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Chapter 1 
 
Introduction 
 
1.1 Role of Simulation-Based Functional Validation 

While silicon capacity continues to increase and the size of devices and the 

minimal width of lines are decreasing rapidly, Integrated Circuit (IC) designers could 

integrate many functions, even a whole complex system, into a single chip. A typical 

single SoC may consist of millions of logic gates, raising the immense potential for 

design errors and thus significantly complicating the verification task. Verification is 

now perceived as the major bottleneck in integrated circuit design [1,2]. 

Formal verification techniques have partially alleviated this problem. These 

techniques use mathematical or formal techniques to exactly prove or disprove the 

properties about a hardware design. Equivalence checking [3,4,5] attempts to prove 

that the two compared designs (the specification and the implementation) are logically 

equivalent. A popular use of this kind of techniques is to verify that the gate-level 

netlist, which is often generated by a synthesis tool, correctly implements the original 

Hardware Description Language (HDL) codes. In this usage case, equivalence 

checking can be quite useful to ensure the conformance of the synthesis results. 

Nevertheless, to verify the correctness of the initial register-transfer level (RTL) HDL 

descriptions requires other approaches. 

Model checking [6,7,8] is another application of formal verification techniques. 
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It often operates directly on Binary Decision Diagrams (BDDs) to formally prove or 

disprove some properties or assertions of a hardware design. Due to the rapid progress 

of SATisfiability solver (SAT solver), recently researches of model checking [9,10] 

tend to exploit SAT solvers instead of BDDs. These model checkers may be so 

powerful that they can determine whether some deadlock conditions may occur or 

they can formally verify relates to interfaces. Although the formal techniques for 

language containment, model checking, property checking, and assertion-based 

verification [11] are making progress on the problem of verifying the correctness of 

the initial HDL codes, there is no indication that these techniques will be able to offer 

comprehensive verification across a wide variety of designs. For this reason, and 

perhaps because of the intuitive appeal of simulation, it appears that simulation-based 

functional validation is still one of the popular means for design verification for some 

time to come. 

Nevertheless, functional validation based on simulation can be only partially 

completed. To address this incompleteness, coverage-driven semiformal methods 

have been developed. These methods exert better control over simulation by using 

various schemes to generate input stimuli and assess the extent of verification 

completeness. The goal is to achieve comprehensive validation without wasted efforts. 

Coverage metrics drive simulation resources to right direction and help approximate 

the goal. 
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1.2 Classification of Coverage Metrics for Validation on 

HDL Descriptions 

 

1.2.1 Code Coverage Metrics 

The problem of verifying the correctness of Design Under Validation (DUV) 

described in a HDL using simulation is similar to the software testing problem 

because a HDL description is quite similar to a program written in a high-level 

programming language like C. As a result, code coverage metrics for HDL codes are 

largely derived from metrics used in software testing. They are mainly used to 

identify which code structure classes in the HDL code are exercised during 

simulation. 

These code structures are defined on a Control Flow Graph (CFG), which is a 

graphical representation of a program’s control structure [12, Ch. 3]. Given a set of 

program stimuli, one can determine the code structures of the HDL code activated by 

the stimuli. The simplest one should be line or statement coverage metric. The line 

coverage metric measures the number of times every statement is exercised by the 

program stimuli. More sophisticated code-based coverage metrics are branches, 

expression, and path coverage. These code coverage metrics involve the CFG 

corresponding to the HDL code. Control statements constitute the branching point in 

the CFG. We use the following Verilog code fragment shown in Figure 1-1 to illustrate 

each aforementioned code coverage metrics. 
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Figure 1-1: A HDL code example 

 

The if statement on line 9 has (a | b) as the control expression. Branch coverage 

metric requires exercising each possible direction from a control statement. For the if 

statement, lines 10 and 12 must both be executed during a simulation run. Similarly, 

for the case statement on line 2, lines 3, 4, and 5 must be executed. 

A more sophisticated metric, expression coverage metric, requires exercising all 

the possible ways that an expression can yield each value. For instance, for the control 

expression (a | b), in addition to the case where a = 0 and b = 0, we must exercise the 

two separate cases where the expression gives 1. The first case is a = 1 and b = 0 and 

the other is a = 0 and b = 1. 

Path coverage metric refers to paths in the CFG. For instance, in the Verilog 

example, the branch of the case statement on line 4 followed by the else branch of the 

if statement defines one path through the CFG. The branch of the case statement on 

line 5 followed by the true branch of the if statement is another path through the CFG. 

1: always@(sel or a or b or c or d1) begin 
2:    case( sel ) 
3:       3’b001: z = a; 
4:       3’b010: z = b; 
5:       3’b100: z = c; 
6:       default: z = 0; 
7:    endcase 
8:    d1 = z + 2; 
9:    if( a | b ) 
10:      d = d1 + 5; 
11:   else 
12:      d = d1 – 1; 
13: end 



 5

A potential goal of software testing is to have 100% path coverage, which implies 

100% branch and line coverage. However, 100% path coverage is a very stringent 

requirement and the number of paths in a program may be exponentially related to 

program size. For this reason, exercising all paths may be impossible. Representative 

subsets are usually chosen by verification engineers or circuit designers with some 

heuristics. 

Measuring the aforementioned code coverage metrics requires little overhead, 

and because of the ease of interpreting coverage results, these metrics are popularly 

used nowadays. Almost all design groups use some form of code coverage, and many 

commercial tools are available to measure them. Nevertheless, unlike the case with 

software, achieving certain extent of code coverage for hardware is a minimum 

requirement because that hardware designs are highly concurrent. More than one code 

fragment is active at a time, thus fundamentally distinguishing HDL code from 

sequential software. The aforementioned code coverage metrics do not address this 

essential hardware characteristic. Consequently, requiring complete code coverage for 

hardware, although necessary, is not enough. 

 

1.2.2 Coverage Metrics Based on Circuit Structure 

 Toggle coverage should be the simplest metric that is based on circuit structure. 

The metric requires that each wire in the circuit switches from 0 to 1 or 1 to 0 at some 

time instances during simulation. This metric can identify physical portions of the 

DUV that are not properly exercised. Many other sophisticated metrics in this class 
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are developed based upon toggle coverage. 

Separating circuits into data path and control logics is reasonable for defining 

more useful circuit-structure based metrics. In the data path portion, registers deserve 

special attention during validation. Each register must be initialized, loaded, and read 

from, and each feasible register-to-register path must be exercised. 

Coverage metrics of this class are defined on exercising the concerned circuit 

structures. Like code coverage metrics, they are easy to measure and intuitive to 

interpret and thus are popular. However, circuit-structure coverage metrics are defined 

on static, structural representations; hence their ability to quantify and pose 

requirements on sequential behavior is limited. As a result, similar to code coverage 

metrics, circuit-structure based metrics only provide a lower bound validation 

requirement as well. 

 

1.2.3 Coverage Metrics Defined on Finite State Machine 

In order to quantify and pose requirements on sequential behavior of the DUV, 

metrics defined on state transition graphs are developed and they are truly more 

powerful in this regard. These metrics require state, transition, or limited path 

coverage on a finite state machine (FSM) system representation; 

Because FSM descriptions for complete systems are prohibitively large, these 

metrics must be defined on smaller, more abstract FSMs. We classify FSMs into two 

broad categories: 

1. Hand-written FSMs that capture the behavior of the design at a high level. 
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2. FSMs automatically extracted from the design description. Typically, after 

a set of state variables is selected, the design is projected onto this set to 

obtain an abstract FSM. 

Metrics in the first category are less dependent on implementation details and 

encapsulate the design intent more succinctly. However, constructing the abstract 

FSM and maintaining it as the design evolves takes considerable effort. Moreover, 

there is no guarantee that the implementation will conform to the high-level model. 

Despite these drawbacks, specifying the system from an alternative viewpoint is an 

effective method for exposing design errors. Experience shows that using test 

scenarios targeted at increasing this kind of coverage has detected many 

difficult-to-find bugs [14]. 

In the second category, the state variables of the abstract FSMs for metrics can 

be selected manually or with heuristics. Shen and Abraham present a heuristic 

technique for extracting the control state variable that changes most frequently, called 

the primary control state [15]. They compute an FSM reflecting the transitions of the 

primary control state variable and require coverage of all paths of a certain length in 

this FSM. Even small processors have a large number of such paths, but because each 

simulation run is short, the cost is tolerable. Kantrowitz and Noack use transition 

coverage on a hand-constructed abstract model of the system, as well as cache 

interface logic. Others select important, closely coupled control state variables based 

on the design’s architecture [14,16]. 

Selecting abstract FSMs requires compromising between the amount of 

information that goes into the FSMs and the ease of using the coverage information. 
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The relative benefits of the choice of FSMs and the metrics defined on them are 

design dependent. Increasing the amount of detail in the FSMs increases the coverage 

metric’s accuracy but makes interpreting the coverage data more difficult. If the 

abstract FSM is large, attaining high coverage with respect to the more sophisticated 

metrics is difficult. 

The biggest challenge with state-space-based metrics is writing 

coverage-directed tests. Determining whether certain states, transitions, or paths can 

be covered may be difficult. The FSMs’ state variables may be deep in the design, and 

achieving coverage may require satisfying several sequential constraints. Moreover, 

inspecting and evaluating the coverage data may be difficult, especially if the FSMs 

are automatically extracted. Some automated approaches involve sequential testing 

techniques [17]. Others establish a correspondence between coverage data and input 

stimuli using pattern matching on previous simulation runs. The capacity of 

automated methods is often insufficient for handling coverage-directed pattern 

generation on practical designs, whereas the user may need to understand the entire 

design to generate the necessary inputs. Nevertheless, state-space-based metrics are 

invaluable for identifying rare, error-prone execution fragments and FSM interactions 

that may be overlooked during simulation, thus justifying the high cost of test 

generation. Ultimately, carefully choosing abstract FSMs can alleviate many of the 

problems mentioned. 

Coverage metrics of this class consider about exercising states, state transitions, 

and a particular sequence of transitions of the targeted FSM. As with code coverage, 

circuit-structure based ones, metrics of this class do not explicitly consider whether 
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erroneous effects caused by exercising some internal error portions of the DUV can be 

revealed during simulation. 

 

1.3 Observability Issue in Simulation-Based Functional 

Validation 

In a simulation-based validation framework, the simulation results or values 

should be compared against the correct values on some signals of interest to check the 

correctness of circuit behaviors. The correct values of these signals of interest may 

come from a reference model described at a different abstraction level or monitors and 

assertions. These signals of interest are called Observation Points (OPs) because they 

act like observation windows to uncover bugs in the DUV. During simulation, a 

discrepancy from the desired behavior is detected only if an OP takes on a simulation 

value that conflicts the correct value specified by the reference model. 

Typically, OPs are Primary Outputs (POs) of the DUV and/or some other internal 

wires or register outputs that are selected by circuit designers. Designers usually 

follow their understanding to the specification and the behavior of the circuit to select 

these OPs, without explicit consideration of error propagation, i.e. whether erroneous 

effects of some internal signals caused by design errors are propagated to OPs. As a 

result, during simulation process, even if some erroneous values were generated by 

some activated internal bugs, the erroneous values may be masked during their 

propagation to Ops, causing that these erroneous values as well as the internal bugs 

remain undetected. 
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Traditional code coverage metrics from software testing, such as statement 

coverage, branch coverage, and path coverage metrics, only consider whether their 

concerned code structures are exercised. Circuit-based coverage metrics or FSM 

coverage metrics also do not explicitly check whether erroneous effects can be 

propagated to OPs for bug detection during simulation. They all do not explicitly 

consider whether erroneous effects caused by internal bugs are propagated to OPs. 

Design errors may be masked and still remain undetected even if they were said 

“covered” under these coverage metrics. The result is that verification completeness is 

overestimated by these coverage metrics. 

 We use the following example to explain the error masking situation. If we 

simulate the HDL code fragment shown in Figure 1-2(a) with the input stimulus given 

in Figure 1-2(b), the simulation result is as shown in Figure 1-2(c). As far as code 

coverage metrics are concerned, we will find that with respect to statement, branch, 

and path coverage metrics, 100% coverage is achieved. If the three coverage metrics 

are used to evaluate the extent of the simulation, the input stimulus in Figure 1-2(b) 

should be regard as a good test vector set for the design in Figure 1-2(a) since the test 

vector set exercises every target code structures during simulation. 
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Figure 1-2: An example of functional validation on a HDL code fragment 

 

However, assumed that statement 7 is carelessly written into 

“counter=counter+2”, we surprisingly find that this careless design error can not be 

detected by this input stimulus of quality. Although the design error 

“counter=counter+2” changes the value of counter into 3 at Time = 5, different from 

the expected value 11, value 3 and value 11 cause the same evaluation result in the 

operation “counter<PI2”. The erroneous value 3 is masked. The design error in 

statement 7 hides from being detected. In this case, the completeness of simulation is 

misjudged by the three coverage metrics. Therefore, observability consideration is 

important to suitably assess the comprehensiveness of validation. 

The Observability-based Code COverage Metric (OCCOM) is the pioneer that 

addresses the essential observability issue [18]. Dump-file based OCCOM 

computation facilitates integration with commercial simulators and thus accelerates 

the analysis process [19]. Tag-based observability measures are extended to assess the 
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extent of validation for C programs in recent works [20]. Test pattern generation 

approaches for OCCOM make the entire work more practical [21]. 

In the above OCCOM approaches, two special tags, Δ   and - Δ , are injected on 

each signal to simulate potential increasing and decreasing value changes caused by 

some bugs. These tags on variables are not tied to particular design errors. The 

propagation of tags is used to simulate the propagation of potential erroneous effects. 

The percentage of tags that can be propagated to OPs is the coverage of OCCOM. 

However, tags can only be observed or unobserved, providing only two levels of 

measurement; 1 and 0. Erroneous effects that have lower observation opportunities 

may still be judged as observable. Thus, verification completeness may still be 

overestimated by OCCOM. If a new observability measure for HDL descriptions 

could provide intermediate values between 1 (observed) and 0 (unobserved), the 

likelihood of misestimating observability should be reduced. 

 

1.4 Other Observability-Related Researches 

 

1.4.1 Testability Analysis in Manufacturing Test 

Manufacturing test is a process of checking that integrated circuits are 

manufactured correctly. The basic premise is the modeling of manufacturing defects 

as logical faults. Since manufacturing is a physical process that can be analyzed, 

credible fault models can be derived. For example, defects are known to cause breaks 

and shorts in metal wires. These breaks or shorts can be modeled as logical faults 
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since there is a direct correspondence between wires in silicon and connections in the 

logic circuit. 

One of the most popular fault models in manufacturing test is the stuck-at fault 

model [22]. The stuck-at fault model is a logical fault model where any wire in the 

logic circuit can be stuck-at-1 or stuck-at-0. A test vector that produces the opposite 

value (zero for a stuck-at-1, and one for a stuck-at-0) will excite the fault. The effect 

of the fault has to be propagated to an observable circuit output in order for the fault 

to be detected by the vector. 

The direct correspondence between a metal wire in the silicon integrated circuit 

and a connection in the logic circuit motivates logical fault models. No such 

correspondence may exist for a behavioral description in an HDL or structural RTL 

description. Statements in the HDL description may correspond to hundreds of gates 

and wires in the final design. 

Based on the fault models, test vectors are generated and applied to test 

manufactured integrated circuits. Fault coverage analysis is then conducted to judge 

whether the integrated circuits are well tested or not. Testability here is used to guide 

test pattern generation or as a direct substitution of a fault coverage report. 

Observability is often defined as the difficulty of observing erroneous effects caused 

by some bit-level stuck-at-faults [23]. Recent researches abstracted defects as 

higher-level logical fault models [24,25,26]. 

However, the correspondence between logical fault models and HDL design 

errors is still weak in two aspects. First, an erroneous statement may be synthesized 

into hundreds of erroneous gates and erroneous wires. Second, there are almost no 
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credible design error models for HDL descriptions. Thus, logical fault models hardly 

link to HDL design errors. Testability for these logical fault models consequently 

differs from the observability for HDL descriptions. 

Some RTL testability analysis research exploits the idea of hierarchical testing 

with a pre-computed test vector set [27,28]. These studies define testability as the 

difficulty of generating input patterns for RTL circuits or instructions for processors to 

test internal RTL modules. They are different from the observability measures used to 

measure the likelihood of error propagation. 

 

1.4.2. Sensitivity Analysis in Software Testing 

In software testing arena, a sensitivity analysis, also called PIE analysis, for 

software programs to locate hard-to-detect bugs in a software program was proposed 

by J. Voas [29]. PIE analysis uses program instrumentation, syntax mutation, and 

changed values injected into data states to predict a location’s ability to cause program 

failure if the location were to contain a fault. The program inputs are selected at 

random consistent with an assumed input distribution. This analysis does not require a 

testing oracle because PIE analysis uses the program itself as an oracle for examining 

the output of altered versions of the program. 

The PIE analysis estimates the below three probabilities to predict a software 

program’s dynamic computational behavior as well as where hard-to-detect bugs may 

hide. The three probabilities are 1) Execution probability - the probability that a 

location is executed, 2) Infection probability - the probability that a change to the 



 15

source program causes a change in the resulting internal computational state, and 3) 

Propagation Probability - the probability that a forced change in an internal 

computational state propagates and causes a change in the program’s output. 

Among the three probabilities, the propagation probability (PP) of a variable is 

the estimated probability that a variable’s erroneous values caused by some bugs are 

observed in the program outputs. Propagation Probability is a good observability 

measure for software programs, even for HDL programs. The PP of a variable v in the 

program is estimated by a statistics-based approach, repeatedly infecting the data state 

of v (injecting erroneous values on variables in memory) and simulating the program. 

The ratio of the number of program failures to total number of experiments is the PP 

of v. This PP measures are quite accurate estimations for the likelihood of error 

propagation (observability for erroneous effects). However, the proposed statistical 

computation approach requires too much time and thus may be unsuitable for HDLs 

of commercial products because time to market is always important for commercial 

products. 

 

1.5 Design Error Diagnosis on Faulty HDL Descriptions 

 

1.5.1 Traditional Design Error Diagnosis Works 

Due to the high complexity of modern Very Large Scaled Integrated (VLSI) 

circuit designs, verification process may often find that a design in the current stage 

(implementation) is not consistent with that in the previous stage (specification). Once 
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a functional mismatch is found, design error diagnosis is needed. 

Most of the previous studies on this topic target the diagnosis of gate-level or 

lower-level implementations. These methods can be roughly divided into two 

categories: simulation-based approaches and symbolic approaches. Simulation-based 

approaches [30,31] first derive a set of input vectors that can differentiate the 

implementation and the specification. These binary or three-valued input vectors are 

called erroneous vectors. By simulating each erroneous vector, the possible error 

candidates can be trimmed down gradually. The heuristics to filter out impossible 

error candidates vary from one to another. Some of them rely on error models such as 

gate errors (missing gate, extra gate, wrong logical connective,…) and line errors 

(missing line, extra line,…) while other approaches are structure-based methods and 

require no error models. 

On the other hand, symbolic approaches [32,33] do not enumerate erroneous 

vectors. They represent symbolic functional manipulation with Ordered Binary 

Decision Diagram (OBDD) to formulate the necessary and sufficient condition of 

fixing a single error. Based on these formulations, every potential error source can be 

precisely identified. An approach to combine the both symbolic and simulation-based 

techniques has also been proposed to reduce the run time of design error diagnosis. In 

comparison, the symbolic approaches are accurate and extendible to multiple design 

errors. However, constructing the required BDD representations may cause memory 

explosion when applied to large circuits. On the other hand, simulation-based 

approaches, although scale well with the size of circuits, are often not accurate 

enough. In order to avoid potential memory explosion of BDD-based symbolic 
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approaches, some recent symbolic works exploit the progress of Boolean satisfiability 

(SAT) solver and develops SAT-based approaches [34]. 

 

1.5.2 Software Debugging Techniques 

In addition to gate-level or other lower-level implementations, design errors can 

also occur at the very first design stage – modeling the circuit behavior using HDLs. 

Traditionally, debugging a faulty HDL design relies on manually tracing the faulty 

HDL code. However, a simple HDL design today can have probably thousands of 

code lines and even more. Manually tracing the faulty HDL code to debug is not an 

effective debugging method. Approaches to assist HDL debugging are urgent. 

For a Register-Transfer Level (RTL) HDL code, the distance between the HDL 

code and a software program is small: diagnosis may be seen as a software problem as 

well as a hardware one. In the software diagnosis domain, most of the methods are 

based on the slicing technique [35,36]. Program slicing, introduced by Weiser [36] is 

a technique for restricting the behavior of a program to some specified subsets of 

interest. The main idea behind this technique is to decompose the considered program 

into independent parts, called slices. Each slice contains all the statements that could 

have influenced the value of a variable at a given program point. It can be executed 

separately from the rest of the program. The difference between two slices is called a 

dice and is the basis of the fault location process. 

For example, let us consider two slices A and B as illustrated in Figure 1-3. 



 18

Assume that one of them (B) gives a correct result; whereas the other (A) gives a 

faulty one. It is obvious that the faulty area will be in the dice A minus B, which is 

smaller than the area of the faulty slice A. Consequently, the effort of searching in the 

whole slice A is saved and the diagnosis duration time is reduced. 

 

 

 

Figure 1-3: Slice and dice 

 

The process of fault location implies to execute each slice and the correctness of 

each slice execution has to be determined: a human intervention is generally needed 

for establishing the oracle (the algorithmic debugger interacts with the user through 

queries about the intended program behavior). Moreover, in this manner, multiple 

times of simulation are required before real diagnosis can go on. This is too 

time-consuming. 
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1.5.3 Techniques for Debugging HDL Descriptions 

In the literature, some researches have targeted on techniques that assist HDL 

design debugging. Peischl et al [37] focus on Model-Based Diagnosis (MBD) 

paradigm. They employ structure and behavior with respect to their error models for 

software debugging. Besides, error-model based approaches, there are also 

error-model free methods that should have better applicability to various kinds of 

design errors. 

Maisaa Khalil et al [38] proposed an automatic diagnosis approach based on the 

cross check on the result of each test case. By using four strategies based on different 

four hypotheses, four error candidate sets are sequentially obtained, from the smallest 

one to the biggest one. It is expected that tool users or debugging engineers can locate 

design errors in the first few error candidate sets, whose size are relatively smaller, to 

save the debugging efforts. However, the first three hypotheses are not always 

satisfied since design errors in a fault HDL description can be multiple and the oracle 

can be unsure. True design errors may be absent in the first three error candidate sets, 

resulting in that the efforts of searching design errors in these sets are wasted. Even 

worse, we still have to search design errors in the fourth set of error candidates, the 

largest one. 

Shi et al [39] applied data dependency analysis, execution statistics, and the 

characteristics of HDL operations to filter out impossible error candidates. In this 

method, only one reduced set of error candidates is derived for examination with a 

single time of simulation. And, the size of error candidate set (error space) is 

acceptable in size. Huang et al [40] further exploited the extra observability of 
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assertions in an attempt to derive smaller error space. 

Instead automatic methods to derive error candidates, Y.C. Hsu et al have 

developed two useful utilities to help designers reason the locality of bugs with 

manual interventions [41]. However, the number of derived error candidates can still 

be plenty. Searching design errors among these candidates by examining them one by 

one blindly may still takes much valuable time. 

 

1.6. Organization 

This thesis is organized into five chapters. Chapter 1 gives the introduction to the 

thesis. Chapter 2 introduces some related works and gives preliminaries. In Chapter 3, 

we introduce our proposed probabilistic observability measures on HDL designs for 

efficient functional validation. Besides being used for efficient functional validation, 

Chapter 4 introduces another application of the probabilistic observability measures 

on HDL designs - design error diagnosis on faulty HDL descriptions. Finally, we 

conclude the thesis in Chapter 5 and discuss some future research directions. 
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Chapter 2 
 
Preliminaries 
 

2.1 Observability-Based Code Coverage Metrics 

During simulation-based functional validation, simulation values of Observation 

Points (OPs) should be compared against the expected values to check the correctness 

of certain circuit behavior. A discrepancy from the desired behavior can be detected 

only if some of OPs have simulation values that are different from the expected values. 

Coverage metrics should explicitly consider the observability requirement 

(requirement of error propagation) to detect internal design errors such that 

comprehensiveness of validation can be suitably gauged. 

 Observability-based Code COverage Metric (OCCOM) is the pioneer that 

addresses the essential observability issue [18]. A dump-file based OCCOM 

computation approach is later proposed to facilitate the integration with commercial 

simulators and thus accelerate the analysis process [19]. In these OCCOM works, two 

special tags Δ  and -Δ are injected on each signal to simulate potential increasing and 

decreasing value changes caused by activated errors. Tag propagation rules are 

defined for using tag propagation to predict the potential propagation behaviors of 

these erroneous value changes. The percentage of the tags observed at the OPs is the 

coverage with respect to OCCOM 

The dump-file based OCCOM approach proposed in [19] is a two-phase 
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approach. The two phases are abstracted as below. We will introduce the two phases 

individually in detail later in this section. 

1) Conditional Statement Transformation: The transformation involves moving 

some statements and creating new variables to contain extra information during 

simulation for the next phase calculation. After the transformation, the modified 

HDL model is then simulated using a standard HDL simulator to obtain a 

dump-file for the later tag simulation calculus. 

2) Tag Simulation Calculus: In this phase of computation, tags are first injected and 

then the propagation of the injected tags is computed based on the tag simulation 

calculus developed by the authors [19]. The tag simulation calculus is composed 

of tag propagation rules for various HDL operations, in which the propagation 

through the HDL operations is based on likelihoods. For one injected tag, the tag 

propagation result can be that it is observed at some OPs or it is not observed at 

any OPs. The third possible result is the presence of special unknown tags ?  

when the tag propagation is not so sure in the computation. 

The conditional statement modifications on the HDL code proposed in [19] are 

for obtaining sufficient information during HDL simulation for the later tag 

simulation calculus. Consider a HDL code fragment with a simple conditional 

statement “if… else …” shown in Figure2-1. The original code fragment is shown on 

left-hand side and the transformed code is shown to the right in Figure 2-1. Consider 

the case of a tag on cexp. During the simulation of the modified code, the values of 

both expr1 and expr2 are computed and stored in the new variables y1 and y2. The 

new values of y corresponding to the execution of both the then and else clauses are 
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known, regardless of the value of cexp during simulation. This will help to correctly 

propagate positive or negative tags on cexp in their tag simulation calculus. 

 

 

Figure 2-1: A simple conditional statement modification 

 

 The case of nested conditionals is more complicated. Further, the situation where 

variables such as y are assigned values that depend on the old values (e.g., increment 

operation) have to be considered. As an example, consider the Verilog statements 

shown in Figure 2-2. 

 

 

Figure 2-2: A nested conditional statement example 

 

Transformation starts with transforming the statement “if(cexp1)”. The result 

after the transformation on “if(cexp1)” is shown in Figure 2-3. In the next step, the 

“if(cexp2)” and “if(cexp3)” the statements are transformed. y is the only variable in 

the original Verilog code whose value is changed inside the if statement and, as a 
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result, in order to transform the code, a new variable y3 is introduced. 

 

 

Figure 2-3: Code after first phase of conditional statement transformation 

 

 

Figure 2-4: Code fragment after the entire conditional statement transformation 
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Note that if the value of cexp2 is false, variable y3 is read before assigning any 

value to it. As a result, it is necessary to initialize its value to the value of y. The 

transformed code after the entire conditional statement modification is shown in 

Figure2-4. The transformed code will compute the necessary information to perform 

propagation of tags on cexp1, cexp2, or cexp3. It can easily be verified that the two 

pieces of code result in the same values for variable y. 

The second phase of OCCOM computation is tag simulation calculus, which is 

used to predict error propagation and is similar to the D calculus [42]. A tag is 

represented by the symbol Δ , which signifies a possible change in the value of the 

variable due to an error. Both positive and negative tags are considered, +Δ  written 

simply as Δ , and -Δ . Both tags are injected onto each internal signal of the DUV first. 

If the presence or sign of the tag is not known, an unknown tag “?” is used. Note that ? 

= -? and also 0+? = 1+?. 

Tag simulation calculus in [18.19] is based on the likelihood of the propagation 

of the tag. It is assumed that the tag is propagated or blocked depending on which 

case is more likely. For example, in the Verilog statement c= (a!=b) with a=2 and b=5, 

if there is a positive tag on variable a, it is assumed that the tag is not propagated to 

the variable c [19]. The reason is that the value of the variable c in the presence of the 

tag is TRUE unless the magnitude of the tag on a is exactly three. As a result, the 

authors think that it is unlikely to have a tag on variable c. The tag propagation rule 

for “!=” created in [19] will block the tag from being propagated through this 

operation. 

The tag simulation calculus for some other common representative operators 
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proposed in [18,19] is briefly introduced in the sequel. For each operator op, after the 

simulator computes v(f)=v(a)(op)v(b), v(f) might be tagged with a positive Δ  or 

negative -Δ  or ? and it is written as v(f)+ Δ , v(f)- Δ , v(f)+?. 

1) The calculus for an INVERTER, a two-input AND gate, and a two-input 

OR gate are shown in Table 2-1, Table 2-2, and Table 2-3, repectively. 

The five possible values at each input are {0, 1, 0+Δ , 1-Δ , 0+?}. (Note 

that 0-Δ= 0 and 1+Δ=1.) As an example, if the input of an inverter gate 

is zero and it has positive tag on it, the value of the output of the inverter 

will be one and it will have a negative tag on it. The case that the input 

of the inverter is one and the input has a negative tag is similar. As 

another example, if one of the inputs of an AND gate is zero and the 

input has a positive tag and the value of the other input is one and it has 

a negative tag on it, the value of the output of the AND gate will be zero 

because the erroneous value of one of the inputs is zero. Using the above 

calculus, any collection of Boolean gates comprising a combinational 

logic module can be tag simulated. 

 

Table 2-1: Tag calculus for INVERTER gate in [18,19] 

INVERTER  
0 1 
1 0 

0 +Δ  1-Δ  
1-Δ  0+Δ  
0 + ? 0 + ? 
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Table 2-2: Tag calculus for AND gate in [18,19] 

AND 0 1 0+Δ  1-Δ  0+? 
0 0 0 0 0 0 
1 0 1 0+Δ  1-Δ  0+? 

0+Δ  0 0+Δ  0+Δ  0 0+? 
1-Δ  0 1-Δ  0 1-Δ  0 
0+? 0 0+? 0+? 0 0+? 

 

Table 2-3: Tag calculus for OR gate in [18,19] 

OR 0 1 0+Δ  1-Δ  0+? 
0 0 1 0+Δ  1-Δ  0+? 
1 1 1 1 1 1 

0+Δ  0+Δ  1 0+Δ  1 0+Δ  
1-Δ  1-Δ  1 1 1-Δ  0+? 
0+? 0+? 1 0+Δ  0+? 0+? 

 

2) Adder: If all tags on the adder inputs are positive and if the value v(f) < 

MAXINT, the adder output is assigned to v(f) + Δ . MAXINT is the 

maximum value possible for f. This is similar if all tags are negative. If 

both positive and negative tags exist at adder inputs, the output is 

assumed to be unknown tag. Table 2-4 shows calculus for tag 

propagation through an adder. 

 

Table 2-4: Tag calculus for ADD (+) Operation in [18,19] 

ADDER b b -Δ  b +Δ  b + ? 
a a + b a + b -Δ  a + b +Δ  a + b +? 

a -Δ  a + b -Δ  a + b -Δ  a + b +? a + b +? 
a +Δ  a + b +Δ  a + b +? a + b +Δ  a + b +? 
a + ? a + b +? a + b +? a + b +? a + b +? 
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3) Multiplier: All tags have to be of the same sign for propagation. A 

positive Δ  on input a is propagated to the output f provided v(b)!=0 or 

if b has a positive Δ . The output of multiplier is assigned to v(f) + Δ . 

This is similar for negative -Δ . 

4) Comparators: If tags exist on inputs a and b, they have to be of opposite 

sign, else the output will have an unknown tag. Assume a positive tag on 

a alone or a positive tag on a and a negative tag on b. If v(a) is smaller 

than or equal to v(b), then the tag(s) is (are) propagated to the output, 

else the tag(s) is (are) not. The output of comparator is assigned to 0+Δ . 

This is similar for other tags and other kinds of comparators. Table 2-5 

and Figure 2-6 show the calculus for tag propagation through operator 

“>” when the result of operation is TRUE and FALSE, respectively. 

Other tag propagation rules can be found in [18,19,43]. 

 

Table 2-5: Tag calculus for “>” when result of a > b is true 

> b b +Δ  b -Δ  b + ? 
a 1 1 -Δ  1 1 + ? 

a +Δ  1 1 + ? 1 1 + ? 
a -Δ  1 -Δ  1 -Δ  1 +? 1 + ? 
a + ? 1 + ? 1 + ? 1 +? 1 + ? 

 

Table 2-6: Tag calculus for “>” when result of a > b is false 

> b b +Δ  b -Δ  b + ? 
a 0 0 0 +Δ  0 + ? 

a +Δ  0 +Δ  0 + ? 0 +Δ  0 + ? 
a -Δ  0 0 0 +? 0 + ? 
a + ? 0 + ? 0 + ? 0 +? 0 + ? 
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In summary, OCCOM is indeed more stringent than statement coverage metric 

because it considers only the execution requirement but also the observability 

requirement to detect internal design errors. The proposed dump-file based OCCOM 

computation is also an effective approach to derive the OCCOM coverage. In the 

works, experimental data are also available to demonstrate that the conditional 

statement modification conducted in the first phase of OCCOM computation 

introduce very little overhead to HDL simulation. The OCCOM works based on tags 

indeed provide observability information for effectively and suitably assess the extent 

of validation. However, tags can only provide two levels of measurement 1 (observed) 

or 0 (unobserved). A more accurate observability measure is always desirable for the 

observability issue in simulation-based validation. As the future works in [19] had 

discussed, the possible future direction they proposed for accuracy improvement of 

tags are 1) relative magnitude of tag or 2) absolute magnitude of tag. 

 

2.2 PIE Analysis in Software Testing 

J.Voas et al [29,44,45] present a dynamic technique to statistically estimate three 

software program characteristics that affect a software program’s computational 

behavior: 1) Execution Probability (EP) - the probability that a particular section of a 

program is executed, 2) Infection Probability (IP) - the probability that the particular 

section affects the data state, and 3) Propagation Probability (PP) - the probability that 

a data state produced by that section has an effect on program output. These three 

characteristics can be used to predict whether faults are likely to be uncovered by 

software testing. 
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Among the three probabilities, the third probability PP can be regard as an 

observability measure for software programs and probably for HDL models as well. 

PP of a variable a (denoted as PP(a)) is the probability that variable a’s erroneous 

values caused by some bugs are observed in the program’s outputs and cause program 

failures. The algorithm to obtain estimated values of PP(a) proposed by J. Voas is 

abstracted as bellows. 

Step1. Set variable count to 0. 

Step2. Randomly select an input x according to the input distribution. 

Step3. Alter the sampled value of variable a to create a mutant of this program. 

Step4. For each different output result in program output after a is changed, increment 

count. If a time limit for termination related to the altered state has been exceeded, 

increment count. This precaution is necessary because of the effects that altered 

variables can cause to Boolean conditions that terminate indefinite loops. 

Step5. Repeat steps 2-4 n times. 

Step6. Divide count by n to derive PP of variable a. 

 This calculation algorithm to obtain PP(a) is a statistics-based estimation 

approach. The accuracy of estimated result highly depends on the iteration numbers, n. 

If n is big enough, the result of this algorithm can be a quite accurate estimation for 

PP(a). However, it is obvious that to obtain accurate estimations for PP(a) with a big 

n requires lots of iteration of simulation as well as computation time. If we intend to 

analyze observability of each point in a HDL model using this statistics-based 

approach, the entire procedure may take too much time. Other approaches or other 

observability measures are required for the observability analysis for HDL models. 
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2.3 Error Space Identification Approaches for HDL 

Debugging 

 When verification finds some discrepancy between the specification and the 

implementation written in a HDL, the debugging process traditionally relies on 

designers’ manually tracing HDL codes. However, this manual debugging scheme 

could be tough and time-consuming because a relatively simple HDL design today 

can have more than thousands code lines. If a reduced set of error candidates can be 

obtained automatically by some approaches, these approaches should be helpful to 

this HDL debugging problem. 

 Maisaa Khalil et al [38] proposed an automatic diagnosis algorithm that contains 

four hypotheses to diagnose design errors using the HDL information. For systematic 

analysis, the algorithm classified all possible situations into four hypotheses that are 

defined from looseness to strictness. The first two hypotheses assume that there is 

only one erroneous statement in the HDL design. The first ant the third hypotheses 

assume that the executed statements of correct test cases are impossible to be the error 

sources. By using four strategies based on different four hypotheses, four error 

candidate sets are sequentially obtained, from the smallest one to the biggest one. It is 

expected that tool users or debugging engineers can locate design errors in the first 

few error candidate sets, whose size are relatively smaller, meaning that searching 

design errors in the three sets requires less efforts. However, the first three hypotheses 

do not always stand since design errors in a faulty HDL description can be multiple 

and the oracle can be unsure. As a result, true design errors may be absent in the first 

three error candidate sets, resulting in that the efforts of searching design errors in 
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these sets are wasted. Even worse, it is still required to search design errors in the 

fourth and the largest set of error candidates. It is also assumed that many test cases 

can trigger design errors. However, in practice, it is not easy to generate lots of test 

cases that can trigger the same design errors, especially when designers do not 

actually know where the design errors are and what they are. 

Jiang and et al [46] proposed another error-model free automatic error space 

identification approach that exploits both data dependency analysis and execution 

trace to obtain an error space (a reduced error candidate set). The error space is the 

intersection of the execution trace of EOC (the clock cycle, in which discrepancy 

between the simulation values of all the primary outputs and the associated expected 

values is detected) and the result of data dependency analysis on Erroneous Primary 

Outputs (primary outputs that have simulation values are not consistent with the 

expected values in EOC). The size of the obtained error space in this approach should 

be relatively smaller than the one derived by the approach in [38] because additional 

data-dependency analysis is used to trim down the size. Take the HDL code shown in 

Figure2-5 as an example to demonstrate the error space identification in [46]. 
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Figure 2-5: An HDL example 

 

Assume that the code in Figure 2-5 is the correct design that designers expect. 

The applied input vectors for each time instance and the corresponding values of POs 

are shown in Figure 2-6 (a) and (b). 

 

 

 

 

 

 

module exm(PO1,PO2,PI1,PI2,PI3,PI4,clk); 
       input PI1,PI2,PI3,PI4,clk; 
       output PO1,PO2; 
       reg PO1, w2; 
       wire sel1, sel2, w1; 
s1:     assign sel1 = PI1 & PI2; 
s2:     assign sel2 = PI3 |  PI4; 
s3:     assign w1 = PI2 ^ PI3; 
s4:     assign PO2 = w2 | PI1; 
event1: always@( posedge clk ) begin 
dec.1:    case( sel1 ) 
s5:       1’b0 : PO1 = w1; 
s6:       1’b1 : PO1 = w2; 
s7:        default : PO1 = w1; 
         endcase 
       end 
event2: always@( sel2 or PI1 or PI3 or PI4 ) begin 
dec.2:    if( sel2 ) 
s8:        w2 = PI3; 
         else 
s9:        w2 = PI4 | PI1; 
       end 
       endmodule 
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(a) Input stimuli 
 

 
(b) Simulation results on POs 

Figure 2-6: Input stimuli and expected simulation results 

 

However, for some reasons, the statement s9 is written incorrectly to be “w2 = 

PI4”. Because of this design error, the simulation value of PO1 at 25ns 1’b0 and a 

discrepancy from the correct value will be observed. The clock cycle from 15ns to 

25ns is called EOC, Error-Occurring Cycle, according to the definition in [46]. 

Then, we apply the error space identification approach in [46] to narrow down 

the set of error candidates. First, we find executed statements. At time=20ns, s1, s2, s4, 

and event2 are triggered because of the value changes of PI1 and PI4. Since 

sel2=1’b0, the execution statistics of statements under the event control of event2 is 

that dec.2 (decision or conditional statement) and s9 are executed. Event1 is triggered 

reg clk, PI1, PI2, PI3, PI4; 
always #5 clk = ~clk; 
initial begin 
     clk=0; 
#2   PI1=1; PI2=1; PI3=1; PI4=0; 
#8   PI1=0; PI2=1; PI3=0; PI4=1; 
#10  PI1=1; PI2=1; PI3=0; PI4=0; 
end 

Time = 0:   PO1=1’bx; PO2=1’bx; 
Time = 2:   PO1=1’bx; PO2=1’b1; 
Time = 5:   PO1=1’b1; PO2=1’b1; 
Time = 10: PO1=1’b1; PO2=1’b0; 
Time = 15:  PO1=1’b1; PO2=1’b0; 
Time = 20:  PO1=1’b1; PO2=1’b1; 
Time = 25:  PO1=1’b1; PO2=1’b1; 
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due to the rising edge of CLK at 25ns. Because the event1 is triggered and sel1=1’b1, 

dec.1 and s6 are executed. Therefore, the executed statements in EOC are {s1, s2, s4, 

s6, s9, event1, dec.1, event2, dec.2}.  

Then, the relation space will be extracted. The extraction of the relation space 

relies on data dependency analysis based on control data flow graph (CDFG). The 

CDFG of the HDL example in Figure2-5 is shown in Figure 2-7, where s denotes a 

statement and dec. represents a conditional statement or a decision. 
 

 

Figure 2-7: Control Data Flow Graph (CDFG) of PO1 
 

To obtain relation space of PO1 relies on a back trace from PO1 to the PIs 

according to the relationship in the data flow. In the back-tracing starting from PO1, 

the first traversed node is dec.1. dec.1 is added into the relation space. Then, because 

s6 is the statement on the taken branch of dec.1, s6 is the next traversed node. s6 is 

also added in the relation space. The driving statements of s6 are dec.2 and s9 and the 

driving statements of dec.1 is s1. They are all added in the relation space, too. 

Similarly, the driving statements of dec.2 and s9 are found and added. Finally, the 
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relation space of PO1 are {dec.1, s6, s1, event1, dec.2, s9, s2, event2}. Therefore, the 

error space is {s1, s2, s6, s9, event1, dec.1, event2, dec.2}. 

In additional to simple data dependency analysis of EPOs, Shi and et al further 

exploits the structure analysis and the nature of HDL operations to filter out more 

impossible error candidates [39]. A simple Verilog HDL code fragment shown in 

Figure 2-8 is used to illustrate how to apply the Rule I in [39] for error space 

reduction. 
 

 

Figure 2-8: An example of applying Rule I in [39] 
 

When an incorrect behavior is observed at PO1, if the error space identification 

approach in [46] is used, the back-tracing operation from PO1 on the CDFG will be 

the same as shown in Figure2-8(b). The resulted error space will be the same as the 

one shown in the upper part of Figure2-8(c). 
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However, when Rule I in [39] is applied, the authors state that the back-tracing 

from PO1 can stop at R1 by means of including the reversible path which contains a 

single reversible statement “PO2=~PO1” to the error space. This is because that R1 is 

on a reversible path to PO2. If R1 is incorrect, there must be some errors in the path 

from R1 to PO2 such that PO2 can have correct simulation value. As a result, the 

authors state that they can remove the statements “R1=A+B”, BTS(A), and BTS(B) 

and then add the reversible statement “PO2=~R1”. A reduced error space can be 

obtained by applying the Rule I. The resulted error space will be the one shown in the 

lower part of Figure2-8(c). 

Besides Rule I, the authors also developed Rule II and III. Rule II states that 

given a HDL operation whose erroneous simulation value of left-hand variable and 

the correct value of left-hand variable are known, if there does not exist any values of 

other right-hand variables to produce the correct value of the left-hand variable while 

fixing the value of the target right-hand variable, the statement is incorrect or the 

simulation value of the target right-hand variable is incorrect. On the other hand, Rule 

III states that when the simulation value of one right-hand variable is a controlling 

value of the statement, the back-tracing from the other right-hand variables can be 

stopped. At least one erroneous statement requires to be retained in the error space. 

The above works that focus on reducing number of error candidates are of course 

helpful for debugging faulty HDL designs. However, the size of the obtained error 

space can still vary from case to case. The number of error candidates may be plenty 

and searching true design errors in the obtained error space still requires much time. 
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Chapter 3 
 
Observability Analysis on HDL 
Descriptions for Effective Functional 
Validation 
 

3.1 Motivation 

In functional validation, the simulation values of some signals of interest must be 

compared with their expected values to determine the consistency with the 

specification. The term observation points (OPs) is used to describe these signals 

because they act like observation windows to uncover bugs. Designers often select 

OPs according to their understanding of the specification and the availability of the 

expected values. However, erroneous effects caused by bugs are not always 

propagated to the assigned OPs. They may be masked while propagating to OPs. This 

situation prevents bug finding. Even worse, bugs may remain undiscovered through 

the manufacturing process if validation is not accurately gauged. 

The Observability-based Code COverage Metric (OCCOM) is the first code 

coverage metric which considers the essential observability issue [18,19]. In their 

approach, the propagation of special tags that are attached to internal signals is 

simulated to predict the actual propagation of erroneous effects caused by design 

errors. Base on the likelihood that erroneous effects are propagated through each HDL 
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operation, the authors create tag simulation calculus and tag propagation rules to 

judge whether a tag can be propagated through an HDL operation or not. 

However, the status of the tag propagation can only be propagated or 

un-propagated, providing only two levels of measurement; 1 and 0. However, the 

error propagation is obviously not so certain and can be modeled by just propagated 

and un-propagated. Inevitably, erroneous effects with low observation opportunities 

may still be judged as propagated in some cases, thus giving overestimate the 

verification completeness. Even worse, mislead the verification resources to other 

portions of the DUV and let a design error remain undetected. We use the following 

example to illustrate this. 

Consider a simple HDL example shown in Figure 3-1(a). Applying the input 

stimulus shown in Figure 3-1(b) to simulate the HDL code fragment in Figure 3-1(a), 

we can obtain the simulation results shown in Figure 3-1(c). 

 

 

Figure 3-1: A HDL example 
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If we apply OCCOM to gauge the extent of the validation in the case shown in 

Figure 2-1, the tag propagation rule for “<” in [19] says that tag Δ  and tag -Δ  

injected on the signal counter can pass through statement 2 “if(counter<PI2)” and 

appear at PO1 at t=1 and t=5, respectively. 

Consider a case that statement 7 carelessly written to be “counter=counter+2” by 

the circuit designer. The design error “counter=counter+2” in statement 7 causes an 

incorrect value 3 on counter at t=5, i.e. 3 is different from the correct value of 

counter 11. Because 3 is smaller than the correct value 11, the propagation of this 

incorrect value 3 should be simulated by the -Δ  injected on signal counter. We can 

regard the incorrect value 3 as 11-Δ . 

According to the tag propagation rules [18,19,43] for operation “<”, -Δ  on 

counter can be propagated through the operation “if(counter<PI2)” and makes the 

output become 0+Δ  . This implies that it is assumed that a decreasing value change is 

very likely to change the evaluation result of “counter<PI2”, from FALSE to TRUE. 

However, we can see that the incorrect value 3 does not alter the evaluation result of 

“counter<PI2” as tag simulation calculus predicts. Tag simulation calculus fail to 

predict the error propagation in this example. In fact, in this example, the likelihood 

that a decreasing value change on counter is very unlikely to alter the evaluation 

result and to cause any erroneous effects on the output of “<”. We explain this fact by 

the below analysis. 

Although in the above example we assumed that the design error 

“counter=counter+2” caused an incorrect value 3 at t=5, in practice, an incorrect value 

of counter can be any possible value that is different from the correct value 11. It can 
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be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, or 15. Among the 15 possible candidatess, 

the values {0~10} are smaller than the correct value 11 and each one of them can be 

can be regard as an individual 11-Δ . Because PI2 at t=5 is 2, only 1 and 0 can make 

the evaluation result change from FALSE to TRUE. The other values {2~10} cannot, 

even if each of them is an erroneous value smaller than 11. Nine values ({2~10}) out 

of all possible fifteen incorrect values ({0~10},{12~15}) can not alter the output of 

“counter<PI2” to make the output result as 1+ Δ . The likelihood that 11- Δ  is 

propagated through the operation “counter<PI2” should be quite low. Nevertheless, 

tag propagation rules did not actually take this likelihood into consideration and still 

assume that decreasing erroneous value change can be quite dramatic that it always 

change the evaluation result of “<”. Similar situations may also happen if tag 

propagation rules are used on some operations that may mask erroneous effects, such 

as “>”, “==”, “!=”, and “>>”. 

In addition to inaccuracy, it is also unreasonable that tag propagation rules 

assume that erroneous values can never propagate through bit-select operations “[]” 

and “[:]”. In practice, erroneous effects of course can propagate through bit-select 

operations. Moreover, the assumed single tag model can only model the propagation 

behavior of exact one erroneous effect of a design error. If multiple design errors exist 

in the DUV, tag simulation calculus may not precisely determine whether the 

erroneous effects can be observed or not. 

On the other hand, although Propagation Probability (PP) in PIE analysis is an 

accurate observability measure, its computation approach requires too much time as 

we’ve introduced in section 2.2. Therefore, we intend to develop a new Probabilistic 
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Observability Measures (POM), which are more accurate than tag-based observability 

measures and require much less computation time than PP. There are some possible 

applications for our proposed POM. 

 

A new observability-based code coverage metric – In our new 

observability-based code coverage metric, a statement is considered as covered if it is 

first exercised and the observability of the statement’s output variable is high enough. 

This is similar to the well-known fault simulation that requires fault activation and 

propagation. 

 

Indicating hard-to-observe points – If some signals are less likely to be observed, 

bugs may hide behind these points and become very difficult to reveal via limited 

observation points. It does not mean that behind these signals there must be some 

design errors, but it provides where the input stimuli does not suitably verify with 

both exercitation and observability considerations. By using our observability analysis, 

designers can designate candidates for assertion insertion to prevent potential bugs 

from hiding. This can increase the verification efficiency, too. 
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3.2 Probabilistic Observability Measure for HDL 

Descriptions 

Despite completion of a successful simulation in which the simulated values of 

all the Observation Points (OPs) consistent with the correct values, it is still possible 

that some incorrect values existed at some time instances but remain hidden due to the 

error masking. Assuming that the simulation values of all the OPs are consistent with 

the expected values, the goal of our work is to analyze which signals will most likely 

have incorrect values hiding at which time instances. This prevents overestimating 

validation completeness and can point out hard-to-observe points during the previous 

phases of simulation for leading verification resources to those weak points. In the 

section, we introduce how we model the error masking and define Probabilistic 

Observability Measure (POM). 

 

3.2.1 Control Data Flow Graph 

The Design Under Validation (DUV) is modeled as a modified Control/Data 

Flow Graph (CDFG) G = (V, E), where V is the set of vertices and E is the set of 

edges connecting vertices. In order to explain the CDFG more clearly, the CDFG 

appearing in Figure 3-2 is used as an example of the HDL code shown in Figure 3-1. 

Let v be a vertex in V. Each vertex v corresponds to an operation in the HDL code.  

Function fv and variable yv are also associated with vertex v. Function fv is the function 

of the operation that v corresponds to. Variable yv is the output variable of fv or the 

left-hand variable of the operation. For example, vertex “1:*” in Figure 3-2 



 44

corresponds to the operation “a=PI1*4” at line 1 in the HDL code. Function f1:* is 

multiplication “*” and y1:* is signal a. Vertex “2:if” corresponds to the operation 

“if(…) … else ...” in lines 2 to 4 of the HDL code, and its functionality is quite similar 

to a multiplexer. Vertex PO1 is a special vertex representing the primary output PO1 

in the circuit. An edge (v, u) ∈E indicates that the input of vertex u is data dependent 

on the output of v. As shown in Figure 3-2, an edge (1:*, 4:=) exists since the 

operation “4:=” takes the output of vertex “1:*” as its input. The fanout of v is a set of 

vertices u such that there is an edge from v to u. Similarly, the fanin of v is a set of 

vertices k such that there is an edge from k to v. A path from vertex u to vertex u’ is a 

sequence <v0, v1, v2,…, vk> of vertices such that u = v0, u’ = vk, and (vi-1, vi) ∈  E. 

 

 

Figure 3-2: The CDFG of the HDL code in Figure3-1 

 

3.2.2 Masked Value Set and Probabilistic Observability Measure 

If a single incorrect value w ever existed on the output variable of vertex v yv at 

time instance t=ti in the design under validation during simulation, this incorrect value 

w should cause no incorrect behaviors at any observation points at all positive edges 
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of clock1. If not, the simulation phase is not successful. More specifically, the 

simulated value of an observation point OPj at an arbitrary positive edge of clock t=ck 

must be the same as the correct value. The incorrect value w must be masked by some 

vertices on the paths from vertex v at t=ti (denoted as v@t=ti) to observation point 

OPj at t=ck (denoted as OPj@t=ck). In the following descriptions, “v at t=ti” and “v in 

time frame t=ti” will be used in turn. A formal description of error masking is given in 

(3.1). 

 

)@()(@@ kjctOPttv ctOPCVwf
kji

===→=                           (3.1) 

where kji ctOPttvf =→= @@  is the function of the paths from v in time frame t=ti to OPj 

in time frame t=ck and CV(OPj@t=ck) is the correct value of OPj at t=ck. 

 

If there are m total observation points {OP1,OP2,…,OPm} and o clock cycles in 

the simulation phase, w must be masked on its way to all the observation points in all 

time frames such that it is not uncovered during the entire simulation process. For 

each observation point OPj in each time frame t=ck, the function of the paths from 

vertex v in time frame t=ti that go to OPj at t=ck must generate the correct value of 

OPj at t=ck with this incorrect value w as described in (3.2). 
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1 We assume that the simulation values of all the observation points are compared with the correct 
values only on the positive edges of clock signal. If the design under validation is a 
falling-edge-triggered or double-edge-triggered design, the assumption along with the modeling and 
the computation can easily be changed to fit to it. 
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The set of all possible values of vertex v’s output that can satisfy (3.2) is defined 

as the Masked Value Set (MVS) of vertex v at time instance t=ti (MVS(v@t=ti)). A 

more formal definition is given in (3.3). Each element in MVS(v@t=ti) retains the 

correct values of all the observation points at all positive edges during simulation. 
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The correct value of the output of vertex v at t=ti is in MVS(v@t=ti) and this can 

justify the existence of MVS(v@t=ti). If MVS(v@t=ti) has only one element, this 

element must be the correct value and no error masking can occur. On the other hand, 

if the set contains many elements, there will be many elements other than the correct 

values2 in the set. An incorrect value caused by some bugs may very possibly be one 

of these elements and thus be masked. (The incorrect value can also be outside the set 

such that it is revealed.) The more elements in MVS(v@t=ti), the more likely the 

simulation value of v is one of these masked incorrect values. Hence, the Likelihood 

Of Error Masking (LOEM) of v at t=ti is defined as (3.4). 
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i
ttvMVSttvLOEM                                   (3.4) 

vyBW  ofbit width   theis   where, . Its complement is the observability measure of v at 

t=ti, as described in (3.5). 
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2 Although the elements other than incorrect value in the Masked Value Set of v at t=ti are not all 
masked incorrect values, some of them may be don’t care values of v at t=ti. However, the 
identification of don’t care values requires formal proofs or probably many more simulations. Thus, for 
safety, we here consider these values other than the correct one as masked incorrect values. 



 47

3.3 Observability Computation Algorithm 

Our observability computation algorithm is a topology-based analysis with time 

frame expansion to handle the sequential behavior of the DUV. While calculating the 

observability of the output variable of vertex v in time frame t=ti, the algorithm will 

consider each sensitized path from v in time frame t=ti that goes to any observation 

point in each time frame. The path-oriented computation scheme is defined in (3.6), 

which can be transformed from (3.3). 
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kji
1 1

@@ }@()(|{)@(
= =

=→= ====      (3.6) 

 

The set {x | )(@@ xf
kji ctOPttv =→= =CV(OPj@t=ck)} is defined as the Masked Value 

Set of vertex v at time instance t=ti with respect to OPj at t=ck (denoted as 

MVS(v@t=ti)OPj@t=ck). An element of the set other than the correct value can be 

regarded as an incorrect value that is masked by some vertices on the paths from v at 

t=ti to OPj at t=ck, thus keeping the correct value of OPj at t=ck. 

According to (3.6), if it is possible to derive MVS(v@t=ti)OPj@t=ck for each 

observation point OPj at each time frame t=ck, then intersecting these sets produces 

MVS(v@t=ti). If there is exactly one path from v at t=ti to an observation point OPj at 

t=ck, an induction-based computation approach is proposed to compute exact 

MVS(v@t=ti)OPj@t=ck, which is introduced in section 3.3.1 and 3.3.2. If there are 

multiple paths from v at t=ti to OPj at t=ck, a quick estimation approach that 

guarantees lower-bound observability estimations will be applied, which is introduced 
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in section 3.3.3. Section 3.3.5 introduces the entire algorithm incorporating both of 

them and section 3.3.4 discusses time-saving strategies. 

 

3.3.1 MVS Computation for Single Path 

Assume that there is a sensitized path P from a vertex b at time instance t=ti to 

an observation point OPj at a positive edge of clock t=ck. As an example, one such 

path <b@t=ti, an, an-1,…, a2, a1, OPj@t=ck> is shown in Figure3-3 and will be used in 

the following explanations. For the case of a single path, we develop an algorithm to 

compute MVS(b@t=ti)OPj@t=ck as shown in the pseudo code in Figure3-4. 

 

 

Figure 3-3: A Path from b@t=ti to OPj@t=ck 

 

For each observation point at each positive clock edge, the algorithm will 

recursively call subroutine MVS_for_vertex to perform MVS computation and use a 

Depth First Search (DFS) strategy for backward traversals. The input of the 

subroutine is a previously computed set of integers (PreviousMVS), the currently 

traversed vertex v, and the current time frame ti. If the currently traversed vertex v is a 

normal vertex, all the fanin vertices of vertex v will be traversed (line 7). However, if 
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vertex v is a control vertex, the fanin vertices on the untaken branch(es) will be 

marked as “inactive” and will not be traversed (line 5). 

 

Figure 3-4: The pseudo code of MVS computation for a single path 

 

The key step of this algorithm (line 12) is computing the set of all the u’s output 

values (CurrentMVS) that can make the function of v fv generate an output value that 

is in PreviousMVS. Then, the newly computed set CurrentMVS will become the input 

PreviousMVS of subroutine MVS_for_vertex and will be recorded on vertex u along 

with time information after the subroutine is called again. Section 3.3.2 will introduce 

how to compute CurrentMVS based on PreviousMVS (line 12). The belows explains 

how this algorithm can derive MVS(b@t=ti)OPj@t=ck in the case of a single path from b 

MVS Computation for Single Path
1:   for each positive edge of clock t=ck 
2:      for each observation point OPj 
3:         InitialMVS={CV(OPj@t=ck)} 
4:         Find the fanin vertex a1 of OPj at t=ck 
5:         MVS_for_vertex(InitialMVS, a1, ck) 
 
MVS_for_Vertex (PreviousMVS, vertex v, time tj) 
1:   if MVS(v@t=tj) = = ∅   
2:      MVS(v@t=tj) = PreviousMVS 
3:   else 
4:      MVS(v@t=tj) = MVS(v@t=tj) I  PreviousMVS 
5:   if v is a control vertex 
6:      Mark each fanin vertex on the untaken branch as “inactive” 
7:   for each “active” fanin vertex u of v 
8:     if edge (u,v) across time frame 
9:         th = tj – clock_period 
10:    if th < 0 
11:       return 
12:    Compute CurrentMVS, which is {x | fv(x) ∈  PreviousMVS} 
13:    MVS for Vertex (CurrentMVS, u, th)
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at t=ti to OPj at t=ck. 

 

Theorem.1 As shown in Figure3-3, function fn is the composite function of the 

vertices from a1 to an and comprises fan and fn-1. For an arbitrary value x on the 

output of vertex b at t=ti, x is in MVS(b@t=ti)OPj@t=ck if and only if fan(x) is in 

MVS(c@t=ti)OPj@t=ck, which can be represented as (3.7). 

 

})@()(|{)@( @@ kjnkj ctOPiactOPi ttcMVSxfxttbMVS == =∈==       (3.7) 

 

Proof : 

})@()(|{)@(:  . @@ kjnkj ctOPiactOPi ttcMVSxfxttbMVS == =∈⊇=1Claim  

For each value x in {x | fan(x) ∈  MVS(c@t=ti)OPj@t=ck}, x must satisfy fn-1( fan( x ) ) = 

CV( OPj@t=ck ) and thus also satisfy fn( x ) = CV( OPj@t=ck ). That means that x is in 

MVS( b@t=ti )OPj@t=ck. This proves that 

})@()(|{)@( @@ kjnkj ctOPiactOPi ttcMVSxfxttbMVS == =∈⊇=  

 

})@()(|{)@(: 2 . @@ kjnkj ctOPiactOPi ttcMVSxfxttbMVS == =∈⊆=Claim  

By way of contradiction, first assume that there is a value x that is in 

MVS( b@t=ti )OPj@t=ck but fan(x) is not in MVS( c@t=ti )OPj@t=ck. Since x is in 

MVS( b@t=ti )OPj@t=ck, then fn( x ) = CV( OPj@t=ck ) that implies 

fn-1( fan( x ) )=CV( OPj@t=ck ). This means fan(x) is in MVS(c@t=ti)OPj@t=ck. This is a 

contradiction! 
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From Claim 1 and 2, it is proven that 

})@()(|{)@( @@ kjnkj ctOPiactOPi ttcMVSxfxttbMVS == =∈== . 

 

When subroutine MVS_for_Vertex is called for the first time, the computed 

CurrentCVS {x | fa1(x) ∈ {CV(OPj@t=ck)}} is actually MVS(g@t=ck)OPj@t=ck 

according to the definition. When the subroutine is called for the second time, the 

computed CurrentMVS {x | fa2(x) ∈  MVS(g@t=ck)OPj@t=ck} should be 

MVS(e@t=ck)OPj@t=ck according to Theorem.1. Similarly, the computed CurrentMVS 

{x | fa3(x)∈  MVS(e@t=ck)OPj@t=ck} is MVS(d@t=ck)OPj@t=ck when the subroutine is 

called for the third time. Therefore, when the computation reaches vertex an, the 

computed CurrentMVS {x | fan(x)∈  MVS(c@t=ti)OPj@t=ck}is the Masked Value Set of 

b at t=ti with respect to OPj at t=ck. 

From the above discussion, it shows that a current MVS set (CurrentMVS) is a 

Masked Value Set of a traversed vertex with respect to OPj at t=ck. These Masked 

Value Sets will be intersected with the other Masked Value Sets of the same vertex 

with respect to other observation points at different time instances according to (3.6) 

in the algorithm for MVS computation for a single path. After all the observation 

points at all the positive clock edges have been applied, the Masked Value Set of each 

traversed vertex in a time frame will be computed and recorded for the later 

observability calculation. 

 

3.3.2 MVS Formula for Operations 

Given a previously computed MVS set (PreivousMVS), a vertex v, and one of 
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v’s fanin vertex u, computing CurrentMVS is to find the set of all the values at u’s 

output yu that make the function of v fv generate an output value that is in 

PreviousMVS. First consider a particular value p in PreviousMVS and find the set of 

all the values that make fv generate p at v’s output yv. If such a set can be derived for 

each particular value p in PreviousMVS, then the union of these sets derives 

CurrentMVS. The set of all such values for a particular p is denoted as 

Sub_CurrentMVSp. 

For most unary and binary operations, inversing fv can easily derive 

Sub_CurrentMVSp. Take the operation “yv = -yu” as an example. If p=-2, inversing the 

minus operation “-” produces yu =2. Take the operation “yv = yu + b1” as another 

example. If p=8 and b1=3, inversing “+”, i.e. yu = 8 – 3, shows that yu is equal to 5. 

The integer b1 is the simulated value of the operand other than the output of u yu and it 

is recorded in the dump-file. The formula to compute Sub_CurrentMVSp is 

summarized in the third column of Table.1. The column “condition” shows the 

necessary conditions for the result of Sub_CurrentMVSp. If the conditions are not met, 

in most of cases, Sub_CurrentMVSp = ∅ , except for comparisons. The following 

explains how to derive Sub_CurrentMVSp for some representative operations. 
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Table 3-1 The formulas of Sub_CurrentMVSp 

 

Operation Condition Sub_CurrentMVSp 

yv = yu - {p} 

yv = ~ yu - }12{ pw −−  

yv = - yu - }2{ pw −  
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yv = yu + b1 - {p-b1} 

yv = yu - b1 - {p+b1} 

yv = b1 -yu - {b1-p} 

yv = yu* 0 p==0 ]}12~0{[ −w  

yv= yu* b1 (b1>0) p%b1=0 {p/b1} 

yv= yu% b1 p < b1 
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yv=b1 >>yu b1%p }/{log 12 pb  

yv= yu<<b1 (  p% 12b ) = =0 }2/2{ 11
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+⋅
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=
U  

yv=b1<<yu ( p%b1 ) = =0 }/{log 12 bp  

yv= yu>b1 p==1 {[b1+1~ 12 −w ]} 

yv=yu >=b1 p==1 {[b1~ 12 −w ]} 
yv= yu< b1 p==1 {[0~b1-1]}  

yv=yu<= b1 p==1 {[0~b1]} 

yv=yu== b1 p==1 {b1} 

yv= yu!= b1 p==1 {[0~b1-1],[b1+1~ 12 −w
]} 

1. w is the bit width of yu and b1 is the simulated value of the operand other than yu. 
2. The notation [i~j] means a set of continuous integers from integer i to integer j. 
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1) Operations that choose a bit range “[i]” and “[i:j]”: 

For an operation “[i:j]”, the only constraint on the input values is that the bit 

assignment of the bits selected by “[i:j]” must be the same as the output value p. The 

bit assignment of the unselected bits can be any combination. Thus, the value of the 

unselected bits from 0 to j-1 can be any integer in the range of 0 to 2j -1. The value of 

the unselected bits from i+1 to w-1 can be any integer in the range from 0 to 2w-i-1 -1. 

Hence, the formula for operation “[i:j]” appears in the third column of Table.1. 

Deriving Sub_CurrentMVSp for “[i]” can be achieved by treating i the same as j in 

the “[i:j]” formula. 

2) Control vertexes: 

If yu is the control signal, yu can only be the values that select suitable branches to 

keep the output of vertex v yv at p. This can be done by comparing the value of each 

variable on each branch with p. If yu is the signal on the taken branch, yu can only be p 

such that yv is p. 

3) Comparison Operations “>”,”<”, and etc: 

Take “<” as an example. If p is equal to 1, yu can only be values smaller than b1. 

These values are {[0~b1-1]}. The derivations for other comparisons are quite similar. 

4) Right shift “>>” and left shift “<<”: 

Either right shift or left shift by the amount b1 incurs information loss. The “[i:j]” 

formula can tackle this. As illustrated in Figure 3-5 (a) and (b), the entire right shift 

(left shift) is the cascade of an operation that selects the bit range from i to j “[i:j]” 

and a divide (multiply) operation. Therefore, to derive the formula of right shift (left 

shift), first apply the divide (multiply) formula and then the “[i:j]” formula. If 
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information loss is encountered in other operations, e.g. “+”, “-“, and “*”, the “[i:j]” 

MVS formula can also model it. 

 

 

Figure 3-5: Modeling information loss in right shift and left shift 

 

If the formulas listed in the third column of Table 3-1 are directly applied to 

compute CurrentMVS, for a PreviousMVS with n integers, the formula should be 

applied n times and then the union of all the Sub_CurrentMVSp produces 

CurrentMVS. Take the operation “b=a[1:0]” as an example. Assume that a is 4-bit 

wide, b is 2-bit wide, and PreviousMVS={0,1,2}. To compute CurrentMVS, first 

apply the “[i:j]” formula with i=1, j=0, w=4, and p=0. The result is 
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kk
k
U ={0, 4, 8, 12}                (3.8) 

 

The same formula can be used with p=1 and p=2 in sequence to obtain {1,5,9,13} 

and {2, 6,10,14} respectively. The union {0,1,2,4,5,6,8,9,10,12,13,14} is CurrentMVS. 



 56

It is obvious that the computation using the formulas in Table 3-1 may take lots of 

time if there are many elements in PreviousMVS. In fact, the formulas in Table 3-1 

are not what we really used in MVS computation algorithm. We have the following 

observations used to transform the formulas in Table 3-1 to improve the efficiency of 

the formulas. 

Taking a closer look at the results obtained with p=0, p=1, and p=2, we observe 

that 0*20+k*21+1+20-1=k*21+1 and 1*20+ k*21+1=k*21+1+1 are two continuous integers. 

Also, 1*20+ k*21+1+20-1=k*21+1+1 and 2*20+k*21+1=k*21+1+2 are two continuous 

integers. Therefore, the union of the above three sets can be represented more 

concisely as 
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More generally, for a set of continuous integers from p to q in PreviousMVS, the 

computed CurrentMVS is 
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The “[i:j]” MVS formula is derived now and listed in the third column of 

Table3-2. The operation “<<” is another example of how to derive the “<<” formula 

listed in the third column of Table 3-2. First try to find the smallest integer p’ in the 

set {[p~q]}, which satisfies p’%2b
1=0. If there is no such p’ in the set {[p~q]}, 

CurrentMVS will be φ . If p’ exists in {[p~q]}, check if p’+2b
1 is in the range of p to 
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q. If so, the union of the two result sets obtained by p’ and p’+2b1 can be represented 

as 

 

]}2/)2'(2~2/'2{[ 1111

1
1

12

0

bbbbb

k
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b

++⋅+⋅
−

=
U                       (3.11) 

 

Repeating the derivations above produces the formula in the third column in 

Table3-2 at page 60. For a subset of integers {[p~q]} in PreviousMVS, applying the 

MVS formulas listed in the third column in Table 3-2 can derive results much more 

quickly than applying the formulas in Table 3-1. In addition, all the integers in the 

subset {[p~q]} can be memorized by recording only p, q, and the special tag “~”. This 

storage format enhances memory usage efficiency and alleviates the memory 

explosion problem. 
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Table 3-2: The MVS formulas for HDL operations 
 

Operation Condition Sub_CurrentMVS[p~q] 
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yv=yu >=b1 p = =0 and q = =1 ]}12~0{[ −w  
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yv=yu== b1 p = =0 and q = =1 ]}12~0{[ −w  

yv= yu!= b1 p = =0 and q = =1 ]}12~0{[ −w  

1. w is the bit width of yu and b1 is the simulated value of the operand other than yu. 
2. The notation [i~j] means a set of continuous integers from integer i to integer j. 
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3.3.3 MVS Estimations for Multiple Paths 

The algorithm shown in Figure 3-4 can compute the exact MVS of vertex b in 

time frame t=ti with respect to an observation point OPj in time frame t=ck only if 

there is just one single path from b at t=ti to OPj at t=ck. If there are multiple paths 

from b at t=ti to OPj at t=ck, another approach is necessary because possible 

propagation methods become more complex. 

In tag-based approaches [18,19], the authors simply put unknown tags “?” on the 

reconvergent paths instead of computing exact solutions. If unknown tags are 

propagated to observation points, they seem to be considered as not covered with 

respect to OCCOM in a conservative way. 

In order to reduce the complexity, we adopt an estimation that is similar to 

tag-based approaches. If there are multiple paths from v at t=ti to an observation point 

OPj at t=ck, the universe (U) is used instead of real MVS(b@t=ti)OPj@t=ck in the 

intersection operation. This estimation result obtained using the universe must include 

the exact result obtained by intersecting with the real MVS(b@t=ti)OPj@t=ck because 

the universe includes MVS(b@t=ti)OPj@t=ck. Consequently, this estimation result has a 

larger MVS set, which turns out to be less observable according to the definition of 

observability in (3.5). Therefore, this estimation approach guarantees lower-bound 

estimations of observability. 

This estimation approach may incur some accuracy loss. Because the estimated 

observability may be lower than the actual value, it is possible to underestimate the 

coverage or insert assertions on some points that are actually safe. While conducting 

verifications, this conservative strategy that checks more points is often acceptable, 



 60

and will not cause too many problems. 

 

3.3.4 Time-Saving Strategies 

To reduce computation time, we develop 1) the bounding traversal strategy and 

2) the Limited-Traversed-Frame (LTF) strategy. Bounding traversal strategy can 

avoid unnecessary traversals during MVS computation without causing any accuracy 

loss. Limited-Traversed-Frame (LTF) strategy saves additional time at the expense of 

accuracy loss. However, it can always have a lower bound of observability (a 

pessimistic estimation). 

 

3.3.4.1 Bounded Traversal Strategy 

In our observability computation, after some backward traversals, there are MVS 

sets recorded on vertices that have been traversed. As shown in Figure 3-6, let a 

vertex v in time frame t=tn be a vertex that was traversed and v’ be one of v’s fanin 

vertices that was also traversed. Hence, MVS(v@t=tn) and MVS(v’@t=tn) are already 

recorded on v and v’. And, MVS(v’@t=tn) should be { x | fv(x) MVS(v@t=tn) } 

according to the CurrentMVS computation shown in line 12 of the MVS_for_Vertex 

pseudo code in Figure 3-4. 

 

 

Figure 3-6: Vertex v and one of it fanin vertex v’ 

If another backward traversal from an observation point arrives at vertex v in 
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time frame t=tn again, PreviousMVS and MVS(v@t=tn) are intersected as described 

in line 4 of the MVS_for_Vertex pseudo code. If the result of the intersection remains 

MVS(v@t=tn), i.e. MVS(v@t=tn)⊆PreviousMVS, then when the computation arrives 

at v’, the result of the intersection will also be MVS(v’@t=tn). More formally, if 

MVS(v@t=tn) ⊆ PreviousMVS, then MVS(v’@t=tn) ⊆ {x| fv(x) ∈ PreviousMVS}. 

Theorem.2 provides a formal description and proof. 

 

Theorem.2 If MVS(v@t=tn) ⊆  PreviousMVS, then MVS(v’@t=tn) ⊆ { x | 

fv(x)∈PreviousMVS}. The originally recorded MVS(v’@t=tn) remains unchanged 

after the intersection. 

 

Proof: 

The MVS(v’@t=tn) is computed based on the MVS(v@t=tn). That is, MVS(v’@t=tn) 

is the set {x | fv(x) ∈MVS(v@t=tn)}. For an arbitrary element x in MVS(v’@t=tn), 

fv(x) is in MVS(v@t=tn) and thus is also in PreviousMVS since 

MVS(v@t=tn) ⊆ PreviousMVS. Therefore, if MVS(v@t=tn) ⊆ PreviousMVS, 

MVS(v’@t=tn)⊆ {x|fv(x) ∈PreviousMVS}. The originally recorded MVS(v’@t=tn) 

remains unchanged after the intersection. 

 

If v’ has at least one fanin vertex v’’, by mathematical deduction, MVS(v’’@t=tn) 

should also remain unchanged after the intersection. So do the vertices that are in 

transitive fanin of vertex v. Therefore, when PreviousMVS includes the recorded 
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MVS of a vertex v, return from subroutine MVS_for_vertex can avoid unnecessary 

traversals and computations since further computations will not change the recorded 

MVSs. 

 

3.3.4.2 Limited-Traversed-Frame (LTF) Strategy 

The bounding traversal strategy can avoid unnecessary traversals. However, in 

some cases, necessary backward traversals can still expand many frames. Although 

accurate results are produced, the required computation time may become 

unaffordable. Therefore, we propose a Limited- Traversed-Frame (LTF) strategy, 

which provides an optional and flexible trade-off between accuracy and speed. 

The idea of LTF strategy is to restrict the number of backward-traversed frames 

in time frame expansion. It only requires a simple check on whether the number of 

expanded frames reaches the maximum allowable number of frames (denoted as 

frame_limit). Frame_limit is a configurable parameter that can be adjusted by users. It 

can be set as a small number for a quick estimation or as infinite to disable LTF 

strategy for the highest accuracy. Unlike the bounded traversal strategy, this strategy 

may experience some accuracy loss. However, a lower bound estimation of 

observability is always guaranteed such that our observability measures seldom 

overestimate the correctness of the design under validation. The reason is given 

below. 

For a vertex u in time frame t=ck, if expanded frames are not limited, each 

Masked Value Set of u at t=ck will be intersected with respect to an observation point 

at a positive clock edge in the set of MVS sets {MVS1,MVS2,…,MVSm}. With the 
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frame_limit restriction, some MVS of u at t=ck with respect to some OPs are not 

obtained since the backward traversals are bounded and do not reach u in time frame 

t=tk. Assume the obtained MVSs are {MVS1,MVS2,…,MVSn}, where n<m. The 

intersection of all the MVSs in the set {MVS1,MVS2,…,MVSn} includes the 

intersection of all the MVSs in the set {MVS1,MVS2,…,MVSm}. Larger MVS set 

intersections turn out to be less observable according to the definition of observability 

in (3.5). Therefore, our LTF strategy also guarantees lower-bound estimations of 

observability. 

 

3.3.5 Algorithm of Observability Computation 

The entire algorithm of our observability computation is abstracted as the pseudo 

code in Figure 3-7. The entire algorithm incorporates 1) MVS estimation for single 

path, 2) MVS computation for multiple paths, 3) Bounding-traversal strategy, and 4) 

Limited-Traversed-Frame (LTF) strategy. This algorithm is modified from the 

algorithm shown in Figure 3-4 and thus it is quite similar to it. The modifications are 

indicated with comments. 

The modification on the steps in subroutine MVS_Com_for_vertex from line 1 to 

line 10 incorporates MVS estimation for multiple paths. During traversal(s) starting 

from an observation point (StartOP) at a time instance (StartTime), if vertex v is 

visited for the first time, it is treated as the single path case. This PreviousMVS is 

intersected with MVS(v@t=ti), which is already the result of intersecting many 

PreviousMVSs. Then, if this vertex v is traversed for two or more times in the 
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traversal(s) starting from StartOP at StartTime, there are multiple paths from v at t=ti 

to StartOP at StartTime. Then the MVSforRecovery(v@t=ti) subroutine is used to 

resume the status of MVS(v@t=ti) to the status without intersection in this traversal. 

Two conditions are added for incorporating the two time-saving strategies into 

the algorithm. The condition in line 5 of the MVS_Com_for_vertex subroutine is for 

bounding traversal strategy. The last condition in line 16 is for the LTF strategy. 

Once one of the conditions is met, succeeding computation processes can be skipped 

and the program can directly return from the subroutine to save computation time. 

Besides being bounded by time saving strategies, traversals are also bounded if there 

is no frame to expand (th<0) or there is no fanin vertex to traverse. 

Some preparations are required before observability computation can begin. The 

3-address code generations and the conditional statement modification developed in 

[19] must be conducted first for the information required in computing MVSs for 

control vertices (conditional statements). The detailed conditional statement 

modification algorithm can be found in [19] and in section 2.1. 
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Figure 3-7: The pseudo code of observability computation algorithm 

 

 

Preparation Phases: 
1: 3-address Code Generation and Conditional statement odification  
2: Simulation with commercial HDL simulator to obtain the dumpfile 
 
 
Observability_computation (DUV, Dumpfile, OPs, frame_limit) 
1: CDFG construction 
2: Initialize each vertex as “untraversed” 
3: for each positive edge of clock t=ck 
4:   for each observation point OPj 
5:  InitialMVS = {CV(OPj@t=ck)}; Find the fanin vertex a1 of OPj at t=ck 
6:  MVS_Com_for_Vertex(InitialMVS, a1, OPj, ck, ck, frame_limit) 
7: Calculate observability with the computed MVSs 
 
 
MVS_Com_for_Vertex(PreviousMVS, vertex v, StartOP, StartTime, time tj, 
frame_limit) 
//*** Modification for incorporating MVS computation for multiple paths *** 
1: if traversed for first time in traversal starting from StartOP at StartTime 
2:   if MVS(v@t=tj) = = ∅  
3:  MVS(v@t=tj) = PreviousMVS 
4:   else 
5:    if MVS(v@t=tj) ⊆  PreviousMVS  //**Condition of Bounding traversal 
6:    return 
7:    MVSforRecovery(v@t=tj) = MVS(v@t=tj) 
8:    MVS(v@t=tj) = MVS(v@t=tj) I  PreviousMVS 
9: else //Multiple paths. Recovering to the previous status before intersection 
10:   MVS(v@t=tj) = MVSforRecovery(v@t=tj) 
//*** Modification for incorporating MVS computation for multiple paths *** 
11: if v is a control vertex 
12:   Mark the fanin vertex(es) on the untaken branch(es) as “inactive” 
13: for each active fanin vertex u of v 
14:   if edge (u, v) across time frame 
15:       th = tj – clock_period 
16:     if th <0 or frame_limit = = 0  //** Condition of Limited Traversing Frame 
17:     return 
18:  Frame_limit - - 
19:   Compute CurrentMVS, which is { SPreviousCV)(| ∈xfx v } 
20:   MVS_Com_for_Vertex(CurrentMVS, u, StartOP, StartTime, th, frame_limit) 
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3.3.6 An Illustration Example 

The example in Figure3-1 can also be used to demonstrate the processes of our 

observability computation. We first construct the control/data flow graph of the DUV. 

The CDFG of the HDL code in Figure 3-1 is shown in Figure 3-8(a). After some 

initializations, we start backward traversal from PO1 at t=1 by calling subroutine 

MVS_Com_for_vertex with the inputs PreviousMVS={1}, vertex v=”2:if”, 

StartOP=PO1, StartTime=1, and Frame_limit=∞ . 

 

 

Figure 3-8: Computation processes starting from PO1 at t=1 

 

When subroutine MVS_Com_for_vertex is called for the first time, the traversal 

reaches vertex “2:if” in time frame t=1 for the first time. As shown in Figure 3-8(b), 

the recorded MVS(2:if@t=1)={1} and no MVSforRecovery is recorded. Vertex “2:if” 



 67

in time frame t=1 is a control vertex. Therfore, there are two fanin vertices “2:<” and 

“3:=” for further backward traversals. Here, assume that “2:<” is traversed first. Based 

on PreviousMVS {1}, the MVS computation for conditional statements will be used 

to compute CurrentMVS and obtain the result {1}. 

Subroutine MVS_Com_for_Vertex is then called for the second time to traverse to 

“2:<” in time frame t=1. When the traversal arrives at vertex “2:<” in time frame t=1, 

the computation status is shown in Figure 3-8(c). Repeat the similar computations 

until reaching vertex “6:=” in time frame t=1. Computation results along the traversal 

from “2:if” to “6:=” are shown in Figure 3-8(d), where each set of integers aside an 

edge is the recorded MVS. Since vertex “6:=” in time frame t=1 has no fanin vertex, 

the computation will traverse another fanin vertex “3:=” of vertex “2:if.” Repeatedly 

calling subroutine MVS_Com_for_Vertex can produce the results shown in Figure 

3-8(e). 

After completing the traversals and MVS computations starting from PO1 in 

time frame t=1, starting backward traversals from PO1 in time frame t=5 can produce 

the results shown in Figure 3-9(a) and (c). When the computation reaches vertex 

“5:if” in time frame t=1, PreviousMVS {[0~5], [8~15]} will include 

MVS(5:if@t=1)={[0~1]}. The bounding traversal condition is satisfied and the 

traversal is bounded here. 
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Figure 3-9: Observability computation results 

 

 After all the observation points at all the positive clock edges are applied in MVS 

computation, calculating the observability of each internal signal with (5) can produce 

the result as shown in Figure 3-9(b). The observability of the signal counter at t=5 is 

not high enough to be considered as an observed tag, i.e. 0.625 is not close to 1. 

However, as we discussed in section III.A, tag propagation rules can not represent 

intermediates values between 1 and 0. The rules thus determine that tags injected on 

counter can propagate to PO1 at t=5. This induce some inaccuracy and even worse 

overestimates the actual likelihood that an erroneous effect propagates through 

“counter<PI2”. Experimental results in section VI also shows the same situation of 

overestimation as we discussed above. 

 

 

 



 69

3.4 Observability Analysis for Multiple Design Errors 

Incorrect values caused by bugs may be masked and thus escape detection. Thus, 

the simulation values recorded in the dump-file may not be completely correct. 

Therefore, in our observability computation, we do not assume the correctness of the 

simulation values. We also do not assume the correctness of the design under 

validation. Observability is computed based only on the values of involved signals 

recorded in the dump-file, regardless of the correctness of these values. Even if the 

values used in the computation are incorrect, we can still provide some meaningful 

values for users’ reference based on these incorrect values. When multiple errors 

occur, this method can reduce the risk of misleading the verification results more than 

using binary decisions only. 

For example, let signals a and b be two 3-bit signals in the design under 

validation. As shown in Figure 3-10(a), if the values of a and b are both correct, the 

observability of a and b are both 0.625. However, as shown in Figure 3-10(b), if the 

value of b recorded in the dump-file is 5 instead of the correct value 4, the 

observability of a can still be determined to be 0.500. The observability of a becomes 

smaller as the value of b becomes larger. The computed observability of a reasonably 

corresponds to the value change. 
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Figure 3-10: Observability analysis with correct and incorrect values 

 

 The situation can become even worse. As shown in Figure 3-10(c), the value of a 

and b are 4 and 5, which are both different from their correct values. However, our 

approach can still derive that the observability of a and b are 0.500 and 0.750 

respectively. The computed observability still adequately corresponds to the value 

changes of a and b. Therefore, our observability seems to have some degree of 

immunity to multiple errors.  

On the other hand, if we use tags in the example in Figure 3-10(c), tag Δ  on a 

and tag -Δ  on b can propagate through the operation “a<b”. Tag propagation rules 

determine that those tags are observable although in fact the real incorrect values of a 

and b are masked. The resulting tags do not correspond to the value change of a or b. 

Therefore, if multiple errors exist in the design under validation, tags may provide 

incorrect predications on error propagation. 

Besides the cases shown in Figure 3-10 (a), (b), and (c), there is still one case 
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where incorrect values are not masked and can cause discrepancies in observable 

outputs. For example, if a is changed to 4 and b is changed to 3, the output of the 

comparator will become FALSE. In such a case, internal design errors are considered 

as detected during simulation. Although the observability of a and b may be 

underestimated in this case due to multiple errors, it will not mislead the verification 

results because users know that an error occurs and causes output discrepancy. 

 

3.5 Experimental Results 

We conducted experiments on a subset of ITC’99 benchmark in VHDL and four 

designs written in Verilog HDL. The four designs are as follows: pcpu is a simple 

32-bit pipelined DLX CPU; div16 is a 16-bit divider; blkJ is a controller of black jack 

card game, and Mtrx implements a two by two matrix multiplication. The information 

for these design cases is presented in Table 3-3, including the total number of lines 

(#Line), the number of variables (#Var.), the number of test vectors (#Vec.), and the 

simulation time (Sim. Time). The test vectors applied in our experiments were 

randomly generated with very little manual guidance (e.g. reset handling) targeted on 

high statement coverage (~90%). The number of test vectors increased in increments 

of 1000 until statement coverage reaches our target. 

The coverage reports of the statement coverage metric and our 

Observability-enhanced Statements COverage Metric (OSCOM) are recorded in the 

columns “Stmt” and “OSCOM,” respectively. For each design case, OSCOM 

coverage is often less than the statement coverage. This means that some statements 
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are exercised but their observability is not high enough to reach our threshold of 0.93. 

Without sufficient observability, we are not confident about the accuracy of the 

simulation values if we only observe from the observation points. Consequently, 

OSCOM filters out these exercitations of statements, acting as a more stringent code 

coverage metric than statement coverage metric. 

 

We also conducted experiments to compare the propagation probabilities 

[29,44,45], tag simulation calculus [18,19] and our observability measures. We 

                                                 
3 The threshold of observability measures can be adjusted by tool users of our coverage analysis. It 
represents the observability requirement that tool users want every signal in the design to reach. 

Table 3-3 Comparing our observability with propagation probabilities,  
tag-based observability, and statement coverage metric 

 
Detected Bugs Undetected Bugs Design 

Name #Line #Var #Vec 
Sim. 
Time 

(s) 

Stmt 
(%) 

OSCOM
(%) PP Tag Ours 

(FL=∞)
Ours 

(FL=20) PP Tag Ours 
(FL=∞)

Ours 
(FL=20)

B01 110 7 1000 0.2 100.0 92.1 0.988 1.000 0.992 0.992 0.117 0.125 0.122 0.122

B02 70 5 1000 0.1 100.0 100.0 1.000 1.000 1.000 1.000 0.005 0.150 0.008 0.008

B03 141 21 1000 0.2 95.2 67.2 0.939 0.954 0.937 0.937 0.078 0.133 0.081 0.081

B04 102 19 1000 0.3 93.1 64.1 0.957 0.980 0.967 0.964 0.108 0.122 0.115 0.114

B05 332 25 1000 0.3 94.2 70.1 0.966 0.988 0.977 0.972 0.034 0.190 0.036 0.034

B06 128 9 1000 0.2 100.0 91.3 0.991 1.000 0.988 0.988 0.074 0.107 0.074 0.074

B07 92 11 2000 0.3 96.5 70.6 0.907 0.954 0.910 0.897 0.140 0.238 0.136 0.127

B08 89 23 2000 0.3 94.2 81.1 0.947 1.000 0.978 0.964 0.103 0.250 0.095 0.088

B11 118 21 2000 0.3 90.3 66.7 0.821 0.868 0.811 0.801 0.044 0.268 0.053 0.051

B14 509 27 5000 1.8 89.1 50.2 0.738 0.852 0.721 0.701 0.132 0.306 0.131 0.123

B21 1089 65 5000 3.8 90.2 53.1 0.778 0.915 0.770 0.766 0.113 0.298 0.110 0.103

div16 235 11 1000 0.3 100.0 77.2 0.934 0.964 0.942 0.939 0.063 0.344 0.065 0.065

pcpu 952 54 5000 1.6 87.3 59.3 0.738 0.862 0.813 0.793 0.168 0.285 0.171 0.171

blkJ 156 20 1000 0.2 97.3 80.1 0.938 0.957 0.958 0.950 0.079 0.118 0.081 0.074

Mtrx 80 18 1000 0.2 100.0 100.0 0.984 1.000 0.985 0.983 0.030 0.000 0.031 0.031
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designed an experiment to compare their capabilities in predicting the propagation of 

potential design bugs. For each design case, we randomly selected one expression and 

changed it into a different expression to inject a design bug. The change we made was 

randomly selected from typical bugs that designers usually induce according to 

research in the arena of mutant analysis [47]. By simulating faulty HDL design and 

comparing OP simulation values with the values of the original HDL design, we can 

determine whether or not the injected bugs are detected in this experiment. For each 

injected bug, the bug injection and identification process is repeated for 300 times. 

The overall results are reported in Table 3-3. 

 We then calculate the three observability measures above for the detected or 

undetected bug. Propagation probabilities (PP) were calculated according to the 

approach proposed in [29], which was introduced in chapter 2.2. This required 

repeating the following steps for 5000 iterations. The steps include infecting the data 

state of a variable using the perturbation function, simulating the program under test, 

and monitoring the results at the OPs and recording the number of program failures. 

 We calculated tag-based observability (Tag) is calculated according to the tag 

simulation calculus proposed in [19], which was introduced in chapter 2.1. If a tag 

injected on our injected bug was observed, we considered the computed observability 

to be 1. Otherwise, the observability was set to 0. Our observability measures were 

calculated using the proposed approach with frame_limit = 20 (OursFL=20) and 

frame_limit = ∞ (OursFL=∞). For the 300 iterations we ran, the average values of 

these observability measures for both detected and undetected design bugs are listed 

in Table 3-3. 
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 Experimental results reveal that the detection of a design error is strongly related 

to the values of all three observability measures. Errors with low observability are 

indeed difficult to detect at the observation points. In addition, the values of tag-based 

observability measures for undetected bugs tended to be higher than the other 

measures. For undetected bugs, if the observability is overestimated, the completeness 

of the validation and the correctness of the design under validation can be misjudged. 

For example, in the test case div16, the average tag-based observability is 0.344. This 

implies that 34.4% of undetected bugs will be judged as observable, which may lead 

to wrong conclusions. 

 On the other hand, our observability measures exhibit quite similar results as the 

propagation probability for both detected and undetected errors. These similar values 

mean that our approach should have capabilities similar to the statistics-based 

approach. For a hard-to-observe point that PPs can identify, our measures may very 

well do the same. Even if some heuristics, such as the limited-traversed-frame strategy, 

are used in our approach to reduce computational complexity, we can see that 

observability results are still very close to the results without any heuristics (FL=∞). 

 Since the accuracy of our approach is very similar to the statistics-based 

approach, we conducted another experiment to compare the computation time of both 

approaches. For each design, the computation time required to obtain observability 

measures for all signals is presented in the column “Avg. time for all vars” under “Our 

approach” in Table 3-4. Since the approach in [14] can only derive PPs for one signal 

at a time, the computation time for one signal is shown in the column “Avg. time for 

one var.”. For a design case with n variables, the total computation time of the 
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statistics-based approach to obtain PPs for all signals is “n * the computation time in 

the column PP for one var.” This is recorded in the column “Avg. time for all vars.” It 

is obvious that our approach is much faster than the statistics-based approach [14]. 

The speedup ratio (recorded in the column “spdup”) is defined as the ratio of “PP for 

all vars” to “OM for all vars.” Normalized simulation time, which is defined as the 

ration of the computation time for observability to the plain HDL simulation time, is 

also provided in Table 3-4 for both approaches to show the efficiency of observability 

calculation. The results show that our approach can greatly reduce the required 

computation time to a reasonable region. 

 

Table 3-4: Performance comparison with propagation probability 
 

Propagation Prob. Our approach (FL=20) 

Design 
Name 

Avg. 
time 

for one 
var. (s) 

Avg. 
time 

for all 
vars (s) 

Normalized
Sim. time 

Avg. 
time 

for all 
vars 
(s) 

Normalized
Sim. time 

Mem. 
(MB) 

Spdup 

B01 1620 11340 5.7*104 0.4 2.0 1.1 2.9*104

B02 1728 8640 8.6*104 0.5 5.0 0.8 1.7*104

B03 3373 70833 3.5*105 0.4 2.0 1.5 1.8*104

B04 3419 64961 2.2*105 1.3 4.4 3.3 4.9*104

B05 3229 80725 2.7*105 1.1 3.7 6.3 7.3*104

B06 1562 14058 7.0*104 0.3 1.5 0.9 4.8*104

B07 3597 39567 1.3*105 0.8 2.7 2.5 4.9*104

B08 3410 78430 2.6*105 5.2 17.3 4.8 1.5*104

B11 3735 78435 2.6*105 3.8 12.6 5.1 2.1*104

B14 19781 534090 3.0*105 201.2 111.8 18.3 2.7*103

B21 37301 2424600 6.4*105 452.2 119.0 39.5 5.4*103

div8 1640 18040 6.0*104 0.9 3.0 1.6 2.0*104

pcpu 21981 1187000 7.4*105 145.1 90.7 12.9 8.2*103

blkJ 1981 39620 2.0*105 1.8 9.0 1.2 2.2*104

Mtrx 1781 32166 1.6*105 0.6 3.0 1.0 5.4*104
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3.6 Summary 

In this chapter, we present a new probabilistic observability measure for HDL 

descriptions along with its efficient computation algorithm. Unlike tag-based 

approaches, which can provide only two levels of measurement, our fine-grained 

observability measures have less risk of overestimating the extent of validation with 

reasonable computation time. Even when multiple errors occur, we can still provide 

some meaningful values for users’ reference to reduce the risk of misleading the 

verification results. This is better than using binary decisions only. 

Experimental results show that the observability measures computed by our 

dump-file based approach have almost the same capability to identify hard-to-observe 

locations as the statistics-based approach [29]. However, our method is much faster, 

and is more suitable to be applied in the HDL codes of commercial products. 

Since hard-to-observe points can be identified using our observability measure, 

designers can insert assertions in those locations to find hidden bugs more easily. This 

observability-driven assertion insertion is simple, but should be very effective. Of 

course, it is also possible to generate a test vector set that creates some highly 

transparent sensitized paths to propagate potential incorrect values of the exercised 

statements to observation points, such as the extension works of OCCOM [18,19]. We 

will try to study this direction in the future based on our observability measures to 

provide a comprehensive solution for the observability issue during simulation. 
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Chapter 4 
 
Accurate Error Candidate Rank 
Ordering for Efficient HDL Debugging 
 

4.1 Debugging Priority for Quick Error Localization in 

Error Space 

 Deriving a reduced set of error candidates is helpful for HDL debugging. 

However, the derived error candidate set (called error space in this work) can still 

contain many error candidates and identifying true design errors by examining 

candidates one by one still requires much efforts and time. An interesting technique, 

called debugging priority, has been proposed for accelerating error searching in the 

derived candidate set [46]. A measurement, called Confidence Score (CS), has been 

developed to assess the likelihood of correctness for each error candidate. 

 The formula of CS is simple. Each sensitized statement of a CPO (a primary 

output with correct simulation value) can get one point of CS. We use the following 

example shown in Figure 4-1 to illustrate what sensitized statement is. The evaluation 

result of the decision “if(sel1)…else…” is “TRUE” and the evaluation result of the 

decision “if(sel2)…else…” is “FALSE”. Therefore, only statements f2 and f4 are 

possible to affect the value of PO1 and are also observed by PO1. These two 

statements f2 and f4 are defined as the sensitized statements of PO1 ( SS(PO1) ). Each 
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sensitized statement tends to be a correct statement because if it were a statement with 

design errors, the erroneous effects caused by this erroneous statement should cause 

the value of PO1 to be inconsistent with the expected value. However, there are two 

situations mentioned in [46], in which sensitized statements with design errors can not 

cause any observable incorrect behavior at PO1. One is that the design error is 

“non-activated” and the other is error masking. That is the erroneous effects are 

masked so that the value of PO1 can still remain correct. 

 

 

Figure 4-1: An example of sensitized path 

 

What error masking is ? The authors used a simple example shown in Figure 4-2 

to explain. The applied input vector is “PI1=2’b10; PI2=2’b01;” and the values of all 

variables are “E=2’b10; sel=1’b1; B=2’b11; D=2’b11; C=2’b10; A=2’b10; 

PO1=2’b01;”. If the statement f1 becomes an erroneous statement “D=PI1;”, the 

value of D will become 2’b10 instead of 2’b11. However, the output of the statement 
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f2 is still C=2’b10. There is no syndrome shown at PO1 because the activated error is 

masked by the statement f2. 

 

 

Figure 4-2: An example of error masking 

 

The authors think the probability that errors are not activated, P( non-activated ), 

is generally very small. For example, if the correct statement is “assign c = a + b;” 

and the erroneous one is “assign c= a * b”, only applying the input patterns “a=2; 

b=2;” and “a=0; b=0;” may generate the same outputs for both statements. 

Otherwise, errors are activated. In addition, the probability P(mask|activated) is not 

high in general as well.  Given P( non-activated ) and P( mask | activated ), the 

authors estimated the possibility for the sensitized statements to be erroneous while 

their corresponding PO is correct, denoted as P(error|CPOi) as shown in equation 

(4.1). 
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P(error|CPOi) = P(non-activated) + P(activated) * P(mask|activated)       (4.1) 

 

 Since P(non-activated) and P(mask|activated) are generally not high, 

P(error|CPOi) is generally not high, either. For instance, if P(non-activated)=0.1 and 

P(mask|activated)=0.3, P(error|CPOi) =0.1+0.9*0.3=0.37. For each PO with correct 

simulation value at each simulation cycle, the SS(CPOi) will be given one point 

because P(error|CPOi) is generally not high. If a statement gets 5 points, which is 

denoted as P(error|5CPOs), the probability for it to be erroneous can be estimated as 

equation (4.2). 

 

P(error|5CPOs) = P(error|CPO1)P(error|CPO2)P(error|CPO3)P(error|CPO4) 

P(error|CPO5)                                    (4.2) 

 

 Assume that each event of the probability is roughly independent to each other. 

If we take the value of P(error|CPOi) calculated previously for each P(error|CPOi), 

P(error|5 CPOs ) can be roughly estimated as 0.375 = 0.007. Therefore, the more 

points a sensitized statement has; the less possible it is to be a design error. This 

is why their CS suitable and capable to represent the confidence level of a statement 

on its correctness. 

By sorting error candidates according to the CS, error candidates obtained in 

error space identification are displayed in a prioritized order, from the most likely to 

the least likely one. With the ranked order, the authors expect that true design errors 
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can be put in the first few lines such that they should be found by designers in a few 

times of examinations if designers search errors according to the order. In their 

experimental results, debugging priority indeed can make design errors displayed in 

the front of the list of error space. Thus, this technique helps reduce the efforts spent 

on error searching in an error space. 

 

4.2 Challenges on Accurate Error Candidate Rank Ordering 

 Using CS to estimate the likelihood of correctness for error candidates can only 

work under the assumption that P( non-activated ) and P( mask|activated ) are both 

small. However, this is not always the case. Some HDL operations tend to mask 

erroneous effects by nature. For example, for a signal a [15:0], if b is assigned to be 

a[0], i.e. b is left-hand variable of statement “b = a[0]”. It is obvious that this bit 

selection operation “[0]” tends to mask an erroneous effect on signal a if there is any 

erroneous value on signal a. If the erroneous effects were masked from being 

observed at the POs, sensitized statements may get CS points even if design errors 

hiding within them. We intend to use the following to emphasize this point. 

 Suppose that the HDL code a designer intends to write is the Verilog HDL code 

in Figure 4-3(a). The design described in the HDL code has only one PO, PO1, on 

which simulation values are compared against the expected values to check the 

correctness of the design. The clock period of the clock signal clk is assumed to be 

10ns. If the HDL code is simulated with the input stimulus shown in Figure 4-3(b), we 

can obtain the simulation result as represented in Figure 4-3(c), in which PO1 is equal 



 82

to 4 from Time =1 to Time = 25. The simulation result in Figure 4-3(c) can be 

considered as the specification or the expected value of PO1 at Time =1 to Time = 25 

because the HDL code in Figure 4-3(a) is what the designer intends to write. 

 

 

Figure 4-3: A HDL code fragment 

 

However, if the statement at line 7 (denoted as S7) "counter = counter + 1" is 

carelessly written into "counter = counter + 2", the simulation result shall become 

the one shown in Figure 4-4(a). It can be seen that the simulation value of PO1 at 

Time = 25 in Figure 4-4(a) is different from the specification (the expected value of 

PO1) shown in Figure 4-3(c).  
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Figure 4-4: Erroneous Simulation Results and Debugging priority 

 

 According to the definition in [46], PO1 is an Erroneous Primary Output (EPO) 

and the clock cycle from t=15 to t=25 is the Error-Occurring clock Cycle (EOC). By 

using the error space identification approach in [46], an error space, {S1, S2, S3, S4, 

S5, S6, S7}, can be obtained. 

After obtaining the error space, the CS for each error candidate should be 

calculated for debugging priority. Each sensitized statement of a CPO (a primary 

output with correct simulation) at a time instance before EOC gets one CS point. 

Finding sensitized statements requires backward tracing from the PO’s in the reverse 

direction of the data flow until Primary Inputs (PIs), registers, or constants are 

reached. When reaching a conditional vertex, such as S2 and S5 in Fig. 1(a), the 

authors propose to traverse the taken branch(es) and the control signal and to ignore 

the untaken branch(es). For example, at Time=1, since the evaluation result of 

"if(reset)" at Time=1 is TRUE, the traversal reaches S5 and then back traverses the 

True branch and the control signal , which is then reset. The obtained sensitized 

statements for PO1 at Time=1 are {S5, S6} and they both receive one CS point. 
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As can be seen from the above, all the traversals must commence with one PO. 

Each PO traversal is completed in a particular simulation instance. This process is 

repeated until all the PO traversals in a particular simulation instance have been 

completed. Finally, once all the PO traversals in all the simulation instances have been 

completed, the debugging priority shown in Figure 4-4(b) is obtained. The numbers 

within the parentheses are the CSs of the corresponding error candidates. 

 It can be seen that the design error in statement S7 "counter = counter + 2" is 

not placed at the first line but rather in the fifth in Figure 4-4(b). If circuit designers 

examine error candidates according to this debugging priority, four trials would be 

wasted before the true error S7 can be found. The reason why design error S7 is 

placed at the fifth is because S7 receives two CS points due to the fact that the 

erroneous values caused by S7 are masked twice on its way propagating to PO1. 

The first error masking occurs at Time=5. It can be seen that the erroneous 

statement S7 causes an incorrect value (3 is different from the correct value 2 shown 

in Figure 4-3(c) as we highlighted using an underline) to be displayed on the signal 

counter at Time=5. However, this incorrect value 3 is masked by the operation 

"counter<PI2" in S2 because both the correct value (2) and the incorrect one (3) 

cause the same result at the output of the operation "counter<PI2", i.e they are both 

smaller than the value of PO2 (4). 

Similar error masking also occurs at Time=15. Although the incorrect value of 

the counter is propagated through the output of “counter<PI2”, i.e., causing it to be 

FALSE. However, the incorrect result, FALSE, does not alter the value of PO1 (4) i.e. 

signal a is 4 at Time=15. It is masked by the conditional operation “if(…)….else ….” 
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and can not cause incorrect values at PO1 at Time=15. Due to the fact that CS does 

not consider the possible error masking that may caused by the operation 

“counter<PI2” and the conditional operation “if(…)….else ….”., S7 is given a CS 

score of two points. This makes S7 put at line 5 in the candidate list in Figure 4-4(b). 

The accuracy of the debugging priority is reduced due to the lack of considering error 

masking of the CS. 

 

4.3 Probabilistic Confidence Score for Accurate Debugging 

Priority 

 Observing the disadvantage of confidence score (CS), we intend to estimate of 

the Likelihood Of Error Masking (LOEM) for a Sensitized Statement (SS) to assess 

the score the SS can receive. If the LOEM of an arbitrary SS SSi is quite low, error 

masking is almost impossible to occur on the paths from SSi way to POs. It should be 

comparatively safe to consider SSi as a correct statement and give SSi a high score. On 

the contrary, if the LOEM of SSi is high, it should be given a low score. 

 In the following introduction, the input faulty HDL design is modeled as a 

modified Control/Data Flow Graph (CDFG) G = (V, E), where V is the set of vertices 

and E is the set of edges connecting the vertices. Let v be a vertex in V. Each vertex v 

corresponds to an operation in the HDL code.  Function fv and variable yv are also 

associated with vertex v. Function fv is the function of the operation to which v 

corresponds. Variable yv is the output variable of fv or the left-hand variable of the 

operation. The Verilog HDL code fragment in Figure 4-3(a) is used as an example and 
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its CDFG is constructed as shown in Figure 4-5. Vertex “1:*” corresponds to 

operation “a=PI1*4” in the statement at line 1 (S1). Function f1:* is multiplication “*” 

and y1:* is signal a. Vertex “2:if(…)….else….” corresponds to the operation “if(…) … 

else ...” at lines 2 to 4. The functionality of vertex “2:if(…)….else….” is quite similar 

to that of a multiplexer. Vertex PO1 is a special vertex representing the only PO, PO1, 

of the circuit. 

Edge (v, u) ∈E indicates that the input of vertex u is data dependent on the 

output of v. As shown in Figure 4-5, an edge (1:*, 4:=) exists since the operation 

“4:=” takes the output of vertex “1:*” as its input. The fanout of v is a set of vertices u 

such that there is an edge from v to u. The fanin of v is a set of vertices k such that 

there is an edge from k to v. A path P from vertex u to vertex u’ is a sequence <v0, v1, 

v2,…, vk> of vertices such that u = v0, u’ = vk, and (vi-1, vi) ∈  E. 

 

 

Figure 4-5: The CDFG of the HDL code in Figure 4-1 

 

Suppose that verification finds incorrect circuit behavior at the nth positive edge 
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of the clock signal t=cn
4 . This special positive edge of the clock is called 

Error-Occurring Edge (EOE). Assume that the faulty DUV has m POs {PO1, PO2, …, 

POm} and n-1 clock cycles pass before the EOE (t=cn). 

To introduce how we model error masking and estimate LOEM, we first 

consider that a design error hides within an arbitrary statement v. If the erroneous 

statement v caused an incorrect value w on its left-hand variable yv at time instance 

t=ti, this incorrect value w would not cause any incorrect behaviors at any POs at all 

the rising edges of clock before t=cn. Otherwise, EOE is not t=cn, but another earlier 

rising edge of the clock. More specifically, for an arbitrary POj at an arbitrary rising 

edge of clock t=ck before EOE, the incorrect value w is masked by some vertices on 

the paths from statement v at t=ti (denoted as v@t=ti) to POj at t=ck (denoted as 

POj@t=ck), causing the simulation value of POj to be the same as the correct value at 

t=ck. 

 

)@()(@@ kjctPOttv ctPOCVwf
kji

===→=                                 (4.3) 

where 
kji ctPOttvf =→= @@  is the function of the paths from v in time frame t=ti to POj 

in time frame t=ck and CV(POj@t=ck) is the correct value of POj at t=ck. 

 

 For all the other POs of the DUV, the incorrect value w would also be masked on 

the way to them at all the rising edges before the EOE so that it could remain 

uncovered before EOE. That is, for each PO POj at each rising edge of clock t=ck 

                                                 
4 We assume that the simulation values of all the POs are compared with the correct values only on the rising edges of the clock 
signal. If DUV is a falling-edge triggered or double-edge triggered design, the modeling and the computation algorithm can be 
easily changed to fit to it. 
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before EOE, the function of the path(s) from vertex v at t=ti that goes to POj at t=ck 

must generate the correct value of POj at t=ck with w, even if w is an incorrect value. 

The above description can be modeled in (4.4). 
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We now consider the likelihood that the incorrect value w truly exists on yv but is 

masked from causing any incorrect values on POs at any time instances before EOE. 

We first notice that all the possible values of yv that can satisfy (4.4) forms a special 

set of values. We call it the Masked Value Set (MVS) of vertex v at time instance t=ti 

(denoted as MVS(v@t=ti)). Its formula is given in (4.5). 
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 Each element in MVS(v@t=ti) retains the correct values of all POs at all the 

rising edges of clock before the EOE, no matter it is a correct value or not. The correct 

value of the output of vertex v at t=ti is of course contained in MVS(v@t=ti). This 

justifies the existence of MVS(v@t=ti). If MVS(v@t=ti) contains only one element, 

obviously it will be the correct value of yv at t=ti. In this case, no incorrect values ever 

exist in MVS(v@t=ti) and error masking can never occur. Statement v at t=ti is given 

a high score. On the other hand, if the set contains many elements, an incorrect value 
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is very likely to exist in the set and to become an incorrect value that remains 

unrevealed at all the rising edges of the clock before EOE. The correctness of 

statement v is less obvious. In other words, the more elements MVS(v@t=ti) contains; 

the more likely that the simulated value of v at t=ti is a masked incorrect value. Hence, 

we define the Likelihood Of Error Masking (LOEM) of statement v at time instance 

t=ti as (4.6). Its complement is the likelihood that an erroneous value of v at t=ti is 

propagated to at least one PO before EOE and observed (the Likelihood Of Error 

Propagating (LOEP) of v at t=ti). We show its formula in (4.7) 
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where BW is the bit width of the output of variable v. 

 In the given input value change dump file, the output variable yv of an arbitrary 

statement v can have many times of value changes, say l times, at different time 

instances before EOE {t=t1, t=t2,…, t=tl}. Each time the value of yv changes at time 

instance t=ti, there will be one particular value of LOEP(v@t=ti). The Probabilistic 

Confidence Score of v (PCS(v)) is defined as the maximum among these LOEP values, 

as described in (4.8). 

 

},...,,{  where},@({)( 21 lii tttttttttvLOEPMAXvPCS ===∈==           (4.8) 
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A low LOEP (high LOEM) means that any erroneous effects caused by v at t=ti 

are very possible to be masked. The correctness of v at t=ti may become doubtful even 

if the simulation values of all the POs are correct before EOE. It is reasonable to give 

v less PCS due to its small LOEP value. On the other hand, if the LOEP value is high, 

it is equally reasonable to give it more PCS. Therefore, we define PCS as (6). It can 

be seen that PCS computation now turns into the problem of how to efficiently 

compute the Masked Value Sets of each error candidate at different time instances 

before an EOE. 

 

4.4 An Efficient Probabilistic Confidence Score Calculation 

Algorithm 

The proposed PCS computation algorithm is a topology-based analysis with time 

frame expansion to handle the sequential behavior of the DUV. While calculating the 

LOEP of the output variable of vertex v in time frame t=ti, the algorithm will consider 

each sensitized path from v in time frame t=ti that goes to any PO in each time frame 

before EOE. This path-oriented computation scheme is defined in (4.9), which can be 

derived from (4.5). 
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The set {x | )(@@ xf
kji ctPOttv =→= = CV(POj@t=ck)} is defined as the Masked Value 
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Set of vertex v at time instance t=ti with respect to POj at t=ck (denoted as 

MVS(v@t=ti)POj@t=ck). An element of the set other than the correct value can be 

regarded as an incorrect value that is masked by some vertices on the path(s) from v at 

t=ti to POj at t=ck, thus keeping the correct value of POj at t=ck. According to (4.9), if 

it is possible to derive MVS(v@t=ti)POj@t=ck for each POj at each time frame t=ck, then 

intersecting these sets yields MVS(v@t=ti). After deriving MVS(v@t=ti), PCS of 

vertex v can be obtained according to formula (4.7) and (4.8). 

We may observe that the definition and the derivation of Probabilistic 

Confidence Score are based on LOEP and Masked Value Set, which were introduced 

in section 3.2 before. Thus, the computation algorithm for MVS’s and LOEPs can be 

applied to PCS computation with some modifications. If there is exactly one path 

from v at t=ti to a PO POj at t=ck, the induction-based computation approach 

introduced in section 3.3.1 and section 3.3.2 can be applied to compute exact 

MVS(v@t=ti)POj@t=ck. If there are multiple paths from v at t=ti to POj at t=ck, the 

quick estimation approach introduced in section 3.3.3 that guarantees lower-bound 

LOEP estimations will be applied. In addition, to avoid unnecessary back-tracing, the 

bounded traversal strategy introduced in section 3.3.4.1 is also applied. The entire 

PCS computation algorithm is represented as the pseudo code shown in Figure 4-6, 

which incorporates each part mentioned above. 

The input of this algorithm are 1) the Design Under Validation (DUV) described 

in a HDL, 2) the value change dumpfile during simulation, 3) the Error-occurring 

Edge (EOE), and 4) an error space obtained by any error space identification 

approach. 
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Figure 4-6: Pseudo-code of PCS Computation Algorithm 

 

During traversal(s) that starts from a PO (StartPO) at a time instance (StartTime), 

if vertex v is visited for the first time, a single path case is temporarily assumed. The 

PCS_computation (DUV, Dumpfile, EOE, Error space) 
1: 3-address Code Generation and Conditional statement odification 
2: CDFG Construction                                      
3: Initialize each vertex as “untraversed” 
4: for each positive edge of clock t=ck before EOE 
5:   for each primary output POj 
6:  InitialMVS = {CV(POj@t=ck)}; Find the fanin vertex a1 of POj at t=ck 
7:  MVS_Com_for_Vertex (InitialMVS, a1, POj, ck, ck) 
8: Calculate PCS with the computed MVSs 
 
 
MVS_Com_for_Vertex(PreviousMVS, vertex v, StartPO, StartTime, time tj) 
//*** Modification for incorporating MVS computation for multiple paths *** 
1: if traversed for first time in traversal starting from StartPO at StartTime 
2:   if MVS(v@t=tj) = = ∅  
3:  MVS(v@t=tj) = PreviousMVS 
4:   else 
5:    if MVS(v@t=tj) ⊆  PreviousMVS  //**Condition of Bounded  traversal 
6:    return 
7:    MVSforRecovery(v@t=tj) = MVS(v@t=tj) 
8:    MVS(v@t=tj) = MVS(v@t=tj) I  PreviousMVS 
9: else //Multiple paths. Recovering to the previous status before intersection 
10:   MVS(v@t=tj) = MVSforRecovery(v@t=tj) 
//*** Modification for incorporating MVS computation for multiple paths *** 
11: if v is a control vertex 
12:   Mark the fanin vertex(es) on the untaken branch(es) as “inactive” 
13: for each active fanin vertex u of v 
14:   if edge (u, v) across time frame 
15:       th = tj – clock_period 
16:     if th <0 
17:     return 
18:   Compute CurrentMVS, which is { SPreviousCV)(| ∈xfx v } 
19:   MVS_Com_for_Vertex(CurrentMVS, u, StartPO, StartTime, th) 
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PreviousMVS will be intersected with MVS(v@t=ti), which is already the intersection 

of many PreviousMVSs. However, if this vertex v is found traversed for two or more 

times in the traversal starting from StartPO at StartTime, there are multiple paths from 

v at t=ti to StartPO at StartTime. Then, the previously recorded 

MVSforRecovery(v@t=ti) is used to chancel intersections made in this traversal 

before. 

During the MVS computation process, if the condition at line 5 of the 

MVS_Com_for_vertex subroutine is met, according to Theorem 2 introduced in 

section 3.4, additional traversal and MVS computation cannot affect the already 

computed MVS. Thus, an immediate return from subroutine MVS_Com_for_vertex at 

line 6 is made and precious computation time is saved. 

 The preparation phases of this algorithm are shown at lines 1 and 2. The 

3-address code generations and the conditional statement modification introduced in 

section 3.3.3 must be conducted first for the information required in MVS 

computation for control vertices (conditional statements). The detailed conditional 

statement modification algorithm can be found in [19]. Next, a CDFG based on the 

input DUV described in a HDL is constructed. 

The example in Figure 4-3 is used to demonstrate the processes of our PCS 

computation and its performance in the derivation of a debugging priority. After some 

initializations, the CDFG of the DUV based on the HDL code in Figure4-3 is 

constructed as shown in Figure 4-7(a). Then, a backward traversal from PO1 at t=1 

commences by calling subroutine MVS_Com_for_vertex with the inputs 

PreviousMVS={4}, vertex v=”2:if”, StartPO=PO1, and StartTime=1. 
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Figure 4-7: Computation processes starting from PO1 at t=1 

 

When subroutine MVS_Com_for_vertex is called for the first time, the traversal 

reaches vertex “2:if” in time frame t=1 also for the first time. As shown in Figure 

4-7(b), the recorded MVS(2:if@t=1)={4} and no MVSforRecovery is recorded. 

Vertex “2:if” in time frame t=1 is a control vertex. Therefore, there are two fanin 

vertices “2:<” and “3:=” for further backward traversals. We decide to traverse “2:<” 

before traversing to “3:=” and compute CurrentMVS. Due to the fact that 

PreviousMVS is {4}, the MVS computation for conditional statements will be used 

and we obtain CurrentMVS {1}. The computation process is shown in Figure 4-7(b). 

Subroutine MVS_Com_for_Vertex is then called for the second time and “2:<” in 

time frame t=1 is reached. The computation status is shown in Figure 4-7(c). Similar 

computations is repeated by recursively vertex by vertex vertex “6:=” in time frame 

t=1 is reached. The computation results along the traversal from “2:if” to “6:=” are 
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shown in Figure 4-7(d), where each set of integers next to an edge is the recorded 

MVS. Since vertex “6:=” in time frame t=1 has no fanin vertex, the computation will 

traverse another fanin vertex “3:=” of vertex “2:if.” The repetitious calling of 

subroutine MVS_Com_for_Vertex can produce the results shown in Figure 4-7(e). 

After completing the traversals and MVS computations starting from PO1 in 

time frame t=1, continue the backward-traversal based MVS computation from PO1 

in time frame t=5 can produce the results shown in Figure 4-8(a) and (b). When the 

computation reaches vertex “5:if” in time frame t=1, PreviousMVS {[0~15]} will 

include MVS(5:if@t=1)={[0~3]}. The bounding traversal condition is satisfied and 

the traversal is bounded here. 

 

 

Figure 4-8: Computation starting from PO1 at t=5 and t=15 
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After all the POs at all the positive clock edges before the EOE are applied in 

MVS computation, PCS is calculated with formulas based on the computed MVSs. 

With PCS, a debugging priority with PCS (in round brackets) is obtained, as shown in 

Figure 4-9. It can be seen that the design error S7 is displayed in the first line. A 

search for design errors according to this debugging priority will succeed immediately. 

In the experimental results in the next section, it is also proven that the proposed PCS 

can efficiently deliver debugging priority with high accuracy, which greatly reduces 

both the time and efforts required for design error searches in the input error space. 

 

 
Figure 4-9: Debugging priority and the PCS 

 

4.5 Experimental Results 

 The experiments are conducted on a subset of ITC’99 benchmark [1] and four 

other designs written in Verilog HDL. Number of lines (#line) of all the designs and 

the number of variables (#var) are presented in Table 4-1. 

For every design case, one statement is randomly chosen and injected with an 

artificial design error based on typical bugs that designers usually induce [47]. With 

the injected error, a simulation is run until some incorrect values occur on POs. Then, 
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the error space identification approach proposed in [46]5 is applied to obtain an error 

space. After that, CS calculation in [46] and our proposed PCS calculation are both 

applied to derive two respective debugging priorities for the same error space. 

With a debugging priority, error candidates that a digital circuit designer has to 

examine before he/she can find a design error are often less than blindly searching. In 

a sense, we can think that the size of the error space is thus reduced as a result of a 

debugging priority. With respect to the two debugging priorities, since the injected 

error may have two different ranked orders, the effectiveness of the two debugging 

priorities on the size reduction of the same error space are also different. To compare 

the effectiveness of the two debugging priorities, a quantitative metric called Effective 

Size Ratio (ESR) is formulated as “the rank of the injected error/the number of error 

candidates in the error space”. The two debugging priorities sorted with CS and with 

PCS have their own ESRs, respectively. Smaller ESR means the error has better rank 

with respect to the size of the error space. That also implies that the effective size 

reduction contributed by the corresponding debugging priority is larger and the effort 

required for design error searching in the error space is less. 

                                                 
5 We apply the error space identification method proposed in [22]. However, the proposed PCS is theoretically applicable to any 

other error candidate identification methods. 
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With each design case, the above experimental processes are repeated for fifty 

times. In each repetition, the ESR of CS and PCS are calculated and recorded. The 

average ESR values with respect to CS and PCS are also presented in the columns 

“Avg_ESR_CS” and “Avg_ESR_PCS”, respectively. The number of times, in which 

the ESR values of CS and PCS appear in three ESR value ranges, are also recorded to 

show the distribution of ESR values. The three ESR ranges are “ESR<0.2 (0~0.2)”, 

“0.2<ESR<0.5 (0.2~0.5)”, and “0.5<ESR (0.5~1.0)”. The number of times is 

presented in the column “#case_CS” and “#case_PCS”, respectively. 

In Table 4-1, it can be observed that when PCS is used to obtain a debugging 

Table 4-1 A Comparison of Confidence Score (CS) and Probabilistic Confidence Score (PCS) 
Performances 

 

Confidence Score (CS) Probabilistic Confidence Score 
(PCS) 

#cases_CS #case_PCS 
design 
name #line #var 

0~0.2 0.2~0.5 0.5~1.0

Avg_ 
ESR_CS

t(s)
0~0.2 0.2~0.5 0.5~1.0 

Avg_ 
ESR_PCS 

t(s) 
ESR Ratio

B01 110 7 40 10 0 0.11 0.3 49 1 0 0.07 0.5 0.64
B02 70 5 38 12 0 0.16 0.3 50 0 0 0.11 0.5 0.69
B03 141 21 35 15 0 0.18 0.4 45 5 0 0.09 0.5 0.50
B04 102 19 32 17 1 0.23 0.3 45 5 0 0.11 0.4 0.48
B05 332 25 24 23 3 0.26 1.3 43 7 0 0.10 1.7 0.38
B07 92 11 37 13 0 0.21 0.4 46 4 0 0.09 0.6 0.43
B08 89 23 32 17 1 0.24 0.6 44 6 0 0.10 0.9 0.42
B14 509 27 17 26 7 0.36 3.8 37 13 0 0.15 5.2 0.42
B21 1089 65 14 28 8 0.42 6.7 31 19 0 0.17 9.7 0.40
pcpu 952 54 15 30 5 0.37 4.1 33 17 0 0.16 6.1 0.43
div16 235 11 23 24 3 0.25 0.7 42 8 0 0.12 1.0 0.48
mtrx 80 11 37 13 0 0.19 0.4 50 0 0 0.11 0.6 0.58
rankf 656 48 18 27 5 0.29 3.1 33 17 0 0.17 4.6 0.59
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priority, in all the design cases, the average ESR values are all less than 0.2 and are 

also less than the average ESR values of CS. For example, in design “B02”, if CS is 

used to derive debugging priority, 38 times out of 50 times the ESR value is less than 

0.2. In other words, our created errors are placed in the first twenty percent in the 

displayed list of error space for 38 times out of 50 experimental times. But, if PCS is 

applied instead, in each of the 50 repetitions, the injected error always appears in the 

first twenty percent. If a designer conduct error searching on design “B02” with the 

debugging priority sorted with PCS, he/she will locate the error by checking less than 

twenty percent of the derived error candidates. At least eighty percent of searching 

effort is saved. Moreover, it can be seen that ESR values of PCS is never greater than 

0.5 in the fifty repetitions. This means that even in the worst case of the fifty 

repetitions, a debugging priority sorted with PCS can still save more than half the 

amount of efforts needed for design error searching in the error space. By contrast, the 

CS method was not found to offer this benefit. 

From the values of Avg_ESR_PCS and Avg_ESR_CS, it can be observed that 

the effective size reduction with respect to PCS is much greater than the one with 

respect to CS. The ratio Avg_ESR_PCS to Avg_ESR_CS shown in the column “ESR 

Ratio” is about 0.49 on average and 0.38 in the best case, meaning that with PCS, a 

50% further size reduction, on average, is possible and a 62% size reduction is also 

achieved in the best case, as compared to CS. Therefore, on average, the proposed 

PCS method should save much more time/effort needed in the error searching process 

in the error space than CS. The cost of this improvement is little computation time, as 

compared to CS. The computation time needed for the two measurements, PCS and 



 100

CS, are presented in the columns “t(s)”. It can be seen that in the worst case, it takes 2 

extra seconds to obtain PCS as compared to the time required to obtain CS (4.1s). 

This extra cost of computation time is acceptable if we notice that it should usually 

takes more than 2 seconds for a designer to examine one error candidate to justify its 

correctness, but the number of examinations saved as a result of applying PCS is 

numerous. 

 

4.6 Summary 

 This chapter presents a probabilistic measurement, PCS, to derive an accurate 

and reliable debugging priority for quick error searching among error candidates in an 

error space. Instead of assuming that the erroneous effects caused by some activated 

errors are seldom masked, the proposed PCS takes error masking into consideration 

and estimates the Likelihood Of Error-Propagating (LOEP) of an error candidate. The 

idea is that if the LOEP is high, error masking is unlikely to occur and the error 

candidate is a false candidate with high possibility, i.e. the candidate tends to be a 

correct statement. On the other hand, if the LOEP is low, occurrence of error masking 

becomes quite possible. The suspicion of the error candidate still remains and this 

candidate should thus receive a low PCS score. 

The experimental results confirm that the proposed PCS measurement is indeed 

accurate in estimating the likelihood of correctness for error candidates. In most 

experimental cases, the created design errors can be located in the first few lines of 

the candidate list of the input error space. As a result, debugging priority sorted with 

the proposed PCS can effectively speed up error searching process in the input error 
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space. As compared to CS, the proposed PCS-based debugging priority can save more 

than half of the efforts (or time) needed for error searching process in an error space 

in our experiments, at the cost of little extra computation time. The time saving 

contributed by the proposed PCS method should usually much larger than the extra 

computation time the PCS calculation needs. Therefore, the gain of the proposed PCS 

can often outweigh the cost of extra computation time the PCS needs. 
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Chapter 5 
 
Conclusions and Future Works 
 

Simulation-based functional validation is still one of popular means to verify a 

digital hardware design described in a HDL. In simulation-based validation, the 

circuit behavior of an implementation described in a HDL can only be compared 

against the expected behavior or the specification on Observation Points (OPs). Even 

if some design errors are executed and activated, the erroneous effects caused by the 

design errors are still required to be propagated to the OPs for error detection. 

In this thesis, we have implemented a probabilistic observability measure for 

HDL descriptions. Unlike tag-based approaches, which can provide only two levels of 

measurement, our fine-grained observability measures have less possibility of 

overestimating the extent of validation with reasonable computation time. Even when 

multiple errors occur, we still can provide some meaningful values for users' reference 

to reduce the risk of misleading the verification results. This is better than using 

binary decisions only. 

The proposed probabilistic observability measures can be used to replace tags for 

the application of observability-based code coverage metric. In addition, since 

hard-to-observe points can be identified using our observability measure, designers 

can insert assertions in those locations to find hard-to-observe bugs more easily. This 

observability-driven assertion insertion is simple, but should be very effective. 
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The proposed observability measures for HDL descriptions can also be applied 

to assist debugging faulty HDL designs when a discrepancy between the simulation 

values of the OPs and the expected values occurs. The probabilistic observability 

measures can be used as a new probabilistic confidence score, which has better 

capability of estimating the likelihood of correctness for error candidates in error 

space. The experimental results shown in section 4.5 confirm that the proposed PCS 

measurement is indeed accurate in estimating the likelihood of correctness such that 

accurate debugging priority can be obtained. As a result, debugging priority sorted 

with the proposed PCS can effectively speed up error searching process in the input 

error space. As compared to CS in [46], the PCS-based debugging priority can save 

more than half of the efforts (or time) needed for error searching process in an error 

space in our experiments, at the cost of little extra computation time. The time saving 

contributed by the proposed PCS method should usually be much larger than the extra 

computation time the PCS calculation needs. Therefore, the gain of the proposed PCS 

can often outweigh the cost of extra computation time the PCS needs. 

One possible future research direction is to generate a test vector set that creates 

some highly transparent sensitized paths to propagate potential incorrect values of the 

exercised statements to OPs for higher observability-based coverage. Other possible 

future improvements may include 1) more accurate observability estimation 

approaches for multiple paths, 2) a more accurate probabilistic observability measure 

by considering the probability distribution of each signal, and 3) integrating our 

dump-file based observability and PCS-based HDL debugging approach with 

commercial HDL simulator to form an efficient verification/debugging framework. 
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These future directions may provide a comprehensive solution for the observability 

issue during simulation-based functional validation. 
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