data words, and memory access is
considered to be one of the bottlenecks under the recursive architecture. Therefore,

variable length FFT researches proposed different memory address controller

[71081[9110][11].
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Processing

Element Memory

(a) Single-memory architecture

Processing

Element Memory

Memory

(b) Dual-memory architecture

Fig. 2.4 Memory based architecture block diagram

2.5.2 Pipeline Architectures

For high throughput applications, pipeline architecture has been developed in
some literatures. Pipeline architecture.is charaecterized by non-stopping processing on
a clock frequency of the input data sampling. However, the computational resource
costs are increased because of the requirements of log,N branch FFT and log,N+1
buffer memory, as shown in Fig. 2.5. Based on pipeline architecture, variable length
FFT literatures can cascade branch FFT to achieve different sizes computation [12].
Therefore, in the design of FFT processors for different systems, we should not only
enhance the speed by introducing more parallelism and pipelines, but also reduce the

hardware resource consumption as possible as we can.

Processing

Processing
Element

png
.19}}’[18

Memory Element

Fig. 2.5 Pipeline based of block diagram
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Chapter 3 ASIC and Processor

Co-Design Analysis

3.1 Introduction

In recent years, the number and variety of products that include some form of
digital signal processing (DSP) has grown dramatically. They are often more
cost-effective (and less risky) than custom hatdware, particularly for low-volume
applications, where the development cost of custom'ICs may be prohibitive.

In the MIMO OFDM system, multiple anténnas need multiple FFT/IFFT
modules in transmitter and receivet, as shown-in‘Fig. 2.1 and Fig. 2.2. Therefore, it
causes a large increase in the hardware complexity and power consumption. Besides,
based on various standards, designers need to re-design different sizes and throughput
of FFT modules shown in Table 2.2. Because processor application is popular in
recent years, we make use of processor advantages to propose a method that processor
and ASIC co-design which can enhance flexibility and utilize time schedule
efficiently to reduce ASIC cost. We can provide designers two deciding messages.
How much processor performance is required in different environments? How many

branch FFT need to be implemented by hardware in various processors?
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3.2 FFT Computational Complexity Analysis

In equations (3.1) and (3.2) are composed of two (N/2)-point DFTs. It is well
known that one can combine these two equations as one basic butterfly (BF) module

as shown in Fig. 3.1, where x(n) and x(n+N/2) are the input data.

X (k) = Nz_jx(n)WN“k, ke{0,1,..., N-1}

n=0
) N/2-1 N or
eventerm : X(2r) = > <x(n)+x(n +7) W', (3.1
n=0
N/2-1 N
odd term : X (2r +1) = {x(n) —x(n+ ?)}WQZWN” (3.2)
n=0
x(n) fH——— x(n) + x(n+N/2)
x(n+N/2) =Xy = {x(n) - x(n+N/2)} Wy"

Wy

Fig. 3.1 The butterfly signal flow-graph of radix-2 DIF FFT

By recursive decompositions, we can further partition small DFTs into even
smaller DFTs, and so on. For example, a 16-point radix-2 DIF FFT, in signal flow
graph, is shown in Fig. 3.2.

Long-length FFT can be decomposed into several branch FFT by different radix
algorithm. In section 2.4 simulation results, radix-8 FFT reduces the complexity more
than other radix algorithms. But FFT length is restricted to power of eight. In any
event, FFT architecture is composed of many butterfly units, and additions and
multiplications form butterfly units. Thus, we can analyze FFT computational

complexity by calculating number of additions and multiplications.
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Fig. 3.2 Radix-2 DIF FET signal flow graph of a 16-point FFT
Complex addition can be ‘decomposed: two real additions, and complex

multiplication can be decomposed two real additions and four real multiplications as

shown equation (3.3).

(Re+ Im j) (cos(27’z\|nk)+ sin(z’lilnk)j)

k . . 2mk 2/mk
)+ J(Rex sin( N N ) (3.3)

= (Rexcos( 27znk) — Imx sin( 27m ) + Imx cos(

Therefore, we try to evaluate computational complexity of different length FFT
algorithm which is a little difference to section 2.4. Because we calculate any
computation in terms of processor operations, it doesn’t include any hardware reduced
computation, just like W, can be implemented by shifters and adders. In this thesis,
we take IEEE 802.11n/16e standards into consideration as shown in Table 2.2. FFT

length covers from 64-points to 2048-points. We regard real addition or real
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multiplication as an operation in the analysis. In IEEE 802.11n/16e standards,
128-point/2048-point is the critical case separately, because of long-length FFT
increase operations dramatically and symbol durations are the same shown in Table
3.1. Therefore, we analyze these two cases and assume partial branch FFT which is
implemented by hardware and then processor computational loading can be shown in

Table 3.2 and Table 3.3.

Table 3.1 Comparison operations of FFT size in IEEE 802.11n/16e standards

802.11n FFT Size Operations = Real additions +
(Sampling Rate) Real multiplications
128 (40 MHz) 3142
64 (20 MHz) 1254
802.16e FFT Size Operations = Real additions +
(Sampling Rate) Real'multiplications
2048 (20 MHz) 83462
1024 (10 MHz) 38150
512 (5 MHz) 16518
128 (1.25 MHz) 3142

. N N
Processor operations = 2x N xS + (—-1)x(R, =1)x(2+4)+ R, ( -Dx(R, -Dx(2+4)+

addition "t Lz
operations  or6yn] multipliers group2 multipliers
RR, (L—I)X(R3 —l)x(2+4)+.,.+ﬂx Kx2x(2+4) (3.4)
RiR,R,; 8

group3 multipliers

R :radix-R ne{l,23...}

n

h {N * FFTsize , S - Number of remaining stages , K : Number of radix - 8 groups
where

17



In equation (3.4), processor computational operations can be divided into three
parts. Addition and multiplication operations, besides constant multiplication of

radix-8 must be taken into account. This analysis can be applied to others FFT sizes.

Table 3.2 Comparison of different length ASIC operations of a 128-point FFT

ASIC length of Processor Operations = Real additions + Real multiplications
128-point FFT

128 0

64 2*128+63*(2+4) = 634

32 2*128*2+31*3*(2+4) = 1070

16 2%128*3+15%7*(2+4)+1*16*2*(2+4) = 1590

8 2*128*4+63*(2+4)+2*T*7*(2+4)+1*16*2*(2+4) = 2182

4 2*128*5+31*3%(2+44)+4*3*T*(2+4)+1*16*2%(2+4) = 2534

2 2*128%6+1 5FTH2+4)H8* T*(2+4)+2*16*2*(2+4) = 2886

0 2*128*T+63%(2+4)+2*¥T*7*(2+4)+2*16*2*(2+4) = 3142

Table 3.3 Comparison of different length ASIC operations of a 2048-point FFT

ASIC length of Processor Operations = Real additions + Real multiplications
2048-point FFT

2048 0

1024 2*2048+1023*(2+4) = 10234

512 2*2048*2+511*3*%(2+4) = 17390

256 2*2048*3+255%7*(2+4)+256*2*(2+4) = 26070

128 2*%2048*4+1023*(2+4)+2*127*7*(2+4)+256*2*(2+4) = 36262

64 74246-2%2048*6-32*7*T*(2+4)+1*256*2*(2+4) = 43334
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32

2#2048%6+255% T*(2+4)+8*31#7*(2+4)+2*256*2%(2+4) = 51846

16 T4246-2%2048*4-+32%1 5%3%(2+4)-32% T+ T*(2+4)+1%256*2*(2+4)
= 60166
8 74246-2%2048%3+2%256*2*(2+4) = 68102
4 2#2048%9+255%T*(2+4)+8%3 1 #7*(2+4)+8*8*35T*(2+4)+
3%256%2*%(2+4) = 75270
2 T4246-2%2048+256% 1 ¥3%(2+4)+2%256%2*(2+4) = 80902
0

2%2048*2+2*511*3+4*511*3+4*(10882+3332)+3*256*2*(2+4)

= 83462
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3.3 ASIC and Processor Timing Schedule

In this thesis, because we need to consider multiple antennas in our system, it let
time schedules needed to be deliberated independently. It tries to lower the length of

branch FFT and enhances processor and ASIC utilization.

3.3.1 SISO System Timing Schedule

We propose two schedules in SISO system. In schedule I , input sequences are
written into memory first which can receive continuous data and reorder data
sequences. Afterward it processes data sequences sequentially within one symbol
duration, and therefore processor and ASIC utilization are not 100% as shown in Fig.
3.3. Besides, processor has little_time to operate because of ASIC also occupies partial

symbol duration. Therefore, processor néeds better operation performance.

H '
+<<— Symbol Duration Symbol Duration——y&——— Symbol Duration——S4&——— Symbol Duration——y

L} L}
[] : ' : ]
[} [ ' ] ]
[ [l : : :
{ Pocesor | e . . :
1 Process | ' H '
[ [l ' ' ]
. ' ]
L} L}
i1 o : : :
H GPIO | ' ! H
: - : :
|
¢ Write Data from GPIO to Processor ! ] l
: SRAM Process ASIC : : :
[| 1 " (]
q ! '
H ' GPIO 4 : H
(] ] : :
' "
' »  Write Data from GPIO to Processor ASIC : :
: : SRAM Process q :
] " q
' '
(] D: (]
‘ : L3 o :
' GPIO { H
'
Write Data from GPIO to Processor ’
SRAM Process AHIE :
'
' V4 N
GPIO

Fig. 3.3 Time schedule I of the SISO system
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In Fig. 3.4, it shows system block diagram based on time schedule I . The
wrapper module is used to communicate On-Chip Peripheral Bus (OPB) handshaking
signals [13]. ASIC is responsible for branch FFT algorithm. Register module is stored

control signals which govern entire data flow.

Address [0:31]
a
Data [0:31]
S Clk/
Rst/
BE[0:3]/
RNW /
Select /
SeqAddr /
Processor XferAck /
ToutSup /
Retry /
ErrAck
m Address [0:31]
o) Data [0:31]
A Clk/
| Rst/
BE[0:3]/
y . ; RNW /
Wrapper Switch Seloct
SeqAddr /
XferAck /
. ToutSup /
‘ Register H Wrapper ‘ ﬁ Wrapper ‘ ﬁ Wrapper ‘ O;ﬂﬁ/
‘ K ! /l\ | /I\ \I/ ErrAck
v v
SRAM SRAM
ASIC
2048 x 32 2048 x 32

Switch

ﬁ

L GPIO

Fig. 3.4 SISO system block diagram of the time schedule I

In schedule IT, it makes efforts to raise processor and ASIC utilization as shown
in Fig. 3.5. It not only decreases processor operations per second, but also lowers
power consumption because of decreasing clock frequency. Additional buffer is used
to increase processor and ASIC processing time up to one symbol duration, but it

causes more hardware cost shown in Fig. 3.6.
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Fig. 3.5 Time schedule Il of the SISO system
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Fig. 3.6 SISO system block diagram of the time schedule I
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3.3.2 MIMO System Timing Schedule

In general, channel fading can be suppressed by multiple antennas in both
transmitter and receiver in the MIMO system, but it also increases hardware area
dramatically. Therefore, time schedule in the MIMO system, it tries to minimize
hardware area and enhances processor and ASIC utilization simultaneously. We find
that time schedule I in the SISO system which have many bubbles can be utilized to
process others computation. Based on this concept, we propose a suitable method for
the MIMO system which can eliminate bubbles by processing sequences of another

antenna which exchange processor and ASIC processing order as shown in Fig. 3.7

l&«—— Symbol Duratior———=>>€&—— Symbol Duratior———={&———Symbol Duratiom——>

Processor 1! [ 21 2

ASIC 12 11 02 01
Memory1! 11 1! 1! 3!
Memory?! 21 71 71
Memory12 12 12 12 32
Memory2? 22 02 02
! ! »
e ; »

1 1 Antenna
Symbol

Fig. 3.7 Time schedule of the MIMO system

ASIC and processor compute sequences of different antennas by turns within

half symbol duration. Therefore, comparison with scheduleII in the SISO system,
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processor needs two times operation performance per second in the MIMO system. It
can process sequences of two antennas simultaneously, and doesn’t need additional

hardware of branch FFT shown in Fig. 3.8.
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Fig. 3.8 MIMO system block diagram
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3.4 ASIC and Processor Performance Simulation

Since SISO/MIMO schedules are proposed, an evaluation model is developed to
verify specification requirements. Base on IEEE 802.11n/l16e standards, we can
introduce symbol period to calculate processor performance when different length of
branch FFT is implemented by hardware. ASIC plays an accelerative role in the
system. Increasing the length branch FFT of ASIC can release burden of processor,
and vice versa. Because 128-point/2048-point is the critical case in IEEE 802.11n/16e
separately, we just only calculate these two cases.

Schedule I in the SISO system, ASIC occupies partial symbol duration as shown
in Fig. 3.3. Therefore, we need to calculate ASIC latency cycles approximately shown
in Table 3.4 [14] and assume clock«frequency 1100 MHz for simulation, as shown in
Fig. 3.9. When length branch FET of ASIC is.too short, it cannot gain any benefits to
the processor. The length branch FET .of ASIC affects processor operations directly.
More length branch FFT is implemented. by hardware will lower processor

computational loading, but it increases area cost.

Table 3.4 Approximately calculation of latency cycles

FFT Length Latency FFT Length Latency
0 0 64 103
2 2 128 208
4 4 256 336
8 8 512 592
16 26 1024 1616
32 44 2048 2640
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In Fig. 3.9, we can analyze relationship between processor operations and branch
FFT of ASIC. MOPS imply that processor computational loading divided by
redundant symbol duration. When our system processes FFT algorithm only by
processor, it shows that IEEE 802.11n needs more processor operations per second.
Therefore, we can calculate performance of processor probably by MOPS. For
instance, if processor can provide 700 MOPS for our system, we need to implement

the 16-point branch FFT of ASIC in order to match IEEE 802.11n/16e specifications.

Schdule T
1200 '! !' :"!Y'!Y!'":r:'!rr'!{!’"::'I'||'Y'|Yr'|'| T T rrr T rr T |'|'|I
b priin e s o —— I048-point FFT of IEEE 802.16e Specification |
| —e— 128-point FFT of IEEE 802.11n Specification
1000 |-~ - -4
BOO < -
I¥a) E
o
(]
= i i Vo
I -1 CERRRRR AR
] H H H
=
£
=
=
e N ——
. .
RS RN HEHEHRR N

H I I A I I A
2 4 g 16 32 64 128 256 512 1024 2048

FFT Length of ASIC

Fig. 3.9 Processor operations analysis of schedule I in the SISO system

ScheduleII in the SISO system, processor has a symbol duration to process

operations. Therefore, using the same processor as above, designer can implement the

4-point branch FFT of ASIC to reach specifications as shown in Fig. 3.10.
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Fig. 3.10 Processor operations analysis of schedule II in the SISO system

Therefore, in the MIMO system; processor and ASIC own half a symbol duration
to complete operations. It can be expected that processor operations per second will
double that of schedule Il in the SISO system. Using the same processor as above,
system requires ASIC which is 128-point branch FFT as shown in Fig.3.11.

In this section, we introduce time schedule I ~ II in the SISO system, and time
schedule in the MIMO system. Based on system block diagram, hardware cost in time
schedule T is less than time schedule IT, but utilization of time schedule I is less than
time schedule I. In the MIMO system, bad utilization can be improved by changing
ASIC and processor order. In the 2x2 MIMO systems, it only needs a processor and a
branch FFT of ASIC. This time schedule not only lowers hardware cost, but also

increases utilization.
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Fig. 3.11 Processor operations analysis in the MIMO system

In this article, we hope that proposed system can handle IEEE 802.11n/16e
specifications flexibly. We assume processor can provide proposed FFT system with
800 MOPS. Therefore, 64-point branch FFT of ASIC is used to increase operating
capacity as shown in Fig.3.11. In next chapter, we concentrate on how to implement
the 64-point branch FFT of ASIC.

In Fig.3.12, it calculates computing loading ratio between processor and the
64-point branch FFT of ASIC. The FFT size includes IEEE 802.11n/16¢ standards. It
shows that ASIC executes above half operations except 2048-point FFT algorithm.
Therefore, we can regard the 64-point branch FFT of ASIC as an accelerator in the

proposed FFT system.
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Chapter 4 Implementation of the

ASIC Architecture

4.1 Classification Pipeline-Based FFT Architectures

In the domain of implementation of FFT processor, two architectures are
commonly used. One is pipelined-based FFT, the other is memory based FFT. The
pipelined architecture consumes a-telatively large chip area compared with memory
based architecture, because the pipelined architecture may need more complex value
multipliers and complex valueTadders."But pipelined architecture lets clock rate is
comparatively low as the same frequency of the sampling rate to meet real-time FFT
processing. Because ASIC can be regarded as an accelerator and the length branch
FFT of ASIC is only 64-point FFT computation, we adopt pipelined branch FFT of
ASIC to promote throughput. In the following subsections, it introduces and compares

various pipelined-based FFT architectures.

4.1.1 Radix-2 Multipath Delay Commutator ( R2ZMDC)

The block diagram of N-point radix-2 DIF MDC pipelined FFT architecture is
shown in Fig.4.1 [15]. The elements between PEs consist of shift registers and a
commutator switch which are used to form a proper set of data for the next PE. First,

input subcarriers written into upper shift registers until (N/2+1)th subcarrier inserted,
30



and then input subcarriers go into butterfly directly by multiplexer.

Therefore, 1st and (N+1)th subcarriers go into butterfly simultaneously, and then
the adder processing results select upper path. The subtraction processing results
multiplied by twiddle factor which are written into lower N/4 shift registers and the
adder processing results written into upper N/4 shift registers at the same time. The
first butterfly adder results select lower path by switch. Therefore, the first butterfly
Ist and (N/4+1)th results go into second butterfly and the first butterfly subtraction
results written into upper N/4 shift registers simultaneously. By the same way, process
entire subcarriers. The R2ZMDC architecture contains log,N-2 multipliers, 2logoN

adders and 1.5N-2 registers. Butterfly and multipliers only have 50% utilization rate.

Input > N/2 > P:f > > N/4 —»> P:f — Output0
— & &
— —
p{ < P <

»(%—»N/4+

et

Outputl
I

Mux X
Switch

Fig. 4.1 R2MDC architecture

4.1.2 Radix-4 Multipath Delay Commutator ( R4AMDC )

The block diagram of N-point radix-4 DIF MDC pipelined FFT processor is
shown in Fig.4.2 [15]. It is similar to RZMDC architecture, but butterfly implement
radix-4 algorithm. Because it has four paths, butterfly and multipliers have 25%

utilization rate. It contains 3logsN-3 multipliers, 8logsN adders and 2.5N-4 registers.
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Fig. 4.2 R4MDC architecture

4.1.3 Radix-2° Multipath Delay Commutator ( R2°MDC )

In order to implement radix-4 algorithm, it uses cascade of radix-2 architectures
as shown in Fig.4.3 [16]. We can see that this architecture contains 2logsN-2

multipliers, 4logsN adders and 1.5N-2 registers. It-is better than R4AMDC.

> o —>
=
§ X
N/4 = - >
. 1 1

Switch Switch

Fig. 43 R2°MDC architecture

4.1.4 Radix-8 Multipath Delay Commutator ( R8MDC)

The block diagram of N-point radix-8 DIF MDC pipelined FFT processor is
shown in Fig.4.4. It is similar to RZMDC architecture, but butterfly implement radix-8
algorithm. It contains 7loggN-7 multipliers, (24+2T)loggN adders and 4.5N-8

registers.
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4.15 Radix-2° Multipath Delay Commutator ( R2°MDC )

In order to implement radix-8:algorithm, it uses cascade of radix-2 architectures
as shown in Fig.4.5 [16]. We can see that this “architecture contains log,N/3-1

multipliers and 1.5N-2 registers;

Input g g Output0
g g
= = Outputl

Mux

Switch Switch Switch

Fig. 4.5 R2’°MDC architecture

4.1.6 Radix-2 Single-Path Delay Feedback ( R2SDF )

The butterfly unit in Fig.4.6 shows two kinds of operation modes. In operation
model, PE pushes input data into the last location of shift register and pops the data
from the first location to output port. In operation mode2, the output data of addition

part of butterfly unit is directly passed to the next stage and the output data from the
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subtraction part of butterfly unit is written back to shift register. The block diagram of
16-point radix-2 DIF SDF pipelined FFT processor is shown in Fig.4.7 [17]. First, the
input subcarriers are stored into 1st shift registers until the 9th input subcarrier which
is sent to butterfly simultaneously. The adder processing results are sent into next
stage shift registers and the subtraction processing results are written into the same

stage shift registers.

Register Register 1«
—> —> > >
Model Mode2

Fig. 4.6 Operation model and mode2

Butterfly Butterfly Butterfly Butterfly
Input —p —»(X—» —(X— —»>X)—> — Output
+
W W i

Fig. 4.7 16-point radix-2 DIF SDF architecture

Therefore, the butterfly unit provides a complete feedback loop. We can see that

this architecture contains log,N-2 multipliers, 2logoN adders and N-1 registers.

4.1.7 Radix-4 Single-Path Delay Feedback ( R4SDF )

R4SDF architecture is similar to R2SDF architecture is shown in Fig.4.8
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[18][19]. It can be seen that radix-4 algorithm needs less multipliers than radix-2
algorithm, but the butterfly unit and multipliers only have 25% utilization rate. It

contains logsN-1 multipliers, 8logsN adders and N-1 registers.

N4 = N/16 |«
N/4 |« N/16 |«
|j N/4 <:| |j N/16 <:|
Radix-4 Radix-4
Butterfly Butterfly
Input —» ——»X—> L—» Output
+
W

Fig. 4.8 RA4SDF architecture

4.1.8 Radix-2° Single=Path Delay Feedback ( R2°SDF)

It uses cascade of two radix<2 butterflies to form radix-4 algorithm. Its’ shift

registers and multipliers are the same with R4SDF architecture as shown in Fig.4.9

[16].
Butterfly Butterfly Butterfly Butterfly
Input —p —»X— —»(X— —»X)—» — Output
. A 4
3 W 7

Fig. 4.9 16-point R2’SDF architecture
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4.1.9 Radix-8 Single-Path Delay Feedback ( R8SDF )

It uses cascade of three radix-2 butterflies to form radix-8 algorithm as shown in

Fig.4.10. It contains loggsN-1 multipliers, (24+2T)logsN adders and N-1 registers.

NRR
N/B
N/B
N/B
N/B
N/B
N/B

N/64
N/64
N/64
N/64
N/64
N/64
N/64

A A A A AL A
A A Ar A A A A

N7 N7
\V/ XX W\ XX
. b . Bl
> v > W
Input > /\§ j XX W > /\§ : XX W Output

Fig.4.100 R8SDF architecture

4.1.10 Radix-2° Single-Path Delay Feedback ( R2°SDF )

It uses cascade of three radix-2 butterflies to form radix-8 algorithm as shown in

Fig.4.11 [16]. It contains log>(N)/3-1 multipliers and N-1 registers.

Kl i el

Radix-2 Radix-2 Radix-2
Butterfly Butterfly Butterfly
Input —p —»X)—> —> —»(X— Output
A 4 4
) W' W

Fig. 4.11 R2’SDF architecture
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4.2 Comparison of Pipeline-Based FFT Architectures

According to the previous subsections, we can compare several pipelined

architectures for FFT as shown in Table 4.1 and Table 4.2 [20]. One can find that SDF

architectures have less area cost and higher utilization rate, but longer FFT

computation time, compared with MDC architectures under the same operating clock

rate. Besides, the number of switch shows in equation (4.1), where N is number of

points, r is radix-r, and stage is total stage. The parameter p is the number of switch in

different radix. Afterwards, we can adopt their characteristic to analyze the 64-point

branch FFT of ASIC in Table 4.3 and Table 4.4.

Number of switch = N x{(l—l)x(stage—l)Jr p} (4.1
r

Table 4.1 Hardware requirement comparisons of several pipeline structures

Architecture Complex Complex Memory Size | Multiplicative
Multipliers Adders Complexity
R2MDC logoN-2 2logoN 1.5N-2 Radix-2
R4MDC 3logsN-3 8logsN 2.5N-4 Radix-4
R2*MDC 2log4N-2 4logyN 1.5N-2 Radix-2°
R8MDC 7logsN-7 (24+2T)logsN 4.5N-8 Radix-8
R2°MDC log,N/3-1 2log,N 1.5N-2 Radix-2
R2SDF logoN-2 2logoN N-1 Radix-2
R4SDF logsN-1 8logsN N-1 Radix-4
R2*SDF log4N-1 4logyN N-1 Radix-2*
R&8SDF logsN-1 (24+2T)logsN N-1 Radix-8
R2’SDF logx(N)/3-1 | (6+2T)loggN N-1 Radix-2’
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Table 4.2 Hardware utilization comparisons of several pipeline structures

Architecture Utilization of Utilization of Utilization of
Multipliers Adders Registers
R2MDC 50% 50% 50%
R4MDC 25% 25% 25%
R2°MDC 37.5% 50% 50%
R8MDC 12.5% 12.5% 12.5%
R2SDF 50% 50% 100%
R4SDF 75% 25% 100%
R2°SDF 75% 50% 100%
R8SDF 87.5% 12.5% 100%

Table 4.3 Comparisonjof switch number in different radix algorithm

N=64
Radix-r Stage Number of switch
2 6*(radix-2) 64*{(1-1/2)*5}=192
4 3*(radix-4) 64*{(1-1/4)*2}=96
8 2*(radix-8) 64*{(1-1/8)*1}=56

Table 4.4 Hardware requirement comparisons of 64-point FFT architectures

N=64
Architecture Registers Multipliers
R2MDC 94 5
R4MDC 154 6
R2°MDC 94 4
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R8MDC 280 7
R2*MDC 94 2
R2SDF 63 5
R4SDF 63 2
R2’SDF 63 2
R8SDF 63 1
R2’SDF 63 1

In Fig.4.12, it lets multipliers, adders and registers with the 16-bits precision to
calculate hardware gate count [28]. It is synthesized at 150 MHz for TSMC 0.18 z m

single-poly six-metal CMOS technology using Synopsys Design Compiler.
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Fig.4.12 Hardware gate count comparison of several pipelined structures
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In our proposed system, the 64-point branch FFT of ASIC plays an accelerated
role. Therefore, the previous subsections we only analyze pipeline-based FFT
architectures which can process data sequence continuously. In Table 4.3, we can find
that high radix algorithm not only reduce multipliers, but also lower the number of
switch. In Table 4.4, it show that R2’SDF architecture require less registers and
multipliers. Based on area issue, the 64-point branch FFT of ASIC is based on

R2’SDF architecture as shown in Fig. 4.12.
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4.3 ASIC Throughput Analysis

If we decide the length branch FFT of ASIC based on section 3.4 analysis, we

need to know ASIC throughput requirement. After that, we can design appropriate

architecture. Because ASIC occupies partial symbol duration in the time schedule I,

we only take time scheduleIl in the SISO system into simulation as shown in

point FFT algorithm requires

Fig.4.13. It shows that IEEE 802.11n handles 128

no matter in the SISO/MIMO system. It implies that the

2

highest throughput rate

o ] T T
vl v b e

ASIC Throughput Analysis

1024 2043

256 512
FFT Length of ASIC

128

B4

64-point branch FFT of ASIC requires 85 MHz throughput rate at least.

.
i
:
.
]

o

o}

ZHW ndybnoay |

32

16

Fig. 4.13 ASIC throughput analysis in different environments
41



4.4 Implement the 64-point Branch FFT of ASIC

In this section, we will introduce the R2*SDF architecture of each sub-module in

great detail and calculate error analysis because of the fixed-point computation.

4.4.1 Complex Multiplier

The 64-point FFT is based on two stage radix-2° butterfly and it needs 49 times
complex multiplications which excludes from W, , W, and W, . We use the
radix-2 index map to divide the 8-point DFT into three steps. Fig.4.14 shows the
butterfly of the three-step DIT radix-8 FFT. The twiddle factors, W, and W, at the
second step are trivial complex multiplications, because they can be written as
V2 / 2 (l - j) and /2 / 2 (—1— J) Thus, a complex, multiplication with one of the two

coefficients and a real multiplication, whosé hardwate can be realized by shifters and

adders in Fig.4.15 .

x(n)

NV
(k+N/8)
XN
x(n+6N/8) \><></

>1<
>_1< - — X(k+3N/8)
x(n+N/8) >< : C : C i X(k+4N/8)
1
>1<

x(n+4N/8)

x(n+2N/8)

x(n+3N/8)

B — o /A
4 3 /1\ (k+6N/8)
Wy

x(n+7N/8) - _1 -

X(k+7N/8)

Fig. 4.14 Radix-2° FFT butterfly unit
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The multiplication by —j can be realized with no extra hardware cost by simply

Fig. 4.15 Implementation hardware of multiplication with

interchanging the real and imaginary part of the product as shown in equation (4.2).
(@+bj)x(-j)=b-aj (42)
One complex multiplier can be realized by four real multiplications and two real
additions as shown in Fig. 4.16. Its mathematiedl form can be expressed as equation
(4.3).

(a+Dbj)x(c+dj)=(ac=bd)+ j(bc+ad) (4.3)

a 5 ac
> Real part
b >,
>
c > bc
> Imaginary part
d >
-

Fig. 4.16 Complex multiplier with four real multiplications and two real additions

4.4.2 Twiddle Factor Coefficient of ROM Table

N-point radix-8 FFT implementations can require seven complex twiddle factor
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coefficients W, ,W:",..., W/". Such implementations can require a twiddle factor
ROM table to store the real and imaginary parts of these values which have phase
angles in the range (0, 2 7 ) in the complex plane. If we store all required coefficient
values in a ROM table, we must use a large chip area. Thus, this subsection presents a
method to reduce the size of the twiddle factor ROM table.

It is only necessary to store the twiddle factor coefficients between the interval
0~N/8 [21]. We denote the interval 0~N/8 as region 0. The remaining interval regions
are listed in Fig.4.17 and Table 4.5. The storage coefticients in region 0 are only in (0,
7 /4) to save hardware cost because it can represent all the angles in (0, 27) by
exploiting the symmetry of the sine and cosine functions. This means that the sine of
elements in (0, 77 /4) are equal to the cosine of elements in (77 /4, 7 /2) and vice versa.
Thus, if the values in the region 0 are known (stored in a reduced size ROM), the

values from all the regions can be computed [30].

Table 4.5 Interval regions-of twiddle factor design

No Region Interval Boundary

(a) 0 0<m<N/8 Boundary(0=0
Boundary1=N/8

(b) 1 N/8+1<m<N/4-1 | Boundary2=(N/4)-1

(c) 2 N/4<m<3N/8 Boundary3=3N/8

(d) 3 3N/8+1<m<N/2-1 | Boundary4=(N/2)-1

(e) 4 N/2<m<5N/8 Boundary5=5N/8

63 5 SN/8+1<m<3N/4-1 | Boundary6=3N/4-1

(2) 6 AN/4<m<7N/8 Boundary7=7N/8

(h) 7 TN/8+1<m<N -1
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Boundary1
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Fig. 4.17 Twiddle factor boundary diagram

When the twiddle factor address generator calculates the address in each region,
the corresponding address of region 0 are given-by equation (4.4) through equation
(4.11). Table 4.6 lists the parameters used in'equation (4.4) through (4.11). After that,

we can get the twiddle factor coefficients of remaining region from region 0 as shown

in Table 4.7.

Table 4.6 Description of twiddle factor parameters

Parameter

Description

J.2/znk
nk -
w  =e N

Twiddle factor coefficient

N

FFT length size

m

The actual address

t

log, N/2

Rregion0 addr

The real data value of the region0 address

Iregion0_addr

The image data value of the region0 address

3 2

~

A complement operation
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No.(a) region0 addr =actual addr[t—2:0] 0<m g%

actual data = [Rregiono _adar 1 + JIL (4.4)

region0 _addr ]

No.(b) region0 addr =~ actual addr[t —2:0]+1 %H <m< % -1

actual data=[~ 1| ]+ j[~R 4.5)
. . N 3N
No.(c) region0 addr =actual addr[t—2:0] " <m< <

region0 _addr regionofaddr]

actual data =[I ]+ j[~R (4.6)

region0 _addr regionofaddr]

No.(d) region0 addr =~ actual _addr[t—2:0]+1 %H <m s%—l

aCtuaI — data = [N Rregionofaddr ] + J[ I regionofaddr] (47)

No.(e) region0 addr =actual addr[t —2:0] % <m< %
actual — data = [N I:zregiono_addr ] + J[N I region0 _addr ] (48)
. ) 5N 3N
No.(f) region0 addr =~ actual addr[t—2:0]+1 ry +1<m< Vi 1
aCtuaI — data = [I region0 _addr, ] 3 j[Rregionofaddr] (49)
3N 7N

No.(g) region0 addr =7actual  addr[t=2:0] e <m<—

actual data =[-I 1+ JIR (4.10)

region0 . addr regionoiaddr]

No.(h) region0 addr =~ actual addr[t—2:0]+1 %H <m<N-1

actual _data = [Rregionofaddr I+ J[~ I (4.1D)

region0 _addr ]
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Table 4.7 Twiddle factor coefficient values in the region 0

Address Coefficient 16-bits quantized coefficient

(m) Real Image Real Image
0 1.000000 | 0.000000 | 0100000000000000 | 0000000000000000
1 0.995185 | -0.098017 | 0011111110110001 | 1111100110111010
2 0.980785 | -0.195090 | 0011111011000101 | 1111001110000100
3 0.956940 | -0.290285 | 0011110100111111 | 1110110101101100
4 0.923880 | -0.382683 | 0011101100100001 | 1110011110000010
5 0.881921 | -0.471397 | 0011100001110001 | 1110000111010101
6 0.831470 | -0.555570 | 0011010100110111 | 1101110001110010
7 0.773010 | -0.634393 | 0011000101111001 | 1101011101100110
8 0.707107 | -0.707107 |.0010110101000001 | 1101001010111111

Block diagram of the 64-point branch-FET is'shown in Fig.4.18. BF2 I implies

that it has two modes as shown /in Fig4:6°and BF2II needs to process (-j)

multiplication additionally. In this architecture, it only needs 63 registers and 1

multiplier.
1 2 4 8 16 32
BE2 BF2 BE2 BF2 BE2 BF2
I I 1 i | 1
> > — () > > —
XM & Iy x ? 3 7'y 2 XK
W(n)
Clk
— Counter
Rst

Fig.4.18 R2’SDF Pipelined FFT Architecture for N= 64
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4.5 Error Analysis

In the case of FFT hardware implementation, the finite bit-width must be
considered because of the fixed-point computation. Many statistical error analysis
papers on FFT implementations are proposed [22][23][24]. Assume the input
sequence of FFT x(n) is a sequence of finite-valued and white complex numbers. The

variance of x(n) can be expressed as
5 1 N-1 5 1 N-1 5
Oy =WZ(X(H)—M) =WZ(X(”)) (4.12)
n=0 n=0

where (y is the mean of x(n) and £ x=0. The SQNR (Signal to Quantization Noise

Ratio) is defined as

LS}

(o}

SQNR = = (4.13)

LS}

O

o

Where o, is the variance of output and-g q2 is the variance of the quantization error.

For an N-point FFT module with input of which real and imaginary parts are

uniformly distributed in (- € N ,L N ), the variance [23] of the output is

V2 A2
o, =— (4.14)
From (4.13) and (4.14), the SQNR [24] of the conventional FFT implementation

can be carried out :

22B
SQNRFFT :m (415)

Where B is the bit-width of the input sequence and m=log,N.
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In Fig.4.19, it shows equation (4.15) with IEEE 802.11n/16e standards which
include five FFT sizes. The more rounding stages, the more noise will be produced.
Because long-length FFT will decrease SQNR, it needs to increase bit-width. It will
cause more power consumption and area cost.

In this chapter, we introduce various pipeline-based FFT architectures and then
compare their characteristic to evaluate our proposed system based on throughput rate
and hardware cost analysis. After that, it shows detailed sub-module architectures and

analyzes noise issue finally.
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Fig. 4.19 Noise analysis with different FFT length
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Chapter 5 System Verification and

Simulation Results

5.1 System Environments

In the proposed system, the FFT module handles IEEE 802.11n/16e standards.
The FFT sizes include 64-point~ 128-point~512-point~ 1024-point and 2048-point FFT
computation. We hope that the proposed system can change FFT size flexibly and
meet specification requirements sitmultaneously. Therefore, system verification will
cover that the 64-point branch EFT of ASIC verification, variable-length FFT module

functional simulation and time schedule‘simulation.

5.2 The 64-point Branch FFT Verification

After functional validation, the branch FFT is synthesized for TSMC 0.18 . m
single-poly six-metal CMOS technology using Synopsys Design Compiler [25][26].
After synthesis, floor planning, P&R, and layout are carried out using Cadence SOC
Encounter. Finally, the post-simulation power analysis on the netlists exported from
SOC Encounter is carried out using Synopsys PrimePower. Fig.5.1 gives the design
flow chart and CAD tools used in the branch FFT of ASIC.

In Fig.5.2, the die size of the 64-point branch FFT is 2270 x 2270 pum®. It
synthesizes with 46236 gate counts which include testing circuits and the minimum

clock period is 6.31 ns which is reported by Synopsys Design Compiler.
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Fig. 5.1 Flow chart of the branch FFT chip design
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We adopt full scan test for the chip. The test circuits are inserted during
compilation using Synopsys DFT Compiler. The existing flip-flops inside the chips
were replaced with scan flip-flops. Test vectors are generated by Synopsys TetraMax.
The fault coverage of the R2’SDF FFT is up to 99.40%.

Based on throughput rate analysis, the 64-point branch FFT should work upon 85

MHz. Therefore, the chip summary can be listed in Table 5.1.

Fig. 5.2 Layout view of the 64-point R2’SDF FFT structure
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Table 5.1 Chip summary of 64-point R2’SDF FFT

Design R2’SDF
Clock rate 87 MHz
Datapath width 16 bits
Latency 71 cycles
Synthesized gate count 46236 (with testing circuits)
Core size 1195 x 1195 pm®
Die size 2270 x 2270 pm?
Core power 112.6mW (@ 87 MHz
Die power 158.1mW (@ 87 MHz

In Fig.5.3, it shows test bench of the 64-point branch FFT. There are input
control and output compare. We can read input signal from in.txt which generated by
MATLAB, and output can be ‘compatedythe-64-point branch FFT with MATLAB
behavior model output. This self-check test bench can verify a lot of test patterns and

we can check the output signal are within error thresh or not efficiently [27].

53



Testbench
Matlab
behavior model

Random pattern

Input Output
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report.txt
Clock & F

reset
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Fig. 5.3 Test bench for the 64-point branch FFT
We use FPGA to implement design and the synthesis report shown in Table 5.2,
the report of the FPGA timing s very different from the report of the ASIC timing,
which is only for reference. Because the characteristic of FPGA is for verification, the
timing is not very important by FPGA prototyping.

Table 5.2 Xilinx FPGA synthesis report

Target Device 35400£t256-5
Slices 1554 (43%)
Slices Flip Flops 667 (9%)
4-Input LUTs 2611(36%)
Post-Map Timing 17.120ns (14.820ns logic,

2.300ns route)

Post-P&R Timing 30.268ns (12.899ns logic,

17.369ns route)
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Block diagram of FPGA verification is shown in Fig.5.4. It shows that we
introduce an extra controller which generates memory address signals and rs-232
handshaking signals. It generates test patterns by MATLAB and checks the branch

FFT output sequences which are within error thresh or not.

. fd_start PC
[xd_done - )
(=== mmmmmmmmmm e Llri-Transmitter
data |
bus
P wd_refdy
T -I-M 7-IF - lan-Receiver
Uit
Matlab
receive u;lm:n*
addr | = f4- o
. ? | I_‘,njm — E: - rsl_n
. FFT ~* — clk
e sy

Fig. 5.4 “"FPGA measurement plan

5.3 MATLAB Simulation and Analysis

In the previous subsections, we only verify the 64-point branch FFT accelerator.
Therefore, we will model processor behavior to verify the proposed system as shown
in Fig.5.5. First, user needs to declare that FFT size and symbols number and then
MATLAB models processor behavior to generate decomposed sequences. The part of
algorithm check, it can verify variable length FFT computation which covers FFT
sizes of IEEE 802.11n/16e standards. We can compare the output signal with

golden.txt which are within error thresh or not.

The part of schedule check part, we verify time schedule in the SISO/MIMO
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systems as shown in Fig.3.3, Fig.3.5 and Fig.3.7. Schedule control module and test
pattern module control data flow. Therefore, processor and ASIC can process data

samples by turns based on the proposed time schedule.

FFT Size  # Symbol

1 1
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Algorithm Check <> Schedule Check

]
]
]
]
]
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]
]
[ ]
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Radix-2 || Radix-4 || Radix-8 decompd.txt — : Control
> decompdLisl ——t L ASIC
. decompl6.ixL P : ' Test Pattern
Matlab Behavior Secompan) i 1 ) | ' Contrel
R .
R 1 '
VVVVV '
E TestBench
) :
golden.ix I ASIC H
TestBench :
1
]
]
L]
]
L]
Compare g
Results -
]
L]
]
]
L]
]
L]
]
L]
]
]

Fig. 5.5 Test bench for proposed system

In this chapter, it shows verification of 64-point branch FFT which covers
cell-based ASIC flow and FPGA measurement. After that, we model processor
behavior to verify variable length FFT computation and time schedule in the
SISO/MIMO systems. Therefore, proposed system can complete variable length FFT

algorithm and process multiple data streams to meet IEEE 802.11n/16e standards.
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Chapter 6 Conclusion and Future

Work

6.1 Conclusion

Because processor is popular in recent years, we intend that the FFT module can
combine processor with ASIC to form the flexible system. ASIC plays an accelerated
role in the proposed system. Based on FFT computational complexity analysis, it
shows different length branch FET of ASIC which affects processor performance.
Therefore, it can provide user two anticipation.as below -

1) Processor needs to spare how much computational performance at least for

proposed FFT system.

2) In terms of processor computational performance, we can decide the branch

FFT length of ASIC.

Because we adopt processor can contribute 800 MOPS in this thesis, the
accelerated branch FFT is 64-point FFT algorithm. After that, we analyze various
pipeline-based FFT architectures. Based on area cost issue, the 64-point branch FFT is
implemented by R2’SDF architecture. After throughput analysis, the accelerated
branch FFT must work upon 85 MHz to meet IEEE 802.11n/16e standards. The
branch FFT of ASIC has 16-bits wordlength and synthesized using Synopsys TSMC
0.18 £ m process. After that, physical design is carried out using Cadence SOC
Encounter and the chip summary is depicted in Table 5.1.

Finally, we not only verify the 64-point branch FFT on FPGA but also check the
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proposed time schedule which covers 64-point ~ 128-point ~ 512-point ~ 1024-point and

2048-point FFT algorithm in the SISO/MIMO systems.

6.2 Future Work

Because the processor is virtual in this thesis, we provide one method to setup up
proposed system. In Xilinx Spartn-3 FPGA, it has an embedded processor. Therefore,
the processor can be entirely built by writing C- language and the 64-point branch
FFT can be loaded to FPGA as an accelerator.

In this thesis, the processor performance analysis is based on radix-2/4/8
algorithms. Because processor computational loading is based on operations, we can
try to use higher radix algorithm to reduce multiplications. The branch FFT is
implemented with a high specification of 16-bits: wordlength while the output is also
16-bits and 2° scaled. The datapath can’be designed-more carefully if a precise error
analysis was done. Hence, theresource cost® will be reduced while keeping
specification requirements. The shift registers is another issue. For a bigger N, the
shift registers will cause more power consumption and area cost than using memory
access. Therefore, how to improve the efficiency and simplify the memory access

scheme in the long length branch FFT module is left for future work.
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