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中文摘要 

 

駕駛者分心已經證實是造成車禍發生的重大原因之一。因此，本論文以腦電

波(Electroencephalogram, EEG)來探討駕車行為下人類分心效應的腦部反應變

化。研究中使用虛擬實境技術之動態駕車裝置，來模擬真實之駕車環境。在此實

驗中，我們設計非預期性的車子偏移與數學問題的出現，來探討雙重任務所造成

的分心效應。同時，為了進一步探討偏移和數學此二種任務在不同時間出現下的

相互影響程度，我們設計了五個在事件出現時間點上有差異的狀況，並找出二種

任務在不同的出現時間點，所造成腦電波上分心效應的反應變化。EEG 訊號經過

獨立成份分析(Independent Component Analysis, ICA)後分離成數個獨立的訊

號源，再利用事件相關頻譜擾動(Event Related Spectral Perturbation, ERSP)

來計算事件發生前與後的頻譜變化，並經由此來觀察腦不活動在不同時間點上的

頻譜差異。結果發現在額葉的區域，Theta 頻帶 (5~7.8 Hz) 和 Beta 頻帶 

(12.2~17 Hz) 的能量會因為分心效應而增強。在枕葉區域，觀察到因為視覺刺

激所誘發的反應現象以及因為回答數學問題按按鍵所產生的放鬆現象。在運動皮

質區觀察到在 Alpha 頻帶因為事件誘發的能量抑制。以上所發現的腦部活化結
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果在不同受測者均可以觀察到相同的反應。由以上這些結果我們能證明在駕駛事

件與數學題目出現時間點有差異的狀況下，行為反應和腦波反應也相對應有變

化。此一實驗結果也發現在額葉區域的 Theta 頻帶能量增強變化可以作為日後偵

測駕駛者在實際駕駛中是否有分心的指標。 

 

關鍵字：分心、雙重任務、腦電波、額葉、Theta 頻帶、數學、事件相關頻譜擾

動、獨立成份分析 
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Abstract 

Driver distraction has been recognized as a significant cause of traffic incidents. 

Therefore, the aim of this study was to investigate Electroencephalography (EEG) 

dynamics in response to distraction during driving. To study human cognition under 

specific driving task, we used Virtual Reality (VR) based driving simulation to 

simulate events including unexpected car deviations and mathematics questions (math) 

in real driving. For further assessing effects of the stimulus onset asynchrony (SOA) 

between the deviation and math presented on the EEG dynamics, we designed five 

cases with different SOA. The scalp-recorded EEG channel signals were first 

separated into independent brain sources by Independent Component Analysis (ICA). 

Then, the Event-Related-Spectral-Perturbations (ERSP) measuring changes of EEG 

power spectra was used to evaluate the brain dynamics in time-frequency domains. 

Results showed that increases of theta band (5~7.8 Hz) and beta band (12.2~17 Hz) 

power were observed in the frontal cortex. For occipital components, we found the 

pattern of visual induced brain activities and rebounds from the button press. In motor 

components, we found alpha suppressions time-locked to event onsets. All the above 

results were consistently observed across 11 subjects. Results demonstrated that 
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reaction time and multiple cortical EEG sources responded to the driving deviations 

and math occurrences differentially in the stimulus onset asynchrony. Results also 

suggested that the phasic theta increase in frontal area could be used as the distracted 

indexes for early detecting driver’s inattention in the real driving in the future. 

 

Keyword: Distraction, Dual task, Frontal lobe, Theta band, Mathematics, Mental 
Workload, EEG, ICA, Component Clustering, ERSP, ERP. 
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1 I. Introduction 
 

Distraction and inattention of drivers have been identified as the main leading 

causes of car accidents. The U.S. National Highway Traffic Safety Administration has 

identified driver distraction as a high priority area about 30% [1]. Driver distraction 

by whatever cause is a significant contributor to road traffic accidents [2] [3]. Driving 

is a complex task in which several skills and abilities are involved simultaneously. 

Monitoring drivers’ attention related brain resources is still a challenge for researchers 

and practitioners in the field of cognitive brain research and human–machine 

interaction. 

Reasons of distractions found during driving were quite widespread, including 

eating, drinking, talking with passengers, use of cell phones, reading, fatigue, 

problem-solving, and using in-car equipment. Recently, commercial vehicle operators 

with complex in-car technologies (such as navigation, road traffic information, mobile 

telephones and in-vehicle entertainment systems) are also at increased risk since 

drivers may become increasingly distracted in the years to come, thus making it likely 

that the problem of driver inattention [4] [5]. Some literatures studied the behavioral 

effect of driver’s distraction in car. Tijerina’s study was based on measurement of the 

static completion time of an in-vehicle task [6]. Similarly, the distraction effect caused 

by cellular phones during driving has been a focal point of recent in-car applications 

[7] [8] [9]. Experimental studies have been conducted to assess the impact of specific 

types of driver distraction on driving performance. While these studies have generally 

reported significant driving impairment [10] [11], simulator studies cannot provide 

information about the impact of these decrements on the occurrence of crashes 
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resulting in hospital attendance by the driver. Therefore, in order to provide 

information before the occurrence of crashes we try to investigate the drivers’ 

physiological responses. 

To the aspect of neural physiological investigation, some literatures focused on 

the brain activities of “divided attention” referring to attention divided between two or 

more sources of information, such as visual, auditory, shape, and color stimuli. 

Madden et al. [12] investigated brain activation when subjects were instructed to 

divide their attention among the display positions within the visual modality. Regional 

cerebral blood flow (rCBF) activation was found in occipitotemporal, occipitoparietal, 

and prefrontal regions. And Positron emission tomography (PET) measurements were 

taken while subjects discriminated between shape, color, and speed of a visual 

stimulus under conditions of selective and divided attention. The divided condition 

activated the anterior cingulated and prefrontal cortex in the right hemisphere [13]. In 

another study, functional magnetic resonance imaging (fMRI) was used to investigate 

the brain activity during a dual-task (visual stimulus) experiment. This found 

activation in the posterior dorsolateral prefrontal cortex and lateral parietal cortex [14]. 

Similarly, the study used electroencephalogram (EEG) to investigate mental 

arithmetic-induced workload increasing, the finding is power increase in theta band in 

the region of frontal lobes [15]. And, several neuroimaging studies showed the 

importance of the prefrontal network in dual-task management [16] [17].  However, 

the above-mentioned studies just investigated the brain activity of dual-task 

interaction without considering the stimulus onset asynchrony (SOA) problem during 

driving and the effect of different temporal relationship of stimuli. 

The current investigation utilized an array of methodological assessment 

techniques and compared the sensitivity of each to changes in attention processing 

requirements as a function of driving task demand. Some literatures of investigated 
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the traffic record the electroencephalogram (EEG) to compare the P300 amplitude 

[18]. During simulated traffic scenarios, resource allocation was assessed through as 

event-related potential (ERP) novelty oddball paradigm [19]. However, these are just 

to analyze in time course, we can take one step to analyze the relation between time 

and frequency course. 

The electroencephalogram (EEG) has been used for 80 years in clinical practices 

as well as basic scientific studies. Nowadays, EEG measurement is widely used as a 

standard procedure in researches such as sleep studies [20], epileptic abnormalities, 

and other disorders diagnoses. Comparing to another widely used neuroimaging 

modality, functional Magnetic Resonance Imaging (fMRI), EEG is much less 

expensive and has the superior ability of temporal resolution for us to investigate the 

SOA problems. Furthermore, to avoid the interference and risks of operating an actual 

vehicle on the road, the use of driving simulation for vehicle design and studies of 

driver’s behavior and cognitive states is also expanding rapidly [21] [22]. The static 

driving simulation may be difficult to approach the realistic driving condition, such as 

the vibrations that would be experienced when driving an actual vehicle on the road. 

The VR technique allows subjects to interact directly with a virtual environment 

rather than monotonic auditory and visual stimuli. Integrating realistic VR scenes with 

visual stimulus is easier to study the brain response to visual attention during driving. 

Therefore, in recent years, the VR-based simulation combined with 

electroencephalogram (EEG) monitoring is an innovation in cognitive engineering 

research [20] [23]. 

The main goal of this study is to investigate the brain dynamics related to 

distraction by using EEG and VR-based realistic driving environment. Unlike the 

previous studies, our experiment has three main characteristics. First, the stimulus 

onset asynchrony (SOA) experimental design, the different appearance time of dual 
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tasks (mathematical questions and unexpected car deviation), has the benefits for us to 

investigate the driver’s behavioral and physiological response under multiple 

conditions and multiple distracted levels. Second, the ICA-based advanced signal 

analysis methods were used to extract the artifact-free brain responses and related 

cortical location related to the single/dual task. Third, compared with single task, the 

interaction and effect of dual-task-related brain activities was also investigated. The 

detailed contents are described in the following sections. 

The thesis was organized in 6 chapters. Chapter 1 briefly introduced current 

knowledge in vestibular system and the goal of the study. Chapter 2 detailed the 

apparatus and materials of the study. Chapter 2 also described the details of 

experimental setup, including the time course of event onset asynchrony setup. In 

chapter 3, we explored the EEG with innovative methods by combining Independent 

Component Analysis (ICA), time-frequency spectral analysis, power spectrum and 

component clustering. Chapter 4 showed the results. Chapter 5 discussed and 

compared our finding with previous studies, and finally we concluded in Chapter 6. 
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2 II. Experimental Apparatus 
    

The main purpose of this research was to investigate the EEG features related to 

distraction in a dual-task experiment. The most concerned issue in dual-task studies 

was the effect of distraction on driving because it directly related to public safety. For 

example, using cell-phone, tuning radio or looking at the road-sign could distract the 

drivers from their driving task and cause serious traffic accidents. However, the 

driving experiments were very dangerous if they were took place on road. With 

combining the technology of virtual reality (VR), a driving environment was 

constructed for the safety of driving experiments in our lab. The VR-based dynamic 

environment could provide realistic visual and motion stimuli to the subjects. The 

environment was employed in the setup of dual-task experiment as shown in Fig. 2-1. 

 

 
Fig. 2-1: The illustration of the experimental setup including the dynamic VR 
driving environment and the EEG-based physiological measurement system. 
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There were three major parts of the architecture: (1) a 3D highway driving scene 

based on the VR technology, (2) a real vehicle mounted on a 6-DOF motion platform, 

(3) a physiological signal measurement system with 36-channel EEG/EOG/ECG 

sensors. The subjects were asked to sit in a real car mounted on the 6-DOF motion 

platform with their hands holding the steering wheel to control the simulated car in 

the VR scene. The 30-channel scalp EEG and 4-channel EOG were simultaneously 

recorded at 1 KHz sampling rate. The details of the experimental setup would be 

presented in the following sections.  

 

2.1 Dynamic Driving Environment 

 

A virtual-reality (VR) based highway-driving environment was used to 

investigate the changes on drivers’ distraction effect. The VR driving environment 

includes 3D surround scenes projected by seven projectors and a real car mounted on 

a 6-degree-of-freedom (as showed in Fig. 2-2) Stewart platform to provide the 

kinesthetic stimuli. The dynamic driving environment provided a safe, time saving 

and low cost approach to study human cognition under realistic driving events. The 

subjects could interact directly with the environment and receive the most realistic 

driving conditions during the experiments. 
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Fig. 2-2: Pictures showed the dynamic VR driving environment, in the Brain Research 
Center of National Chiao Tung University, Taiwan, and ROC. A real car in the 3D VR 
environment was showed in the left picture. The experimental setup around the 
steering wheel was showed in the right picture. 

 

In this study, the VR scene was generated by the Virtual- Reality technology with 

a World Tool Kit (WTK) library. The C program including the WTK library was used 

and its library function was called up to move the three-dimensional models. The 3D 

view was composed of seven identical PCs running the same VR program. Seven PCs 

were synchronized by LAN so all scenes were going at exactly same pace. The VR 

scenes of different viewpoints were projected on corresponding locations. Fig. 2-3 

showed the layout of our simulator. The front screen marked 1 and 2 was overlapped 

by two polarized frames to reach the binocular parallax. The frames for the left and 

right eyes were projected onto the frontal screen with two projectors, respectively. By 

wearing special glasses with a polarized filter, the configuration provided a 

stereoscopic VR scene for a 3D visualization. In our VR scene, the surrounded 

screens covered 206° frontal FOV and 40° back FOV, as shown in Fig. 2-4. Frames 

projected from 7 projectors were connected side by side to construct a surrounded VR 

scene. The size of each screen had diagonal measuring 2.6-3.75 meters. The vehicle 

was placed at the center of the surrounded screens. Detailed information was shown in 

Table-1. 
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Fig. 2-3: The picture showed the configuration of the 3D surrounded scene. The 3D 
VR scene consisted of 7 projectors, creating a surrounded view. The frontal screen 
was overlapped by 2 projector frames in different polarizations, providing a 
stereoscopic VR scene for 3D visualization. 

 

Table-1: The Specification of driving simulator 
Screen Number or Location Dimension 
Screen Number 1, 2, 3, 4 (FOV 42°) (W)×(H) = (300 cm)×(225 cm) 
Screen Number 5, 6 (FOV 40°) (W)×(H) = (270 cm)×(202 cm) 
Screen Number 7 (FOV 40°) (W)×(H) = (210 cm)×(157 cm) 

Vehicle Dimension 
(L)×(W)x(H) = 
(430 cm)×(155 cm)×(140 cm) 

Driver to Front Screen (1, 2) 370 cm 
Driver to Left and Right Screen (5, 6) 220 cm (Left) and 300 cm (Right) 
Driver Head Height Relate to Screen 1 120 cm 
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Fig. 2-4: The picture showed the overview of surrounded VR scene. The VR-based 
four-lane highway scenes were projected into surround screen by seven projectors. 

 

2.2 EEG Signal Acquisition 

 

An electrode cap was mounted on the subject’s head for signal acquisition as 

shown in Fig. 2-5. A standard for the placement of EEG electrodes proposed by Jasper 

in 1958, which is known as the 10-20 International System of Electrode Placement 

[24] is used in the electrode cap. An illustration of the 10-20 system is shown in Fig. 

2-5, the electrodes are named according to the location of an electrode and the 

underlying area of cerebral cortex.  

 

A B 

  

Fig. 2-5: Schematic pictures showed the lateral (A) and top view (B) of international 
10-20 system of electrode placement [24]. 
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The letters F, C, T, P, and O were refer to the frontal, central, temporal, parietal, 

and occipital cortical regions on the scalp, respectively. The term “10-20” means 10% 

and 20% of the total distance between specified skull locations. The percentage-based 

system allowed differences in skull locations. The physiological data acquisition used 

30 sintered Ag/AgCl EEG/EOG electrodes with a unipolar reference at right earlobe 

and 2 ECG channels in bipolar connection placed on the chest.  

The 36 electrodes including 34 EEG/EOG channels , 2 ECG channels (bipolar 

connections between the right clavicle and left rib), and one 8-bit digital signal 

produced form VR scene were simultaneously recorded by the Scan NuAmps Express 

system (Compumedics Ltd., VIC, Australia) shown in Fig. 2-6. It was a high-quality 

40-channel digital EEG amplifier capable of 32-bit precision sampled at 1000 Hz. 

Table-2 showed the specifications of the NuAmps amplifier. Before acquiring EEG 

data, the contact impedance between EEG electrodes and skin was calibrated to be 

less than 5kΩ by injecting NaCl based conductive gel. The EEG data were recorded 

with 16-bit quantization levels at a sampling rate of 500 Hz in this study. All EEG 

data were preprocessed using a low-pass filter with a cut-off frequency of 50 Hz in 

order to remove the power line noise and other high-frequency noise. Similarly, a 

high-pass filter with a cut-off frequency at 0.5 Hz was applied to remove baseline 

drifts. 

 
Fig. 2-6: The picture showed the setup of the physiological recording containing the 
NuAmps EEG amplifier and the electrode cap.   
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2.3 3D Position Measurement of EEG Electrodes 

 

The Fastrak 3D Digitizer is an accurate electromagnetic tracking system we used 

for localization of electrodes. With the 3D digitizer, it became possible to construct 

accurate anatomical/functional images from the surface measured potentials. Fastrak 

is controlled by software named Locator, which acquires and displays 3D position 

measurements for electrodes. It includes a System Electronics Unit (SEU), a power 

supply, three cube receivers, one stylus and one standard transmitter (as showed in Fig. 

2-7). Used the hardware and software necessary to generate and sense the magnetic 

fields, compute position and orientation for digitizing electrode locations of subject’s 

head. 

 
Fig. 2-7: The picture showed the Fastrak 3D Digitizer. 

Table-2: Specifications of NuAmps 
Analog inputs 40 unipolar (bipolar derivations can be computed)
Sampling frequencies 125, 250, 500, 1000 Hz per channel 
Input Range ±130mV 
Input Impedance Not less than 80 MOhm 
Input noise 1 µV RMS (6 µV peak-to-peak) 
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2.4 Experimental Design 

 

To investigate the effect of stimulus onset asynchrony (SOA) on the behavioral 

performance and differences on brain activities between single- and dual- task 

condition in a virtual environment, we designed two tasks: unexpected car deviation, 

mathematical questions. We used the combinations of these two tasks to provide 

different distracted effects to the subjects. 

We developed a VR highway environment with a monotonic scene as shown in 

Fig. 2-8 and eliminated all unnecessary visual stimuli. The four lanes from left to right 

were separated by a median strip in the VR-based scene. The distance from the left 

side to the right side of the road was equally divided into 256 points for outputting 

digital signal from WTK program, and the width of each lane and the car was 60 units 

and 30 units, respectively (as showed in Fig. 2-9). In the VR scene, the simulated 

driving speed was controlled by a scheduled program, thus subjects need not to step 

on paddles, to prevent large muscle activity on the throttle or brake. 

 

 

Fig. 2-8: The photomicrograph showed the simulated high way scene. The 
monotonous scene was designed to reduce the visual disturbance. 
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Fig. 2-9: The illustration of the high way scene. The width of highway from the left to 
right side was equally divided into 256 units and the width of the car was 32 units. 

 

There would be four 15-minute sessions (5~10 minutes break between sessions 

to avoid the subject get drowsy) in one driving simulation experiment for each subject. 

To avoid anticipative effect for subjects the events were presented to the subjects 

randomly, as shown in Fig. 2-10. The inter-trial intervals were set from 6 to 8 seconds 

in order to avoid interaction between trial and trial. Thus a total of 100 events could 

be presented to the subject in each session to ensure the number of events is enough 

for statistical analysis.  
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Fig. 2-10: The illustration of the experimental paradigm. Five cases were randomly 
appeared and the inter-trial intervals were varied from six to eight seconds. There 
were four sessions (15 minutes / per session) in each experiment. 

 

Since the main purpose of this experiment was to investigate the distracted effect 

in dual-task conditions. Therefore, two driving tasks were designed including the car 

unexpected deviation and the mathematical questions. The car would randomly drift 

from the middle of the road in a deviation task. When the event was occurred, 

subjects had to control the steering wheel to keep car in the third lane (as showed in 

Fig. 2-11).  

 

Response time 
was recorded

A B C D

Response time 
was recorded
Response time 
was recorded
Response time 
was recorded
Response time 
was recorded

A B C D

 
Fig. 2-11: The illustration of the deviation event. (A) Vehicle moving in straight 
line; (B) the onset of deviation event; (C) response to the deviation and (D) vehicle 
back to middle lane. 
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Two digits addition equations were presented to the subjects in the mathematics 

task. The answers of the equations were already designed to present with the 

equations but they could be either right or wrong. The subjects were asked to press the 

right bottom on the steering wheel when the equation is correct, and to press the left 

bottom when it was wrong. The event allotment ratios were 50% and 50% for right 

and wrong equations, respectively. 
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Fig. 2-12: The illustration of the relationship between the deviation onset and math 
occurred. (A) Case 1: math was presented at 400ms before the deviation onset. (B) 
Case 2: math and deviation occurred at the same time. (C) Case 3: math presented at 
400ms after the deviation onset. (D) Case 4: only math presented. (E) Case 5: only 
deviation occurred. 

 

The combinations of these two tasks were used to provide different distracted 

conditions to the subjects. Five conditions were developed to study the interaction of 
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the two tasks, they are: (A) math was presented at 400ms before deviation 

(math-400ms-deviaiton), (B) two tasks were presented at the same time 

(math-deviation) (C) math was presented at 400ms after deviation 

(deviation-400ms-math), (D) only math presented (single-math) and (E) only 

deviation occurred (single-deviation). The illustrations of the five conditions were 

shown in Fig. 2-12. A pilot study was designed to determine the time of stimulus 

onset asynchrony, i.e., the time interval between two tasks in case 1 and 3. Three 

different time values were tested including 400ms, 800ms and 1200ms. The 

behavioral data was collected from 8 subjects in the pilot study. The result suggested 

the interaction between tasks is significant with 400ms time interval. Thus, we 

adopted 400ms as the time of stimulus onset asynchrony. 

 

2.5 Subjects 

 

Eleven healthy volunteers (all males) with no history of gastrointestinal, 

cardiovascular, or vestibular disorders participated in the experiment of the 

motion-sickness study. The subjects are ages from 20 to 28 years old, with a mean of 

24 years. They were requested not to smoke, drink caffeine, use drugs, or drink 

alcohol, all of which could influence the central and autonomic nervous system for a 

week prior to the main experiment. 
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3 III. Data Analysis 
 

After the recording of the multi-channel EEG signals and behavior data, the data 

were analyzed for the study of distracted effect. The software of Statistical Package 

for Social Science (SPSS) was used to estimate the significant testing of behavior data. 

EEG epochs were extracted form the recorded EEG signals after down sampling, 

filter and artifact removal. We used Independent Component Analysis (ICA) [25] to 

separate independent brain sources. The Event Related Potential (ERP) was first used 

to study the EEG potential responses in time domain. The Event Related Spectral 

Perturbation (ERSP) technology was then applied to the ICA component signals to 

transfer the signal into time-frequency domain for the event-related frequency study. 

The stability of component activations and scalp topographies of meaningful 

components were finally investigated with component clustering technology. 

 

3.1 Analysis of the Behavior Data 

 

The response time of the tasks (the deviation and the math) was analyzed to 

study the behavior of the subjects in the experiments. By using one way analysis of 

variance (ANOVA), the significance of the behavior data were tested for every subject 

and the nonparametric test to study the trend of the behavior data. Fig. 3-1 showed the 

flowchart of analysis behavior data. First, we had to remove the outliners by using the 

criterion of mean±3D (mean: average the response time, D: standard deviation). Then 

we choose the minimal trial in all cases to make benchmark. And we used the 

benchmark to select randomly the same trials in other cases. Single task was baseline, 

and choose the minimal value as denominator. To normalize the behavior data was [Xi
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／(Xmean)] (Xi: Every response time of trial, Xmean: mean response time in single 

case). Because several extremely large scores significantly skewed, so nonparametric 

analysis was used. A Friedman ANOVA was conducted to test for difference in 

R-values (Xi／(Xmean)) among the five in-vehicle tasks. 

 

 
Fig. 3-1: The flowchart of analyzing the behavioral data. First, we removed the 
outliers and normalized the behavioral data by [Xi／(Xmean)] (Xi: Every response 
time of trial, Xmean: mean response time in single case) and then we used the 
Friedman test to examine the significance of R-values (Xi／(Xmean)). Finally, the 
Student-Newman-Keuls test was used to assess the significant within all cases.   
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3.2 The Procedures of EEG Data Analysis 

 

Fig. 3-2 showed the flowchart of the proposed data analysis procedure for EEG 

signals. The EEG data were recorded with 16-bit quantization level at a sampling rate 

of 500 Hz and the recording were down-sampled to sampling rate (SR) =250 Hz for 

the simplicity of data processing. The EEG data were then preprocessed using a 

simple low-pass filter with a cut-off frequency of 50 Hz to remove the line noise (60 

Hz and its harmonic) and other high-frequency noise for further analysis. A simple 

high-pass filter with a cut-off frequency of 0.5 Hz was used to remove the DC drift. 

Then we extracted epochs from continuous EEG data and combine all epochs to run 

independent component analysis (ICA). Finally, we applied the technology of 

Event-Related-Spectral-Perturbations (ERSPs) to investigate the EEG responses in 

both time and frequency domains.  

 
Fig. 3-2: The flowchart showed the EEG signal processes. 
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Since we had designed different cases with the combinations of the driving and 

the mathematic tasks, thus the EEG response related to different cases should be 

extracted from the original EEG signals for further analysis. The event-related 

potentials (ERPs) were extracted from the EEG signal as shown in Fig. 3-3. 

 

 
Fig. 3-3: The illustration of the ERP analysis. The case-related ERPs were extracted 
from raw EEG signals. Each epoch was extracted with the duration of 1 second 
before and five seconds after first event onset. The onset of first event was the 
occurrence of either the math or the deviation event depended on the case was 
presented. 

 

3.3 Independent Component Analysis (ICA) 

 

In order to extract the electroencephalographic (EEG) source segregation, 

identification, and localization were very difficult. Because the EEG data collected 

from any point on human scalp induces activity generated within a large brain area. 

Although the conductivity between the skull and brain was different, the spatial 

smearing of EEG data by volume conduction did not cause significant time delay and 
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it suggests that the ICA algorithm is suitable for performing blind source separation 

on EEG data. The ICA methods were extensively applied to blind source separation 

problem since 1990s [26]-[33]. The reports of study [34]-[41] demonstrated that ICA 

was a suitable solution to solve the problem of EEG source separation, identification, 

and localization. They assumed that: (a) the conduction of the EEG sensors is 

instantaneous and linear such that the measured mixing signals are linear and the 

propagation delays are negligible. (b) The signal source of muscle activity, eye, and, 

cardiac signals are not time locked to the sources of EEG activity which is regarded as 

reflecting synaptic activity of cortical neurons. 

 )t()t( sAx =                                        (1) 

Where A is a linear transform called a mixing matrix and the is  are statistically 

mutually independent. The ICA model estimates a linear mapping W such that the 

unmixed signals u(t) are statically independent (as showed in Fig. 3-4) (The detail 

was in Appendix ). 

  )t()t( xWu = .             (2) 

 
Fig. 3-4: Illustration of the concept of ICA process. EEG signals recorded from the 
brain were mixed with multiple sources [62]. By training the unmixing matrix, the 
mixed EEG signals were separated into independent components which may have 
specific meanings, and then scalp maps was plotted according to the weight of 
unmixing matrix. 



 22

 

In this study, we attempted to completely separate the twin problems of source 

identification and source localization by using a generally applicable ICA. Thus, the 

artifacts including the eye-movement (EOG), eye-blinking, heart-beating (EKG), 

muscle-movement (EMG), and line noises can be successfully separated from EEG 

activities. Fig. 3-5 showed a result of the scalp topographies of ICA weighting matrix 

W corresponding to each ICA component by projecting each component onto the 

surface of the scalp, which provided evidence for the components' physiological 

origins, e.g., eye activity was projected mainly to frontal sites, and the 

drowsiness-related potential was on the parietal lobe and occipital lobe [20], motor 

related potential will locate at left and right side of front parietal lobe, etc. We could 

see that most of artifacts and channel noises were effectively separated into 

independent components 1 and 20.  

 

 
Fig. 3-5: The picture showed the typical example of scalp topography of ICA 
decomposition. The scalp topographies showed the ICA weighting matrix W 
projected to its corresponded component onto the surface of the scalp. The color bar 
was the amplitude of component signals.  
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3.4 Power Spectrum Analysis 

 

Analysis of changes in spectral power and phase can characterize the 

perturbations in the oscillatory dynamics of ongoing EEG. Applying such measures to 

the activity time courses of separated independent component sources can avoid the 

confounds caused by misallocation of positive and negative potentials from different 

sources to the recording electrodes, and by misallocation to the recording electrodes 

activity that originates in various and commonly distant cortical sources. The spectral 

analysis for each ICA component decomposed from 30 channels of the EEG signals. 

The FFT processes for each ICA component data decomposed from 30 channels of 

the EEG signals and the processes are described as following. The sampling rate of 

EEG is 250Hz. The power spectrum density (PSD) of each ERP is evaluated with the 

spectral analysis process. The activity power spectrum of the ERP is calculated by 

averaging the PSDs. The ICA data power spectrum time series for each session 

consisted of ICA data power estimates at 50 frequencies (from 1 to 50 Hz).  

The input EEG signal is [ ]nx . And we can consider computing [ ]kX  by 

separating [ ]nx  into two (N/2)-point sequences consisting of the even-numbered 

points in [ ]nx  and the odd-numbered points in [ ]nx .  

 2/
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3.5 Event Related Spectral Perturbation Analysis 

 

The Event Related Spectral Perturbation, or ERSP, was first proposed by Makeig 

[42]. ERSP, we are able to observe time-locked but not necessary phase-lock activities. 

It is different from the limitation of ERP.ERP must be coherent time-and-phase-locked 

activities. The ERSP measures average dynamic changes in amplitudes of the broad 

band EEG spectrum as a function of time following cognitive events. 

The processing flow is shown in Fig. 3-6. The time sequence of EEG channel 

data or ICA activations are subject to Fast Fourier Transform (FFT) with overlapped 

moving windows. Spectrums in each epoch were smoothed by 3-windows (768 points) 

moving-average to reduce random error. Spectrums prior to event onsets are 

considered as baseline spectra for every trial. The mean baseline spectra were 

converted into dB power and subtracted from spectral power after stimulus onsets so 

that we can visualize spectral ‘perturbation’ from the baseline. This procedure is 

applied to all the epochs, the results are then averaged to yield ERSP image. The 

ERSP image mainly shows spectral differences after event, since the baseline spectra 

prior to event onsets have been removed. 

After performing bootstrap analysis (usually 0.01 or 0.03 or 0.05, here we use 

0.05) on ERSP, only statistically significant (p<0.05) spectral changes will be shown 

in the ERSP images. Non-significant time/frequency points are masked (replaced with 

zero). Any perturbations in frequency domain become relatively prominent. 
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Fig. 3-6: The illustration of procedures in ERSP analysis. FFT was applied in each 
window with 256 samples, and there was 244-sample overlap of two adjacent 
windows. The time-dependent ERSP image was composed of the spectra of each 
window, and smoothed by 3-window moving average. In the final step, the significant 
parts of ERSP image were extracted by using bootstrap method. The pink dashed 
lines: the first event onset. The blue dashed lines: the averaged reaction time to the 
deviation. The red dashed lines: the averaged response time to math. The black dashed 
lines: averaged response time for the car returning to the third lane. Color bars showed 
the magnitude of ERSPs. 
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3.6 Component Clustering 

 

To study the cross-subject component stability of ICA decomposition, 

components from multiple subjects were clustered based on their spatial distributions 

and EEG characteristics. But, components from different subjects thus may differ in 

many ways such as scalp maps, power spectra, ERPs and ERSPs. [43] [44] [45] 

attempted to solve this problem by calculating the similarities (distance) among 

different independent components. Components from multiple subjects were clustered 

in terms of their scalp maps and activation power spectra. Individual component 

clusters were characterized by their mean cluster map and activity spectrum. This 

method was also known as component clustering. 

In this study, we attempt to completely components cluster. We used the 

K-means algorithm (EEGLAB 4.3) to analyze (as shown in Fig. 3-7). To cluster these 

components into small number (for instance, 10) of groups, one approach is to apply 

K-means on their scalp map and power spectral. In practice, we could hardly achieve 

such clean clusters if we relied entirely on  K-means to classify components, since 

less then half of components were meaningful after ICA decomposition, others were 

usually account for noises. These components might confuse K-means algorithm and 

reduce the consistency of each clusters. Another problem arose from combining scalp 

map and power spectral information for K-means classification. It remained an open 

question how to weight the spatial information (scalp maps) and source activity, 

accounted for by power spectra in the K-means clustering. Therefore, we selected 

stable components which were classified iteration by K-means algorithm into 16 

clusters in terms of component scalp maps (EEG.icawinv). Then we grouped 16 

clusters into 7 significant clusters and discarded some non-significant clusters 
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manually based on power spectra of the components. The resultant clusters are named 

according to the source locations of components (as shown in Fig. 3-8). 
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Fig. 3-7: The flowchart of component clustering by using K-means algorithm. 
Components from 11 subjects were classified into several significant clusters 
according to their K-means. 

 

 
Fig. 3-8: The typical example of the component clustering result. The mean of scalp 
map was averaged across 11 subjects. 
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4 IV. Results 
 

The EEG signals collected from 11 subjects were analyzed for the study of 

distraction. Each experiment included 4 sessions and each session lasted 15 minutes. 

Every session presented five cases randomly (designed with different time intervals 

between tasks). The influence of stimulus onset asynchrony in the subjects’ behavior 

performance was studied in the first section. Then we characterized changes of 

dynamic brain activities from the independent component clusters and the power 

spectrum and the event-related spectral perturbations (ERSPs) under different cases. 

The following paragraphs showed detailed results. 

  

4.1 Behavior Performance 

 

The response time of the tasks (the deviation and the math) was collected to 

study behavior of the subjects in the experiments. The outliers were first removed 

from the 11 subjects’ behavior data. By using one way ANOVA, the significance of 

the behavior data were tested for every subject. The testing results were showed in Fig. 

4-1. The response time to deviation was given in Fig. 4-1(A). The blue bars were in 

the figures represented the case of math-400ms-deviation (case-1), the light blue bars 

were represented the case of math-deviation (case-2), the yellow bars were 

represented the case of deviation-400ms-math (case-3), and the red bars were 

represented the case of single-deviation (case-5).  

The response time to deviation in case-5 (single deviation) was significantly 

larger than that in the case-1 (math present 400 ms before deviation) for most of the 

subjects (8 out of 11). The response time to deviation in case-5 (single deviation) was 



 29

significantly larger than that in the case-2 (two tasks present at the same time) for four 

subjects. And, the response time to deviation in case-5 (single deviation) was 

significantly larger than that in the case-3 (deviation present 400 ms before math) for 

only one subject. These results were shown in Fig. 4-1(A). This meant it take longer 

time for the subjects to reply to the driving task in single deviation case. Because 

when the deviation task appeared in the case-1 subjects were in order to continuously 

resolve the mathematical equations, they had to firstly and rapidly response to the 

deviation task to avoid hitting the wall. 
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Fig. 4-1: Bar charts of the averaged response time to the deviation (A) or the math 
(B) onsets between four cases. The blue bars: case-1 (the math occurred at 400ms 
before the deviation onset); the light blue bars: case-2 (the math and deviation 
occurred at the same time); the yellow bars: case-3 (the math occurred at the 400 ms 
after the deviation onset); and the red bars: case-4 (only presented the math question 
in this case) or case-5 (only deviation occurred in this case). 
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In Fig.4-1 (B), the response time to math in case-4 (single math) was 

significantly shorter than that in the case-1 (math present 400 ms before deviation) for 

most of the subjects (7 out of 11). The response time to math in case-4 (single math) 

was significantly shorter than that in the case-2 (two tasks present at the same time) 

for six subjects. And, the response time to math in case-4 (single math) was 

significantly shorter than that in the case-3 (deviation present 400 ms before math) for 

four subjects. This meant it take shorter time for the subjects to reply to the math task 

in single math case.  

In order to investigate the overall of behavior index, we used the technology of 

nonparametric tests. The nonparametric analysis was used because several extremely 

large scores significantly skewed. First, the data was randomly selected the trials 

which there was the same trials in all cases. Then, the response time of the two tasks 

in the five cases were normalized to the single-deviation and single-math tasks. We 

used the Statistical Package for Social Science (SPSS) for Friedman test, and the 

result was shown in Fig. 4-2. 

The normalized response time to deviation was given in Fig. 4-2(A). The 

response time to deviation for dual tasks (case-1 to case-3) were significantly shorter 

than that for the single task (case-5). There were no statistical significant differences 

between the case-2 and the case-3. The largest response time to the deviation onset 

was the case-5. The normalized response time to math was given in Fig. 4-2(B). The 

response time to math presented for dual tasks (case-1 to case-3) were significantly 

longer than that for the single task (case-4). There were no statistical significant 

differences between case-1 and case-2. The shortest response time to the math onset 

was the case-4. 
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Fig. 4-2: Bar charts of normalized response time to the deviation (A) and math (B) 
presented between 5 cases across 11 subjects. The filled black bar: case-1; dark gray 
bar: case-2; light gray bar: case-3; the opened bar: single case. The bottom insets 
showed the onset sequences between two tasks. Note: the response time to deviation 
for dual tasks (case-1 to case-3) were significantly shorter than that for the single 
task (case-5). The largest response time to the deviation onset was the case-5. The 
response time to math presented for dual tasks (case-1 to case-3) were significantly 
longer than that for the single task (case-4). The shortest response time to the math 
onset was the case-4. 
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Further, we wanted to know the difference which cases was made. Then, Post 

Hoc test was to use Student-Newman-Keuls test, and the result was shown in Table-3. 

The explanations were showed below. 

(1) Normalized response time to deviation: 

The result of test statistic was 16.04 =3,05.0
2χ  from Friedman test, and p=0.000 < 

0.05. Therefore, the result rejected the null hypothesis. In the analysis, we found the 

four cases (case-1, case-2, case-3, and case-5) significantly different with each other. 

Using Student-Newman-Keuls test, we found three significant groups (case-1, case-2 

and case-3, case-5). 

(2) Normalized response time to math: 

The test statistic was 148.859 =3,05.0
2χ  from Friedman test, and p= 0.000 < 0.05. 

The four cases (case-1, case-2, case-3, and case-5) were significantly different with 

each other. And, we used Student-Newman-Keuls test to also find three significant 

groups (case-1 and case-2, case-3, case-4). 

 

Table-3 the normalized response time to deviation and math 
 Response time to deviation Response time to math 

Case Mean (SD) 
Difference 

(dual-single)
Mean (SD ) 

Difference 
(dual-single)

Case 1 1.216864 0.151223
-0.07 

p<0.01 
1.891619 0.509387 

0.23 
p<0.01 

Case 2 1.265610 0.157821
-0.02 

p<0.01 
1.860181 0.472608 

0.2 
p<0.01 

Case 3 1.269600 0.169142
-0.01 

p<0.01 
1.811820 0.478367 

0.15 
p<0.01 

single(baseline) 1.287392 0.211970  1.659849 0.413884  
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4.2 EEG Results of the Dual-Task Experiment 

4.2.1 Distraction-Related Brain Sources 
 

EEG epochs were extracted from the recorded EEG signals after down sampling, 

filter and artifact removal. We used ICA to decompose the independent brain sources 

from EEG signals. Fig. 4-3 showed the scalp topographies of ICA back-projection 

matrix W-1. As shown in Fig. 4-3, most of the EEG artifacts and channel noises in 

EEG recordings were effectively separated into ICA components 1, 2 , 29 and 30, 

while ICA components 3, 4, 9, 10, 11 and 12 (selected by visual inspection) may be 

considered as effective “sources” associated with distraction in the dual-task driving 

experiment. Fig. 4-3 showed the components we were interested in, which were 

selected based on their characteristic scalp maps, dipole source locations, spectral 

signatures, and within subject consistency.  

 

 
Fig. 4-3: Scalp map topographies of ICA decomposition of subject-4. The selected 
components (by visual inspection) were central midline (3), parietal (4), frontal (9), 
motor (10 and 11) and occipital (12) components. The color bar showed the 
amplitude of component signals. 
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Fig. 4-4: The illustration of the component maps and their corresponded dipole 
locations of the frontal (A), the central midline (B), the left motor (C), the right 
motor (D), the occipital (E) and the parietal (F) area. The left upper panels: the scalp 
maps. The right upper panels: the top viewing angle of dipole source location. The 
left lower panels: the coronal viewing angle of dipole source location. The right 
lower panels: the sagittal viewing angle of dipole source location. Color bars: the 
amplitude of component signals. 
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Plenty of brain sources were involved in the distraction driving experiments. For 

example, the motor area (components 10 and 11) would be activating when the 

subject was trying to control the car with the steering wheel, and activations in the 

frontal area (component 9) were related to attention. Therefore, ICA components 

including central, frontal, parietal, motor and occipital lobe were selected for further 

analysis. The component map topography and the dipoles related to the selected 

components were shown in Fig. 4-4.  

The power spectra related to different cases were compared as shown in Fig. 4-5 

to determine the distraction-related components. The difference in power spectra 

between cases could be observed in several components, such as the significant power 

increases near the theta band (5 ~ 7.8 Hz) of the frontal component were showed in 

the dual tasks (as shown in Fig. 4-5 (A)).  

AA BB

CC

 

DD
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Fig. 4-5: Illustration of the typical example of six ICs and their power spectra from five 
different cases in the frontal component (A), central midline component (B), left motor 
component (C), right motor component (D), occipital component (E), and the parietal 
component (F). Red line: case-1, blue line: case-2, green line: case-3, black line: case-4, 
pink line: case-5. Note: comparing with the single task, the significant power increases near 
the theta band (5 ~ 7.8 Hz) of the frontal component were showed in the dual tasks. 

 

We further compared the ICA power spectra between single- and dual-task cases, 

the results were shown in Fig. 4-6, 4-7, 4-8 and 4-9. The black curves in these figures 

represented the ICA power spectrum of single-task cases. The subplots (A), (B) and 

(C) displayed in the left column showed the comparison between the single math case 

and three dual-task cases and the subplots (D), (E) and (F) displayed in the right 

column showed the comparison between the single deviation case and three dual-task 

cases. 

The ICA spectrum comparisons between single- and dual-task cases in the 

central midline component were given in Fig. 4-6. There were no apparently 

differences observed in the total power spectra among cases. 
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Fig. 4-6: Single subject data. The comparison of total power spectra between single- and 
dual-task in the central midline component. Left column (A-C) showed the comparison 
between the case of single math and three dual-task cases. Right column (D-F) showed 
the comparison between the case of single deviation and three dual-task cases. The right 
column and the upper row insets showed the onset sequences between two tasks. The left 
block: scalp map for the central midline component of subject-4. Red line: case-1, blue 
line: case-2, green line: case-3, black line: case-4 or case-5. Note: There were no 
apparently differences observed in the total power spectra among cases. 

 

The ICA spectrum comparisons between single- and dual-task cases in the motor 

component were given in Fig. 4-7. In the figures, we found a peak in 10 Hz band for 

all cases. The peak was induced during increasing force output in motor activity. 

Different spectra were observed between the case of single math and three dual-task 

cases. In comparison with the single task, the powers of the alpha band were weaker 

in the dual tasks. These maybe induced by distracted. 
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Fig. 4-7: Single subject data. The comparison of power spectral baselines between 
single- and dual-task cases in the motor component. Panels as Fig. 4-6. Note: a 10-Hz 
peak observed in all cases. Different spectra were observed in left column (A-C). In 
comparison with the single task, the powers of the alpha band were weaker in the dual 
tasks. 
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Fig. 4-8: Single subject data. The comparison of power spectra between single- and 
dual-task cases in the parietal component. Panels as Fig. 4-6. Note: a 10-Hz peak 
observed in all cases. Different spectra were observed in left column (A-C). In 
comparison with the single task, the powers of the alpha band were weaker in the dual 
tasks. 
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In Fig. 4-8, we found that a 10-Hz peak observed in all cases. Different spectra 

were observed between the case of single math and three dual-task cases. In 

comparison with the single task, the powers of the alpha band were weaker in the dual 

tasks. Because the parietal component was close to the motor area, thus we inferred 

that power change was the same in two components. Therefore, we could use another 

analysis (such as ERSP) to look at the difference in 10 Hz band. 

 

The comparison of power spectra between single- and dual-task cases in the 

frontal component were given in Fig. 4-9. Comparing with the single deviation, the 

significant increases of power spectra were observed around 5 to 10 Hz in the 

dual-task cases. The activation in frontal areas was induced by mathematics and 

mental task which were reported in many previous studies. The phenomena in our 
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Fig. 4-9: Single subject data. The comparison of power spectra between single- and 
dual-task cases in the frontal component. Panels as Fig. 4-6. Note: comparing with the 
single deviation, the significant increases of power spectra were observed around 5 to 10 
Hz in the dual-task cases (D-F). 
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experiment were also to find. Significant power increases were observed between the 

single-deviation and the dual-task cases as shown in Fig. 4-9 (D), (E), (F). 

According to the results shown in these figures, we found that the spectra in 

motor component were difference between the single-math and the dual-task cases in 

10 Hz band. Then it was considered as the dominant component to the deviation task. 

The spectra in frontal component were difference between the single-deviation and 

the dual-task cases in 5~10 Hz band and the frontal component were considered as the 

dominant component to the math task. 

 

4.2.2 Event Related Spectral Perturbation Results in 

Single Subject 
 

 According to the results shown above, the power differences in motor and frontal 

components were related to driving and math-calculation tasks, respectively. We then 

applied the technology of ERSP to investigate the EEG responses in both time and 

frequency domains. Event Related Spectral Perturbation (ERSP) plotted the grand 

mean time course of changes from pre-stimulus baseline in log spectral power of a 

scalp-recorded EEG or ICA component activation time-locked to stimulus 

presentation or subject responses across frequencies. Through ERSP, we were able to 

observe time-locked but not necessarily phase-locked activities.  

4.2.2.1 ERSP Results in Frontal Component 

 

The ERSP plot of the single math cases of the frontal component was shown in 

Fig. 4-10(a). The pink dashed lines in the figures were representing the event onset 

and the red dashed lines indicated when was the subject response to the event with 
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pressing a button (i.e. the mathematic equations). The significance of the top plot of 

ERSP in the figure were tested (p < 0.05) and shown in the bottom figure. 

 

AA BB

Fig. 4-10: Single subject data. The ERSP plots of the single-task cases in the frontal 
component. The significance of the top plot of ERSP in this figure were tested (p < 0.05) 
and shown in the bottom figure. (A) single-math task. (B) single-deviation task. The pink 
dashed lines were showed the onset of the first event; the red dashed lines indicated 
averaged response time to the math; the blue dashed lines indicated averaged response time 
to the deviation and the black dash lines indicated the averaged response time for subjects 
steering the car back to the third lane. 

 

A significant power increase time-lock to the mathematic equation onset was 

observed in the frontal component shown in Fig. 4-10 (A). The ERSP plot of the 

single deviation case of the frontal component was shown in Fig. 4-10 (B). There was 

no significant power increase observed in the frontal component in the single 

deviation case. These results again demonstrated that the frontal component was the 

dominant component of the mathematic calculation in human brain. 

We then focused on the ERSP responses in the frontal component when the 

mathematic and the deviation task were presented to the subject (i.e. the dual-task 

cases). The ERSP plots of the dual-task cases were given in Fig. 4-11. Significant 

power increases were observed in the three cases in the frontal component since the 
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mathematic task was presented to the subjects in these three cases. The ERSP shown 

in Fig. 4-11 (A) was the EEG power response when the math was presented at 400ms 

before deviation; Fig. 4-11 (B) showed the ERSP results when the two tasks were 

presented at the same time and Fig. 4-11 (C) showed the ERSP results when the math 

was presented at 400ms after deviation. The red dot represents the onset of math event 

and blue circular represented the onset of deviation event. From the ERSP images we 

found the significant power increase time-locked to mathematic equation onsets (red 

dot). 

A B C 

 
Fig. 4-11: Single subject data. The ERSP plots of the dual-task cases in the frontal 
component. Panels as Fig. 4-10. Comparing with the single task, significant power 
increases around theta band (5~7.8 Hz) and beta band (12.2~17 Hz) were observed in 
the three cases. Case-1 (A), case-2 (B) and case-3 (C). 

 

In order to investigate the distracted effect of stimulus onset asynchrony, five 

cases were designed in this experiment. The ERSP images corresponding to the five 

cases in the frontal component were compared in Fig. 4-12. We had demonstrated that 

the power increase in the frontal component was related to math-task. Thus in case- 

1~4, significant power increases in theta band were observed. The power increases in 

the three dual-cases including case-1, case-2 and case-3 were slightly different to each 

other. The difference might caused by the time of SOA. In Fig. 4-12, the power 

increase in case-1 was significantly larger than in case-2 and case-3. 
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Fig. 4-12: Single subject data. The ERSP plots of the five cases in the frontal 
component. The right column: the scalp map of the frontal component for five cases. 
The middle columns showed the onset sequences between two tasks. Color bars 
showed the power of ERSPs. Pink dashed lines: the event onset. Blue dashed lines: 
the mean of reaction time to deviation. Red dashed lines: the mean of reaction time 
to math. Black dashed lines: the averaged response time for subjects steering the car 
back to the third lane. Red dot: the onset of math events. Blue dot: the onset of 
deviation events. Note: the power increase in case-1 was significantly larger than in 
case-2 and case-3. 

 

4.2.2.2 ERSP Results in Motor Component 

 

As we mentioned before, the motor component was considered as the dominant 

component to the deviation task according to the results of power spectrum 

comparison. The ERSP plots of the single-math and single-deviation cases of the left 
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motor component were shown in Fig. 4-13 (A) and (B). Since the left and right motor 

components were the same phenomena, then here we selected the left motor 

component to present. The pink dashed lines in Fig. 4-13 were representing the event 

onset, the blue dashed lines indicated when was the subject response to the event (i.e. 

the deviation), and the black dashed line indicated when was the car back in the third 

lane with the control of the subject. 

 

AA BB

Fig. 4-13: Single subject data. The ERSP plots of the single-task cases in the motor 
component. Panels as Fig. 4-12. Note: the motor component was the dominant source of the 
motor control in human brain. 

 

The ERSP plot of the single-math case of the frontal component was shown in 

Fig. 4-10(a). There was power change observed in the motor component in the single 

math case and the mu blocking appeared before the red line. This was induced by 

pressing a button. Similarly, but the phenomena was weak. Contrarily, a significant 

power suppression time-lock to the deviation onset was observed in the motor 

component as shown in Fig. 4-13 (B). These results demonstrated that the motor 

component was the dominant source of the motor control in human brain. We then 

focused on the ERSP responses in the motor component when both the mathematic 

and the deviation tasks were presented to the subject (i.e. the dual-task cases). The 
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ERSP plots of the dual-task cases were given in Fig. 4-14. 

The ERSP images corresponding to the five cases in the motor component were 

compared in Fig. 4-14. We found alpha suppression in all cases time-locked to the 

event onsets. Because it could be suppressed by a simple motor activity such as 

clenching the fist of the contra lateral side, or passively moved. Similarly, we found 

maximal alpha suppression in the case of single deviation. Due to subjects just to do 

one task which steer wheel. But the duration of alpha suppression in three dual-task 

cases was longer than the duration of alpha suppression in the case of single. This 

might because the subjects were influenced by the second task when they are trying to 

complete the first task. 
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Fig. 4-14: Single subject data. The ERSP plots of the five cases in the motor 
component (p<0.05). Panels as Fig. 4-12. Note: the alpha suppression briefly 
showed after the onsets of event were revealed in all cases. The maximal alpha 
suppression was observed in the case-5. 
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4.2.2.3 ERSP Results in Parietal Component 

 

Since the parietal component was closer to the motor area, thus power 

suppression in alpha band was observed (as shown in Fig. 4-15). In Fig. 4-15, we 

found alpha suppression in all cases and the latency of the appeared alpha suppression 

are almost the same in all cases, and then we could explain that is time-locked to 

event-onset. The ending of alpha suppression was almost in black lines which was the 

car back in the third lane with the control of the subjects. 
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Fig. 4-15: Single subject data. The ERSP plots of the five cases in the parietal 
component (p<0.05). Panels as Fig. 4-12. Note: the alpha suppressions time-locked 
to event onsets were observed in all cases. 
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4.2.2.4 ERSP Results in Occipital Component  

 

Fig. 4-16 was showed occipital component. In Fig. 4-16, we found the ERPs 

were induced by the onset of math presented. The phasic power increases briefly after 

the onset of the math occurred around lower frequency band (0~8 Hz) was displayed 

in cases-1 to -4. The pattern maybe induced by visual stimulus. The red dashed lines 

indicated when was the subject response to the event with pressing a button (i.e. the 

mathematic equations). We also found alpha increase after red dashed lines in the 

cases with mathematical events; this was called rebound which subjects press a button 

to relax. 
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Fig. 4-16: Single subject data. The ERSP plots of the five cases in the occipital 
component (p<0.05). Panels as Fig. 4-12. Note: the ERPs were induced by the onset 
of math presented. The phasic power increases briefly after the onset of the math 
occurred around lower frequency band (0~8 Hz) was displayed in cases-1 to -4. 

 

4.2.3 Independent Component (IC) Clustering 

 

To study the cross-subject component stability of ICA decomposition, 

components from multiple sessions and subjects were clustered based on their spatial 

distributions and EEG characteristics. Component clustering grouped massive 

components from multiple sessions and subjects into several significant clusters. 

Cluster analysis, k-means, applied to the normalized scalp topographies and power 

spectra of all 330 (30 channels x 11 subjects) components from the 11 subjects (see 

Data Analysis), and identified at least 7 clusters of components having similar power 

spectra and scalp projections.  
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Fig. 4-17: The scalp maps for the frontal (A), central midline (B), left motor (C), right 
motor (D), parietal (E), left occipital (F) and the right occipital (G) independent component 
(IC) clusters across 11 subjects. Upper panels: the grand mean of the component map. 
Lower panels: individual scalp maps for the corresponded IC cluster. 

 

These component clusters also showed functionally distinct activity patterns. 

Seven distinct component clusters (as shown in Fig. 4-17) accounted for frontal, 

central midline, parietal, left/right motor and left/right occipital, respectively. These 

were effectively removed from the activity of the other component clusters by the 

ICA decomposition and are not further considered here. 

The numbers of components in different clusters were given in Table-5. The 

following group EEG responses were studied base on the results of component 

clustering. 
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Table-4: The Number of Components in Different Clusters 

 

 

4.2.3.1 Cross-Subject Power Spectra Results 

 

According to the single-subject results shown in previous sections, we had 

demonstrated that the motor component was the dominant component to the deviation 

task, and the frontal component was the dominant component to the math task. Thus 

the cross-subject EEG power spectra related to different cases in these two 

components were calculated to show the consistency of our result. 

  

5 ~7.8 Hz

12.2 ~17 Hz
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Number 
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Fig. 4-18: The grand mean of total power spectra for epochs from five cases in 
the frontal cluster across 10 subjects. The upper panel: the averaged scalp maps 
for the frontal component across 10 subjects. Red line: case-1, blue line: case-2, 
green line: case-3, black line: case-4, pink line: case-5. Note: Comparing with the 
single task, power spectral traces for epochs from dual tasks showed statistically 
significant increases around theta (5~7.8Hz) and beta (12.2~17Hz) bands. 

 

The grand mean of total power spectra for epochs from five cases in the frontal 

cluster across 10 subjects were shown in Fig. 4-18. Comparing with the single task, 

power spectral traces for epochs from dual tasks showed statistically significant 

increases around theta (5~7.8Hz) and beta (12.2~17Hz) bands. The significance of the 

differences in 5 ~ 7.8 Hz and 12.2 ~ 17 Hz were tested and shown in Fig. 4-19 (A) 

and (B), respectively. 
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Fig. 4-19: The comparison of the averaged power around the 5~7.8 Hz and 12.2~17 
Hz between the single task and dual tasks across 10 subjects in the frontal 
component. Left column (A, C, E): statistic test between dual-task cases and single 
math. Right column (B, D, F): statistic test between dual-task cases and single 
deviation. The upper panel: the averaged scalp maps of the frontal component across 
10 subjects. Note: comparing with the single math task, the power around the theta 
and beta bands were significantly decreased in the dual tasks (p< 0.01). 

 

The result of statistic test in frontal cluster was shown in Fig. 4-19. Fig. 4-19 (A) 

and (B) were showed respectively the statistic test in 5~7.8 Hz and 12.2~17 Hz band 

between dual-task cases and single case. We had demonstrated that the difference 

between the single-deviation and the dual-task cases we observed in single subject 

were also significant in cross-subject results. 
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8 ~ 13 Hz8 ~ 13 Hz

 

Fig. 4-20: The grand mean of the total power spectra for epochs from five different 
cases in the right motor cluster across 6 subjects. Panels as Fig. 4-18. Note: 
comparing with other cases, The power spectral trace for epochs from case-4 
showed significantly increased around alpha (8~13Hz) band. 

 

The cross-subject ICA power spectra in the right motor cluster corresponding to the 

five cases were shown in Fig. 4-20. Significant power differences in alpha band were 

observed between cases.  

Fig. 4-21 was showed the statistic test in 8~13 Hz band between dual-task cases 

and single case. As shown in Fig. 4-21, the difference between single-math and the 

dual-task cases were significant. However, the difference between single-deviation 

and the dual-task cases were also significant in the testing results. According to the 

statistic results shown in Fig. 4-21, we had demonstrated that the difference between 

the single-task and the dual-task cases we observed in single subject were also 

significant in cross-subject results. Thus, we understood the frequency response in 

motor area was not only influenced by the deviation task but also the math task with 

pressing a button. 
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Fig. 4-21: The comparison of the averaged alpha power between the single tasks and 
dual tasks in the motor cluster. Left column (A, C, E): statistic test between 
dual-task cases and single math. Right column (B, D, F): statistic test between 
dual-task cases and single deviation. Note: the frequency response in motor area 
near the alpha band was not only influenced by the deviation task but also varied by 
button press. 

 

4.2.3.2 Cross-Subject ERSP Results 

 

The cross-subject averaged ERSP in the frontal cluster corresponding to the five 

cases were shown in Fig. 4-22. Significant power increases related to the math-task 

were observed in Fig. 4-22 (A), (B), (C) and (D).  

We again demonstrated that the power increase in the frontal cluster is related to 

math-task. The theta power increase in the three dual-cases including case-1, case-2 

and case-3 were slightly different to each other. Comparing to single-math task (Fig. 
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4-22 (A)), the power in dual-task cases were stronger. EEG theta increase was related 

to distracted effects in the literatures. Therefore, subjects distracted highest in the case 

which math presented at 400ms before deviation. The beta power increase which 

induced by mathematical equations in the literatures was appeared in the math-task 

and time-locked to mathematics onsets. 
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Fig. 4-22: The ERSP images of frontal cluster for five cases: case-4 (A), case-1 (B), 
case-2 (C), case-3 (D) and case-5 (E). The right column: the averaged scalp maps for the 
frontal component across 10 subjects. Color bars showed the magnitude of ERSPs. The 
middle column showed the onset sequences between two tasks. Pink dashed lines: the 
first event onset. Blue dashed lines: the mean of reaction time to deviation. Red dashed 
lines: the mean of reaction time to math. Black dashed lines: the averaged response time 
for car returning to the third lane. Red dot: the onset of math occurred. Blue dot: the 
onset of deviation presented. Note: the theta (5~7.8 Hz) and beta (12.2~17Hz) power 
were increased briefly after the math onset. The strongest power increase was observed 
in case-1. The shortest latency of theta band increase was appeared in case-1. 
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The comparison of the total power in the four cases with math-task was given in 

Fig. 4-23, which suggested that the amount of power increase in 5~7.8 Hz were 

different with different time of SOA. The most significant power increase occurred in 

case-1. 
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Fig. 4-23: The comparison of total power in cross-subject averaged ERSP images in 
frontal component between cases. The light blue bar were represented the total 
power in the theta (5~7.8 Hz) band. The dark blue bars were represented the total 
power in the beta (12.2~17 Hz) band. The bottom insets showed the onset sequences 
between two tasks. Note: the most significant power increase was occurred in 
case-1. 

 

The comparison of the latency of ERSP time-locked to math onsets in the four 

cases with math-task was given in Fig. 4-24, which suggested that the latency of 

power increase in 5~7.8 Hz were different with different time of SOA. The shortest 

latency of power increase occurred in case-1 and the longest latency of power 

increase occurred in case-4. 



 57

0

200

400

600

800

1000

1200

1400

5~7.8Hz

12.2~17Hz

Latency (aligning Math onset)

La
te

nc
y 

(m
s)

D&M

Case 2

D
M

Case 3

M

Case 4Case 1

M
D

0

200

400

600

800

1000

1200

1400

5~7.8Hz

12.2~17Hz

Latency (aligning Math onset)

La
te

nc
y 

(m
s)

0

200

400

600

800

1000

1200

1400

5~7.8Hz

12.2~17Hz

Latency (aligning Math onset)

La
te

nc
y 

(m
s)

D&M

Case 2

D
M

Case 3

M

Case 4Case 1

M
D D&M

Case 2

D&M

Case 2

D
M

Case 3

D
M

Case 3

M

Case 4

M

Case 4Case 1

M
D

Case 1

M
D
M
D

 
Fig. 4-24: Effects of distraction on onsets of theta and beta increases. Latencies were 
calculated from cross-subject averaged ERSP images of the frontal component. 
Panel as Fig. 4-23. Note: the shortest latency of the theta increase was observed in 
case-1 and the longest latency of the theta increase was revealed in case-4. 
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Fig. 4-25: The grand mean of cross-subject averaged ERSP images in left (left block: 
8 subjects) and right (right block: 6 subjects) motor components between cases. Left 
block: left motor cluster. Right block: right motor cluster. Panels as Fig. 4-22. Note: 
the alpha power was suppressed briefly after the first event onsets in all cases and the 
strongest alpha suppression was occurred in case-5. 
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The cross-subject average ERSP in the left and right motor clusters 

corresponding to the five cases were shown in Fig. 4-25. Significant power 

suppressions time-locked to event onsets were observed (case-1, case-2, case-3, 

case-4, and case-5). In case-4, the alpha suppression was observed continuously until 

the red dashed lines which were the subject response to the event with pressing a 

button. The alpha suppression continued after the black dashed lines (including case-1, 

case-2, case-3, and case-5), it maybe control the steering wheel again in the third lane 

for subjects. 
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Fig. 4-26: The comparison of total power in cross-subject averaged ERSP images in the 
left (left block: 8 subjects) and the right (right block: 6 subjects) motor components 
between cases. The light blue bars represented the total power of the alpha (8~13 Hz) 
band in individual cases. Note: the most significant power increases were occurred in 
case-5. 

 

The comparison of the total power in the five cases was given in Fig. 4-26, 

which suggested that the amounts of power increase in alpha band were different with 

different time of SOA. The most significant power increase occurred in case-5 (the 

single-deviation task) and the smallest power increase occurred in case-4 (the 

single-math task).  
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Fig. 4-27: The distracted effects on latencies of alpha suppression measured averaged 
ERSP images of the motor components. A: the latency of alpha suppression in the left 
motor cluster across 8 subjects. B: the latency of alpha suppression in the right motor 
cluster across 6 subjects. Note: no apparently differences were observed among the five 
cases. 

 

The comparison of the latency of ERSP time-lock to deviation-onset in the five 

cases was given in Fig. 4-27, which suggested that the latency of power increase in 

alpha band were not different with different time of SOA. The latency of power 

increase was following with the event onsets in both right and motor component.  
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Fig. 4-28: The grand mean of averaged ERSP images of the left (left block: 7 subjects) 
and right (right block: 5 subjects) occipital clusters for five cases. Panels as Fig. 4-22. 
Note: the power at lower frequencies (0~8 Hz) was increased briefly after the onsets of 
the math presented. The most significant alpha power increase was occurred in case-4. 
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Since the experiment was using visual stimulus, then we could find the pattern 

inducing by visual stimulus (as shown in Fig. 4-28). In the occipital cluster, we found 

the lower frequency power which was increase time-locked to math onsets and the 

most significant alpha power increase which called rebound occurred in case-4. The 

lower frequency power was induced by P300 (event-related Potential (ERP)) 

amplitude, as shown in Fig. 4-29. 
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Fig. 4-29: The averaged ERPs of the left (left block: 7 subjects) and right (right 
block: 5 subjects) occipital clusters for five cases. Upper panels: the group averaged 
occipital independent component. Red line: case-1, blue line: case-2, green line: 
case-3, black line: case-4, pink line: case-5. The bottom panels showed all ERP 
traces. The brown arrows indicated the location of the P300. Note the peak of P300 
was time-locked to the onset of math presented. 

  

Our results showed that independent component processes in the frontal cortex 

exhibited theta (5~7.8 Hz) and beta (12.2~17 Hz) increase that were consistent within 

subjects. Compared dual-task to single task, the total power in theta (5 ~ 7.8 Hz) band 

of dual-task was higher than single task. Similarly, the case which presented at 400ms 

before deviation was highest than that of the other dual-task cases. There was a time 

sifting at the onset of theta increase in the cases with math events. The beta (12.2~17 
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Hz) increase was induced by math. In occipital component, we found the pattern of 

inducing by visual stimulus and rebound which induced by pressing a button. In 

motor component there was all alpha suppression time-locked to the event onsets. 
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5 V. Discussion 

 
In the study, the brain dynamics related to distracted effects of stimulus onset 

asynchrony (SOA) by using EEG and VR-based realistic driving environment was 

investigated. The SOA experimental design was to investigate the distracted level. In 

this Chapter, the results after cross-subject analysis would be discussed. Cross-subject 

analysis was able to prove that the appeared features were not restricted to specific 

subject or experiment, that was, it could ensure the stability and consistency of pour 

findings. Firstly, three main cortical areas including frontal component, (which 

involved processing of mental tasks), somatosensory component (mu suppression 

phenomenon), and occipital component (the visual-induced and rebound-induced 

pattern) would be discussed. These cortical areas which had the difference between 

single and dual-task case would be selected to infer the relationship to the distraction 

effect and extent. Different frequency band in three cortical areas would also be 

analyzed. Secondarily, we would compare to other literatures of dual-task experiments. 

Finally, we would discuss the correlation between behavior and EEG. The results 

would be detailed discussed in the following sections. 

 

5.1 Brain Dynamics Related to Distracted Effect 

5.1.1 Distracted Effect in Frontal Area 

 

Frontal lobes are positioned in front of (anterior to) the parietal lobes (as showed 

in Fig. 5-1). The frontal lobes have been found in response to impulse control, 

judgment, language production, working memory, motor function, problem solving. 
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The reports of study were showed divided attention in frontal lobes [46] [47]. 

 

Parietal LobeParietal Lobe

 
Fig. 5-1: Picture showed the principle fissures and lobes cerebrum [55]. The blue 
part is the frontal lobe and the white area is the location of parietal lobe. 

 

Fig. 4-23 showed the EEG response (ERSP) in the frontal component under 5 

conditions. Compared with the ERSP of single task (case-4 and -5), there were higher 

total power in theta (5 ~7.8 Hz) band of dual tasks (case-1, -2, and -3). The 

phenomenon suggested that the dual tasks induced more event-related EEG activity in 

theta band, that was, subjects needed to consume more brain source to accomplish 

dual tasks at the same time. In a verbal n-back working memory paradigm, evoked 

theta activity (4-8 Hz) phase-locked to the visual stimulus was evidence in the 

parieto-occipital and frontal regions in all tasks. It is suggested that theta activity of 

EEG in the frontal area appears during concentrated performance of mental tasks in 

normal subjects and reflects attention processing [15]. During mental work load, the 

EEG process producing 5-7 Hz frontal midline theta activity. The process accounting 

for the EEG theta increase in midline frontal area during mental work load was 

separated from channel data into independent brain sources by ICA [45]. Therefore, 

the theta band increase together with the raising workload is associated with 

numerous processes such as mental work load, solving problem, encoding, or self 
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monitoring. 

According to the evidences presented in previous studies, we could first prove 

that the subjects were distracted under dual-task conditions in the experiment. 

Furthermore, we would like to compare the differences in specific bands among the 

three kinds of dual-task conditions, as shown in Fig. 4-24.  

Compared with total power intensity among dual-task conditions, the total power 

of math-before-400ms was higher than that of the other dual-task cases. It was 

suggested that the maximal energy will be induced when the second task present 

following the other task is current under processing. In addition, since human visual 

sensory needs about at 300 ms to perceive stimulus (P300 activity [48]), 400 ms is 

sufficient for subject to process the first task. There was a processing task in brain 

first and subjects needed more brain source to manage the second task presented after 

the first task at 400 ms. Therefore, the total power in theta (5~7.8 Hz) band of 

math-400ms-deviation case was higher than that of the other dual-task cases. In the 

case of deviation-400ms-math, subjects just dealt with the simple deviation task first, 

and then processed the task of math. The theta power in deviaiton-400ms-math case 

was not higher than that of math-400ms-deviaiton case. The other fact was the onset 

of significant theta power presented, as shown in Fig. 4-24. It was clearly that the 

theta power increase presented most early in math-400ms-deviation than that in the 

other cases. The early phyasic theta band response in frontal regions primarily 

reflected the activation of neural networks involved in allocation of attention related 

to target stimulus [49]. 

We also found power increase in beta band (12.2 ~ 17 Hz) in all cases (as 

showed in Fig. 4-22). From the ERSP images, the patterns were time-locked to the 

onsets of the math. It is suggested that EEG changed due to a specific component of 

mental calculation. Significant differences were obtained in delta and theta band in 
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right posterior areas and in the beta band in frontal areas [50]. 

The presented evidence proved that when human faced a difficult task first and 

then the other tasks presented, it would not only be induced the faster attention-related 

activation, but also led to the maximal distraction effect in the experiment. The theta 

activity of EEG in the frontal area could be used as the index of distracted effect and 

distracted extent. 

 

5.1.2 Distracted Effect in Mu Area 

 

Mu rhythm (μ rhythm) is an EEG rhythm recorded usually from the motor cortex 

of the dominant hemisphere. It is also called aciform rhythm given the shape of the 

waveforms. It is a variant of normality, and it can be suppressed by a simple motor 

activity such as clenching the fist of the contra lateral side, or passively moved [51] 

[52] [53]. Mu suppression is believed to be the electrical output of the synchronization 

of large portions of pyramidal neurons of the motor cortex which control the hand and 

arm movement when it is inactive.  

According to the ERSP of single deviation and single math in Fig. 4-25, 

respectively, the mu suppression was caused mostly by subjects steering the wheel 

and pressing the bottoms (answer mathematical questions). It was obviously that the 

mu suppression caused by wheel steering is almost time-locked to the response onset. 

The mu suppression caused by bottom press was present before the math reply. 

Suggest that it involves motor planning to prepare to answer the math question [54]. 

As for in the dual-task cases, the mu suppression was mixed by the two main reasons, 

wheel steering and bottom press, and it was weaker in dual -task cases than that in 

single-task. Due to the more activation in dual-task cases in the frontal lobe, it may be 
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reasonable to infer that the math processing occupy more brain source in frontal lobe 

so that the less activation was induced in the motor area. However, it was difficult to 

find an index of distraction effect and distraction extent in motor area since the mixed/ 

undistinguishable activity. 

 

5.1.3 Distracted Effect in Occipital Area 

 

The occipital lobe is the visual processing center of the mammalian brain, 

containing most of the anatomical region of the visual cortex. The region specialized 

for different visual tasks, such as visuospatial processing, color discrimination and 

motion perception [55]. 

In our experiment, we also investigated the pattern inducing by visual stimulus. 

In Fig. 4-28, power increase in low frequency accompanied the onset of math. From 

the ERP (Fig. 4-29) activity, we also found the pattern of P300 that involves the visual 

induced activity [56]. According to ERSP of the single math case, the alpha increase 

was time-locked to the response of math reply. The phenomenon is known as alpha 

rebound after a mental task being finished [57]. Compared with other cases with math, 

the alpha rebound power was maximal in the single math case. It is suggested that the 

subjects were able to concentrate on solving math task without other distraction in the 

single-math case. It is also suggested that perceptual switching by the button press 

showed characteristic occipital alpha and frontal theta band activity prior to a switch 

[59]. The alpha activity was specific to switch, the theta activity was generic to 

perceptual processing conditions. These results suggest that the ability to concentrate 

attentional effort on the task is responsible for the differences in perceptual switching 

rates. 
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5.2 Brain Dynamics Related to Dual Task 

 

Of particular importance here, was the observation that interaction elicited by 

two visual stimulus. In the literature, subjects viewed the Necker cube continuously 

and responded perceptual switching by pressing a button. It suggests that the ability to 

concentrate attentional effort on the task is responsible for the difference in perceptual 

switching rate [58]. For selective multi objects, human attention requires that its 

object be selected from among others, and that the representation of the selective 

object be effectively integrated with information in other brain areas mediating higher 

cognitive processing. It demonstrates that the main role of cognitive processing in the 

brain is in selective attention when subjects select object to act [59]. Similarly, in 

dual-task coordination, subjects increased distracted interference in selective attention. 

Posner et al. [60] postulated that two tasks, when performed simultaneously, do not 

interfere with the performance of one another when different brain areas are used for 

the two tasks. Brain activation during simultaneous visual and auditory information 

processing may result in a summation of the activation during selective visual and 

auditory information processing (selective or focused attention). One report is to 

investigate how performance of two overlapping discrete tasks is organized and 

controlled. It suggests that sequential performance of overlapping tasks is scheduled 

in advance and is regulated by initially allocating the central processing channel to 

one task and subsequently switching this channel to the other task [61].  

In our experiment, because we used two visual stimuli and they would compete 

within the same brain source to interfere with the performance of one another. From 

the results, the phasic changes around the theta band for the case, which the math 

presented at 400ms before the deviation onset, showed the highest distracted effect in 
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all cases, not two tasks appeared simultaneously. Then, we inferred that when math 

task was presented to the subject, it occupied most of the brain source. Thus when 

deviation task appeared the brain immediately allocated to switch to the second task 

and the influence would consume many brain sources. 

In the case which deviation presented at 400ms before math, since the design of 

the deviation task was very simple in our experiment, thus when the deviation was 

presented to the subject, it did not consume much brain source. Therefore, when the 

second (the math) task appeared the brain could immediately allocate source to switch 

the task.  

Similarly, when two tasks were presented simultaneously to the subject, the 

subject would select an important task from the two tasks and replied to the task 

immediately. And thus, brain could easily allocate source to switch next task, because 

brain had organized the operating sequence. 

In summary, we investigated the relationship between brains activities associated 

with dual-task management and the combination of response modalities and observed 

several differences in neural activities between dual-task cases and single case. 

 

5.3 The Correlation between Behavioral and 

Physiological Responses 
 

In our experiment, we found that the phenomena of trend of response time (math) 

and EEG theta increase in frontal lobe were consistency. The response time of math 

was the shortest and the EEG theta power increase was the weakest in the case of 

single math. Similarly, in the case of case-1 there was the longest of response time of 

math and the strongest total power (as shown in Fig. 4-23 and Fig. 4-24). 
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In the study, the deviation task was much easier than the math task. Therefore, 

this would affect the distraction according the sequence of two tasks. According to the 

observation of on-board camera video during driving experiment, it was found that 

most subjects took the math as a cue and turned rapidly in the case of 

math-400ms-deivation. And when the deviation task appeared in the case-1 subjects 

were in order to continuously resolve the mathematical equations, they had to firstly 

and rapidly response to the deviation task to avoid hitting the wall. Therefore, we 

found that the response time was the shortest in the case of math-400ms-deviation, but 

the longest time in the case of single-deviation. In motor component, the alpha 

suppression was weaker in the dual-task cases than that in the case of single-deviation. 

The trend between response time of deviation and alpha suppression in motor area 

was not consistency. This was due to our designed experiment. To avoid the problem 

presented, we could adjust some parameters in next experiment. Firstly, we had to 

increase the degree of difficulty about deviation. When a winding course added the 

experiment, subjects consumed more force in driving. Secondarily, we could control 

to be not the same as the ratio of appearing cases and in order to simulate real driving, 

we designed higher rate in single deviation similar to oddball paradigm. This was in 

order to investigate that the second task affected the primarily task of driving. 
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6 VI. Conclusions 
 

To investigate the brain dynamics related to distracted effects by using EEG 

signals, we assessed effects of the stimulus onset asynchrony (SOA) between the 

deviation and math presented on the EEG dynamics and we designed five cases with 

different SOA. This innovative study was conducted in a VR-environment on a 6 

DOF motion platform. Our results showed that behavioral and physiological (EEG) 

responses under multiple cases and multiple distracted levels include: (1) Behavior: 

the statistic test of response time to math in dual tasks was significantly larger than 

that in single task and the response time of single-math was shortest. This was 

because there was no another task to interference. However, comparing to the dual 

tasks, the response time to deviation was longest in the case of single-deviation. This 

was because the math task of the designed is difficult enough for the subjects and was 

considered as a real cue in the experiment. (2) Frontal component: (a) comparing to 

the single tasks, the phasic theta (5~7.8 Hz) band increase was higher in dual tasks. 

The phasic changes around the theta band for the case, which the math presented at 

400ms before the deviation onset, showed the strongest increases among all dual-task 

cases. (b) The latencies of the theta increase were shifted along with the onset of math 

presented. The latency for the case which the math presented at 400ms before 

deviation appeared was the shortest. (c) The Beta (12.2 ~ 17 Hz) increase was induced 

by the onsets of the math. (3) Motor component: alpha suppressions were time-locked 

to onsets of the first event. (4) Occipital component: (a) ERPs time-locked to the 

onsets of the math were showed in all cases. In comparison with the single task, the 

rebounded activities near the alpha band that induced by the button press were 

significantly decreased in the dual tasks.  
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When received a dual-task performance, subjects made math as a cue, and they 

could steer wheel rapidly. Comparing to among dual-task cases, the phasic theta band 

increases was higher in dual tasks. The phasic changes around the theta band for the 

case, which the math presented at 400ms before the deviation onset, showed the 

highest distracted effect in all cases. Because there was a processing task in brain first 

and subjects needed more brain source to manage the second task presented after the 

first task at 400 Ms. As for in the dual-task cases, less alpha suppression was in motor 

area, but more theta increase was in frontal area. These results demonstrated that 

reaction time and multiple cortical EEG sources responded to the car drifting and the 

math occurrences differentially in the stimulus onset asynchrony. In addition, results 

also suggested that the phasic theta increase in frontal area could be used as the index 

for early detecting driver’s distraction in the real driving.  

In the future, firstly, we will apply our finding to take one step ahead to 

investigate the difference about spatial attention between motion and motionless on a 

6 DOF motion platform. Secondary, in order to simulate real driving, we can 

investigate multi-sensory attention (such as auditory and visual). We will further 

investigate more detailed about the distracted effects of stimulus onset asynchrony. In 

the future, we use the study to combine the mechanism of bio-feedback and the 

bio-feedback provides a warning for the brain to adapt when subjects distract. 
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Appendix 

A. Independent Component Analysis (ICA) 

 

The ICA is a statistical “latent variables” model with generative form: 

 )t()t( sAx =  (1) 

Where A is a linear transform called a mixing matrix and the is  are statistically 

mutually independent. The ICA model describes how the observed data are generated 

by a process of mixing the components is  . The independent components is  (often 

abbreviated as ICs) are latent variables, meaning that they cannot be directly observed. 

Also the mixing matrix A is assumed to be unknown. All we observed are the random 

variables ix , and we must estimate both the mixing matrix and the IC’s is  using 

the ix . 

    Therefore, given time series of the observed data 

[ ]TN )t(x)t(x)t(x)t( L21=x  in N-dimension, ICA will find a linear mapping 

W such that the unmixed signals u (t) is statically independent. 

 )t()t( xWu = . (2) 

Supposed the probability density function of the observations x can be expressed as: 

 )(p)det()(p uWx = , (3) 

the learning algorithm can be derived using the maximum likelihood formulation with 

the log-likelihood function derived as: 

 ∑
=

+=
N

i
ii )u(plog)det(log),(

1

WWuL , (4) 

Thus, an effective learning algorithm using natural gradient to maximize the 
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log-likelihood with respect to W gives: 
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Where the nonlinearity 
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and WW T  rescales the gradient, simplifies the learning rule and speeds the 

convergence considerably. It is difficult to know a priori the parametric density 

function )(p u , which plays an essential role in the learning process. If we choose to 

approximate the estimated probability density function with an Edgeworth expansion 

or Gram-Charlier expansion for generalizing the learning rule to sources with either 

sub- or super-Gaussian distributions, the nonlinearity )( uϕ  can be derived as: 
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Then, 
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Since there is no general definition for sub- and super-Gaussian sources, we choose 

( )1) (-1,1) (1,2
1 NN)(p +=u  and )(hsecN)(p uu 2(0,1)=  for sub- and 

super-Gaussian, respectively, where ( )2σμ ,N  is a normal distribution. The learning 

rules differ in the sign before the tanh function and can be determined using a 

switching criterion as: 
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where 

 { } { } { }( ),)tanh()(sec 22
iiiii uuEuEuhEsign −=κ  (10) 

represents the elements of N-dimensional diagonal matrix K. After ICA training, we 

can obtain N ICA components u(t) decomposed from the measured N-channel EEG 

data x(t). In this study, N=30, thus we obtain 30 components from 30 channel signals. 
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