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Chinese Abstract 
中文摘要 

在長時間或單調的駕車環境裡，駕駛很容易減低他們的警覺心或注意力。昏睡的駕

駛沒辦法專心地開車，會導致一些錯誤的車輛操縱。他們處理訊息的速度與記憶的能力

都變差，而開車技巧隨著警覺心的降低開始變糟。之前的研究大多是在靜態的開車環境

裡，利用行為上的狀態或生理訊息去預測駕駛的昏睡程度。然而有一些研究發現動態的

刺激會影響腦電波(electroencephalogram, EEG)α頻帶(8~12 Hz)能量的變化，並且當

成警覺心的指標。在真實的駕駛裡，動態刺激對利用神經活動偵測昏睡程度準確性影響

的程度仍是未知。因此我們研究的目的在於有系統的描述動態刺激對不同認知程度的大

腦活動影響，特別是在昏睡的部份。 

我們利用虛擬環繞場景結合六軸動態平台，獨立成份分析(Independent Component 

Analysis, ICA)和時頻分析研究從清醒到昏睡時的腦電波活動，並比較平台動與不動的

差異。本實驗結果顯示，當受測者昏睡程度增加，使其駕車的能力下降，發現此時大腦

枕葉區(occipital)在偏移事件發生前之腦波的α頻帶能量會增加。相似昏睡程度也使

偏移事件發生後之腦波的α頻帶能量下降的時間點延後，並增加持續下降的時間。在相

同的行為反應下去觀察平台動時腦電波從清醒到昏睡的變化比平台不動時更明顯。本研

究的結果第一次證明了動態刺激對虛擬駕車環境的重要性，更進一步指出腦電波的變化

比行為狀態更能靈敏地反應出駕駛的昏睡狀態。 

關鍵字︰動態刺激、昏睡程度、腦電波、獨立成份分析、時頻分析、功率頻譜、暫態α

頻帶能量下降

 i



Effects of Kinesthetic Stimulation on Neural 

Activities under Different Cognitive States 
 

Student: Min-Ta Chen Advisor: Dr. Chin-Teng Lin 
 

Department of Electrical and Control Engineering 

National Chiao Tung University 

English Abstract 
Abstract 

It has been found that drivers easily to reduce their vigilance or attention during the 

prolonged or monotonous driving. The drowsy driver can’t focus on their driving task and 

tend to commit on manipulating errors. Their information processing speed and working 

memory capacities are decreased and drastic changes on their task performance occur along 

with the reduction of the vigilance. Most previous studies that tried to figure out the useful 

features from behavioral performances or physiological signals for predicting driver’s 

drowsiness level were done in a static driving environment. However, some studies already 

showed that the kinesthetic stimulus had influences on fluctuations of brain dynamics 

especially near the alpha band power, which already used as an index of the vigilance. To 

what extent the kinesthetic stimulation would affect the accuracy on the predicting drowsiness 

level from neural activities in real driving is still unclear. Therefore, the aim of this study is to 

systemically characterized effects of kinesthetic stimulation on the brain activities under 

different cognitive state, particularly under the drowsiness condition.  

 We used the 3 dimensional surrounded virtual reality scene combined with the six degree 

motion platform, the independent component analysis (ICA) and time-spectral analysis to 

explore the fluctuations in spectral dynamics of maximally independent EEG activities from 
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alter to drowsy with or without the enabling of the motion platform. Results showed that 

subjects’ drowsiness level was increased with the deteriorated of the driving performance 

which reflected on the tonic increases of the power spectral baselines near the alpha band in 

the occipital components. The similar drowsy effects also revealed on the changes of the 

phasic alpha suppressions including the delaying its onset and increases its mean prevalence. 

With the same behavioral performances, changes on EEG dynamics from alert to drowsiness 

were further enhanced when the motion platform was enabled. Results of this study first 

demonstrated the importance of the kinesthetic stimulation in the simulated driving studies. 

Furthermore, this study also first revealed that the EEG dynamics is more sensitive than the 

behavioral performance for correctly detecting driver’s drowsiness level.  

 

Keyword: Kinesthetic Stimulus, Drowsiness level, EEG, ICA, time-frequency analysis, 
power spectral baselines, phasic alpha suppression 
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1. Introduction 

Drowsy drivers have been identified as the main leading cause of car accidents. It is 

estimated that there are 76,000–100,000 car crashes occurring each year in the United States, 

leading to 1500 deaths and thousands of injuries (Knipling and Wang, 1995; Wang et al., 

1996). Drowsy drivers cannot focus on driving and tend to commit on manipulating errors. 

Their information processing speed and working memory capacities are decreased and drastic 

changes on their task performance occurs (Wylie et al., 1996; Chang and Mannering, 1999; 

Kostyniuk et al., 2002; Hendrix, 2002). Through face to face interviews with 593 

long-distance drivers, McCartt reported that 47 % of the respondents had ever fallen asleep 

and 25.4% had fallen asleep during driving of the past year (McCartt et al., 2000). Several 

factors contribute to the occurrence of symptoms of fatigue and falling asleep in drivers, such 

as lack of sleep, long driving hours, driving in a monotonous environment, taking sedative 

drugs or drinking alcohol before driving and driving at midnight, early morning, or 

mid-afternoon hours. Therefore, accurate and non-intrusive real-time monitoring of driver's 

drowsiness would be highly desirable, particularly if this measurement could be further used 

to predict changes in driver's performance capacity. 

 

1.1. Current researches of drowsiness 

There are several ways to detect drivers’ drowsiness. For example, it can be directly 

captured from video images (Summala et al., 1999), the rate and duration of the EOG 

(electrooculogram, Horne and Reyner, 1996). It can also be estimated from bio-signals such 

as ECG (electrocardiogram), body pressure, and respiration (Milosevic, 1997; Chung et al., 

1999), and the electroencephalogram (Horne and Reyner, 1995; Khardi and Vallet, 1994; Lal 

and Craig, 2002, Huang et al., 1996; Vuckovic et al., 2002; Roberts et al., 2000; Khalifa et al., 

2000; Wilson and Bracewell, 2000).  
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The abundant information in EEG recording can be related to drowsiness, arousal, sleep, 

and attention (Santamaria and Chiappa, 1987). Previous studies showed that changes in the 

EEG theta band and the alpha band reflect cognitive and memory performance (Klimesch, 

1999). For example, Makeig and Jung (1996) and Huang et al. (2005) reported that mean 

activity levels in the (< 4 Hz) delta and (4-6 Hz) theta bands, and at the sleep spindle 

frequency (14 Hz) as well as the baseline alpha band power were significantly increased from 

alert to poor/drowsy performance. Several EEG studies related to driving also suggested that 

alpha-band and theta-band power increased as the alertness level of the driver decreased 

(Torsvall and Akerstedt, 1987; Eoh et al., 2005; Otmani et al., 2005). Though many studies on 

the driver’s drowsiness with EEG have been performed, the driving simulation apparatus of 

experiments in the literatures are mostly constructed only on the monitors. But, the static 

driving simulation is difficult to approach the realistic driving condition, such as the 

vibrations that would be experienced when driving an actual vehicle on the road.  

 

1.2. Kinesthetic perception during driving 

 The driving motion is one of the most experienced kinesthetic perceptions in our life, in 

other word, the perception we sensed during the vehicle speed or direction change. Whenever 

the vehicle accelerates, decelerates or curves in a corner, we experience a force pulling our 

body against the direction of moving. For a driver, the perception to motion includes 

kinesthetic and visual stimulus. A driver does not sense only the pushing or pulling his/her 

body by a force, but also the scene change related to vehicle movement. The driving 

perception includes the co-stimulation of visual cue, vestibular stimulation, muscle reaction 

and skin pressure. It is indeed a complicated mechanism to understand. 

There are numbers of difficulties in investigating the driving perception. First of all, the 

safety of subject must be guaranteed. Experiments should be held under a safe driving 
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environment, it is very dangerous to conduct driving experiments on the road. Second, 

appropriate monitoring and data acquisition are needed to study the influence of kinesthetic 

stimuli. The stimulation should be simple enough and repeatable to keep experiment under 

control. Third, objective evaluation should be assessed in the studies. 

One of the solutions is to conduct driving experiments using a realistic simulator, which 

is widely used in driving related researches (Kemeny and Panerai, 2003). For the necessity of 

motion during driving, literatures showed that the absence of motion information increased 

reaction times to external movement perturbations (Wierville et al., 1983), and decreased 

safety margins in the control of lateral acceleration in curve driving (Reymond et al., 2001). 

In real driving, improper signals from disordered vestibular organs were reported to determine 

inappropriate steering adjustment (Page and Gresty, 1985). Moreover, the presence of 

vestibular information in driving simulators shows the importance for it influences the 

perception of illusory self-tilt and illusory self-motion (Groen et al., 1999). All the above 

studies emphasized the importance of motion perception during driving with the assessment 

of driving performance and behavior. Our previous studies also demonstrated that multiple 

cortical EEG sources responded to driving events differentially in dynamic and static 

environment. Specifically, the alpha band variations occurred in many components (Mu, 

parietal and occipital) during driving, especially when the vehicle is moving. It is still unclear 

to what extent the kinesthetic stimulation would interfere with the fluctuations of driver's 

global level of drowsiness accompanying changes in driver's performance.  

 

1.3. Virtual reality dynamic simulator 

Virtual reality (VR) technology is gradually being recognized as a useful tool for the 

study and assessment of normal and abnormal brain function, as well as for cognitive 

rehabilitation. Virtual Environments (VE) are created by powerful computers that generate 

 3



realistic animated graphics in three dimensions. Creating carefully controlled, dynamic, 3D 

stimulus environments combined with physiological and behavioral response recording can be 

offer more assessment options that are not available by traditional neuropsychological 

methods. 

The VR technique allows subjects to interact directly with a virtual environment rather 

than monotonic auditory and visual stimuli. It is an excellent strategy for brain research on 

interactive and realistic tasks due to low cost and avoiding risk of operating on the actual 

machines. In recent years, some researchers designed the VR senses to provide the 

appropriate environments for brain activity study (Bayliss and Ballard, 2000; Eoh et al., 2005; 

Huang T.Y et al., 2005). Integrating the VR scene with dynamic motion platform is excellent 

for studying the influence of kinesthetic stimulus on cognitive state. Therefore, a VR-based 

dynamic motion platform combined with EEG measured system is an innovation in brain and 

cognitive engineering researches.  

 

1.4. Aims of this thesis 

 Aims of this thesis were (1) to characterize EEG changes with the degradation of the 

alertness and (2) to assess EEG dynamics in responses to kinesthetic stimulus in different 

cognitive states. We first constructed a Virtual-Reality interactive driving environment 

consisting of a highway scene and a six degree-of-freedom (6-DOF) motion platform. Then, 

we designed a lane-keeping driving experiment to indirectly quantify driver’s drowsiness 

level (Philip et al., 2003). Therefore, we could easily demonstrate that changes of EEG 

activities were correlated with driver’s response performance as well as the influences of 

kinesthetic stimulation on EEG dynamics from alter to drowsiness. Accordingly, this thesis 

provided strong evidences to show that the dynamic motion platform is required for correctly 

estimating driver’s cognitive states under driving in the future.  
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2. Materials and Methods 

2.1. Subjects 

Ten right-handed healthy adults (9 males, 1 female; age range 22~25 years, mean= 23.5, 

SD = 0.7) with normal or corrected to normal vision were paid to participate in this 

experiment. All subjects were free of neurological or psychiatric disorders. In order to let 

subjects easily fell asleep during the experiment, subjects were asked to have the lunch or 

dinner at 1hr before the experiment. Subjects practiced the driving task for 5-10 min for 

reaching the satisfactory performance after the placement if the EEG cap and electrodes. Each 

subject at least had to complete two 100-minute sessions in two different days. 

 

2.2. Experimental Setup 

Fig. 2-1 showed two major parts of the dynamic driving environment: (1) a 3D highway 

driving scene based on the VR technology and (2) a real vehicle mounted on a 6-DOF motion 

platform. Details of this environment were showed as follows. 

(A) (B) 

Figure 2-1: The dynamic VR driving environment. (A) Dynamic Driving Simulator. 
(B) Virtual-Reality Scene. 
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2.2.1. Dynamic driving environment 

The dynamic driving environment provided a safe, time saving and low cost approach to 

study human cognition under realistic driving events. Our driving simulator provided not only 

high-fidelity VR scene, but also kinesthetic inputs and realistic driving environment (as 

shown in Fig. 2-2). These could make subjects feel that they were driving in a real vehicle on 

the real road. 

 

 

Figure 2-2: The dynamic VR driving environment, Brain Research Center, National 

Chiao Tung University, Taiwan, ROC 

 

2.2.2. VR scene 

The VR-based high-fidelity 3D interactive highway scene was developed by using the 

WorldToolKit (WTK) 3D engine. The 3D view was composed of seven identical PCs running 

the same VR program and the seven PCs were synchronized by LAN that all scenes were 

going at exactly same pace. The VR scenes of different viewpoints were projected on 

corresponding locations.  

Literatures showed that the horizontal field of view (FOV) of 120° is needed for correct 

speed perception (Jamson, 2000). In our VR scenes, the surrounded screens covered 206° 

frontal FOV and 40° back FOV (Fig. 2-3). Frames projected from 7 projectors were 
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connected side by side to construct a surrounded VR scene. The size of each screen had 

diagonal measuring 2.6-3.75 meters. The vehicle was placed at the center of the surrounded 

screens.  

Figure 2-3: The overview of surrounded VR scene. The VR-based four-lane highway 

scenes are projected into surround screen with seven projectors. 

 

2.2.3. Stewart motion platform 

 The Stewart motion platform had a lower base platform and an upper payload platform 

connected by six extensible legs with ball joints at both ends (Fig. 2-4). The platform 

generated accelerations in vertical, lateral and longitudinal direction of vehicle as well as 

pitch, roll and yaw angular accelerations.  

 

(A) (B) 

Figure 2-4: The Stewart platform. (A) The sketch map for the Stewart platform. (B) 
The actual Stewart platform. A driving cabin is mounted on this platform in our Lab. 
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2.3. EEG recording  

 Subjects were with a movement-proof electrode cap with 36 sintered Ag/AgCl electrodes 

for measuring the electrical activates of the brain and that is the electroencephalogram (EEG). 

Electrodes were positioned according to the standard international 10-20 system (as shown in 

Figure 2-5). Active sites were referenced to linked left and right mastoids. EEG signals were 

recorded and amplified by the Scan NuAmps Express system (Compumedics Ltd., VIC, 

Australia, Fig. 2-6) with a sampling rate at 500 Hz and 16-bit precision. Data were first 

filtered with a low-passed filtering with a cut-off frequency at 50Hz for removing the power 

line noise and other high frequency noise. Then, a high passed filtering with the cut-off 

frequency at 0.1 Hz was applied to remove the baseline drifts. At the end of each completely 

session, the location of the electrodes were digitized with the 3D digitizer (POLHEMUS 3 

space eastrak).   

 
 

(A) (B) 

Figure 2-5: The International 10-20 system of electrode placement. (A) Lateral view. (B) 

Top view. (http://faculty.washington.edu/chudler/1020.html)  

.   
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Figure 2-6: The photographic picture of NuAmps EEG amplifier and the electrode 

cap. 

 

2.4. Experimental paradigm  

A virtual-reality (VR) based highway-driving environment developed in our previous 

studies was used to investigate drivers’ cognitive changes in a long-term driving task. The 

four lanes from left to right were separated by a median strip. The distance between the left 

and right sides of the road was equally divided into 250 points (digitized into values 0–250 

show as Fig. 2-7), where the width of each lane and the car was 60 and 32 units, respectively.  
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Figure 2-7: The picture of the four-lane highway scene. The distance from the left to 
the right side of the road was equally divided into 250 points.  

The refresh rate (60Hz) of highway scene was set properly to emulate a car driving at a fixed 

speed of 100 km/hr on the highway. All scenes were moving according to the displacement of 

the car and the subject’s wheel handling as show in Fig. 2-8. 

 

Figure 2-8: Illustration of the deviation event. (A) Vehicle moving in straight line. 
(B) Deviation event occurred. (C) Subject’s reaction. (D) Vehicle back to middle 
lane. 
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The car was randomly drifted (triggered from the WTK program and the on-set time is 

recorded) away from the center of the cruising lane to mimic the consequences of a non-ideal 

road surface. The task required subjects to keep the car on the center of third cruising lane 

(from left to right counted) during the experiment. The inter-deviation intervals were varied 

from 5 to 10 sec and the car deviated either left or right with the equal chance. Subjects were 

instructed to continue to perform the task as best as they could even if they began to feel 

drowsy. The deviation onset time and the subject’s reaction time were recorded 60 times per 

second via a synchronous pulse marker train that was recorded in parallel by the EEG 

acquisition system for the further analysis. 

For determining effects of kinesthetic stimulus on the neural activities under different 

cognitive status in a long term driving tasks, this experiment contained two different 

conditions: the “motion” and “motionless”. These two conditions were achieved by enabling 

or disabling the motion platform action. 

 

2.5. Data Analyses 

2.5.1. Analysis of driving performance 

 In each 100-min session (Fig. 2-9), 653 deviation events were recorded. Similar to 

real-world driving experience, the vehicle did not always return to the same cruising position 

after each compensatory steering maneuver. Therefore, during each drift/response trial, 

driving error was measured by maximum absolute deviation from the previous cruising 

position (Fig. 2-10). 
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Figure 2-9: The illustration of single deviations. (D=c T, c=60). 

 

 

Figure 2-10: (A) Driving trajectory of a 100-min session. Black dots: deviation onsets. 

Red dots: response onsets. (B) The driving error of a 100-min session. 

 

 

Figure 2-11: (A) Sorted trials by driving error (point). (B) Sorted trials by reaction 

time (sec). 
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 Since the car drifted with constant velocity, the relation between reaction time and the 

driving error was linear (D=c T, c = 60). 

 After transformed the driving error into response time, behavior responses were sorted by 

reaction time, normalized with the total trials, and then plotted as cumulative plot of the 

response time (showed as Fig.2-12).  

 
Figure 2-12: The cumulative plots of response time from one subject. 

 

 The response time and driving error were varied along with drivers’ alertness and 

drowsiness. We had two equal drowsiness indices: reaction time and the driving error. For 

instance, when the driver was drowsy, the reaction time between the onset of deviation and 

steering wheel was increased. On the contrary, when the driver was alter, the response time 

between the onset of deviation and steering wheel was decrease.  

 

2.5.2. EEG  

All the EEG data were analyzed by using the EEGLAB 4.301 (Fig. 2-13). The 

multi-channel EEG signals were first down sampled (from 500 to 250 Hz) and digital filtered 

with a linear 1-50Hz FIR pass band filter before the further analysis. Continuous EEG data 

were segmented into 8.5-s epochs, 2.5 s before and 6 s after the deviation onsets. 
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Figure 2-13: The flow chart for EEG analysis 

 

 The artifacts across all channels were identified and rejected from EEG data using the 

EEGLAB routines (details see description at 

http://www.sccn.ucsd.edu/eeglab/rejtut/tutorialreject.html). Criteria used for artifact rejection 

included extreme values, abnormal trends (linear drift) and abnormally distributed data (Fig. 

2-14).  
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Figure 2-14: Criteria used for artifact rejection included extreme values, abnormal 

trends (linear drift) and abnormally distributed data 

 

 The preprocessed EEG signals were further separated into independent brain sources 

using Independent Component Analysis (ICA) as described on the following paragraph.  

 

 

2.5.2.1. Independent Component Analysis (ICA) 

The joint problems of EEG source segregation, identification, and localization are very 

difficult since the EEG data collected from any point on the human scalp includes activity 

generated within a large brain area. The problem of determining brain electrical sources from 

potential patterns recorded on the scalp surface is mathematically underdetermined. Although 
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the conductivity between the skull and brain is different, the spatial smearing of EEG data by 

volume conduction does not cause significant time delay and it suggests that the ICA 

algorithm is suitable for performing blind source separation on EEG data. The ICA methods 

were extensively applied to blind source separation problem since 1990s (Jutten and Herault, 

1991; Cardoso and Souloumiac, 1993; Comon, 1994; Bell and Sejnowski, 1995; Cardoso and 

Laheld, 1996; Pham, 1997; Girolami, 1998; Lee, 1999). In recent years, subsequent technical 

reports (Makeig, 1996; Jung, 1998; Jung, 2000; Jung, 2001; Yamazaki, 2003; Meyer-Base, 

2003; Naganawa, 2005; Liao, 2005) demonstrated that ICA was a suitable solution to the 

problem of EEG source segregation, identification, and localization based on the following 

assumptions: (1) The conduction of the EEG sensors is instantaneous and linear such that the 

measured mixing signals are linear and the propagation delays are negligible. (2) The signal 

source of muscle activity, eye, and, cardiac signals are not time locked to the sources of EEG 

activity which is regarded as reflecting synaptic activity of cortical neurons (Makeig et al., 

1996; Jung et al., 1998). 

In this study, we attempted to completely separate the twin problems of source 

identification and source localization by using a generally applicable ICA. Thus, the artifacts 

including the eye-movement (EOG), eye-blinking, heart-beating (EKG), muscle-movement 

(EMG), and line noises can be successfully separated from EEG activities. The ICA is a 

statistical “latent variables” model with generative form: 

  (1) )t()t( sAx =

where A is a linear transform called a mixing matrix and the  are statistically mutually 

independent. The ICA model describes how the observed data are generated by a process of 

mixing the components  . The independent components  (often abbreviated as ICs) are 

latent variables, meaning that they cannot be directly observed. Also the mixing matrix A is 

assumed to be unknown. All we observed are the random variables , and we must estimate 

is

is is

ix
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both the mixing matrix and the IC’s  using the . is ix

    Therefore, given time series of the observed data [ ]T
N )t(x)t(x)t(x)t( L21=x  in 

N-dimension, ICA will find a linear mapping W such that the unmixed signals u(t) are 

statically independent. 

 . (2) )t()t( xWu =

Supposed the probability density function of the observations x can be expressed as: 

 )(p)det()(p uWx = , (3) 

the learning algorithm can be derived using the maximum likelihood formulation with the 

log-likelihood function derived as: 
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Thus, an effective learning algorithm using natural gradient to maximize the log-likelihood 
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and  rescales the gradient, simplifies the learning rule and speeds the convergence 

considerably. It is difficult to know a priori the parametric density function , which 

plays an essential role in the learning process. If we choose to approximate the estimated 

probability density function with an Edgeworth expansion or Gram-Charlier expansion for 

generalizing the learning rule to sources with either sub- or super-Gaussian distributions, the 

WW T

)(p u
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nonlinearity )( uϕ  can be derived as: 
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Since there is no general definition for sub- and super-Gaussian sources, we choose 

( )1) (-1,1) (1,2
1 NN)(p +=u  and  for sub- and super-Gaussian, 

respectively, where 

)(hsecN)(p uu 2(0,1)=

( )2σμ ,N  is a normal distribution. The learning rules differ in the sign 

before the tanh function and can be determined using a switching criterion as: 
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represents the elements of N-dimensional diagonal matrix K. After ICA training, we can 

obtain N ICA components u(t) decomposed from the measured N-channel EEG data x(t). In 

this study, N=30, thus we obtain 30 components from 30 channel signals. 
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Fig. 2-15 shows an example of the scalp topographies of ICA weighting matrix W 

corresponding to each ICA component by projecting each wi,j onto the surface of the scalp, 

which provides spatial information about the contribution of each ICA component (brain 
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source) to the EEG channels, e.g., eye activity was projected mainly to frontal sites, and the 

drowsiness-related potential is on the parietal lobe and occipital lobe, etc. We can observe that 

most artifacts and channel noises included in EEG recordings are effectively separated into 

independent components 1 and 7 as shown in Fig. 2-15 and independent components 2 and 10 

may be considered as effective “sources” related to drowsiness in the VR-based driving 

experiment. 

 
Figure 2-15: Scalp topography of ICA decomposition. 

 

2.5.2.2. Time frequency analysis and Event Related Spectral Perturbations 

ocessing flow was shown in Fig. 2-16. The time sequence of EEG channel data or 

ICA activations were subject to Fast Four

 

(ERSPs) 

The pr

ier Transform (FFT) with overlapped moving 

windows (256 points). Spectra prior to deviation onset were considered as spectral baseline. 

The mean spectral baselines were converted into dB power and subtracted from spectral 

power after the deviation onset so that we could visualize spectral ‘perturbation’ from the 
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baseline. To reduce random error, spectra in each epoch were smoothed by 3-windows 

moving-average. The procedure was applied to all the epochs, and their results were then 

averaged to yield the ERSP image. 

The ERSP image mainly showed spectral differences after event, since the baseline 

spec

.03, here we use 0.01) on ERSP, 

only

tra prior to event onset had been removed. For instance, the bottom of Figure 2-16 

showed that only little or no changes in high frequency band (the lower position the higher 

frequency) but very significant changes in low frequency band after event. This allowed us to 

visualize spectral power changes related to the deviations.  

After performing bootstrap analysis (usually 0.01 or 0

 statistically significant (p<0.01) spectral changes showed in the ERSP images. 

Non-significant time/frequency points were masked (replaced with zero). Any perturbations in 

frequency domain became relatively prominent.  
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Figure 2-16: The flow chart of ERSP analysis. 

2.5.3. Clustering  

 ICs were first selected by observations and large reduced the number of components into 

around half by rejecting the noisy components (Fig. 2-17). Then, the selected ICs were first 

classified by the kmeans algorithm into around 10 clusters in terms of the scalp map gradients. 

These 10 clusters were then grouped into 4 significant clusters by manually removing the 

non-significant clusters. For guaranteeing these 4 clusters were with the same physiological 

functionality, we applied the kmeans algorithm again on each of 4 significant clusters based 

on their power spectral baselines of the components. Finally, components in each IC cluster 

would have consistent anatomic and functional features (Fig. 2-18). 
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Figure 2-17: Component selection preceding clustering.  

 

 
Figure 2-18: The scalp maps for the occipital independent component (IC) cluster. 

Upper left: the group averaged occipital IC 
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2.5.4. Statistics 

 Data were expressed as mean ± SEM unless stated otherwise. (a) To assess the effect of 

kinesthetic stimulation on distributions of the response time, we used the two sample 

Kolmogorov-Smirnov tests (K-S test, Matlab statistical toolbox, Mathworks). (c) To compare 

the baseline alpha power for the fast and slow epochs in two different kinesthetic stimulus 

conditions, we used the one-way ANOVA and the paired t-test (ttest2, Matlab statistical 

toolbox, Mathworks). (d) To estimate the significant onset of the alpha suppression, we 

analyzed the time course of the alpha power as the follows: Changes in alpha power as a 

function of time was computed by selecting and averaging the amplitude of the ERSP with the 

frequency from7 to 12 Hz at the occipital component. The significance of the alpha 

suppression from power spectral baselines was assessed by the statistical bootstrapping 

(EEGLAB 4.3). The significant onset of the alpha suppression was estimated by the 

intersection of the time-varying alpha power and the significant level of alpha suppression. 

All statistical comparisons in this study, a significant level was set at p <0.05.  
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3. Results 

 We collected and analyzed 52 driving experiments from 10 subjects, as listed in table 3-1. 

Each subject completed 4 experiments and each experiment included 1 sessions. First, we 

compared and presented the influence of kinesthetic stimulation on the behavioral 

performance. Second, we defined the two different cognitive statuses (fast and slow) 

according to the distribution of subjects’ response time. Third, we characterized changes of 

dynamic brain activities from the fast to the slow responses on aspects of the independent 

component (IC) clusters, the base line power spectrum and the event-related spectral 

perturbations (ERSPs) under different kinesthetic conditions (motion and motionless). The 

following paragraphs showed detailed results.  

Table 3-1: Subject list 

Platform 

mode 

motion motionless 

Subject 1 06/10/20 07/01/05 07/03/12         06/10/28 06/11/21   

Subject 2 06/10/27 07/01/15 07/01/24         06/11/10 07/01/19 07/01/31  07/03/22 

Subject 3 06/11/22 06/12/07 07/01/04 07/01/16 06/11/30 06/12/21   

Subject 4 06/12/04 06/12/20 06/12/27  06/12/13 07/01/29     

Subject 5 06/12/18 06/12/26 07/01/12         07/01/02 07/01/17   

Subject 6 06/12/19 06/12/29 07/01/16 07/01/31 07/01/24 07/02/07   

Subject 7 06/12/20 07/01/03          06/12/25 07/01/17     

Subject 8 07/01/26 07/02/02 07/02/06         07/02/05 07/02/08   

Subject 9 07/01/26 07/02/09                 07/02/05 07/03/25   

Subject 

10 

07/02/09 07/03/13 07/03/08         07/03/07 07/03/21   
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3.1. Behavioral performance 

 All subjects’ response time were ranged from 600 ms to 1500 ms (Fig. 3-1). No clear and 

statistically significant differences displayed on the cumulative percentage plots and the 

distribution of response time between the motion and motionless conditions in each subject 

(Fig. 3-1). Ten subjects’ response time histogram of motionless and motion sessions were 

shown in Fig. 3-2. All subjects exhibited fast (shorter response time) and slow (longer 

response time) performance period and their distribution did not showed statistically 

significant differences between the motion and motionless sessions (Fig. 3-3). The above 

results suggested that the kinesthetic stimulus had no effects on the global and local 

distribution of behavioral performance. The Fig. 3-4 and 3-5 showed ten subjects’ response 

time histograms of fast and slow epochs in the motion and motionless sessions. 

Figure 3-1: The cumulative percentage plots of the response time from ten subjects. 
(A-J): motionless groups (dash line); motion groups (solid line). Note, no 
statistically significant differences between the motion and motionless groups.  
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Figure 3-2: The same data as in the Fig. 3-1 but displayed as the response time 
histograms. The motionless groups (left column) and the motion groups (right column). 
Note no subjects showed apparently differences in distributions of the response 
histogram between the motion and motionless sessions.  
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Figure 3-3: The cumulative percentage plots (A) of the response time and their 
corresponded response histograms (B-E) of the subject 5. Trials were equally divided 
into three parts according to the response time (0.6 -1.5 sec). Trials with response 
time from 0.6 to 0.9 sec were selected as the fast groups (a) and trials with response 
time from 1.2 to 1.5 sec were as the slow groups (b). The response time histograms of 
fast and slow groups were showed in (B-E). (B, D): the motionless groups; (C, E): the 
motion groups. Note: no apparently effects of kinesthetic stimulus on the distribution 
of the response time histograms in the fast or slow groups.  

 

  
Figure 3-4: The response time histogram of fast and slow groups of 4 subjects. The 

motionless groups (left column); the motion groups (right column). 
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Figure 3-5: The response time histogram of fast and slow groups of 6 subjects. The 
motionless groups (left column); the motion groups (right column). 

 

 28



3.2. Independent Component (IC) clustering 

 Components were first selected and clustered by the correlation between the scalp map 

gradients and their power spectral baselines across a session and ten subjects. The grand mean 

scalp maps of a session (10 subjects) for four ICs were showed in Fig 3-6 to Fig 3-9. The 

occipital clustering was included ICs nearly from all sessions (10 sessions) and subjects and 

the central, left mu and right mu clustering were include ICs with the range from 5 to 8 of all 

sessions and subjects. The ICs in the same cluster were showed similar power spectral 

baselines and event-related spectral perturbations (ERSPs) changes. The Fig. 3-10 showed the 

grand mean power spectral baselines and the averaged scalp maps of the four IC clusters.     

 

Figure 3-6; The scalp maps for the occipital independent component (IC) cluster of 10 
motionless (Left columns) and 10 motion (right columns) sessions across 10 subjects. 
Upper panels: the group averaged occipital IC of the motionless and motion groups. 
Lower panels: scalp maps for the occipital IC of the motionless and motion groups 
from 10 subjects. 
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Figure 3-7: The scalp maps for the left Mu rhythm IC cluster of 8 motionless and 8 
motion sessions across 10 subjects. Panels as Fig. 3-6. 

 

 
Figure 3-8: The scalp maps for the right Mu rhythm IC cluster of 7 motionless and 6 
motion sessions across 10 subjects. Panels as Fig. 3-6. 

 

 
Figure 3-9: The scalp maps for the Central IC cluster of 5 motionless and 8 motion 
sessions across 10 subjects. Panels as Fig. 3-6.  
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Figure 3-10: showed the grand mean power spectral baselines and the averaged scalp 
maps of the four IC clusters. The occipital (A, E); central (B, F); left Mu (C, G) and 
right Mu (D, H); ICs. The mean (solid lines) power spectra.  

 

3.3. Tonic brain dynamics at a large time scale 

 The following paragraphs showed effects of kinesthetic stimulation on changes of power 

spectral baselines in four ICs at a large time scale within the individual subject and across ten 

subjects for fast and slow epochs. 

 

3.3.1. Within subjects phenomena 

 Fig. 3-11 showed the averaged power spectral baselines in the occipital component of the 

subject 5 for fast and slow epochs from the motionless and motion conditions. Under the 

motionless, the mean baseline power spectrum was statistically significant larger at the 

frequency from 4-12 Hz in the slow epochs than those in the fast epochs (Fig. 3-11). The 

similar changes on the tonic activity were also found in the motion condition. Comparing with 

the motionless, the difference nearly the alpha band between these two averaged power 

spectral baselines was larger when the motion platform was enabled. Similar differences on 

the tonic brain activities between the motionless and motion sessions were also demonstrated 

for ICs with similar component maps from other nine subjects as shown in Fig. 3-12 to 3-14. 
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Some subjects (as shown in Fig 3-12 to 3-14) showed similar increases nearly the beta band 

from fast to slow epochs in the motion and/or motionless conditions. 

Figure 3-11: Single subject’s results. Average power spectral baselines of two groups 
of epochs under motionless and motion conditions. He mean (solid lines) power 
spectra (± SEM: dashed lines) of the fast epochs (blue traces) and the slow epochs 
(black traces). Note the significant power increases (slow minus fast) at the alpha 
band in the occipital ICs. The power increase was larger in the motion sessions than 
that in the motionless session. 

 

 
Figure 3-12: The averaged baseline power spectra of 2 subjects. The fast epochs (blue 
traces) and the slow epochs (black traces).  

 32



Figure 3-13: The averaged baseline power spectra of 4 subjects. The fast epochs (blue 
traces) and the slow epochs (black traces). 
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Figure 3-14: The averaged baseline power spectra of 4 subjects. The fast epochs (blue 
traces) and the slow epochs (black traces). 
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Figure 3-15: The averaged baseline alpha power of ten subjects. Note no apparently 
differences between the motion and motionless sessions in the fast response condition. 
But, the significant power increases were showed in motion sessions for the slow 
responses. Hollow bars: the motionless sessions; shaded bars: the motion sessions.  

 

 For characterizing effects of the kinesthetic stimulation on detail changes of the alpha 

power from fast to slow epochs in each subject, the power at the alpha band were selected and 

averaged from the baseline power spectra, as shown in Fig. 3-15. The mean alpha power of 

the fast epochs between the motionless and motion sessions appeared comparable in each 

subject. The mean alpha power of individual subjects was significantly increased in slow 

epochs and further, such increase was over enhanced by the kinesthetic stimulation (Fig. 3-15). 

Values of ten subjects’ averaged baseline alpha power in the occipital ICs were shown in table 

3-2. 

 The above changes on the baseline power spectra at the alpha band were not found in the 

central, left mu or right mu ICs (Fig. 3-11). 
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3.3.2. Cross subject consistency 

 The grand mean of the power spectral baselines of four ICs for the fast and slow epochs 

in motion and motionless groups were shown in Fig. 3-16. Despite variations in EEG 

recordings across different sessions and subjects, grand mean baseline power spectra of 

occipital IC showed statistically significant increase at the alpha band (p<0.01 shown in figure 

3-17, p<0.01 shown in figure 3-18) in the slow epochs. Furthermore, the kinesthetic stimulus 

significantly increased the difference of the baseline alpha power between the fast and slow 

epochs (left bars vs. right bars, p<0.01, Figure 3-18). Such increased differences on baseline 

alpha power were only related to the over enhanced the tonic power at alpha band at the slow 

epochs (fast: hollow bar vs. shaded bar, p=0.8; slow: hollow bar vs. shaded bar, p<0.01). The 

summary of the averaged power spectral baseline at alpha band of the occipital IC were 

shown in table 3-3.   

 
Figure 3-16: The grand mean (±SEM) baseline power spectra of two groups of epochs 
for four ICs in motionless (Left column, n=10) and motion (right column, n=10) 
sessions. The occipital (A, E); central (B, F); right Mu (C, G) and left Mu (D, H); ICs. 
The mean (solid lines) power spectra (± SEM: dash lines) of the fast epochs (blue 
traces) and the slow epochs (black traces). Note compared with the other ICs, the 
significant power increases (slow minus fast) at the alpha band were only displayed in 
the occipital ICs. The power increase was larger in the motion sessions than that in the 
motionless session. Insets: the group averaged scalp maps.  
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The above changes on the baseline alpha power were only localized at the occipital IC. No 

apparently differences were found on the tonic power around 8-12 Hz between the fast and 

slow epochs in either motionless or motion groups (Fig.3-16). 

 
Figure 3-17: The effects of kinesthetic stimulus and cognitive status on the averaged 
baseline alpha power from ten subjects. Note the effects of kinesthetic stimulus 
boosted the increase of baseline alpha power in the slow epochs (**: p <0.01; ##: 
p<0.01).  

 

 

Figure 3-18: The kinesthetic stimulus significantly increased the difference of the 

baseline alpha power between the fast and slow epochs (**: p<0.01). 
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Table 3-2: The mean baseline alpha power for ten subjects 

 

 

 

Table 3-3: The averaged baseline alpha power from ten subjects 
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3.4. Event-Related Spectral Perturbations (ERSPs) 

 Effects of kinesthetic stimulation and changes of cognitive status on the phasic dynamics 

at a small time scale in four ICs (occipital, left mu and right mu and central components) were 

shown in the following paragraphs. 

 

3.4.1. The occipital component 

 Fig. 3-19 displayed ERSP images showing mean log power changes following car drifted 

in fast and slow epochs for an occipital IC of subject 5 in motion and motionless conditions. 

The mean ERSP for fast epochs (Fig. 3-19B and 3-19D) showed that mean power in the alpha 

band (near 10 Hz) suppressed following deviation onset (phasic changes). Comparing with 

the motion session, the phasic decrease followed the car drifted was weaker for the fast 

epochs in the motion session. For the epochs of fast performance in the motionless session, 

the suppressed alpha band was slightly increased around the response offset. 

 
Figure 3-19: The ERSP images of occipital component for fast (B, D) and slow (A, 
C) epochs in motionless and motion session of subject 5. Pink dashed lines: The 
deviation onset. Blue dashed lines: the mean of reaction time. The right column: the 
group averaged scalp maps of the occipital component for motionless (top) and the 
motion session (bottom). Color bar: power of ERSPs. Note the alpha power was 
suppressed briefly after the deviation onset and the latency for the alpha suppression 
was related to the response time. 
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 In slow epochs, the suppression in alpha power before the response onset was prolonged. 

Phasic changes in power around the beta band were smaller than in the alpha band. The 

latency of alpha suppression was correlated with reaction time. Furthermore, the response 

latency of the alpha suppression was further delayed in the motion session (Fig. 3-19). ERSP 

images of other nine subjects showed in Fig. 3-20 to 3-23. 

 

 
Figure 3-20: The ERSPs of the occipital component for fast (B, D) and slow (A, C) 
epochs in motionless (A, B) and motion (C, D) sessions of subject 1 and 2.  
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Figure 3-21: The ERSPs of the occipital component for fast (B, D) and slow (A, C) 
epochs in motionless (A, B) and motion (C, D) sessions of subject 3, 4, and 6.  
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Figure 3-22: The ERSPs of the occipital component for fast (B, D) and slow (A, C) 
epochs in motionless (A, B) and motion (C, D) sessions of subject 7, 8, and 9. 
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Figure 3-23: The ERSPs of the occipital components for fast (B, D) and slow (A, C) 
epochs in motionless (A, B) and motion (C, D) sessions of subject 10.  

 

 
Figure 3-24: The grand mean of ERSP images of occipital component for fast (B, D) 
and slow (A, C) epochs in motionless and motion sessions across ten subjects. 
Panels as Fig.3-19. 

 

 Fig. 3-24 showed the grand mean of ERSP images of occipital component for fast and 

slow epochs in motionless and motion sessions from ten subjects. Power spectra in the 
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occipital cluster showed slightly broader phasic changes after the deviation onset, with peaks 

near 10 Hz in slow epochs (Fig. 3-24A and Fig. 3-24C). Fig. 3-25 showed, the grand mean 

percentage of the 5 sec period after the deviation onset exhibiting significant (p<0.01) phasic 

changes for each frequency from ten subjects. This prevalence measurement can be 

interpreted as the probability of a significant decrease in post-response power, across subjects. 

Phasic changes in fast epochs were less frequent (occupying on average around 40 % of the 

post-deviation periods) than in slow epochs (on average ~60 %). In motionless session, the 

changes at the alpha band power displayed a slight downward frequency shift in the alpha 

peak (Fig. 3-25A, middle panel). With the kinesthetic stimulation, the frequency range of 

phasic increases in slow epochs was wider than that in the fast epochs (25 Hz vs. 20 Hz). 

 

Figure 3-25: Percentage of the 0-5 sec post-deviation epochs with significant (p<0.01) phasic 
(post- minus pre-deviation) power decreases, averaged across ten subjects’ occipital ICs in 
motionless (A) and motion session (B). Blue traces: fast epochs. Black traces: slow epochs. 
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3.4.2. The motor component  

 The mean ERSPs for fast epochs (Fig. 3-26B and Fig. 3-26D) showed phasically 

decreased activity in the (8-12 Hz) alpha and (15-25 Hz) beta band power. The ERSP images 

for slow epochs (Fig. 3-26A and Fig. 3-26C) showed a prolonged decrease in EEG activity 

below the 12 Hz after the deviation onsets. The onset of the beta suppression showed a 

slightly earlier than the onset of the alpha band. For epochs with slow performance, the 

latency of the alpha suppression was clearly shorter in the motion session than that in the 

motionless session. Fig. 3-27 and 3-28 showed the ERSP images of right mu components in 

individual subjects.  

 

Figure 3-26: The ERSP images of right mu component for fast (B, D) and slow (A, C) 
epochs in motionless and motion session of subject 5. Panels as Fig. 3-19. Note: the 
onset for the alpha suppression for the slow epochs was earlier in the motion session 
than that in the motionless session. 
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Figure 3-27: The ERSP images of right mu component for fast (B, D) and slow (A, 
C) epochs in motionless and motion session of subject 1, 3, and 6. Panels as Fig. 
3-19.  
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Figure 3-28: The ERSP images of right mu component for fast (B, D) and slow (A, 
C) epochs in motionless and motion session of subject 7 and 9. Panels as Fig. 3-19.  
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Similar spectra changes at the alpha and beta band following the deviation onset were 

demonstrated in the ERSPs for motor ICs (left and right mu components) averaged across ten 

subjects showed in Fig. 3-29. In the fast epochs, the phasic activity changes were significantly 

weaker in the right mu component when the motion platform was disabled. 

 

 
Figure 3-29: The grand mean of ERSP images of left and right mu component for 
fast (B, D) and slow (A, C) epochs in motionless and motion session from ten 
subjects. Panels as Fig. 3-19. 
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No apparently difference in mean prevalence of the power decrease between the fast and slow 

epochs (fast: ~40- 50%; slow: ~40-50%). In slow epochs, changes at frequencies around 5Hz 

were more frequent (occupying on average about 45 % of the post-response periods) than in 

fast epochs (on average lower than 10 %). 

Figure 3-30: Percentage of the 0-5 sec post-deviation epochs with significant (p<0.01) 
phasic (post- minus pre-deviation) power decreases, averaged across ten subjects’ left 
(n=6) and right (n=8) mu components in motionless (A, C) and motion session (B, D). 
Blue traces: fast epochs. Black traces: slow epochs. 
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3.4.3. The central component  

 Fig. 3-31 showed the ERSPs of the central ICs of subject 5. For the central ICs, there 

were no apparently phasic activity changes around the alpha and bands. For the fast epochs, 

spectra below 10 Hz showed a transient and strong power increases following the deviation 

onset in the motionless session. However, a significant and sustained power decreases at 

frequencies below 10 Hz were observed in the slow epochs during the motion session.   

 

 
Figure 3-31: The ERSP images of central IC for fast (B, D) and slow (A, C) epochs 
in motionless and motion session of subject 5. Panels as Fig. 3-19. Note: the clear 
power increases below the 10 Hz showed briefly after the deviation onset in the fast 
epochs when the motion platform was disabled. A sustained power decreased around 
the response onset showed for the slow epochs when the motion platform was 
enabled. 
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 Fig. 3-32 showed the grand mean of ERSPs of central components averaged across ten 

subjects. For the large variations in individual ERSP across sessions and subjects, the grand 

mean of ERSP only showed slightly increased power at frequencies below (Fig. 3-32) or 

around (Fig. 3-32A)10Hz after the car drifted. The lightly power decreases around the alpha 

band were also exhibited in the grand mean of the response-locked ERSPs. 

 
Figure 3-32: The grand mean of ERSPs of the central IC for fast (B, D) and slow (A, 
C) epochs in motionless and motion sessions from ten subjects. Panels as Fig. 3-18. 

 

3.5. The onset of the alpha suppression 

 Fig. 3-33 showed the spectrotemporal traces of the alpha band power at the occipital 

components. In the slow epochs, the onset of the alpha suppression was significantly delayed 

than in the fast epochs. The latency of the alpha suppression was further delayed during the 

motion sessions (Fig. 3-33B). For fast epochs, there were no significant differences on the 

onset of alpha decreases between the motionless and motion sessions. In the mu ICs, changes 

of response performance had an effect on decrease of alpha band power by delaying its onset. 

However, comparing with the occipital components, effects of kinesthetic stimulation on the 
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onset of the alpha suppression were totally different in the mu components. Specifically, the 

onset of the alpha decrease in the motor components was significantly shortened both in fast 

and slow epochs (left mu: 3-34A vs. 3-34B; right mu: 3-34C vs. 3-34D, fig. 3-34) when the 

motion platform was enabled.  

 
Figure 3-33: Averaged time courses of the alpha band for fast (black traces) and 
slow (blue traces) epochs in motionless (A) and motion (B) sessions across ten 
subjects. Dash lines: the significant values (p<0.01) of fast (black traces) and slow 
(blue traces) epochs by bootstrap. Arrows indicate the significant onset of the alpha 
suppression for the fast and slow epochs. Insets: the group averaged scalp maps of 
the occipital components and the ICA weightings. Note the mean onset of alpha 
decrease was delayed in the slow epochs and the kinesthetic stimulation further 
delayed the latency of the alpha suppression.  
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Figure 3-34: Averaged time courses of the alpha band at the mu components (Left 
column: left mu; right column: right mu) in fast (black traces) and slow (blue traces) 
epochs during motionless (A) and motion (B) sessions across ten subjects.  Panels 
as Fig. 3-33. Note the kinesthetic stimulation shortened the latency of the alpha 
suppression for both fast and slow epochs. (**: p<0.01) 

 

Figure 3-35: Effects of kinesthetic stimulation and changes of response performance 
on the mean latency of alpha suppressions at the occipital (A) and mu ICs (B: left; C: 
right) in both fast and slow epochs (**: p <0.01).  
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Table 3-4:  The averaged onset of the alpha suppression in the occipital components. 

 
Table 3-5: The averaged onset of the alpha suppression in the right mu components. 

 
Table 3-6: The averaged onset of the alpha suppression in the left mu components 
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4. Discussion 

 In this study, we demonstrated that the level of driver’s drowsiness can be affected by 

the kinesthetic stimuli based on the 3 dimensional surrounded virtual reality scene combined 

with the six degree motion platform, the independent component analysis (ICA) and 

time-spectral analysis to explore the fluctuations in spectral dynamics of maximally 

independent EEG activities from alter to drowsy with or without the enabling of the motion 

platform.   

4.1. Effects of drowsiness on long-term tonic variations  

 For both the motion and motionless sessions, the tonic increases in power spectral 

baselines from fast to slow epochs in the occipital components were consistently observed 

across subjects. Similar changes on the tonic brain dynamics from low- to high-error trials 

have been observed in a compensatory simulated driving task (Huang et al., 2005). In that 

study, the tonic alpha power also increased at the occipital components during the period of 

poor behavioral performance was observed in the IC clusters originating in the lateral 

occipital cortex. During drowsy, as indexed by the behavioral performance drop-offs, tonic 

scalp EEG power has been found to be higher on average than during alert or awake although 

most studies also observed tonic increases at the theta power (Saroj and Ashley, 2002; 

Campagne et al., 2004). Another experiment in our laboratory characterized details changes of 

EEG dynamics from alert, light drowsiness to deep drowsiness under motionless condition. 

Results suggested that the alpha activities increased either in a monotonic or non-monotonic 

pattern while the theta band power increased linearly and slowly from the drowsy onset to the 

deep drowsiness. The strength of alpha power was larger than theta waves during the period 

of light drowsy whereas the power of theta band was significant larger than the alpha band 

power in the period of deep drowsiness. In this study, the tonic increases of baseline band 

power for the slow epochs were not only significant larger at alpha band, but also the theta- 

and beta-band power were significantly increased when the motional platform was enabled. 
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Therefore, results of EEG dynamics suggested that the drowsiness level in motion session was 

deeper than that in the motionless session.  

 

4.2. Effects of drowsiness on phasic responses  

 Results of phasic responses strengthened the finding on the tonic activities that the 

drowsiness level was deeper in the motion sessions than in the motionless sessions which 

reflected on the increasing of mean prevalence and the delaying of the phasic alpha 

suppression. The phasic decreases of alpha band power briefly after the deviation onsets 

observed in the fast and slow epochs may relate to the activation of the neuronal activities 

(Goldman et al., 2002). There is agreement that the de-synchronization brain activity 

represents an activation of certain level of cortical circuitry (Steriade et al., 1991), therewith 

the event related de-synchronization (ERD) can be interpreted as the electrophysiological 

correlated with an increased cortical excitability or an activated cortical area. The alpha band 

activities showed a widespread de-synchronization in perceptual, judgment and memory tasks 

(Pfurtscheller and Klimesch, 1992; Van Winsumet al., 1984). ERD of the upper alpha rhythm 

(typically 10–12 Hz) occurs over occipital areas and is generally interpreted as being a shift 

from an idling cortical state to an active cortical state (Pfurtscheller, 1992; 1994; Pfurtscheller 

et al., 1994; Pfurtscheller et al., 1996). Similar event-related phasic alpha suppression 

following the deviation onset were also displayed for the epochs of relative high-error epochs 

(60%-100%) in the compensatory simulated driving task (Huang et al., 2005). For the alert 

epochs in that study, there were no significant variations in the alpha band power after the car 

drifting in the lower error epochs (0-40%). In this study, the phasic decreases were displayed 

in both fast, which corresponded to the lower error epochs in the compensatory simulated 

deriving task, and slow trials. We speculated that the discrepancies on the alter epochs 

between these two studies may relate to the differences on task complexity. Specifically, 

subjects in the compensatory simulated driving task held down an arrow key to compensate 
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the deviation (Hunag et al., 2005) while subjects in this study needed to maneuver the steering 

wheel, which demanded more attention, for responding to the car drifting. This interpretation 

is consistent to previous studies that suggested the increase of task complexity or of attention 

demand results in increased the magnitude of alpha de-synchronization (Boiten et al, 1992; 

Dujardin et al., 1993). The duration and onset of phasic alpha suppression were either 

prolonged or delayed with the degradation of response performance. Similar phenomena also 

displayed in the compensatory simulated task (Huang et al., 2005). Such prolonged and 

delayed ERD for slow responses may due to the demands of longer time for integrating brain 

circuitries or of more attentional brain sources in the drowsiness. This could be partially 

supported by the recent studies showing that inter-indivisual differences in human intelligence 

are reflected in the amplitude of ERD.  

 

4.3. Effects of kinesthetic stimulation on the drowsiness level 

 In comparison with static driving sessions, subjects’ drowsiness level was deeper in the 

sessions with the kinesthetic stimulation reflected on the further increased tonic changes of 

power spectral baselines as well as the delayed onset and prolonged duration of phasic alpha 

suppressions although their behavioral performances in these two different sessions were 

similar. We suggested that the information simultaneously coming from multisensory organs 

could slow down the reduction of the ability for detecting deviations from alertness to 

drowsiness. Our previous study on investigating effects of kinesthetic stimulation on EEG 

dynamics in VR simulated driving under alertness has revealed that the response time in 

dynamic driving is around 50 ms faster than in static driving. The alpha suppression in the 

motor clusters also occurs 200 ms earlier in motion-deviation. Similar results were also 

observed in present study. Specifically, for the fast epochs, the averaged onset of alpha 

suppression at the motor components was displayed around 240 ms earlier in the motion 

session. Although the sensitivity for detecting the deviation was deteriorated with the 
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reduction of vigilance revealed by delaying the onset of alpha suppression from around 700 

ms to 990 ms, the kinesthetic stimulation still had great advanced on the EEG responses to car 

drifting. Comparing to the motionless sessions, the averaged onset of the alpha suppression 

still occurred 240 ms earlier when the motion platform was enabled. In the static driving, 

subjects could only rely on the visual information to detect the car drifting, but the useful 

visual filed has been demonstrated that it can be altered with the degradation of vigilances 

(Rogé et al., 2002). Whereas, subjects in the dynamic driving could still maintain their 

driving performance on certain level by the assistance of the kinesthesia even they were in a 

deeper drowsy state.  

 

4.4. The variation of EEG dynamics is potential as a good index for 

detecting driver’s drowsiness in real driving 

 Behavioral performance has been widely used for evaluating the drowsiness level (Philip 

et al., 1999; Roge et al., 2004). Our present results showed that the driver’s drowsiness level 

could be under estimated in the real driving by assessing changes of behavioral performances. 

In contrast, changes on EEG dynamics revealed more sensitive for detecting the deterioration 

of the vigilance. This finding is consistent with previous studies that suggested the use of 

EEG signals is potentially the best for detecting vigilance while driving (Torsvall and 

Akerstedt, 1987; Keckluno and Akersteot, 1993; Eoh et al., 2005; Otmani et al., 2005).  

 

 

  

 58



5. Conclusion 

 We demonstrated effects of kinesthetic stimulation on brain activities from alert to mild 

drowsiness. This study was conducted by a three dimensional surrounded virtual reality scene 

combined with the six degree motion platform. We used the independent component analysis 

(ICA) and spectro-temporal analysis to explore the fluctuations in EEG dynamics from alert 

to drowsiness, which indexed by the behavioral responses. For the occipital component, the 

power spectral baselines were increased near the alpha band from alert to drowsy. With 

detritions of the alertness, onsets of alpha suppressions were delayed and the mean prevalence 

of alpha decreases was also prolonged. With the same behavioral performances, changes on 

EEG dynamics from alert to drowsiness were further enhanced when the motion platform was 

enabled. This indicated that the drowsiness level was deepened by the assistance of the 

kinesthetic stimulation and such differences in the drowsiness level can’t be differentiated 

according to the behavioral performances. Results also showed that the kinesthesia was 

reduced in the mild drowsy revealed by delaying onsets of event-related de-synchronization in 

the motor components. However, to what extent the sensitivity of the kinesthesia would be 

reduced in the deep drowsy still need to be further characterized in the future study. Results of 

this study first demonstrated the importance of the kinesthetic stimulation in the simulated 

driving studies. Furthermore, this study also first revealed that the EEG dynamics is more 

sensitive than the behavioral performance for correctly detecting driver’s drowsiness level.  
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