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Abstract 

    FFT module is an indispensable part for wireless and mobile communication, 

especially when broadband wireless systems require a high speed and low power 

hardware module for its packet-based high-speed data transfer. This has made the 

design of FFT processor a critical requirement for the next generation wireless 

systems. In general, FFT module is designed for specific system. Therefore, it is 

desirable to design an adaptive FFT module for different standards. This thesis adopts 

processor flexible characteristic and ASIC accelerated mechanism to set up a flexible 

FFT module which can meet IEEE 802.11n/16e standards. Besides, we propose 

optimized time schedule in the SISO/MIMO systems. After processor computational 

analysis, 64-point branch FFT of ASIC can be applied in proposed system and it 

computes 16-bit input data at the 85 MHz throughput rate. After that, we compare 

various pipeline-based FFT architectures of ASIC and analyze their characteristic. 

Finally, it not only verifies the 64-point branch FFT on FPFA, but also checks 

proposed time schedule which can satisfy IEEE 802.11n/16e specification.     
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用於多輸入輸出無線通訊之快速傅立葉轉換 

加速器設計 

 

學生：呂俊衛   指導教授：董蘭榮 博士 

 

國立交通大學 

電機與控制工程學系研究所 

 

摘要 

 

對於無線和行動通訊系統，傅立葉轉換模組是不可或缺的部分，特別是當寬

頻無線系統需要一個高速且低功率硬體於高速封包式資料傳輸，這使得傅立葉轉

換成為下一代無線系統必要的需求。一般而言，傅立葉轉換模組的設計會針對特

定的系統，因此，希望能去設計一個可以適合不同標準規格的傅立葉轉換模組。

在此論文中採用處理器彈性的特色和硬體具有加速的機制去建立一個傅立葉轉

換模組，並且可以符合 IEEE 802.11n/16e 的規格要求。除此之外，我們提出對

於單輸入輸出/多輸入輸出系統的最佳排程。在經過處理器運算量分析後，64 點

分支傅立葉轉換以硬體實現於系統中，並且它已 16 位元及 85 MHz 產出率為規

格。之後，我們有針對用於系統的傅立葉轉換硬體架構做比較與分析其特性。最

後，不只有對 64 點分支傅立葉轉換於 FPGA 上做驗證，並且有針對所提出的排程

做驗證是可以滿足 IEEE 802.11n/16e 的規格。 
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Chapter 1  Introduction 
 

 

1.1  Motivation 
 

 FFT module is one of the most utilized operations in digital signal processing 

and communications. The FFT and its inverse transform-IFFT are key component in 

modern communication systems. It is desirable that FFT module can flexibly adjust 

FFT size to meet various standards. In general, FFT module is designed for specific 

standard such as Ultra-Wide Band (UWB) system which needs high throughput FFT 

module and Very High Data Rate DSL (VDSL) system which demands long length 

FFT computation. Therefore, it is difficult to design a FFT module which is suitable 

for any specification.  

ASIC approaches have been used to achieve the high performance demands 

which software or general purpose DSP implementations fail to deliver but custom 

hardware are often less cost-effective and flexible than general processors. Hence, it 

adopts ASIC and processor characteristic to set up FFT module in this thesis. ASIC 

plays an accelerated role in the proposed system and it executes partial FFT algorithm. 

Processor can flexibly execute the remaining FFT computation and it only takes 

processor performance into consideration. Therefore, the proposed system can meet 

different communication systems by reconfiguring computation of processor. 

    First, we need to analyze computational complexity of FFT algorithm. Because 

FFT algorithm is composed of addition and multiplication operations, it calculates 

computational loading between processor and ASIC based on Million Operations Per 

Second (MOPS) in this thesis. Therefore, in this thesis, the given processor can be 
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calculated that it needs to spare how much computational power for the proposed FFT 

module in various standards. After that, the branch FFT of ASIC can be designed as 

an accelerator to complete FFT algorithm.     
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1.2  Organization of This Thesis 
 

In this thesis, the proposed FFT system can process IEEE 802.11n/16e standards 

and we not only propose optimized time schedule, but also provide users ASIC and 

processor computational allocation analysis which are shown in the following 

chapters. The summary of each chapter can be listed as below： 

Chapter 2  Backgrounds 

    It introduces MIMO OFDM system standards and FFT algorithm. Different radix 

FFT architectures are compared and variable length FFT architectures are described.   

 

Chapter 3  ASIC and Processor Co-Design Analysis 

    First, we calculate FFT computational complexity which can analyze processor 

performance. After that, the proposed time schedule and architectures are applied in 

the SISO/MIMO systems independently. Finally, we can analyze relationship between 

ASIC and processor. 

 

Chapter 4  Implementation of the ASIC Architecture 

    It compares various pipeline-based FFT architectures and then introduces 

detailed sub-module architectures. Then, it calculates error noise. 

 

Chapter 5  System Verification and Simulation Results  

    It shows verification of branch FFT which covers cell-based flow and FPGA 

verification. After that, we model behavior of processor to verify variable-length FFT 

computation and time schedule in the SISO/MIMO systems. 

 

Chapter 6  Conclusion and Future Work 
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Chapter 2  Backgrounds 
 

 

 

2.1  WLAN MIMO-OFDM System  

 
    Orthogonal Frequency Division Multiplexing (OFDM) is widely applied in 

high-speed Wireless Local Area Network (WLAN) such as IEEE 802.11a/g/n, 

Hiperlan/2 and Wireless Personal Area Network (WPAN) such as Ultra-Wide Band 

(UWB) system. OFDM is a special case of multicarrier transmission, where a single 

data stream is transmitted over a number of lower rate subcarriers. OFDM can be seen 

as either a modulation technique or a multiplexing technique. One of the main reasons 

to use OFDM is to increase the robustness against frequency selective fading or 

narrowband interference. To eliminate the banks of subcarriers oscillators and 

coherent demodulators required by frequency division multiplex, Discrete Fourier 

Transform (DFT) processor is essential to be implemented.    

    Multiple-Input Multiple-Output (MIMO) system was instituted by Marconi in 

1908. Channel fading can be suppressed by multiple antennas in both transmitter and 

receiver, the so-called MIMO system, has received significant attention in recent 

years owing to their potential to increase system capacity.  

    The High Throughput Task Group which establishes IEEE 802.11n standard is 

going to draw up the next-generation WLAN proposal based on the 802.11a/g which 

is the current OFDM-based WLAN standards [1]. The IEEE 802.11n standard based 

on the MIMO OFDM system provides very high data throughput rate from the 

original data rate 54 Mb/s to the data rate in excess of 600 Mb/s because the technique 
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of the MIMO can increase the data rate by extending an OFDM-based system. A 

block diagram of the 2x2 transceiver of IEEE 802.11n is shown in Fig. 2.1 and Fig. 

2.2. Depending on the desired data rate, the modulation scheme can be Binary Phase 

Shift Keying (BPSK), Quaternary Phase Shift Keying (QPSK), or Quadrature 

Amplitude Modulation (QAM) with 1-6 bits. The encoding rates in this specification 

are 1/2, 2/3, 3/4, or 5/6. The number of spatial sequence is supported by 1, 2, 3, or 4. 

The guard interval period is 400 ns or 800 ns. The bandwidth of the transmitted signal 

is 20 or 40 MHz. The FFT (Fast Fourier Transform) size is 64 points or 128 points. 

 

Fig. 2.1  Block diagram of IEEE 802.11n WLAN 2x2 transmitter system 

 

 
Fig. 2.2  Block diagram of IEEE 802.11n WLAN 2x2 receiver system 
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        However, the IEEE 802.11n standard also increases the computational and 

hardware complexity greatly which is compared with the current WLAN standards. 

The FFT/IFFT processor is one of the highest computational complexity modules in 

the physical layer of the IEEE 802.11n standard, as shown in Table 2.1 [29]. Multiple 

FFT modules are added to deal with multiple data sequences in the MIMO OFDM 

system and therefore it causes a large increase in the hardware complexity and power 

consumption.  

 

Table 2.1  The comparison of the hardware complexity of the receiver 

 Multiplier Adder Register Gate Count (K) 

Packet Detection 4 4 50 50 

AGC 1 1 1 30 

Frequency Offset 4 18 96 80 

Frame Detection 8 8 8 50 

FFT 1 12 68 160 

Channel Estimation 0 0 128 60 

 

2.2  Flexible FFT Processor 

 
    OFDM techniques play an important role in modern wireless and wireline 

communication systems. The FFT processor is one of the highest computational 

complexity modules and FFT sizes, sampling rates are different in various standards 

which are shown in Table 2.2. It is desired to design a FFT processor which adapts to 

various FFT sizes in different communication standards. This paper proposes an FFT 

processor which can deal with the variable length FFT for different standards.   
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Table 2.2  FFT sizes and sampling rates in various communication systems 

Communication System FFT Size (Sampling Rate) 

802.11a 64 (20MHz) 

802.11n 64 (20MHz)、128 (40MHz) 

802.16e 2048 (20MHz)、1024 (10MHz)、512 (5MHz)、

128 (1.25MHz) 

DAB 2048、1024、512、256 (2MHz) 

DVB-T 8192、2048 (8MHz) 

DVB-H 4096 (8MHz) 

ADSL 512 (2.2MHz) 

VDSL 8192 (34.5MHz)、4096 (17.3MHz)、2048 

(8.6MHz)、1024 (4.3MHz)、512 (2.2MHz) 

UWB 128 (528MHz) 

 

2.3  Discrete Fourier Transform 

 
The N-point Discrete Fourier Transform (DFT) X(k) of a complex data sequence 

x(n) is defined as 

}1...,,1,0{,)()(
1

0

−∈=∑
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where the twiddle factor is 
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If the periodic and symmetric properties of the twiddle factor nk
NW  are exploited, 

the computation of )(kX  will be more efficient. 
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Symmetric： m
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N WW −=+ 2/  

Periodic： m
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    According to equation (1.1), the computational complexity is O(N2) through 

directly performing the required computation. It needs N2 complex multiplication and 

N(N-1) complex addition. If using the FFT algorithm, the computational complexity 

can be reduced to O(NlogrN), where r means the radix-r FFT. The radix-r FFT can be 

derived from DFT by decomposing the N-point DFT into a set of recursively related 

r-point transform. There are two types of FFT algorithm are Decimation in Time (DIT) 

and Decimation in Frequency (DIF). The computational complexity is the same. The 

DIT algorithm decomposes )(nx into radix-r module sequence 
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and the DIF algorithm decomposes )(kX in the same way [2].  
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2.4  Complexity Comparison 

 
    From Table 2.3 [3] and Table 2.4 [4], the multiplications and additions of radix-8 

have the lowest complexity compared with radix-2 and radix-4. The constant 

multiplication can be implemented by shifters and adders whose hardware is smaller 

than real multiplication. Table 2.5 [5] is the complexity equation of multiplications 

and additions. The radix-8 type-1 algorithm is the original radix-8 FFT algorithm. In 

radix-8 type-2 algorithm, we replaced multiplication of 1
8W  into p addition.    

According to the hardware area and power consumption of complex number 

multipliers, we only focus on the number of real number multiplications. In Fig. 2.3, 

radix-8 type-2 has the lowest computational complexity, so we choose radix-8 type-2 

as the building block to implement FFT algorithm.  
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Table 2.3  Multiplication comparison [3] 

N-point Radix-2 Radix-4 Radix-8 

Multiplier Multiplier Multiplier Multiplier Constant Multiplier 

8 2 3 0 2 

16 10 8 6 4 

32 34 31 20 8 

64 98 76 48 32 

128 258 215 152 64 

256 642 492 376 128 

512 1538 1239 824 384 

1024 3586 2732 2104 768 

2048 8194 6487 4792 1536 

4096 18434 13996 10168 4096 

8192 40962 32087 23992 8192 

 

Table 2.4  Multiplications and additions comparison [4] 

 Real Multiplications Real Additions 

N-point Radix-2 Radix-4 Radix-8 Radix-2 Radix-4 Radix-8 

16 24 20  152 148  

32 88   408   

64 264 208 204 1032 976 972 

128 720   2054   

256 1800 1392  5896 5488  

512 4360  3204 13566  12420 

1024 10248 7856  30728 28336  
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Table 2.5  Equation of multiplications and additions comparison [5] 

Algorithm Real Multiplication Real Addition 

Radix-2 8
2
7log

2
3

2 +− NNN  8
2
7log

2
5

2 +− NNN  

Radix-4 33log
8

9
2 +− NNN  33log

8
25

2 +− NNN  

Radix-8 

Type-1 

4)3(log
24

25
2 +−NN  4

8
25log

24
73

2 +− NNN  

Radix-8 

Type-2 

4
8
25log

24
21

2 +− NNN  4
8
25log

24
738

2 +−
+ NNNp  

 

 

Fig. 2.3  Complexity comparison of Table 2.5 

 

    Higher radix algorithm can reduce number multiplications, but it will let 

controller and butterfly unit more difficult. Based on this consideration, radix-8 is the 

highest radix algorithm mainly. 
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2.5  Variable Length of FFT Architectures 

 
    FFT algorithm decomposes the fundamental calculation of the DFT of a 

sequence of length N into continuously smaller subsequences (branch FFT). In section 

2.3, the FFT algorithm is applied not only in DSP, image processing and digital data 

transmission systems, but also in biomedical electronic engineering and home 

networking. To meet various standards, designer must implement FFT module with 

variable length. In general, we can classify two main architectures of variable length 

FFT as following subsections. 

 

  2.5.1  Memory Based Architectures 
 

    The processing element in Fig. 2.4 and Fig. 2.5 performs butterfly operation. Fig. 

2.4(a) shows the single-memory architecture. It has one processing element and one 

memory element. Butterfly outputs are stored in the same memory location used by 

butterfly inputs [6]. Fig. 2.4(b) shows the dual-memory architecture. One memory is 

used to store butterfly inputs and the other is used for butterfly outputs. These two 

architectures require small areas. However, they have low throughput and require high 

clock frequency.  

    Each stage requires reading and writing to N data words, and memory access is 

considered to be one of the bottlenecks under the recursive architecture. Therefore, 

variable length FFT researches proposed different memory address controller 

[7][8][9][10][11]. 
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(a)  Single-memory architecture

Processing 
Element Memory

(b)  Dual-memory architecture

Processing 
Element MemoryMemory

 

Fig. 2.4  Memory based architecture block diagram 

 

  2.5.2  Pipeline Architectures 
 

    For high throughput applications, pipeline architecture has been developed in 

some literatures. Pipeline architecture is characterized by non-stopping processing on 

a clock frequency of the input data sampling. However, the computational resource 

costs are increased because of the requirements of logrN branch FFT and logrN+1 

buffer memory, as shown in Fig. 2.5. Based on pipeline architecture, variable length 

FFT literatures can cascade branch FFT to achieve different sizes computation [12]. 

Therefore, in the design of FFT processors for different systems, we should not only 

enhance the speed by introducing more parallelism and pipelines, but also reduce the 

hardware resource consumption as possible as we can.  

B
uffer

B
uffer

 

Fig. 2.5  Pipeline based of block diagram 
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Chapter 3  ASIC and Processor 

Co-Design Analysis 
 

 

 

3.1  Introduction 

 
    In recent years, the number and variety of products that include some form of 

digital signal processing (DSP) has grown dramatically. They are often more 

cost-effective (and less risky) than custom hardware, particularly for low-volume 

applications, where the development cost of custom ICs may be prohibitive. 

    In the MIMO OFDM system, multiple antennas need multiple FFT/IFFT 

modules in transmitter and receiver, as shown in Fig. 2.1 and Fig. 2.2. Therefore, it 

causes a large increase in the hardware complexity and power consumption. Besides, 

based on various standards, designers need to re-design different sizes and throughput 

of FFT modules shown in Table 2.2. Because processor application is popular in 

recent years, we make use of processor advantages to propose a method that processor 

and ASIC co-design which can enhance flexibility and utilize time schedule 

efficiently to reduce ASIC cost. We can provide designers two deciding messages. 

How much processor performance is required in different environments? How many 

branch FFT need to be implemented by hardware in various processors?   
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3.2  FFT Computational Complexity Analysis 
     

    In equations (3.1) and (3.2) are composed of two (N/2)-point DFTs. It is well 

known that one can combine these two equations as one basic butterfly (BF) module 

as shown in Fig. 3.1, where x(n) and x(n+N/2) are the input data. 

)2.3()
2

()()12(

)1.3()
2

()()2(

}1...,,1,0{,)()(

12/

0
2/

12/

0
2/

1

0

∑

∑

∑

−

=

−

=

−

=

⎭
⎬
⎫

⎩
⎨
⎧ +−=+

⎭
⎬
⎫

⎩
⎨
⎧ ++=

−∈=

N

n

n
N

nr
N

N

n

nr
N

N

n

nk
N

WWNnxnxrXtermodd

WNnxnxrXtermeven

NkWnxkX

：

：     

 
Fig. 3.1  The butterfly signal flow graph of radix-2 DIF FFT 

     

By recursive decompositions, we can further partition small DFTs into even 

smaller DFTs, and so on. For example, a 16-point radix-2 DIF FFT, in signal flow 

graph, is shown in Fig. 3.2.  

Long-length FFT can be decomposed into several branch FFT by different radix 

algorithm. In section 2.4 simulation results, radix-8 FFT reduces the complexity more 

than other radix algorithms. But FFT length is restricted to power of eight. In any 

event, FFT architecture is composed of many butterfly units, and additions and 

multiplications form butterfly units. Thus, we can analyze FFT computational 

complexity by calculating number of additions and multiplications. 
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Fig. 3.2  Radix-2 DIF FFT signal flow graph of a 16-point FFT  

     

Complex addition can be decomposed two real additions, and complex 

multiplication can be decomposed two real additions and four real multiplications as 

shown equation (3.3).                                                                   
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Therefore, we try to evaluate computational complexity of different length FFT 

algorithm which is a little difference to section 2.4. Because we calculate any 

computation in terms of processor operations, it doesn’t include any hardware reduced 

computation, just like 1
8W  can be implemented by shifters and adders. In this thesis, 

we take IEEE 802.11n/16e standards into consideration as shown in Table 2.2. FFT 

length covers from 64-points to 2048-points. We regard real addition or real 
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multiplication as an operation in the analysis. In IEEE 802.11n/16e standards, 

128-point/2048-point is the critical case separately, because of long-length FFT 

increase operations dramatically and symbol durations are the same shown in Table 

3.1. Therefore, we analyze these two cases and assume partial branch FFT which is 

implemented by hardware and then processor computational loading can be shown in 

Table 3.2 and Table 3.3.  

 

Table 3.1  Comparison operations of FFT size in IEEE 802.11n/16e standards 

802.11n FFT Size 

(Sampling Rate) 

Operations = Real additions + 

Real multiplications 

128 (40 MHz) 3142 

64 (20 MHz) 1254 

802.16e FFT Size 

(Sampling Rate) 

Operations = Real additions + 

Real multiplications 

2048 (20 MHz) 83462 

1024 (10 MHz) 38150 

512 (5 MHz) 16518 

128 (1.25 MHz) 3142 
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    In equation (3.4), processor computational operations can be divided into three 

parts. Addition and multiplication operations, besides constant multiplication of 

radix-8 must be taken into account. This analysis can be applied to others FFT sizes.   

 

Table 3.2  Comparison of different length ASIC operations of a 128-point FFT 

ASIC length of 

128-point FFT 

Processor Operations = Real additions + Real multiplications 

128 0 

64 2*128+63*(2+4) = 634 

32 2*128*2+31*3*(2+4) = 1070 

16 2*128*3+15*7*(2+4)+1*16*2*(2+4) = 1590 

8 2*128*4+63*(2+4)+2*7*7*(2+4)+1*16*2*(2+4) = 2182 

4 2*128*5+31*3*(2+4)+4*3*7*(2+4)+1*16*2*(2+4) = 2534 

2 2*128*6+15*7*(2+4)+8*7*(2+4)+2*16*2*(2+4) = 2886 

0 2*128*7+63*(2+4)+2*7*7*(2+4)+2*16*2*(2+4) = 3142 

 

Table 3.3  Comparison of different length ASIC operations of a 2048-point FFT 

ASIC length of 

2048-point FFT 

Processor Operations = Real additions + Real multiplications 

2048 0 

1024 2*2048+1023*(2+4) = 10234 

512 2*2048*2+511*3*(2+4) = 17390 

256 2*2048*3+255*7*(2+4)+256*2*(2+4) = 26070 

128 2*2048*4+1023*(2+4)+2*127*7*(2+4)+256*2*(2+4) = 36262 

64 74246-2*2048*6-32*7*7*(2+4)+1*256*2*(2+4) = 43334 



 

 
 

19

32 2*2048*6+255*7*(2+4)+8*31*7*(2+4)+2*256*2*(2+4) = 51846

16 74246-2*2048*4+32*15*3*(2+4)-32*7*7*(2+4)+1*256*2*(2+4) 

= 60166 

8 74246-2*2048*3+2*256*2*(2+4) = 68102 

4 2*2048*9+255*7*(2+4)+8*31*7*(2+4)+8*8*3*7*(2+4)+ 

3*256*2*(2+4) = 75270 

2 74246-2*2048+256*1*3*(2+4)+2*256*2*(2+4) = 80902 

0 2*2048*2+2*511*3+4*511*3+4*(10882+3332)+3*256*2*(2+4) 

= 83462 
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3.3  ASIC and Processor Timing Schedule 
 

    In this thesis, because we need to consider multiple antennas in our system, it let 

time schedules needed to be deliberated independently. It tries to lower the length of 

branch FFT and enhances processor and ASIC utilization.       

 

  3.3.1  SISO System Timing Schedule    
 

    We propose two schedules in SISO system. In scheduleⅠ, input sequences are 

written into memory first which can receive continuous data and reorder data 

sequences. Afterward it processes data sequences sequentially within one symbol 

duration, and therefore processor and ASIC utilization are not 100% as shown in Fig. 

3.3. Besides, processor has little time to operate because of ASIC also occupies partial 

symbol duration. Therefore, processor needs better operation performance.  
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Fig. 3.3  Time scheduleⅠof the SISO system 
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    In Fig. 3.4, it shows system block diagram based on time scheduleⅠ. The 

wrapper module is used to communicate On-Chip Peripheral Bus (OPB) handshaking 

signals [13]. ASIC is responsible for branch FFT algorithm. Register module is stored 

control signals which govern entire data flow.  

 

 

Fig. 3.4  SISO system block diagram of the time scheduleⅠ 

 

    In scheduleⅡ, it makes efforts to raise processor and ASIC utilization as shown 

in Fig. 3.5. It not only decreases processor operations per second, but also lowers 

power consumption because of decreasing clock frequency. Additional buffer is used 

to increase processor and ASIC processing time up to one symbol duration, but it 

causes more hardware cost shown in Fig. 3.6.   
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Fig. 3.5  Time scheduleⅡ of the SISO system 
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Fig. 3.6  SISO system block diagram of the time scheduleⅡ 
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  3.3.2  MIMO System Timing Schedule    
     

    In general, channel fading can be suppressed by multiple antennas in both 

transmitter and receiver in the MIMO system, but it also increases hardware area 

dramatically. Therefore, time schedule in the MIMO system, it tries to minimize 

hardware area and enhances processor and ASIC utilization simultaneously. We find 

that time scheduleⅠ in the SISO system which have many bubbles can be utilized to 

process others computation. Based on this concept, we propose a suitable method for 

the MIMO system which can eliminate bubbles by processing sequences of another 

antenna which exchange processor and ASIC processing order as shown in Fig. 3.7 

 

. 

Fig. 3.7  Time schedule of the MIMO system 

 

    ASIC and processor compute sequences of different antennas by turns within 

half symbol duration. Therefore, comparison with scheduleⅡ in the SISO system, 
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processor needs two times operation performance per second in the MIMO system. It 

can process sequences of two antennas simultaneously, and doesn’t need additional 

hardware of branch FFT shown in Fig. 3.8.  

          

 

Fig. 3.8  MIMO system block diagram 
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3.4  ASIC and Processor Performance Simulation 
 

    Since SISO/MIMO schedules are proposed, an evaluation model is developed to 

verify specification requirements. Base on IEEE 802.11n/16e standards, we can 

introduce symbol period to calculate processor performance when different length of 

branch FFT is implemented by hardware. ASIC plays an accelerative role in the 

system. Increasing the length branch FFT of ASIC can release burden of processor, 

and vice versa. Because 128-point/2048-point is the critical case in IEEE 802.11n/16e 

separately, we just only calculate these two cases.  

ScheduleⅠin the SISO system, ASIC occupies partial symbol duration as shown 

in Fig. 3.3. Therefore, we need to calculate ASIC latency cycles approximately shown 

in Table 3.4 [14] and assume clock frequency is 100 MHz for simulation, as shown in 

Fig. 3.9. When length branch FFT of ASIC is too short, it cannot gain any benefits to 

the processor. The length branch FFT of ASIC affects processor operations directly. 

More length branch FFT is implemented by hardware will lower processor 

computational loading, but it increases area cost.  

 

Table 3.4  Approximately calculation of latency cycles 

FFT Length Latency FFT Length Latency 

0 0 64 103 

2 2 128 208 

4 4 256 336 

8 8 512 592 

16 26 1024 1616 

32 44 2048 2640 
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    In Fig. 3.9, we can analyze relationship between processor operations and branch 

FFT of ASIC. MOPS imply that processor computational loading divided by 

redundant symbol duration. When our system processes FFT algorithm only by 

processor, it shows that IEEE 802.11n needs more processor operations per second. 

Therefore, we can calculate performance of processor probably by MOPS. For 

instance, if processor can provide 700 MOPS for our system, we need to implement 

the 16-point branch FFT of ASIC in order to match IEEE 802.11n/16e specifications.  

 

 

Fig. 3.9  Processor operations analysis of scheduleⅠin the SISO system 

 

    ScheduleⅡ in the SISO system, processor has a symbol duration to process 

operations. Therefore, using the same processor as above, designer can implement the 

4-point branch FFT of ASIC to reach specifications as shown in Fig. 3.10.   
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Fig. 3.10  Processor operations analysis of scheduleⅡ in the SISO system 

 

Therefore, in the MIMO system, processor and ASIC own half a symbol duration 

to complete operations. It can be expected that processor operations per second will 

double that of scheduleⅡ in the SISO system. Using the same processor as above, 

system requires ASIC which is 128-point branch FFT as shown in Fig.3.11.  

    In this section, we introduce time scheduleⅠ、Ⅱ in the SISO system, and time 

schedule in the MIMO system. Based on system block diagram, hardware cost in time 

scheduleⅠis less than time scheduleⅡ, but utilization of time scheduleⅠis less than 

time scheduleⅡ. In the MIMO system, bad utilization can be improved by changing 

ASIC and processor order. In the 2x2 MIMO systems, it only needs a processor and a 

branch FFT of ASIC. This time schedule not only lowers hardware cost, but also 

increases utilization.  
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Fig. 3.11  Processor operations analysis in the MIMO system 

 

In this article, we hope that proposed system can handle IEEE 802.11n/16e 

specifications flexibly. We assume processor can provide proposed FFT system with 

800 MOPS. Therefore, 64-point branch FFT of ASIC is used to increase operating 

capacity as shown in Fig.3.11. In next chapter, we concentrate on how to implement 

the 64-point branch FFT of ASIC.  

    In Fig.3.12, it calculates computing loading ratio between processor and the 

64-point branch FFT of ASIC. The FFT size includes IEEE 802.11n/16e standards. It 

shows that ASIC executes above half operations except 2048-point FFT algorithm. 

Therefore, we can regard the 64-point branch FFT of ASIC as an accelerator in the 

proposed FFT system.  
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Fig. 3.12  Percentage of total operations in different FFT size 
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Chapter 4  Implementation of the 

ASIC Architecture 
 

 

 

4.1  Classification Pipeline-Based FFT Architectures 
 

    In the domain of implementation of FFT processor, two architectures are 

commonly used. One is pipelined-based FFT, the other is memory based FFT. The 

pipelined architecture consumes a relatively large chip area compared with memory 

based architecture, because the pipelined architecture may need more complex value 

multipliers and complex value adders. But pipelined architecture lets clock rate is 

comparatively low as the same frequency of the sampling rate to meet real-time FFT 

processing. Because ASIC can be regarded as an accelerator and the length branch 

FFT of ASIC is only 64-point FFT computation, we adopt pipelined branch FFT of 

ASIC to promote throughput. In the following subsections, it introduces and compares 

various pipelined-based FFT architectures. 

 

4.1.1  Radix-2 Multipath Delay Commutator ( R2MDC ) 
 

    The block diagram of N-point radix-2 DIF MDC pipelined FFT architecture is 

shown in Fig.4.1 [15]. The elements between PEs consist of shift registers and a 

commutator switch which are used to form a proper set of data for the next PE. First, 

input subcarriers written into upper shift registers until (N/2+1)th subcarrier inserted, 
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and then input subcarriers go into butterfly directly by multiplexer.  

Therefore, 1st and (N+1)th subcarriers go into butterfly simultaneously, and then 

the adder processing results select upper path. The subtraction processing results 

multiplied by twiddle factor which are written into lower N/4 shift registers and the 

adder processing results written into upper N/4 shift registers at the same time. The 

first butterfly adder results select lower path by switch. Therefore, the first butterfly 

1st and (N/4+1)th results go into second butterfly and the first butterfly subtraction 

results written into upper N/4 shift registers simultaneously. By the same way, process 

entire subcarriers. The R2MDC architecture contains log2N-2 multipliers, 2log2N 

adders and 1.5N-2 registers. Butterfly and multipliers only have 50% utilization rate. 

 
B

utterfly

B
utterfly

 

Fig. 4.1  R2MDC architecture 

 

4.1.2  Radix-4 Multipath Delay Commutator ( R4MDC ) 
 

    The block diagram of N-point radix-4 DIF MDC pipelined FFT processor is 

shown in Fig.4.2 [15]. It is similar to R2MDC architecture, but butterfly implement 

radix-4 algorithm. Because it has four paths, butterfly and multipliers have 25% 

utilization rate. It contains 3log4N-3 multipliers, 8log4N adders and 2.5N-4 registers.  
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Fig. 4.2  R4MDC architecture 

 

4.1.3  Radix-22 Multipath Delay Commutator ( R22MDC ) 
 

    In order to implement radix-4 algorithm, it uses cascade of radix-2 architectures 

as shown in Fig.4.3 [16]. We can see that this architecture contains 2log4N-2 

multipliers, 4log4N adders and 1.5N-2 registers. It is better than R4MDC. 

 

B
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Fig. 4.3  R22MDC architecture 

 

4.1.4  Radix-8 Multipath Delay Commutator ( R8MDC ) 
 

The block diagram of N-point radix-8 DIF MDC pipelined FFT processor is 

shown in Fig.4.4. It is similar to R2MDC architecture, but butterfly implement radix-8 

algorithm. It contains 7log8N-7 multipliers, (24+2T)log8N adders and 4.5N-8 

registers.  
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Fig. 4.4  R8MDC architecture 

     

4.1.5  Radix-23 Multipath Delay Commutator ( R23MDC ) 
 

    In order to implement radix-8 algorithm, it uses cascade of radix-2 architectures 

as shown in Fig.4.5 [16]. We can see that this architecture contains log2N/3-1 

multipliers and 1.5N-2 registers.  

 

 

Fig. 4.5  R23MDC architecture 

 

4.1.6  Radix-2 Single-Path Delay Feedback ( R2SDF ) 
 

    The butterfly unit in Fig.4.6 shows two kinds of operation modes. In operation 

mode1, PE pushes input data into the last location of shift register and pops the data 

from the first location to output port. In operation mode2, the output data of addition 

part of butterfly unit is directly passed to the next stage and the output data from the 
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subtraction part of butterfly unit is written back to shift register. The block diagram of 

16-point radix-2 DIF SDF pipelined FFT processor is shown in Fig.4.7 [17]. First, the 

input subcarriers are stored into 1st shift registers until the 9th input subcarrier which 

is sent to butterfly simultaneously. The adder processing results are sent into next 

stage shift registers and the subtraction processing results are written into the same 

stage shift registers.  

 

 

Fig. 4.6  Operation mode1 and mode2 

 

 

Fig. 4.7  16-point radix-2 DIF SDF architecture 

 

Therefore, the butterfly unit provides a complete feedback loop. We can see that 

this architecture contains log2N-2 multipliers, 2log2N adders and N-1 registers. 

 

4.1.7  Radix-4 Single-Path Delay Feedback ( R4SDF ) 
 

    R4SDF architecture is similar to R2SDF architecture is shown in Fig.4.8 
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[18][19]. It can be seen that radix-4 algorithm needs less multipliers than radix-2 

algorithm, but the butterfly unit and multipliers only have 25% utilization rate. It 

contains log4N-1 multipliers, 8log4N adders and N-1 registers. 
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Fig. 4.8  R4SDF architecture  

 

4.1.8  Radix-22 Single-Path Delay Feedback ( R22SDF ) 
 

    It uses cascade of two radix-2 butterflies to form radix-4 algorithm. Its’ shift 

registers and multipliers are the same with R4SDF architecture as shown in Fig.4.9 

[16].  

 

 

Fig. 4.9  16-point R22SDF architecture 
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4.1.9  Radix-8 Single-Path Delay Feedback ( R8SDF ) 
 

    It uses cascade of three radix-2 butterflies to form radix-8 algorithm as shown in 

Fig.4.10. It contains log8N-1 multipliers, (24+2T)log8N adders and N-1 registers. 

 

 

Fig. 4.10  R8SDF architecture 

 

4.1.10  Radix-23 Single-Path Delay Feedback ( R23SDF ) 
 

    It uses cascade of three radix-2 butterflies to form radix-8 algorithm as shown in 

Fig.4.11 [16]. It contains log2(N)/3-1 multipliers and N-1 registers.  

 

 

Fig. 4.11  R23SDF architecture 
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4.2  Comparison of Pipeline-Based FFT Architectures 
 

    According to the previous subsections, we can compare several pipelined 

architectures for FFT as shown in Table 4.1 and Table 4.2 [20]. One can find that SDF 

architectures have less area cost and higher utilization rate, but longer FFT 

computation time, compared with MDC architectures under the same operating clock 

rate. Besides, the number of switch shows in equation (4.1), where N is number of 

points, r is radix-r, and stage is total stage. The parameter p is the number of switch in 

different radix. Afterwards, we can adopt their characteristic to analyze the 64-point 

branch FFT of ASIC in Table 4.3 and Table 4.4.   
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Table 4.1  Hardware requirement comparisons of several pipeline structures 

Architecture Complex 

Multipliers 

Complex 

Adders 

Memory Size Multiplicative 

Complexity 

R2MDC log2N-2 2log2N 1.5N-2 Radix-2 

R4MDC 3log4N-3 8log4N 2.5N-4 Radix-4 

R22MDC 2log4N-2 4log4N 1.5N-2 Radix-22 

R8MDC 7log8N-7 (24+2T)log8N 4.5N-8 Radix-8 

R23MDC log2N/3-1 2log2N 1.5N-2 Radix-23 

R2SDF log2N-2 2log2N N-1 Radix-2 

R4SDF log4N-1 8log4N N-1 Radix-4 

R22SDF log4N-1 4log4N N-1 Radix-22 

R8SDF log8N-1 (24+2T)log8N N-1 Radix-8 

R23SDF log2(N)/3-1 (6+2T)log8N N-1 Radix-23 
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Table 4.2  Hardware utilization comparisons of several pipeline structures 

Architecture Utilization of 

Multipliers 

Utilization of 

Adders 

Utilization of 

Registers 

R2MDC 50% 50% 50% 

R4MDC 25% 25% 25% 

R22MDC 37.5% 50% 50% 

R8MDC 12.5% 12.5% 12.5% 

R2SDF 50% 50% 100% 

R4SDF 75% 25% 100% 

R22SDF 75% 50% 100% 

R8SDF 87.5% 12.5% 100% 

 

Table 4.3  Comparison of switch number in different radix algorithm 

N=64 

Radix-r Stage Number of switch 

2 6*(radix-2) 64*{(1-1/2)*5}=192 

4 3*(radix-4) 64*{(1-1/4)*2}=96 

8 2*(radix-8) 64*{(1-1/8)*1}=56 

 

Table 4.4  Hardware requirement comparisons of 64-point FFT architectures 

N=64 

Architecture Registers Multipliers 

R2MDC 94 5 

R4MDC 154 6 

R22MDC 94 4 
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R8MDC 280 7 

R23MDC 94 2 

R2SDF 63 5 

R4SDF 63 2 

R22SDF 63 2 

R8SDF 63 1 

R23SDF 63 1 

 

    In Fig.4.12, it lets multipliers, adders and registers with the 16-bits precision to 

calculate hardware gate count [28]. It is synthesized at 150 MHz for TSMC 0.18μm 

single-poly six-metal CMOS technology using Synopsys Design Compiler. 

 

 

Fig.4.12  Hardware gate count comparison of several pipelined structures 
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In our proposed system, the 64-point branch FFT of ASIC plays an accelerated 

role. Therefore, the previous subsections we only analyze pipeline-based FFT 

architectures which can process data sequence continuously. In Table 4.3, we can find 

that high radix algorithm not only reduce multipliers, but also lower the number of 

switch. In Table 4.4, it show that R23SDF architecture require less registers and 

multipliers. Based on area issue, the 64-point branch FFT of ASIC is based on 

R23SDF architecture as shown in Fig. 4.12.   
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4.3  ASIC Throughput Analysis 
 

    If we decide the length branch FFT of ASIC based on section 3.4 analysis, we 

need to know ASIC throughput requirement. After that, we can design appropriate 

architecture. Because ASIC occupies partial symbol duration in the time scheduleⅠ, 

we only take time scheduleⅡ in the SISO system into simulation as shown in 

Fig.4.13. It shows that IEEE 802.11n handles 128-point FFT algorithm requires 

highest throughput rate, no matter in the SISO/MIMO system. It implies that the 

64-point branch FFT of ASIC requires 85 MHz throughput rate at least.   

 

 

Fig. 4.13  ASIC throughput analysis in different environments  
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4.4  Implement the 64-point Branch FFT of ASIC 
 

    In this section, we will introduce the R23SDF architecture of each sub-module in 

great detail and calculate error analysis because of the fixed-point computation.  

 

4.4.1  Complex Multiplier 
    The 64-point FFT is based on two stage radix-23 butterfly and it needs 49 times 

complex multiplications which excludes from 1
8W , 3

8W  and 0
8W . We use the 

radix-2 index map to divide the 8-point DFT into three steps. Fig.4.14 shows the 

butterfly of the three-step DIT radix-8 FFT. The twiddle factors, 1
8W  and 3

8W  at the 

second step are trivial complex multiplications, because they can be written as 

( )j−122  and ( )j−−122 . Thus, a complex multiplication with one of the two 

coefficients and a real multiplication, whose hardware can be realized by shifters and 

adders in Fig.4.15 .  

 

 

Fig. 4.14  Radix-23 FFT butterfly unit  
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986431 22222270710678.022 −−−−−− +++++==  

 

Fig. 4.15  Implementation hardware of multiplication with 22  

    The multiplication by –j can be realized with no extra hardware cost by simply 

interchanging the real and imaginary part of the product as shown in equation (4.2). 

( ) ( ) )2.4(ajbjbja −=−×+  

    One complex multiplier can be realized by four real multiplications and two real 

additions as shown in Fig. 4.16. Its mathematical form can be expressed as equation 

(4.3). 

( ) ( ) ( ) ( ) )3.4(adbcjbdacdjcbja ++−=+×+  

 

 
Fig. 4.16  Complex multiplier with four real multiplications and two real additions 

 

4.4.2  Twiddle Factor Coefficient of ROM Table 
 

    N-point radix-8 FFT implementations can require seven complex twiddle factor 
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coefficients n
NW , n

NW 2 ,…, n
NW 7 . Such implementations can require a twiddle factor 

ROM table to store the real and imaginary parts of these values which have phase 

angles in the range (0, 2π) in the complex plane. If we store all required coefficient 

values in a ROM table, we must use a large chip area. Thus, this subsection presents a 

method to reduce the size of the twiddle factor ROM table. 

    It is only necessary to store the twiddle factor coefficients between the interval 

0~N/8 [21]. We denote the interval 0~N/8 as region 0. The remaining interval regions 

are listed in Fig.4.17 and Table 4.5. The storage coefficients in region 0 are only in (0,

π/4) to save hardware cost because it can represent all the angles in (0, 2π) by 

exploiting the symmetry of the sine and cosine functions. This means that the sine of 

elements in (0,π/4) are equal to the cosine of elements in (π/4,π/2) and vice versa. 

Thus, if the values in the region 0 are known (stored in a reduced size ROM), the 

values from all the regions can be computed [30]. 

 

Table 4.5  Interval regions of twiddle factor design 

No Region Interval Boundary 

(a) 0 8/0 Nm ≤≤  Boundary0=0 

Boundary1=N/8 

(b) 1 14/18/ −≤≤+ NmN  Boundary2=(N/4)-1 

(c) 2 8/34/ NmN ≤≤  Boundary3=3N/8 

(d) 3 12/18/3 −≤≤+ NmN  Boundary4=(N/2)-1 

(e) 4 8/52/ NmN ≤≤  Boundary5=5N/8 

(f) 5 14/318/5 −≤≤+ NmN Boundary6=3N/4-1 

(g) 6 8/74/3 NmN ≤≤  Boundary7=7N/8 

(h) 7 118/7 −≤≤+ NmN   
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Fig. 4.17  Twiddle factor boundary diagram 

 

    When the twiddle factor address generator calculates the address in each region, 

the corresponding address of region 0 are given by equation (4.4) through equation 

(4.11). Table 4.6 lists the parameters used in equation (4.4) through (4.11). After that, 

we can get the twiddle factor coefficients of remaining region from region 0 as shown 

in Table 4.7. 

 

Table 4.6  Description of twiddle factor parameters 

Parameter Description 

N
nkjnk

N eW
π2

−
=  Twiddle factor coefficient 

N FFT length size 

m The actual address 

t 2/log2 N  

Rregion0_addr The real data value of the region0 address 

Iregion0_addr The image data value of the region0 address 

‘~’ A complement operation 
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Table 4.7  Twiddle factor coefficient values in the region 0 

Coefficient 16-bits quantized coefficient Address 

(m) Real Image Real Image 

0 1.000000 0.000000 0100000000000000 0000000000000000

1 0.995185 -0.098017 0011111110110001 1111100110111010 

2 0.980785 -0.195090 0011111011000101 1111001110000100 

3 0.956940 -0.290285 0011110100111111 1110110101101100 

4 0.923880 -0.382683 0011101100100001 1110011110000010 

5 0.881921 -0.471397 0011100001110001 1110000111010101 

6 0.831470 -0.555570 0011010100110111 1101110001110010 

7 0.773010 -0.634393 0011000101111001 1101011101100110 

8 0.707107 -0.707107 0010110101000001 1101001010111111 

 

    Block diagram of the 64-point branch FFT is shown in Fig.4.18. BF2Ⅰimplies 

that it has two modes as shown in Fig.4.6 and BF2Ⅱ needs to process (-j) 

multiplication additionally. In this architecture, it only needs 63 registers and 1 

multiplier.  

     

 
Fig.4.18  R23SDF Pipelined FFT Architecture for N= 64 
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4.5  Error Analysis 

 

    In the case of FFT hardware implementation, the finite bit-width must be 

considered because of the fixed-point computation. Many statistical error analysis 

papers on FFT implementations are proposed [22][23][24]. Assume the input 

sequence of FFT x(n) is a sequence of finite-valued and white complex numbers. The 

variance of x(n) can be expressed as 

)12.4())((1))((1 1

0

2
1

0

22 ∑∑
−

=

−

=

=−=
N

n

N

n
xx nx

N
nx

N
μσ  

where μx is the mean of x(n) andμx=0. The SQNR (Signal to Quantization Noise 

Ratio) is defined as  

)13.4(2

2

q

xSQNR
σ
σ

=  

Where σx
2 is the variance of output andσq

2 is the variance of the quantization error. 

For an N-point FFT module with input of which real and imaginary parts are 

uniformly distributed in ( NN
2

1,
2

1
− ), the variance [23] of the output is  

)14.4(
3
12

Nx =σ  

From (4.13) and (4.14), the SQNR [24] of the conventional FFT implementation 

can be carried out： 

)15.4(
345

22

−−
=

mN
SQNR

B

FFT  

Where B is the bit-width of the input sequence and m=log2N. 
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In Fig.4.19, it shows equation (4.15) with IEEE 802.11n/16e standards which 

include five FFT sizes. The more rounding stages, the more noise will be produced. 

Because long-length FFT will decrease SQNR, it needs to increase bit-width. It will 

cause more power consumption and area cost.  

In this chapter, we introduce various pipeline-based FFT architectures and then 

compare their characteristic to evaluate our proposed system based on throughput rate 

and hardware cost analysis. After that, it shows detailed sub-module architectures and 

analyzes noise issue finally.  

 

 

Fig. 4.19  Noise analysis with different FFT length  
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Chapter 5  System Verification and 

Simulation Results 
 

 

5.1  System Environments 
 

    In the proposed system, the FFT module handles IEEE 802.11n/16e standards. 

The FFT sizes include 64-point、128-point、512-point、1024-point and 2048-point FFT 

computation. We hope that the proposed system can change FFT size flexibly and 

meet specification requirements simultaneously. Therefore, system verification will 

cover that the 64-point branch FFT of ASIC verification, variable-length FFT module 

functional simulation and time schedule simulation. 

 

5.2  The 64-point Branch FFT Verification 
 

    After functional validation, the branch FFT is synthesized for TSMC 0.18μm 

single-poly six-metal CMOS technology using Synopsys Design Compiler [25][26]. 

After synthesis, floor planning, P&R, and layout are carried out using Cadence SOC 

Encounter. Finally, the post-simulation power analysis on the netlists exported from 

SOC Encounter is carried out using Synopsys PrimePower. Fig.5.1 gives the design 

flow chart and CAD tools used in the branch FFT of ASIC.   

    In Fig.5.2, the die size of the 64-point branch FFT is 2270 x 2270 μm2. It 

synthesizes with 46236 gate counts which include testing circuits and the minimum 

clock period is 6.31 ns which is reported by Synopsys Design Compiler.   
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Fig. 5.1  Flow chart of the branch FFT chip design 
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We adopt full scan test for the chip. The test circuits are inserted during 

compilation using Synopsys DFT Compiler. The existing flip-flops inside the chips 

were replaced with scan flip-flops. Test vectors are generated by Synopsys TetraMax. 

The fault coverage of the R23SDF FFT is up to 99.40%. 

Based on throughput rate analysis, the 64-point branch FFT should work upon 85 

MHz. Therefore, the chip summary can be listed in Table 5.1. 

 

 
Fig. 5.2  Layout view of the 64-point R23SDF FFT structure 
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Table 5.1  Chip summary of 64-point R23SDF FFT 

Design R23SDF  

Clock rate 87 MHz  

Datapath width  16 bits  

Latency 71 cycles  

Synthesized gate count 46236 (with testing circuits)  

Core size 1195 x 1195 μm2  

Die size 2270 x 2270 μm2  

Core power 112.6mW @ 87 MHz  

Die power 158.1mW @ 87 MHz  

 

    In Fig.5.3, it shows test bench of the 64-point branch FFT. There are input 

control and output compare. We can read input signal from in.txt which generated by 

MATLAB, and output can be compared the 64-point branch FFT with MATLAB 

behavior model output. This self-check test bench can verify a lot of test patterns and 

we can check the output signal are within error thresh or not efficiently [27].            
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Fig. 5.3  Test bench for the 64-point branch FFT 

We use FPGA to implement design and the synthesis report shown in Table 5.2, 

the report of the FPGA timing is very different from the report of the ASIC timing, 

which is only for reference. Because the characteristic of FPGA is for verification, the 

timing is not very important by FPGA prototyping. 

Table 5.2  Xilinx FPGA synthesis report 

Target Device  3s400ft256-5  

Slices  1554 (43%)  

Slices Flip Flops 667 (9%)  

4-Input LUTs  2611(36%)  

Post-Map Timing 17.120ns (14.820ns logic, 

2.300ns route) 

Post-P&R Timing 30.268ns (12.899ns logic, 

17.369ns route)  
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Block diagram of FPGA verification is shown in Fig.5.4. It shows that we 

introduce an extra controller which generates memory address signals and rs-232 

handshaking signals. It generates test patterns by MATLAB and checks the branch 

FFT output sequences which are within error thresh or not.  

 

 

Fig. 5.4  FPGA measurement plan 

 

5.3  MATLAB Simulation and Analysis 
 

    In the previous subsections, we only verify the 64-point branch FFT accelerator. 

Therefore, we will model processor behavior to verify the proposed system as shown 

in Fig.5.5. First, user needs to declare that FFT size and symbols number and then 

MATLAB models processor behavior to generate decomposed sequences. The part of 

algorithm check, it can verify variable length FFT computation which covers FFT 

sizes of IEEE 802.11n/16e standards. We can compare the output signal with 

golden.txt which are within error thresh or not.   

    The part of schedule check part, we verify time schedule in the SISO/MIMO 
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systems as shown in Fig.3.3, Fig.3.5 and Fig.3.7. Schedule control module and test 

pattern module control data flow. Therefore, processor and ASIC can process data 

samples by turns based on the proposed time schedule.  

 

 

Fig. 5.5  Test bench for proposed system 

 

    In this chapter, it shows verification of 64-point branch FFT which covers 

cell-based ASIC flow and FPGA measurement. After that, we model processor 

behavior to verify variable length FFT computation and time schedule in the 

SISO/MIMO systems. Therefore, proposed system can complete variable length FFT 

algorithm and process multiple data streams to meet IEEE 802.11n/16e standards. 
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Chapter 6  Conclusion and Future 

Work 
 

 

6.1  Conclusion 
 

Because processor is popular in recent years, we intend that the FFT module can 

combine processor with ASIC to form the flexible system. ASIC plays an accelerated 

role in the proposed system. Based on FFT computational complexity analysis, it 

shows different length branch FFT of ASIC which affects processor performance. 

Therefore, it can provide user two anticipation as below： 

1) Processor needs to spare how much computational performance at least for 

proposed FFT system. 

2) In terms of processor computational performance, we can decide the branch 

FFT length of ASIC. 

Because we adopt processor can contribute 800 MOPS in this thesis, the 

accelerated branch FFT is 64-point FFT algorithm. After that, we analyze various 

pipeline-based FFT architectures. Based on area cost issue, the 64-point branch FFT is 

implemented by R23SDF architecture. After throughput analysis, the accelerated 

branch FFT must work upon 85 MHz to meet IEEE 802.11n/16e standards. The 

branch FFT of ASIC has 16-bits wordlength and synthesized using Synopsys TSMC 

0.18μm process. After that, physical design is carried out using Cadence SOC 

Encounter and the chip summary is depicted in Table 5.1.  

Finally, we not only verify the 64-point branch FFT on FPGA but also check the 
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proposed time schedule which covers 64-point、128-point、512-point、1024-point and 

2048-point FFT algorithm in the SISO/MIMO systems. 

 

6.2  Future Work 
 

Because the processor is virtual in this thesis, we provide one method to setup up 

proposed system. In Xilinx Spartn-3 FPGA, it has an embedded processor. Therefore, 

the processor can be entirely built by writing C- language and the 64-point branch 

FFT can be loaded to FPGA as an accelerator. 

In this thesis, the processor performance analysis is based on radix-2/4/8 

algorithms. Because processor computational loading is based on operations, we can 

try to use higher radix algorithm to reduce multiplications. The branch FFT is 

implemented with a high specification of 16-bits wordlength while the output is also 

16-bits and 26 scaled. The datapath can be designed more carefully if a precise error 

analysis was done. Hence, the resource cost will be reduced while keeping 

specification requirements. The shift registers is another issue. For a bigger N, the 

shift registers will cause more power consumption and area cost than using memory 

access. Therefore, how to improve the efficiency and simplify the memory access 

scheme in the long length branch FFT module is left for future work. 
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