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Chinese Abstract 

中文摘要 

 

近年來，由於車輛數目的快速成長，造成交通事故問題日益嚴重。在台灣，

每年有超過兩千五百人在車禍中喪生。而根據交通部的資料，過去的四年中，每

年至少有八萬多件的車禍事故發生。這種情況下促成智慧型運輸系統(Intelligent 

transportation system, ITS)相關研究的發展越來越受到關注。而大部分車禍發生的

原因主要由於駕駛人本身的分心、不注意車況、疲勞駕駛等不適當駕駛行為所引

起。因此，為了能盡量避免駕駛者身處於此危險狀態，我們針對車輛後照鏡旁的

側邊影像資訊，開發一套以智慧型視覺技術為基礎的車道偵測及偏移系統，以確

保駕駛人行駛的安全性。 

在車道線偵測部分，為了提高車輛側邊的視角範圍，我們將一支魚眼

(Fish-Eye)攝影機架設在後照鏡下方，並利用車體資訊在連續影像中固定的特

性，自動選取路面範圍，而不需要事先得知攝影機架設的相關資訊。為了可適用

於全天候的光線變化條件，我們同時處理空間及時間軸上的影像資訊，使此系統

在白天及夜間人眼可視車道範圍內，都能獲得清晰的車道邊界資訊。另外本論文

提出一套分段直線搜尋模組來連結車道線的軌跡，以提升整個搜尋速度，並克服

魚眼鏡頭失真的問題。 

在車道偏移判斷的部分，本論文利用先前偵測的車道側向位置，及 TLC(Time 

to Lane Crossing)的瞬時資訊，規劃車道偏移警示的觸發條件。另外建立一個可
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以即時更新的車道線位移穩定區間，來模擬駕駛人在直線道路行駛時和車道線

保持習慣性距離的特性。最後我們和交通大學腦科學中心(Brain Research Center, 

NCTU)合作，取得其在虛擬實境動態模擬駕駛系統的環境下，針對駕駛人昏睡

狀態預測的相關數據，套用在實際駕駛的影像內容中，使本系統除了估測車道

偏移的外在因素外，也可針對駕駛人本身的精神狀況作更進一步的分析，以提

升本系統的安全性及可靠性。 

本論文發展的車道偵測輔助系統在 1.83GHz 的 PC 平台上平均可達超過

15fps 的執行結果。測試影像內容為在高速公路的實際駕駛環境，並在白天及夜

間範圍內都維持穩定的偵測結果。 
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English Abstract 
Abstract 

 

As the high growth of population of vehicles, the traffic accidents are becoming 

more and more serious in recent years. In Taiwan, more than two thousand and five 

hundred people are died in traffic accidents every year. For each of last four yours, the 

number of traffic accidents is at least eighty thousand according the statistics of the 

Ministry of Transportation and Communications (MOTC, R.O.C.). In this situation, a 

lot of researches about the intelligent transportation system (ITS) have been paid more 

and more attention to the researches of related fields. Most occurrence of the car 

accidents results from the distraction, inattention for the adjacent cars, and driving 

fatigue of the driver. As a result, to avoid the driver being in danger as much as 

possible, an intelligent vision-based system focused on image contents of lateral-view 

camera setting under the rear-view mirror on vehicle is developed about lane 

detection and lane departure warning in this study. 

In this thesis of lane detection, a fish-eye camera is located on the vicinity of the 

rear-view mirror to increase the range of lateral-view angle. Furthermore, we make 

use of the invariant of image for car body fixed in consecutive image sequences to 

extract the ROI (region of interest) containing the road surface without realizing the 
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intrinsic and extrinsic parameters of camera in advance. To make this algorithm 

suitable for various light conditions all day, the information of image in spatial and 

temporal domain must be simultaneously processed so that the lane boundary keeps 

distinct whether people have seen in the day or night environment. On the other hand, 

a piece-wise line searching model proposed in this paper is to connect the trajectory of 

lane and to reduce the computation load and to overcome the fish-eye lens distortion.  

    In the thesis of lane departure warning, the instantaneous information of the 

lateral position from the result of lane detection and the TLC (time to lane crossing) 

can be regarded as the warning triggers for the alarms of lane departure. Then, a 

stable-driving region with real-time update mechanism is constructed to simulate the 

straight-road driving habit of different drivers which get used to keep approximately 

the same distance between the vehicle and lane markers. Eventually, by cooperated 

with the BRC (Brain Research Center, NCTU), we utilize the statistics about 

drowsiness estimation of the drivers in Virtual-Reality (VR) dynamic driving 

simulator to implement in the video contents for realistic driving. Therefore, this 

mechanism can be not only estimated the external factors such as departure of lane 

boundary but the internal ones such as the conscious analysis of the driver with higher 

reliability and safety. 

 The lane detection and departure warning system proposed in this paper has been 

successfully evaluated on the PC platform of 1.83-GHz CPU with the average 

frame-rate is up to 15fps. Moreover, this algorithm can be maintained stable results 

whether in the day or night environment of the realistic driving on highway. 
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1 Chapter 1 

Introduction 
 

1.1 Motivation 
 

In recent years, an important social and economic problem is traffic safety. In 

1999, about 800,000 people died globally in road related accidents, causing losses of 

around US$ 518 billion [1]. According to the United Nations, there were more than 

23,000 vehicle drivers died in traffic accidents in 2004. The related factors are as 

listed in Table 1.1[2]. In Taiwan, the number of traffic accidents is increasing in the 

last years as shown in Table1.2 [3]. In general, a considerable fraction of these 

accidents is due to driver fatigue, inattentive driving and driving without keeping 

proper distance. In many cases, the driver falls asleep, making the vehicle to leave its 

designated lane and possibly causing an accident.  

Table 1 : Related factors for drivers involved in fatal crashes. 
Factors Percent 
Failure to keep in proper lane or running off road 24.0% 
Driving too fast for conditions or in excess of posted speed limit 20.3% 
Under the influence of alcohol, drugs, or medication 12.2% 
Inattentive (talking, eating, etc.)/ Drowsy, asleep, fatigued, or ill 9.1% 
Failure to yield right of way 7.9% 
Operating vehicle in erratic, reckless, careless, or negligent manner 6.7% 
Others 19.8% 

 

Table 2 : Road traffic accidents and violations in Taiwan from 2001 to 2005. 
Year 2001 2002 2003 2004 2005 
Numbers of Event 64,264 86,259 120,223 137,221 155,814 

Fatalities  3,344 2,861 2,718 2,634 2,894 

Injuries 80,612 109,594 156,303 179,108 203,087 
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    In order to improve the driving safety, a lot of researches about the intelligent 

transportation systems (ITS) have been proposed in recent years. Advanced vehicle 

control and safety system (AVCSS), one part of the ITS, contributes to prevent the 

driver in danger, and efficiently controls the traffic flow combining the distinct fields 

of technology, such as sensor, computer, and electrical engineering. Within this paper, 

we focus on concerning the applications of the smart vehicles. In general, it is so 

necessary to acquire the information about the lane tendency while driving on the 

way. 

 Due to the inattentive driving, the driver may deviate from the correct lane 

orientation, which induces the traffic accidents. As a result, the lane detection system 

plays a significant role about improving the driver’s safety in moving vehicle. For 

cost and performance consideration, a camera is chosen as our sensing device so that 

it can provide more abundant information by consecutive image sequences. 

Vision-based system with cameras can capture and process the real-time images of 

road. Many approaches have been proposed about the lane detection algorithm by 

developing the image processing. More explanation of their techniques will be 

introduced in the next section. 

 

1.2 Background 
 

1.2.1 Previous Works of Lane Detection 
 

    The ARGO system [4] proposed at the University in Parma, Italy is aimed to 

develop the autonomous vehicle that could drive on highways and rural roads. In the 

GOLD system [5], the IPM (inverse perspective mapping) architecture was 

constructed to remove the perspective effect by mapping the road image into the top 
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view. Moreover, this algorithm can detect the lane markings depending on the feature 

of the contrast and lane-width with the road plane, which may fail when the 

assumption of a flat road is not valid. Based on the GOLD system, Jiang et al. [6] 

model the lane as two straight lines to estimate the inclined angel on the degree of 

non-flat roads. However, the road shape is not usually straight in realistic conditions. 

Based on the lane geometry, some geometric model-based lane detection techniques 

such as polynomials and splines can fit the lane trajectory more than the model of 

straight lines. Y. Wang and E. K. Teoh [7] [8] have proposed the deformable road 

models to track the lane curvature without any camera’s parameters. But The 

searching speed of those correlated methods is slower while finding the new 

control-point in each frame. C. R. Jung [9] has developed the parabolic lane boundary 

model to approximate the lane boundaries by the combination of the edge function. 

This technique only demands the low computational power but has difficulty in 

porting on other platform except for the PC due to the fitting process. To extract the 

lane shape in the nighttime, L. C. Fu [10] used the vision-based driver assistance 

system to enhance the driver’s safety at night with the preprocessing of camera 

calibration. 

 

1.2.2 Previous Works of Lane Departure Warning 

and Driver Analysis  
 

The lane departure warning system issues an alarm to arouse driver’s attention 

and reduce the seriousness of an accident. In general, some algorithms have been 

developed to predict when the driver is departing the road by the lateral offset or TLC 

(time to lane crossing). Risack et. al [11] used both vision and radar-like information 
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to estimate TLC. Kim and Oh [12] proposed a driver adaptive LDW system based on 

fuzzy techniques. Volkswagen researchers [13] used several sensors (radar, vision and 

laser) to detect lane shifts. Enkelmann [14] has simultaneously considered the gear 

angle, lane width, and lateral velocity of the car to clearly determine when a departure 

warning should be given without the intentional driving behavior. 

The trigger of the LDW alarm must not only prepare adequate time in advance 

for the driver to respond to a truly dangerous situation but reduce the number of 

nuisance alarms caused by the driving habits of different individuals. Batavia [15] has 

been proposed a driver-adaptive system with a memory based learning framework for 

driver analysis. Based on the negative behavior adaptation of the human driver, the 

dynamic assistant policy has been combined with the LDW system by studying in   

the fixed-based driving simulator to adapt various driving style and raise the safety 

[16]. 

 

1.3 Objective 
 

To avoid the driver being in the presence of the hazards due to the distracted 

mentality and expand his/her field of lateral view while driving at high speed, the 

vision-based lane detection and departure warning system are developed by mounting 

the fish-eye camera under the rear-view mirror of the vehicle. Without the intrinsic or 

extrinsic information of the camera in advance such as some previous measures for 

lane-boundary extraction, the algorithm is developed to automatically search for the 

ROI (region of interest) on the road plane only by the information of image sequences. 

The disadvantage of the image sensors is sensitive to various illumination factors even 

in the nighttime. However, the chances of traffic accidents are easily raised in 
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foregoing situation because of the driver’s unclear sight. The objective of our 

proposed system is to work normally whether the light conditions change a lot or not. 

Another important problem is that the vehicle is departing from its own lane 

without keeping the proper lateral velocity along with the risk of the driver’s life. To 

prevent the vehicle from being too close to or far from the lane, the lateral position 

and velocity of the lane boundary are the key factors to predict when the departing 

action occurs as soon as possible. Furthermore, by the related information of the 

lateral view computed by the above mechanism, this system can be incorporated into 

the driver analysis method to avoid the frequently incautious behavior of the driver, 

especially for the straight-road driving on the highway. 

 

1.4 Organization 
 

This thesis is organized as follows. In Chapter 2, the camera configuration and 

the vehicle blind-spot is introduced along with the preliminary knowledge of the 

vision-based system. Chapter 3 describes our algorithm of lane detection. The 

approaches about lane departure warning and drowsiness prediction of the driver are 

proposed in Chapter 4. The experimental results are exhibited in Chapter 5. Finally, 

the conclusions of our system are presented in Chapter 6. 
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2 Chapter 2 

Preliminary 
 

In this chapter, the preliminary knowledge of the whole system will be 

introduced. In the beginning, the difference of the visual characteristics between the 

frontal and lateral place mounted on the camera is discussed. Then, the vehicle’s blind 

spot based on the intrinsic and extrinsic limitation of the human and rearview mirror 

will be described. The related principles of the lane detection and departure warning 

system are presented finally. 

 

2.1 Camera Configuration 
 

In this section, the geometric relationship and transformation between the image 

coordinate and the realistic vehicle coordinate are explained in detail. Furthermore, 

the applications about the frontal and lateral view of the camera are introduced here. 

 

2.1.1 Perspective Geometry 
 

To extract the image information of road plane on the side of the vehicle, a single 

camera is mounted near the rearview mirror. In the vision-based configuration, each 

objects captured by the image sensor in the camera coordinate system can be 

projected onto the image pane in the image coordinate system. This geometric 

relationship can be described as the perspective projection, and the camera 

configuration for the proposed system is shown in Figure 2-1 with the height of the 

camera H and the tilt angleα . 
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α
H 

 

Fig. 2-1 : Camera configuration. 

 

 Before computing the transformation between the image coordinate and the 

vehicle coordinate, some assumption must be established. At first, the condition in 

this section is only considered that the ground plane is almost flat. In general, we 

ignore the specific environment when the vehicle drives on the mountain road or other 

rugged surface. Second, the optical distortion of the camera lens can not be 

considered in this deduced process of the geometric transformation.  

 The spatial relationship between the vehicle coordinate and image coordinate 

system are shown in Figure 2-2. For practicality, the pan and tilt angle of the camera 

must be taken into account for this systematic configuration. The tilt angle α  is an 

included angle from road plane to the optical axis. On the other hand, the pan angle 

β  is an included angle from the moving direction of the vehicle (Y-axis) to the 

projection of the optical axis onto the road plane. In general, the camera can be 

modeled as the pin-hole model. The distance between the optical center (OC) and the 

central point of the image plane ( , ) determines the focal length. Moreover, 

according to the known camera height H and the information of pan-tilt angle, we can 

deduce where the object contained by the road surface are projected onto the image 

plane from the perspective geometry. 

0u 0v
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Fig. 2-2 : Vehicle and image coordinate systems. 

  

For further analysis, we discuss the spatial relation between the vehicle 

coordinate and the image coordinate system through two different points of view. 

Figure 2-3 and Figure 2-4 are the side view and bird’s eye view of the geometric chart 

between the vehicle coordinate and the image coordinate system. 

 

 

Fig. 2-3 : Side view of the geometric relation between the vehicle coordinate and the 
image coordinate system. 
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Fig. 2-4 : Bird’s eye view of the geometric relation between the vehicle coordinate 
and the image coordinate system. 

 
 Before explaining the formulation of the transformation between the two 

coordinate systems, some annotation must be introduced about Fig. 2-3 and Fig. 2-4 

in advance. 

f: Focal length of the camera 

uf 、 vf  : The scaling factors of the image plane in the horizontal and vertical axis 

H: The distance from the road plane to the camera 

α : Tilt angle of the camera 

β : Pan angle of the camera 

( , ): The corresponding point in the image plane is projected from the road surface u v

0 0( , )u v : The central point of the image plane 

 In Fig. 2-3, CPRΔ  and  are similar triangles. With this property, the 

spatial relation between two coordinate systems can be derived as follows. 
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X 

β

R Y
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xP (x, y, 0) 

Q

C

y

R’ 0 0( , )u v   

f 

P’ ( u , v )Image 

Plane

 9



0

'
'

( ) sin( ) sin tan
cos ( ) co

sin tan

v

PR PR
CR CR

h yv v f PQ
h hf CQ PQ y

αα α
α sα

α α

=

− ⋅− ⋅ ⋅
⇒ = =

− ⋅ − − ⋅

 

0
2

0 0

( ) cos sin tan
cos tan( ) cos

sin tan
[ ( ) tan ] [tan ( ) ]

v

v v

v v f h y h y
h hf h yy

f v v f y f v v f h

α α α
α αα

α α
α α

− ⋅ ⋅ − ⋅ − ⋅
⇒ = =

⋅ +− − ⋅

⇒ ⋅ − + ⋅ ⋅ = ⋅ ⋅ − − ⋅

 

Assume v
v

fS
f

=  is the camera constant of the image plane in the vertical axis 

0

0

[( ) tan ]
( ) tan

v

v

v v S hy
v v S

α
α

− ⋅ − ⋅
⇒ =

− + ⋅
       (2-1) 

 

Similar to the above process, the deducing details about Fig. 2-4 will be 

described in the following. 
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 Equation (2-1) and (2-2) are the transformation from the point (u , ) in the 

image plane to that (x, y, 0) within the road surface in the vehicle coordinate system. 

However, parts of the parameters in this formulation are unknown. We must make use 

of some probable approach to estimate those values if the precision of the perspective 

v
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phenomenon is adequate. 

 

2.1.2 Applications of Frontal-View Lane Detection 
 

For several years, many researchers worked on driving assistance problem by 

using the concept of artificial vision. Among those applications about intelligent 

transportation, automatic navigation has been taken seriously in recent years. For 

accomplishing this objective with efficient performance, most vision-based methods 

are to extract the road information by mounting the image sensor on the windshield of 

the vehicle. Such as the human eye, forward-looking camera can extract the widest 

field of view than other mounting position around the car body. In general, by 

detecting the contrast between the white lines and the road, the lane boundary in front 

of the vehicle can be sufficient to detect. Furthermore, the variation of the lane’s 

curvature can be predicted in time without resulting in the erroneous following of the 

vehicle. Besides, some obstacles captured by the camera can be recognized with 2D 

or 3D techniques of computer vision. Other related works such as keeping the secure 

distance ahead of the car are based on this system configuration. 

 

2.1.3 Applications of Lateral-View Lane Detection 
 

Some risks of road traffic which occur on highway during the lane-changed 

maneuver happen easily if another vehicle besides the own one has been overlooked. 

In other words, drivers have not assured accurately if there is no other vehicle 

alongside in the blind spot of the lateral view. During the general driving procedure, 

drivers must keep notifying the frontal field of view so that they forget to check the 

information of the lateral blind-spot at the same time. In order to overcome this kind 
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of traffic hazard with efficiency, a camera is mounted at the driver’s outside rear-view 

mirror to monitor the blind spot and the alongside lane. Approaching vehicles should 

be detected in time and tracked until they leave the blind spot by this configuration. In 

addition, this system can restrain the intended lane -changed maneuver and maintain 

the distance from the lane boundary in the blind spot to the realistic car body without 

a significant amount of the potential collisions. 

 

2.1.4 Comparison with Two Applications on Vehicle 
 

In addition to the distinct effect of the geometric projection onto the image plane, 

there are still other different factors and applications between the frontal-view and 

lateral-view configurations. The four reasons are listed as follows. 

(1) The initial purpose has influence on where the camera is mounted: 

As explained in section 2.1.2 and 2.1.3, road images extracted from the forward 

sight of the vehicle can yield more driving information to track the real-time road 

curvature by the lane-marking modeling. Furthermore, the related data of them 

has effectively contributed to the system with respect to the assistant navigation. 

On the other word, the major objective about mounting the camera on the side of 

the car is to adjust how much is the detecting range of the blind-spot region. This 

configuration only puts emphasis on judging the approaching car or the lane 

trajectory near the vehicle, and the variation of the forward road information can 

be not considered. 

(2) The diverse sensation of the driver with respect to two mounting position: 

In general, to extract the forward visual information as far as possible, the camera 

was almost fixed to the windshield. This setting location could easily reduce the 

eyesight of the driver whether the size of the camera is so small or not. The 
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disadvantage resulting from the driver’s unfamiliar looking will be concerned with 

the research about driver analysis. Nevertheless, due to the position of the camera 

near the rear-view mirror when focusing on extracting the lateral-view content of 

the vehicle, drivers can be not confused with this experimental environment. In 

other words, the camera added to the vehicle can not affect the original driving 

habit of the driver, and the data collected by driver analysis system will still be 

higher accuracy. 

(3) The different extrinsic factors of two locations of the sensing device 

Compared with the initial purpose of two configurations, the camera mounted in 

front of the vehicle must have farther distance from its optical center to the 

specified lane portion on the road plane than that on the side of the car because of 

the perspective geometry. In addition, the overtaking cars which crossing the lane 

are almost captured by the frontal-view image sequences. Therefore, the 

information of the lane trajectory extracted by the sideward camera can be more 

complete than the forward one throughout the driving experiment on highway. 

However, with the headlight switched in the gloomy driving situation, the video 

collected by the frontal camera can still hold more acceptable luminance 

information in night vision. 

 

2.2 Definition of Vehicle Blind Spot 
 

Blind spots, in the context of driving an automobile, are the areas of the road that 

cannot be seen while looking forward or through either the rear-view or side mirrors. 

Detection of vehicles or other objects in blind spots may also be aided by systems 

such as video cameras or distance sensors. Throughout the notation in this thesis, the 
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area of blind spot is only regarded as the rear of the vehicle on both sides. The 

introduction in this section not only describes the causes of traffic accidents resulted 

from the blind spot, but discuss how to resonablely establish the region of blind spot 

by the inherent limitation of the human vision and rear-view mirror. 

 

2.2.1 Traffic Accident Causes of Vehicle Blind Spot 
 

In Taiwan, the types of traffic accidents between two cars on highway are listed 

in Table 2.1 from [17].  

Table 3 : Causes of traffic accidents between two cars on highway. 
Year Collision by the 

Backward Car 
Rubbed Collision 

in the Same 
Direction 

Lateral 
Collision

Colliding 
Collision 

Others

2001 59.74% 28.57% 2.86% 1.56% 7.27% 

2002  62.39% 28.04% 3.04% 1.74% 4.78% 

2003 60.82% 27.88% 3.70% 2.34% 5.26% 

  

As shown in foregoing statistics, we can conclude that the lateral and rubbed 

collisions are both the principal causes of the traffic accidents between the cars. There 

have been numerous topics focused on how to avoid the forward or backward 

collision for the vehicle, but the related research for lateral collision is little. When 

vehicles in the adjacent lanes of the road fall into the range of lateral blind spots, the 

driver will be unable to see them with only the car’s mirrors. Due to the above reason, 

drivers must actively rotate their head to extract more information within the region of 

blind spot. However, the probability of car accident can be raised simultaneously. 

Therefore, vision-based system can be developed to assist the drivers in keeping away 

from the lateral danger of vehicles by the image sensor alongside the rear-view mirror. 
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2.2.2 Limitation of View by Human-Vision 
 

The eyesight of people has obvious difference between the static and dynamic 

environment due to the variation of the vehicle velocity. In general, the view-angle of 

the single eyeshot is about 160 degrees when people lie in the stationary scene; the 

maximum view-angle of the double field of view is enlarged about 180 degrees. 

Flannagan [18] proposed that the people’s double eyesight should reach to 320 

degrees by adding the rotating motion for the head and body of human. According to 

the statistics from [19], the realistically clear field of view contained two eyes is only 

about 70 degrees when a normal person situates in the static environment. 

Nevertheless, the human’s eyesight could frequently vary when people are in the 

dynamic conditions such as the internal part of the moving vehicle thanks to the 

tunnel-vision effect. The relationship between the range of human eyesight and the 

variation of the vehicle velocity is in Table 2.2; the range of field of view between the 

static or dynamic environment is shown in Fig. 2.5. 

Table 4 : The relationship between the field of view and the vehicle velocity. 
Speed (km/hr) 40 70 100 
Field of View (degrees) 100  65  40  
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70km/hr  65
100km/hr  40

40km/hr  100

210

Fig. 2-5 : The diagram of the driver’s field of view. 

 As the information shown in Fig. 2-5, the eyesight becomes greatly narrow when 

the vehicle is driven at high speed. In other words, the driver can not judge whether 

there are other vehicles moving on the adjacent road surface or not only by his/her 

remaining eyeshot on highway as the car velocity raises to 100 km/hr. In this way, 

drivers induced by the blind-spot hazard will be easily in danger. 

 

2.2.3 Limitation of View by Rear-View Mirrors 
 

In general, the side mirrors of the vehicle are almost used by the planar type. 

Therefore, the formation of image about the normal rearview mirror is still followed 

by the principle which describes that the angle of incidence ( iθ ) is the same as that of 

reflection ( rθ ). In other words, the field of image produced by the rearview mirror is 

stretched to 2θ  (θ = iθ = rθ ) view-angle projecting into the road surface.  

 The relationship between the field of view of the side mirror and that of the 

driver is shown in Fig. 2-6. 
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70km/hr  65

40km/hr 100

100km/hr 40

 

Fig. 2-6 : The relation about field of view between the side mirror and the driver. 

 By the geometric relation from Fig. 2-6, when driving at high speed, in order to 

make the eyesight overlap the reflected field of rearview mirror, the driver must rotate 

his/her head so as to extract the lateral information as much as possible. However, due 

to this unnatural motion, the driver’s inattention will not keep his/her eye for the 

forward state of the vehicle for a long time with the occurrence of traffic accident. 

 There are two general approaches to extend the range of field of the rearview 

mirror. The first approach is to increase the distance between the side mirror and the 

driver. Due to the fixed car-body, this improving effect will be restricted. The second 

approach is to replace the traditional planar mirror with the curved one. Nevertheless, 

the distortion effect of the reflected image will be serious due to the curvature of the 

lens. Through the above discussion, the blind-spot region between the side mirror and 

the driver can not be easily resolved. For this reason, adding the camera on the side of 

the car with intelligent vision-based algorithm will still be regarded as the important 

device of the assistant system for the driver’s safety. 
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2.3 Principles of Lane Detection 
 

The objective of lane detection method we expected in this thesis is to extract the 

lane markers without knowing the internal or external parameters of the camera 

alongside the vehicle in advance. Besides, the sensitivity of the image sensor easily 

disturbed by the light condition must be suppressed as much as possible. Therefore, 

developing an adaptive lane-finding system is essential to satisfy the previous 

demands. First, our system can automatically extract the ROI contained by the road 

surface only by the image content despite the unknown environmental information of 

camera. Second, the preprocessing tasks will be able to effectively restrain the noise 

when driving in the nighttime. Through the property for the view-angle of blind spot, 

the improving edge operator will be added to acquire the clear lane boundary. Not 

depending on the distortion of the camera lens which results in the obviously curved 

lane trajectory even if people drive on the straight road, a piece-wise edge linking 

model will be developed to mark all information of lanes shown in image sequence. 

 

2.4 Principles of Lane Departure 
Warning and Drowsiness Prediction 

 

The part for lane departure warning is to provide some triggers for caution with 

respect to the driving-off-road behavior through the lateral information of the lane 

extracted by the lane detection algorithm. After measuring the lateral velocity from 

the consecutive frames, the warning system will determine when the departure driving 

occurs based on the lateral displacement and TLC (time to lane crossing.)  

 On the other hand, the part for drowsiness prediction will try to combine the 
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experimental results of BRC (brain research center) from NCTU with the realistic 

driving video. In order to estimate the lateral location of lane where the driver gets 

used to navigate on the straight road, we construct the single Gaussian model to 

simulate the stable-state range about the lane position. Then, the additional updating 

mechanism will contribute to the systematic adaptation even if the driver changes 

his/her driving habits. At last, the proportional gauge of the drowsy degree we 

proposed will show if the driver has higher or lower probability in the drowsy state at 

that moment with the amount of reflection time measured by the lane position over 

the stable-state region. 
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3 Chapter 3 

Lane Detection 

3.1 Overview 
 

Figure 3-1 shows the flow chart of lane detection. At the beginning of this 

architecture, because we merely aim at the monochromatic information of each frame 

to process, the RGB coordinate will be transformed into the YCbCr one so that the 

illumination component will be totally retained. Then, the automatic mechanism about 

searching the ROI (region of interest) of the image content will be described in 

Section 3.2.1. The preprocessing step about de-noising will be presented in Section 

3.2.2.  

 Next to the processing step, the flow will enter the principal detection parts. Due 

to the mounting position of camera on the side of the car, the image captured by that 

device will contain most of the lateral-view information next to the wheels. In other 

words, only one lane trajectory which is the most closed to the vehicle can be 

apparently seen. An edge detection operator will be developed to adapt to the 

geometry relationship of the camera based on the property of view-angle in Section 

3.3. In addition, the binarization step we proposed in this section will depend on the 

spatial relation with respect to the perspective effect. To eliminate the blind-spot 

region as much as possible, we choose the fish-eye camera for enlarging the field of 

view with some obvious distortion result. Therefore, the adaptive edge-linking model 

demonstrated in Section 3.4 will overcome the serious problem whether the lane 

boundary in the image sequences is straight or not. 
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Fig. 3-1 : The flow chart of lane detection. 
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3.2  Preprocessing 

3.2.1 Automatic ROI Extraction 

 

Before discussing how to search for the lane-marking, the step of color 

transformation must be executed. In general, most of the algorithms shown in the past 

theses with respect to lane detection are only considered the grey-level component. 

This reason is that the contrast between the lane boundary and the normal road plane 

can be easily seen by normal people as usual even if the colors of lanes are not 

necessarily the same. As a result, the information of luminance for each frame must be 

stored in our system by the RGB-to-YCbCr transformation. On the other hand, the 

remaining chrominance components such as Cb and Cr are not taken seriously due to 

the insensitive perception about human eyes. The formulation of transformation can 

be described by 

 

(3.1) 

 

 As shown in Section 2.1.1, equation (2-1) and (2-2) tell us the relationship of 

geometric transformation which demands the known information of camera, such as 

the height, pan-tilt angle, and the internal focal-length of the camera, between the 

image coordinate and the vehicle coordinate systems. Some methods proposed in the 

previous works have to compute the curvature of the realistic road plane or to estimate 

the lane shape effectively by these intrinsic or extrinsic parameters. However, an 

adaptive system can not be sensitive to the variation of the camera mounting position 

for the aspect of application and commerce. For instance, the systematic performance 
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should be not influenced by the distance between from the rear-view mirror and the 

road surface about various vehicles. 

 To take this target, we hope that our detection algorithm can automatically 

determine the ROI (region of interest) contained the whole lane trajectory on the road 

surface only by the image content with lateral view-angle. The chosen range of ROI 

should be unchanged by the later information of image sequences whether some new 

moving objects are captured or not. Figure 3-2(a) demonstrates the realistic frame 

acquired by the camera alongside the side mirror. Through being concerned about the 

image content, the fixed parts within it might be regarded as the evidence for ROI 

extraction. In our opinion, the sideward car body with constant area throughout the 

image sequences and the horizon relative to the road plane both correspond to the 

fixed condition. Therefore, the approximately location of ROI will be determined by 

the edge information of them. 

 The definition of ROI is that a rectangle region which extends its width to the 

location next to wheels contains all the lane shapes in the image. In general, the height 

of ROI is below the vanishing point situated in the horizon closed to the border of 

vehicle’s window. This 2D geometry with respect to the above characteristics can not 

depend on the light condition or view-angle of the camera. 

 
(a)               (b) 

Fig. 3-2 : (a) The image acquired by the camera alongside the rearview mirror. (b) The 

upper left point of ROI next to the boundary of the vehicle window. 
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Figure 3-2(b) shows the location of the upper left point of ROI between the 

boundary of the window and the vanishing point. In this figure, the portion of green 

rectangle is shown as ROI, and the intersection of the marking cross stands for the key 

point to determine where the range of ROI has covered. In this case, the 2-D gradient 

operator will be used to extract the position of key point by considering the boundary 

information of the vehicle window. Hence, we use only two of eight-directional Sobel 

masks for detection due to the obvious edge of the window in the horizontal and 

vertical aspects, as follows:  

x, y : coordinate values of each pixel in the x and y axis 

f (x ,y) : the intensity of this pixel 

[ ] [ ]( 1, 1) 2 ( , 1) ( 1, 1) ( 1, 1) 2 ( , 1) ( 1, 1)xG f x y f x y f x y f x y f x y f x y= − + + ⋅ + + + + − − − + ⋅ − + + −   (3.2) 

[ ] [ ]( 1, 1) 2 ( 1, ) ( 1, 1) ( 1, 1) 2 ( 1, ) ( 1, 1)yG f x y f x y f x y f x y f x y f x y= − − + ⋅ − + − + − + − + ⋅ + + + +   (3.3) 

       

 (a)                    (b)                                      

Fig. 3-3 : The mask type of (a) xG . (b) yG . 

 

The two mask types are shown in Fig. 3-3. Figure 3-4 displays the results of 

Sobel edge detection with Gx and Gy. After extracting the border of the window from 

Fig. 3-4 (b) to Fig. 3-4(d) with thresholding, the coordinate values of the key point in 

the x- and y- axis will be founded to determine the range of ROI by computing which 

row and column retain the most edge pixels along the horizontal and vertical direction 

individually. This process can be expressed as: 
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(3.5) 

 

The ratio of to the image width is closed to 0.5, and that is the same case as the 

ratio of h to the image height. Due to the more edge pixels naturally existed along the 

horizon in the horizontal axis and the perpendicular border of vehicle in the vertical 

axis, an intersection point of the car window can be found out by searching in the x-y 

direction respectively. The detecting results with different light conditions and 

view-angles are shown in Fig. 3-5.  

w

   

      (a)        (b) 

   
    (c)        (d) 

Fig. 3-4 : (a) Original image. (b) Edge detection by Gy. (c) Edge detection by Gx. (d) 
Edge detection by Gx+Gy. 
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     (a)                              (b) 

   
        (c)                           (d) 

Fig. 3-5 : (a) Day light. (b) ROI extraction of (a). (c) ROI extraction at night. (d) ROI 
extraction with different view-angle in the nighttime. 

 

 Although the horizontal border of vehicle window may be unclear in the worst 

conditions which the illumination from the car and street light has not adequate at 

night, the extracting result is still steady since the edge information of horizon can be 

replaced to obtain the similar position in the x-axis, as shown in Fig. 3-5(c) and (d). 

 

3.2.2 De-noise Processing in Spatial and Temporal 

Domain 
 

The quality of image sequences collected by the vision-based sensing device will 

be almost subjected to this challenge of the variance of light conditions, such as day 

or night situation. Because the problems about high-frequency noise will be serious 

for some driving environment due to the photosensitivity of cameras, especially on 
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night vision. Therefore, the preprocessing step for eliminating the noise effect must be 

considered in the detecting architecture if the system is expected to work robustly all 

day long. 

In general, a low-pass filter can be implemented before the process which is used 

to extract the information about the boundary, texture, or shape of the interesting 

objects within the frame. Since the frame is stored as a collection of discrete pixels, 

we need to produce a discrete approximation to the chosen filter-type before the 

convolution step. Hence, the Gaussian smoothing operator which is a 2-D 

point-spread function achieved by convolution is used for this de-noising task in our 

system. The isotropic form of Gaussian is shown as below: 

2 2

2 2
1( , ) exp( )

2 2
x yG x y

πσ σ
+= −                     (3.6) 

 is the standard deviation of this functionwhere σ  

 

The diagram of this distribution is shown in Fig. 3-6(a). Moreover, this function 

has been assumed with a zero mean. In principle, the Gaussian distribution is 

non-zero everywhere, but its value is closed to zero more than about three standard 

deviations from the mean centered at the distribution. Therefore, we can truncate it as 

the mask-type at the specific pixel of each frame. Figure 3-6(b) shows a suitable 

integer valued convolution mask of Gaussian where σ =1. The Gaussian filter 

outputs a weighted average of the neighborhood of each pixel. It can provide gentler 

smoothing and preserves edges better than the normal-sized mean filter due to the 

distinct size between 5x5 and 3x3. On the other hand, by choosing an appropriately 

size of Gaussian filter determined by the standard deviation, more range of spatial 

frequencies is still preserved in the image after filtering because its Fourier form is 

itself a Gaussian. However, over-wide region contained in the filter will result in the 
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serious blur effect of the image content. Therefore, the 5x5 principal type of Gaussian 

mask is still adopted in this part. 

273
1

 
     (a)                                 (b) 
Fig. 3-6 : (a) 2-D Gaussian Distribution with mean(0,0) and σ =1. (b) Suitable 5x5 
mask of Gaussian filter with σ =1. 
 

Some results of edge detection which describes the details in the next section is 

preprocessed by Gaussian and Mean filter as shown in Fig. 3-7. Compared with (c) 

and (d), the extracting method of the lane boundary will be easily disturbed by the 

remaining noise if the smoothing filter can not effectively remove the high-frequency 

perturbation.  

   
      (a)        (b) 

   
    (c)        (d) 

Fig. 3-7 : (a) Mean filter. (b) Gaussian filter. (c) Edge detection after (a). (d) Edge 
detection after (b). 

 Salt and pepper noise which exist in spatial and time domain is more challenging 
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for the preprocessing tasks, especially the night environment. To achieve the objective 

that the effect of the proposed lane detection method in this thesis must be 

independent on the variation of external light conditions, the time-averaging process 

focused on the current and previous frames will be added behind the Gaussian 

smoothing work. The integrated de-noising procedure is demonstrated in Fig. 3-8. 

 
Fig. 3-8 : Flow chart of the complete preprocessing steps. 

 

The preprocessing 
work 

3.3 Lane Boundary Detection 

3.3.1 Edge Detection 

 

The objective in this section is to find the features of lane marker from the 

information of image. Through the observation, lanes must have some apparent 

properties about its boundary. The most obvious reason of them is that the lane 

markers must be brighter than the neighborhood road surface even if they are with 

various color information. Then, the lane shapes in the image are almost presented as 

slender types. In other words, extracting the lane boundary is an important step to 

locate the realistic lane position throughout the video by the foregoing two factors. 

The determination of edge detection operators need to be considered the suitable 

and effective performance for the image contents. Y. Wang [7] and [10] select Canny 

operator to locate the position of pixels where the significant edge information of 
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lanes exists by considering the gradient characteristics at the same time. However, 

using this operator will accompany the obvious computing load since the judging 

mechanism about the orientation and magnitude of each candidate edge in the whole 

frame. On the other hand, Kreucher [20] provides a frequency-based extracting 

method to find the diagonal dominant edges through the partly DCT coefficients. This 

special concept is so intuitive that the components of edges determined by DCT may 

be not related to the local information more closely than the common gradient 

operators, especially about the contents of video acquired by the camera on the side of 

the vehicle without fixed edge direction of lane markers. By giving the consideration 

to effects about the systematic performance and the adaptation of video with various 

view-angles, the LoG (Laplacian of Gaussian) operator is implemented in this step. 

 LoG is an associative convolution operation which convolves the Gaussian 

smoothing filter with Laplacian filter of all, and then convolve this hybrid type with 

the image to achieve the required result for edge detection. As an approximated 

second-order derivative, the Laplacian mask can highlight the regions where the 

intensity of pixels contained by the boundary of objects changes rapidly. Nevertheless, 

this operator can not be used for edge extraction thanks to the higher sensitivity of 

noise. To reduce this effect, the image has often smoothed by Gaussian before 

applying the Laplacian mask. Because the second derivative is a linear operation, the 

hybrid mask of two filters is similar to convolve the Gaussian function first and 

compute the Laplacian of the result. The 2-D LoG function is shown as follows: 
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              (a)                                   (b) 

Fig. 3-9 : (a) 5x5 mask approximation of LoG. (b) 3-D plot of (a). 

  

 The 5x5 mask approximation to the LoG function and its 3-D plot is shown in 

Fig. 3-9. By further observing the property of blind-spot view image from the camera 

alongside the rear-view mirror, the included angle from the edge of lane to the vertical 

Y-axis of the image plane must be within the range of degree from . 

Compared with other gradient operators, LoG mask has no orientation so that it can 

not adapt to some specific edge directions of the object. So the additional 5x5 mask 

similar to the form of the sobel-mask with tilt angle of 45 degree is provided to be 

combined with the previous LoG mask to adapt to the lateral-view image environment. 

The convolving relation is explained in the following: 

0  to 90

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )I x y f x y I x y g x y I u v F u v I u v G u v∗ + ∗ ⇔ +  

( , ) ( , )( , ) [ ] ( , )[ ( , ) ( , )]I x y If x y g x u v F u v G u vy∗ ⇔ ++      (3.8) 

where   ( , ) : the LoG mask, g( , ) : the additional 5x5 combining maskf x y x y  

 

The 3D-plot of new combined mask ( , ) ( , )f x y g x y+  will be shown in Fig. 

3-10(b). Compared with Fig. 3-9(b), this distribution not only maintains most part of 

the LoG shape, but also be added the identity of orientation for the blind-spot view 

due to the “slant” shape in Fig.3-10(b). The results of edge extraction for lane 
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boundary between the LoG and the new combined mask are demonstrated in Fig. 3-11. 

According to the result from Fig. 3-11(d), only the intra-boundary of the lane can be 

extracted, and this property will contribute to link the lane trajectory described in the 

later section.  
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               (a)                                 (b) 
Fig. 3-10 : (a) The additional mask for LoG combination. (b) 3-D plot of the new 5x5 
combined mask. 

   
(a)                               (b) 

   
                (c)                               (d) 
Fig. 3-11 : (a) The original image. (b) Gaussian smoothing within the ROI of (a). 
(c) Result of LoG mask. (d) Result of the new combined mask.  
 

 The morphological post-procedure is to thin out the lane-marking after the edge 
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extraction. There are two conditions determining which the pixel can be retained in 

the image: 

if         I(k)=255   AND   I(k+1)=255
            I(k+N)=0      where N is a little larger than 2
else if  I(k)=255   AND    k>P(i)
            I(k)=0           where P(i) is the point corresponed to 

⇒

⇒ the lane boundary of the row
else
            I(k)=255⇒

 

 The edge-finding approach to determine the location of P(i) will be introduced in 

Section 3.4. 

 

3.3.2 Adaptive Threshold Determination by Distinct 

Spatial Region  
 

The pixels within the ROI can be extracted for the image processing tasks in our 

system. According to the perspective geometry, the length or width of the lane 

markers within ROI is not the same with each different position. In other words, the 

lane boundary in the bottom part of ROI is always wider and longer than that in the up 

part. By considering the transformation effect, the adaptive mechanism is developed 

to adjust the threshold for different sub-regions, and the size of them depends on ROI. 

 After processed by edge extraction, the image needs to be decided the threshold 

for more obvious detecting result. Due to the evidently contrast between the lane 

markers and the neighborhood road surface, the gradient magnitude of lane boundary 

caused by the edge operator is usually larger than other locations. Therefore, in this 

section the values of mean and standard deviation computed by each row within the 

ROI will be selected as the threshold for different region. 

 Take the normal distribution for example, the range which contained the distance 
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for one standard deviation from the mean will account for about 68% of the whole set. 

Besides, the range will account for about 95% if it contains the distance for two 

standard deviations from the mean. For each row within ROI in the image, the 

threshold value is still selected by referencing above scattered property since the 

gradient magnitude of lane markers is certainly higher than that of the normal road 

surface. That is, 

i (0, width of ROI) i (0, width of ROI)
( ) Mean ( , ) Standard deviation ( , )

where  k=2,
            j : j-th row of ROI,
           ( , ) : the value of each pixel within ROI after the edge

Threshold j f i j k f i j

f i j

∈ ∈
= + ⋅

detection.

(3.9) 

 

 The performance of the binarizing approach may be dependent on the edge 

information of the adjacent moving vehicles close to the lane or the car-light of them, 

especially the upper part of ROI which can not contain adequate component of the 

magnitude of lane. Hence, the ROI will be divided into seven sub-regions when it is 

automatically extracted in the first frame of video, as illustrated in Fig. 3-12 

A 
B 
C 
D 
E 
F 
G 

size 

 
Fig. 3-12 : The division of ROI into seven sub-regions. 
height of ROIWhere size= , N: number of segments (we choose 7 in this system)

N-1
 

  

In this way, the values of thresholds situated in different location are selected by 

tuning the mean value of each-row pixels and the arrangement of magnitude for them 
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are from the bottom to the top sub-region, as described in the following: 

( )i (0, width of ROI) i (0, width of ROI)
( ) Mean ( , ) Standard deviation ( , )Threshold j f i j k f i jα

∈ ∈
= − + ⋅ (3.10) 

i (0, width of ROI)0

=0.1 (Standard deviation ( , ) ,)
n

k

f i j kα
∈=

⋅ ⋅∑where  

             : n-th sub-region of R .OIn
 

 

   
                   (a)                         (b) 

 

(c) 
Fig. 3-13 : (a) The image is photographed in a tunnel. (b) Lane-marker extraction 
without considering the sub-region threshold. (c) Lane-marker extraction with 
considering the sub-region threshold. 
 

 Figure 3-13(a) shows an imaging environment about driving in a tunnel. The 

original lane boundary in the upper region is not easily seen due to the disturbance of 

the car-light from the backward vehicle, as shown in Fig. 3-13(b). This overexposure 

effect will be improved by considering the tuning parameter (α ) in Fig. 3-13(c). 

 

 

 

 35



3.4 Lane-Finding Algorithm 
 

Since the edge information of lane markers has been acquired by the foregoing 

demonstration, marking and tracking the lane trajectory within ROI can be succeed by 

such pixels lying on the sides of lane boundary in the image. There have been some 

researches for lane-model construction. Y. U. Yim and S. Y. Oh [21] use the starting 

position, direction, and saturation of the lanes regarded as the three features to 

initialize the lane vector and find the most probable lane trajectory by Hough 

Transform. Roland Chapuis [25] uses the statistical model to specify the detection 

ROI in order to narrow the searching area of lane markings. Different from the 

method merely about the image processing, the lane geometry is taken into the fitting 

of the lane model provided by A. Lopez [28]. D. J. Kang [30] combines the vanishing 

point of the road from the frontal camera with Hough Transform for lane tracking. 

 Based on the objectives for real-time tracking and low-cost computation, a 

piece-wise edge linking model we proposed in this chapter is effective for lane-shape 

marking whether the lens-distortion of camera is serious or not. 

 

3.4.1 Distortion Effect of Fish-Eye Camera 

 

A fish-eye lens with a wide angle that takes the extremely wide field of view can 

cause the hemispherical effect of the image. All the ultra-wide angle lenses of the 

fish-eye cameras suffer from some amount of distortion. In order to contain the 

blind-spot region on the side of the car as much as possible, we choose a fish-eye 

camera as a sensing device for image acquisition. 
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The distortion effect of lane boundary resulted from the fish-eye camera is 

shown in Fig. 3-14, which displays the different curvature of lane-shape whether the 

distance between the lane and the vehicle is so closed or not. Tsai [33] and Hartley [34] 

provide the algorithms for fish-eye calibration by the internal or external parameters 

of the camera. However, this kind of information can not be known in advance in our 

systematic architecture. In other words, the lane-trajectory finding algorithm in this 

thesis needs to overcome the inherent problem without considering additional 

computing load for calibration.  

  
Fig. 3-14 : The different curvature of lane in (a) the lane boundary is close to the 
car-body. (b) The lane boundary is far to the car-body. 
 

3.4.2 Hough Transform 

The classical type of Hough transform is to identify the edge or boundary of 

lines in the image. This principle is to transform the X-Y coordinate system into the 

r-θ parameter space, where r represents the small distance between the line and the 

origin of the image, and θ is the angle of the locus vector from the origin to this 

closest point. The relationship of the transformation about two coordinate systems is 

shown in Fig. 3-15. According to equation (3.11) from this figure, they can determine 

if the point A and B are colinear with the same r and θ. Besides, equation (3-12) is to 

determine if the line segment formed by A and B is collinear with that formed by C 
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and D by judging the condition that the parameter d is smaller than a threshold. 

1 1 2 2cos sin cos sinr x y x yθ θ θ θ= ⋅ + ⋅ = ⋅ + ⋅           (3-11) 

( cos sin )d r x yθ θ= − ⋅ + ⋅                           (3-12) 

( )33 ,x  C y

( )11,xA  y

( )22 ,x  B y

( )44 ,x  D y

 

Θ

Θ 

 Fig. 3-15 : The diagram of relationship between the x-y and r-θ coordinate systems. 

 

3.4.3 Piece-Wise Edge Linking Model 

 

Qing Li [22] and C. H. Yeh [24] still apply the Hough transform to track the lane 

markers which can not be deformed in the image captured by the normal camera. 

However, due to the distinct curvature with the fish-eye lens, it is impossible to take 

Hough transform into our system. Hence, the novel approach for lane modeling needs 

to be considered the geometric effect of ROI and the connectivity of the lane markers 

with robustness and adaptation. 

 The flow chart of the piece-wise edge linking model is shown in Fig. 3-16(b).  

 38



 

                 (a)                               (b) 
Fig. 3-16 : (a) Seven sub-regions automatically segmented within ROI. (b) The flow 
chart of the piece-wise edge linking model. 

  
                 (a)                               (b) 

B 

C 

D 

E 

F 

G 

A 

Fig. 3-17 : (a) Seven sub-regions segmented within ROI. (b) The flow chart of the 
piece-wise edge linking model. 

 

 Figure 3-17 shows the two different size of ROI is caused by the variation of the 

intrinsic and extrinsic setting of camera. In general, the width of ROI depends on the 

yaw angle of camera, and the height of that depends on the pitch angle or the distance 

from the mounting position near the rearview mirror to the road plane. Although those 

parameters can not be taken in our system, we still find the property that the lane 

boundary in the image must extend to the upper-left part of ROI even if the lateral 

position estimated from the lane marker is not the same through the image sequences. 
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THKeyAngle RegAngle θ− >

 

Fig. 3-18 : The flow chart for finding the line-shape in the bottom sub-region (A). 

2THKeyAngle RegAngle θ− >

 
Fig. 3-19 : The flow chart for finding the line-shape in sub-regions from (B) to (G). 
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 By using the perspective effect that lane markers almost converge near the region 

of vanishing point, the included angle from the diagonal of the ROI to the vertical 

boundary of that can be determined the maximum searching range of angles for 

Hough transform. This mechanism will be regarded as the initial step in the 

piece-wise linking model as shown in Fig. 3-16(b). To overcome the irregular 

curvature of lane trajectory from the fish-eye lens distortion, the seven sub-regions 

automatically segmented in Fig. 3-16(a) contribute to fit the edge pixels of lane since 

its boundary information contained in it can be regarded as the line-shape. Therefore, 

the principle of Hough transform described in Section 3.4.2 is directly used for the 

bottom sub-region (A) as demonstrated in Fig. 3-17. The details of parameters in Fig. 

3-18 and Fig.3-19 are explained as follows: 

St_X, Ed_X:  

The coordinate values of x-axis in the bottom and top border of the sub-region 

determined by Hough transform. Ed_X situated in the bottom border of the next 

sub-region, such as the same location as the bottom border of sub-region (B) and 

the top border of sub-region (A), can become the fixed point for searching the 

line edge pixels only by the angle θ as the flow chart in Fig. 3-19. 

SkipTh: 

Its size depends on the vertical pixel-width of the sub-region (A) in Fig. 3-18. 

For some circumstances like the rapidly lane changing maneuver, the lane 

marker may be discontinuous for each sub-region in the image. The threshold is 

to control when the lane modeling procedure is performed and observe if the 

edge pixels in the bottom sub-region (A) have adequate amounts to composite 

the lane trajectory. 
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KeyAngle, RegAngle, , , δ, Δθ, Lw: THθ 2THθ

KeyAngle and RegAngle are the angles about appropriate orientation of line 

boundary in sub-regions induced by the current and previous frame. Based on the 

connectivity and continuity of lane markers on the road surface,  and  

are the thresholds to limit if the difference between KeyAngle and RegAngle is 

small enough. In addition,  must be smaller than  since the searching 

angles with sub-region (B) to (G) is restricted by the previous detecting results 

from the bottom sub-region (A). δ and Δθ are the slight range for detection with 

Hough Transform from sub-region (B) to (G) where the computation power can 

be reduced. At last, Lw is a revised parameter to restart the seeking area in the 

x-axis when the number of line pixels is zero in Fig. 3-19. 

THθ 2THθ

2THθ THθ

 

To simply the geometric circumstance that the distance between the vehicle and 

lane trajectory with some curvature in the image is much different, especially the 

effect of fish-eye lens distortion, we use LSR (least square regression) to make the 

curved a lane boundary approximate a straight line. The LSR can be induced as 

below: 
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Equation (3-13), (3-14) can be simplified as  

{ 2
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a X b N Y                   (3-15) 
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Where   N= (Numbers of sub-regions in ROI) + 1 

  
Fig. 3-20 : LSR approximation. 

  

According to the parameter information showed in Fig. 3-20 (a), the linear model 

can be constructed by the equations (3-16). The approximating straight lane boundary 

is displayed in Fig. 3-20 (b), which is directly reflected since the image contents 

acquired by the camera mounted on the opposite side of the vehicle are almost the 

same except for the reflective property. 
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4 Chapter 4 

Lane Departure Warning and 

Drowsiness Estimation 
 

4.1 Overview 
 

 

Fig. 4-1 : The flow chart for the whole system.  
 

After extracting the lane boundary from the previous chapter, the lateral 

information of lane markers can be used to judge when the lane change maneuver 

occurs for the driver. In this chapter, the LDW (lane departure warning) system is 

constructed by measuring the displacement, instantaneous velocity and TLC (time to 

lane crossing) of the lane to form the warning triggers for alarms. The standard for 

drivers’ drowsy state is based on the reflection time when people start to turn the 
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steering wheel after they drive off the stable-state regions which are dependent on the 

habit of them for strait-line driving. Trying to combine the experimental data from 

BRC (brain research center) in NCTU with the realistic scenes, and a gauge of drowsy 

degree will be proposed to show the possibility with respect to the drowsiness of 

drivers. The flow chart of the whole system is shown in Fig. 4-1. 

 

4.2 Lane Departure Warning 
 

4.2.1 The Warning Algorithm 
 

As described in Section 1.2.2, some algorithm has been developed to predict 

when the driver is in danger of departing the road but not annoy the driver sensitively. 

In other words, extending the interval of warning time can receive the more correct 

driving maneuver, but the number of nuisance alarms will increase apparently. Lee 

[26] and Ruder [31] considered that LDW does not necessarily need the precise offset 

and position information from each frame to add the computing load since it only 

assists the human driver and passively responds to the circumstance such as when the 

lane-departure occurs. In order to balance the systematic efficiency and acceptable 

detection rate in our LDW system, only two representative measures are selected to 

trigger the warning message. The two judging conditions are discussed as follows: 

(1) Lateral displacement: 

If the lane boundary is excessively close to the vertical borders of ROI, the driver 

will be in danger with higher possibility. We will regard this as a dangerous 

departing behavior even if it may be only someone’s habit of driving. There, the 

safe region which contains the normal lateral offset of lanes is defined as follows. 
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1 4Safe Region: ,
4 5

ROI ROI
⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 

(2) TLC (time to lane crossing): 

TLC which was first proposed by Godthelp [35], is a measure of the time 

remaining before a vehicle on a given trajectory will depart the road. It can 

provide more reliable information than the lateral position merely due to the factor 

for lateral velocity can be considered. In our system, the definition of TLC is a 

ratio of lateral offset smaller than the width of ROI to the lateral velocity at the 

moment.  

The classification for the dangerous degree of warning alarms and the deducing 

process of TLC are explained in details in the next section. 

 

4.2.2 Evaluation  
 

To prevent the noisy effect such as high frequency variances of the lateral offset 

of lane markers in each frame from measuring error, we take five frames processed by 

lane detection to estimate only one weighted average result for departure judgment 

such like a causal temporal filter. (In practice, there is always one frame only for 

Gaussian smoothing between the two frames used for lane detection in our system. In 

other words, consecutive five numbers of lateral positions occupy about 0.33 seconds 

for 30fps.) The values of weights are {0.22, 0.21, 0.20, 0.19, 0.18} from the present 

and the last four processed frames. The flow chart for TLC computation is shown in 

Fig. 4-2. 

By the two obvious measures, the degree of departure warning can be classified 

with the color of alarms as the following: 
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1 4If   the current lateral offset is inside the safe region: { ROI, ROI}
4 5

      If   TLC 2.5sec   AND  Vel 0
            Alarm type >> green light
      Else
            Alarm type >> yellow light
Else
      

≥ ≠

Alarm type >> red light  

 

(1) (0) (pixels/sec)
0.33

Dis DisVel −=

(Width of ROI) - Dis(1)TLC
Vel

=
0 - Dis(1)TLC

Vel
=

 
Fig. 4-2 : The flow chart for TLC estimation. 

 

4.3 Drowsiness Estimation for Driver 
 

In recent years, preventing accidents caused by drowsiness has become a major 

focus of active safety driving in recent years. The major challenges in developing a 

real-time system for drowsiness prediction include: 1) the lack of significant index for 

detecting drowsiness and 2) complicated and pervasive noise interferences in a 
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realistic driving environment. Therefore, the BRC (Brain Research Center) in 

National Chiao Tung University has developed a drowsiness-estimation system based 

on electroencephalogram (EEG) to estimate a driver’s cognitive state when he/she 

drives in a virtual reality (VR)-based dynamic simulator. The definition of the driving 

error in this experimental environment is the deviations between the center of the 

vehicle and the center of the cruising lane in the lane-keeping driving task.  

In this section, the system architecture of BRC will be introduced in Section 

4.3.1. The relationship between the reaction time and driver’s drowsiness will be 

explained in Section 4.3.2. Before trying to reasonably and effectively integrate the 

measuring result from the VR-based driving environment into the lane detection 

system in this thesis, some changeful factors of the realistic image-based system must 

be discussed. In Section 4.3.3, a stable-state range can be constructed to determine the 

lane’s lateral position where someone gets used to driving in a straight road-path for a 

long time. Then, a gauge of the drowsy degree successfully combine the experimental 

result evaluated by the EEG-based analysis [27] with the realistic and dynamic LDW 

system successfully is proposed in this thesis, as described in Section 4.3.4. Finally, in 

order to adaptively extend the experimental framework to the practical driving 

environment, we estimate the average velocity within the interval of reaction time by 

deducing the ratio of the lane-width on the realistic road plane to that in the video, as 

explained in Section 4.3.5. 

 

4.3.1 Experimental Architecture of BRC 
 

In general, measuring the precise data for human consciousness in dynamic 

driving environment is not easy. There may be some perturbations from the external 

noise or suddenly interference caused by the traffic variations affecting the data 
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accuracy. In other words, strict training of human operators by the actual machines or 

vehicles in real sites not only has high demands in space, time, and money to perform 

such a training job, but also leads to another phase of the measuring problem. To 

overcome the above dilemma, the worldwide trend is to use the virtual-reality (VR) 

technology to meet the requirements of public security in training and censoring of 

human operators. It can provide a realistic safety environment, which allows subjects 

to make on-line decisions by directly interacting with a virtual object rather than 

monotonic auditory and visual signals. Besides, VR is also an excellent candidate for 

brain research on real-time tasks become of its low cost, saving time, less space, and 

condition control to avoid the risk of operating on the actual machines, and thus 

extends the applications of possible brain computer interfaces to general populations. 

 

 

Fig. 4-3 : The VR-based dynamic driving simulation laboratory. 

 

Fig. 4-4 : The details about the width information of each lane, road, and car. 
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 The experimental environment constructed by BRC is shown in Fig. 4.3. The 

VR-based four lane highway scene is projected on a 120 degree-surround screen 

(304.1-cm wide and 228.1-cm high), which is 350 cm away from the driving cabin. 

The four lanes from to right are separated by a median stripe. The distance from the 

left side to the right side of the road is equally divided into 256 points (digitized into 

values 0-255), where the width of each lane and the car is 60 and 32 units, 

respectively. The frame rate of highway scene is 60 fps. All the descriptions are 

depicted in Fig. 4-4. 

 

4.3.2 Predictive Mechanism for Drowsiness Effect 
 

Before executing the experimental step, we have to find the relationship between 

the measured EEG signal and the subject’s behavior performance. One point should 

be taken as a quantified index as the deviation between the center of the vehicle and 

that of the cruising lane [36]. By examining the video recordings, the pilot 

experimental studies show that when the subject is drowsy, the driving performance 

will decrease and vice versa. In this experiment, the subjects participated in the 

highway-driving simulation after lunch in the early afternoon when the alertness may 

easily diminish within one-hour monotonous working [37].  

All the subjects were instructed to keep the car at the center of cruising lane by 

controlling a steering wheel. In all sessions, the subjects drive the car continuously for 

60 minutes and were asked to try their best to stay alert. Participants then returned on 

different days to complete a second 60-minute driving session or more if necessary. 

To mimic the consequences of a non-ideal road surface, the car is randomly drifted 

away from the center of the cruising lane every 5 or 10 minutes. So the driver must 

maintain high attention to immediately correct the direction of vehicle in the cruising 
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lane due to the 60 pixels per second for the deviating velocity. When the driver is 

drowsy, the reaction time between the onset of deviation and steering wheel is 

increased. This event can be used for ERP analysis of different drowsiness states 

using 30-channel EEG signals [27].  

 In general, the reaction behavior should be increasingly slower when people start 

to enter the drowsy state. In other words, the higher possibility for the measurement 

shows that the subject is drowsy when his/her average reaction time is gradually 

longer in a section of time interval. To avoid the fluctuation of drowsiness signal, the 

measured data for reaction time must be smoothed by a causal 90-second square 

moving average filter advancing at 2-seconds steps. The experimental trials are sorted 

according to the length of reaction time and equally divided into five groups as the 

index for drowsiness estimation in Fig. 4-5, where each group has 20 percentages of 

trials in order. This statistics evaluated by the EEG analysis [27] can be regarded as 

the reference implemented into our vision based lane departure warning system. 

 

 

Fig. 4-5 : The trials collected from the VR-based experiment are sorted according to 

the degree of reaction time. 
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4.3.3 Construct the Stable-Driving Region with 

Different Driver’s Habit 
 

According to the above experimental condition, the definition of reaction time is 

the duration between the onset of deviation and the occurrence for steering-wheel. 

Subjects have to move the vehicle’s center back to the cruising lane to wait for the 

next testing deviation produced by the computer when they have been informed in 

advance. However, the restarting action is not easy to be determined due to the 

variation of different driving habits, especially the loose drivers which have a larger 

spread in lateral position so that the distance between the wheel and lane marker can 

not exactly fixed in the straight-road driving [15]. Therefore, the algorithm to extract 

the stable-state driving region must be developed before constructing the drowsiness 

estimation mechanism.  

The standard for stable-state range determination is described as below: (1) the 

lateral position of lane markers within this region should be close to each other; (2) 

the TLC is larger; (3) The lateral offsets found by the LDW system in Section 4.2 

must be situated in this region for a long period. 

 According to the above properties, first of all, we take the lateral offsets with 

larger TLC about consecutive N frames processed by the LDW system. Second, by 

the previous statistics, the mean and standard deviation estimated by them with the 

clustering method are used to model the region as a normal distribution. At last, the 

updating method is developed to adjust the size and location of the range to the 

changed driving habit for a driver. The flow chart for stable-state region determination 

is demonstrated in Fig. 4-6. 

 To rapidly and precisely find out the optimal parameters of each normal 
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distribution, we choose k-means to initially classify the statistics of N lateral offsets.  

 

 

Fig. 4-6 : The flow chart for stable-state region determination. 

 

 The error function which determines the clustering center point of each group is 

shown as follows: 
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 In Fig. 4-6, μ is the mean value of each distribution; δ is the standard deviation 

of each distribution; w is the weight determined by the probability of each group. 

After initializing for each distribution model, we find that the N lateral offsets can be 

approximately modeled by only three normal distributions, which are respectively 

located on the points nearby the mean value and 1.5 standard deviations with high 

probably, as shown in Fig. 4-7. Therefore, we choose K=3 as the initial clustering 

numbers. 
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Fig. 4-7 : The distribution of N lateral offsets and three approximately Gaussian 
model (N=200 in this Figure.) 

 

 Not the same as the adaptive background model [32], the human habit can last 

within a steady behavior style for a long time. Based on this psychological property, 

we only use a single normal distribution with some update mechanism to model the 

adaptive stable-state driving region to avoid its unreasonable fluctuation. Updating the 

parameters of the stable-state model can adapt to the changed driving habit if the 

lateral offset is within 2.25 standard deviations of this distribution. The parameters of 

the distribution which matches the new observation for human habit are updated as 

follows: 

1(1 )t t txμ β μ β−= − ⋅ + ⋅                     (4-2) 

2 2
1(1 ) ( )t t tx 2

tσ β σ β μ−= − ⋅ + ⋅ −                  (4-3) 

where   ( | , ),     is the learning ratet k kxβ α η μ σ α= ⋅  

2 11 ( )1 / 2 2( , , ) 1 /[(2 ) ] t tx

t t t tx
μ σ

η μ σ π σ
−− − ⋅

= ⋅ ⋅ e .                 (4-4) 
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 By observing equation (4-5), the influence for this stable-driving distribution will 

be unapparent when the distance between the current lateral offset and the mean value 

of the model is so far. This property can effectively maintain the stability of this 

region. 

                 

4.3.4 Data Collection and Adjustment for the 

Realistic Environment 
 

After selecting the suitable driving region for the driver, the experimental 

statistics evaluated by EEG analysis from BRC can be integrated into our lane 

departure system. Not the same as experimental condition which stipulated that the 

reaction behavior can be increasingly slower when the subject starts to enter the 

drowsy state by observing the trend of reaction time for a long period (about 90 sec), 

the demand for drowsy estimation mechanism in our system should provide real-time 

prediction if the driver is still on the alert. Therefore, we design a gauge chart to 

estimate and display the current driver’s drowsy degree as much as possible, as shown 

in Fig. 4-8 (b). 

In Fig. 4-8 (a), the difference in lateral offset between (B) and (C) is 52.45 pixels, 

the mean value (A) of stable-driving region is located at pixel value of 123.23, and the 

reaction time counted from (D) and (E) is 1.65sec, as shown in Fig. 4-8 (c). 

As described in Section 4.3.2, the definition of reaction time is the time interval 

of deviation between the center of the vehicle and that of the cruising lane in the 

VR-based experimental environment. In other words, the value of deviation can be the 

same as the lateral offset between the car-body and the lane marker in our 

vision-based system. By the known stable-driving region determined in Section 4.3.3, 
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the drowsiness estimation system can apply to drivers with different driving habits 

without directly selecting the unchanged center part of ROI, such as the restarting 

mechanism of BRC. Therefore, the count of reaction time starts when the lateral offset 

of lane marker deviates outside the stable region, and stops when the driver turns back 

the steering wheel exactly in our system. However, since we judge the reactive 

behavior only by the image contents, the backward motion must be confirmed by the 

criterion that the direction of the lateral velocity keeps identical until the lateral offset 

is within the stable region again, as the points (D) and (E) in Fig. 4-8 (d) separately. 

 

 

 

Fig. 4-8 : The mechanism for drowsiness estimation in our LDW system. (a) The 
relationship between the stable-state region and the lateral deviations. (b) A 
drowsy-degree gauge chart. (c) A stable-driving group box, (d) The start and stop 
points of reaction time. 
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The flow chart for drowsy degree estimation by the reaction time is shown in Fig. 4-9. 

The discussions about Fig. 4-9 are described as follows: 

(1) The drowsy degree may be subtracted by 10% if the reaction time is never up 

to 1.5sec for 10sec. This automatic mechanism is based on the VR-based 

experiment of BRC that the computer will automatically produce the 

deviation behavior about 5~10sec. After all, the reactive behavior in drowsy 

state must be increasingly slower without reducing the alert abruptly.  

(2) The variation of drowsy degree displayed in the gauge chart, as demonstrated 

in Fig. 4-8 (b), depends on the estimated reaction time of the driver in the 

realistic environment. To avoid the variances in drowsy degree violating the 

nature of human operation, the changeful region for each estimation result is 

limited within plus and minus 20%. 

(3) Use the classified alert and drowsy state in Fig. 4-5 analyzed by EEG-based 

algorithm as the evidence to determine the cognitive property of the driver in 

realistic environment. 

(4) If the drowsy degree is exceeded 70%, the alarm light with red color will be 

displayed in our system. On the other words, the alarm light with yellow 

color will be turned on if the drowsy degree is exceeded 35% but not up to 

70%. Otherwise, the green light is showed that the driver is still situated in 

the safety-state with higher alert. 

(5) In general, the lane change maneuver can be not certainly judged as an 

intentional action for driving or an unintentional behavior with the drowsy 

consciousness only by the information of deviations. Therefore, the warning 

mechanism focused on this departing behavior is described as below: 
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If   Pos(t)-Pos(t-k)>0.8 width  of ROI)
       This departing motion is recognized as the lane change maneuver
      If   Drowsy Degree 70%  (red light)
           Not change
            Caused by the dro

⋅

≥

(

wsy consicousness
      Else
            Drowsy Degree=0
             Caused by the intentional behavior for normal driving

Where  
Pos(t): The currently measured lateral offset
Pos(t-k): The previously measured lateral offset, k is dependent on the frame rate of video

 

Reaction TimeDegree(1 ) 20%
Drowsy _ TH

− <

Reaction Time(Degree 5 )%
Drowsy _ TH

+ ⋅
Reaction Time(Degree )%
Drowsy _ TH

⋅

 
Fig. 4-9 : The flow chart of drowsy degree estimation by the average reaction time 
evaluated from BRC. 
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5 Chapter 5 

Experimental Results 
 

5.1 Environmental Setup 
 

Figure 5-1 shows that a fish-eye camera is mounted under the rear-view mirror 

on the side of the vehicle to acquire blind-spot view image sequences. In addition, the 

driver can immediately obtain the sideward information of road surface by the CRT 

which displays the real-time image sequences from the outside camera. 

 

 

Fig. 5-1 : The experimental architecture. 
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Table 5 : Specification of platform information. 
CPU Intel T5600 1.83GHz 
Memory 1GB DDR2 RAM 
Compiler Borland C++ Builder 6.0 
OS  Microsoft Windows XP 
Resolution 320x240 
Frame rate 30 FPS 

 

Figure 5-2 shows the realistic programming interface in the PC platform. Block 

(A) contains the input frame which is added the approximating straight lane boundary 

by LSR, as explained in Chapter 3, in the left part; the center part of (A) shows the 

result of lane detection method with ROI extraction; the right part of (A) which shows 

the binarizing lane boundary only includes the image contents within ROI. 

 

Fig. 5-2 : The programming interface in the PC platform. 

 

 Block (B) contains the display of the related lateral information computed by 

LDW system. Besides, it also shows the reaction time and stable-driving region, as 
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explained in Fig. 4-8. The warning alarms with different colors of lane of LDW and 

drowsiness estimation systems is contained by block (C), where the coordinate values 

about the border of ROI are also included. Block (D) shows the searching range of 

angles about the piece-wise edge linking model, as described in Section 3.4, and the 

output frame rate which responds to the systematic performance. At last, Block (E) 

records the lateral offset and the maximum and minimum range of the reconstructed 

stable-driving distribution with real-time update.  

  

5.2  Results of Distinct Environments 
 

5.2.1 Explanation of Experimental Conditions 
 

The driving environment is focused on highway with different light conditions. 

The image sequences captured by the camera with unknown two pan- or tilt-angles 

are tested with the same lane detection algorithm in Fig. 5-3. At the same time, in 

order to observe if the lane-based warning system can maintain robust performance 

and tolerate the light variation, we select the video segments with three different 

periods, daytime, evening, and night of one day for experiment in the next section. 

 
Fig. 5-3 : The testing image with different mounting angles. 
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5.2.2 Results of Lane Det ction 

In Fig. 5-4, the testing environment considers the two properties with respect to 

the 

e
 

view-angles and light conditions simultaneously. The detection results of daytime 

(a), evening (b), and night (c) are processed by the same programming setting. 
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Fig. 5-4 : The results of lane detection. 

  

In Fig. 5-4 (c), the lane boundary can be clearly extracted in the nighttime 

driving environment even if the side-view of vehicle usually has more chances to 

subject to the perturbation from the exterior light-sources.  

 

5.2.3 Results of Lane Departure Warning 
 

If the lane boundary is locked precisely by the lane detection mechanism, the 

lane departing maneuver can be tracked and recorded its position whether the lateral 

speed is faster or not. Figure 5-5, 5-6, and 5-7 shows the tracking results of lane 

departure with different variations of light and moving direction of the vehicle. 
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# Frame 3293               # Frame 3299 

 
# Frame 3305               # Frame 3310 

 
# Frame 3316               # Frame 3334 

 
# Frame 3385               # Frame 3388 

Fig. 5-5 : The results of lane departure caused by cutting into the inside lane. 

 

 
# Frame 693                  # Frame 718 
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# Frame 733                  # Frame 746 

 
# Frame 787                  # Frame 818 

Fig. 5-6 : The results of lane departure in the night time. 

 

 
# Frame 3689             # Frame 3701 

 
# Frame 3740             # Frame 3776 

Fig. 5-7 : The results of lane departure caused by moving into the outside lane. 
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5.2.4 Results of Stable-Driving Region and 

Drowsiness Estimation System 
 

As described in Section 4.3.3, the straight-road driving distance between the lane 

marker and wheels can be modeled by the clustered distribution with higher weight 

and smaller standard deviation. For further adaptation, we develop an update 

mechanism to make the stable region adaptive to the changeful driving habits of 

people. Figure 5-8 shows the updating process of stable-region described as a 

statistical chart which contains the information of lateral offsets at the same time. 

From Fig. 5-8 (a) to (d), the mean value of the stable-region will increase obviously 

due to the accumulated lateral offsets which are almost situated over the region and 

can be regarded as the new driving habit of the driver adequately. 

 

(a)                       (b) 

   
(c)                       (d) 

Fig. 5-8 : Results of update for the stable-driving region. 
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(a)                            (b) 

 
(c)                            (d) 

Fig. 5-9 : Results of the variation of drivers’ drowsy degree by the reaction time. 

 

 The relationship between the gauge chart of drowsy degree and the reaction time 

of drivers is demonstrated in Fig. 5-9. From Fig. 5-9 (a) to (b), the reaction time will 

start to be counted since the lateral offset is outside the stable-region at that moment. 

Therefore, the drowsy degree can be raised with a specific ratio of the measured 

reaction time to the threshold which has been evaluated by the EGG-based analysis 

from BRC. On the other hand, from Fig. 5-9 (c) to (d), the drowsy degree keeps 

increasing because the time interval between the current and previous reaction time 

which are both greater than the threshold is not for 10 sec.  
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5.3  Performance 
 

Table 6 : The processing information of lane detection algorithms.
  

Output 
FPS 

 
ROI_size 

(width,height)

 
De-noise 

Processing
(A) 
(%) 

Lane 
Boundary 
Extraction

(B) 
(%) 

Piece-wise 
Edge Linking 

Model + LDWs
(C) 
(%) 

Test1 16.6 (245,146) 63% 24% 13% View1 
Test2 16.9 (250,142) 67% 24% 9% 
Test1 15.9 (204,194) 68% 16% 16% View2 
Test2 15.9 (204,200) 67% 15% 18% 

 
(a)                                 (b) 

 
(c)                                 (d) 

Fig. 5-10 : The processing ratio of 4 examples implemented by lane detection and 

lane departure warning algorithms. 

 

 The performance of the four testing videos with two different view-angles is 

listed in Table 6. We split the lane detection approach into three parts. (A): The 

de-noise preprocessing. (B): The lane boundary extraction. (C): The edge linking task 

and LDW. In general, the size of ROI has the most influence on the systematic 

execution time. However, the frequently departing maneuver occurred in the image 
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segments will result in the additional computing load. As explained in Section 3.4, the 

bottom sub-region of ROI must be searched for line-pixels with Hough Transform for 

each frame. In other words, the searching range in it can not be regarded as the limited 

size near the position determined by the previous lane marker if the lateral offsets 

change seriously. Figure 5-10 shows that the ratio of edge linking mechanism depends 

on the image contents whether the ROI is large or not. On the other hand, due to the 

5x5 size of Gaussian mask, the de-noise procedure still occupies most of execution 

time even if the frequent departure exists or not. 

 

5.4  Discussion and Analysis 
 

In order to increase detection rate of LDW and drowsiness estimation system, the 

lane detecting error must be low as much as possible even if this algorithm is always 

subjected to the disturbance resulted from external factors. In Fig. 5-11, the lane 

markers can be still extracted by our developing method although they are unclear. 

However, the lane detection method we proposed in this thesis can not resolved some 

cases such as driving in a tunnel so that the contrast between lane markers and road 

surface is not enough, as shown in Fig. 5-12 (a).  

 

Fig. 5-11 : Results of lane detection for the unclear lane markers. 
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(a) (b) 

 

(c) 

 Fig. 5-12 : Some examples of detecting error in our lane detection system. 

 

 In addition, as explained in Section 3.2, the range of ROI can be detected by the 

boundary information of the car window and that of the horizon in the image. But this 

property may be not suited to the environment which does not only contain the above 

clues for ROI extraction but be affected by the light conditions, such as the example 

shown in Fig. 5-12 (b). On the other hand, the external light in the nighttime has 

chance to produce a “light ring” effect on the camera lens which may cause the 

deviated parting position of the detected lane markers in the image instantaneously, as 

shown in Fig. 5-12 (c). 
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6 Chapter 6 

Conclusions 
 

We propose a scientific system for driver’s drowsiness estimation by integrating 

the statistics evaluated by the EEG-based analysis from BRC into our lane departure 

warning system in the realistic driving environment. In this thesis of lane detection, 

we develop a method for automatic ROI extraction only by analyzing the image 

contents captured by the fish-eye camera mounted under the rear-view mirror without 

knowing the related camera parameters in advance. To overcome the light variations, 

the de-noising architecture which is considered the spatial and temporal domain at the 

same time can restrain the noise effectively. Focused on the geometric property of the 

blind-spot view, the adaptive type of edge operator and threshold selection can exactly 

detect the lane boundary. Finally, an improved edge linking model we proposed not 

only increases the searching speed for lane trajectory but resolves the effect of 

fish-eye lens distortion. 

 About the lane departure warning and drowsiness estimation proposed in this 

thesis, we construct a warning mechanism with the lateral offsets and TLC computed 

by the lateral velocity and the border of ROI. Due to the different driving habits of 

people, we construct the stable-driving region for modeling by the information of 

previous lateral positions of lane markers with updating mechanism. Then, we use the 

deviation as the index for drowsiness estimation which has been analyzed and 

evaluated by EEG-analysis. By considering the human’s behavioral style that the 

reactive behavior must be increasingly slower for a long period when the subjects 

enter the drowsy state gradually, we design a gauge of drowsy degree to estimate the 

driver’s psychological state according to the reaction time of drivers. 
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 The lane-based stable system has been tested that the average frame rate is up to 

15fps on PC platform. In the future, it will be integrated into the blind-spot side 

collision warning architecture to increase the better detection rate and provide more 

adaptive performance. Besides, by the constructed mechanism for drowsiness 

estimation in the dynamic driving environments, we can collect more data to further 

analyze the other inattentive behavior of drivers through this system so that the safety 

driving system can consider all the possible risks caused by the internal or external 

factors of drivers as much as possible. 
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