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Abstract

It has been found that drivers easily to reduce their vigilance or attention during the
prolonged or monotonous driving. The drowsy driver can’t focus on their driving task and
tend to commit on manipulating errors! Their..information processing speed and working
memory capacities are decreased-and drastic changes on their task performance occur along
with the reduction of the vigilance. Most previous studies that tried to figure out the useful
features from behavioral performances or physiological signals for predicting driver’s
drowsiness level were done in a static driving environment. However, some studies already
showed that the kinesthetic stimulus had influences on fluctuations of brain dynamics
especially near the alpha band power, which already used as an index of the vigilance. To
what extent the kinesthetic stimulation would affect the accuracy on the predicting drowsiness
level from neural activities in real driving is still unclear. Therefore, the aim of this study is to
systemically characterized effects of kinesthetic stimulation on the brain activities under

different cognitive state, particularly under the drowsiness condition.

We used the 3 dimensional surrounded virtual reality scene combined with the six degree
motion platform, the independent component analysis (ICA) and time-spectral analysis to

explore the fluctuations in spectral dynamics of maximally independent EEG activities from



alter to drowsy with or without the enabling of the motion platform. Results showed that

subjects’ drowsiness level was increased with the deteriorated of the driving performance

which reflected on the tonic increases of the power spectral baselines near the alpha band in

the occipital components. The similar drowsy effects also revealed on the changes of the

phasic alpha suppressions including the delaying its onset and increases its mean prevalence.

With the same behavioral performances, changes on EEG dynamics from alert to drowsiness

were further enhanced when the motion platform was enabled. Results of this study first

demonstrated the importance of the kinesthetic stimulation in the simulated driving studies.

Furthermore, this study also first revealed that'the, EEG dynamics is more sensitive than the

behavioral performance for correctly-detectingdriver’s drowsiness level.

Keyword: Kinesthetic Stimulus, Drowsiness-level, EEG, ICA, time-frequency analysis,
power spectral baselines, phasic alpha suppression
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1. Introduction

Drowsy drivers have been identified as the main leading cause of car accidents. It is
estimated that there are 76,000-100,000 car crashes occurring each year in the United States,
leading to 1500 deaths and thousands of injuries (Knipling and Wang, 1995; Wang et al.,
1996). Drowsy drivers cannot focus on driving and tend to commit on manipulating errors.
Their information processing speed and working memory capacities are decreased and drastic
changes on their task performance occurs (Wylie et al., 1996; Chang and Mannering, 1999;
Kostyniuk et al., 2002; Hendrix, 2002). Through face to face interviews with 593
long-distance drivers, McCartt reported that 47 % of the respondents had ever fallen asleep
and 25.4% had fallen asleep during driving of the past year (McCartt et al., 2000). Several
factors contribute to the occurrence of symptoms of fatigue and falling asleep in drivers, such
as lack of sleep, long driving hours; driving in-a-monotonous environment, taking sedative
drugs or drinking alcohol before driving and driving at midnight, early morning, or
mid-afternoon hours. Therefore,-accurate-and._non-intrusive real-time monitoring of driver's
drowsiness would be highly desirable, particularly if this measurement could be further used

to predict changes in driver's performance capacity.

1.1. Current researches of drowsiness

There are several ways to detect drivers’ drowsiness. For example, it can be directly
captured from video images (Summala et al., 1999), the rate and duration of the EOG
(electrooculogram, Horne and Reyner, 1996). It can also be estimated from bio-signals such
as ECG (electrocardiogram), body pressure, and respiration (Milosevic, 1997; Chung et al.,
1999), and the electroencephalogram (Horne and Reyner, 1995; Khardi and Vallet, 1994; Lal
and Craig, 2002, Huang et al., 1996; Vuckovic et al., 2002; Roberts et al., 2000; Khalifa et al.,

2000; Wilson and Bracewell, 2000).



The abundant information in EEG recording can be related to drowsiness, arousal, sleep,
and attention (Santamaria and Chiappa, 1987). Previous studies showed that changes in the
EEG theta band and the alpha band reflect cognitive and memory performance (Klimesch,
1999). For example, Makeig and Jung (1996) and Huang et al. (2005) reported that mean
activity levels in the (< 4 Hz) delta and (4-6 Hz) theta bands, and at the sleep spindle
frequency (14 Hz) as well as the baseline alpha band power were significantly increased from
alert to poor/drowsy performance. Several EEG studies related to driving also suggested that
alpha-band and theta-band power increased as the alertness level of the driver decreased
(Torsvall and Akerstedt, 1987; Eoh et al., 2005; Otmani et al., 2005). Though many studies on
the driver’s drowsiness with EEG have been performed, the driving simulation apparatus of
experiments in the literatures are mostly constructed only on the monitors. But, the static
driving simulation is difficult to.approach the-realistic driving condition, such as the

vibrations that would be experienced. when driving an actual vehicle on the road.

1.2. Kinesthetic perception during driving

The driving motion is one of the most experienced kinesthetic perceptions in our life, in
other word, the perception we sensed during the vehicle speed or direction change. Whenever
the vehicle accelerates, decelerates or curves in a corner, we experience a force pulling our
body against the direction of moving. For a driver, the perception to motion includes
kinesthetic and visual stimulus. A driver does not sense only the pushing or pulling his/her
body by a force, but also the scene change related to vehicle movement. The driving
perception includes the co-stimulation of visual cue, vestibular stimulation, muscle reaction
and skin pressure. It is indeed a complicated mechanism to understand.

There are numbers of difficulties in investigating the driving perception. First of all, the
safety of subject must be guaranteed. Experiments should be held under a safe driving

2



environment, it is very dangerous to conduct driving experiments on the road. Second,
appropriate monitoring and data acquisition are needed to study the influence of kinesthetic
stimuli. The stimulation should be simple enough and repeatable to keep experiment under

control. Third, objective evaluation should be assessed in the studies.

One of the solutions is to conduct driving experiments using a realistic simulator, which
is widely used in driving related researches (Kemeny and Panerai, 2003). For the necessity of
motion during driving, literatures showed that the absence of motion information increased
reaction times to external movement perturbations (Wierville et al., 1983), and decreased
safety margins in the control of lateral acceleration in curve driving (Reymond et al., 2001).
In real driving, improper signals from disordered vestibular organs were reported to determine
inappropriate steering adjustment (Page, and Gresty, 1985). Moreover, the presence of
vestibular information in driving: simulators-shows the importance for it influences the
perception of illusory self-tilt and “illusory self-motion (Groen et al., 1999). All the above
studies emphasized the importance.of motion-perception during driving with the assessment
of driving performance and behavior. ‘Our previous studies also demonstrated that multiple
cortical EEG sources responded to driving events differentially in dynamic and static
environment. Specifically, the alpha band variations occurred in many components (Mu,
parietal and occipital) during driving, especially when the vehicle is moving. It is still unclear
to what extent the kinesthetic stimulation would interfere with the fluctuations of driver's

global level of drowsiness accompanying changes in driver's performance.

1.3. Virtual reality dynamic simulator
Virtual reality (VR) technology is gradually being recognized as a useful tool for the
study and assessment of normal and abnormal brain function, as well as for cognitive

rehabilitation. Virtual Environments (VE) are created by powerful computers that generate



realistic animated graphics in three dimensions. Creating carefully controlled, dynamic, 3D
stimulus environments combined with physiological and behavioral response recording can be
offer more assessment options that are not available by traditional neuropsychological

methods.

The VR technique allows subjects to interact directly with a virtual environment rather
than monotonic auditory and visual stimuli. It is an excellent strategy for brain research on
interactive and realistic tasks due to low cost and avoiding risk of operating on the actual
machines. In recent years, some researchers designed the VR senses to provide the
appropriate environments for brain activity study (Bayliss and Ballard, 2000; Eoh et al., 2005;
Huang T.Y et al., 2005). Integrating the VR scene with dynamic motion platform is excellent
for studying the influence of kinesthetic_stimulus on cognitive state. Therefore, a VR-based
dynamic motion platform combined with EEG-measured system is an innovation in brain and

cognitive engineering researches.

1.4. Aims of this thesis

Aims of this thesis were (1) to characterize EEG changes with the degradation of the
alertness and (2) to assess EEG dynamics in responses to kinesthetic stimulus in different
cognitive states. We first constructed a Virtual-Reality interactive driving environment
consisting of a highway scene and a six degree-of-freedom (6-DOF) motion platform. Then,
we designed a lane-keeping driving experiment to indirectly quantify driver’s drowsiness
level (Philip et al., 2003). Therefore, we could easily demonstrate that changes of EEG
activities were correlated with driver’s response performance as well as the influences of
kinesthetic stimulation on EEG dynamics from alter to drowsiness. Accordingly, this thesis
provided strong evidences to show that the dynamic motion platform is required for correctly

estimating driver’s cognitive states under driving in the future.



2. Materials and Methods
2.1. Subjects

Ten right-handed healthy adults (9 males, 1 female; age range 22~25 years, mean= 23.5,
SD = 0.7) with normal or corrected to normal vision were paid to participate in this
experiment. All subjects were free of neurological or psychiatric disorders. In order to let
subjects easily fell asleep during the experiment, subjects were asked to have the lunch or
dinner at 1hr before the experiment. Subjects practiced the driving task for 5-10 min for
reaching the satisfactory performance after the placement if the EEG cap and electrodes. Each

subject at least had to complete two 100-minute sessions in two different days.

2.2. Experimental Setup
Fig. 2-1 showed two major parts ,of the dynamie.driving environment: (1) a 3D highway
driving scene based on the VR technology and.(2) a real vehicle mounted on a 6-DOF motion

platform. Details of this environment were showed as follows.

(A) (B)

Figure 2-1: The dynamic VR driving environment. (A) Dynamic Driving Simulator.
(B) Virtual-Reality Scene.



2.2.1. Dynamic driving environment

The dynamic driving environment provided a safe, time saving and low cost approach to
study human cognition under realistic driving events. Our driving simulator provided not only
high-fidelity VR scene, but also kinesthetic inputs and realistic driving environment (as

shown in Fig. 2-2). These could make subjects feel that they were driving in a real vehicle on

the real road.

Figure 2-2: The dynamic VR driving environment, Brain Research Center, National

Chiao Tung University, Taiwan, ROC '

2.2.2. VR scene

The VR-based high-fidelity 3D interactive highway scene was developed by using the
WorldToolKit (WTK) 3D engine. The 3D view was composed of seven identical PCs running
the same VR program and the seven PCs were synchronized by LAN that all scenes were
going at exactly same pace. The VR scenes of different viewpoints were projected on
corresponding locations.

Literatures showed that the horizontal field of view (FOV) of 120° is needed for correct
speed perception (Jamson, 2000). In our VR scenes, the surrounded screens covered 206°

frontal FOV and 40° back FOV (Fig. 2-3). Frames projected from 7 projectors were



connected side by side to construct a surrounded VR scene. The size of each screen had

diagonal measuring 2.6-3.75 meters. The vehicle was placed at the center of the surrounded

screens.

Figure 2-3: The overview of surrounded VR scene. The VVR-based four-lane highway

scenes are projected into surround screen with seven projectors.

2.2.3. Stewart motion platform s,

~‘-; £

".'

The Stewart motion platform had a IEWar basa platform and an upper payload platform
connected by six extensible Iegé Wlth ball Jomts at both ends (Fig. 2-4). The platform

generated accelerations in vertlca1 Iat‘éral and langltudlnal direction of vehicle as well as

LR

pitch, roll and yaw angular acceleratlons. -

Base Platform

(A) (B)

Figure 2-4: The Stewart platform. (A) The sketch map for the Stewart platform. (B)
The actual Stewart platform. A driving cabin is mounted on this platform in our Lab.



2.3. EEG recording

Subjects were with a movement-proof electrode cap with 36 sintered Ag/AgCl electrodes
for measuring the electrical activates of the brain and that is the electroencephalogram (EEG).
Electrodes were positioned according to the standard international 10-20 system (as shown in
Figure 2-5). Active sites were referenced to linked left and right mastoids. EEG signals were
recorded and amplified by the Scan NuAmps Express system (Compumedics Ltd., VIC,
Australia, Fig. 2-6) with a sampling rate at 500 Hz and 16-bit precision. Data were first
filtered with a low-passed filtering with a cut-off frequency at 50Hz for removing the power
line noise and other high frequency noise. Then, a high passed filtering with the cut-off
frequency at 0.1 Hz was applied to remove the baseline drifts. At the end of each completely
session, the location of the electrodes were digitized with the 3D digitizer (POLHEMUS 3

space eastrak).

(A) (B)

Figure 2-5: The International 10-20 system of electrode placement. (A) Lateral view. (B)

Top view. (http://faculty.washington.edu/chudler/1020.html)



Figure 2-6: The photographic pictu . G amplifier and the electrode

cap.

2.4. Experimental paradigm g,

A virtual-reality (VR) based highway-driving environment developed in our previous
studies was used to investigate drivers’ cognitive changes in a long-term driving task. The
four lanes from left to right were separated by a median strip. The distance between the left
and right sides of the road was equally divided into 250 points (digitized into values 0-250

show as Fig. 2-7), where the width of each lane and the car was 60 and 32 units, respectively.



Figure 2-7: The picture of the four-lane highway scene. The distance from the left to
the right side of the road was equally divided into 250 points.

The refresh rate (60Hz) of highway scene was set properly to emulate a car driving at a fixed

speed of 100 km/hr on the highway. All scenes were moving according to the displacement of

the car and the subject’s wheel hand-li:ﬁé as shOV}f"ih-.l_:ig. 2-8.

B

i
|
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|
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|

1| |
(b) (c) (d)

Figure 2-8: Illustration of the deviation event. (A) Vehicle moving in straight line.
(B) Deviation event occurred. (C) Subject’s reaction. (D) Vehicle back to middle
lane.
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The car was randomly drifted (triggered from the WTK program and the on-set time is
recorded) away from the center of the cruising lane to mimic the consequences of a non-ideal
road surface. The task required subjects to keep the car on the center of third cruising lane
(from left to right counted) during the experiment. The inter-deviation intervals were varied
from 5 to 10 sec and the car deviated either left or right with the equal chance. Subjects were
instructed to continue to perform the task as best as they could even if they began to feel
drowsy. The deviation onset time and the subject’s reaction time were recorded 60 times per
second via a synchronous pulse marker train that was recorded in parallel by the EEG

acquisition system for the further analysis.

For determining effects of kinesthetic stimulus on the neural activities under different
cognitive status in a long term driving  tasks, this experiment contained two different
conditions: the “motion” and “mationless”z These two conditions were achieved by enabling

or disabling the motion platform:action.

2.5. Data Analyses
2.5.1. Analysis of driving performance

In each 100-min session (Fig. 2-9), 653 deviation events were recorded. Similar to
real-world driving experience, the vehicle did not always return to the same cruising position
after each compensatory steering maneuver. Therefore, during each drift/response trial,
driving error was measured by maximum absolute deviation from the previous cruising

position (Fig. 2-10).
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Figure 2-10: (A) Driving trajectory of a 100-min session. Black dots: deviation onsets.
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Figure 2-11: (A) Sorted trials by driving error (point). (B) Sorted trials by reaction

time (sec).
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Since the car drifted with constant velocity, the relation between reaction time and the
driving error was linear (D=c T, ¢ = 60).

After transformed the driving error into response time, behavior responses were sorted by
reaction time, normalized with the total trials, and then plotted as cumulative plot of the

response time (showed as Fig.2-12).
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-

801

601

40r
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Figure 2-12: The cumulative plots of response time from one subject.

The response time and driving error were varied along with drivers’ alertness and
drowsiness. We had two equal drowsiness indices: reaction time and the driving error. For
instance, when the driver was drowsy, the reaction time between the onset of deviation and
steering wheel was increased. On the contrary, when the driver was alter, the response time

between the onset of deviation and steering wheel was decrease.

2.5.2. EEG

All the EEG data were analyzed by using the EEGLAB 4.301 (Fig. 2-13). The
multi-channel EEG signals were first down sampled (from 500 to 250 Hz) and digital filtered
with a linear 1-50Hz FIR pass band filter before the further analysis. Continuous EEG data

were segmented into 8.5-s epochs, 2.5 s before and 6 s after the deviation onsets.
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Figure 2-13: The flow chart for EEG analysis

The artifacts across all channels werejidentified and rejected from EEG data using the
EEGLAB routines (details see description at

http://www.sccn.ucsd.edu/eeglab/rejtut/tutorialreject.hitml). Criteria used for artifact rejection

included extreme values, abnormal trends (linear drift) and abnormally distributed data (Fig.

2-14).
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Figure 2-14: Criteria used for artifact rejection-included extreme values, abnormal

trends (linear drift) and abnormally distributed data

The preprocessed EEG signals were further separated into independent brain sources

using Independent Component Analysis (ICA) as described on the following paragraph.

2.5.2.1. Independent Component Analysis (ICA)

The joint problems of EEG source segregation, identification, and localization are very
difficult since the EEG data collected from any point on the human scalp includes activity
generated within a large brain area. The problem of determining brain electrical sources from

potential patterns recorded on the scalp surface is mathematically underdetermined. Although
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the conductivity between the skull and brain is different, the spatial smearing of EEG data by
volume conduction does not cause significant time delay and it suggests that the ICA
algorithm is suitable for performing blind source separation on EEG data. The ICA methods
were extensively applied to blind source separation problem since 1990s (Jutten and Herault,
1991; Cardoso and Souloumiac, 1993; Comon, 1994; Bell and Sejnowski, 1995; Cardoso and
Laheld, 1996; Pham, 1997; Girolami, 1998; Lee, 1999). In recent years, subsequent technical
reports (Makeig, 1996; Jung, 1998; Jung, 2000; Jung, 2001; Yamazaki, 2003; Meyer-Base,
2003; Naganawa, 2005; Liao, 2005) demonstrated that ICA was a suitable solution to the
problem of EEG source segregation, identification, and localization based on the following
assumptions: (1) The conduction of the EEG sensors is instantaneous and linear such that the
measured mixing signals are linear and the propagation delays are negligible. (2) The signal
source of muscle activity, eye, and,.cardiac signals-are not time locked to the sources of EEG
activity which is regarded as reflecting Synaptic activity of cortical neurons (Makeig et al.,
1996; Jung et al., 1998).

In this study, we attempted “to-.completely separate the twin problems of source
identification and source localization by using a generally applicable ICA. Thus, the artifacts
including the eye-movement (EOG), eye-blinking, heart-beating (EKG), muscle-movement
(EMG), and line noises can be successfully separated from EEG activities. The ICA is a

statistical “latent variables” model with generative form:
x(t)=As(t) 1)

where A is a linear transform called a mixing matrix and the s, are statistically mutually

independent. The ICA model describes how the observed data are generated by a process of

mixing the components s, . The independent components s, (often abbreviated as ICs) are

latent variables, meaning that they cannot be directly observed. Also the mixing matrix A is

assumed to be unknown. All we observed are the random variables x;, and we must estimate
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both the mixing matrix and the IC’s s; using the X;.
Therefore, given time series of the observed data x(t):[xl(t) X, (t) - xN(t)]T in

N-dimension, ICA will find a linear mapping W such that the unmixed signals u(t) are

statically independent.
u(t)=W x(t). (2)

Supposed the probability density function of the observations x can be expressed as:
p(x)=|det(W )[p(u), ©)

the learning algorithm can be derived using the maximum likelihood formulation with the

log-likelihood function derived as:
N
L(uW )= log|det(W)+ > log p(u; ), (4)
i=1

Thus, an effective learning algorithm using natural gradient to maximize the log-likelihood

with respect to W gives:

OL(UW ) r TET
AWocaTWW—[I p(uu” W, 5)

where the nonlinearity

ap(u) ap(u;) apuy) '
pu)=——F—=|-— .. (6)
p(u) | p(u) p(uy )

and W'W rescales the gradient, simplifies the learning rule and speeds the convergence

considerably. It is difficult to know a priori the parametric density function p(u), which
plays an essential role in the learning process. If we choose to approximate the estimated
probability density function with an Edgeworth expansion or Gram-Charlier expansion for

generalizing the learning rule to sources with either sub- or super-Gaussian distributions, the
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nonlinearity ¢(u) can be derived as:

u —tanh(u) : for super - gaussian sources,
p(u) = _ . (7)
u + tanh(u): for sub - gaussian sources,
Then,
[I —tanh(u)u’ —uu’ ]\N :super - gaussian,
[I +tanh(u)u’ —uu ]\N :sub - gaussian,

Since there is no general definition for sub- and super-Gaussian sources, we choose
p(U)=%(N(1,1)+N('l,l)) and p(u)=N(0,1)sech®(u) for sub- and super-Gaussian,

respectively, where N(y,az) is a normal distribution. The learning rules differ in the sign

before the tanh function and can be determined using a switching criterion as:

.= 1:super - gaussian,
AW o [l =K T —uu! Wowhere | "
oc[ tanh(u)u’ —uu ]W,w ere{Ki _ _1:sub-gaussian, ©)
where
x, = sign(E sech? (u, ) JE a&}= E{tanh(u,)u, }) (10)

represents the elements of N-dimensional diagonal matrix K. After ICA training, we can
obtain N ICA components u(t) decomposed from the measured N-channel EEG data x(t). In

this study, N=30, thus we obtain 30 components from 30 channel signals.

Xl (t) Wl,l Wl, 2 Wl, 33
X, (t W W. W.

X(t) = 2,() =Wut)=| T u @+ 27 @)+ L ug (D). (11)
X33 (t) W33,1 W33,2 W33,33

Fig. 2-15 shows an example of the scalp topographies of ICA weighting matrix W
corresponding to each ICA component by projecting each w;; onto the surface of the scalp,

which provides spatial information about the contribution of each ICA component (brain
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source) to the EEG channels, e.g., eye activity was projected mainly to frontal sites, and the
drowsiness-related potential is on the parietal lobe and occipital lobe, etc. We can observe that
most artifacts and channel noises included in EEG recordings are effectively separated into
independent components 1 and 7 as shown in Fig. 2-15 and independent components 2 and 10
may be considered as effective “sources” related to drowsiness in the VR-based driving

experiment.

s35-070115

Figure 2-15: Scalp topography of ICA decomposition.

2.5.2.2. Time frequency analysis and Event Related Spectral Perturbations
(ERSPs)

The processing flow was shown in Fig. 2-16. The time sequence of EEG channel data or
ICA activations were subject to Fast Fourier Transform (FFT) with overlapped moving
windows (256 points). Spectra prior to deviation onset were considered as spectral baseline.
The mean spectral baselines were converted into dB power and subtracted from spectral
power after the deviation onset so that we could visualize spectral “perturbation” from the
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baseline. To reduce random error, spectra in each epoch were smoothed by 3-windows
moving-average. The procedure was applied to all the epochs, and their results were then
averaged to yield the ERSP image.

The ERSP image mainly showed spectral differences after event, since the baseline
spectra prior to event onset had been removed. For instance, the bottom of Figure 2-16
showed that only little or no changes in high frequency band (the lower position the higher
frequency) but very significant changes in low frequency band after event. This allowed us to
visualize spectral power changes related to the deviations.

After performing bootstrap analysis (usually 0.01 or 0.03, here we use 0.01) on ERSP,
only statistically significant (p<0.01) spectral changes showed in the ERSP images.
Non-significant time/frequency points were masked (replaced with zero). Any perturbations in

frequency domain became relatively:prominent.
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Figure 2-16: The flow chart of ERSP analysis.

2.5.3. Clustering

ICs were first selected by observations and large reduced the number of components into
around half by rejecting the noisy components (Fig. 2-17). Then, the selected ICs were first
classified by the kmeans algorithm into around 10 clusters in terms of the scalp map gradients.
These 10 clusters were then grouped into 4 significant clusters by manually removing the
non-significant clusters. For guaranteeing these 4 clusters were with the same physiological
functionality, we applied the kmeans algorithm again on each of 4 significant clusters based

on their power spectral baselines of the components. Finally, components in each IC cluster

would have consistent anatomic and functional features (Fig. 2-18).
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Figure 2-18: The scalp maps for the occipital independent component (IC) cluster.

Upper left: the group averaged occipital 1C
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2.5.4. Statistics

Data were expressed as mean = SEM unless stated otherwise. (a) To assess the effect of
kinesthetic stimulation on distributions of the response time, we used the two sample
Kolmogorov-Smirnov tests (K-S test, Matlab statistical toolbox, Mathworks). (c) To compare
the baseline alpha power for the fast and slow epochs in two different kinesthetic stimulus
conditions, we used the one-way ANOVA and the paired t-test (ttest2, Matlab statistical
toolbox, Mathworks). (d) To estimate the significant onset of the alpha suppression, we
analyzed the time course of the alpha power as the follows: Changes in alpha power as a
function of time was computed by selecting and averaging the amplitude of the ERSP with the
frequency from7 to 12 Hz at the occipital component. The significance of the alpha
suppression from power spectral baselines was assessed by the statistical bootstrapping
(EEGLAB 4.3). The significant .onset of the alpha suppression was estimated by the
intersection of the time-varying-alpha power and:the-significant level of alpha suppression.

All statistical comparisons in this-study,a significant level was set at p <0.05.
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3. Results

We collected and analyzed 52 driving experiments from 10 subjects, as listed in table 3-1.
Each subject completed 4 experiments and each experiment included 1 sessions. First, we
compared and presented the influence of kinesthetic stimulation on the behavioral
performance. Second, we defined the two different cognitive statuses (fast and slow)
according to the distribution of subjects’ response time. Third, we characterized changes of
dynamic brain activities from the fast to the slow responses on aspects of the independent
component (IC) clusters, the base line power spectrum and the event-related spectral
perturbations (ERSPs) under different kinesthetic conditions (motion and motionless). The
following paragraphs showed detailed results.

Table 3-1: Subject list

Platform | motion motionless

mode

Subject 1 06/10/20 | 07/01/05 | 07/03/12 06/10/28 | 06/11/21

Subject 2 06/10/27 | 07/01/15 | 07/01/24 06/11/10 | 07/01/19 | 07/01/31 | 07/03/22

Subject 3 06/11/22 | 06/12/07 | 07/01/04 | 07/01/16 | 06/11/30 | 06/12/21

Subject 4 06/12/04 | 06/12/20 | 06/12/27 06/12/13 | 07/01/29

Subject 5 06/12/18 | 06/12/26 | 07/01/12 07/01/02 | 07/01/17

Subject 6 06/12/19 | 06/12/29 | 07/01/16 | 07/01/31 | 07/01/24 | 07/02/07

Subject 7 06/12/20 | 07/01/03 06/12/25 | 07/01/17

Subject 8 07/01/26 | 07/02/02 | 07/02/06 07/02/05 | 07/02/08

Subject 9 07/01/26 | 07/02/09 07/02/05 | 07/03/25

Subject 07/02/09 | 07/03/13 | 07/03/08 07/03/07 | 07/03/21
10
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3.1. Behavioral performance

All subjects’ response time were ranged from 600 ms to 1500 ms (Fig. 3-1). No clear and
statistically significant differences displayed on the cumulative percentage plots and the
distribution of response time between the motion and motionless conditions in each subject
(Fig. 3-1). Ten subjects’ response time histogram of motionless and motion sessions were
shown in Fig. 3-2. All subjects exhibited fast (shorter response time) and slow (longer
response time) performance period and their distribution did not showed statistically
significant differences between the motion and motionless sessions (Fig. 3-3). The above
results suggested that the kinesthetic stimulus had no effects on the global and local
distribution of behavioral performance. The Fig. 3-4 and 3-5 showed ten subjects’ response

time histograms of fast and slow epochs in the motion and motionless sessions.

sg# p=007
% ‘

p=0.05
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p=0.06
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20r /f‘l
|s9 & £=0.36
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p=005
1500
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Figure 3-1: The cumulative percentage plots of the response time from ten subjects.
(A-J): motionless groups (dash line); motion groups (solid line). Note, no
statistically significant differences between the motion and motionless groups.
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Figure 3-2: The same data as in the Fig. 3-1 but displayed as the response time
histograms. The motionless groups (left column) and the motion groups (right column).
Note no subjects showed apparently differences in distributions of the response
histogram between the motion and motionless sessions.
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Figure 3-3: The cumulative percentage plots (A) of the response time and their
corresponded response histograms (B-E) of the subject 5. Trials were equally divided
into three parts according to the response time (0.6 -1.5 sec). Trials with response
time from 0.6 to 0.9 sec were selected as the fast groups (a) and trials with response
time from 1.2 to 1.5 sec were as the slow groups (b). The response time histograms of
fast and slow groups were showed in (B-E)x(B; D): the motionless groups; (C, E): the
motion groups. Note: no apparentlyseffects of kinesthetic stimulus on the distribution

of the response time histograms in the fast or-slow.groups.
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Figure 3-5: The response time histogram of fast and slow groups of 6 subjects. The
motionless groups (left column); the motion groups (right column).
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3.2. Independent Component (IC) clustering

Components were first selected and clustered by the correlation between the scalp map
gradients and their power spectral baselines across a session and ten subjects. The grand mean
scalp maps of a session (10 subjects) for four ICs were showed in Fig 3-6 to Fig 3-9. The
occipital clustering was included ICs nearly from all sessions (10 sessions) and subjects and
the central, left mu and right mu clustering were include ICs with the range from 5 to 8 of all
sessions and subjects. The ICs in the same cluster were showed similar power spectral
baselines and event-related spectral perturbations (ERSPS) changes. The Fig. 3-10 showed the

grand mean power spectral baselines and the averaged scalp maps of the four IC clusters.

Motionless Motion

Cls 3 average scalp map, 10Ss i ic3/10

Cls 2 average scalp map, 10Ss

Figure 3-6; The scalp maps for the occipital independent component (IC) cluster of 10
motionless (Left columns) and 10 motion (right columns) sessions across 10 subjects.
Upper panels: the group averaged occipital 1C of the motionless and motion groups.
Lower panels: scalp maps for the occipital IC of the motionless and motion groups
from 10 subjects.
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Figure 3-7: The scalp maps for the left Mu rhythm IC cluster of 8 motionless and 8
motion sessions across 10 subjects. Panels as Fig. 3-6.

Motionless Motion

Cls & average scalp map, 7Ss Cls 3 average scalp map, 653 ie11/1 ic9/3

Figure 3-8: The scalp maps for the right Mu rhythm IC cluster of 7 motionless and 6
motion sessions across 10 subjects. Panels as Fig. 3-6.

Motionless Motion

Cls 5 average scalp map, 555 Cls 9 average scalp map, 855

Figure 3-9: The scalp maps for the Central IC cluster of 5 motionless and 8 motion
sessions across 10 subjects. Panels as Fig. 3-6.
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Figure 3-10: showed the grand mean power spectral baselines and the averaged scalp
maps of the four IC clusters. The occipital (A, E); central (B, F); left Mu (C, G) and
right Mu (D, H); ICs. The mean (solid lines) power spectra.

3.3. Tonic brain dynamics at.a large time:scale
The following paragraphs showed effects.of kinesthetic stimulation on changes of power
spectral baselines in four ICs at a large time.scale within the individual subject and across ten

subjects for fast and slow epochs.

3.3.1. Within subjects phenomena

Fig. 3-11 showed the averaged power spectral baselines in the occipital component of the
subject 5 for fast and slow epochs from the motionless and motion conditions. Under the
motionless, the mean baseline power spectrum was statistically significant larger at the
frequency from 4-12 Hz in the slow epochs than those in the fast epochs (Fig. 3-11). The
similar changes on the tonic activity were also found in the motion condition. Comparing with
the motionless, the difference nearly the alpha band between these two averaged power
spectral baselines was larger when the motion platform was enabled. Similar differences on
the tonic brain activities between the motionless and motion sessions were also demonstrated
for 1Cs with similar component maps from other nine subjects as shown in Fig. 3-12 to 3-14.

31



Some subjects (as shown in Fig 3-12 to 3-14) showed similar increases nearly the beta band

from fast to slow epochs in the motion and/or motionless conditions.

Motionless Motion
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Frequency (Hz) et Frequency (Hz) .t
Subject b
Figure 3-11: Single subject’s results. Average power spectral baselines of two groups
of epochs under motionless and motion conditions. He mean (solid lines) power
spectra (+ SEM: dashed lines) of the fast epochs (blue traces) and the slow epochs
(black traces). Note the significant power. increases (slow minus fast) at the alpha

band in the occipital 1Cs. The power increase was larger in the motion sessions than
that in the motionless session.
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Figure 3-12: The averaged baseline power spectra of 2 subjects. The fast epochs (blue
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Figure 3-13: The averaged baseline power spectra of 4 subjects. The fast epochs (blue

traces) and the slow epochs (black traces).
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For characterizing effects of the kinesthetic stimulation on detail changes of the alpha
power from fast to slow epochs in each subject, the power at the alpha band were selected and
averaged from the baseline power spectra, as shown in Fig. 3-15. The mean alpha power of
the fast epochs between the motionless and motion sessions appeared comparable in each
subject. The mean alpha power of individual subjects was significantly increased in slow
epochs and further, such increase was over enhanced by the kinesthetic stimulation (Fig. 3-15).
Values of ten subjects’ averaged baseline alpha power in the occipital 1Cs were shown in table
3-2.

The above changes on the baseline power spectra at the alpha band were not found in the

central, left mu or right mu ICs (Fig. 3-11).
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3.3.2. Cross subject consistency

The grand mean of the power spectral baselines of four I1Cs for the fast and slow epochs
in motion and motionless groups were shown in Fig. 3-16. Despite variations in EEG
recordings across different sessions and subjects, grand mean baseline power spectra of
occipital 1C showed statistically significant increase at the alpha band (p<0.01 shown in figure
3-17, p<0.01 shown in figure 3-18) in the slow epochs. Furthermore, the kinesthetic stimulus
significantly increased the difference of the baseline alpha power between the fast and slow
epochs (left bars vs. right bars, p<0.01, Figure 3-18). Such increased differences on baseline
alpha power were only related to the over enhanced the tonic power at alpha band at the slow
epochs (fast: hollow bar vs. shaded bar, p=0.8; slow: hollow bar vs. shaded bar, p<0.01). The
summary of the averaged power spectral baseline at alpha band of the occipital IC were

shown in table 3-3.
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Power (dB)

20['] 10 20 30 200 10 20 30 o 10 20 30 (1] 10 20 30

Frequency (Hz) —o Frequency (Hz)  _ Fast

— Slow — Slow
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Figure 3-16: The grand mean (£SEM) baseline power spectra of two groups of epochs
for four ICs in motionless (Left column, n=10) and motion (right column, n=10)
sessions. The occipital (A, E); central (B, F); right Mu (C, G) and left Mu (D, H); ICs.
The mean (solid lines) power spectra (x SEM: dash lines) of the fast epochs (blue
traces) and the slow epochs (black traces). Note compared with the other ICs, the
significant power increases (slow minus fast) at the alpha band were only displayed in
the occipital 1Cs. The power increase was larger in the motion sessions than that in the
motionless session. Insets: the group averaged scalp maps.
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The above changes on the baseline alpha power were only localized at the occipital 1C. No
apparently differences were found on the tonic power around 8-12 Hz between the fast and

slow epochs in either motionless or motion groups (Fig.3-16).
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Figure 3-17: The effects of klnesthetlc stlr]eﬂjlus and Gognltlve status on the averaged
baseline alpha power from ten sUbjects Npté the effects of kinesthetic stimulus
boosted the increase of baseline alphaipmiver m the slow epochs (**: p <0.01; ##:
p<0.01). kK Nammw
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Figure 3-18: The kinesthetic stimulus significantly increased the difference of the

baseline alpha power between the fast and slow epochs (**: p<0.01).
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Table 3-2: The mean baseline alpha power for ten subjects

Piall[f)ggm Motionless Motion

Regﬁion Fast Slow I(Jsh;::;gz; Fast Slow gg‘::gzg
subject 1 30.17 32.853 2.6833 30.898 38.229 7.3319
subject 2 28.332 29.955 1.6236 30.317 33.828 3.5116
subject 3 30.557 30.882 0.32447 30.117 33.M1 3.5937
subject 4 28473 30.336 1.8625 28.115 31.996 3.8816
subject 5 33.486 36.334 2.8485 33.8617 39.462 5.8454
subject 6 32.163 34.346 2.1831 34.162 39.69 5.5287
subject 7 32.277 33.244 0.96662 32.591 36.533 3.9412
subject 8 31.872 32.954 1.0815 32.351 35.846 3.4949
subject 9 29.569 30.975 1.4056 29.69 36.442 6.7523
subject 10 31.632 34.448 2.816 31.139 37.91 6.7706
Average 30.853 32.632 1.7795 31.299 36.364 5.0652

Table 3-3: The averaged baseline alpha power from ten subjects

Platform Motionless Maotion

mode

Reaction Fast Slow Difference Fast Slow Difference
time (Slow-Fast) (Slow-Fast)
Average(dB) | 30.910.5 32.610.6 1.8 31.310.6 | 36.3+0.8 5.1
{(MeantSEM) £<0.01 p<0.01
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3.4. Event-Related Spectral Perturbations (ERSPS)
Effects of kinesthetic stimulation and changes of cognitive status on the phasic dynamics
at a small time scale in four ICs (occipital, left mu and right mu and central components) were

shown in the following paragraphs.

3.4.1. The occipital component

Fig. 3-19 displayed ERSP images showing mean log power changes following car drifted
in fast and slow epochs for an occipital IC of subject 5 in motion and motionless conditions.
The mean ERSP for fast epochs (Fig. 3-19B and 3-19D) showed that mean power in the alpha
band (near 10 Hz) suppressed following deviation onset (phasic changes). Comparing with
the motion session, the phasic decrease followed the car drifted was weaker for the fast
epochs in the motion session. For the epochs of fast performance in the motionless session,

the suppressed alpha band was slightly increased ‘around the response offset.
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Figure 3-19: The ERSP images of occipital component for fast (B, D) and slow (A,
C) epochs in motionless and motion session of subject 5. Pink dashed lines: The
deviation onset. Blue dashed lines: the mean of reaction time. The right column: the
group averaged scalp maps of the occipital component for motionless (top) and the
motion session (bottom). Color bar: power of ERSPs. Note the alpha power was
suppressed briefly after the deviation onset and the latency for the alpha suppression
was related to the response time.
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In slow epochs, the suppression in alpha power before the response onset was prolonged.
Phasic changes in power around the beta band were smaller than in the alpha band. The
latency of alpha suppression was correlated with reaction time. Furthermore, the response
latency of the alpha suppression was further delayed in the motion session (Fig. 3-19). ERSP

images of other nine subjects showed in Fig. 3-20 to 3-23.
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Figure 3-20: The ERSPs of the occipital component for fast (B, D) and slow (A, C)
epochs in motionless (A, B) and motion (C, D) sessions of subject 1 and 2.
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Figure 3-21: The ERSPs of the occipital component for fast (B, D) and slow (A, C)
epochs in motionless (A, B) and motion (C, D) sessions of subject 3, 4, and 6.
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Figure 3-22: The ERSPs of the occipital component for fast (B, D) and slow (A, C)
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Figure 3-23: The ERSPs of the occipital components for fast (B, D) and slow (A, C)
epochs in motionless (A, B) and motion (C, D) sessions of subject 10.
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Figure 3-24: The grand mean of ERSP images of occipital component for fast (B, D)
and slow (A, C) epochs in motionless and motion sessions across ten subjects.
Panels as Fig.3-19.

Fig. 3-24 showed the grand mean of ERSP images of occipital component for fast and

slow epochs in motionless and motion sessions from ten subjects. Power spectra in the
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occipital cluster showed slightly broader phasic changes after the deviation onset, with peaks
near 10 Hz in slow epochs (Fig. 3-24A and Fig. 3-24C). Fig. 3-25 showed, the grand mean
percentage of the 5 sec period after the deviation onset exhibiting significant (p<0.01) phasic
changes for each frequency from ten subjects. This prevalence measurement can be
interpreted as the probability of a significant decrease in post-response power, across subjects.
Phasic changes in fast epochs were less frequent (occupying on average around 40 % of the
post-deviation periods) than in slow epochs (on average ~60 %). In motionless session, the
changes at the alpha band power displayed a slight downward frequency shift in the alpha
peak (Fig. 3-25A, middle panel). With the kinesthetic stimulation, the frequency range of

phasic increases in slow epochs was wider than that in the fast epochs (25 Hz vs. 20 Hz).
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Figure 3-25: Percentage of the 0-5 sec post-deviation epochs with significant (p<0.01) phasic
(post- minus pre-deviation) power decreases, averaged across ten subjects’ occipital ICs in
motionless (A) and motion session (B). Blue traces: fast epochs. Black traces: slow epochs.
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3.4.2. The motor component

The mean ERSPs for fast epochs (Fig. 3-26B and Fig. 3-26D) showed phasically
decreased activity in the (8-12 Hz) alpha and (15-25 Hz) beta band power. The ERSP images
for slow epochs (Fig. 3-26A and Fig. 3-26C) showed a prolonged decrease in EEG activity
below the 12 Hz after the deviation onsets. The onset of the beta suppression showed a
slightly earlier than the onset of the alpha band. For epochs with slow performance, the
latency of the alpha suppression was clearly shorter in the motion session than that in the
motionless session. Fig. 3-27 and 3-28 showed the ERSP images of right mu components in

individual subjects.
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Figure 3-26: The ERSP images of right mu component for fast (B, D) and slow (A, C)
epochs in motionless and motion session of subject 5. Panels as Fig. 3-19. Note: the
onset for the alpha suppression for the slow epochs was earlier in the motion session
than that in the motionless session.
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Figure 3-27: The ERSP images of right mu component for fast (B, D) and slow (A,
C) epochs in motionless and motion session of subject 1, 3, and 6. Panels as Fig.

3-19.
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Similar spectra changes at the alpha and beta band following the deviation onset were
demonstrated in the ERSPs for motor ICs (left and right mu components) averaged across ten
subjects showed in Fig. 3-29. In the fast epochs, the phasic activity changes were significantly

weaker in the right mu component when the motion platform was disabled.
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Figure 3-29: The grand mean of ERSP images of left and right mu component for
fast (B, D) and slow (A, C) epochs in motionless and motion session from ten
subjects. Panels as Fig. 3-19.

48



No apparently difference in mean prevalence of the power decrease between the fast and slow

epochs (fast: ~40- 50%; slow: ~40-50%). In slow epochs, changes at frequencies around 5Hz

were more frequent (occupying on average about 45 % of the post-response periods) than in

fast epochs (on average lower than 10 %).
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Figure 3-30: Percentage of the 0-5 sec post-deviation epochs with significant (p<0.01)
phasic (post- minus pre-deviation) power decreases, averaged across ten subjects’ left
(n=6) and right (n=8) mu components in motionless (A, C) and motion session (B, D).

Blue traces: fast epochs. Black traces: slow epochs.
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3.4.3. The central component
Fig. 3-31 showed the ERSPs of the central ICs of subject 5. For the central ICs, there

were no apparently phasic activity changes around the alpha and bands. For the fast epochs,
spectra below 10 Hz showed a transient and strong power increases following the deviation
onset in the motionless session. However, a significant and sustained power decreases at

frequencies below 10 Hz were observed in the slow epochs during the motion session.

A e S : e,
o o e 2 o
of § : 3
wr g i i
- Wi ' '
Motionless F T
10 £ H T ——
— I v ' T Sk
N § e
E b % ¥ LN —
> ol § 2 . |
c L& [ ]
[ 7 x R — T
C g. 10 5-7 i e i .
B xf ; :
] 1 !
wf i : :
Motion = - —
D 1 f t it ——___ :
20 & ] T e — e
¥ 1 i —v—
S E H el s
wf § : )
-1000 0 1000 2000 3000 4000

Subject 5

Time (ms)

Figure 3-31: The ERSP images of central IC for fast (B, D) and slow (A, C) epochs
in motionless and motion session of subject 5. Panels as Fig. 3-19. Note: the clear
power increases below the 10 Hz showed briefly after the deviation onset in the fast
epochs when the motion platform was disabled. A sustained power decreased around
the response onset showed for the slow epochs when the motion platform was

enabled.
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Fig. 3-32 showed the grand mean of ERSPs of central components averaged across ten
subjects. For the large variations in individual ERSP across sessions and subjects, the grand
mean of ERSP only showed slightly increased power at frequencies below (Fig. 3-32) or
around (Fig. 3-32A)10Hz after the car drifted. The lightly power decreases around the alpha

band were also exhibited in the grand mean of the response-locked ERSPs.
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Figure 3-32: The grand mean of ERSPs of the central IC for fast (B, D) and slow (A,
C) epochs in motionless and motion sessions from ten subjects. Panels as Fig. 3-18.

3.5. The onset of the alpha suppression

Fig. 3-33 showed the spectrotemporal traces of the alpha band power at the occipital
components. In the slow epochs, the onset of the alpha suppression was significantly delayed
than in the fast epochs. The latency of the alpha suppression was further delayed during the
motion sessions (Fig. 3-33B). For fast epochs, there were no significant differences on the
onset of alpha decreases between the motionless and motion sessions. In the mu ICs, changes
of response performance had an effect on decrease of alpha band power by delaying its onset.

However, comparing with the occipital components, effects of kinesthetic stimulation on the
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onset of the alpha suppression were totally different in the mu components. Specifically, the
onset of the alpha decrease in the motor components was significantly shortened both in fast
and slow epochs (left mu: 3-34A vs. 3-34B; right mu: 3-34C vs. 3-34D, fig. 3-34) when the

motion platform was enabled.
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Figure 3-33: Averaged time courses of the alpha band for fast (black traces) and
slow (blue traces) epochs in motionless (A) and motion (B) sessions across ten
subjects. Dash lines: the significant values (p<0.01) of fast (black traces) and slow
(blue traces) epochs by bootstrap. Arrows indicate the significant onset of the alpha
suppression for the fast and slow epochs. Insets: the group averaged scalp maps of
the occipital components and the ICA weightings. Note the mean onset of alpha
decrease was delayed in the slow epochs and the kinesthetic stimulation further
delayed the latency of the alpha suppression.
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suppression for both fast and sloy_v' e'pochs ,@“‘*" p<0 0!1;)
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Figure 3-35: Effects of kinesthetic stimulation and changes of response performance
on the mean latency of alpha suppressions at the occipital (A) and mu ICs (B: left; C:
right) in both fast and slow epochs (**: p <0.01).

53



Table 3-4: The averaged onset of the alpha suppression in the occipital components.

suppression

Reaction time Fast Slow
Platform mode Motionless | Motion Difference | Motionless | Motion Difference
Onset of the alpha | 702.7147.8 | 746.8146.1 | 441 912.7160.3 1085.1162.2 | 1724

Table 3-5: The averaged onset of the alpha suppression in the right mu components.

Reaction time Fast Slow

Platform mode Motionless | Motion Difference Motionless Motion Difference
Onset of the alpha | 932.13414 | 699.6141.1 | 2426 1256.3154.9 | 988.9464.5 | 2674
suppression

Table 3-6: The averaged onget of the-alpha suppression in the left mu components

Reaction time Fast Slow

Platform mode Motionless | Motion Difference Motionless Motion Difference
Onset of the alpha | 844.3143.2 | 61241428 | 237.9 1168.7157.7 | 899.8159.3 | 268.9
suppression
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4. Discussion

In this study, we demonstrated that the level of driver’s drowsiness can be affected by
the kinesthetic stimuli based on the 3 dimensional surrounded virtual reality scene combined
with the six degree motion platform, the independent component analysis (ICA) and
time-spectral analysis to explore the fluctuations in spectral dynamics of maximally
independent EEG activities from alter to drowsy with or without the enabling of the motion
platform.
4.1. Effects of drowsiness on long-term tonic variations

For both the motion and motionless sessions, the tonic increases in power spectral
baselines from fast to slow epochs in the occipital components were consistently observed
across subjects. Similar changes on the tonic brain dynamics from low- to high-error trials
have been observed in a compensatory simulated-driving task (Huang et al., 2005). In that
study, the tonic alpha power also increased at.the occipital components during the period of
poor behavioral performance was observed. in the-IC clusters originating in the lateral
occipital cortex. During drowsy, as indexed by the behavioral performance drop-offs, tonic
scalp EEG power has been found to be higher on average than during alert or awake although
most studies also observed tonic increases at the theta power (Saroj and Ashley, 2002;
Campagne et al., 2004). Another experiment in our laboratory characterized details changes of
EEG dynamics from alert, light drowsiness to deep drowsiness under motionless condition.
Results suggested that the alpha activities increased either in a monotonic or non-monotonic
pattern while the theta band power increased linearly and slowly from the drowsy onset to the
deep drowsiness. The strength of alpha power was larger than theta waves during the period
of light drowsy whereas the power of theta band was significant larger than the alpha band
power in the period of deep drowsiness. In this study, the tonic increases of baseline band
power for the slow epochs were not only significant larger at alpha band, but also the theta-
and beta-band power were significantly increased when the motional platform was enabled.
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Therefore, results of EEG dynamics suggested that the drowsiness level in motion session was

deeper than that in the motionless session.

4.2. Effects of drowsiness on phasic responses

Results of phasic responses strengthened the finding on the tonic activities that the
drowsiness level was deeper in the motion sessions than in the motionless sessions which
reflected on the increasing of mean prevalence and the delaying of the phasic alpha
suppression. The phasic decreases of alpha band power briefly after the deviation onsets
observed in the fast and slow epochs may relate to the activation of the neuronal activities
(Goldman et al., 2002). There is agreement that the de-synchronization brain activity
represents an activation of certain level of cortical circuitry (Steriade et al., 1991), therewith
the event related de-synchronization (ERD) can be interpreted as the electrophysiological
correlated with an increased cortical excitability or.an-activated cortical area. The alpha band
activities showed a widespread de-synchronization in-perceptual, judgment and memory tasks
(Pfurtscheller and Klimesch, 1992; Van-Winsumet-al., 1984). ERD of the upper alpha rhythm
(typically 10-12 Hz) occurs over occipital areas and is generally interpreted as being a shift
from an idling cortical state to an active cortical state (Pfurtscheller, 1992; 1994; Pfurtscheller
et al., 1994; Pfurtscheller et al., 1996). Similar event-related phasic alpha suppression
following the deviation onset were also displayed for the epochs of relative high-error epochs
(60%-100%) in the compensatory simulated driving task (Huang et al., 2005). For the alert
epochs in that study, there were no significant variations in the alpha band power after the car
drifting in the lower error epochs (0-40%). In this study, the phasic decreases were displayed
in both fast, which corresponded to the lower error epochs in the compensatory simulated
deriving task, and slow trials. We speculated that the discrepancies on the alter epochs
between these two studies may relate to the differences on task complexity. Specifically,
subjects in the compensatory simulated driving task held down an arrow key to compensate
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the deviation (Hunag et al., 2005) while subjects in this study needed to maneuver the steering
wheel, which demanded more attention, for responding to the car drifting. This interpretation
is consistent to previous studies that suggested the increase of task complexity or of attention
demand results in increased the magnitude of alpha de-synchronization (Boiten et al, 1992;
Dujardin et al., 1993). The duration and onset of phasic alpha suppression were either
prolonged or delayed with the degradation of response performance. Similar phenomena also
displayed in the compensatory simulated task (Huang et al., 2005). Such prolonged and
delayed ERD for slow responses may due to the demands of longer time for integrating brain
circuitries or of more attentional brain sources in the drowsiness. This could be partially
supported by the recent studies showing that inter-indivisual differences in human intelligence

are reflected in the amplitude of ERD.

4.3. Effects of kinesthetic stimulation on the-drowsiness level

In comparison with static driving sessions,-subjects’ drowsiness level was deeper in the
sessions with the kinesthetic stimulation reflected on the further increased tonic changes of
power spectral baselines as well as the delayed onset and prolonged duration of phasic alpha
suppressions although their behavioral performances in these two different sessions were
similar. We suggested that the information simultaneously coming from multisensory organs
could slow down the reduction of the ability for detecting deviations from alertness to
drowsiness. Our previous study on investigating effects of kinesthetic stimulation on EEG
dynamics in VR simulated driving under alertness has revealed that the response time in
dynamic driving is around 50 ms faster than in static driving. The alpha suppression in the
motor clusters also occurs 200 ms earlier in motion-deviation. Similar results were also
observed in present study. Specifically, for the fast epochs, the averaged onset of alpha
suppression at the motor components was displayed around 240 ms earlier in the motion
session. Although the sensitivity for detecting the deviation was deteriorated with the
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reduction of vigilance revealed by delaying the onset of alpha suppression from around 700
ms to 990 ms, the kinesthetic stimulation still had great advanced on the EEG responses to car
drifting. Comparing to the motionless sessions, the averaged onset of the alpha suppression
still occurred 240 ms earlier when the motion platform was enabled. In the static driving,
subjects could only rely on the visual information to detect the car drifting, but the useful
visual filed has been demonstrated that it can be altered with the degradation of vigilances
(Rogé et al., 2002). Whereas, subjects in the dynamic driving could still maintain their
driving performance on certain level by the assistance of the kinesthesia even they were in a

deeper drowsy state.

4.4. The variation of EEG dynamics is potential as a good index for
detecting driver’s drowsiness:in real driving

Behavioral performance has-been widely used.for evaluating the drowsiness level (Philip
et al., 1999; Roge et al., 2004). Our present.results showed that the driver’s drowsiness level
could be under estimated in the real‘driving by.assessing changes of behavioral performances.
In contrast, changes on EEG dynamics revealed more sensitive for detecting the deterioration
of the vigilance. This finding is consistent with previous studies that suggested the use of
EEG signals is potentially the best for detecting vigilance while driving (Torsvall and

Akerstedt, 1987; Keckluno and Akersteot, 1993; Eoh et al., 2005; Otmani et al., 2005).
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5. Conclusion

We demonstrated effects of kinesthetic stimulation on brain activities from alert to mild

drowsiness. This study was conducted by a three dimensional surrounded virtual reality scene

combined with the six degree motion platform. We used the independent component analysis

(ICA) and spectro-temporal analysis to explore the fluctuations in EEG dynamics from alert

to drowsiness, which indexed by the behavioral responses. For the occipital component, the

power spectral baselines were increased near the alpha band from alert to drowsy. With

detritions of the alertness, onsets of alpha suppressions were delayed and the mean prevalence

of alpha decreases was also prolonged. Withsthe same behavioral performances, changes on

EEG dynamics from alert to drowsiness were further. enhanced when the motion platform was

enabled. This indicated that the drowsiness-level ‘was deepened by the assistance of the

kinesthetic stimulation and such differences ‘in the drowsiness level can’t be differentiated

according to the behavioral performances. Results also showed that the kinesthesia was

reduced in the mild drowsy revealed by delaying onsets of event-related de-synchronization in

the motor components. However, to what extent the sensitivity of the kinesthesia would be

reduced in the deep drowsy still need to be further characterized in the future study. Results of

this study first demonstrated the importance of the kinesthetic stimulation in the simulated

driving studies. Furthermore, this study also first revealed that the EEG dynamics is more

sensitive than the behavioral performance for correctly detecting driver’s drowsiness level.
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