
 1

Chapter 1

Introduction

1.1 Role of Simulation-Based Functional Validation

While silicon capacity continues to increase and the size of devices and the

minimal width of lines are decreasing rapidly, Integrated Circuit (IC) designers could

integrate many functions, even a whole complex system, into a single chip. A typical

single SoC may consist of millions of logic gates, raising the immense potential for

design errors and thus significantly complicating the verification task. Verification is

now perceived as the major bottleneck in integrated circuit design [1,2].

Formal verification techniques have partially alleviated this problem. These

techniques use mathematical or formal techniques to exactly prove or disprove the

properties about a hardware design. Equivalence checking [3,4,5] attempts to prove

that the two compared designs (the specification and the implementation) are logically

equivalent. A popular use of this kind of techniques is to verify that the gate-level

netlist, which is often generated by a synthesis tool, correctly implements the original

Hardware Description Language (HDL) codes. In this usage case, equivalence

checking can be quite useful to ensure the conformance of the synthesis results.

Nevertheless, to verify the correctness of the initial register-transfer level (RTL) HDL

descriptions requires other approaches.

Model checking [6,7,8] is another application of formal verification techniques.

 2

It often operates directly on Binary Decision Diagrams (BDDs) to formally prove or

disprove some properties or assertions of a hardware design. Due to the rapid progress

of SATisfiability solver (SAT solver), recently researches of model checking [9,10]

tend to exploit SAT solvers instead of BDDs. These model checkers may be so

powerful that they can determine whether some deadlock conditions may occur or

they can formally verify relates to interfaces. Although the formal techniques for

language containment, model checking, property checking, and assertion-based

verification [11] are making progress on the problem of verifying the correctness of

the initial HDL codes, there is no indication that these techniques will be able to offer

comprehensive verification across a wide variety of designs. For this reason, and

perhaps because of the intuitive appeal of simulation, it appears that simulation-based

functional validation is still one of the popular means for design verification for some

time to come.

Nevertheless, functional validation based on simulation can be only partially

completed. To address this incompleteness, coverage-driven semiformal methods

have been developed. These methods exert better control over simulation by using

various schemes to generate input stimuli and assess the extent of verification

completeness. The goal is to achieve comprehensive validation without wasted efforts.

Coverage metrics drive simulation resources to right direction and help approximate

the goal.

 3

1.2 Classification of Coverage Metrics for Validation on

HDL Descriptions

1.2.1 Code Coverage Metrics

The problem of verifying the correctness of Design Under Validation (DUV)

described in a HDL using simulation is similar to the software testing problem

because a HDL description is quite similar to a program written in a high-level

programming language like C. As a result, code coverage metrics for HDL codes are

largely derived from metrics used in software testing. They are mainly used to

identify which code structure classes in the HDL code are exercised during

simulation.

These code structures are defined on a Control Flow Graph (CFG), which is a

graphical representation of a program’s control structure [12, Ch. 3]. Given a set of

program stimuli, one can determine the code structures of the HDL code activated by

the stimuli. The simplest one should be line or statement coverage metric. The line

coverage metric measures the number of times every statement is exercised by the

program stimuli. More sophisticated code-based coverage metrics are branches,

expression, and path coverage. These code coverage metrics involve the CFG

corresponding to the HDL code. Control statements constitute the branching point in

the CFG. We use the following Verilog code fragment shown in Figure 1-1 to illustrate

each aforementioned code coverage metrics.

 4

Figure 1-1: A HDL code example

The if statement on line 9 has (a | b) as the control expression. Branch coverage

metric requires exercising each possible direction from a control statement. For the if

statement, lines 10 and 12 must both be executed during a simulation run. Similarly,

for the case statement on line 2, lines 3, 4, and 5 must be executed.

A more sophisticated metric, expression coverage metric, requires exercising all

the possible ways that an expression can yield each value. For instance, for the control

expression (a | b), in addition to the case where a = 0 and b = 0, we must exercise the

two separate cases where the expression gives 1. The first case is a = 1 and b = 0 and

the other is a = 0 and b = 1.

Path coverage metric refers to paths in the CFG. For instance, in the Verilog

example, the branch of the case statement on line 4 followed by the else branch of the

if statement defines one path through the CFG. The branch of the case statement on

line 5 followed by the true branch of the if statement is another path through the CFG.

1: always@(sel or a or b or c or d1) begin
2: case(sel)
3: 3’b001: z = a;
4: 3’b010: z = b;
5: 3’b100: z = c;
6: default: z = 0;
7: endcase
8: d1 = z + 2;
9: if(a | b)
10: d = d1 + 5;
11: else
12: d = d1 – 1;
13: end

 5

A potential goal of software testing is to have 100% path coverage, which implies

100% branch and line coverage. However, 100% path coverage is a very stringent

requirement and the number of paths in a program may be exponentially related to

program size. For this reason, exercising all paths may be impossible. Representative

subsets are usually chosen by verification engineers or circuit designers with some

heuristics.

Measuring the aforementioned code coverage metrics requires little overhead,

and because of the ease of interpreting coverage results, these metrics are popularly

used nowadays. Almost all design groups use some form of code coverage, and many

commercial tools are available to measure them. Nevertheless, unlike the case with

software, achieving certain extent of code coverage for hardware is a minimum

requirement because that hardware designs are highly concurrent. More than one code

fragment is active at a time, thus fundamentally distinguishing HDL code from

sequential software. The aforementioned code coverage metrics do not address this

essential hardware characteristic. Consequently, requiring complete code coverage for

hardware, although necessary, is not enough.

1.2.2 Coverage Metrics Based on Circuit Structure

 Toggle coverage should be the simplest metric that is based on circuit structure.

The metric requires that each wire in the circuit switches from 0 to 1 or 1 to 0 at some

time instances during simulation. This metric can identify physical portions of the

DUV that are not properly exercised. Many other sophisticated metrics in this class

 6

are developed based upon toggle coverage.

Separating circuits into data path and control logics is reasonable for defining

more useful circuit-structure based metrics. In the data path portion, registers deserve

special attention during validation. Each register must be initialized, loaded, and read

from, and each feasible register-to-register path must be exercised.

Coverage metrics of this class are defined on exercising the concerned circuit

structures. Like code coverage metrics, they are easy to measure and intuitive to

interpret and thus are popular. However, circuit-structure coverage metrics are defined

on static, structural representations; hence their ability to quantify and pose

requirements on sequential behavior is limited. As a result, similar to code coverage

metrics, circuit-structure based metrics only provide a lower bound validation

requirement as well.

1.2.3 Coverage Metrics Defined on Finite State Machine

In order to quantify and pose requirements on sequential behavior of the DUV,

metrics defined on state transition graphs are developed and they are truly more

powerful in this regard. These metrics require state, transition, or limited path

coverage on a finite state machine (FSM) system representation;

Because FSM descriptions for complete systems are prohibitively large, these

metrics must be defined on smaller, more abstract FSMs. We classify FSMs into two

broad categories:

1. Hand-written FSMs that capture the behavior of the design at a high level.

 7

2. FSMs automatically extracted from the design description. Typically, after

a set of state variables is selected, the design is projected onto this set to

obtain an abstract FSM.

Metrics in the first category are less dependent on implementation details and

encapsulate the design intent more succinctly. However, constructing the abstract

FSM and maintaining it as the design evolves takes considerable effort. Moreover,

there is no guarantee that the implementation will conform to the high-level model.

Despite these drawbacks, specifying the system from an alternative viewpoint is an

effective method for exposing design errors. Experience shows that using test

scenarios targeted at increasing this kind of coverage has detected many

difficult-to-find bugs [14].

In the second category, the state variables of the abstract FSMs for metrics can

be selected manually or with heuristics. Shen and Abraham present a heuristic

technique for extracting the control state variable that changes most frequently, called

the primary control state [15]. They compute an FSM reflecting the transitions of the

primary control state variable and require coverage of all paths of a certain length in

this FSM. Even small processors have a large number of such paths, but because each

simulation run is short, the cost is tolerable. Kantrowitz and Noack use transition

coverage on a hand-constructed abstract model of the system, as well as cache

interface logic. Others select important, closely coupled control state variables based

on the design’s architecture [14,16].

Selecting abstract FSMs requires compromising between the amount of

information that goes into the FSMs and the ease of using the coverage information.

 8

The relative benefits of the choice of FSMs and the metrics defined on them are

design dependent. Increasing the amount of detail in the FSMs increases the coverage

metric’s accuracy but makes interpreting the coverage data more difficult. If the

abstract FSM is large, attaining high coverage with respect to the more sophisticated

metrics is difficult.

The biggest challenge with state-space-based metrics is writing

coverage-directed tests. Determining whether certain states, transitions, or paths can

be covered may be difficult. The FSMs’ state variables may be deep in the design, and

achieving coverage may require satisfying several sequential constraints. Moreover,

inspecting and evaluating the coverage data may be difficult, especially if the FSMs

are automatically extracted. Some automated approaches involve sequential testing

techniques [17]. Others establish a correspondence between coverage data and input

stimuli using pattern matching on previous simulation runs. The capacity of

automated methods is often insufficient for handling coverage-directed pattern

generation on practical designs, whereas the user may need to understand the entire

design to generate the necessary inputs. Nevertheless, state-space-based metrics are

invaluable for identifying rare, error-prone execution fragments and FSM interactions

that may be overlooked during simulation, thus justifying the high cost of test

generation. Ultimately, carefully choosing abstract FSMs can alleviate many of the

problems mentioned.

Coverage metrics of this class consider about exercising states, state transitions,

and a particular sequence of transitions of the targeted FSM. As with code coverage,

circuit-structure based ones, metrics of this class do not explicitly consider whether

 9

erroneous effects caused by exercising some internal error portions of the DUV can be

revealed during simulation.

1.3 Observability Issue in Simulation-Based Functional

Validation

In a simulation-based validation framework, the simulation results or values

should be compared against the correct values on some signals of interest to check the

correctness of circuit behaviors. The correct values of these signals of interest may

come from a reference model described at a different abstraction level or monitors and

assertions. These signals of interest are called Observation Points (OPs) because they

act like observation windows to uncover bugs in the DUV. During simulation, a

discrepancy from the desired behavior is detected only if an OP takes on a simulation

value that conflicts the correct value specified by the reference model.

Typically, OPs are Primary Outputs (POs) of the DUV and/or some other internal

wires or register outputs that are selected by circuit designers. Designers usually

follow their understanding to the specification and the behavior of the circuit to select

these OPs, without explicit consideration of error propagation, i.e. whether erroneous

effects of some internal signals caused by design errors are propagated to OPs. As a

result, during simulation process, even if some erroneous values were generated by

some activated internal bugs, the erroneous values may be masked during their

propagation to Ops, causing that these erroneous values as well as the internal bugs

remain undetected.

 10

Traditional code coverage metrics from software testing, such as statement

coverage, branch coverage, and path coverage metrics, only consider whether their

concerned code structures are exercised. Circuit-based coverage metrics or FSM

coverage metrics also do not explicitly check whether erroneous effects can be

propagated to OPs for bug detection during simulation. They all do not explicitly

consider whether erroneous effects caused by internal bugs are propagated to OPs.

Design errors may be masked and still remain undetected even if they were said

“covered” under these coverage metrics. The result is that verification completeness is

overestimated by these coverage metrics.

 We use the following example to explain the error masking situation. If we

simulate the HDL code fragment shown in Figure 1-2(a) with the input stimulus given

in Figure 1-2(b), the simulation result is as shown in Figure 1-2(c). As far as code

coverage metrics are concerned, we will find that with respect to statement, branch,

and path coverage metrics, 100% coverage is achieved. If the three coverage metrics

are used to evaluate the extent of the simulation, the input stimulus in Figure 1-2(b)

should be regard as a good test vector set for the design in Figure 1-2(a) since the test

vector set exercises every target code structures during simulation.

 11

Figure 1-2: An example of functional validation on a HDL code fragment

However, assumed that statement 7 is carelessly written into

“counter=counter+2”, we surprisingly find that this careless design error can not be

detected by this input stimulus of quality. Although the design error

“counter=counter+2” changes the value of counter into 3 at Time = 5, different from

the expected value 11, value 3 and value 11 cause the same evaluation result in the

operation “counter<PI2”. The erroneous value 3 is masked. The design error in

statement 7 hides from being detected. In this case, the completeness of simulation is

misjudged by the three coverage metrics. Therefore, observability consideration is

important to suitably assess the comprehensiveness of validation.

The Observability-based Code COverage Metric (OCCOM) is the pioneer that

addresses the essential observability issue [18]. Dump-file based OCCOM

computation facilitates integration with commercial simulators and thus accelerates

the analysis process [19]. Tag-based observability measures are extended to assess the

 12

extent of validation for C programs in recent works [20]. Test pattern generation

approaches for OCCOM make the entire work more practical [21].

In the above OCCOM approaches, two special tags, Δ and - Δ , are injected on

each signal to simulate potential increasing and decreasing value changes caused by

some bugs. These tags on variables are not tied to particular design errors. The

propagation of tags is used to simulate the propagation of potential erroneous effects.

The percentage of tags that can be propagated to OPs is the coverage of OCCOM.

However, tags can only be observed or unobserved, providing only two levels of

measurement; 1 and 0. Erroneous effects that have lower observation opportunities

may still be judged as observable. Thus, verification completeness may still be

overestimated by OCCOM. If a new observability measure for HDL descriptions

could provide intermediate values between 1 (observed) and 0 (unobserved), the

likelihood of misestimating observability should be reduced.

1.4 Other Observability-Related Researches

1.4.1 Testability Analysis in Manufacturing Test

Manufacturing test is a process of checking that integrated circuits are

manufactured correctly. The basic premise is the modeling of manufacturing defects

as logical faults. Since manufacturing is a physical process that can be analyzed,

credible fault models can be derived. For example, defects are known to cause breaks

and shorts in metal wires. These breaks or shorts can be modeled as logical faults

 13

since there is a direct correspondence between wires in silicon and connections in the

logic circuit.

One of the most popular fault models in manufacturing test is the stuck-at fault

model [22]. The stuck-at fault model is a logical fault model where any wire in the

logic circuit can be stuck-at-1 or stuck-at-0. A test vector that produces the opposite

value (zero for a stuck-at-1, and one for a stuck-at-0) will excite the fault. The effect

of the fault has to be propagated to an observable circuit output in order for the fault

to be detected by the vector.

The direct correspondence between a metal wire in the silicon integrated circuit

and a connection in the logic circuit motivates logical fault models. No such

correspondence may exist for a behavioral description in an HDL or structural RTL

description. Statements in the HDL description may correspond to hundreds of gates

and wires in the final design.

Based on the fault models, test vectors are generated and applied to test

manufactured integrated circuits. Fault coverage analysis is then conducted to judge

whether the integrated circuits are well tested or not. Testability here is used to guide

test pattern generation or as a direct substitution of a fault coverage report.

Observability is often defined as the difficulty of observing erroneous effects caused

by some bit-level stuck-at-faults [23]. Recent researches abstracted defects as

higher-level logical fault models [24,25,26].

However, the correspondence between logical fault models and HDL design

errors is still weak in two aspects. First, an erroneous statement may be synthesized

into hundreds of erroneous gates and erroneous wires. Second, there are almost no

 14

credible design error models for HDL descriptions. Thus, logical fault models hardly

link to HDL design errors. Testability for these logical fault models consequently

differs from the observability for HDL descriptions.

Some RTL testability analysis research exploits the idea of hierarchical testing

with a pre-computed test vector set [27,28]. These studies define testability as the

difficulty of generating input patterns for RTL circuits or instructions for processors to

test internal RTL modules. They are different from the observability measures used to

measure the likelihood of error propagation.

1.4.2. Sensitivity Analysis in Software Testing

In software testing arena, a sensitivity analysis, also called PIE analysis, for

software programs to locate hard-to-detect bugs in a software program was proposed

by J. Voas [29]. PIE analysis uses program instrumentation, syntax mutation, and

changed values injected into data states to predict a location’s ability to cause program

failure if the location were to contain a fault. The program inputs are selected at

random consistent with an assumed input distribution. This analysis does not require a

testing oracle because PIE analysis uses the program itself as an oracle for examining

the output of altered versions of the program.

The PIE analysis estimates the below three probabilities to predict a software

program’s dynamic computational behavior as well as where hard-to-detect bugs may

hide. The three probabilities are 1) Execution probability - the probability that a

location is executed, 2) Infection probability - the probability that a change to the

 15

source program causes a change in the resulting internal computational state, and 3)

Propagation Probability - the probability that a forced change in an internal

computational state propagates and causes a change in the program’s output.

Among the three probabilities, the propagation probability (PP) of a variable is

the estimated probability that a variable’s erroneous values caused by some bugs are

observed in the program outputs. Propagation Probability is a good observability

measure for software programs, even for HDL programs. The PP of a variable v in the

program is estimated by a statistics-based approach, repeatedly infecting the data state

of v (injecting erroneous values on variables in memory) and simulating the program.

The ratio of the number of program failures to total number of experiments is the PP

of v. This PP measures are quite accurate estimations for the likelihood of error

propagation (observability for erroneous effects). However, the proposed statistical

computation approach requires too much time and thus may be unsuitable for HDLs

of commercial products because time to market is always important for commercial

products.

1.5 Design Error Diagnosis on Faulty HDL Descriptions

1.5.1 Traditional Design Error Diagnosis Works

Due to the high complexity of modern Very Large Scaled Integrated (VLSI)

circuit designs, verification process may often find that a design in the current stage

(implementation) is not consistent with that in the previous stage (specification). Once

 16

a functional mismatch is found, design error diagnosis is needed.

Most of the previous studies on this topic target the diagnosis of gate-level or

lower-level implementations. These methods can be roughly divided into two

categories: simulation-based approaches and symbolic approaches. Simulation-based

approaches [30,31] first derive a set of input vectors that can differentiate the

implementation and the specification. These binary or three-valued input vectors are

called erroneous vectors. By simulating each erroneous vector, the possible error

candidates can be trimmed down gradually. The heuristics to filter out impossible

error candidates vary from one to another. Some of them rely on error models such as

gate errors (missing gate, extra gate, wrong logical connective,…) and line errors

(missing line, extra line,…) while other approaches are structure-based methods and

require no error models.

On the other hand, symbolic approaches [32,33] do not enumerate erroneous

vectors. They represent symbolic functional manipulation with Ordered Binary

Decision Diagram (OBDD) to formulate the necessary and sufficient condition of

fixing a single error. Based on these formulations, every potential error source can be

precisely identified. An approach to combine the both symbolic and simulation-based

techniques has also been proposed to reduce the run time of design error diagnosis. In

comparison, the symbolic approaches are accurate and extendible to multiple design

errors. However, constructing the required BDD representations may cause memory

explosion when applied to large circuits. On the other hand, simulation-based

approaches, although scale well with the size of circuits, are often not accurate

enough. In order to avoid potential memory explosion of BDD-based symbolic

 17

approaches, some recent symbolic works exploit the progress of Boolean satisfiability

(SAT) solver and develops SAT-based approaches [34].

1.5.2 Software Debugging Techniques

In addition to gate-level or other lower-level implementations, design errors can

also occur at the very first design stage – modeling the circuit behavior using HDLs.

Traditionally, debugging a faulty HDL design relies on manually tracing the faulty

HDL code. However, a simple HDL design today can have probably thousands of

code lines and even more. Manually tracing the faulty HDL code to debug is not an

effective debugging method. Approaches to assist HDL debugging are urgent.

For a Register-Transfer Level (RTL) HDL code, the distance between the HDL

code and a software program is small: diagnosis may be seen as a software problem as

well as a hardware one. In the software diagnosis domain, most of the methods are

based on the slicing technique [35,36]. Program slicing, introduced by Weiser [36] is

a technique for restricting the behavior of a program to some specified subsets of

interest. The main idea behind this technique is to decompose the considered program

into independent parts, called slices. Each slice contains all the statements that could

have influenced the value of a variable at a given program point. It can be executed

separately from the rest of the program. The difference between two slices is called a

dice and is the basis of the fault location process.

For example, let us consider two slices A and B as illustrated in Figure 1-3.

 18

Assume that one of them (B) gives a correct result; whereas the other (A) gives a

faulty one. It is obvious that the faulty area will be in the dice A minus B, which is

smaller than the area of the faulty slice A. Consequently, the effort of searching in the

whole slice A is saved and the diagnosis duration time is reduced.

Figure 1-3: Slice and dice

The process of fault location implies to execute each slice and the correctness of

each slice execution has to be determined: a human intervention is generally needed

for establishing the oracle (the algorithmic debugger interacts with the user through

queries about the intended program behavior). Moreover, in this manner, multiple

times of simulation are required before real diagnosis can go on. This is too

time-consuming.

 19

1.5.3 Techniques for Debugging HDL Descriptions

In the literature, some researches have targeted on techniques that assist HDL

design debugging. Peischl et al [37] focus on Model-Based Diagnosis (MBD)

paradigm. They employ structure and behavior with respect to their error models for

software debugging. Besides, error-model based approaches, there are also

error-model free methods that should have better applicability to various kinds of

design errors.

Maisaa Khalil et al [38] proposed an automatic diagnosis approach based on the

cross check on the result of each test case. By using four strategies based on different

four hypotheses, four error candidate sets are sequentially obtained, from the smallest

one to the biggest one. It is expected that tool users or debugging engineers can locate

design errors in the first few error candidate sets, whose size are relatively smaller, to

save the debugging efforts. However, the first three hypotheses are not always

satisfied since design errors in a fault HDL description can be multiple and the oracle

can be unsure. True design errors may be absent in the first three error candidate sets,

resulting in that the efforts of searching design errors in these sets are wasted. Even

worse, we still have to search design errors in the fourth set of error candidates, the

largest one.

Shi et al [39] applied data dependency analysis, execution statistics, and the

characteristics of HDL operations to filter out impossible error candidates. In this

method, only one reduced set of error candidates is derived for examination with a

single time of simulation. And, the size of error candidate set (error space) is

acceptable in size. Huang et al [40] further exploited the extra observability of

 20

assertions in an attempt to derive smaller error space.

Instead automatic methods to derive error candidates, Y.C. Hsu et al have

developed two useful utilities to help designers reason the locality of bugs with

manual interventions [41]. However, the number of derived error candidates can still

be plenty. Searching design errors among these candidates by examining them one by

one blindly may still takes much valuable time.

1.6. Organization

This thesis is organized into five chapters. Chapter 1 gives the introduction to the

thesis. Chapter 2 introduces some related works and gives preliminaries. In Chapter 3,

we introduce our proposed probabilistic observability measures on HDL designs for

efficient functional validation. Besides being used for efficient functional validation,

Chapter 4 introduces another application of the probabilistic observability measures

on HDL designs - design error diagnosis on faulty HDL descriptions. Finally, we

conclude the thesis in Chapter 5 and discuss some future research directions.

 21

Chapter 2

Preliminaries

2.1 Observability-Based Code Coverage Metrics

During simulation-based functional validation, simulation values of Observation

Points (OPs) should be compared against the expected values to check the correctness

of certain circuit behavior. A discrepancy from the desired behavior can be detected

only if some of OPs have simulation values that are different from the expected values.

Coverage metrics should explicitly consider the observability requirement

(requirement of error propagation) to detect internal design errors such that

comprehensiveness of validation can be suitably gauged.

 Observability-based Code COverage Metric (OCCOM) is the pioneer that

addresses the essential observability issue [18]. A dump-file based OCCOM

computation approach is later proposed to facilitate the integration with commercial

simulators and thus accelerate the analysis process [19]. In these OCCOM works, two

special tags Δ and -Δ are injected on each signal to simulate potential increasing and

decreasing value changes caused by activated errors. Tag propagation rules are

defined for using tag propagation to predict the potential propagation behaviors of

these erroneous value changes. The percentage of the tags observed at the OPs is the

coverage with respect to OCCOM

The dump-file based OCCOM approach proposed in [19] is a two-phase

 22

approach. The two phases are abstracted as below. We will introduce the two phases

individually in detail later in this section.

1) Conditional Statement Transformation: The transformation involves moving

some statements and creating new variables to contain extra information during

simulation for the next phase calculation. After the transformation, the modified

HDL model is then simulated using a standard HDL simulator to obtain a

dump-file for the later tag simulation calculus.

2) Tag Simulation Calculus: In this phase of computation, tags are first injected and

then the propagation of the injected tags is computed based on the tag simulation

calculus developed by the authors [19]. The tag simulation calculus is composed

of tag propagation rules for various HDL operations, in which the propagation

through the HDL operations is based on likelihoods. For one injected tag, the tag

propagation result can be that it is observed at some OPs or it is not observed at

any OPs. The third possible result is the presence of special unknown tags ?

when the tag propagation is not so sure in the computation.

The conditional statement modifications on the HDL code proposed in [19] are

for obtaining sufficient information during HDL simulation for the later tag

simulation calculus. Consider a HDL code fragment with a simple conditional

statement “if… else …” shown in Figure2-1. The original code fragment is shown on

left-hand side and the transformed code is shown to the right in Figure 2-1. Consider

the case of a tag on cexp. During the simulation of the modified code, the values of

both expr1 and expr2 are computed and stored in the new variables y1 and y2. The

new values of y corresponding to the execution of both the then and else clauses are

 23

known, regardless of the value of cexp during simulation. This will help to correctly

propagate positive or negative tags on cexp in their tag simulation calculus.

Figure 2-1: A simple conditional statement modification

 The case of nested conditionals is more complicated. Further, the situation where

variables such as y are assigned values that depend on the old values (e.g., increment

operation) have to be considered. As an example, consider the Verilog statements

shown in Figure 2-2.

Figure 2-2: A nested conditional statement example

Transformation starts with transforming the statement “if(cexp1)”. The result

after the transformation on “if(cexp1)” is shown in Figure 2-3. In the next step, the

“if(cexp2)” and “if(cexp3)” the statements are transformed. y is the only variable in

the original Verilog code whose value is changed inside the if statement and, as a

 24

result, in order to transform the code, a new variable y3 is introduced.

Figure 2-3: Code after first phase of conditional statement transformation

Figure 2-4: Code fragment after the entire conditional statement transformation

 25

Note that if the value of cexp2 is false, variable y3 is read before assigning any

value to it. As a result, it is necessary to initialize its value to the value of y. The

transformed code after the entire conditional statement modification is shown in

Figure2-4. The transformed code will compute the necessary information to perform

propagation of tags on cexp1, cexp2, or cexp3. It can easily be verified that the two

pieces of code result in the same values for variable y.

The second phase of OCCOM computation is tag simulation calculus, which is

used to predict error propagation and is similar to the D calculus [42]. A tag is

represented by the symbol Δ , which signifies a possible change in the value of the

variable due to an error. Both positive and negative tags are considered, +Δ written

simply as Δ , and -Δ . Both tags are injected onto each internal signal of the DUV first.

If the presence or sign of the tag is not known, an unknown tag “?” is used. Note that ?

= -? and also 0+? = 1+?.

Tag simulation calculus in [18.19] is based on the likelihood of the propagation

of the tag. It is assumed that the tag is propagated or blocked depending on which

case is more likely. For example, in the Verilog statement c= (a!=b) with a=2 and b=5,

if there is a positive tag on variable a, it is assumed that the tag is not propagated to

the variable c [19]. The reason is that the value of the variable c in the presence of the

tag is TRUE unless the magnitude of the tag on a is exactly three. As a result, the

authors think that it is unlikely to have a tag on variable c. The tag propagation rule

for “!=” created in [19] will block the tag from being propagated through this

operation.

The tag simulation calculus for some other common representative operators

 26

proposed in [18,19] is briefly introduced in the sequel. For each operator op, after the

simulator computes v(f)=v(a)(op)v(b), v(f) might be tagged with a positive Δ or

negative -Δ or ? and it is written as v(f)+ Δ , v(f)- Δ , v(f)+?.

1) The calculus for an INVERTER, a two-input AND gate, and a two-input

OR gate are shown in Table 2-1, Table 2-2, and Table 2-3, repectively.

The five possible values at each input are {0, 1, 0+Δ , 1-Δ , 0+?}. (Note

that 0-Δ= 0 and 1+Δ=1.) As an example, if the input of an inverter gate

is zero and it has positive tag on it, the value of the output of the inverter

will be one and it will have a negative tag on it. The case that the input

of the inverter is one and the input has a negative tag is similar. As

another example, if one of the inputs of an AND gate is zero and the

input has a positive tag and the value of the other input is one and it has

a negative tag on it, the value of the output of the AND gate will be zero

because the erroneous value of one of the inputs is zero. Using the above

calculus, any collection of Boolean gates comprising a combinational

logic module can be tag simulated.

Table 2-1: Tag calculus for INVERTER gate in [18,19]

INVERTER
0 1
1 0

0 +Δ 1-Δ
1-Δ 0+Δ
0 + ? 0 + ?

 27

Table 2-2: Tag calculus for AND gate in [18,19]

AND 0 1 0+Δ 1-Δ 0+?
0 0 0 0 0 0
1 0 1 0+Δ 1-Δ 0+?

0+Δ 0 0+Δ 0+Δ 0 0+?
1-Δ 0 1-Δ 0 1-Δ 0
0+? 0 0+? 0+? 0 0+?

Table 2-3: Tag calculus for OR gate in [18,19]

OR 0 1 0+Δ 1-Δ 0+?
0 0 1 0+Δ 1-Δ 0+?
1 1 1 1 1 1

0+Δ 0+Δ 1 0+Δ 1 0+Δ
1-Δ 1-Δ 1 1 1-Δ 0+?
0+? 0+? 1 0+Δ 0+? 0+?

2) Adder: If all tags on the adder inputs are positive and if the value v(f) <

MAXINT, the adder output is assigned to v(f) + Δ . MAXINT is the

maximum value possible for f. This is similar if all tags are negative. If

both positive and negative tags exist at adder inputs, the output is

assumed to be unknown tag. Table 2-4 shows calculus for tag

propagation through an adder.

Table 2-4: Tag calculus for ADD (+) Operation in [18,19]

ADDER b b -Δ b +Δ b + ?
a a + b a + b -Δ a + b +Δ a + b +?

a -Δ a + b -Δ a + b -Δ a + b +? a + b +?
a +Δ a + b +Δ a + b +? a + b +Δ a + b +?
a + ? a + b +? a + b +? a + b +? a + b +?

 28

3) Multiplier: All tags have to be of the same sign for propagation. A

positive Δ on input a is propagated to the output f provided v(b)!=0 or

if b has a positive Δ . The output of multiplier is assigned to v(f) + Δ .

This is similar for negative -Δ .

4) Comparators: If tags exist on inputs a and b, they have to be of opposite

sign, else the output will have an unknown tag. Assume a positive tag on

a alone or a positive tag on a and a negative tag on b. If v(a) is smaller

than or equal to v(b), then the tag(s) is (are) propagated to the output,

else the tag(s) is (are) not. The output of comparator is assigned to 0+Δ .

This is similar for other tags and other kinds of comparators. Table 2-5

and Figure 2-6 show the calculus for tag propagation through operator

“>” when the result of operation is TRUE and FALSE, respectively.

Other tag propagation rules can be found in [18,19,43].

Table 2-5: Tag calculus for “>” when result of a > b is true

> b b +Δ b -Δ b + ?
a 1 1 -Δ 1 1 + ?

a +Δ 1 1 + ? 1 1 + ?
a -Δ 1 -Δ 1 -Δ 1 +? 1 + ?
a + ? 1 + ? 1 + ? 1 +? 1 + ?

Table 2-6: Tag calculus for “>” when result of a > b is false

> b b +Δ b -Δ b + ?
a 0 0 0 +Δ 0 + ?

a +Δ 0 +Δ 0 + ? 0 +Δ 0 + ?
a -Δ 0 0 0 +? 0 + ?
a + ? 0 + ? 0 + ? 0 +? 0 + ?

 29

In summary, OCCOM is indeed more stringent than statement coverage metric

because it considers only the execution requirement but also the observability

requirement to detect internal design errors. The proposed dump-file based OCCOM

computation is also an effective approach to derive the OCCOM coverage. In the

works, experimental data are also available to demonstrate that the conditional

statement modification conducted in the first phase of OCCOM computation

introduce very little overhead to HDL simulation. The OCCOM works based on tags

indeed provide observability information for effectively and suitably assess the extent

of validation. However, tags can only provide two levels of measurement 1 (observed)

or 0 (unobserved). A more accurate observability measure is always desirable for the

observability issue in simulation-based validation. As the future works in [19] had

discussed, the possible future direction they proposed for accuracy improvement of

tags are 1) relative magnitude of tag or 2) absolute magnitude of tag.

2.2 PIE Analysis in Software Testing

J.Voas et al [29,44,45] present a dynamic technique to statistically estimate three

software program characteristics that affect a software program’s computational

behavior: 1) Execution Probability (EP) - the probability that a particular section of a

program is executed, 2) Infection Probability (IP) - the probability that the particular

section affects the data state, and 3) Propagation Probability (PP) - the probability that

a data state produced by that section has an effect on program output. These three

characteristics can be used to predict whether faults are likely to be uncovered by

software testing.

 30

Among the three probabilities, the third probability PP can be regard as an

observability measure for software programs and probably for HDL models as well.

PP of a variable a (denoted as PP(a)) is the probability that variable a’s erroneous

values caused by some bugs are observed in the program’s outputs and cause program

failures. The algorithm to obtain estimated values of PP(a) proposed by J. Voas is

abstracted as bellows.

Step1. Set variable count to 0.

Step2. Randomly select an input x according to the input distribution.

Step3. Alter the sampled value of variable a to create a mutant of this program.

Step4. For each different output result in program output after a is changed, increment

count. If a time limit for termination related to the altered state has been exceeded,

increment count. This precaution is necessary because of the effects that altered

variables can cause to Boolean conditions that terminate indefinite loops.

Step5. Repeat steps 2-4 n times.

Step6. Divide count by n to derive PP of variable a.

 This calculation algorithm to obtain PP(a) is a statistics-based estimation

approach. The accuracy of estimated result highly depends on the iteration numbers, n.

If n is big enough, the result of this algorithm can be a quite accurate estimation for

PP(a). However, it is obvious that to obtain accurate estimations for PP(a) with a big

n requires lots of iteration of simulation as well as computation time. If we intend to

analyze observability of each point in a HDL model using this statistics-based

approach, the entire procedure may take too much time. Other approaches or other

observability measures are required for the observability analysis for HDL models.

 31

2.3 Error Space Identification Approaches for HDL

Debugging

 When verification finds some discrepancy between the specification and the

implementation written in a HDL, the debugging process traditionally relies on

designers’ manually tracing HDL codes. However, this manual debugging scheme

could be tough and time-consuming because a relatively simple HDL design today

can have more than thousands code lines. If a reduced set of error candidates can be

obtained automatically by some approaches, these approaches should be helpful to

this HDL debugging problem.

 Maisaa Khalil et al [38] proposed an automatic diagnosis algorithm that contains

four hypotheses to diagnose design errors using the HDL information. For systematic

analysis, the algorithm classified all possible situations into four hypotheses that are

defined from looseness to strictness. The first two hypotheses assume that there is

only one erroneous statement in the HDL design. The first ant the third hypotheses

assume that the executed statements of correct test cases are impossible to be the error

sources. By using four strategies based on different four hypotheses, four error

candidate sets are sequentially obtained, from the smallest one to the biggest one. It is

expected that tool users or debugging engineers can locate design errors in the first

few error candidate sets, whose size are relatively smaller, meaning that searching

design errors in the three sets requires less efforts. However, the first three hypotheses

do not always stand since design errors in a faulty HDL description can be multiple

and the oracle can be unsure. As a result, true design errors may be absent in the first

three error candidate sets, resulting in that the efforts of searching design errors in

 32

these sets are wasted. Even worse, it is still required to search design errors in the

fourth and the largest set of error candidates. It is also assumed that many test cases

can trigger design errors. However, in practice, it is not easy to generate lots of test

cases that can trigger the same design errors, especially when designers do not

actually know where the design errors are and what they are.

Jiang and et al [46] proposed another error-model free automatic error space

identification approach that exploits both data dependency analysis and execution

trace to obtain an error space (a reduced error candidate set). The error space is the

intersection of the execution trace of EOC (the clock cycle, in which discrepancy

between the simulation values of all the primary outputs and the associated expected

values is detected) and the result of data dependency analysis on Erroneous Primary

Outputs (primary outputs that have simulation values are not consistent with the

expected values in EOC). The size of the obtained error space in this approach should

be relatively smaller than the one derived by the approach in [38] because additional

data-dependency analysis is used to trim down the size. Take the HDL code shown in

Figure2-5 as an example to demonstrate the error space identification in [46].

 33

Figure 2-5: An HDL example

Assume that the code in Figure 2-5 is the correct design that designers expect.

The applied input vectors for each time instance and the corresponding values of POs

are shown in Figure 2-6 (a) and (b).

module exm(PO1,PO2,PI1,PI2,PI3,PI4,clk);
 input PI1,PI2,PI3,PI4,clk;
 output PO1,PO2;
 reg PO1, w2;
 wire sel1, sel2, w1;
s1: assign sel1 = PI1 & PI2;
s2: assign sel2 = PI3 | PI4;
s3: assign w1 = PI2 ^ PI3;
s4: assign PO2 = w2 | PI1;
event1: always@(posedge clk) begin
dec.1: case(sel1)
s5: 1’b0 : PO1 = w1;
s6: 1’b1 : PO1 = w2;
s7: default : PO1 = w1;
 endcase
 end
event2: always@(sel2 or PI1 or PI3 or PI4) begin
dec.2: if(sel2)
s8: w2 = PI3;
 else
s9: w2 = PI4 | PI1;
 end
 endmodule

 34

(a) Input stimuli

(b) Simulation results on POs

Figure 2-6: Input stimuli and expected simulation results

However, for some reasons, the statement s9 is written incorrectly to be “w2 =

PI4”. Because of this design error, the simulation value of PO1 at 25ns 1’b0 and a

discrepancy from the correct value will be observed. The clock cycle from 15ns to

25ns is called EOC, Error-Occurring Cycle, according to the definition in [46].

Then, we apply the error space identification approach in [46] to narrow down

the set of error candidates. First, we find executed statements. At time=20ns, s1, s2, s4,

and event2 are triggered because of the value changes of PI1 and PI4. Since

sel2=1’b0, the execution statistics of statements under the event control of event2 is

that dec.2 (decision or conditional statement) and s9 are executed. Event1 is triggered

reg clk, PI1, PI2, PI3, PI4;
always #5 clk = ~clk;
initial begin
 clk=0;
#2 PI1=1; PI2=1; PI3=1; PI4=0;
#8 PI1=0; PI2=1; PI3=0; PI4=1;
#10 PI1=1; PI2=1; PI3=0; PI4=0;
end

Time = 0: PO1=1’bx; PO2=1’bx;
Time = 2: PO1=1’bx; PO2=1’b1;
Time = 5: PO1=1’b1; PO2=1’b1;
Time = 10: PO1=1’b1; PO2=1’b0;
Time = 15: PO1=1’b1; PO2=1’b0;
Time = 20: PO1=1’b1; PO2=1’b1;
Time = 25: PO1=1’b1; PO2=1’b1;

 35

due to the rising edge of CLK at 25ns. Because the event1 is triggered and sel1=1’b1,

dec.1 and s6 are executed. Therefore, the executed statements in EOC are {s1, s2, s4,

s6, s9, event1, dec.1, event2, dec.2}.

Then, the relation space will be extracted. The extraction of the relation space

relies on data dependency analysis based on control data flow graph (CDFG). The

CDFG of the HDL example in Figure2-5 is shown in Figure 2-7, where s denotes a

statement and dec. represents a conditional statement or a decision.

Figure 2-7: Control Data Flow Graph (CDFG) of PO1

To obtain relation space of PO1 relies on a back trace from PO1 to the PIs

according to the relationship in the data flow. In the back-tracing starting from PO1,

the first traversed node is dec.1. dec.1 is added into the relation space. Then, because

s6 is the statement on the taken branch of dec.1, s6 is the next traversed node. s6 is

also added in the relation space. The driving statements of s6 are dec.2 and s9 and the

driving statements of dec.1 is s1. They are all added in the relation space, too.

Similarly, the driving statements of dec.2 and s9 are found and added. Finally, the

 36

relation space of PO1 are {dec.1, s6, s1, event1, dec.2, s9, s2, event2}. Therefore, the

error space is {s1, s2, s6, s9, event1, dec.1, event2, dec.2}.

In additional to simple data dependency analysis of EPOs, Shi and et al further

exploits the structure analysis and the nature of HDL operations to filter out more

impossible error candidates [39]. A simple Verilog HDL code fragment shown in

Figure 2-8 is used to illustrate how to apply the Rule I in [39] for error space

reduction.

Figure 2-8: An example of applying Rule I in [39]

When an incorrect behavior is observed at PO1, if the error space identification

approach in [46] is used, the back-tracing operation from PO1 on the CDFG will be

the same as shown in Figure2-8(b). The resulted error space will be the same as the

one shown in the upper part of Figure2-8(c).

 37

However, when Rule I in [39] is applied, the authors state that the back-tracing

from PO1 can stop at R1 by means of including the reversible path which contains a

single reversible statement “PO2=~PO1” to the error space. This is because that R1 is

on a reversible path to PO2. If R1 is incorrect, there must be some errors in the path

from R1 to PO2 such that PO2 can have correct simulation value. As a result, the

authors state that they can remove the statements “R1=A+B”, BTS(A), and BTS(B)

and then add the reversible statement “PO2=~R1”. A reduced error space can be

obtained by applying the Rule I. The resulted error space will be the one shown in the

lower part of Figure2-8(c).

Besides Rule I, the authors also developed Rule II and III. Rule II states that

given a HDL operation whose erroneous simulation value of left-hand variable and

the correct value of left-hand variable are known, if there does not exist any values of

other right-hand variables to produce the correct value of the left-hand variable while

fixing the value of the target right-hand variable, the statement is incorrect or the

simulation value of the target right-hand variable is incorrect. On the other hand, Rule

III states that when the simulation value of one right-hand variable is a controlling

value of the statement, the back-tracing from the other right-hand variables can be

stopped. At least one erroneous statement requires to be retained in the error space.

The above works that focus on reducing number of error candidates are of course

helpful for debugging faulty HDL designs. However, the size of the obtained error

space can still vary from case to case. The number of error candidates may be plenty

and searching true design errors in the obtained error space still requires much time.

 38

Chapter 3

Observability Analysis on HDL
Descriptions for Effective Functional
Validation

3.1 Motivation

In functional validation, the simulation values of some signals of interest must be

compared with their expected values to determine the consistency with the

specification. The term observation points (OPs) is used to describe these signals

because they act like observation windows to uncover bugs. Designers often select

OPs according to their understanding of the specification and the availability of the

expected values. However, erroneous effects caused by bugs are not always

propagated to the assigned OPs. They may be masked while propagating to OPs. This

situation prevents bug finding. Even worse, bugs may remain undiscovered through

the manufacturing process if validation is not accurately gauged.

The Observability-based Code COverage Metric (OCCOM) is the first code

coverage metric which considers the essential observability issue [18,19]. In their

approach, the propagation of special tags that are attached to internal signals is

simulated to predict the actual propagation of erroneous effects caused by design

errors. Base on the likelihood that erroneous effects are propagated through each HDL

 39

operation, the authors create tag simulation calculus and tag propagation rules to

judge whether a tag can be propagated through an HDL operation or not.

However, the status of the tag propagation can only be propagated or

un-propagated, providing only two levels of measurement; 1 and 0. However, the

error propagation is obviously not so certain and can be modeled by just propagated

and un-propagated. Inevitably, erroneous effects with low observation opportunities

may still be judged as propagated in some cases, thus giving overestimate the

verification completeness. Even worse, mislead the verification resources to other

portions of the DUV and let a design error remain undetected. We use the following

example to illustrate this.

Consider a simple HDL example shown in Figure 3-1(a). Applying the input

stimulus shown in Figure 3-1(b) to simulate the HDL code fragment in Figure 3-1(a),

we can obtain the simulation results shown in Figure 3-1(c).

Figure 3-1: A HDL example

 40

If we apply OCCOM to gauge the extent of the validation in the case shown in

Figure 2-1, the tag propagation rule for “<” in [19] says that tag Δ and tag -Δ

injected on the signal counter can pass through statement 2 “if(counter<PI2)” and

appear at PO1 at t=1 and t=5, respectively.

Consider a case that statement 7 carelessly written to be “counter=counter+2” by

the circuit designer. The design error “counter=counter+2” in statement 7 causes an

incorrect value 3 on counter at t=5, i.e. 3 is different from the correct value of

counter 11. Because 3 is smaller than the correct value 11, the propagation of this

incorrect value 3 should be simulated by the -Δ injected on signal counter. We can

regard the incorrect value 3 as 11-Δ .

According to the tag propagation rules [18,19,43] for operation “<”, -Δ on

counter can be propagated through the operation “if(counter<PI2)” and makes the

output become 0+Δ . This implies that it is assumed that a decreasing value change is

very likely to change the evaluation result of “counter<PI2”, from FALSE to TRUE.

However, we can see that the incorrect value 3 does not alter the evaluation result of

“counter<PI2” as tag simulation calculus predicts. Tag simulation calculus fail to

predict the error propagation in this example. In fact, in this example, the likelihood

that a decreasing value change on counter is very unlikely to alter the evaluation

result and to cause any erroneous effects on the output of “<”. We explain this fact by

the below analysis.

Although in the above example we assumed that the design error

“counter=counter+2” caused an incorrect value 3 at t=5, in practice, an incorrect value

of counter can be any possible value that is different from the correct value 11. It can

 41

be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, or 15. Among the 15 possible candidatess,

the values {0~10} are smaller than the correct value 11 and each one of them can be

can be regard as an individual 11-Δ . Because PI2 at t=5 is 2, only 1 and 0 can make

the evaluation result change from FALSE to TRUE. The other values {2~10} cannot,

even if each of them is an erroneous value smaller than 11. Nine values ({2~10}) out

of all possible fifteen incorrect values ({0~10},{12~15}) can not alter the output of

“counter<PI2” to make the output result as 1+ Δ . The likelihood that 11- Δ is

propagated through the operation “counter<PI2” should be quite low. Nevertheless,

tag propagation rules did not actually take this likelihood into consideration and still

assume that decreasing erroneous value change can be quite dramatic that it always

change the evaluation result of “<”. Similar situations may also happen if tag

propagation rules are used on some operations that may mask erroneous effects, such

as “>”, “==”, “!=”, and “>>”.

In addition to inaccuracy, it is also unreasonable that tag propagation rules

assume that erroneous values can never propagate through bit-select operations “[]”

and “[:]”. In practice, erroneous effects of course can propagate through bit-select

operations. Moreover, the assumed single tag model can only model the propagation

behavior of exact one erroneous effect of a design error. If multiple design errors exist

in the DUV, tag simulation calculus may not precisely determine whether the

erroneous effects can be observed or not.

On the other hand, although Propagation Probability (PP) in PIE analysis is an

accurate observability measure, its computation approach requires too much time as

we’ve introduced in section 2.2. Therefore, we intend to develop a new Probabilistic

 42

Observability Measures (POM), which are more accurate than tag-based observability

measures and require much less computation time than PP. There are some possible

applications for our proposed POM.

A new observability-based code coverage metric – In our new

observability-based code coverage metric, a statement is considered as covered if it is

first exercised and the observability of the statement’s output variable is high enough.

This is similar to the well-known fault simulation that requires fault activation and

propagation.

Indicating hard-to-observe points – If some signals are less likely to be observed,

bugs may hide behind these points and become very difficult to reveal via limited

observation points. It does not mean that behind these signals there must be some

design errors, but it provides where the input stimuli does not suitably verify with

both exercitation and observability considerations. By using our observability analysis,

designers can designate candidates for assertion insertion to prevent potential bugs

from hiding. This can increase the verification efficiency, too.

 43

3.2 Probabilistic Observability Measure for HDL

Descriptions

Despite completion of a successful simulation in which the simulated values of

all the Observation Points (OPs) consistent with the correct values, it is still possible

that some incorrect values existed at some time instances but remain hidden due to the

error masking. Assuming that the simulation values of all the OPs are consistent with

the expected values, the goal of our work is to analyze which signals will most likely

have incorrect values hiding at which time instances. This prevents overestimating

validation completeness and can point out hard-to-observe points during the previous

phases of simulation for leading verification resources to those weak points. In the

section, we introduce how we model the error masking and define Probabilistic

Observability Measure (POM).

3.2.1 Control Data Flow Graph

The Design Under Validation (DUV) is modeled as a modified Control/Data

Flow Graph (CDFG) G = (V, E), where V is the set of vertices and E is the set of

edges connecting vertices. In order to explain the CDFG more clearly, the CDFG

appearing in Figure 3-2 is used as an example of the HDL code shown in Figure 3-1.

Let v be a vertex in V. Each vertex v corresponds to an operation in the HDL code.

Function fv and variable yv are also associated with vertex v. Function fv is the function

of the operation that v corresponds to. Variable yv is the output variable of fv or the

left-hand variable of the operation. For example, vertex “1:*” in Figure 3-2

 44

corresponds to the operation “a=PI1*4” at line 1 in the HDL code. Function f1:* is

multiplication “*” and y1:* is signal a. Vertex “2:if” corresponds to the operation

“if(…) … else ...” in lines 2 to 4 of the HDL code, and its functionality is quite similar

to a multiplexer. Vertex PO1 is a special vertex representing the primary output PO1

in the circuit. An edge (v, u) ∈E indicates that the input of vertex u is data dependent

on the output of v. As shown in Figure 3-2, an edge (1:*, 4:=) exists since the

operation “4:=” takes the output of vertex “1:*” as its input. The fanout of v is a set of

vertices u such that there is an edge from v to u. Similarly, the fanin of v is a set of

vertices k such that there is an edge from k to v. A path from vertex u to vertex u’ is a

sequence <v0, v1, v2,…, vk> of vertices such that u = v0, u’ = vk, and (vi-1, vi) ∈ E.

Figure 3-2: The CDFG of the HDL code in Figure3-1

3.2.2 Masked Value Set and Probabilistic Observability Measure

If a single incorrect value w ever existed on the output variable of vertex v yv at

time instance t=ti in the design under validation during simulation, this incorrect value

w should cause no incorrect behaviors at any observation points at all positive edges

 45

of clock1. If not, the simulation phase is not successful. More specifically, the

simulated value of an observation point OPj at an arbitrary positive edge of clock t=ck

must be the same as the correct value. The incorrect value w must be masked by some

vertices on the paths from vertex v at t=ti (denoted as v@t=ti) to observation point

OPj at t=ck (denoted as OPj@t=ck). In the following descriptions, “v at t=ti” and “v in

time frame t=ti” will be used in turn. A formal description of error masking is given in

(3.1).

)@()(@@ kjctOPttv ctOPCVwf
kji

===→= (3.1)

where kji ctOPttvf =→= @@ is the function of the paths from v in time frame t=ti to OPj

in time frame t=ck and CV(OPj@t=ck) is the correct value of OPj at t=ck.

If there are m total observation points {OP1,OP2,…,OPm} and o clock cycles in

the simulation phase, w must be masked on its way to all the observation points in all

time frames such that it is not uncovered during the entire simulation process. For

each observation point OPj in each time frame t=ck, the function of the paths from

vertex v in time frame t=ti that go to OPj at t=ck must generate the correct value of

OPj at t=ck with this incorrect value w as described in (3.2).

II
m

j

o

k
kjctOPttv ctOPCVwf

kji
1 1

@@)@()(
= =

=→= == (3.2)

1 We assume that the simulation values of all the observation points are compared with the correct
values only on the positive edges of clock signal. If the design under validation is a
falling-edge-triggered or double-edge-triggered design, the assumption along with the modeling and
the computation can easily be changed to fit to it.

 46

The set of all possible values of vertex v’s output that can satisfy (3.2) is defined

as the Masked Value Set (MVS) of vertex v at time instance t=ti (MVS(v@t=ti)). A

more formal definition is given in (3.3). Each element in MVS(v@t=ti) retains the

correct values of all the observation points at all positive edges during simulation.

})@()(|{)@(
1 1

@@II
m

j

o

k
kjctOPttvi ctOPCVxfxttvMVS

kji
= =

=→= ==== (3.3)

The correct value of the output of vertex v at t=ti is in MVS(v@t=ti) and this can

justify the existence of MVS(v@t=ti). If MVS(v@t=ti) has only one element, this

element must be the correct value and no error masking can occur. On the other hand,

if the set contains many elements, there will be many elements other than the correct

values2 in the set. An incorrect value caused by some bugs may very possibly be one

of these elements and thus be masked. (The incorrect value can also be outside the set

such that it is revealed.) The more elements in MVS(v@t=ti), the more likely the

simulation value of v is one of these masked incorrect values. Hence, the Likelihood

Of Error Masking (LOEM) of v at t=ti is defined as (3.4).

12
1|)@(|)@(

−
−=

== BW
i

i
ttvMVSttvLOEM (3.4)

vyBW ofbit width theis where, . Its complement is the observability measure of v at

t=ti, as described in (3.5).

12
1|)@(|1)@(

−
−=

−== BW
i

i
ttvMVSttvityObservabil (3.5)

2 Although the elements other than incorrect value in the Masked Value Set of v at t=ti are not all
masked incorrect values, some of them may be don’t care values of v at t=ti. However, the
identification of don’t care values requires formal proofs or probably many more simulations. Thus, for
safety, we here consider these values other than the correct one as masked incorrect values.

 47

3.3 Observability Computation Algorithm

Our observability computation algorithm is a topology-based analysis with time

frame expansion to handle the sequential behavior of the DUV. While calculating the

observability of the output variable of vertex v in time frame t=ti, the algorithm will

consider each sensitized path from v in time frame t=ti that goes to any observation

point in each time frame. The path-oriented computation scheme is defined in (3.6),

which can be transformed from (3.3).

II
m

j

o

k
kjctOPttvi ctOPCVxfxttvMVS

kji
1 1

@@ }@()(|{)@(
= =

=→= ==== (3.6)

The set {x |)(@@ xf
kji ctOPttv =→= =CV(OPj@t=ck)} is defined as the Masked Value

Set of vertex v at time instance t=ti with respect to OPj at t=ck (denoted as

MVS(v@t=ti)OPj@t=ck). An element of the set other than the correct value can be

regarded as an incorrect value that is masked by some vertices on the paths from v at

t=ti to OPj at t=ck, thus keeping the correct value of OPj at t=ck.

According to (3.6), if it is possible to derive MVS(v@t=ti)OPj@t=ck for each

observation point OPj at each time frame t=ck, then intersecting these sets produces

MVS(v@t=ti). If there is exactly one path from v at t=ti to an observation point OPj at

t=ck, an induction-based computation approach is proposed to compute exact

MVS(v@t=ti)OPj@t=ck, which is introduced in section 3.3.1 and 3.3.2. If there are

multiple paths from v at t=ti to OPj at t=ck, a quick estimation approach that

guarantees lower-bound observability estimations will be applied, which is introduced

 48

in section 3.3.3. Section 3.3.5 introduces the entire algorithm incorporating both of

them and section 3.3.4 discusses time-saving strategies.

3.3.1 MVS Computation for Single Path

Assume that there is a sensitized path P from a vertex b at time instance t=ti to

an observation point OPj at a positive edge of clock t=ck. As an example, one such

path <b@t=ti, an, an-1,…, a2, a1, OPj@t=ck> is shown in Figure3-3 and will be used in

the following explanations. For the case of a single path, we develop an algorithm to

compute MVS(b@t=ti)OPj@t=ck as shown in the pseudo code in Figure3-4.

Figure 3-3: A Path from b@t=ti to OPj@t=ck

For each observation point at each positive clock edge, the algorithm will

recursively call subroutine MVS_for_vertex to perform MVS computation and use a

Depth First Search (DFS) strategy for backward traversals. The input of the

subroutine is a previously computed set of integers (PreviousMVS), the currently

traversed vertex v, and the current time frame ti. If the currently traversed vertex v is a

normal vertex, all the fanin vertices of vertex v will be traversed (line 7). However, if

 49

vertex v is a control vertex, the fanin vertices on the untaken branch(es) will be

marked as “inactive” and will not be traversed (line 5).

Figure 3-4: The pseudo code of MVS computation for a single path

The key step of this algorithm (line 12) is computing the set of all the u’s output

values (CurrentMVS) that can make the function of v fv generate an output value that

is in PreviousMVS. Then, the newly computed set CurrentMVS will become the input

PreviousMVS of subroutine MVS_for_vertex and will be recorded on vertex u along

with time information after the subroutine is called again. Section 3.3.2 will introduce

how to compute CurrentMVS based on PreviousMVS (line 12). The belows explains

how this algorithm can derive MVS(b@t=ti)OPj@t=ck in the case of a single path from b

MVS Computation for Single Path
1: for each positive edge of clock t=ck
2: for each observation point OPj
3: InitialMVS={CV(OPj@t=ck)}
4: Find the fanin vertex a1 of OPj at t=ck
5: MVS_for_vertex(InitialMVS, a1, ck)

MVS_for_Vertex (PreviousMVS, vertex v, time tj)
1: if MVS(v@t=tj) = = ∅
2: MVS(v@t=tj) = PreviousMVS
3: else
4: MVS(v@t=tj) = MVS(v@t=tj) I PreviousMVS
5: if v is a control vertex
6: Mark each fanin vertex on the untaken branch as “inactive”
7: for each “active” fanin vertex u of v
8: if edge (u,v) across time frame
9: th = tj – clock_period
10: if th < 0
11: return
12: Compute CurrentMVS, which is {x | fv(x) ∈ PreviousMVS}
13: MVS for Vertex (CurrentMVS, u, th)

 50

at t=ti to OPj at t=ck.

Theorem.1 As shown in Figure3-3, function fn is the composite function of the

vertices from a1 to an and comprises fan and fn-1. For an arbitrary value x on the

output of vertex b at t=ti, x is in MVS(b@t=ti)OPj@t=ck if and only if fan(x) is in

MVS(c@t=ti)OPj@t=ck, which can be represented as (3.7).

})@()(|{)@(@@ kjnkj ctOPiactOPi ttcMVSxfxttbMVS == =∈== (3.7)

Proof :

})@()(|{)@(: . @@ kjnkj ctOPiactOPi ttcMVSxfxttbMVS == =∈⊇=1Claim

For each value x in {x | fan(x) ∈ MVS(c@t=ti)OPj@t=ck}, x must satisfy fn-1(fan(x)) =

CV(OPj@t=ck) and thus also satisfy fn(x) = CV(OPj@t=ck). That means that x is in

MVS(b@t=ti)OPj@t=ck. This proves that

})@()(|{)@(@@ kjnkj ctOPiactOPi ttcMVSxfxttbMVS == =∈⊇=

})@()(|{)@(: 2 . @@ kjnkj ctOPiactOPi ttcMVSxfxttbMVS == =∈⊆=Claim

By way of contradiction, first assume that there is a value x that is in

MVS(b@t=ti)OPj@t=ck but fan(x) is not in MVS(c@t=ti)OPj@t=ck. Since x is in

MVS(b@t=ti)OPj@t=ck, then fn(x) = CV(OPj@t=ck) that implies

fn-1(fan(x))=CV(OPj@t=ck). This means fan(x) is in MVS(c@t=ti)OPj@t=ck. This is a

contradiction!

 51

From Claim 1 and 2, it is proven that

})@()(|{)@(@@ kjnkj ctOPiactOPi ttcMVSxfxttbMVS == =∈== .

When subroutine MVS_for_Vertex is called for the first time, the computed

CurrentCVS {x | fa1(x) ∈ {CV(OPj@t=ck)}} is actually MVS(g@t=ck)OPj@t=ck

according to the definition. When the subroutine is called for the second time, the

computed CurrentMVS {x | fa2(x) ∈ MVS(g@t=ck)OPj@t=ck} should be

MVS(e@t=ck)OPj@t=ck according to Theorem.1. Similarly, the computed CurrentMVS

{x | fa3(x)∈ MVS(e@t=ck)OPj@t=ck} is MVS(d@t=ck)OPj@t=ck when the subroutine is

called for the third time. Therefore, when the computation reaches vertex an, the

computed CurrentMVS {x | fan(x)∈ MVS(c@t=ti)OPj@t=ck}is the Masked Value Set of

b at t=ti with respect to OPj at t=ck.

From the above discussion, it shows that a current MVS set (CurrentMVS) is a

Masked Value Set of a traversed vertex with respect to OPj at t=ck. These Masked

Value Sets will be intersected with the other Masked Value Sets of the same vertex

with respect to other observation points at different time instances according to (3.6)

in the algorithm for MVS computation for a single path. After all the observation

points at all the positive clock edges have been applied, the Masked Value Set of each

traversed vertex in a time frame will be computed and recorded for the later

observability calculation.

3.3.2 MVS Formula for Operations

Given a previously computed MVS set (PreivousMVS), a vertex v, and one of

 52

v’s fanin vertex u, computing CurrentMVS is to find the set of all the values at u’s

output yu that make the function of v fv generate an output value that is in

PreviousMVS. First consider a particular value p in PreviousMVS and find the set of

all the values that make fv generate p at v’s output yv. If such a set can be derived for

each particular value p in PreviousMVS, then the union of these sets derives

CurrentMVS. The set of all such values for a particular p is denoted as

Sub_CurrentMVSp.

For most unary and binary operations, inversing fv can easily derive

Sub_CurrentMVSp. Take the operation “yv = -yu” as an example. If p=-2, inversing the

minus operation “-” produces yu =2. Take the operation “yv = yu + b1” as another

example. If p=8 and b1=3, inversing “+”, i.e. yu = 8 – 3, shows that yu is equal to 5.

The integer b1 is the simulated value of the operand other than the output of u yu and it

is recorded in the dump-file. The formula to compute Sub_CurrentMVSp is

summarized in the third column of Table.1. The column “condition” shows the

necessary conditions for the result of Sub_CurrentMVSp. If the conditions are not met,

in most of cases, Sub_CurrentMVSp = ∅ , except for comparisons. The following

explains how to derive Sub_CurrentMVSp for some representative operations.

 53

Table 3-1 The formulas of Sub_CurrentMVSp

Operation Condition Sub_CurrentMVSp

yv = yu - {p}

yv = ~ yu - }12{ pw −−

yv = - yu - }2{ pw −

yv = yu [i:j] - U
12

0

11
1

]}1222~22{[
−

=

++
−−

−+⋅+⋅⋅+⋅
iw

k

jijij kpkp

yv = yu [i] - U
12

0

11
1

]}1222~22{[
−

=

++
−−

−+⋅+⋅⋅+⋅
iw

k

iiiii kpkp

yv = yu + b1 - {p-b1}

yv = yu - b1 - {p+b1}

yv = b1 -yu - {b1-p}

yv = yu* 0 p==0]}12~0{[−w

yv= yu* b1 (b1>0) p%b1=0 {p/b1}

yv= yu% b1 p < b1
⎣ ⎦
U

1/)12(

0
1 }{

b

k

w

pbk
−

=

+⋅

yv= yu>>b1 -]}122~2{[111 −+⋅⋅ bbb pp

yv=b1 >>yu b1%p }/{log 12 pb

yv= yu<<b1 (p% 12b) = =0 }2/2{ 11

1 12

0

bb

k
pk

b

+⋅
−

=
U

yv=b1<<yu (p%b1) = =0 }/{log 12 bp

yv= yu>b1 p==1 {[b1+1~ 12 −w]}

yv=yu >=b1 p==1 {[b1~ 12 −w]}
yv= yu< b1 p==1 {[0~b1-1]}

yv=yu<= b1 p==1 {[0~b1]}

yv=yu== b1 p==1 {b1}

yv= yu!= b1 p==1 {[0~b1-1],[b1+1~ 12 −w
]}

1. w is the bit width of yu and b1 is the simulated value of the operand other than yu.
2. The notation [i~j] means a set of continuous integers from integer i to integer j.

 54

1) Operations that choose a bit range “[i]” and “[i:j]”:

For an operation “[i:j]”, the only constraint on the input values is that the bit

assignment of the bits selected by “[i:j]” must be the same as the output value p. The

bit assignment of the unselected bits can be any combination. Thus, the value of the

unselected bits from 0 to j-1 can be any integer in the range of 0 to 2j -1. The value of

the unselected bits from i+1 to w-1 can be any integer in the range from 0 to 2w-i-1 -1.

Hence, the formula for operation “[i:j]” appears in the third column of Table.1.

Deriving Sub_CurrentMVSp for “[i]” can be achieved by treating i the same as j in

the “[i:j]” formula.

2) Control vertexes:

If yu is the control signal, yu can only be the values that select suitable branches to

keep the output of vertex v yv at p. This can be done by comparing the value of each

variable on each branch with p. If yu is the signal on the taken branch, yu can only be p

such that yv is p.

3) Comparison Operations “>”,”<”, and etc:

Take “<” as an example. If p is equal to 1, yu can only be values smaller than b1.

These values are {[0~b1-1]}. The derivations for other comparisons are quite similar.

4) Right shift “>>” and left shift “<<”:

Either right shift or left shift by the amount b1 incurs information loss. The “[i:j]”

formula can tackle this. As illustrated in Figure 3-5 (a) and (b), the entire right shift

(left shift) is the cascade of an operation that selects the bit range from i to j “[i:j]”

and a divide (multiply) operation. Therefore, to derive the formula of right shift (left

shift), first apply the divide (multiply) formula and then the “[i:j]” formula. If

 55

information loss is encountered in other operations, e.g. “+”, “-“, and “*”, the “[i:j]”

MVS formula can also model it.

Figure 3-5: Modeling information loss in right shift and left shift

If the formulas listed in the third column of Table 3-1 are directly applied to

compute CurrentMVS, for a PreviousMVS with n integers, the formula should be

applied n times and then the union of all the Sub_CurrentMVSp produces

CurrentMVS. Take the operation “b=a[1:0]” as an example. Assume that a is 4-bit

wide, b is 2-bit wide, and PreviousMVS={0,1,2}. To compute CurrentMVS, first

apply the “[i:j]” formula with i=1, j=0, w=4, and p=0. The result is

]}12220~220{[0110
12

0

110
114

−+⋅+⋅⋅+⋅ +
−

=

+
−−

kk
k
U ={0, 4, 8, 12} (3.8)

The same formula can be used with p=1 and p=2 in sequence to obtain {1,5,9,13}

and {2, 6,10,14} respectively. The union {0,1,2,4,5,6,8,9,10,12,13,14} is CurrentMVS.

 56

It is obvious that the computation using the formulas in Table 3-1 may take lots of

time if there are many elements in PreviousMVS. In fact, the formulas in Table 3-1

are not what we really used in MVS computation algorithm. We have the following

observations used to transform the formulas in Table 3-1 to improve the efficiency of

the formulas.

Taking a closer look at the results obtained with p=0, p=1, and p=2, we observe

that 0*20+k*21+1+20-1=k*21+1 and 1*20+ k*21+1=k*21+1+1 are two continuous integers.

Also, 1*20+ k*21+1+20-1=k*21+1+1 and 2*20+k*21+1=k*21+1+2 are two continuous

integers. Therefore, the union of the above three sets can be represented more

concisely as

]}42~4{[]}12222~220{[
3

0

0110
12

0

110
114

⋅+⋅=−+⋅+⋅⋅+⋅
=

+
−

=

+
−−

kkkk
kk
UU (3.9)

More generally, for a set of continuous integers from p to q in PreviousMVS, the

computed CurrentMVS is

U
12

0

11
1

]}1222~22{[
−

=

++
−−

−+×+××+×
iw

k

jijij kqkp (3.10)

The “[i:j]” MVS formula is derived now and listed in the third column of

Table3-2. The operation “<<” is another example of how to derive the “<<” formula

listed in the third column of Table 3-2. First try to find the smallest integer p’ in the

set {[p~q]}, which satisfies p’%2b
1=0. If there is no such p’ in the set {[p~q]},

CurrentMVS will be φ . If p’ exists in {[p~q]}, check if p’+2b
1 is in the range of p to

 57

q. If so, the union of the two result sets obtained by p’ and p’+2b1 can be represented

as

]}2/)2'(2~2/'2{[1111

1
1

12

0

bbbbb

k
pkpk

b

++⋅+⋅
−

=
U (3.11)

Repeating the derivations above produces the formula in the third column in

Table3-2 at page 60. For a subset of integers {[p~q]} in PreviousMVS, applying the

MVS formulas listed in the third column in Table 3-2 can derive results much more

quickly than applying the formulas in Table 3-1. In addition, all the integers in the

subset {[p~q]} can be memorized by recording only p, q, and the special tag “~”. This

storage format enhances memory usage efficiency and alleviates the memory

explosion problem.

 58

Table 3-2: The MVS formulas for HDL operations

Operation Condition Sub_CurrentMVS[p~q]

yv = yu - {[p~q]}

yv = ~ yu -]}12~12{[pq ww −−−−

yv = - yu -]}2~2{[pq ww −−

yv = yu [i:j] - U
12

0

11
1

]}1222~22{[
−

=

++
−−

−+⋅+⋅⋅+⋅
iw

k

jijij kqkp

yv = yu [i] - U
12

0

11
1

]}1222~22{[
−

=

++
−−

−+⋅+⋅⋅+⋅
iw

k

iiiii kqkp

yv = yu + b1 - {[p-b1~q-b1]}

yv = yu - b1 - {[p+b1~q+b1]}

yv = b1 -yu - {[b1-q~b1-p]}

yv = yu* 0 p = = 0]}12~0{[−w

yv= yu* b1 (b1>0) ⎣ ⎦1/ bp < ⎣ ⎦1/ bq ⎣ ⎦ ⎣ ⎦]}/~/{[11 bqbp

yv= yu% b1 q< b1
⎣ ⎦
U

1/)12(

0
11]}~{[

b

k

w

qbkpbk
−

=

+⋅+⋅

yv= yu>>b1 -]}122~2{[11
1 −+⋅⋅

bb

qp b

yv=b1 >>yu ⎣ ⎦qb /1 < ⎣ ⎦pb /1 ⎣ ⎦ ⎣ ⎦]}/log~/{[log 1212 pbqb

yv= yu<<b1 ⎡ ⎤12/ bp < ⎣ ⎦12/ bq ⎡ ⎤ ⎣ ⎦]}2/2~2/2{[1111

1 12

0

bbbb

k
qkpk

b

+⋅+⋅
−

=
U

yv=b1<<yu ⎣ ⎦1/ bp < ⎣ ⎦1/ bq ⎣ ⎦ ⎣ ⎦]}/log~/{[log 1212 bqbp

yv= yu>b1 p = =0 and q = =1]}12~0{[−w

yv=yu >=b1 p = =0 and q = =1]}12~0{[−w

yv= yu< b1 p = =0 and q = =1]}12~0{[−w

yv=yu<= b1 p = =0 and q = =1]}12~0{[−w

yv=yu== b1 p = =0 and q = =1]}12~0{[−w

yv= yu!= b1 p = =0 and q = =1]}12~0{[−w

1. w is the bit width of yu and b1 is the simulated value of the operand other than yu.
2. The notation [i~j] means a set of continuous integers from integer i to integer j.

 59

3.3.3 MVS Estimations for Multiple Paths

The algorithm shown in Figure 3-4 can compute the exact MVS of vertex b in

time frame t=ti with respect to an observation point OPj in time frame t=ck only if

there is just one single path from b at t=ti to OPj at t=ck. If there are multiple paths

from b at t=ti to OPj at t=ck, another approach is necessary because possible

propagation methods become more complex.

In tag-based approaches [18,19], the authors simply put unknown tags “?” on the

reconvergent paths instead of computing exact solutions. If unknown tags are

propagated to observation points, they seem to be considered as not covered with

respect to OCCOM in a conservative way.

In order to reduce the complexity, we adopt an estimation that is similar to

tag-based approaches. If there are multiple paths from v at t=ti to an observation point

OPj at t=ck, the universe (U) is used instead of real MVS(b@t=ti)OPj@t=ck in the

intersection operation. This estimation result obtained using the universe must include

the exact result obtained by intersecting with the real MVS(b@t=ti)OPj@t=ck because

the universe includes MVS(b@t=ti)OPj@t=ck. Consequently, this estimation result has a

larger MVS set, which turns out to be less observable according to the definition of

observability in (3.5). Therefore, this estimation approach guarantees lower-bound

estimations of observability.

This estimation approach may incur some accuracy loss. Because the estimated

observability may be lower than the actual value, it is possible to underestimate the

coverage or insert assertions on some points that are actually safe. While conducting

verifications, this conservative strategy that checks more points is often acceptable,

 60

and will not cause too many problems.

3.3.4 Time-Saving Strategies

To reduce computation time, we develop 1) the bounding traversal strategy and

2) the Limited-Traversed-Frame (LTF) strategy. Bounding traversal strategy can

avoid unnecessary traversals during MVS computation without causing any accuracy

loss. Limited-Traversed-Frame (LTF) strategy saves additional time at the expense of

accuracy loss. However, it can always have a lower bound of observability (a

pessimistic estimation).

3.3.4.1 Bounded Traversal Strategy

In our observability computation, after some backward traversals, there are MVS

sets recorded on vertices that have been traversed. As shown in Figure 3-6, let a

vertex v in time frame t=tn be a vertex that was traversed and v’ be one of v’s fanin

vertices that was also traversed. Hence, MVS(v@t=tn) and MVS(v’@t=tn) are already

recorded on v and v’. And, MVS(v’@t=tn) should be { x | fv(x) MVS(v@t=tn) }

according to the CurrentMVS computation shown in line 12 of the MVS_for_Vertex

pseudo code in Figure 3-4.

Figure 3-6: Vertex v and one of it fanin vertex v’

If another backward traversal from an observation point arrives at vertex v in

 61

time frame t=tn again, PreviousMVS and MVS(v@t=tn) are intersected as described

in line 4 of the MVS_for_Vertex pseudo code. If the result of the intersection remains

MVS(v@t=tn), i.e. MVS(v@t=tn)⊆PreviousMVS, then when the computation arrives

at v’, the result of the intersection will also be MVS(v’@t=tn). More formally, if

MVS(v@t=tn) ⊆ PreviousMVS, then MVS(v’@t=tn) ⊆ {x| fv(x) ∈ PreviousMVS}.

Theorem.2 provides a formal description and proof.

Theorem.2 If MVS(v@t=tn) ⊆ PreviousMVS, then MVS(v’@t=tn) ⊆ { x |

fv(x)∈PreviousMVS}. The originally recorded MVS(v’@t=tn) remains unchanged

after the intersection.

Proof:

The MVS(v’@t=tn) is computed based on the MVS(v@t=tn). That is, MVS(v’@t=tn)

is the set {x | fv(x) ∈MVS(v@t=tn)}. For an arbitrary element x in MVS(v’@t=tn),

fv(x) is in MVS(v@t=tn) and thus is also in PreviousMVS since

MVS(v@t=tn) ⊆ PreviousMVS. Therefore, if MVS(v@t=tn) ⊆ PreviousMVS,

MVS(v’@t=tn)⊆ {x|fv(x) ∈PreviousMVS}. The originally recorded MVS(v’@t=tn)

remains unchanged after the intersection.

If v’ has at least one fanin vertex v’’, by mathematical deduction, MVS(v’’@t=tn)

should also remain unchanged after the intersection. So do the vertices that are in

transitive fanin of vertex v. Therefore, when PreviousMVS includes the recorded

 62

MVS of a vertex v, return from subroutine MVS_for_vertex can avoid unnecessary

traversals and computations since further computations will not change the recorded

MVSs.

3.3.4.2 Limited-Traversed-Frame (LTF) Strategy

The bounding traversal strategy can avoid unnecessary traversals. However, in

some cases, necessary backward traversals can still expand many frames. Although

accurate results are produced, the required computation time may become

unaffordable. Therefore, we propose a Limited- Traversed-Frame (LTF) strategy,

which provides an optional and flexible trade-off between accuracy and speed.

The idea of LTF strategy is to restrict the number of backward-traversed frames

in time frame expansion. It only requires a simple check on whether the number of

expanded frames reaches the maximum allowable number of frames (denoted as

frame_limit). Frame_limit is a configurable parameter that can be adjusted by users. It

can be set as a small number for a quick estimation or as infinite to disable LTF

strategy for the highest accuracy. Unlike the bounded traversal strategy, this strategy

may experience some accuracy loss. However, a lower bound estimation of

observability is always guaranteed such that our observability measures seldom

overestimate the correctness of the design under validation. The reason is given

below.

For a vertex u in time frame t=ck, if expanded frames are not limited, each

Masked Value Set of u at t=ck will be intersected with respect to an observation point

at a positive clock edge in the set of MVS sets {MVS1,MVS2,…,MVSm}. With the

 63

frame_limit restriction, some MVS of u at t=ck with respect to some OPs are not

obtained since the backward traversals are bounded and do not reach u in time frame

t=tk. Assume the obtained MVSs are {MVS1,MVS2,…,MVSn}, where n<m. The

intersection of all the MVSs in the set {MVS1,MVS2,…,MVSn} includes the

intersection of all the MVSs in the set {MVS1,MVS2,…,MVSm}. Larger MVS set

intersections turn out to be less observable according to the definition of observability

in (3.5). Therefore, our LTF strategy also guarantees lower-bound estimations of

observability.

3.3.5 Algorithm of Observability Computation

The entire algorithm of our observability computation is abstracted as the pseudo

code in Figure 3-7. The entire algorithm incorporates 1) MVS estimation for single

path, 2) MVS computation for multiple paths, 3) Bounding-traversal strategy, and 4)

Limited-Traversed-Frame (LTF) strategy. This algorithm is modified from the

algorithm shown in Figure 3-4 and thus it is quite similar to it. The modifications are

indicated with comments.

The modification on the steps in subroutine MVS_Com_for_vertex from line 1 to

line 10 incorporates MVS estimation for multiple paths. During traversal(s) starting

from an observation point (StartOP) at a time instance (StartTime), if vertex v is

visited for the first time, it is treated as the single path case. This PreviousMVS is

intersected with MVS(v@t=ti), which is already the result of intersecting many

PreviousMVSs. Then, if this vertex v is traversed for two or more times in the

 64

traversal(s) starting from StartOP at StartTime, there are multiple paths from v at t=ti

to StartOP at StartTime. Then the MVSforRecovery(v@t=ti) subroutine is used to

resume the status of MVS(v@t=ti) to the status without intersection in this traversal.

Two conditions are added for incorporating the two time-saving strategies into

the algorithm. The condition in line 5 of the MVS_Com_for_vertex subroutine is for

bounding traversal strategy. The last condition in line 16 is for the LTF strategy.

Once one of the conditions is met, succeeding computation processes can be skipped

and the program can directly return from the subroutine to save computation time.

Besides being bounded by time saving strategies, traversals are also bounded if there

is no frame to expand (th<0) or there is no fanin vertex to traverse.

Some preparations are required before observability computation can begin. The

3-address code generations and the conditional statement modification developed in

[19] must be conducted first for the information required in computing MVSs for

control vertices (conditional statements). The detailed conditional statement

modification algorithm can be found in [19] and in section 2.1.

 65

Figure 3-7: The pseudo code of observability computation algorithm

Preparation Phases:
1: 3-address Code Generation and Conditional statement odification
2: Simulation with commercial HDL simulator to obtain the dumpfile

Observability_computation (DUV, Dumpfile, OPs, frame_limit)
1: CDFG construction
2: Initialize each vertex as “untraversed”
3: for each positive edge of clock t=ck
4: for each observation point OPj
5: InitialMVS = {CV(OPj@t=ck)}; Find the fanin vertex a1 of OPj at t=ck
6: MVS_Com_for_Vertex(InitialMVS, a1, OPj, ck, ck, frame_limit)
7: Calculate observability with the computed MVSs

MVS_Com_for_Vertex(PreviousMVS, vertex v, StartOP, StartTime, time tj,
frame_limit)
//*** Modification for incorporating MVS computation for multiple paths ***
1: if traversed for first time in traversal starting from StartOP at StartTime
2: if MVS(v@t=tj) = = ∅
3: MVS(v@t=tj) = PreviousMVS
4: else
5: if MVS(v@t=tj) ⊆ PreviousMVS //**Condition of Bounding traversal
6: return
7: MVSforRecovery(v@t=tj) = MVS(v@t=tj)
8: MVS(v@t=tj) = MVS(v@t=tj) I PreviousMVS
9: else //Multiple paths. Recovering to the previous status before intersection
10: MVS(v@t=tj) = MVSforRecovery(v@t=tj)
//*** Modification for incorporating MVS computation for multiple paths ***
11: if v is a control vertex
12: Mark the fanin vertex(es) on the untaken branch(es) as “inactive”
13: for each active fanin vertex u of v
14: if edge (u, v) across time frame
15: th = tj – clock_period
16: if th <0 or frame_limit = = 0 //** Condition of Limited Traversing Frame
17: return
18: Frame_limit - -
19: Compute CurrentMVS, which is { SPreviousCV)(| ∈xfx v }
20: MVS_Com_for_Vertex(CurrentMVS, u, StartOP, StartTime, th, frame_limit)

 66

3.3.6 An Illustration Example

The example in Figure3-1 can also be used to demonstrate the processes of our

observability computation. We first construct the control/data flow graph of the DUV.

The CDFG of the HDL code in Figure 3-1 is shown in Figure 3-8(a). After some

initializations, we start backward traversal from PO1 at t=1 by calling subroutine

MVS_Com_for_vertex with the inputs PreviousMVS={1}, vertex v=”2:if”,

StartOP=PO1, StartTime=1, and Frame_limit=∞ .

Figure 3-8: Computation processes starting from PO1 at t=1

When subroutine MVS_Com_for_vertex is called for the first time, the traversal

reaches vertex “2:if” in time frame t=1 for the first time. As shown in Figure 3-8(b),

the recorded MVS(2:if@t=1)={1} and no MVSforRecovery is recorded. Vertex “2:if”

 67

in time frame t=1 is a control vertex. Therfore, there are two fanin vertices “2:<” and

“3:=” for further backward traversals. Here, assume that “2:<” is traversed first. Based

on PreviousMVS {1}, the MVS computation for conditional statements will be used

to compute CurrentMVS and obtain the result {1}.

Subroutine MVS_Com_for_Vertex is then called for the second time to traverse to

“2:<” in time frame t=1. When the traversal arrives at vertex “2:<” in time frame t=1,

the computation status is shown in Figure 3-8(c). Repeat the similar computations

until reaching vertex “6:=” in time frame t=1. Computation results along the traversal

from “2:if” to “6:=” are shown in Figure 3-8(d), where each set of integers aside an

edge is the recorded MVS. Since vertex “6:=” in time frame t=1 has no fanin vertex,

the computation will traverse another fanin vertex “3:=” of vertex “2:if.” Repeatedly

calling subroutine MVS_Com_for_Vertex can produce the results shown in Figure

3-8(e).

After completing the traversals and MVS computations starting from PO1 in

time frame t=1, starting backward traversals from PO1 in time frame t=5 can produce

the results shown in Figure 3-9(a) and (c). When the computation reaches vertex

“5:if” in time frame t=1, PreviousMVS {[0~5], [8~15]} will include

MVS(5:if@t=1)={[0~1]}. The bounding traversal condition is satisfied and the

traversal is bounded here.

 68

Figure 3-9: Observability computation results

 After all the observation points at all the positive clock edges are applied in MVS

computation, calculating the observability of each internal signal with (5) can produce

the result as shown in Figure 3-9(b). The observability of the signal counter at t=5 is

not high enough to be considered as an observed tag, i.e. 0.625 is not close to 1.

However, as we discussed in section III.A, tag propagation rules can not represent

intermediates values between 1 and 0. The rules thus determine that tags injected on

counter can propagate to PO1 at t=5. This induce some inaccuracy and even worse

overestimates the actual likelihood that an erroneous effect propagates through

“counter<PI2”. Experimental results in section VI also shows the same situation of

overestimation as we discussed above.

 69

3.4 Observability Analysis for Multiple Design Errors

Incorrect values caused by bugs may be masked and thus escape detection. Thus,

the simulation values recorded in the dump-file may not be completely correct.

Therefore, in our observability computation, we do not assume the correctness of the

simulation values. We also do not assume the correctness of the design under

validation. Observability is computed based only on the values of involved signals

recorded in the dump-file, regardless of the correctness of these values. Even if the

values used in the computation are incorrect, we can still provide some meaningful

values for users’ reference based on these incorrect values. When multiple errors

occur, this method can reduce the risk of misleading the verification results more than

using binary decisions only.

For example, let signals a and b be two 3-bit signals in the design under

validation. As shown in Figure 3-10(a), if the values of a and b are both correct, the

observability of a and b are both 0.625. However, as shown in Figure 3-10(b), if the

value of b recorded in the dump-file is 5 instead of the correct value 4, the

observability of a can still be determined to be 0.500. The observability of a becomes

smaller as the value of b becomes larger. The computed observability of a reasonably

corresponds to the value change.

 70

Figure 3-10: Observability analysis with correct and incorrect values

 The situation can become even worse. As shown in Figure 3-10(c), the value of a

and b are 4 and 5, which are both different from their correct values. However, our

approach can still derive that the observability of a and b are 0.500 and 0.750

respectively. The computed observability still adequately corresponds to the value

changes of a and b. Therefore, our observability seems to have some degree of

immunity to multiple errors.

On the other hand, if we use tags in the example in Figure 3-10(c), tag Δ on a

and tag -Δ on b can propagate through the operation “a<b”. Tag propagation rules

determine that those tags are observable although in fact the real incorrect values of a

and b are masked. The resulting tags do not correspond to the value change of a or b.

Therefore, if multiple errors exist in the design under validation, tags may provide

incorrect predications on error propagation.

Besides the cases shown in Figure 3-10 (a), (b), and (c), there is still one case

 71

where incorrect values are not masked and can cause discrepancies in observable

outputs. For example, if a is changed to 4 and b is changed to 3, the output of the

comparator will become FALSE. In such a case, internal design errors are considered

as detected during simulation. Although the observability of a and b may be

underestimated in this case due to multiple errors, it will not mislead the verification

results because users know that an error occurs and causes output discrepancy.

3.5 Experimental Results

We conducted experiments on a subset of ITC’99 benchmark in VHDL and four

designs written in Verilog HDL. The four designs are as follows: pcpu is a simple

32-bit pipelined DLX CPU; div16 is a 16-bit divider; blkJ is a controller of black jack

card game, and Mtrx implements a two by two matrix multiplication. The information

for these design cases is presented in Table 3-3, including the total number of lines

(#Line), the number of variables (#Var.), the number of test vectors (#Vec.), and the

simulation time (Sim. Time). The test vectors applied in our experiments were

randomly generated with very little manual guidance (e.g. reset handling) targeted on

high statement coverage (~90%). The number of test vectors increased in increments

of 1000 until statement coverage reaches our target.

The coverage reports of the statement coverage metric and our

Observability-enhanced Statements COverage Metric (OSCOM) are recorded in the

columns “Stmt” and “OSCOM,” respectively. For each design case, OSCOM

coverage is often less than the statement coverage. This means that some statements

 72

are exercised but their observability is not high enough to reach our threshold of 0.93.

Without sufficient observability, we are not confident about the accuracy of the

simulation values if we only observe from the observation points. Consequently,

OSCOM filters out these exercitations of statements, acting as a more stringent code

coverage metric than statement coverage metric.

We also conducted experiments to compare the propagation probabilities

[29,44,45], tag simulation calculus [18,19] and our observability measures. We

3 The threshold of observability measures can be adjusted by tool users of our coverage analysis. It
represents the observability requirement that tool users want every signal in the design to reach.

Table 3-3 Comparing our observability with propagation probabilities,
tag-based observability, and statement coverage metric

Detected Bugs Undetected Bugs Design

Name #Line #Var #Vec
Sim.
Time

(s)

Stmt
(%)

OSCOM
(%) PP Tag Ours

(FL=∞)
Ours

(FL=20) PP Tag Ours
(FL=∞)

Ours
(FL=20)

B01 110 7 1000 0.2 100.0 92.1 0.988 1.000 0.992 0.992 0.117 0.125 0.122 0.122

B02 70 5 1000 0.1 100.0 100.0 1.000 1.000 1.000 1.000 0.005 0.150 0.008 0.008

B03 141 21 1000 0.2 95.2 67.2 0.939 0.954 0.937 0.937 0.078 0.133 0.081 0.081

B04 102 19 1000 0.3 93.1 64.1 0.957 0.980 0.967 0.964 0.108 0.122 0.115 0.114

B05 332 25 1000 0.3 94.2 70.1 0.966 0.988 0.977 0.972 0.034 0.190 0.036 0.034

B06 128 9 1000 0.2 100.0 91.3 0.991 1.000 0.988 0.988 0.074 0.107 0.074 0.074

B07 92 11 2000 0.3 96.5 70.6 0.907 0.954 0.910 0.897 0.140 0.238 0.136 0.127

B08 89 23 2000 0.3 94.2 81.1 0.947 1.000 0.978 0.964 0.103 0.250 0.095 0.088

B11 118 21 2000 0.3 90.3 66.7 0.821 0.868 0.811 0.801 0.044 0.268 0.053 0.051

B14 509 27 5000 1.8 89.1 50.2 0.738 0.852 0.721 0.701 0.132 0.306 0.131 0.123

B21 1089 65 5000 3.8 90.2 53.1 0.778 0.915 0.770 0.766 0.113 0.298 0.110 0.103

div16 235 11 1000 0.3 100.0 77.2 0.934 0.964 0.942 0.939 0.063 0.344 0.065 0.065

pcpu 952 54 5000 1.6 87.3 59.3 0.738 0.862 0.813 0.793 0.168 0.285 0.171 0.171

blkJ 156 20 1000 0.2 97.3 80.1 0.938 0.957 0.958 0.950 0.079 0.118 0.081 0.074

Mtrx 80 18 1000 0.2 100.0 100.0 0.984 1.000 0.985 0.983 0.030 0.000 0.031 0.031

 73

designed an experiment to compare their capabilities in predicting the propagation of

potential design bugs. For each design case, we randomly selected one expression and

changed it into a different expression to inject a design bug. The change we made was

randomly selected from typical bugs that designers usually induce according to

research in the arena of mutant analysis [47]. By simulating faulty HDL design and

comparing OP simulation values with the values of the original HDL design, we can

determine whether or not the injected bugs are detected in this experiment. For each

injected bug, the bug injection and identification process is repeated for 300 times.

The overall results are reported in Table 3-3.

 We then calculate the three observability measures above for the detected or

undetected bug. Propagation probabilities (PP) were calculated according to the

approach proposed in [29], which was introduced in chapter 2.2. This required

repeating the following steps for 5000 iterations. The steps include infecting the data

state of a variable using the perturbation function, simulating the program under test,

and monitoring the results at the OPs and recording the number of program failures.

 We calculated tag-based observability (Tag) is calculated according to the tag

simulation calculus proposed in [19], which was introduced in chapter 2.1. If a tag

injected on our injected bug was observed, we considered the computed observability

to be 1. Otherwise, the observability was set to 0. Our observability measures were

calculated using the proposed approach with frame_limit = 20 (OursFL=20) and

frame_limit = ∞ (OursFL=∞). For the 300 iterations we ran, the average values of

these observability measures for both detected and undetected design bugs are listed

in Table 3-3.

 74

 Experimental results reveal that the detection of a design error is strongly related

to the values of all three observability measures. Errors with low observability are

indeed difficult to detect at the observation points. In addition, the values of tag-based

observability measures for undetected bugs tended to be higher than the other

measures. For undetected bugs, if the observability is overestimated, the completeness

of the validation and the correctness of the design under validation can be misjudged.

For example, in the test case div16, the average tag-based observability is 0.344. This

implies that 34.4% of undetected bugs will be judged as observable, which may lead

to wrong conclusions.

 On the other hand, our observability measures exhibit quite similar results as the

propagation probability for both detected and undetected errors. These similar values

mean that our approach should have capabilities similar to the statistics-based

approach. For a hard-to-observe point that PPs can identify, our measures may very

well do the same. Even if some heuristics, such as the limited-traversed-frame strategy,

are used in our approach to reduce computational complexity, we can see that

observability results are still very close to the results without any heuristics (FL=∞).

 Since the accuracy of our approach is very similar to the statistics-based

approach, we conducted another experiment to compare the computation time of both

approaches. For each design, the computation time required to obtain observability

measures for all signals is presented in the column “Avg. time for all vars” under “Our

approach” in Table 3-4. Since the approach in [14] can only derive PPs for one signal

at a time, the computation time for one signal is shown in the column “Avg. time for

one var.”. For a design case with n variables, the total computation time of the

 75

statistics-based approach to obtain PPs for all signals is “n * the computation time in

the column PP for one var.” This is recorded in the column “Avg. time for all vars.” It

is obvious that our approach is much faster than the statistics-based approach [14].

The speedup ratio (recorded in the column “spdup”) is defined as the ratio of “PP for

all vars” to “OM for all vars.” Normalized simulation time, which is defined as the

ration of the computation time for observability to the plain HDL simulation time, is

also provided in Table 3-4 for both approaches to show the efficiency of observability

calculation. The results show that our approach can greatly reduce the required

computation time to a reasonable region.

Table 3-4: Performance comparison with propagation probability

Propagation Prob. Our approach (FL=20)

Design
Name

Avg.
time

for one
var. (s)

Avg.
time

for all
vars (s)

Normalized
Sim. time

Avg.
time

for all
vars
(s)

Normalized
Sim. time

Mem.
(MB)

Spdup

B01 1620 11340 5.7*104 0.4 2.0 1.1 2.9*104

B02 1728 8640 8.6*104 0.5 5.0 0.8 1.7*104

B03 3373 70833 3.5*105 0.4 2.0 1.5 1.8*104

B04 3419 64961 2.2*105 1.3 4.4 3.3 4.9*104

B05 3229 80725 2.7*105 1.1 3.7 6.3 7.3*104

B06 1562 14058 7.0*104 0.3 1.5 0.9 4.8*104

B07 3597 39567 1.3*105 0.8 2.7 2.5 4.9*104

B08 3410 78430 2.6*105 5.2 17.3 4.8 1.5*104

B11 3735 78435 2.6*105 3.8 12.6 5.1 2.1*104

B14 19781 534090 3.0*105 201.2 111.8 18.3 2.7*103

B21 37301 2424600 6.4*105 452.2 119.0 39.5 5.4*103

div8 1640 18040 6.0*104 0.9 3.0 1.6 2.0*104

pcpu 21981 1187000 7.4*105 145.1 90.7 12.9 8.2*103

blkJ 1981 39620 2.0*105 1.8 9.0 1.2 2.2*104

Mtrx 1781 32166 1.6*105 0.6 3.0 1.0 5.4*104

 76

3.6 Summary

In this chapter, we present a new probabilistic observability measure for HDL

descriptions along with its efficient computation algorithm. Unlike tag-based

approaches, which can provide only two levels of measurement, our fine-grained

observability measures have less risk of overestimating the extent of validation with

reasonable computation time. Even when multiple errors occur, we can still provide

some meaningful values for users’ reference to reduce the risk of misleading the

verification results. This is better than using binary decisions only.

Experimental results show that the observability measures computed by our

dump-file based approach have almost the same capability to identify hard-to-observe

locations as the statistics-based approach [29]. However, our method is much faster,

and is more suitable to be applied in the HDL codes of commercial products.

Since hard-to-observe points can be identified using our observability measure,

designers can insert assertions in those locations to find hidden bugs more easily. This

observability-driven assertion insertion is simple, but should be very effective. Of

course, it is also possible to generate a test vector set that creates some highly

transparent sensitized paths to propagate potential incorrect values of the exercised

statements to observation points, such as the extension works of OCCOM [18,19]. We

will try to study this direction in the future based on our observability measures to

provide a comprehensive solution for the observability issue during simulation.

 77

Chapter 4

Accurate Error Candidate Rank
Ordering for Efficient HDL Debugging

4.1 Debugging Priority for Quick Error Localization in

Error Space

 Deriving a reduced set of error candidates is helpful for HDL debugging.

However, the derived error candidate set (called error space in this work) can still

contain many error candidates and identifying true design errors by examining

candidates one by one still requires much efforts and time. An interesting technique,

called debugging priority, has been proposed for accelerating error searching in the

derived candidate set [46]. A measurement, called Confidence Score (CS), has been

developed to assess the likelihood of correctness for each error candidate.

 The formula of CS is simple. Each sensitized statement of a CPO (a primary

output with correct simulation value) can get one point of CS. We use the following

example shown in Figure 4-1 to illustrate what sensitized statement is. The evaluation

result of the decision “if(sel1)…else…” is “TRUE” and the evaluation result of the

decision “if(sel2)…else…” is “FALSE”. Therefore, only statements f2 and f4 are

possible to affect the value of PO1 and are also observed by PO1. These two

statements f2 and f4 are defined as the sensitized statements of PO1 (SS(PO1)). Each

 78

sensitized statement tends to be a correct statement because if it were a statement with

design errors, the erroneous effects caused by this erroneous statement should cause

the value of PO1 to be inconsistent with the expected value. However, there are two

situations mentioned in [46], in which sensitized statements with design errors can not

cause any observable incorrect behavior at PO1. One is that the design error is

“non-activated” and the other is error masking. That is the erroneous effects are

masked so that the value of PO1 can still remain correct.

Figure 4-1: An example of sensitized path

What error masking is ? The authors used a simple example shown in Figure 4-2

to explain. The applied input vector is “PI1=2’b10; PI2=2’b01;” and the values of all

variables are “E=2’b10; sel=1’b1; B=2’b11; D=2’b11; C=2’b10; A=2’b10;

PO1=2’b01;”. If the statement f1 becomes an erroneous statement “D=PI1;”, the

value of D will become 2’b10 instead of 2’b11. However, the output of the statement

 79

f2 is still C=2’b10. There is no syndrome shown at PO1 because the activated error is

masked by the statement f2.

Figure 4-2: An example of error masking

The authors think the probability that errors are not activated, P(non-activated),

is generally very small. For example, if the correct statement is “assign c = a + b;”

and the erroneous one is “assign c= a * b”, only applying the input patterns “a=2;

b=2;” and “a=0; b=0;” may generate the same outputs for both statements.

Otherwise, errors are activated. In addition, the probability P(mask|activated) is not

high in general as well. Given P(non-activated) and P(mask | activated), the

authors estimated the possibility for the sensitized statements to be erroneous while

their corresponding PO is correct, denoted as P(error|CPOi) as shown in equation

(4.1).

 80

P(error|CPOi) = P(non-activated) + P(activated) * P(mask|activated) (4.1)

 Since P(non-activated) and P(mask|activated) are generally not high,

P(error|CPOi) is generally not high, either. For instance, if P(non-activated)=0.1 and

P(mask|activated)=0.3, P(error|CPOi) =0.1+0.9*0.3=0.37. For each PO with correct

simulation value at each simulation cycle, the SS(CPOi) will be given one point

because P(error|CPOi) is generally not high. If a statement gets 5 points, which is

denoted as P(error|5CPOs), the probability for it to be erroneous can be estimated as

equation (4.2).

P(error|5CPOs) = P(error|CPO1)P(error|CPO2)P(error|CPO3)P(error|CPO4)

P(error|CPO5) (4.2)

 Assume that each event of the probability is roughly independent to each other.

If we take the value of P(error|CPOi) calculated previously for each P(error|CPOi),

P(error|5 CPOs) can be roughly estimated as 0.375 = 0.007. Therefore, the more

points a sensitized statement has; the less possible it is to be a design error. This

is why their CS suitable and capable to represent the confidence level of a statement

on its correctness.

By sorting error candidates according to the CS, error candidates obtained in

error space identification are displayed in a prioritized order, from the most likely to

the least likely one. With the ranked order, the authors expect that true design errors

 81

can be put in the first few lines such that they should be found by designers in a few

times of examinations if designers search errors according to the order. In their

experimental results, debugging priority indeed can make design errors displayed in

the front of the list of error space. Thus, this technique helps reduce the efforts spent

on error searching in an error space.

4.2 Challenges on Accurate Error Candidate Rank Ordering

 Using CS to estimate the likelihood of correctness for error candidates can only

work under the assumption that P(non-activated) and P(mask|activated) are both

small. However, this is not always the case. Some HDL operations tend to mask

erroneous effects by nature. For example, for a signal a [15:0], if b is assigned to be

a[0], i.e. b is left-hand variable of statement “b = a[0]”. It is obvious that this bit

selection operation “[0]” tends to mask an erroneous effect on signal a if there is any

erroneous value on signal a. If the erroneous effects were masked from being

observed at the POs, sensitized statements may get CS points even if design errors

hiding within them. We intend to use the following to emphasize this point.

 Suppose that the HDL code a designer intends to write is the Verilog HDL code

in Figure 4-3(a). The design described in the HDL code has only one PO, PO1, on

which simulation values are compared against the expected values to check the

correctness of the design. The clock period of the clock signal clk is assumed to be

10ns. If the HDL code is simulated with the input stimulus shown in Figure 4-3(b), we

can obtain the simulation result as represented in Figure 4-3(c), in which PO1 is equal

 82

to 4 from Time =1 to Time = 25. The simulation result in Figure 4-3(c) can be

considered as the specification or the expected value of PO1 at Time =1 to Time = 25

because the HDL code in Figure 4-3(a) is what the designer intends to write.

Figure 4-3: A HDL code fragment

However, if the statement at line 7 (denoted as S7) "counter = counter + 1" is

carelessly written into "counter = counter + 2", the simulation result shall become

the one shown in Figure 4-4(a). It can be seen that the simulation value of PO1 at

Time = 25 in Figure 4-4(a) is different from the specification (the expected value of

PO1) shown in Figure 4-3(c).

 83

Figure 4-4: Erroneous Simulation Results and Debugging priority

 According to the definition in [46], PO1 is an Erroneous Primary Output (EPO)

and the clock cycle from t=15 to t=25 is the Error-Occurring clock Cycle (EOC). By

using the error space identification approach in [46], an error space, {S1, S2, S3, S4,

S5, S6, S7}, can be obtained.

After obtaining the error space, the CS for each error candidate should be

calculated for debugging priority. Each sensitized statement of a CPO (a primary

output with correct simulation) at a time instance before EOC gets one CS point.

Finding sensitized statements requires backward tracing from the PO’s in the reverse

direction of the data flow until Primary Inputs (PIs), registers, or constants are

reached. When reaching a conditional vertex, such as S2 and S5 in Fig. 1(a), the

authors propose to traverse the taken branch(es) and the control signal and to ignore

the untaken branch(es). For example, at Time=1, since the evaluation result of

"if(reset)" at Time=1 is TRUE, the traversal reaches S5 and then back traverses the

True branch and the control signal , which is then reset. The obtained sensitized

statements for PO1 at Time=1 are {S5, S6} and they both receive one CS point.

 84

As can be seen from the above, all the traversals must commence with one PO.

Each PO traversal is completed in a particular simulation instance. This process is

repeated until all the PO traversals in a particular simulation instance have been

completed. Finally, once all the PO traversals in all the simulation instances have been

completed, the debugging priority shown in Figure 4-4(b) is obtained. The numbers

within the parentheses are the CSs of the corresponding error candidates.

 It can be seen that the design error in statement S7 "counter = counter + 2" is

not placed at the first line but rather in the fifth in Figure 4-4(b). If circuit designers

examine error candidates according to this debugging priority, four trials would be

wasted before the true error S7 can be found. The reason why design error S7 is

placed at the fifth is because S7 receives two CS points due to the fact that the

erroneous values caused by S7 are masked twice on its way propagating to PO1.

The first error masking occurs at Time=5. It can be seen that the erroneous

statement S7 causes an incorrect value (3 is different from the correct value 2 shown

in Figure 4-3(c) as we highlighted using an underline) to be displayed on the signal

counter at Time=5. However, this incorrect value 3 is masked by the operation

"counter<PI2" in S2 because both the correct value (2) and the incorrect one (3)

cause the same result at the output of the operation "counter<PI2", i.e they are both

smaller than the value of PO2 (4).

Similar error masking also occurs at Time=15. Although the incorrect value of

the counter is propagated through the output of “counter<PI2”, i.e., causing it to be

FALSE. However, the incorrect result, FALSE, does not alter the value of PO1 (4) i.e.

signal a is 4 at Time=15. It is masked by the conditional operation “if(…)….else ….”

 85

and can not cause incorrect values at PO1 at Time=15. Due to the fact that CS does

not consider the possible error masking that may caused by the operation

“counter<PI2” and the conditional operation “if(…)….else ….”., S7 is given a CS

score of two points. This makes S7 put at line 5 in the candidate list in Figure 4-4(b).

The accuracy of the debugging priority is reduced due to the lack of considering error

masking of the CS.

4.3 Probabilistic Confidence Score for Accurate Debugging

Priority

 Observing the disadvantage of confidence score (CS), we intend to estimate of

the Likelihood Of Error Masking (LOEM) for a Sensitized Statement (SS) to assess

the score the SS can receive. If the LOEM of an arbitrary SS SSi is quite low, error

masking is almost impossible to occur on the paths from SSi way to POs. It should be

comparatively safe to consider SSi as a correct statement and give SSi a high score. On

the contrary, if the LOEM of SSi is high, it should be given a low score.

 In the following introduction, the input faulty HDL design is modeled as a

modified Control/Data Flow Graph (CDFG) G = (V, E), where V is the set of vertices

and E is the set of edges connecting the vertices. Let v be a vertex in V. Each vertex v

corresponds to an operation in the HDL code. Function fv and variable yv are also

associated with vertex v. Function fv is the function of the operation to which v

corresponds. Variable yv is the output variable of fv or the left-hand variable of the

operation. The Verilog HDL code fragment in Figure 4-3(a) is used as an example and

 86

its CDFG is constructed as shown in Figure 4-5. Vertex “1:*” corresponds to

operation “a=PI1*4” in the statement at line 1 (S1). Function f1:* is multiplication “*”

and y1:* is signal a. Vertex “2:if(…)….else….” corresponds to the operation “if(…) …

else ...” at lines 2 to 4. The functionality of vertex “2:if(…)….else….” is quite similar

to that of a multiplexer. Vertex PO1 is a special vertex representing the only PO, PO1,

of the circuit.

Edge (v, u) ∈E indicates that the input of vertex u is data dependent on the

output of v. As shown in Figure 4-5, an edge (1:*, 4:=) exists since the operation

“4:=” takes the output of vertex “1:*” as its input. The fanout of v is a set of vertices u

such that there is an edge from v to u. The fanin of v is a set of vertices k such that

there is an edge from k to v. A path P from vertex u to vertex u’ is a sequence <v0, v1,

v2,…, vk> of vertices such that u = v0, u’ = vk, and (vi-1, vi) ∈ E.

Figure 4-5: The CDFG of the HDL code in Figure 4-1

Suppose that verification finds incorrect circuit behavior at the nth positive edge

 87

of the clock signal t=cn
4 . This special positive edge of the clock is called

Error-Occurring Edge (EOE). Assume that the faulty DUV has m POs {PO1, PO2, …,

POm} and n-1 clock cycles pass before the EOE (t=cn).

To introduce how we model error masking and estimate LOEM, we first

consider that a design error hides within an arbitrary statement v. If the erroneous

statement v caused an incorrect value w on its left-hand variable yv at time instance

t=ti, this incorrect value w would not cause any incorrect behaviors at any POs at all

the rising edges of clock before t=cn. Otherwise, EOE is not t=cn, but another earlier

rising edge of the clock. More specifically, for an arbitrary POj at an arbitrary rising

edge of clock t=ck before EOE, the incorrect value w is masked by some vertices on

the paths from statement v at t=ti (denoted as v@t=ti) to POj at t=ck (denoted as

POj@t=ck), causing the simulation value of POj to be the same as the correct value at

t=ck.

)@()(@@ kjctPOttv ctPOCVwf
kji

===→= (4.3)

where
kji ctPOttvf =→= @@ is the function of the paths from v in time frame t=ti to POj

in time frame t=ck and CV(POj@t=ck) is the correct value of POj at t=ck.

 For all the other POs of the DUV, the incorrect value w would also be masked on

the way to them at all the rising edges before the EOE so that it could remain

uncovered before EOE. That is, for each PO POj at each rising edge of clock t=ck

4 We assume that the simulation values of all the POs are compared with the correct values only on the rising edges of the clock
signal. If DUV is a falling-edge triggered or double-edge triggered design, the modeling and the computation algorithm can be
easily changed to fit to it.

 88

before EOE, the function of the path(s) from vertex v at t=ti that goes to POj at t=ck

must generate the correct value of POj at t=ck with w, even if w is an incorrect value.

The above description can be modeled in (4.4).

II
m

j

n

k
kjctPOttv ctPOCVwf

kji
1

1

0
@@)@()(

=

−

=
=→= == (4.4)

We now consider the likelihood that the incorrect value w truly exists on yv but is

masked from causing any incorrect values on POs at any time instances before EOE.

We first notice that all the possible values of yv that can satisfy (4.4) forms a special

set of values. We call it the Masked Value Set (MVS) of vertex v at time instance t=ti

(denoted as MVS(v@t=ti)). Its formula is given in (4.5).

})@()(|{)@(
1

1

0
@@II

m

j

n

k
kjctPOttvi ctPOCVxfxttvMVS

kji
=

−

=
=→= ==== (4.5)

 Each element in MVS(v@t=ti) retains the correct values of all POs at all the

rising edges of clock before the EOE, no matter it is a correct value or not. The correct

value of the output of vertex v at t=ti is of course contained in MVS(v@t=ti). This

justifies the existence of MVS(v@t=ti). If MVS(v@t=ti) contains only one element,

obviously it will be the correct value of yv at t=ti. In this case, no incorrect values ever

exist in MVS(v@t=ti) and error masking can never occur. Statement v at t=ti is given

a high score. On the other hand, if the set contains many elements, an incorrect value

 89

is very likely to exist in the set and to become an incorrect value that remains

unrevealed at all the rising edges of the clock before EOE. The correctness of

statement v is less obvious. In other words, the more elements MVS(v@t=ti) contains;

the more likely that the simulated value of v at t=ti is a masked incorrect value. Hence,

we define the Likelihood Of Error Masking (LOEM) of statement v at time instance

t=ti as (4.6). Its complement is the likelihood that an erroneous value of v at t=ti is

propagated to at least one PO before EOE and observed (the Likelihood Of Error

Propagating (LOEP) of v at t=ti). We show its formula in (4.7)

12
1|)@(|)@(

−
−=

== BW
i

i
ttvMVSttvLOEM (4.6)

12
1|)@(|1)@(

−
−=

−== BW
i

i
ttvMVSttvLOEP (4.7)

where BW is the bit width of the output of variable v.

 In the given input value change dump file, the output variable yv of an arbitrary

statement v can have many times of value changes, say l times, at different time

instances before EOE {t=t1, t=t2,…, t=tl}. Each time the value of yv changes at time

instance t=ti, there will be one particular value of LOEP(v@t=ti). The Probabilistic

Confidence Score of v (PCS(v)) is defined as the maximum among these LOEP values,

as described in (4.8).

},...,,{ where},@({)(21 lii tttttttttvLOEPMAXvPCS ===∈== (4.8)

 90

A low LOEP (high LOEM) means that any erroneous effects caused by v at t=ti

are very possible to be masked. The correctness of v at t=ti may become doubtful even

if the simulation values of all the POs are correct before EOE. It is reasonable to give

v less PCS due to its small LOEP value. On the other hand, if the LOEP value is high,

it is equally reasonable to give it more PCS. Therefore, we define PCS as (6). It can

be seen that PCS computation now turns into the problem of how to efficiently

compute the Masked Value Sets of each error candidate at different time instances

before an EOE.

4.4 An Efficient Probabilistic Confidence Score Calculation

Algorithm

The proposed PCS computation algorithm is a topology-based analysis with time

frame expansion to handle the sequential behavior of the DUV. While calculating the

LOEP of the output variable of vertex v in time frame t=ti, the algorithm will consider

each sensitized path from v in time frame t=ti that goes to any PO in each time frame

before EOE. This path-oriented computation scheme is defined in (4.9), which can be

derived from (4.5).

II
m

j

n

k
kjctPOttvi ctPOCVxfxttvMVS

kji
1

1

0
@@ }@()(|{)@(

=

−

=
=→= ==== (4.9)

The set {x |)(@@ xf
kji ctPOttv =→= = CV(POj@t=ck)} is defined as the Masked Value

 91

Set of vertex v at time instance t=ti with respect to POj at t=ck (denoted as

MVS(v@t=ti)POj@t=ck). An element of the set other than the correct value can be

regarded as an incorrect value that is masked by some vertices on the path(s) from v at

t=ti to POj at t=ck, thus keeping the correct value of POj at t=ck. According to (4.9), if

it is possible to derive MVS(v@t=ti)POj@t=ck for each POj at each time frame t=ck, then

intersecting these sets yields MVS(v@t=ti). After deriving MVS(v@t=ti), PCS of

vertex v can be obtained according to formula (4.7) and (4.8).

We may observe that the definition and the derivation of Probabilistic

Confidence Score are based on LOEP and Masked Value Set, which were introduced

in section 3.2 before. Thus, the computation algorithm for MVS’s and LOEPs can be

applied to PCS computation with some modifications. If there is exactly one path

from v at t=ti to a PO POj at t=ck, the induction-based computation approach

introduced in section 3.3.1 and section 3.3.2 can be applied to compute exact

MVS(v@t=ti)POj@t=ck. If there are multiple paths from v at t=ti to POj at t=ck, the

quick estimation approach introduced in section 3.3.3 that guarantees lower-bound

LOEP estimations will be applied. In addition, to avoid unnecessary back-tracing, the

bounded traversal strategy introduced in section 3.3.4.1 is also applied. The entire

PCS computation algorithm is represented as the pseudo code shown in Figure 4-6,

which incorporates each part mentioned above.

The input of this algorithm are 1) the Design Under Validation (DUV) described

in a HDL, 2) the value change dumpfile during simulation, 3) the Error-occurring

Edge (EOE), and 4) an error space obtained by any error space identification

approach.

 92

Figure 4-6: Pseudo-code of PCS Computation Algorithm

During traversal(s) that starts from a PO (StartPO) at a time instance (StartTime),

if vertex v is visited for the first time, a single path case is temporarily assumed. The

PCS_computation (DUV, Dumpfile, EOE, Error space)
1: 3-address Code Generation and Conditional statement odification
2: CDFG Construction
3: Initialize each vertex as “untraversed”
4: for each positive edge of clock t=ck before EOE
5: for each primary output POj
6: InitialMVS = {CV(POj@t=ck)}; Find the fanin vertex a1 of POj at t=ck
7: MVS_Com_for_Vertex (InitialMVS, a1, POj, ck, ck)
8: Calculate PCS with the computed MVSs

MVS_Com_for_Vertex(PreviousMVS, vertex v, StartPO, StartTime, time tj)
//*** Modification for incorporating MVS computation for multiple paths ***
1: if traversed for first time in traversal starting from StartPO at StartTime
2: if MVS(v@t=tj) = = ∅
3: MVS(v@t=tj) = PreviousMVS
4: else
5: if MVS(v@t=tj) ⊆ PreviousMVS //**Condition of Bounded traversal
6: return
7: MVSforRecovery(v@t=tj) = MVS(v@t=tj)
8: MVS(v@t=tj) = MVS(v@t=tj) I PreviousMVS
9: else //Multiple paths. Recovering to the previous status before intersection
10: MVS(v@t=tj) = MVSforRecovery(v@t=tj)
//*** Modification for incorporating MVS computation for multiple paths ***
11: if v is a control vertex
12: Mark the fanin vertex(es) on the untaken branch(es) as “inactive”
13: for each active fanin vertex u of v
14: if edge (u, v) across time frame
15: th = tj – clock_period
16: if th <0
17: return
18: Compute CurrentMVS, which is { SPreviousCV)(| ∈xfx v }
19: MVS_Com_for_Vertex(CurrentMVS, u, StartPO, StartTime, th)

 93

PreviousMVS will be intersected with MVS(v@t=ti), which is already the intersection

of many PreviousMVSs. However, if this vertex v is found traversed for two or more

times in the traversal starting from StartPO at StartTime, there are multiple paths from

v at t=ti to StartPO at StartTime. Then, the previously recorded

MVSforRecovery(v@t=ti) is used to chancel intersections made in this traversal

before.

During the MVS computation process, if the condition at line 5 of the

MVS_Com_for_vertex subroutine is met, according to Theorem 2 introduced in

section 3.4, additional traversal and MVS computation cannot affect the already

computed MVS. Thus, an immediate return from subroutine MVS_Com_for_vertex at

line 6 is made and precious computation time is saved.

 The preparation phases of this algorithm are shown at lines 1 and 2. The

3-address code generations and the conditional statement modification introduced in

section 3.3.3 must be conducted first for the information required in MVS

computation for control vertices (conditional statements). The detailed conditional

statement modification algorithm can be found in [19]. Next, a CDFG based on the

input DUV described in a HDL is constructed.

The example in Figure 4-3 is used to demonstrate the processes of our PCS

computation and its performance in the derivation of a debugging priority. After some

initializations, the CDFG of the DUV based on the HDL code in Figure4-3 is

constructed as shown in Figure 4-7(a). Then, a backward traversal from PO1 at t=1

commences by calling subroutine MVS_Com_for_vertex with the inputs

PreviousMVS={4}, vertex v=”2:if”, StartPO=PO1, and StartTime=1.

 94

Figure 4-7: Computation processes starting from PO1 at t=1

When subroutine MVS_Com_for_vertex is called for the first time, the traversal

reaches vertex “2:if” in time frame t=1 also for the first time. As shown in Figure

4-7(b), the recorded MVS(2:if@t=1)={4} and no MVSforRecovery is recorded.

Vertex “2:if” in time frame t=1 is a control vertex. Therefore, there are two fanin

vertices “2:<” and “3:=” for further backward traversals. We decide to traverse “2:<”

before traversing to “3:=” and compute CurrentMVS. Due to the fact that

PreviousMVS is {4}, the MVS computation for conditional statements will be used

and we obtain CurrentMVS {1}. The computation process is shown in Figure 4-7(b).

Subroutine MVS_Com_for_Vertex is then called for the second time and “2:<” in

time frame t=1 is reached. The computation status is shown in Figure 4-7(c). Similar

computations is repeated by recursively vertex by vertex vertex “6:=” in time frame

t=1 is reached. The computation results along the traversal from “2:if” to “6:=” are

 95

shown in Figure 4-7(d), where each set of integers next to an edge is the recorded

MVS. Since vertex “6:=” in time frame t=1 has no fanin vertex, the computation will

traverse another fanin vertex “3:=” of vertex “2:if.” The repetitious calling of

subroutine MVS_Com_for_Vertex can produce the results shown in Figure 4-7(e).

After completing the traversals and MVS computations starting from PO1 in

time frame t=1, continue the backward-traversal based MVS computation from PO1

in time frame t=5 can produce the results shown in Figure 4-8(a) and (b). When the

computation reaches vertex “5:if” in time frame t=1, PreviousMVS {[0~15]} will

include MVS(5:if@t=1)={[0~3]}. The bounding traversal condition is satisfied and

the traversal is bounded here.

Figure 4-8: Computation starting from PO1 at t=5 and t=15

 96

After all the POs at all the positive clock edges before the EOE are applied in

MVS computation, PCS is calculated with formulas based on the computed MVSs.

With PCS, a debugging priority with PCS (in round brackets) is obtained, as shown in

Figure 4-9. It can be seen that the design error S7 is displayed in the first line. A

search for design errors according to this debugging priority will succeed immediately.

In the experimental results in the next section, it is also proven that the proposed PCS

can efficiently deliver debugging priority with high accuracy, which greatly reduces

both the time and efforts required for design error searches in the input error space.

Figure 4-9: Debugging priority and the PCS

4.5 Experimental Results

 The experiments are conducted on a subset of ITC’99 benchmark [1] and four

other designs written in Verilog HDL. Number of lines (#line) of all the designs and

the number of variables (#var) are presented in Table 4-1.

For every design case, one statement is randomly chosen and injected with an

artificial design error based on typical bugs that designers usually induce [47]. With

the injected error, a simulation is run until some incorrect values occur on POs. Then,

 97

the error space identification approach proposed in [46]5 is applied to obtain an error

space. After that, CS calculation in [46] and our proposed PCS calculation are both

applied to derive two respective debugging priorities for the same error space.

With a debugging priority, error candidates that a digital circuit designer has to

examine before he/she can find a design error are often less than blindly searching. In

a sense, we can think that the size of the error space is thus reduced as a result of a

debugging priority. With respect to the two debugging priorities, since the injected

error may have two different ranked orders, the effectiveness of the two debugging

priorities on the size reduction of the same error space are also different. To compare

the effectiveness of the two debugging priorities, a quantitative metric called Effective

Size Ratio (ESR) is formulated as “the rank of the injected error/the number of error

candidates in the error space”. The two debugging priorities sorted with CS and with

PCS have their own ESRs, respectively. Smaller ESR means the error has better rank

with respect to the size of the error space. That also implies that the effective size

reduction contributed by the corresponding debugging priority is larger and the effort

required for design error searching in the error space is less.

5 We apply the error space identification method proposed in [22]. However, the proposed PCS is theoretically applicable to any

other error candidate identification methods.

 98

With each design case, the above experimental processes are repeated for fifty

times. In each repetition, the ESR of CS and PCS are calculated and recorded. The

average ESR values with respect to CS and PCS are also presented in the columns

“Avg_ESR_CS” and “Avg_ESR_PCS”, respectively. The number of times, in which

the ESR values of CS and PCS appear in three ESR value ranges, are also recorded to

show the distribution of ESR values. The three ESR ranges are “ESR<0.2 (0~0.2)”,

“0.2<ESR<0.5 (0.2~0.5)”, and “0.5<ESR (0.5~1.0)”. The number of times is

presented in the column “#case_CS” and “#case_PCS”, respectively.

In Table 4-1, it can be observed that when PCS is used to obtain a debugging

Table 4-1 A Comparison of Confidence Score (CS) and Probabilistic Confidence Score (PCS)
Performances

Confidence Score (CS) Probabilistic Confidence Score
(PCS)

#cases_CS #case_PCS
design
name #line #var

0~0.2 0.2~0.5 0.5~1.0

Avg_
ESR_CS

t(s)
0~0.2 0.2~0.5 0.5~1.0

Avg_
ESR_PCS

t(s)
ESR Ratio

B01 110 7 40 10 0 0.11 0.3 49 1 0 0.07 0.5 0.64
B02 70 5 38 12 0 0.16 0.3 50 0 0 0.11 0.5 0.69
B03 141 21 35 15 0 0.18 0.4 45 5 0 0.09 0.5 0.50
B04 102 19 32 17 1 0.23 0.3 45 5 0 0.11 0.4 0.48
B05 332 25 24 23 3 0.26 1.3 43 7 0 0.10 1.7 0.38
B07 92 11 37 13 0 0.21 0.4 46 4 0 0.09 0.6 0.43
B08 89 23 32 17 1 0.24 0.6 44 6 0 0.10 0.9 0.42
B14 509 27 17 26 7 0.36 3.8 37 13 0 0.15 5.2 0.42
B21 1089 65 14 28 8 0.42 6.7 31 19 0 0.17 9.7 0.40
pcpu 952 54 15 30 5 0.37 4.1 33 17 0 0.16 6.1 0.43
div16 235 11 23 24 3 0.25 0.7 42 8 0 0.12 1.0 0.48
mtrx 80 11 37 13 0 0.19 0.4 50 0 0 0.11 0.6 0.58
rankf 656 48 18 27 5 0.29 3.1 33 17 0 0.17 4.6 0.59

 99

priority, in all the design cases, the average ESR values are all less than 0.2 and are

also less than the average ESR values of CS. For example, in design “B02”, if CS is

used to derive debugging priority, 38 times out of 50 times the ESR value is less than

0.2. In other words, our created errors are placed in the first twenty percent in the

displayed list of error space for 38 times out of 50 experimental times. But, if PCS is

applied instead, in each of the 50 repetitions, the injected error always appears in the

first twenty percent. If a designer conduct error searching on design “B02” with the

debugging priority sorted with PCS, he/she will locate the error by checking less than

twenty percent of the derived error candidates. At least eighty percent of searching

effort is saved. Moreover, it can be seen that ESR values of PCS is never greater than

0.5 in the fifty repetitions. This means that even in the worst case of the fifty

repetitions, a debugging priority sorted with PCS can still save more than half the

amount of efforts needed for design error searching in the error space. By contrast, the

CS method was not found to offer this benefit.

From the values of Avg_ESR_PCS and Avg_ESR_CS, it can be observed that

the effective size reduction with respect to PCS is much greater than the one with

respect to CS. The ratio Avg_ESR_PCS to Avg_ESR_CS shown in the column “ESR

Ratio” is about 0.49 on average and 0.38 in the best case, meaning that with PCS, a

50% further size reduction, on average, is possible and a 62% size reduction is also

achieved in the best case, as compared to CS. Therefore, on average, the proposed

PCS method should save much more time/effort needed in the error searching process

in the error space than CS. The cost of this improvement is little computation time, as

compared to CS. The computation time needed for the two measurements, PCS and

 100

CS, are presented in the columns “t(s)”. It can be seen that in the worst case, it takes 2

extra seconds to obtain PCS as compared to the time required to obtain CS (4.1s).

This extra cost of computation time is acceptable if we notice that it should usually

takes more than 2 seconds for a designer to examine one error candidate to justify its

correctness, but the number of examinations saved as a result of applying PCS is

numerous.

4.6 Summary

 This chapter presents a probabilistic measurement, PCS, to derive an accurate

and reliable debugging priority for quick error searching among error candidates in an

error space. Instead of assuming that the erroneous effects caused by some activated

errors are seldom masked, the proposed PCS takes error masking into consideration

and estimates the Likelihood Of Error-Propagating (LOEP) of an error candidate. The

idea is that if the LOEP is high, error masking is unlikely to occur and the error

candidate is a false candidate with high possibility, i.e. the candidate tends to be a

correct statement. On the other hand, if the LOEP is low, occurrence of error masking

becomes quite possible. The suspicion of the error candidate still remains and this

candidate should thus receive a low PCS score.

The experimental results confirm that the proposed PCS measurement is indeed

accurate in estimating the likelihood of correctness for error candidates. In most

experimental cases, the created design errors can be located in the first few lines of

the candidate list of the input error space. As a result, debugging priority sorted with

the proposed PCS can effectively speed up error searching process in the input error

 101

space. As compared to CS, the proposed PCS-based debugging priority can save more

than half of the efforts (or time) needed for error searching process in an error space

in our experiments, at the cost of little extra computation time. The time saving

contributed by the proposed PCS method should usually much larger than the extra

computation time the PCS calculation needs. Therefore, the gain of the proposed PCS

can often outweigh the cost of extra computation time the PCS needs.

 102

Chapter 5

Conclusions and Future Works

Simulation-based functional validation is still one of popular means to verify a

digital hardware design described in a HDL. In simulation-based validation, the

circuit behavior of an implementation described in a HDL can only be compared

against the expected behavior or the specification on Observation Points (OPs). Even

if some design errors are executed and activated, the erroneous effects caused by the

design errors are still required to be propagated to the OPs for error detection.

In this thesis, we have implemented a probabilistic observability measure for

HDL descriptions. Unlike tag-based approaches, which can provide only two levels of

measurement, our fine-grained observability measures have less possibility of

overestimating the extent of validation with reasonable computation time. Even when

multiple errors occur, we still can provide some meaningful values for users' reference

to reduce the risk of misleading the verification results. This is better than using

binary decisions only.

The proposed probabilistic observability measures can be used to replace tags for

the application of observability-based code coverage metric. In addition, since

hard-to-observe points can be identified using our observability measure, designers

can insert assertions in those locations to find hard-to-observe bugs more easily. This

observability-driven assertion insertion is simple, but should be very effective.

 103

The proposed observability measures for HDL descriptions can also be applied

to assist debugging faulty HDL designs when a discrepancy between the simulation

values of the OPs and the expected values occurs. The probabilistic observability

measures can be used as a new probabilistic confidence score, which has better

capability of estimating the likelihood of correctness for error candidates in error

space. The experimental results shown in section 4.5 confirm that the proposed PCS

measurement is indeed accurate in estimating the likelihood of correctness such that

accurate debugging priority can be obtained. As a result, debugging priority sorted

with the proposed PCS can effectively speed up error searching process in the input

error space. As compared to CS in [46], the PCS-based debugging priority can save

more than half of the efforts (or time) needed for error searching process in an error

space in our experiments, at the cost of little extra computation time. The time saving

contributed by the proposed PCS method should usually be much larger than the extra

computation time the PCS calculation needs. Therefore, the gain of the proposed PCS

can often outweigh the cost of extra computation time the PCS needs.

One possible future research direction is to generate a test vector set that creates

some highly transparent sensitized paths to propagate potential incorrect values of the

exercised statements to OPs for higher observability-based coverage. Other possible

future improvements may include 1) more accurate observability estimation

approaches for multiple paths, 2) a more accurate probabilistic observability measure

by considering the probability distribution of each signal, and 3) integrating our

dump-file based observability and PCS-based HDL debugging approach with

commercial HDL simulator to form an efficient verification/debugging framework.

 104

These future directions may provide a comprehensive solution for the observability

issue during simulation-based functional validation.

 105

Bibliography

[1] S.Tasiran, K. Keutzer, “Coverage Metrics for Functional Validation of Hardware

Designs,” IEEE Design and Test of Computers, vol. 18, no. 4, pp. 36-45, July-August

2001.

[2] Collett International Research, Inc., http://www.collett.com.

[3] V. Bhagwati and S. Devadas, “Automatic Verification of Pipelined Micro

-processors”, Proceedings of IEEE/ACM Design Automation Conference, pp.603-608,

June 1994.

[4] R. B. Jones, D. L. Dill, and J. R. Burch, “Efficient Validity Checking for Processor

Verification”, Proceedings of IEEE/ACM International Conference on

Computer-Aided Design, pp.2-6, November 1995.

[5] R. E. Bryant, and Y.-A. Chen, “Verification of Arithmetic Functions with Binary

Moment Diagrams”, Proceedings of IEEE/ACM Design Automation Conference,

pp.535-541, June 1995.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Symbolic Model

Checking: 1020 States and Beyond,” Information and Computation, pp. 428-439,

August 1992.

[7] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model Checking

without BDDs,” Proceedings of International Workshop on Tools and Algorithms for

the Construction and Analysis of Systems, pp.201-206, May 1999.

[8] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Y. Vardi,

 106

“Benefits of Bounded Model Checking at an Industrial Setting,” Proceedings of

International Conference on Computer Aided Verification, vol. 2102, pp. 436–453,

July 2001.

[9] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic Model

Checking Using SAT Procedures instead of BDDs,” Proceedings of IEEE/ACM

Design Automation Conference, pp. 317-320, November 1999.

[10] P. Bjesse, T. Leonard, and A. Mokkedem, “Finding Bugs in an Alpha

Microprocessor Using Satisfiability Solvers,” Proceedings of International

Conference on Computer Aided Verification, vol. 2102, pp. 454-464, July 2001.

[11] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design, Kluwer Academic

Publishers, 2003.

[12] B. Beizer, Software Testing Techniques, 2nd edition, New York: Van Nostrand,

1990.

[13] R.C. Ho and M.A. Horowitz, “Validation Coverage Analysis for Complex Digital

Designs,” Proceedings of IEEE/ACM International Conference Computer-Aided

Design, pp. 322-325, November 1996.

[14] M. Benjamin, D. Geist, A. Hartman, Y. Wolfsthal, G. Mas, and R. Smeets, “A

Study in Coverage-Driven Test Generation,” Proceedings of IEEE/ACM 36th Design

Automation Conference, pp. 970-975, June 1999.

[15] J. Shen, and J.A. Abraham, “A RTL Abstraction Technique for Processor

Microarchitecture Validation and Test Generation,” Journal of Electronic Testing:

Theory and Application, vol. 16, nos. 1-2, pp. 67-81, February 1999.

[16] S. Ur and Y. Yadin, “Micro Architecture Coverage Directed Generation of Test

 107

Program,” Proceedings of IEEE/ACM Design Automation Conference, pp. 175-180,

June 1999.

[17] D. Moundanos, J.A. Abraham, and Y.V.Hoskote, “Abstraction Technique for

Validation Coverage Analysis and Test Generation,” IEEE Transactions of Computers,

vol. 47, no.1, pp. 2-13, January 1998.

[18] S. Devadas, A. Ghosh, and K. Keutzer, "An Observability-based Code Coverage

Metric for Functional Simulation," Proceedings of International Conference on

Computer-Aided Design, pp. 418-425, November 1996.

[19] F. Fallah, S. Devadas, and K. Keutzer, "OCCOM: Efficient Computation of

Observability-based Code Coverage Metrics for Functional Simulation," IEEE

Transactions on Computer-Aided Design, vol 20, pp. 1003-1015, August 2001.

[20] F. Fallah, I. Ghosh, and M. Fujita, "Event-driven Observability Enhanced

Coverage Analysis of C Programs for Functional Validation," Proceedings of IEEE

Asian and South Pacific Design Automation Conference, pp.123-128, January 2003.

[21] F. Fallah, S. Devadas, and K. Keutzer, "Functional Vector Generation for HDL

Models Using Linear Programming and Boolean Satisfiability," IEEE Transactions on

Computer-Aided Design, vol. 20, pp. 994-1002, August 2001.

[22] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital Systems Testing and

Testable Design,” Piscataway, NJ: IEEE Press, 1990.

[23] L. H. Goldstein, "Controllability/Observability Analysis," IEEE Transactions on

Circuits and Systems, vol. 26, pp685-693, September 1979.

[24] C. H. Chen and D. G. Saab, "A Novel Behavioral Testability Measure," IEEE

Transactions on Computer-Aided Design, vol. 12, pp. 1960-1970, December 1993.

 108

[25] S. Bhattacharya, S. Dey, and F. Brglez, "RT-level Transformations for Gate-level

Testability," Proceedings of European Conference on Design Automation, pp. 162-169,

February 1993.

[26] P. A. Thaker, V. D. Agrawal, M. E. Zaghloul, "Validation Vector Grade (VVG): A

New Coverage Metric for Validation and Test," Proceedings of IEEE VLSI Test

Symposium, pp. 182-188, April 1999.

[27] B. Murray and J. P. Hayes, "Hierarchical Test Generation Using Precomputed

Test for Modules," IEEE Transactions on Computer-Aided Design, vol. 9, pp.

594-602, June 1990.

[28] S. Ravi, G. Lakshminarayana, and N. K. Jha, "TAO: Regular Expression-based

Register-transfer Level Testability Analysis and Optimization," IEEE Transactions on

VLSI Systems, vol. 9, pp. 824-832, December 2001.

[29] J. Voas, "PIE: A Dynamic Failure-based Technique," IEEE Transactions on

Software Engineering, vol 18, pp. 717-727, August 1992.

[30] S.Y. Huang, K. T. Cheng, K. C. Chen, and D. I. Cheng, “Error Tracer: A fault

Simulation-based Approach to Design Error Diagnosis”, Proceedings of IEEE

International Test Conference, pp. 974-981, October 1997.

[31] D.W. Hoffmann, and T. Kropf, "Efficient Design Error Correction of Digital

Circuits", Proceedings of IEEE International Conference on Computer Design, pp.

465-472, September 2000.

[32] M. Tomita, and H. H. Jiang, "An Algorithm for Locating Logic Design Errors",

Proceedings of IEEE/ACM Design Automation Conference, pp. 468-471, June 1990.

[33] P.Y. Chung, Y.M. Wang, and I. N. Hajj, "Diagnosis and Correction of Logic

 109

Design Errors in Digital Circuits", Proceedings of IEEE/ACM Design Automation

Conference, pp503-508, June 1993.

[34] A. Smith, A. Veneris, M.F. Ali, and A. Viglas, “Fault Diagnosis and Logic

Debugging Using Boolean Satisfiability,” IEEE Transactions on Computer-Aided

Design, vol. 24, pp1606-1621, October 2005.

[35] J. R. Lyle, and M. Weiser, "Automatic Bug Location by Program Slicing",

Proceedings of the Second International Conference on Computers and Applications,

Beijing, China, pp. 877-883, June, 1987.

[36] M. Weiser, "Programmers Use Slices When Debugging", Communications of

ACM, vol. 25, No. 7, pp.446-452, 1982.

[37] B. Peischl and F. Wotawa, “Automated Source-level Error Localization in

Hardware Designs,” IEEE Design and Test Computer, vol. 23, no. 1, pp.8-19,

January-February 2006.

[38] M. Khalil, Y. Le Traon, and C. Robach, “Towards an Automatic Diagnosis for

High-level Validation”, Proceedings of IEEE International Test Conference, pp.

1010-1018, October 1998.

[39] C. H. Shi, and J. Y. Jou, "An Efficient Approach for Error Diagnosis in HDL

Designs", Proceedings of IEEE International Symposium on Circuits and Systems, pp.

IV-732- IV-735, May 2003.

[40] B.R. Huang, T.J. Tsai, and C.N. Liu, "On Debugging Assistance in

Assertion-based Verification," Proceedings of the 12th Workshop on Synthesis and

System Integration of Mixed Information Technologies, pp. 290-295, October 2004.

[41] Y.C. Hsu, B. Tabbara, Y.A. Chen, and F. Tsai, "Advanced Technique for RTL

 110

Debugging," Proceedings of IEEE/ACM Design Automation Conference, pp.362-367,

June 2003.

[42] J.P. Roth, “Diagnosis of Automata Failures: A Calculus and a Method,“ IBM,

Journal on Research and Develop, vol. 10, pp. 278-291, June 1980.

[43] F. Fallah, “Coverage-Directed Validation of Hardware Models,” Dissertation of

M.I.T, 1999.

[44] J. Voas and K. Miller, "Software Testability: The New Verification," IEEE

Transactions on Software Engineering, vol. 12, pp. 17-28, May 1995.

[45] J. Voas, G. McGraw, L. Kassab, and L. Voas, "A “Crystal Ball” for Software

Reliability," IEEE Computers, vol. 30, pp. 29-36, June 1997.

[46] T.Y. Jiang, C.N. Liu, and J. Y. Jou, “Effective Error Diagnosis for RTL Designs in

HDLs”, Proceedings of IEEE 11th Asia Test Symposium, pp. 362-367, November

2002.

[47] A. Offutt and G. Rothermel, “An Experimental Evaluation of Selective

Mutation,” Proceedings of International Conference on Software Engineering, pp.

100-107, May 1993.

