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Observability Analysis on HDL Descriptions for
Efficient Functional Validation and HDL Source

Code Debugging

Student : Tai-Ying Jiang Advisor :  Jing-Yang Jou

Department of Electronics Engineering
and Institute of Electronics

National Chiao Tung University

Abstract

Simulation-based functional validation is still one of the primary approaches for
verifying Design Under Validation (DUV) described in a Hardware Description
Languages (HDL). In simulation-based functional validation framework, the
simulation results should be compared with the expected values on some signals of
interest (called Observation Points (OPs) in this thesis) to check for the correctness of
certain behaviors on the implementation. Design errors are uncovered only if the

erroneous effects of the design errors cause incorrect simulation values on the OPs.

v



Most of functional coverage or code coverage metrics for HDL designs do not

explicitly consider this observability requirement for revealing internal design errors.

Observability-based Code COverate Metric (OCCOM) [18] is the first code coverage

metric considering the essential observability issue. However, the applied tags can

only be observed or unobserved, providing only two levels of measurement (1 and 0).

This inaccuracy may overestimate completeness of verification and let internal design

errors remain hidden. Therefore, in this dissertation, we develop a new probabilistic

observability measure and its efficient computation algorithm. The probabilistic

observability measures that can provide any intermediate values between 0 and 1 can

be used as a new and more accurate observability-based code coverage metric. In

addition, it also can be used to point out hard-to-observe points, leading verification

resources to these weak portions of the verification process.

If simulation finds that some simulation values are different from the expected

values on the OPs, design error diagnosis for the DUV that is modeled in a HDL is

needed. Existing approaches for this HDL debugging problem attempt to extract a

reduced error candidate set to accelerate the HDL debugging process. However,

locating true design errors in the derived candidate set may still consume much

valuable time. A debugging priority method [46] was thus proposed to speed up the

error searching process in the derived error candidate set. This idea is to display error



candidates in an order that corresponds to an individual’s degree of suspicion such

that design errors can be displayed in the front of the candidate list. However, the

applied Confidence Score (CS) has some flaws in estimating the likelihood of

correctness for error candidates due to error masking. This reduces the degree of

accuracy in establishing a debugging priority. Therefore, we modify the probabilistic

observability measure for HDL descriptions to form a new Probabilistic Confidence

Score (PCS) with the consideration of error masking in order to provide more reliable

and accurate debugging priority. This new PCS-based debugging priority method can

cooperate with almost any kinds of approaches that extract a reduced set of error

candidates to further accelerate the error searching process in the extracted error

candidate set.
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