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Abstract

As the high growth of population of vehicles, the traffic accidents are becoming
more and more serious in recent years. In Taiwan, more than two thousand and five
hundred people are died in traffic accidents every year. For each of last four yours, the
number of traffic accidents is at least eighty thousand according the statistics of the
Ministry of Transportation and Communications (MOTC, R.O.C.). In this situation, a
lot of researches about the intelligent transportation system (ITS) have been paid more
and more attention to the researches of related fields. Most occurrence of the car
accidents results from the distraction, inattention for the adjacent cars, and driving
fatigue of the driver. As a result, to avoid the driver being in danger as much as
possible, an intelligent vision-based system focused on image contents of lateral-view
camera setting under the rear-view mirror on vehicle is developed about lane
detection and lane departure warning in this study.

In this thesis of lane detection, a fish-eye camera is located on the vicinity of the
rear-view mirror to increase the range of lateral-view angle. Furthermore, we make
use of the invariant of image for car body fixed in consecutive image sequences to

extract the ROI (region of interest) containing the road surface without realizing the
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intrinsic and extrinsic parameters of camera in advance. To make this algorithm
suitable for various light conditions all day, the information of image in spatial and
temporal domain must be simultaneously processed so that the lane boundary keeps
distinct whether people have seen in the day or night environment. On the other hand,
a piece-wise line searching model proposed in this paper is to connect the trajectory of
lane and to reduce the computation load and to overcome the fish-eye lens distortion.

In the thesis of lane departure warning, the instantaneous information of the
lateral position from the result of lane detection and the TLC (time to lane crossing)
can be regarded as the warning triggers for the alarms of lane departure. Then, a
stable-driving region with real-time update mechanism is constructed to simulate the
straight-road driving habit of different drivers which get used to keep approximately
the same distance between the vehicle and lane markers. Eventually, by cooperated
with the BRC (Brain Research Center, NCTU), we utilize the statistics about
drowsiness estimation of the drivers in Virtual-Reality (VR) dynamic driving
simulator to implement in the video contents for realistic driving. Therefore, this
mechanism can be not only estimated the external factors such as departure of lane
boundary but the internal ones such as the conscious analysis of the driver with higher
reliability and safety.

The lane detection and departure warning system proposed in this paper has been
successfully evaluated on the PC platform of 1.83-GHz CPU with the average
frame-rate is up to 15fps. Moreover, this algorithm can be maintained stable results

whether in the day or night environment of the realistic driving on highway.
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Chapter 1

Introduction

1.1 Motivation

In recent years, an important social and economic problem is traffic safety. In
1999, about 800,000 people died globally in road related accidents, causing losses of
around US$ 518 billion [1]. According to the United Nations, there were more than
23,000 vehicle drivers died in traffic accidents in 2004. The related factors are as
listed in Table 1.1[2]. In Taiwan, the number of traffic accidents is increasing in the
last years as shown in Tablel.2 [3]. In general, a considerable fraction of these
accidents is due to driver fatigue, inattentive driving and driving without keeping
proper distance. In many cases, the driver falls asleep, making the vehicle to leave its

designated lane and possibly causing an accident.

Table 1 : Related factors for drivers involved in fatal crashes.
Factors Percent
Failure to keep in proper lane or running off road 24.0%
Driving too fast for conditions or in excess of posted speed limit 20.3%
Under the influence of alcohol, drugs, or medication 12.2%
Inattentive (talking, eating, etc.)/ Drowsy, asleep, fatigued, or ill 9.1%
Failure to yield right of way 7.9%
Operating vehicle in erratic, reckless, careless, or negligent manner 6.7%
Others 19.8%

Table 2 : Road traffic accidents and violations in Taiwan from 2001 to 2005.

Year 2001 2002 2003 2004 2005
Numbers of Event | 64,264 86,259 120,223 137,221 155,814
Fatalities 3,344 2,861 2,718 2,634 2,894
Injuries 80,612 109,594 156,303 179,108 203,087




In order to improve the driving safety, a lot of researches about the intelligent
transportation systems (ITS) have been proposed in recent years. Advanced vehicle
control and safety system (AVCSS), one part of the ITS, contributes to prevent the
driver in danger, and efficiently controls the traffic flow combining the distinct fields
of technology, such as sensor, computer, and electrical engineering. Within this paper,
we focus on concerning the applications of the smart vehicles. In general, it is so
necessary to acquire the information about the lane tendency while driving on the
way.

Due to the inattentive driving, the driver may deviate from the correct lane
orientation, which induces the traffic accidents. As a result, the lane detection system
plays a significant role about improving the driver’s safety in moving vehicle. For
cost and performance consideration, a camera is chosen as our sensing device so that
it can provide more abundant information by consecutive image sequences.
Vision-based system with cameras can capture and process the real-time images of
road. Many approaches have been proposed about the lane detection algorithm by
developing the image processing. More explanation of their techniques will be

introduced in the next section.

1.2 Background

1.2.1 Previous Works of Lane Detection

The ARGO system [4] proposed at the University in Parma, Italy is aimed to
develop the autonomous vehicle that could drive on highways and rural roads. In the
GOLD system [5], the IPM (inverse perspective mapping) architecture was

constructed to remove the perspective effect by mapping the road image into the top
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view. Moreover, this algorithm can detect the lane markings depending on the feature
of the contrast and lane-width with the road plane, which may fail when the
assumption of a flat road is not valid. Based on the GOLD system, Jiang et al. [6]
model the lane as two straight lines to estimate the inclined angel on the degree of
non-flat roads. However, the road shape is not usually straight in realistic conditions.
Based on the lane geometry, some geometric model-based lane detection techniques
such as polynomials and splines can fit the lane trajectory more than the model of
straight lines. Y. Wang and E. K. Teoh [7] [8] have proposed the deformable road
models to track the lane curvature without any camera’s parameters. But The
searching speed of those correlated methods is slower while finding the new
control-point in each frame. C. R. Jung [9] has developed the parabolic lane boundary
model to approximate the lane boundaries by the combination of the edge function.
This technique only demands the low computational power but has difficulty in
porting on other platform except for the PC due to the fitting process. To extract the
lane shape in the nighttime, L. C. Fu [10] used the vision-based driver assistance
system to enhance the driver’s safety at night with the preprocessing of camera

calibration.

1.2.2 Previous Works of Lane Departure Warning

and Driver Analysis

The lane departure warning system issues an alarm to arouse driver’s attention
and reduce the seriousness of an accident. In general, some algorithms have been
developed to predict when the driver is departing the road by the lateral offset or TLC

(time to lane crossing). Risack et. al [11] used both vision and radar-like information



to estimate TLC. Kim and Oh [12] proposed a driver adaptive LDW system based on
fuzzy techniques. Volkswagen researchers [13] used several sensors (radar, vision and
laser) to detect lane shifts. Enkelmann [14] has simultaneously considered the gear
angle, lane width, and lateral velocity of the car to clearly determine when a departure
warning should be given without the intentional driving behavior.

The trigger of the LDW alarm must not only prepare adequate time in advance
for the driver to respond to a truly dangerous situation but reduce the number of
nuisance alarms caused by the driving habits of different individuals. Batavia [15] has
been proposed a driver-adaptive system with a memory based learning framework for
driver analysis. Based on the negative behavior adaptation of the human driver, the
dynamic assistant policy has been combined with the LDW system by studying in
the fixed-based driving simulator to adapt various driving style and raise the safety

[16].

1.3 Objective

To avoid the driver being in the presence of the hazards due to the distracted
mentality and expand his/her field of lateral view while driving at high speed, the
vision-based lane detection and departure warning system are developed by mounting
the fish-eye camera under the rear-view mirror of the vehicle. Without the intrinsic or
extrinsic information of the camera in advance such as some previous measures for
lane-boundary extraction, the algorithm is developed to automatically search for the
ROI (region of interest) on the road plane only by the information of image sequences.
The disadvantage of the image sensors is sensitive to various illumination factors even

in the nighttime. However, the chances of traffic accidents are easily raised in



foregoing situation because of the driver’s unclear sight. The objective of our
proposed system is to work normally whether the light conditions change a lot or not.
Another important problem is that the vehicle is departing from its own lane
without keeping the proper lateral velocity along with the risk of the driver’s life. To
prevent the vehicle from being too close to or far from the lane, the lateral position
and velocity of the lane boundary are the key factors to predict when the departing
action occurs as soon as possible. Furthermore, by the related information of the
lateral view computed by the above mechanism, this system can be incorporated into
the driver analysis method to avoid the frequently incautious behavior of the driver,

especially for the straight-road driving on the highway:.

1.4 QOrganization

This thesis is organized as follows. In Chapter 2, the camera configuration and
the vehicle blind-spot is introduced along with the preliminary knowledge of the
vision-based system. Chapter 3 describes our algorithm of lane detection. The
approaches about lane departure warning and drowsiness prediction of the driver are
proposed in Chapter 4. The experimental results are exhibited in Chapter 5. Finally,

the conclusions of our system are presented in Chapter 6.



Chapter 2

Preliminary

In this chapter, the preliminary knowledge of the whole system will be
introduced. In the beginning, the difference of the visual characteristics between the
frontal and lateral place mounted on the camera is discussed. Then, the vehicle’s blind
spot based on the intrinsic and extrinsic limitation of the human and rearview mirror
will be described. The related principles of the lane detection and departure warning

system are presented finally.

2.1 Camera Configuration

In this section, the geometric relationship and transformation between the image
coordinate and the realistic vehicle coordinate are explained in detail. Furthermore,

the applications about the frontal and lateral view of the camera are introduced here.

2.1.1 Perspective Geometry

To extract the image information of road plane on the side of the vehicle, a single
camera is mounted near the rearview mirror. In the vision-based configuration, each
objects captured by the image sensor in the camera coordinate system can be
projected onto the image pane in the image coordinate system. This geometric
relationship can be described as the perspective projection, and the camera
configuration for the proposed system is shown in Figure 2-1 with the height of the

camera H and the tilt angle « .



Fig. 2-1 : Camera configuration.

Before computing the transformation between the image coordinate and the
vehicle coordinate, some assumption must be established. At first, the condition in
this section is only considered that the ground plane is almost flat. In general, we
ignore the specific environment when the vehicle drives on the mountain road or other
rugged surface. Second, the optical distortion of the camera lens can not be
considered in this deduced process of the geometric transformation.

The spatial relationship between the vehicle coordinate and image coordinate
system are shown in Figure 2-2. For practicality, the pan and tilt angle of the camera
must be taken into account for this systematic configuration. The tilt angle « is an
included angle from road plane to the optical axis. On the other hand, the pan angle
S is an included angle from the moving direction of the vehicle (Y-axis) to the
projection of the optical axis onto the road plane. In general, the camera can be
modeled as the pin-hole model. The distance between the optical center (OC) and the
central point of the image plane (U,,V,) determines the focal length. Moreover,
according to the known camera height H and the information of pan-tilt angle, we can
deduce where the object contained by the road surface are projected onto the image

plane from the perspective geometry.
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Fig. 2-2 : Vehicle and image coordinate systems.

For further analysis, we discuss the spatial relation between the vehicle
coordinate and the image coordinate system through two different points of view.
Figure 2-3 and Figure 2-4 are the side view and bird’s eye view of the geometric chart

between the vehicle coordinate and the image coordinate system.
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Fig. 2-3 : Side view of the geometric relation between the vehicle coordinate and the

image coordinate system.



Fig. 2-4 : Bird’s eye view of the geometric relation between the vehicle coordinate

and the image coordinate system.

Before explaining the formulation of the transformation between the two
coordinate systems, some annotation must be introduced about Fig. 2-3 and Fig. 2-4
in advance.

f: Focal length of the camera
f, ~ f, : The scaling factors of the image plane in the horizontal and vertical axis
H: The distance from the road plane to the camera
a : Tilt angle of the camera
£ : Pan angle of the camera

(u,Vv): The corresponding point in the image plane is projected from the road surface

(U,,V,) : The central point of the image plane

In Fig. 2-3, ACPR and ACP'R' are similar triangles. With this property, the

spatial relation between two coordinate systems can be derived as follows.
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Assume S, = T is the camera constant of the image plane in the vertical axis
\
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=Yy

(2-1)

Similar to the above process, the deducing details about Fig. 2-4 will be

described in the following.
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j(u—uo)-fu: (X=y-tanfB)-cosf  X-cosf-Yy-sinf
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f y+X-tan

f . . . . .
Assume S, = r is the camera constant of the image plane in the horizontal axis
u

u-u, X-y-tanp

S,  y+Xx-tan B

Yy [(u=u,)+S,-tan S]
S, —(u-u,)-tan /3

=

=X

(2-2)

Equation (2-1) and (2-2) are the transformation from the point (U,V) in the
image plane to that (x, y, 0) within the road surface in the vehicle coordinate system.
However, parts of the parameters in this formulation are unknown. We must make use

of some probable approach to estimate those values if the precision of the perspective
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phenomenon is adequate.

2.1.2 Applications of Frontal-View Lane Detection

For several years, many researchers worked on driving assistance problem by
using the concept of artificial vision. Among those applications about intelligent
transportation, automatic navigation has been taken seriously in recent years. For
accomplishing this objective with efficient performance, most vision-based methods
are to extract the road information by mounting the image sensor on the windshield of
the vehicle. Such as the human eye, forward-looking camera can extract the widest
field of view than other mounting position around the car body. In general, by
detecting the contrast between the white lines and the road, the lane boundary in front
of the vehicle can be sufficient to detect. Furthermore, the variation of the lane’s
curvature can be predicted in time without resulting in the erroneous following of the
vehicle. Besides, some obstacles captured by the camera can be recognized with 2D
or 3D techniques of computer vision. Other related works such as keeping the secure

distance ahead of the car are based on this system configuration.

2.1.3 Applications of Lateral-View Lane Detection

Some risks of road traffic which occur on highway during the lane-changed
maneuver happen easily if another vehicle besides the own one has been overlooked.
In other words, drivers have not assured accurately if there is no other vehicle
alongside in the blind spot of the lateral view. During the general driving procedure,
drivers must keep notifying the frontal field of view so that they forget to check the

information of the lateral blind-spot at the same time. In order to overcome this kind

11



of traffic hazard with efficiency, a camera is mounted at the driver’s outside rear-view
mirror to monitor the blind spot and the alongside lane. Approaching vehicles should
be detected in time and tracked until they leave the blind spot by this configuration. In
addition, this system can restrain the intended lane -changed maneuver and maintain
the distance from the lane boundary in the blind spot to the realistic car body without

a significant amount of the potential collisions.

2.1.4 Comparison with Two Applications on Vehicle

In addition to the distinct effect of the geometric projection onto the image plane,
there are still other different factors and applications between the frontal-view and
lateral-view configurations. The four reasons are listed as follows.

(1) The initial purpose has influence on where the camera is mounted:
As explained in section 2.1.2 and 2.1.3, road images extracted from the forward
sight of the vehicle can yield more driving information to track the real-time road
curvature by the lane-marking modeling. Furthermore, the related data of them
has effectively contributed to the system with respect to the assistant navigation.
On the other word, the major objective about mounting the camera on the side of
the car is to adjust how much is the detecting range of the blind-spot region. This
configuration only puts emphasis on judging the approaching car or the lane
trajectory near the vehicle, and the variation of the forward road information can
be not considered.

(2) The diverse sensation of the driver with respect to two mounting position:
In general, to extract the forward visual information as far as possible, the camera
was almost fixed to the windshield. This setting location could easily reduce the

eyesight of the driver whether the size of the camera is so small or not. The
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disadvantage resulting from the driver’s unfamiliar looking will be concerned with
the research about driver analysis. Nevertheless, due to the position of the camera
near the rear-view mirror when focusing on extracting the lateral-view content of
the vehicle, drivers can be not confused with this experimental environment. In
other words, the camera added to the vehicle can not affect the original driving
habit of the driver, and the data collected by driver analysis system will still be
higher accuracy.
(3) The different extrinsic factors of two locations of the sensing device

Compared with the initial purpose of two configurations, the camera mounted in
front of the vehicle must have farther distance from its optical center to the
specified lane portion on the road plane than that on the side of the car because of
the perspective geometry. In addition, the overtaking cars which crossing the lane
are almost captured by the frontal-view image sequences. Therefore, the
information of the lane trajectory extracted by the sideward camera can be more
complete than the forward one throughout the driving experiment on highway.
However, with the headlight switched in the gloomy driving situation, the video
collected by the frontal camera can still hold more acceptable luminance

information in night vision.

2.2 Definition of Vehicle Blind Spot

Blind spots, in the context of driving an automobile, are the areas of the road that
cannot be seen while looking forward or through either the rear-view or side mirrors.
Detection of vehicles or other objects in blind spots may also be aided by systems

such as video cameras or distance sensors. Throughout the notation in this thesis, the
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area of blind spot is only regarded as the rear of the vehicle on both sides. The
introduction in this section not only describes the causes of traffic accidents resulted
from the blind spot, but discuss how to resonablely establish the region of blind spot

by the inherent limitation of the human vision and rear-view mirror.

2.2.1 Traffic Accident Causes of Vehicle Blind Spot

In Taiwan, the types of traffic accidents between two cars on highway are listed

in Table 2.1 from [17].

Table 3 : Causes of traffic accidents between two cars on highway.
Year | Collision by the | Rubbed Collision Lateral | Colliding | Others
Backward Car in the Same Collision | Collision
Direction
2001 59.74% 28.57% 2.86% 1.56% 7.27%
2002 62.39% 28.04% 3.04% 1.74% 4.78%
2003 60.82% 27.88% 3.70% 2.34% 5.26%

As shown in foregoing statistics, we can conclude that the lateral and rubbed
collisions are both the principal causes of the traffic accidents between the cars. There
have been numerous topics focused on how to avoid the forward or backward
collision for the vehicle, but the related research for lateral collision is little. When
vehicles in the adjacent lanes of the road fall into the range of lateral blind spots, the
driver will be unable to see them with only the car’s mirrors. Due to the above reason,
drivers must actively rotate their head to extract more information within the region of
blind spot. However, the probability of car accident can be raised simultaneously.
Therefore, vision-based system can be developed to assist the drivers in keeping away

from the lateral danger of vehicles by the image sensor alongside the rear-view mirror.
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2.2.2 Limitation of View by Human-Vision

The eyesight of people has obvious difference between the static and dynamic
environment due to the variation of the vehicle velocity. In general, the view-angle of
the single eyeshot is about 160 degrees when people lie in the stationary scene; the
maximum view-angle of the double field of view is enlarged about 180 degrees.
Flannagan [18] proposed that the people’s double eyesight should reach to 320
degrees by adding the rotating motion for the head and body of human. According to
the statistics from [19], the realistically clear field of view contained two eyes is only
about 70 degrees when a normal person situates in the static environment.
Nevertheless, the human’s eyesight could frequently vary when people are in the
dynamic conditions such as the internal part of the moving vehicle thanks to the
tunnel-vision effect. The relationship between the range of human eyesight and the
variation of the vehicle velocity is in Table 2.2; the range of field of view between the

static or dynamic environment is shown in Fig. 2.5.

Table 4 : The relationship between the field of view and the vehicle velocity.

Speed (km/hr) 40 70 100

Field of View (degrees) 100° 65° 40°
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Fig. 2-5 : The diagram of the driver’s field of view.

As the information shown in Fig. 2-5, the eyesight becomes greatly narrow when
the vehicle is driven at high speed. In other words, the driver can not judge whether
there are other vehicles moving on the adjacent road surface or not only by his/her
remaining eyeshot on highway as the car velocity raises to 100 km/hr. In this way,

drivers induced by the blind-spot hazard will be easily in danger.

2.2.3 Limitation of View by Rear-View Mirrors

In general, the side mirrors of the vehicle are almost used by the planar type.
Therefore, the formation of image about the normal rearview mirror is still followed
by the principle which describes that the angle of incidence (&, ) is the same as that of
reflection (6, ). In other words, the field of image produced by the rearview mirror is
stretched to 26 (0=6, =6, ) view-angle projecting into the road surface.

The relationship between the field of view of the side mirror and that of the

driver is shown in Fig. 2-6.
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Fig. 2-6 : The relation about field of view between the side mirror and the driver.

By the geometric relation from Fig. 2-6, when driving at high speed, in order to
make the eyesight overlap the reflected field of rearview mirror, the driver must rotate
his/her head so as to extract the lateral information as much as possible. However, due
to this unnatural motion, the driver’s inattention will not keep his/her eye for the
forward state of the vehicle for a long time with the occurrence of traffic accident.

There are two general approaches to extend the range of field of the rearview
mirror. The first approach is to increase the distance between the side mirror and the
driver. Due to the fixed car-body, this improving effect will be restricted. The second
approach is to replace the traditional planar mirror with the curved one. Nevertheless,
the distortion effect of the reflected image will be serious due to the curvature of the
lens. Through the above discussion, the blind-spot region between the side mirror and
the driver can not be easily resolved. For this reason, adding the camera on the side of
the car with intelligent vision-based algorithm will still be regarded as the important

device of the assistant system for the driver’s safety.
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2.3 Principles of Lane Detection

The objective of lane detection method we expected in this thesis is to extract the
lane markers without knowing the internal or external parameters of the camera
alongside the vehicle in advance. Besides, the sensitivity of the image sensor easily
disturbed by the light condition must be suppressed as much as possible. Therefore,
developing an adaptive lane-finding system is essential to satisfy the previous
demands. First, our system can automatically extract the ROI contained by the road
surface only by the image content despite the unknown environmental information of
camera. Second, the preprocessing tasks will be able to effectively restrain the noise
when driving in the nighttime. Through the property for the view-angle of blind spot,
the improving edge operator will be added to acquire the clear lane boundary. Not
depending on the distortion of the camera lens which results in the obviously curved
lane trajectory even if people drive on the straight road, a piece-wise edge linking

model will be developed to mark all information of lanes shown in image sequence.

2.4 Principles of Lane Departure
Warning and Drowsiness Prediction

The part for lane departure warning is to provide some triggers for caution with
respect to the driving-off-road behavior through the lateral information of the lane
extracted by the lane detection algorithm. After measuring the lateral velocity from
the consecutive frames, the warning system will determine when the departure driving
occurs based on the lateral displacement and TLC (time to lane crossing.)

On the other hand, the part for drowsiness prediction will try to combine the
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experimental results of BRC (brain research center) from NCTU with the realistic
driving video. In order to estimate the lateral location of lane where the driver gets
used to navigate on the straight road, we construct the single Gaussian model to
simulate the stable-state range about the lane position. Then, the additional updating
mechanism will contribute to the systematic adaptation even if the driver changes
his/her driving habits. At last, the proportional gauge of the drowsy degree we
proposed will show if the driver has higher or lower probability in the drowsy state at
that moment with the amount of reflection time measured by the lane position over

the stable-state region.
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Chapter 3

Lane Detection

3.1 Overview

Figure 3-1 shows the flow chart of lane detection. At the beginning of this
architecture, because we merely aim at the monochromatic information of each frame
to process, the RGB coordinate will be transformed into the YCbCr one so that the
illumination component will be totally retained. Then, the automatic mechanism about
searching the ROI (region of interest) of the image content will be described in
Section 3.2.1. The preprocessing step about de-noising will be presented in Section
3.2.2.

Next to the processing step, the flow will enter the principal detection parts. Due
to the mounting position of camera on the side of the car, the image captured by that
device will contain most of the lateral-view information next to the wheels. In other
words, only one lane trajectory which is the most closed to the vehicle can be
apparently seen. An edge detection operator will be developed to adapt to the
geometry relationship of the camera based on the property of view-angle in Section
3.3. In addition, the binarization step we proposed in this section will depend on the
spatial relation with respect to the perspective effect. To eliminate the blind-spot
region as much as possible, we choose the fish-eye camera for enlarging the field of
view with some obvious distortion result. Therefore, the adaptive edge-linking model
demonstrated in Section 3.4 will overcome the serious problem whether the lane

boundary in the image sequences is straight or not.

20



C Start )

v (Erame<c<ekErame- N
(RGB to YCbCr )<= Frame<:':rame+ |

/

N e

Frame
Number=0

NO

( ROI Extraction )

A 4

( Preprocessing

rame Number
%2=0

( Edge Detection )

(  Binarization )

Edge-Linking
Model

\ 4

[ Construct the Tracking

Region for the Next Lane
Position

Fig. 3-1 : The flow chart of lane detection.
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3.2 Preprocessing

3.2.1 Automatic ROI Extraction

Before discussing how to search for the lane-marking, the step of color
transformation must be executed. In general, most of the algorithms shown in the past
theses with respect to lane detection are only considered the grey-level component.
This reason is that the contrast between the lane boundary and the normal road plane
can be easily seen by normal people as usual even if the colors of lanes are not
necessarily the same. As a result, the information of luminance for each frame must be
stored in our system by the RGB-to-YCbCr transformation. On the other hand, the
remaining chrominance components such as Cb and Cr are not taken seriously due to
the insensitive perception about human eyes. The formulation of transformation can

be described by

Y 0257 0504 0.098][R] [16
Cb|=|-0.148 —0291 0439 |-|G |+|128
Cr 0.439 —0368 —0.071||B]| |128 (3.1

As shown in Section 2.1.1, equation (2-1) and (2-2) tell us the relationship of
geometric transformation which demands the known information of camera, such as
the height, pan-tilt angle, and the internal focal-length of the camera, between the
image coordinate and the vehicle coordinate systems. Some methods proposed in the
previous works have to compute the curvature of the realistic road plane or to estimate
the lane shape effectively by these intrinsic or extrinsic parameters. However, an
adaptive system can not be sensitive to the variation of the camera mounting position

for the aspect of application and commerce. For instance, the systematic performance
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should be not influenced by the distance between from the rear-view mirror and the
road surface about various vehicles.

To take this target, we hope that our detection algorithm can automatically
determine the ROI (region of interest) contained the whole lane trajectory on the road
surface only by the image content with lateral view-angle. The chosen range of ROI
should be unchanged by the later information of image sequences whether some new
moving objects are captured or not. Figure 3-2(a) demonstrates the realistic frame
acquired by the camera alongside the side mirror. Through being concerned about the
image content, the fixed parts within it might be regarded as the evidence for ROI
extraction. In our opinion, the sideward car body with constant area throughout the
image sequences and the horizon relative to the road plane both correspond to the
fixed condition. Therefore, the approximately location of ROI will be determined by
the edge information of them.

The definition of ROI is that a rectangle region which extends its width to the
location next to wheels contains all the lane shapes in the image. In general, the height
of ROI is below the vanishing point situated in the horizon closed to the border of
vehicle’s window. This 2D geometry with respect to the above characteristics can not

depend on the light condition or view-angle of the camera.

(@) (b)

Fig. 3-2 : (a) The image acquired by the camera alongside the rearview mirror. (b) The

upper left point of ROI next to the boundary of the vehicle window.
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Figure 3-2(b) shows the location of the upper left point of ROI between the
boundary of the window and the vanishing point. In this figure, the portion of green
rectangle is shown as ROI, and the intersection of the marking cross stands for the key
point to determine where the range of ROI has covered. In this case, the 2-D gradient
operator will be used to extract the position of key point by considering the boundary
information of the vehicle window. Hence, we use only two of eight-directional Sobel
masks for detection due to the obvious edge of the window in the horizontal and
vertical aspects, as follows:

X, y : coordinate values of each pixel in the x and y axis

f (x,y) : the intensity of this pixel

G, =[ f(x—Ly+D+2- fOcy+D)+fF(x+Ly+D] fF(x—Ly—-D+2: f e y-D+f(x+Ly-D] (3.2)

G, =[ f(x-Ly-D+2: f(x-Ly)+ F(x=Ly+D]-[ f(x+Ly-D+2- f(x+Ly)+ f(x+Ly+D] (3.3)

1|2 -l 1 [0 |-l

000 2 10| -2

1 | 2|1 1 [0 |-l
(a) (b)

Fig. 3-3 : The mask type of (2)G, . (b)G, .

The two mask types are shown in Fig. 3-3. Figure 3-4 displays the results of
Sobel edge detection with Gx and Gy. After extracting the border of the window from
Fig. 3-4 (b) to Fig. 3-4(d) with thresholding, the coordinate values of the key point in
the x- and y- axis will be founded to determine the range of ROI by computing which
row and column retain the most edge pixels along the horizontal and vertical direction

individually. This process can be expressed as:
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255 if G, (1(%,y))>TH or G,(I(x,y))>TH (3.4)

(9=

where

else

ii,(x v) (3.5)

TH = y=0x=0
w-h

The ratio of wto the image width is closed to 0.5, and that is the same case as the
ratio of h to the image height. Due to the more edge pixels naturally existed along the
horizon in the horizontal axis and the perpendicular border of vehicle in the vertical
axis, an intersection point of the car window can be found out by searching in the x-y
direction respectively. The detecting results with different light conditions and

view-angles are shown in Fig. 3-5.

Fig. 3-4 : (a) Original image. (b) Edge detection by Gy. (¢) Edge detection by Gx. (d)
Edge detection by Gx+Gy.
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(c) (d)
Fig. 3-5 : (a) Day light. (b) ROI extraction of (a). (c) ROI extraction at night. (d) ROI

extraction with different view-angle in the nighttime.

Although the horizontal border of vehicle window may be unclear in the worst
conditions which the illumination from the car and street light has not adequate at
night, the extracting result is still steady since the edge information of horizon can be

replaced to obtain the similar position in the x-axis, as shown in Fig. 3-5(c) and (d).

3.2.2 De-noise Processing in Spatial and Temporal

Domain

The quality of image sequences collected by the vision-based sensing device will
be almost subjected to this challenge of the variance of light conditions, such as day
or night situation. Because the problems about high-frequency noise will be serious

for some driving environment due to the photosensitivity of cameras, especially on
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night vision. Therefore, the preprocessing step for eliminating the noise effect must be
considered in the detecting architecture if the system is expected to work robustly all
day long.

In general, a low-pass filter can be implemented before the process which is used
to extract the information about the boundary, texture, or shape of the interesting
objects within the frame. Since the frame is stored as a collection of discrete pixels,
we need to produce a discrete approximation to the chosen filter-type before the
convolution step. Hence, the Gaussian smoothing operator which is a 2-D
point-spread function achieved by convolution is used for this de-noising task in our

system. The isotropic form of Gaussian is shown as below:

2 2

where o is the standard deviation of this function

The diagram of this distribution is shown in Fig. 3-6(a). Moreover, this function
has been assumed with a zero mean. In principle, the Gaussian distribution is
non-zero everywhere, but its value is closed to zero more than about three standard
deviations from the mean centered at the distribution. Therefore, we can truncate it as
the mask-type at the specific pixel of each frame. Figure 3-6(b) shows a suitable
integer valued convolution mask of Gaussian where o =1. The Gaussian filter
outputs a weighted average of the neighborhood of each pixel. It can provide gentler
smoothing and preserves edges better than the normal-sized mean filter due to the
distinct size between 5x5 and 3x3. On the other hand, by choosing an appropriately
size of Gaussian filter determined by the standard deviation, more range of spatial
frequencies is still preserved in the image after filtering because its Fourier form is

itself a Gaussian. However, over-wide region contained in the filter will result in the
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serious blur effect of the image content. Therefore, the 5x5 principal type of Gaussian

mask is still adopted in this part.
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(a) (b)

Fig. 3-6 : (a) 2-D Gaussian Distribution with mean(0,0) and o =1. (b) Suitable 5x5

mask of Gaussian filter with o =1.

Some results of edge detection which describes the details in the next section is
preprocessed by Gaussian and Mean filter as shown in Fig. 3-7. Compared with (c)
and (d), the extracting method of the lane boundary will be easily disturbed by the
remaining noise if the smoothing filter can not effectively remove the high-frequency

perturbation.

(a) (b)

(d)
Fig. 3-7 : (a) Mean filter. (b) Gaussian filter. (c) Edge detection after (a). (d) Edge
detection after (b).

Salt and pepper noise which exist in spatial and time domain is more challenging
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for the preprocessing tasks, especially the night environment. To achieve the objective
that the effect of the proposed lane detection method in this thesis must be
independent on the variation of external light conditions, the time-averaging process
focused on the current and previous frames will be added behind the Gaussian

smoothing work. The integrated de-noising procedure is demonstrated in Fig. 3-8.

Smoothing :

work

Gaussian :
Smoothing Averaging)

Fig. 3-8 : Flow chart of the complete preprocessing steps.

The preprocessing

Lane
Boundary
Extraction

3.3 Lane Boundary Detection

3.3.1 Edge Detection

The objective in this section is to find the features of lane marker from the
information of image. Through the observation, lanes must have some apparent
properties about its boundary. The most obvious reason of them is that the lane
markers must be brighter than the neighborhood road surface even if they are with
various color information. Then, the lane shapes in the image are almost presented as
slender types. In other words, extracting the lane boundary is an important step to
locate the realistic lane position throughout the video by the foregoing two factors.

The determination of edge detection operators need to be considered the suitable
and effective performance for the image contents. Y. Wang [7] and [10] select Canny

operator to locate the position of pixels where the significant edge information of
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lanes exists by considering the gradient characteristics at the same time. However,
using this operator will accompany the obvious computing load since the judging
mechanism about the orientation and magnitude of each candidate edge in the whole
frame. On the other hand, Kreucher [20] provides a frequency-based extracting
method to find the diagonal dominant edges through the partly DCT coefficients. This
special concept is so intuitive that the components of edges determined by DCT may
be not related to the local information more closely than the common gradient
operators, especially about the contents of video acquired by the camera on the side of
the vehicle without fixed edge direction of lane markers. By giving the consideration
to effects about the systematic performance and the adaptation of video with various
view-angles, the LoG (Laplacian of Gaussian) operator is implemented in this step.
LoG is an associative convolution operation which convolves the Gaussian
smoothing filter with Laplacian filter of all, and then convolve this hybrid type with
the image to achieve the required result for edge detection. As an approximated
second-order derivative, the Laplacian mask can highlight the regions where the
intensity of pixels contained by the boundary of objects changes rapidly. Nevertheless,
this operator can not be used for edge extraction thanks to the higher sensitivity of
noise. To reduce this effect, the image has often smoothed by Gaussian before
applying the Laplacian mask. Because the second derivative is a linear operation, the
hybrid mask of two filters is similar to convolve the Gaussian function first and

compute the Laplacian of the result. The 2-D LoG function is shown as follows:

2 2
f(x,y)=—exp(-21))
20 (37)
0%2f 0%f :
LoG =V2f <, v
0G (X, ) (6Y) =G+ 5
2 2y 2 2 2
:_{(X +i4) g ]exp(——xzz;zy )
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(a) (b)
Fig. 3-9 : (a) 5x5 mask approximation of LoG. (b) 3-D plot of (a).

The 5x5 mask approximation to the LoG function and its 3-D plot is shown in
Fig. 3-9. By further observing the property of blind-spot view image from the camera
alongside the rear-view mirror, the included angle from the edge of lane to the vertical
Y-axis of the image plane must be within the range of degree from 0’ to 90°.
Compared with other gradient operators, LoG mask has no orientation so that it can
not adapt to some specific edge directions of the object. So the additional 5x5 mask
similar to the form of the sobel-mask with tilt angle of 45 degree is provided to be
combined with the previous LoG mask to adapt to the lateral-view image environment.
The convolving relation is explained in the following:
[(X,y)* F(Xy)+ (X, y)*g(X,y) < [ (u,v)Fu,v)+ 1u,v)G(u,Vv)
LG Y) = [T OGY)+ g y)] e U, V)[F(U,v) +G(u,v)] (3.8)
where f(X,Y):the LoG mask, g(X, y): the additional 5x5 combining mask

The 3D-plot of new combined mask f(X,y)+g(X,y) will be shown in Fig.
3-10(b). Compared with Fig. 3-9(b), this distribution not only maintains most part of
the LoG shape, but also be added the identity of orientation for the blind-spot view

due to the “slant” shape in Fig.3-10(b). The results of edge extraction for lane
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boundary between the LoG and the new combined mask are demonstrated in Fig. 3-11.
According to the result from Fig. 3-11(d), only the intra-boundary of the lane can be
extracted, and this property will contribute to link the lane trajectory described in the

later section.

4 3 2 1 0

(a) (b)
Fig. 3-10 : (a) The additional mask for LoG combination. (b) 3-D plot of the new 5x5

combined mask.

(d)
Fig. 3-11 : (a) The original image. (b) Gaussian smoothing within the ROI of (a).
(c) Result of LoG mask. (d) Result of the new combined mask.

The morphological post-procedure is to thin out the lane-marking after the edge
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extraction. There are two conditions determining which the pixel can be retained in

the image:
if I(k)=255 AND I(k+1)=255

= I(k+N)=0  where N is a little larger than 2
else if 1(k)=255 AND k>P(i)

= I(k)=0 where P(i) is the point corresponed to the lane boundary of the row
else
= I(k)=255
The edge-finding approach to determine the location of P(i) will be introduced in
Section 3.4.

3.3.2 Adaptive Threshold Determination by Distinct

Spatial Region

The pixels within the ROI can be extracted for the image processing tasks in our
system. According to the perspective geometry, the length or width of the lane
markers within ROI is not the same with each different position. In other words, the
lane boundary in the bottom part of ROI is always wider and longer than that in the up
part. By considering the transformation effect, the adaptive mechanism is developed
to adjust the threshold for different sub-regions, and the size of them depends on ROI.

After processed by edge extraction, the image needs to be decided the threshold
for more obvious detecting result. Due to the evidently contrast between the lane
markers and the neighborhood road surface, the gradient magnitude of lane boundary
caused by the edge operator is usually larger than other locations. Therefore, in this
section the values of mean and standard deviation computed by each row within the
ROI will be selected as the threshold for different region.

Take the normal distribution for example, the range which contained the distance
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for one standard deviation from the mean will account for about 68% of the whole set.
Besides, the range will account for about 95% if it contains the distance for two
standard deviations from the mean. For each row within ROI in the image, the
threshold value is still selected by referencing above scattered property since the
gradient magnitude of lane markers is certainly higher than that of the normal road
surface. That is,

Threshold(j)= Mean )| f, j)| +k - Standard deviation| f(, j)| (3.9)

ie(0, width of ROI ie(0, width of ROT)

where k=2,
j 1 j-th row of ROI,
f (i, J) : the value of each pixel within ROI after the edge detection.

The performance of the binarizing approach may be dependent on the edge
information of the adjacent moving vehicles close to the lane or the car-light of them,
especially the upper part of ROI which can not contain adequate component of the
magnitude of lane. Hence, the ROI will be divided into seven sub-regions when it is

automatically extracted in the first frame of video, as illustrated in Fig. 3-12

Fig. 3-12 : The division of ROI into seven sub-regions.

height of ROI
N-1

Where size= , N: number of segments (we choose 7 in this system)

In this way, the values of thresholds situated in different location are selected by
tuning the mean value of each-row pixels and the arrangement of magnitude for them
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are from the bottom to the top sub-region, as described in the following:

Threshold(j)z( Mean |f(i,j)|—0()+k-Standarddeviation|f(i,j)| (3.10)

i(0, width of ROI)

ic(0, width of ROI)

ie(0, width of ROI)

where o=0.1- Z(Standard deviation| f, j)|) -k,
k=0 (

N : n-th sub-region of ROL

(a) ()

(©

Fig. 3-13 : (a) The image is photographed in a tunnel. (b) Lane-marker extraction

without considering the sub-region threshold. (c) Lane-marker extraction with

considering the sub-region threshold.

Figure 3-13(a) shows an imaging environment about driving in a tunnel. The
original lane boundary in the upper region is not easily seen due to the disturbance of
the car-light from the backward vehicle, as shown in Fig. 3-13(b). This overexposure

effect will be improved by considering the tuning parameter (« ) in Fig. 3-13(c¢).

35



3.4 Lane-Finding Algorithm

Since the edge information of lane markers has been acquired by the foregoing
demonstration, marking and tracking the lane trajectory within ROI can be succeed by
such pixels lying on the sides of lane boundary in the image. There have been some
researches for lane-model construction. Y. U. Yim and S. Y. Oh [21] use the starting
position, direction, and saturation of the lanes regarded as the three features to
initialize the lane vector and find the most probable lane trajectory by Hough
Transform. Roland Chapuis [25] uses the statistical model to specify the detection
ROI in order to narrow the searching area of lane markings. Different from the
method merely about the image processing, the lane geometry is taken into the fitting
of the lane model provided by A. Lopez [28]. D. J. Kang [30] combines the vanishing
point of the road from the frontal camera with Hough Transform for lane tracking.

Based on the objectives for real-time tracking and low-cost computation, a
piece-wise edge linking model we proposed in this chapter is effective for lane-shape

marking whether the lens-distortion of camera is serious or not.

3.4.1 Distortion Effect of Fish-Eye Camera

A fish-eye lens with a wide angle that takes the extremely wide field of view can
cause the hemispherical effect of the image. All the ultra-wide angle lenses of the
fish-eye cameras suffer from some amount of distortion. In order to contain the
blind-spot region on the side of the car as much as possible, we choose a fish-eye

camera as a sensing device for image acquisition.
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The distortion effect of lane boundary resulted from the fish-eye camera is
shown in Fig. 3-14, which displays the different curvature of lane-shape whether the
distance between the lane and the vehicle is so closed or not. Tsai [33] and Hartley [34]
provide the algorithms for fish-eye calibration by the internal or external parameters
of the camera. However, this kind of information can not be known in advance in our
systematic architecture. In other words, the lane-trajectory finding algorithm in this
thesis needs to overcome the inherent problem without considering additional

computing load for calibration.

Fig. 3-14 : The different curvature of lane in (a) the lane boundary is close to the

car-body. (b) The lane boundary is far to the car-body.

3.4.2 Hough Transform

The classical type of Hough transform is to identify the edge or boundary of
lines in the image. This principle is to transform the X-Y coordinate system into the
r-0 parameter space, where r represents the small distance between the line and the
origin of the image, and 0 is the angle of the locus vector from the origin to this
closest point. The relationship of the transformation about two coordinate systems is
shown in Fig. 3-15. According to equation (3.11) from this figure, they can determine
if the point A and B are colinear with the same r and 6. Besides, equation (3-12) is to

determine if the line segment formed by A and B is collinear with that formed by C
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and D by judging the condition that the parameter d is smaller than a threshold.

r=X-cos@+y, -sind=Xx,-cosf+Yy,-sind (3-11)

d=‘r—(x-o0s9+ y'sinﬁ)‘ (3-12)

y><

0 (0,0) \

Fig. 3-15 : The diagram of relationship between the x-y and r-0 coordinate systems.

3.4.3 Piece-Wise Edge Linking Model

Qing Li [22] and C. H. Yeh [24] still apply the Hough transform to track the lane
markers which can not be deformed in the image captured by the normal camera.
However, due to the distinct curvature with the fish-eye lens, it is impossible to take
Hough transform into our system. Hence, the novel approach for lane modeling needs
to be considered the geometric effect of ROI and the connectivity of the lane markers
with robustness and adaptation.

The flow chart of the piece-wise edge linking model is shown in Fig. 3-16(b).
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’ of Angles by the Size of ROI
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[Find the Edge of Line-

Shape in the Sub-
Region (A)

Shape in the Sub-

Find the Edge of Line-
Region (B) = (G)

________________

ilLoop<<Loop+1 .

A= - s s i

(a) (b)
Fig. 3-16 : (a) Seven sub-regions automatically segmented within ROI. (b) The flow
chart of the piece-wise edge linking model.

(a) (b)
Fig. 3-17 : (a) Seven sub-regions segmented within ROIL (b) The flow chart of the

piece-wise edge linking model.

Figure 3-17 shows the two different size of ROI is caused by the variation of the
intrinsic and extrinsic setting of camera. In general, the width of ROI depends on the
yaw angle of camera, and the height of that depends on the pitch angle or the distance
from the mounting position near the rearview mirror to the road plane. Although those
parameters can not be taken in our system, we still find the property that the lane
boundary in the image must extend to the upper-left part of ROI even if the lateral

position estimated from the lane marker is not the same through the image sequences.
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Find the Edge of Line-
Region (B) ~ (G)

Fig. 3-18 : The flow chart for finding the line-shape in the bottom sub-region (A).

umber of Detected Line
ixels from Previous Frame=0

Ed_X<<Ed_X+w

Hough (Ed_X ~ Ed_X-5, 6 + A8)
>> (St-X , Ed-X)

Retain the
Previous Result
of Angle

Jumber of Detected
Line Pixels=0

|KeyAngle — RegAngle >,

Retain the Information of
Ed_X and KeyAngle to Track e
the Next Sub-Region

Retain the
Previous Result
of Angle

Fig. 3-19 : The flow chart for finding the line-shape in sub-regions from (B) to (G).
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By using the perspective effect that lane markers almost converge near the region
of vanishing point, the included angle from the diagonal of the ROI to the vertical
boundary of that can be determined the maximum searching range of angles for
Hough transform. This mechanism will be regarded as the initial step in the
piece-wise linking model as shown in Fig. 3-16(b). To overcome the irregular
curvature of lane trajectory from the fish-eye lens distortion, the seven sub-regions
automatically segmented in Fig. 3-16(a) contribute to fit the edge pixels of lane since
its boundary information contained in it can be regarded as the line-shape. Therefore,
the principle of Hough transform described in Section 3.4.2 is directly used for the
bottom sub-region (A) as demonstrated in Fig. 3-17. The details of parameters in Fig.
3-18 and Fig.3-19 are explained as follows:

St X, Ed X:

The coordinate values of x-axis in the bottom and top border of the sub-region

determined by Hough transform. Ed X situated in the bottom border of the next

sub-region, such as the same location as the bottom border of sub-region (B) and
the top border of sub-region (A), can become the fixed point for searching the

line edge pixels only by the angle 0 as the flow chart in Fig. 3-19.

SkipTh:

Its size depends on the vertical pixel-width of the sub-region (A) in Fig. 3-18.

For some circumstances like the rapidly lane changing maneuver, the lane

marker may be discontinuous for each sub-region in the image. The threshold is

to control when the lane modeling procedure is performed and observe if the
edge pixels in the bottom sub-region (A) have adequate amounts to composite

the lane trajectory.
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KeyAngle, RegAngle, 0, ,05,,,, 8, AD, Lw:

KeyAngle and RegAngle are the angles about appropriate orientation of line

boundary in sub-regions induced by the current and previous frame. Based on the

connectivity and continuity of lane markers on the road surface, QTH and 9TH2

are the thresholds to limit if the difference between KeyAngle and RegAngle is

small enough. In addition, €, must be smaller than 0, since the searching

angles with sub-region (B) to (G) is restricted by the previous detecting results
from the bottom sub-region (A). & and A0 are the slight range for detection with
Hough Transform from sub-region (B) to (G) where the computation power can
be reduced. At last, Lw is a revised parameter to restart the seeking area in the

x-axis when the number of line pixels is zero in Fig. 3-19.

To simply the geometric circumstance that the distance between the vehicle and
lane trajectory with some curvature in the image is much different, especially the
effect of fish-eye lens distortion, we use LSR (least square regression) to make the
curved a lane boundary approximate a straight line. The LSR can be induced as

below:

n
E=) ¢
i=1

(Y —a. X, —b)’ (3-13)

8E— - . . —A. . —_ of — . —_—
g_;2(\(, a-X; —h)(—X;)=0

‘Z—'E:zn: 2.(Y;—a-X; ~b)(~1)=0 (3-14)
i=1

C

Equation (3-13), (3-14) can be simplified as

ad % b X =Y Xy,
ay X +bN=) Y, (3-15)
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; : | (3-16)

Y8 Y3 Y2 Y1
(@) (b)

Fig. 3-20 : LSR approximation.

According to the parameter information showed in Fig. 3-20 (a), the linear model
can be constructed by the equations (3-16). The approximating straight lane boundary
is displayed in Fig. 3-20 (b), which is directly reflected since the image contents
acquired by the camera mounted on the opposite side of the vehicle are almost the

same except for the reflective property.
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Chapter 4
Lane Departure Warning and

Drowsiness Estimation

4.1 Overview

[Lane Detection Algorithm}

¥

Lane Departure Warning System (by Using
the Lateral Information of the Lane)

¢

Find the Stable-State Range for
the Straight-Line Driving Habit

V

Drowsiness Prediction by Incorporating the Result
from BRC into the Realistic Driving Scenes

Fig. 4-1 : The flow chart for the whole system.

After extracting the lane boundary from the previous chapter, the lateral
information of lane markers can be used to judge when the lane change maneuver
occurs for the driver. In this chapter, the LDW (lane departure warning) system is
constructed by measuring the displacement, instantaneous velocity and TLC (time to
lane crossing) of the lane to form the warning triggers for alarms. The standard for

drivers’ drowsy state is based on the reflection time when people start to turn the
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steering wheel after they drive off the stable-state regions which are dependent on the
habit of them for strait-line driving. Trying to combine the experimental data from
BRC (brain research center) in NCTU with the realistic scenes, and a gauge of drowsy
degree will be proposed to show the possibility with respect to the drowsiness of

drivers. The flow chart of the whole system is shown in Fig. 4-1.

4.2 Lane Departure Warning

4.2.1 The Warning Algorithm

As described in Section 1.2.2, some algorithm has been developed to predict
when the driver is in danger of departing the road but not annoy the driver sensitively.
In other words, extending the interval of warning time can receive the more correct
driving maneuver, but the number of nuisance alarms will increase apparently. Lee
[26] and Ruder [31] considered that LDW does not necessarily need the precise offset
and position information from each frame to add the computing load since it only
assists the human driver and passively responds to the circumstance such as when the
lane-departure occurs. In order to balance the systematic efficiency and acceptable
detection rate in our LDW system, only two representative measures are selected to
trigger the warning message. The two judging conditions are discussed as follows:

(1) Lateral displacement:
If the lane boundary is excessively close to the vertical borders of ROI, the driver
will be in danger with higher possibility. We will regard this as a dangerous
departing behavior even if it may be only someone’s habit of driving. There, the

safe region which contains the normal lateral offset of lanes is defined as follows.
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Safe Region: {% ROI ,% ROI]»

(2) TLC (time to lane crossing):

TLC which was first proposed by Godthelp [35], is a measure of the time
remaining before a vehicle on a given trajectory will depart the road. It can
provide more reliable information than the lateral position merely due to the factor
for lateral velocity can be considered. In our system, the definition of TLC is a
ratio of lateral offset smaller than the width of ROI to the lateral velocity at the
moment.

The classification for the dangerous degree of warning alarms and the deducing

process of TLC are explained in details in the next section.

4.2.2 Evaluation

To prevent the noisy effect such as high frequency variances of the lateral offset
of lane markers in each frame from measuring error, we take five frames processed by
lane detection to estimate only one weighted average result for departure judgment
such like a causal temporal filter. (In practice, there is always one frame only for
Gaussian smoothing between the two frames used for lane detection in our system. In
other words, consecutive five numbers of lateral positions occupy about 0.33 seconds
for 30fps.) The values of weights are {0.22, 0.21, 0.20, 0.19, 0.18} from the present
and the last four processed frames. The flow chart for TLC computation is shown in
Fig. 4-2.

By the two obvious measures, the degree of departure warning can be classified

with the color of alarms as the following:
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If the current lateral offset is inside the safe region: {%ROI,%ROI}

If TLC>2.5sec AND Vel=0
Alarm type >> green light
Else
Alarm type >> yellow light
Else
Alarm type >> red light

Frame || Frame || Frame || Frame | [ Frame Frame || Frame || Frame | | Frame || Frame
i-9n i-8n i-7n i-6n i-5n i-4n i-3n i-2n i-n i

C T T T T T T T ]
[P . |
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vy S

E/Veighted Average >>Dis(Oﬂ E/Veighted Average >>Dis(1)]

A S N
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1 Position >> Dis(1) i
i j

Compute the Instantaneous Velocity >>
Dis@) — Dis(0) (pixels/sec)
0.33

Vel =

[ TLc=2 —\IjiT(l) ] [TLC _ (Width of ROI) - Dis(1) ]
e

Vel
[ TLC=0 j

Fig. 4-2 : The flow chart for TLC estimation.

4.3 Drowsiness Estimation for Driver

In recent years, preventing accidents caused by drowsiness has become a major
focus of active safety driving in recent years. The major challenges in developing a
real-time system for drowsiness prediction include: 1) the lack of significant index for

detecting drowsiness and 2) complicated and pervasive noise interferences in a
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realistic driving environment. Therefore, the BRC (Brain Research Center) in
National Chiao Tung University has developed a drowsiness-estimation system based
on electroencephalogram (EEG) to estimate a driver’s cognitive state when he/she
drives in a virtual reality (VR)-based dynamic simulator. The definition of the driving
error in this experimental environment is the deviations between the center of the
vehicle and the center of the cruising lane in the lane-keeping driving task.

In this section, the system architecture of BRC will be introduced in Section
4.3.1. The relationship between the reaction time and driver’s drowsiness will be
explained in Section 4.3.2. Before trying to reasonably and effectively integrate the
measuring result from the VR-based driving environment into the lane detection
system in this thesis, some changeful factors of the realistic image-based system must
be discussed. In Section 4.3.3, a stable-state range can be constructed to determine the
lane’s lateral position where someone gets used to driving in a straight road-path for a
long time. Then, a gauge of the drowsy degree successfully combine the experimental
result evaluated by the EEG-based analysis [27] with the realistic and dynamic LDW
system successfully is proposed in this thesis, as described in Section 4.3.4. Finally, in
order to adaptively extend the experimental framework to the practical driving
environment, we estimate the average velocity within the interval of reaction time by
deducing the ratio of the lane-width on the realistic road plane to that in the video, as

explained in Section 4.3.5.

4.3.1 Experimental Architecture of BRC

In general, measuring the precise data for human consciousness in dynamic
driving environment is not easy. There may be some perturbations from the external

noise or suddenly interference caused by the traffic variations affecting the data
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accuracy. In other words, strict training of human operators by the actual machines or
vehicles in real sites not only has high demands in space, time, and money to perform
such a training job, but also leads to another phase of the measuring problem. To
overcome the above dilemma, the worldwide trend is to use the virtual-reality (VR)
technology to meet the requirements of public security in training and censoring of
human operators. It can provide a realistic safety environment, which allows subjects
to make on-line decisions by directly interacting with a virtual object rather than
monotonic auditory and visual signals. Besides, VR is also an excellent candidate for
brain research on real-time tasks become of its low cost, saving time, less space, and
condition control to avoid the risk of operating on the actual machines, and thus

extends the applications of possible brain computer interfaces to general populations.

Fig. 4-4 : The details about the width information of each lane, road, and car.
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The experimental environment constructed by BRC is shown in Fig. 4.3. The
VR-based four lane highway scene is projected on a 120 degree-surround screen
(304.1-cm wide and 228.1-cm high), which is 350 cm away from the driving cabin.
The four lanes from to right are separated by a median stripe. The distance from the
left side to the right side of the road is equally divided into 256 points (digitized into
values 0-255), where the width of each lane and the car is 60 and 32 units,
respectively. The frame rate of highway scene is 60 fps. All the descriptions are

depicted in Fig. 4-4.

4.3.2 Predictive Mechanism for Drowsiness Effect

Before executing the experimental step, we have to find the relationship between
the measured EEG signal and the subject’s behavior performance. One point should
be taken as a quantified index as the deviation between the center of the vehicle and
that of the cruising lane [36]. By examining the video recordings, the pilot
experimental studies show that when the subject is drowsy, the driving performance
will decrease and vice versa. In this experiment, the subjects participated in the
highway-driving simulation after lunch in the early afternoon when the alertness may
easily diminish within one-hour monotonous working [37].

All the subjects were instructed to keep the car at the center of cruising lane by
controlling a steering wheel. In all sessions, the subjects drive the car continuously for
60 minutes and were asked to try their best to stay alert. Participants then returned on
different days to complete a second 60-minute driving session or more if necessary.
To mimic the consequences of a non-ideal road surface, the car is randomly drifted
away from the center of the cruising lane every 5 or 10 minutes. So the driver must

maintain high attention to immediately correct the direction of vehicle in the cruising
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lane due to the 60 pixels per second for the deviating velocity. When the driver is
drowsy, the reaction time between the onset of deviation and steering wheel is
increased. This event can be used for ERP analysis of different drowsiness states
using 30-channel EEG signals [27].

In general, the reaction behavior should be increasingly slower when people start
to enter the drowsy state. In other words, the higher possibility for the measurement
shows that the subject is drowsy when his/her average reaction time is gradually
longer in a section of time interval. To avoid the fluctuation of drowsiness signal, the
measured data for reaction time must be smoothed by a causal 90-second square
moving average filter advancing at 2-seconds steps. The experimental trials are sorted
according to the length of reaction time and equally divided into five groups as the
index for drowsiness estimation in Fig. 4-5, where each group has 20 percentages of
trials in order. This statistics evaluated by the EEG analysis [27] can be regarded as

the reference implemented into our vision based lane departure warning system.
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Fig. 4-5 : The trials collected from the VR-based experiment are sorted according to

the degree of reaction time.

51



4.3.3 Construct the Stable-Driving Region with

Different Driver’s Habit

According to the above experimental condition, the definition of reaction time is
the duration between the onset of deviation and the occurrence for steering-wheel.
Subjects have to move the vehicle’s center back to the cruising lane to wait for the
next testing deviation produced by the computer when they have been informed in
advance. However, the restarting action is not easy to be determined due to the
variation of different driving habits, especially the loose drivers which have a larger
spread in lateral position so that the distance between the wheel and lane marker can
not exactly fixed in the straight-road driving [15]. Therefore, the algorithm to extract
the stable-state driving region must be developed before constructing the drowsiness
estimation mechanism.

The standard for stable-state range determination is described as below: (1) the
lateral position of lane markers within this region should be close to each other; (2)
the TLC is larger; (3) The lateral offsets found by the LDW system in Section 4.2
must be situated in this region for a long period.

According to the above properties, first of all, we take the lateral offsets with
larger TLC about consecutive N frames processed by the LDW system. Second, by
the previous statistics, the mean and standard deviation estimated by them with the
clustering method are used to model the region as a normal distribution. At last, the
updating method is developed to adjust the size and location of the range to the
changed driving habit for a driver. The flow chart for stable-state region determination
is demonstrated in Fig. 4-6.

To rapidly and precisely find out the optimal parameters of each normal
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distribution, we choose k-means to initially classify the statistics of N lateral offsets.

Use K-means to Cluster N Lateral Update the Parameters of the Stable
Positions Computed by the LDW System Distribution for Adaptation to the
(k=3) Changed Driving Habit
Compute w, p, 8, and w/d Select the Most Probable Distribution as
for Each Clusters (Distributions) a Stable-State Region by Ratio >> w/

Fig. 4-6 : The flow chart for stable-state region determination.

The error function which determines the clustering center point of each group is
shown as follows:
k
_ il 2
di =202, 04 =#) (1)
i:1 XJ EPi

where g4 1s the centroid or mean point of all the points x; € P,
P is the i-th of k clusters, i =1,2,....k.

In Fig. 4-6, p 1s the mean value of each distribution; o is the standard deviation
of each distribution; w is the weight determined by the probability of each group.
After initializing for each distribution model, we find that the N lateral offsets can be
approximately modeled by only three normal distributions, which are respectively
located on the points nearby the mean value and 1.5 standard deviations with high
probably, as shown in Fig. 4-7. Therefore, we choose K=3 as the initial clustering

numbers.

53



Numbers of each lateral offset

20
18 ¢
16
14 ¢
12 ¢ 2
N 73
2 ‘1
. § [all
F o Bl
4 PRI
2 i f
0
0 18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306
Width of ROI

Fig. 4-7 : The distribution of N lateral offsets and three approximately Gaussian
model (N=200 in this Figure.)

Not the same as the adaptive background model [32], the human habit can last
within a steady behavior style for a long time. Based on this psychological property,
we only use a single normal distribution with some update mechanism to model the
adaptive stable-state driving region to avoid its unreasonable fluctuation. Updating the
parameters of the stable-state model can adapt to the changed driving habit if the
lateral offset is within 2.25 standard deviations of this distribution. The parameters of
the distribution which matches the new observation for human habit are updated as

follows:
e =A=0) ph_ + % (4-2)
O_tzz(l_ﬂ)'o_tzfl'i'ﬁ'(xt_ﬂt)z (4-3)

where S =a-n(X|u,0,), «oisthelearning rate

1 2 -1
——(Xy—py )0
2(t )

n(xtalutao-t):1/[(27T)1/2'O-t]'e . (4_4)
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By observing equation (4-5), the influence for this stable-driving distribution will
be unapparent when the distance between the current lateral offset and the mean value
of the model is so far. This property can effectively maintain the stability of this

region.

4.3.4 Data Collection and Adjustment for the

Realistic Environment

After selecting the suitable driving region for the driver, the experimental
statistics evaluated by EEG analysis from BRC can be integrated into our lane
departure system. Not the same as experimental condition which stipulated that the
reaction behavior can be increasingly slower when the subject starts to enter the
drowsy state by observing the trend of reaction time for a long period (about 90 sec),
the demand for drowsy estimation mechanism in our system should provide real-time
prediction if the driver is still on the alert. Therefore, we design a gauge chart to
estimate and display the current driver’s drowsy degree as much as possible, as shown
in Fig. 4-8 (b).

In Fig. 4-8 (a), the difference in lateral offset between (B) and (C) is 52.45 pixels,
the mean value (A) of stable-driving region is located at pixel value of 123.23, and the
reaction time counted from (D) and (E) is 1.65sec, as shown in Fig. 4-8 (c).

As described in Section 4.3.2, the definition of reaction time is the time interval
of deviation between the center of the vehicle and that of the cruising lane in the
VR-based experimental environment. In other words, the value of deviation can be the
same as the lateral offset between the car-body and the lane marker in our

vision-based system. By the known stable-driving region determined in Section 4.3.3,
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the drowsiness estimation system can apply to drivers with different driving habits
without directly selecting the unchanged center part of ROI, such as the restarting
mechanism of BRC. Therefore, the count of reaction time starts when the lateral offset
of lane marker deviates outside the stable region, and stops when the driver turns back
the steering wheel exactly in our system. However, since we judge the reactive
behavior only by the image contents, the backward motion must be confirmed by the
criterion that the direction of the lateral velocity keeps identical until the lateral offset

is within the stable region again, as the points (D) and (E) in Fig. 4-8 (d) separately.
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Fig. 4-8 : The mechanism for drowsiness estimation in our LDW system. (a) The
relationship between the stable-state region and the lateral deviations. (b) A
drowsy-degree gauge chart. (c) A stable-driving group box, (d) The start and stop

points of reaction time.
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The flow chart for drowsy degree estimation by the reaction time is shown in Fig. 4-9.

The discussions about Fig. 4-9 are described as follows:

(1) The drowsy degree may be subtracted by 10% if the reaction time is never up
to 1.5sec for 10sec. This automatic mechanism is based on the VR-based
experiment of BRC that the computer will automatically produce the
deviation behavior about 5~10sec. After all, the reactive behavior in drowsy
state must be increasingly slower without reducing the alert abruptly.

(2) The variation of drowsy degree displayed in the gauge chart, as demonstrated
in Fig. 4-8 (b), depends on the estimated reaction time of the driver in the
realistic environment. To avoid the variances in drowsy degree violating the
nature of human operation, the changeful region for each estimation result is
limited within plus and minus 20%.

(3) Use the classified alert and drowsy state in Fig. 4-5 analyzed by EEG-based
algorithm as the evidence to determine the cognitive property of the driver in
realistic environment.

(4) If the drowsy degree is exceeded 70%, the alarm light with red color will be
displayed in our system. On the other words, the alarm light with yellow
color will be turned on if the drowsy degree is exceeded 35% but not up to
70%. Otherwise, the green light is showed that the driver is still situated in
the safety-state with higher alert.

(5) In general, the lane change maneuver can be not certainly judged as an
intentional action for driving or an unintentional behavior with the drowsy
consciousness only by the information of deviations. Therefore, the warning

mechanism focused on this departing behavior is described as below:
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If Pos(t)-Pos(t-k)>0.8-(width of ROI)
> This departing motion is recognized as the lane change maneuver
If Drowsy Degree > 70% (red light)
Not change
> Caused by the drowsy consicousness
Else
Drowsy Degree=0

> Caused by the intentional behavior for normal driving
Where

Pos(t): The currently measured lateral offset

Pos(t-k): The previously measured lateral offset, k is dependent on the frame rate of video

Interval<10sec
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Fig. 4-9 : The flow chart of drowsy degree estimation by the average reaction time
evaluated from BRC.
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Chapter 5

Experimental Results

5.1 Environmental Setup

Figure 5-1 shows that a fish-eye camera is mounted under the rear-view mirror
on the side of the vehicle to acquire blind-spot view image sequences. In addition, the
driver can immediately obtain the sideward information of road surface by the CRT

which displays the real-time image sequences from the outside camera.

Fig. 5-1 : The experimental architecture.
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Table 5 : Specification of platform information.
CPU Intel T5600 1.83GHz
Memory 1GB DDR2 RAM
Compiler Borland C++ Builder 6.0
(OR] Microsoft Windows XP
Resolution 320x240
Frame rate 30 FPS

Figure 5-2 shows the realistic programming interface in the PC platform. Block

(A) contains the input frame which is added the approximating straight lane boundary

by LSR, as explained in Chapter 3, in the left part; the center part of (A) shows the

result of lane detection method with ROI extraction; the right part of (A) which shows

the binarizing lane boundary only includes the image contents within ROL
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Fig. 5-2 : The programming interface in the PC platform.

Block (B) contains the display of the related lateral information computed by

LDW system. Besides, it also shows the reaction time and stable-driving region, as
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explained in Fig. 4-8. The warning alarms with different colors of lane of LDW and
drowsiness estimation systems is contained by block (C), where the coordinate values
about the border of ROI are also included. Block (D) shows the searching range of
angles about the piece-wise edge linking model, as described in Section 3.4, and the
output frame rate which responds to the systematic performance. At last, Block (E)
records the lateral offset and the maximum and minimum range of the reconstructed

stable-driving distribution with real-time update.

5.2 Results of Distinct Environments

5.2.1 Explanation of Experimental Conditions

The driving environment is focused on highway with different light conditions.
The image sequences captured by the camera with unknown two pan- or tilt-angles
are tested with the same lane detection algorithm in Fig. 5-3. At the same time, in
order to observe if the lane-based warning system can maintain robust performance

and tolerate the light variation, we select the video segments with three different

periods, daytime, evening, and night of one day for experiment in the next section.

Fig. 5-3 : The testing image with different mounting angles.
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5.2.2 Results of Lane Detection

In Fig. 5-4, the testing environment considers the two properties with respect to
the view-angles and light conditions simultaneously. The detection results of daytime

(a), evening (b), and night (c) are processed by the same programming setting.

(b)
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Fig. 5-4 : The results of lane detection.

In Fig. 5-4 (c), the lane boundary can be clearly extracted in the nighttime
driving environment even if the side-view of vehicle usually has more chances to

subject to the perturbation from the exterior light-sources.

5.2.3 Results of Lane Departure Warning

If the lane boundary is locked precisely by the lane detection mechanism, the
lane departing maneuver can be tracked and recorded its position whether the lateral
speed is faster or not. Figure 5-5, 5-6, and 5-7 shows the tracking results of lane

departure with different variations of light and moving direction of the vehicle.
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# Frame 3385 # Frame 3388

Fig. 5-5 : The results of lane departure caused by cutting into the inside lane.

# Frame 718
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# Frame 787 # Frame 818

Fig. 5-6 : The results of lane departure in the night time.

# Frame 3740 # Frame 3776

Fig. 5-7 : The results of lane departure caused by moving into the outside lane.

65



5.2.4 Results of Stable-Driving Region and

Drowsiness Estimation System

As described in Section 4.3.3, the straight-road driving distance between the lane
marker and wheels can be modeled by the clustered distribution with higher weight
and smaller standard deviation. For further adaptation, we develop an update
mechanism to make the stable region adaptive to the changeful driving habits of
people. Figure 5-8 shows the updating process of stable-region described as a
statistical chart which contains the information of lateral offsets at the same time.
From Fig. 5-8 (a) to (d), the mean value of the stable-region will increase obviously
due to the accumulated lateral offsets which are almost situated over the region and
can be regarded as the new driving habit of the driver adequately.
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Fig. 5-8 : Results of update for the stable-driving region.
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Fig. 5-9 : Results of the variation of drivers’ drowsy degree by the reaction time.

The relationship between the gauge chart of drowsy degree and the reaction time
of drivers is demonstrated in Fig. 5-9. From Fig. 5-9 (a) to (b), the reaction time will
start to be counted since the lateral offset is outside the stable-region at that moment.
Therefore, the drowsy degree can be raised with a specific ratio of the measured
reaction time to the threshold which has been evaluated by the EGG-based analysis
from BRC. On the other hand, from Fig. 5-9 (¢) to (d), the drowsy degree keeps
increasing because the time interval between the current and previous reaction time

which are both greater than the threshold is not for 10 sec.
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5.3 Performance

Table 6 : The processing information of lane detection algorithms.

Lane Piece-wise
Output ROI size De-noise | Boundary | Edge Linking
FPS | (width,height) | Processing | Extraction | Model + LDWs
(A) B) ©
(%) (%) (%)
View] LTt | 166 | (245146) 63% 24% /139\
1eW
Test2 | 169 | (250,142) 67% 24% [ 0%
. Testl | 15.9 (204,194) 68% 16% 16%
View?2
Test2 | 15.9 (204,200) 67% 15% 18%,
N
- O 63% 8 67%
W 24% W 24%
0 13% O 9%
(a) (b)
O 68% 8 67%
M 16% M 15%
1 16% ] 18%
(c) (d)

Fig. 5-10 : The processing ratio of 4 examples implemented by lane detection and

lane departure warning algorithms.

The performance of the four testing videos with two different view-angles is
listed in Table 6. We split the lane detection approach into three parts. (A): The
de-noise preprocessing. (B): The lane boundary extraction. (C): The edge linking task
and LDW. In general, the size of ROI has the most influence on the systematic

execution time. However, the frequently departing maneuver occurred in the image
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segments will result in the additional computing load. As explained in Section 3.4, the
bottom sub-region of ROI must be searched for line-pixels with Hough Transform for
each frame. In other words, the searching range in it can not be regarded as the limited
size near the position determined by the previous lane marker if the lateral offsets
change seriously. Figure 5-10 shows that the ratio of edge linking mechanism depends
on the image contents whether the ROI is large or not. On the other hand, due to the
5x5 size of Gaussian mask, the de-noise procedure still occupies most of execution

time even if the frequent departure exists or not.

5.4 Discussion and Analysis

In order to increase detection rate of LDW and drowsiness estimation system, the
lane detecting error must be low as much as possible even if this algorithm is always
subjected to the disturbance resulted from external factors. In Fig. 5-11, the lane
markers can be still extracted by our developing method although they are unclear.
However, the lane detection method we proposed in this thesis can not resolved some
cases such as driving in a tunnel so that the contrast between lane markers and road

surface is not enough, as shown in Fig. 5-12 (a).

Fig. 5-11 : Results of lane detection for the unclear lane markers.
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(a) (b)

(©

Fig. 5-12 : Some examples of detecting error in our lane detection system.

In addition, as explained in Section 3.2, the range of ROI can be detected by the
boundary information of the car window and that of the horizon in the image. But this
property may be not suited to the environment which does not only contain the above
clues for ROI extraction but be affected by the light conditions, such as the example
shown in Fig. 5-12 (b). On the other hand, the external light in the nighttime has
chance to produce a “light ring” effect on the camera lens which may cause the
deviated parting position of the detected lane markers in the image instantaneously, as

shown in Fig. 5-12 (c).
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Chapter 6

Conclusions

We propose a scientific system for driver’s drowsiness estimation by integrating
the statistics evaluated by the EEG-based analysis from BRC into our lane departure
warning system in the realistic driving environment. In this thesis of lane detection,
we develop a method for automatic ROI extraction only by analyzing the image
contents captured by the fish-eye camera mounted under the rear-view mirror without
knowing the related camera parameters in advance. To overcome the light variations,
the de-noising architecture which is considered the spatial and temporal domain at the
same time can restrain the noise effectively. Focused on the geometric property of the
blind-spot view, the adaptive type of edge operator and threshold selection can exactly
detect the lane boundary. Finally, an improved edge linking model we proposed not
only increases the searching speed for lane trajectory but resolves the effect of
fish-eye lens distortion.

About the lane departure warning and drowsiness estimation proposed in this
thesis, we construct a warning mechanism with the lateral offsets and TLC computed
by the lateral velocity and the border of ROI. Due to the different driving habits of
people, we construct the stable-driving region for modeling by the information of
previous lateral positions of lane markers with updating mechanism. Then, we use the
deviation as the index for drowsiness estimation which has been analyzed and
evaluated by EEG-analysis. By considering the human’s behavioral style that the
reactive behavior must be increasingly slower for a long period when the subjects
enter the drowsy state gradually, we design a gauge of drowsy degree to estimate the

driver’s psychological state according to the reaction time of drivers.
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The lane-based stable system has been tested that the average frame rate is up to
15fps on PC platform. In the future, it will be integrated into the blind-spot side
collision warning architecture to increase the better detection rate and provide more
adaptive performance. Besides, by the constructed mechanism for drowsiness
estimation in the dynamic driving environments, we can collect more data to further
analyze the other inattentive behavior of drivers through this system so that the safety
driving system can consider all the possible risks caused by the internal or external

factors of drivers as much as possible.
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