f* AR EREREFEEERT A w2
Yok & R

EEG Dynamicsin Response to Distraction in

Virtual Reality. Driving Simulation

SRR
R e B L

LT T

PEAR 4L S

i



vd

~—

I R B ERIIREFFLERT L

Pk K R L
EEG Dynamics in Response to Distraction in Virtual Reality

Driving Simulation

g4 ke

s

Student : Hong-Zhang Lin
1 Wy e £ Advisor @ Dr. Chin-Teng Lin
i+ TE 2 Dr. Yu-Ying Chen

A Thesis
Submitted to Department of Electrical and Control Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master
in
Electrical and Control Engineering
June 2007

Hsinchu, Taiwan, Republic of China

PERR 4L £ -

= !

il



f* AR EREREFEEERT A w2
LD S N =y

FLoHTE e T it B
L L

ErEace g@d L X FEAAESRFIL - o B 22 BT
# (Electroencephalogram, EEG) kEF3dH 2 7 577 L ff i st Begdtr B %
Lo Y RYRRF BB LBLEHEXE kORI F 22 RB - & R
¢ O APRPAFH RO T RBEEREF IR RFHFLER TSRS
A e PR 5T - HGBfEE - AERE? FREFIRT 5
WIPEBR APRFTIBLFEIRFFRIF LA SRR EH -4
EFAF PR P R A P A ehE BB - EEG LSS
BBz = i 4 47 (Independent Component Analysis, ICA)fé & &= B fb > ¢
Sk o £ 1 % i 4p W47 3 38 & (Event Related Spectral Perturbation, ERSP)
RPFEFEF DAL AATHR LGS P RRBEIRES LT FFERRL O
HHLE - RBEFRALIFES®S > Theta £+ (5~7.8 Hz) = Beta #
(12.2~17 Hz) hit £ § Fl5 & wonf5m H 5 - &R ERE - BREIIFZRELT
FATHFOF R GIE FIZ v FREFERFLETE L PR G i8R L
FRBZI & Alpha #EF F15 28 it 2Fed] o U HpFRAPGIE L B

il



AR RRIFET URRIA RS od NI REREAPIEF AERT

N
=
1§

EFRPURFFRF LA PRRT > FLF BNk F By AERT #

-_
-
o

PoRmBRS FRLTE RS Theta AN RHHBO T LCE P Y

RERY LY RERS LT G A bk

MégF i A ~BEEETH%T R 3FE ~Theta ¥ ~ %5 - T 2 ipMig#E
LI <R R A

v



EEG Dynamics in Response to Distraction in

Virtual Reality Driving Simulation

Student: Hong-Zhang Lin Advisor: Dr. Chin-Teng Lin
Dr. Yu-Ying Chen
Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

Driver distraction has been recognized as a significant cause of traffic incidents.
Therefore, the aim of this study was torinvestigate Electroencephalography (EEG)
dynamics in response to distraction during dfiving.* To study human cognition under
specific driving task, we used Virtual Reality (VR) based driving simulation to
simulate events including unexpécted ear deviations'and mathematics questions (math)
in real driving. For further assessing effects 'of the stimulus onset asynchrony (SOA)
between the deviation and math presented on the EEG dynamics, we designed five
cases with different SOA. The scalp-recorded EEG channel signals were first
separated into independent brain sources by Independent Component Analysis (ICA).
Then, the Event-Related-Spectral-Perturbations (ERSP) measuring changes of EEG
power spectra was used to evaluate the brain dynamics in time-frequency domains.
Results showed that increases of theta band (5~7.8 Hz) and beta band (12.2~17 Hz)
power were observed in the frontal cortex. For occipital components, we found the
pattern of visual induced brain activities and rebounds from the button press. In motor
components, we found alpha suppressions time-locked to event onsets. All the above

results were consistently observed across 11 subjects. Results demonstrated that



reaction time and multiple cortical EEG sources responded to the driving deviations
and math occurrences differentially in the stimulus onset asynchrony. Results also
suggested that the phasic theta increase in frontal area could be used as the distracted

indexes for early detecting driver’s inattention in the real driving in the future.

Keyword: Distraction, Dual task, Frontal lobe, Theta band, Mathematics, Mental
Workload, EEG, ICA, Component Clustering, ERSP, ERP.
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l. Introduction

Distraction and inattention of drivers have been identified as the main leading
causes of car accidents. The U.S. National Highway Traffic Safety Administration has
identified driver distraction as a high priority area about 30% [1]. Driver distraction
by whatever cause is a significant contributor to road traffic accidents [2] [3]. Driving
is a complex task in which several skills and abilities are involved simultaneously.
Monitoring drivers’ attention related brain resources is still a challenge for researchers
and practitioners in the field of cognitive brain research and human—machine
interaction.

Reasons of distractions found during.driving-were quite widespread, including
eating, drinking, talking with- passengers, use of- cell phones, reading, fatigue,
problem-solving, and using in-car equipment./Recently, commercial vehicle operators
with complex in-car technologies (such asnavigation, road traffic information, mobile
telephones and in-vehicle entertainment systems) are also at increased risk since
drivers may become increasingly distracted in the years to come, thus making it likely
that the problem of driver inattention [4] [5]. Some literatures studied the behavioral
effect of driver’s distraction in car. Tijerina’s study was based on measurement of the
static completion time of an in-vehicle task [6]. Similarly, the distraction effect caused
by cellular phones during driving has been a focal point of recent in-car applications
[7] [8] [9]. Experimental studies have been conducted to assess the impact of specific
types of driver distraction on driving performance. While these studies have generally
reported significant driving impairment [10] [11], simulator studies cannot provide

information about the impact of these decrements on the occurrence of crashes



resulting in hospital attendance by the driver. Therefore, in order to provide
information before the occurrence of crashes we try to investigate the drivers’
physiological responses.

To the aspect of neural physiological investigation, some literatures focused on
the brain activities of “divided attention” referring to attention divided between two or
more sources of information, such as visual, auditory, shape, and color stimuli.
Madden et al. [12] investigated brain activation when subjects were instructed to
divide their attention among the display positions within the visual modality. Regional
cerebral blood flow (rCBF) activation was found in occipitotemporal, occipitoparietal,
and prefrontal regions. And Positron emission tomography (PET) measurements were
taken while subjects discriminated between shape, color, and speed of a visual
stimulus under conditions of selective and divided attention. The divided condition
activated the anterior cingulated-and'prefrontal cortex in the right hemisphere [13]. In
another study, functional magnetic résonance-imaging (fMRI) was used to investigate
the brain activity during a dual-task (visual “stimulus) experiment. This found
activation in the posterior dorsolateral prefrontal cortex and lateral parietal cortex [14].
Similarly, the study used -electroencephalogram (EEG) to investigate mental
arithmetic-induced workload increasing, the finding is power increase in theta band in
the region of frontal lobes [15]. And, several neuroimaging studies showed the
importance of the prefrontal network in dual-task management [16] [17]. However,
the above-mentioned studies just investigated the brain activity of dual-task
interaction without considering the stimulus onset asynchrony (SOA) problem during
driving and the effect of different temporal relationship of stimuli.

The current investigation utilized an array of methodological assessment
techniques and compared the sensitivity of each to changes in attention processing

requirements as a function of driving task demand. Some literatures of investigated
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the traffic record the electroencephalogram (EEG) to compare the P300 amplitude
[18]. During simulated traffic scenarios, resource allocation was assessed through as
event-related potential (ERP) novelty oddball paradigm [19]. However, these are just
to analyze in time course, we can take one step to analyze the relation between time
and frequency course.

The electroencephalogram (EEG) has been used for 80 years in clinical practices
as well as basic scientific studies. Nowadays, EEG measurement is widely used as a
standard procedure in researches such as sleep studies [20], epileptic abnormalities,
and other disorders diagnoses. Comparing to another widely used neuroimaging
modality, functional Magnetic Resonance Imaging (fMRI), EEG is much less
expensive and has the superior ability of temporal resolution for us to investigate the
SOA problems. Furthermore, to avoid the interference and risks of operating an actual
vehicle on the road, the use of-driving simulation for vehicle design and studies of
driver’s behavior and cognitive-statés-is-also.expanding rapidly [21] [22]. The static
driving simulation may be difficult to approach the realistic driving condition, such as
the vibrations that would be experienced when driving an actual vehicle on the road.
The VR technique allows subjects to interact directly with a virtual environment
rather than monotonic auditory and visual stimuli. Integrating realistic VR scenes with
visual stimulus is easier to study the brain response to visual attention during driving.
Therefore, in recent years, the VR-based simulation combined with
electroencephalogram (EEG) monitoring is an innovation in cognitive engineering
research [20] [23].

The main goal of this study is to investigate the brain dynamics related to
distraction by using EEG and VR-based realistic driving environment. Unlike the
previous studies, our experiment has three main characteristics. First, the stimulus

onset asynchrony (SOA) experimental design, the different appearance time of dual
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tasks (mathematical questions and unexpected car deviation), has the benefits for us to
investigate the driver’s behavioral and physiological response under multiple
conditions and multiple distracted levels. Second, the ICA-based advanced signal
analysis methods were used to extract the artifact-free brain responses and related
cortical location related to the single/dual task. Third, compared with single task, the
interaction and effect of dual-task-related brain activities was also investigated. The

detailed contents are described in the following sections.

The thesis was organized in 6 chapters. Chapter 1 briefly introduced current
knowledge in vestibular system and the goal of the study. Chapter 2 detailed the
apparatus and materials of the study. Chapter 2 also described the details of
experimental setup, including the time,course of event onset asynchrony setup. In
chapter 3, we explored the EEG.with infovative methods by combining Independent
Component Analysis (ICA), time-frequency spectral analysis, power spectrum and
component clustering. Chapter-4 showed=the results. Chapter 5 discussed and

compared our finding with previous studies, and finally we concluded in Chapter 6.



1. Experimental Apparatus

The main purpose of this research was to investigate the EEG features related to
distraction in a dual-task experiment. The most concerned issue in dual-task studies
was the effect of distraction on driving because it directly related to public safety. For
example, using cell-phone, tuning radio or looking at the road-sign could distract the
drivers from their driving task and cause serious traffic accidents. However, the
driving experiments were very dangerous if they were took place on road. With
combining the technology of virtual reality (VR), a driving environment was
constructed for the safety of driving experiments in our lab. The VR-based dynamic
environment could provide realistic visual and motion stimuli to the subjects. The

environment was employed in the:setup of dual-task experiment as shown in Fig. 2-1.

Virtual-Reality Seene: Dymamic Driving Simulator
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EEG/EOG + ECG VR Server Physiological
signal recorder

Fig. 2-1: The illustration of the experimental setup including the dynamic VR

driving environment and the EEG-based physiological measurement system.



There were three major parts of the architecture: (1) a 3D highway driving scene
based on the VR technology, (2) a real vehicle mounted on a 6-DOF motion platform,
(3) a physiological signal measurement system with 36-channel EEG/EOG/ECG
sensors. The subjects were asked to sit in a real car mounted on the 6-DOF motion
platform with their hands holding the steering wheel to control the simulated car in
the VR scene. The 30-channel scalp EEG and 4-channel EOG were simultaneously
recorded at 1 KHz sampling rate. The details of the experimental setup would be

presented in the following sections.

2.1 Dynamic Driving Environment

A virtual-reality (VR) based  highway-driving environment was used to
investigate the changes on drivers’ distraction efféct. The VR driving environment
includes 3D surround scenes projected by seven projectors and a real car mounted on
a 6-degree-of-freedom (as showed in Fig. 2-2) Stewart platform to provide the
kinesthetic stimuli. The dynamic driving environment provided a safe, time saving
and low cost approach to study human cognition under realistic driving events. The
subjects could interact directly with the environment and receive the most realistic

driving conditions during the experiments.



Fig. 2-2: Pictures showed the dynamic VR driving environment, in the Brain Research
Center of National Chiao Tung University, Taiwan, and ROC. A real car in the 3D VR

environment was showed in the left picture. The experimental setup around the

steering wheel was showed in the right picture.

In this study, the VR scene was generated by the Virtual- Reality technology with
a World Tool Kit (WTK) library. T_he:,C' prbgfém._i_ncluding the WTK library was used

and its library function was called up td.ﬂqvé-fhc tllqee—dimensional models. The 3D

view was composed of seven id'_ef_ltical{ P(}srunnlng tHe same VR program. Seven PCs

were synchronized by LAN so Zﬂ,sq:éﬂesl were gomg at exactly same pace. The VR
scenes of different viewpoints were ;;rojec‘[léd on corresponding locations. Fig. 2-3
showed the layout of our simulator. The front screen marked 1 and 2 was overlapped
by two polarized frames to reach the binocular parallax. The frames for the left and
right eyes were projected onto the frontal screen with two projectors, respectively. By
wearing special glasses with a polarized filter, the configuration provided a
stereoscopic VR scene for a 3D visualization. In our VR scene, the surrounded
screens covered 206° frontal FOV and 40° back FOV, as shown in Fig. 2-4. Frames
projected from 7 projectors were connected side by side to construct a surrounded VR
scene. The size of each screen had diagonal measuring 2.6-3.75 meters. The vehicle
was placed at the center of the surrounded screens. Detailed information was shown in

Table-1.



Table-1: The Specification of driving simulator

Screen Number or Location Dimension
Screen Number 1, 2, 3, 4 (FOV 42°) (W)x(H) = (300 cm)x(225 cm)
Screen Number 5, 6 (FOV 40°) (W)x(H) = (270 cm)x(202 cm)
Screen Number 7 (FOV 40°) (W)x(H) = (210 cm)x(157 cm)
Vehicle Dimension LI(W)x(H) =

(430 cm)x(155 cm)x(140 cm)
Driver to Front Screen (1, 2) 370 cm

Driver to Left and Right Screen (5, 6) 220 cm (Left) and 300 cm (Right)

Driver Head Height Relate to Screen 1 120 cm

Fig. 2-3: The picture showed the configuration of the 3D surrounded scene. The 3D
VR scene consisted of 7 projectors, creating a surrounded view. The frontal screen
was overlapped by 2 projector frames in different polarizations, providing a

stereoscopic VR scene for 3D visualization.




Fig. 2-4: The picture showed the overview of surrounded VR scene. The VR-based

four-lane highway scenes were projected into surround screen by seven projectors.

2.2 EEG Signal Acquisition

An electrode cap was mounted on the subject’s head for signal acquisition as

shown in Fig. 2-5. A standard for the placement of EEG electrodes proposed by Jasper
ol " J F_l-' i ?

bl
in 1958, which is known as the LQQO Intemaﬁ@al System of Electrode Placement

I«—'\.

[24] is used in the electrode ca F,An 111 ﬁ@n éf tﬁe 10-20 system is shown in Fig.
El 25

_I

2-5, the electrodes are namedf*ac Qﬂ ing -to-tl -iqcatlon of an electrode and the
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Fig. 2-5: Schematic pictures showed the lateral (A) and top view (B) of international
10-20 system of electrode placement [24].



The letters F, C, T, P, and O were refer to the frontal, central, temporal, parietal,
and occipital cortical regions on the scalp, respectively. The term “10-20” means 10%
and 20% of the total distance between specified skull locations. The percentage-based
system allowed differences in skull locations. The physiological data acquisition used
30 sintered Ag/AgCl EEG/EOG electrodes with a unipolar reference at right earlobe
and 2 ECG channels in bipolar connection placed on the chest.

The 36 electrodes including 34 EEG/EOG channels , 2 ECG channels (bipolar
connections between the right clavicle and left rib), and one 8-bit digital signal
produced form VR scene were simultaneously recorded by the Scan NuAmps Express
system (Compumedics Ltd., VIC, Australia) shown in Fig. 2-6. It was a high-quality
40-channel digital EEG amplifier capable of 32-bit precision sampled at 1000 Hz.
Table-2 showed the specifications of the NuAﬁlps amplifier. Before acquiring EEG
data, the contact impedance bétween EEG electrodes and skin was calibrated to be
less than SkQ by injecting NaCl based conductive gel. The EEG data were recorded
with 16-bit quantization levels af a sampling tate of 500 Hz in this study. All EEG
data were preprocessed using a low-pass filter with a cut-off frequency of 50 Hz in
order to remove the power line noise and other high-frequency noise. Similarly, a
high-pass filter with a cut-off frequency at 0.5 Hz was applied to remove baseline

drifts.

Fig. 2-6: The picture showed the setup of the physiological recording containing the
NuAmps EEG amplifier and the electrode cap.
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Table-2: Specifications of NuAmps

Analog inputs 40 unipolar (bipolar derivations can be computed)
Sampling frequencies 125, 250, 500, 1000 Hz per channel

Input Range +130mV

Input Impedance Not less than 80 MOhm

Input noise 1 uV RMS (6 pV peak-to-peak)

2.3 3D Position Measurement of EEG Electrodes

The Fastrak 3D Digitizer is an accurate electromagnetic tracking system we used
for localization of electrodes. Withsthe 3D digitizer, it became possible to construct
accurate anatomical/functional ifnages from the surfgce measured potentials. Fastrak
is controlled by software named Locator, which acquires and displays 3D position
measurements for electrodes. It‘ includés ar Systerﬁ Electronics Unit (SEU), a power
supply, three cube receivers, one stylus and one standard transmitter (as showed in Fig.
2-7). Used the hardware and software necessary to generate and sense the magnetic
fields, compute position and orientation for digitizing electrode locations of subject’s

head.

Fig. 2-7: The picture showed the Fastrak 3D Digitizer.
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2.4 Experimental Design

To investigate the effect of stimulus onset asynchrony (SOA) on the behavioral
performance and differences on brain activities between single- and dual- task
condition in a virtual environment, we designed two tasks: unexpected car deviation,
mathematical questions. We used the combinations of these two tasks to provide
different distracted effects to the subjects.

We developed a VR highway environment with a monotonic scene as shown in
Fig. 2-8 and eliminated all unnecessary visual stimuli. The four lanes from left to right
were separated by a median strip insthe ' VR-based scene. The distance from the left
side to the right side of the road was equally divided into 256 points for outputting
digital signal from WTK program, and the width of each lane and the car was 60 units
and 30 units, respectively (as showed in Fig. 2<9). In the VR scene, the simulated
driving speed was controlled by a scheduled program, thus subjects need not to step

on paddles, to prevent large muscle activity on the throttle or brake.

Fig. 2-8: The photomicrograph showed the simulated high way scene. The

monotonous scene was designed to reduce the visual disturbance.
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Fig. 2-9: The illustration of the hi ' > 'he width of highway from the left to

right side was equally divided into 256 units-and the width of the car was 32 units.

There would be four 15-minute sessions (5~10 minutes break between sessions
to avoid the subject get drowsy) in one driving simulation experiment for each subject.
To avoid anticipative effect for subjects the events were presented to the subjects
randomly, as shown in Fig. 2-10. The inter-trial intervals were set from 6 to 8 seconds
in order to avoid interaction between trial and trial. Thus a total of 100 events could
be presented to the subject in each session to ensure the number of events is enough

for statistical analysis.
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Random 5 Cases
6~8s 6~8s

Inter-Trial Interval Inter-Trial Interval

I__" Case 1 T Casel |°°°°~ I

Time Line >
Every session 15 minutes

Fig. 2-10: The illustration of the experimental paradigm. Five cases were randomly

appeared and the inter-trial intervals were varied from six to eight seconds. There

were four sessions (15 minutes / per session) in each experiment.

Since the main purpose of this experiment was to investigate the distracted effect
in dual-task conditions. Therefore, two driving tasks were designed including the car
unexpected deviation and the mathematical questions. The car would randomly drift
from the middle of the road in aqg'ééxaﬂélg@k When the event was occurred,

-rs.‘-ﬂ' . A
= I\"\%“-
subjects had to control the stee$ @ﬁ@@ ‘(::ar in the third lane (as showed in
- 'l- ,,r"" ﬁ?} ____-'. [
F .|_-'..’ !

Fig. 2-11). MT
-:. . S 1896

Fig. 2-11: The illustration of the deviation event. (A) Vehicle moving in straight
line; (B) the onset of deviation event; (C) response to the deviation and (D) vehicle

back to middle lane.
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Two digits addition equations were presented to the subjects in the mathematics
task. The answers of the equations were already designed to present with the
equations but they could be either right or wrong. The subjects were asked to press the
right bottom on the steering wheel when the equation is correct, and to press the left
bottom when it was wrong. The event allotment ratios were 50% and 50% for right

and wrong equations, respectively.

- | . . : | :
Math
Math I OnIy
Mathematical athematical Mathematical
<« Question Mathematical Question Only

Question (after D 400ms) Question deviation

(before D 400ms) c 2
ase Case 3 Case 4 Case 5

Fig. 2-12: The illustration of the relationship between the deviation onset and math
occurred. (A) Case 1: math was presented at 400ms before the deviation onset. (B)
Case 2: math and deviation occurred at the same time. (C) Case 3: math presented at
400ms after the deviation onset. (D) Case 4: only math presented. (E) Case 5: only

deviation occurred.

The combinations of these two tasks were used to provide different distracted

conditions to the subjects. Five conditions were developed to study the interaction of
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the two tasks, they are: (A) math was presented at 400ms before deviation
(math-400ms-deviaiton), (B) two tasks were presented at the same time
(math-deviation) (C) math was presented at 400ms after deviation
(deviation-400ms-math), (D) only math presented (single-math) and (E) only
deviation occurred (single-deviation). The illustrations of the five conditions were
shown in Fig. 2-12. A pilot study was designed to determine the time of stimulus
onset asynchrony, i.e., the time interval between two tasks in case 1 and 3. Three
different time values were tested including 400ms, 800ms and 1200ms. The
behavioral data was collected from 8 subjects in the pilot study. The result suggested
the interaction between tasks is significant with 400ms time interval. Thus, we

adopted 400ms as the time of stimulus onset asynchrony.

2.5 Subjects

Eleven healthy volunteers (all “males)" with no history of gastrointestinal,
cardiovascular, or vestibular disorders participated in the experiment of the
motion-sickness study. The subjects are ages from 20 to 28 years old, with a mean of
24 years. They were requested not to smoke, drink caffeine, use drugs, or drink
alcohol, all of which could influence the central and autonomic nervous system for a

week prior to the main experiment.
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[11. Data Analysis

After the recording of the multi-channel EEG signals and behavior data, the data
were analyzed for the study of distracted effect. The software of Statistical Package
for Social Science (SPSS) was used to estimate the significant testing of behavior data.
EEG epochs were extracted form the recorded EEG signals after down sampling,
filter and artifact removal. We used Independent Component Analysis (ICA) [25] to
separate independent brain sources. The Event Related Potential (ERP) was first used
to study the EEG potential responses in time domain. The Event Related Spectral
Perturbation (ERSP) technology was then applied to the ICA component signals to
transfer the signal into time-frequency domain for the event-related frequency study.
The stability of component activations and Sealp topographies of meaningful

components were finally investigated with component clustering technology.

3.1 Analysis of the Behavior Data

The response time of the tasks (the deviation and the math) was analyzed to
study the behavior of the subjects in the experiments. By using one way analysis of
variance (ANOVA), the significance of the behavior data were tested for every subject
and the nonparametric test to study the trend of the behavior data. Fig. 3-1 showed the
flowchart of analysis behavior data. First, we had to remove the outliners by using the
criterion of mean+3D (mean: average the response time, D: standard deviation). Then
we choose the minimal trial in all cases to make benchmark. And we used the
benchmark to select randomly the same trials in other cases. Single task was baseline,

and choose the minimal value as denominator. To normalize the behavior data was [Xi
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/(Xmean)] (Xi: Every response time of trial, Xmean: mean response time in single
case). Because several extremely large scores significantly skewed, so nonparametric
analysis was used. A Friedman ANOVA was conducted to test for difference in

R-values (Xi,/(Xmean)) among the five in-vehicle tasks.

Pilot study

'

Experiment

'

Collect data

Yes
Delete outliers

Neo

Random sample

!

Normalized <

Y

Nonparametric-
Friedman test

No
Significant

Yes

Post Hoc test:
Studeent-
Newman-Keuls
test

Conclusion

Fig. 3-1: The flowchart of analyzing the behavioral data. First, we removed the
outliers and normalized the behavioral data by [Xi,~(Xmean)] (Xi: Every response
time of trial, Xmean: mean response time in single case) and then we used the
Friedman test to examine the significance of R-values (Xi,~(Xmean)). Finally, the

Student-Newman-Keuls test was used to assess the significant within all cases.
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3.2 The Procedures of EEG Data Analysis

Fig. 3-2 showed the flowchart of the proposed data analysis procedure for EEG
signals. The EEG data were recorded with 16-bit quantization level at a sampling rate
of 500 Hz and the recording were down-sampled to sampling rate (SR) =250 Hz for
the simplicity of data processing. The EEG data were then preprocessed using a
simple low-pass filter with a cut-off frequency of 50 Hz to remove the line noise (60
Hz and its harmonic) and other high-frequency noise for further analysis. A simple
high-pass filter with a cut-off frequency of 0.5 Hz was used to remove the DC drift.
Then we extracted epochs from continuous EEG data and combine all epochs to run
independent component analysis (ICA)." Finally, we applied the technology of
Event-Related-Spectral-Perturbations (ERSPs) to ‘investigate the EEG responses in

both time and frequency domains.

30 Channel EEG
raw data

y
Pre-processing
(Down sampling
250 Hz, Bandpass
filter 0.5 ~ 50 Hz)

A 4

Extract Epochs
(-1 ~5 second)

A 4

Independent
Component
Analysis

30 ICA components

Time Frequency
Analysis

;

Result

Fig. 3-2: The flowchart showed the EEG signal processes.
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Since we had designed different cases with the combinations of the driving and
the mathematic tasks, thus the EEG response related to different cases should be
extracted from the original EEG signals for further analysis. The event-related

potentials (ERPs) were extracted from the EEG signal as shown in Fig. 3-3.
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Fig. 3-3: The illustration of the ERP analysis. The ease-related ERPs were extracted
from raw EEG signals. Each epoch was extracted with the duration of 1 second
before and five seconds after first event onset. The onset of first event was the

occurrence of either the math or the deviation event depended on the case was
presented.

3.3 Independent Component Analysis (ICA)

In order to extract the electroencephalographic (EEG) source segregation,
identification, and localization were very difficult. Because the EEG data collected
from any point on human scalp induces activity generated within a large brain area.
Although the conductivity between the skull and brain was different, the spatial

smearing of EEG data by volume conduction did not cause significant time delay and
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it suggests that the ICA algorithm is suitable for performing blind source separation
on EEG data. The ICA methods were extensively applied to blind source separation
problem since 1990s [26]-[33]. The reports of study [34]-[41] demonstrated that ICA
was a suitable solution to solve the problem of EEG source separation, identification,
and localization. They assumed that: (a) the conduction of the EEG sensors is
instantaneous and linear such that the measured mixing signals are linear and the
propagation delays are negligible. (b) The signal source of muscle activity, eye, and,
cardiac signals are not time locked to the sources of EEG activity which is regarded as

reflecting synaptic activity of cortical neurons.
x(t)=As(t) (1)

Where A is a linear transform called,a;mixing matrix and the s, are statistically
mutually independent. The ICA=modelyestimates a* linear mapping W such that the
unmixed signals u(t) are statically independent (as showed in Fig. 3-4) (The detail

was in Appendix ).

u(t) =W x(t). (2

activetions  scalp mape
=WX w

Fig. 3-4: Illustration of the concept of ICA process. EEG signals recorded from the

brain were mixed with multiple sources [62]. By training the unmixing matrix, the
mixed EEG signals were separated into independent components which may have
specific meanings, and then scalp maps was plotted according to the weight of

unmixing matrix.
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In this study, we attempted to completely separate the twin problems of source
identification and source localization by using a generally applicable ICA. Thus, the
artifacts including the eye-movement (EOQG), eye-blinking, heart-beating (EKQ),
muscle-movement (EMG), and line noises can be successfully separated from EEG
activities. Fig. 3-5 showed a result of the scalp topographies of ICA weighting matrix
W corresponding to each ICA component by projecting each component onto the
surface of the scalp, which provided evidence for the components' physiological
origins, e.g., eye activity was projected mainly to frontal sites, and the
drowsiness-related potential was on the parietal lobe and occipital lobe [20], motor
related potential will locate at left and right side of front parietal lobe, etc. We could

see that most of artifacts and.channel noises. were effectively separated into

independent components 1 and 20,
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Fig. 3-5: The picture showed the typical example of scalp topography of ICA
decomposition. The scalp topographies showed the ICA weighting matrix W
projected to its corresponded component onto the surface of the scalp. The color bar

was the amplitude of component signals.
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3.4 Power Spectrum Analysis

Analysis of changes in spectral power and phase can characterize the
perturbations in the oscillatory dynamics of ongoing EEG. Applying such measures to
the activity time courses of separated independent component sources can avoid the
confounds caused by misallocation of positive and negative potentials from different
sources to the recording electrodes, and by misallocation to the recording electrodes
activity that originates in various and commonly distant cortical sources. The spectral
analysis for each ICA component decomposed from 30 channels of the EEG signals.
The FFT processes for each ICA component data decomposed from 30 channels of
the EEG signals and the processes are described as following. The sampling rate of
EEG is 250Hz. The power spectrum density (PSD) of each ERP is evaluated with the
spectral analysis process. The activity powet-spectrum of the ERP is calculated by
averaging the PSDs. The ICA data power.spectrum time series for each session

consisted of ICA data power estimates at 50 frequencies (from 1 to 50 Hz).

The input EEG signal is X[n]. And we can consider computing X[k] by
separating X[n] into two (N/2)-point sequences consisting of the even-numbered

points in x[n] and the odd-numbered points in x[n].
WNZ — e—2j(2ﬂ/N) — e—jZ/z’(N/Z) :WN/2 (3)
The PSDs was calculated as following equations:

/2)-1
oo, w3 xar + 1,

2)-1
=0 r=0

xk="3 ¥

r

= G[k]+W,H[k] k=0L..,N-1 (4)
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3.5 Event Related Spectral Perturbation Analysis

The Event Related Spectral Perturbation, or ERSP, was first proposed by Makeig
[42]. ERSP, we are able to observe time-locked but not necessary phase-lock activities.
It is different from the limitation of ERP.ERP must be coherent time-and-phase-locked
activities. The ERSP measures average dynamic changes in amplitudes of the broad
band EEG spectrum as a function of time following cognitive events.

The processing flow is shown in Fig. 3-6. The time sequence of EEG channel
data or ICA activations are subject to Fast Fourier Transform (FFT) with overlapped
moving windows. Spectrums in each epoch were smoothed by 3-windows (768 points)
moving-average to reduce random:’error. Spectrums prior to event onsets are
considered as baseline spectra® for every.trial. The mean baseline spectra were
converted into dB power and subtracted.-from spectral power after stimulus onsets so
that we can visualize spectral ‘perturbation’ from the baseline. This procedure is
applied to all the epochs, the results are then averaged to yield ERSP image. The
ERSP image mainly shows spectral differences after event, since the baseline spectra
prior to event onsets have been removed.

After performing bootstrap analysis (usually 0.01 or 0.03 or 0.05, here we use
0.05) on ERSP, only statistically significant (p<0.05) spectral changes will be shown
in the ERSP images. Non-significant time/frequency points are masked (replaced with

zero). Any perturbations in frequency domain become relatively prominent.
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Fig. 3-6: The illustration of procedures in ERSP analysis. FFT was applied in each
window with 256 samples, and there was 244-sample overlap of two adjacent
windows. The time-dependent ERSP image was composed of the spectra of each
window, and smoothed by 3-window moving average. In the final step, the significant
parts of ERSP image were extracted by using bootstrap method. The pink dashed
lines: the first event onset. The blue dashed lines: the averaged reaction time to the
deviation. The red dashed lines: the averaged response time to math. The black dashed
lines: averaged response time for the car returning to the third lane. Color bars showed
the magnitude of ERSPs.



3.6 Component Clustering

To study the cross-subject component stability of ICA decomposition,
components from multiple subjects were clustered based on their spatial distributions
and EEG characteristics. But, components from different subjects thus may differ in
many ways such as scalp maps, power spectra, ERPs and ERSPs. [43] [44] [45]
attempted to solve this problem by calculating the similarities (distance) among
different independent components. Components from multiple subjects were clustered
in terms of their scalp maps and activation power spectra. Individual component
clusters were characterized by their mean cluster map and activity spectrum. This
method was also known as component clustering.

In this study, we attempt to| completely. components cluster. We used the
K-means algorithm (EEGLAB 4.3) to analyze (as shown in Fig. 3-7). To cluster these
components into small number (for instance, 10)'of groups, one approach is to apply
K-means on their scalp map and power spectral. In practice, we could hardly achieve
such clean clusters if we relied entirely on K-means to classify components, since
less then half of components were meaningful after ICA decomposition, others were
usually account for noises. These components might confuse K-means algorithm and
reduce the consistency of each clusters. Another problem arose from combining scalp
map and power spectral information for K-means classification. It remained an open
question how to weight the spatial information (scalp maps) and source activity,
accounted for by power spectra in the K-means clustering. Therefore, we selected
stable components which were classified iteration by K-means algorithm into 16
clusters in terms of component scalp maps (EEGicawinv). Then we grouped 16

clusters into 7 significant clusters and discarded some non-significant clusters
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manually based on power spectra of the components. The resultant clusters are named

according to the source locations of components (as shown in Fig. 3-8).

Subject 1 Subject 2 Subject 3
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Fig. 3-7: The flowchart of component clustering by using K-means algorithm.
Components from 11 subjects were classified into several significant clusters
according to their K-means. 3

icB/501 ic14/502

®

icTAs03 ic5/504

ic9/504 icB/505 ic5/507 icB/508

® &

icd/S09 ic20/510 icd/511
@ “:-- 3
"\.I

Fig. 3-8: The typical example of the component clustering result. The mean of scalp
map was averaged across 11 subjects.
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V. Results

The EEG signals collected from 11 subjects were analyzed for the study of
distraction. Each experiment included 4 sessions and each session lasted 15 minutes.
Every session presented five cases randomly (designed with different time intervals
between tasks). The influence of stimulus onset asynchrony in the subjects’ behavior
performance was studied in the first section. Then we characterized changes of
dynamic brain activities from the independent component clusters and the power
spectrum and the event-related spectral perturbations (ERSPs) under different cases.

The following paragraphs showed detailed results.

4.1 Behavior Performance

The response time of the tasks:(the deviation and the math) was collected to
study behavior of the subjects in the experiments. The outliers were first removed
from the 11 subjects’ behavior data. By using one way ANOVA, the significance of
the behavior data were tested for every subject. The testing results were showed in Fig.
4-1. The response time to deviation was given in Fig. 4-1(A). The blue bars were in
the figures represented the case of math-400ms-deviation (case-1), the light blue bars
were represented the case of math-deviation (case-2), the yellow bars were
represented the case of deviation-400ms-math (case-3), and the red bars were
represented the case of single-deviation (case-5).

The response time to deviation in case-5 (single deviation) was significantly
larger than that in the case-1 (math present 400 ms before deviation) for most of the
subjects (8 out of 11). The response time to deviation in case-5 (single deviation) was
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significantly larger than that in the case-2 (two tasks present at the same time) for four
subjects. And, the response time to deviation in case-5 (single deviation) was
significantly larger than that in the case-3 (deviation present 400 ms before math) for
only one subject. These results were shown in Fig. 4-1(A). This meant it take longer
time for the subjects to reply to the driving task in single deviation case. Because
when the deviation task appeared in the case-1 subjects were in order to continuously
resolve the mathematical equations, they had to firstly and rapidly response to the

deviation task to avoid hitting the wall.
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Fig. 4-1: Bar charts of the averaged response time to the deviation (A) or the math
(B) onsets between four cases. The blue bars: case-1 (the math occurred at 400ms
before the deviation onset); the light blue bars: case-2 (the math and deviation
occurred at the same time); the yellow bars: case-3 (the math occurred at the 400 ms
after the deviation onset); and the red bars: case-4 (only presented the math question

in this case) or case-5 (only deviation occurred in this case).
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In Fig.4-1 (B), the response time to math in case-4 (single math) was
significantly shorter than that in the case-1 (math present 400 ms before deviation) for
most of the subjects (7 out of 11). The response time to math in case-4 (single math)
was significantly shorter than that in the case-2 (two tasks present at the same time)
for six subjects. And, the response time to math in case-4 (single math) was
significantly shorter than that in the case-3 (deviation present 400 ms before math) for
four subjects. This meant it take shorter time for the subjects to reply to the math task
in single math case.

In order to investigate the overall of behavior index, we used the technology of
nonparametric tests. The nonparametric analysis was used because several extremely
large scores significantly skewed. First, the data was randomly selected the trials
which there was the same trials in;all cases. Then the response time of the two tasks
in the five cases were normalized.to the single-deviation and single-math tasks. We
used the Statistical Package for Soecial -Science (SPSS) for Friedman test, and the
result was shown in Fig. 4-2.

The normalized response time to deviation was given in Fig. 4-2(A). The
response time to deviation for dual tasks (case-1 to case-3) were significantly shorter
than that for the single task (case-5). There were no statistical significant differences
between the case-2 and the case-3. The largest response time to the deviation onset
was the case-5. The normalized response time to math was given in Fig. 4-2(B). The
response time to math presented for dual tasks (case-1 to case-3) were significantly
longer than that for the single task (case-4). There were no statistical significant
differences between case-1 and case-2. The shortest response time to the math onset

was the case-4.
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Fig. 4-2: Bar charts of normalized response time to the deviation (A) and math (B)

presented between 5 cases across 11 subjects. The filled black bar: case-1; dark gray
bar: case-2; light gray bar: case-3; the opened bar: single case. The bottom insets
showed the onset sequences between two tasks. Note: the response time to deviation
for dual tasks (case-1 to case-3) were significantly shorter than that for the single
task (case-5). The largest response time to the deviation onset was the case-5. The
response time to math presented for dual tasks (case-1 to case-3) were significantly
longer than that for the single task (case-4). The shortest response time to the math

onset was the case-4.
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Further, we wanted to know the difference which cases was made. Then, Post
Hoc test was to use Student-Newman-Keuls test, and the result was shown in Table-3.
The explanations were showed below.

(1) Normalized response time to deviation:

The result of test statistic was s, =16.04 from Friedman test, and p=0.000 <

0.05. Therefore, the result rejected the null hypothesis. In the analysis, we found the
four cases (case-1, case-2, case-3, and case-5) significantly different with each other.
Using Student-Newman-Keuls test, we found three significant groups (case-1, case-2
and case-3, case-5).

(2) Normalized response time to math:

The test statistic was g s ; =148:859: from Friedman test, and p= 0.000 < 0.05.

The four cases (case-1, case-2,’case-3, and case-5) were significantly different with
each other. And, we used Student-Newman-Keuls test to also find three significant

groups (case-1 and case-2, case-3}.case-4).

Table-3 the normalized response time to deviation and math

Response time to deviation Response time to math
Difference Difference
Case Mean (SD) . Mean (SD) .
(dual-single) (dual-single)
-0.07 0.23
Case 1 1.216864 0.151223 1.891619 0.509387
p<0.01 p<0.01
-0.02 0.2
Case 2 1.265610  0.157821 1.860181 0.472608
p<0.01 p<0.01
-0.01 0.15
Case 3 1.269600  0.169142 1.811820 0.478367
p<0.01 p<0.01
single(baseline) 1.287392  0.211970 1.659849 0.413884
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4.2 EEG Results of the Dual-Task Experiment

4.2.1 Distraction-Related Brain Sources

EEG epochs were extracted from the recorded EEG signals after down sampling,
filter and artifact removal. We used ICA to decompose the independent brain sources
from EEG signals. Fig. 4-3 showed the scalp topographies of ICA back-projection
matrix W™, As shown in Fig. 4-3, most of the EEG artifacts and channel noises in
EEG recordings were effectively separated into ICA components 1, 2 , 29 and 30,
while ICA components 3, 4, 9, 10, 11 and 12 (selected by visual inspection) may be
considered as effective “sources” associated with distraction in the dual-task driving
experiment. Fig. 4-3 showed the components we were interested in, which were
selected based on their charactetistic scalp maps,.dipole source locations, spectral

signatures, and within subject consistency.

Fig. 4-3: Scalp map topographies of ICA decomposition of subject-4. The selected
components (by visual inspection) were central midline (3), parietal (4), frontal (9),
motor (10 and 11) and occipital (12) components. The color bar showed the

amplitude of component signals.
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Fig. 4-4: The illustration of the component maps and their corresponded dipole
locations of the frontal (A), the central midline (B), the left motor (C), the right
motor (D), the occipital (E) and the parietal (F) area. The left upper panels: the scalp

maps. The right upper panels: the top viewing angle of dipole source location. The
left lower panels: the coronal viewing angle of dipole source location. The right
lower panels: the sagittal viewing angle of dipole source location. Color bars: the

amplitude of component signals.
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Plenty of brain sources were involved in the distraction driving experiments. For
example, the motor area (components 10 and 11) would be activating when the
subject was trying to control the car with the steering wheel, and activations in the
frontal area (component 9) were related to attention. Therefore, ICA components
including central, frontal, parietal, motor and occipital lobe were selected for further
analysis. The component map topography and the dipoles related to the selected
components were shown in Fig. 4-4.

The power spectra related to different cases were compared as shown in Fig. 4-5
to determine the distraction-related components. The difference in power spectra
between cases could be observed in several components, such as the significant power
increases near the theta band (5 ~7.8 Hz) of the frontal component were showed in

the dual tasks (as shown in Fig.4-5.(A)).
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Fig. 4-5: Illustration of the typical example of six ICs and their power spectra from five
different cases in the frontal component (A), central midline component (B), left motor
component (C), right motor component (D), occipital component (E), and the parietal
component (F). Red line: case-1, blue line: case-2, green line: case-3, black line: case-4,
pink line: case-5. Note: comparing with the single task, the significant power increases near
the theta band (5 ~ 7.8 Hz) of the frontal component were showed in the dual tasks.

We further compared the ICA power:spectra between single- and dual-task cases,
the results were shown in Fig. 4-6, 4-7, 4<8 and 4-9. The black curves in these figures
represented the ICA power specttum of single-task cases. The subplots (A), (B) and
(C) displayed in the left column showed the comparison between the single math case
and three dual-task cases and the subplots (D), (E) and (F) displayed in the right
column showed the comparison between the single deviation case and three dual-task
cases.

The ICA spectrum comparisons between single- and dual-task cases in the
central midline component were given in Fig. 4-6. There were no apparently

differences observed in the total power spectra among cases.
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Fig. 4-6: Single subject data. The comparison of total power spectra between single- and
dual-task in the central midline componént.rLeft column (A-C) showed the comparison
between the case of single math.and three dual-task cases. Right column (D-F) showed
the comparison between the case of single deviation:and three dual-task cases. The right
column and the upper row insets showed the onset sequences between two tasks. The left
block: scalp map for the central midline"¢omponent of subject-4. Red line: case-1, blue
line: case-2, green line: case-3,"black line: case-4 or case-5. Note: There were no

apparently differences observed in the total power spectra among cases.

The ICA spectrum comparisons between single- and dual-task cases in the motor
component were given in Fig. 4-7. In the figures, we found a peak in 10 Hz band for
all cases. The peak was induced during increasing force output in motor activity.
Different spectra were observed between the case of single math and three dual-task
cases. In comparison with the single task, the powers of the alpha band were weaker

in the dual tasks. These maybe induced by distracted.
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In Fig. 4-8, we found that a 10-Hz peak observed in all cases. Different spectra
were observed between the case of single math and three dual-task cases. In
comparison with the single task, the powers of the alpha band were weaker in the dual
tasks. Because the parietal component was close to the motor area, thus we inferred
that power change was the same in two components. Therefore, we could use another

analysis (such as ERSP) to look at the difference in 10 Hz band.
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Fig. 4-9: Single subject data. The comparison of power spectra between single- and
dual-task cases in the frontal component. Panels as Fig. 4-6. Note: comparing with the

single deviation, the significant increases of power spectra were observed around 5 to 10
Hz in the dual-task cases (D-F).

The comparison of power spectra between single- and dual-task cases in the
frontal component were given in Fig. 4-9. Comparing with the single deviation, the
significant increases of power spectra were observed around 5 to 10 Hz in the
dual-task cases. The activation in frontal areas was induced by mathematics and

mental task which were reported in many previous studies. The phenomena in our
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experiment were also to find. Significant power increases were observed between the
single-deviation and the dual-task cases as shown in Fig. 4-9 (D), (E), (F).

According to the results shown in these figures, we found that the spectra in
motor component were difference between the single-math and the dual-task cases in
10 Hz band. Then it was considered as the dominant component to the deviation task.
The spectra in frontal component were difference between the single-deviation and
the dual-task cases in 5~10 Hz band and the frontal component were considered as the

dominant component to the math task.

4.2.2 Event Related Spectral Perturbation Results in

Single Subject

According to the results shown above, the power differences in motor and frontal
components were related to driving and math-calculation tasks, respectively. We then
applied the technology of ERSP to investigate the EEG responses in both time and
frequency domains. Event Related Spectral Perturbation (ERSP) plotted the grand
mean time course of changes from pre-stimulus baseline in log spectral power of a
scalp-recorded EEG or ICA component activation time-locked to stimulus
presentation or subject responses across frequencies. Through ERSP, we were able to

observe time-locked but not necessarily phase-locked activities.

4.2.2.1 ERSP Results in Frontal Component

The ERSP plot of the single math cases of the frontal component was shown in
Fig. 4-10(a). The pink dashed lines in the figures were representing the event onset

and the red dashed lines indicated when was the subject response to the event with
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pressing a button (i.e. the mathematic equations). The significance of the top plot of

ERSP in the figure were tested (p < 0.05) and shown in the bottom figure.
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Fig. 4-10: Single subject data. The ERSP plots of the single-task cases in the frontal
component. The significance of the top plot of ERSP in this figure were tested (p < 0.05)
and shown in the bottom figure. (A) single-math. task. (B) single-deviation task. The pink
dashed lines were showed the,‘onset of the firstevent; the red dashed lines indicated
averaged response time to the math; the blue‘dashed lines indicated averaged response time
to the deviation and the black dash lines-indicated the averaged response time for subjects
steering the car back to the third lane.

A significant power increase time-lock to the mathematic equation onset was
observed in the frontal component shown in Fig. 4-10 (A). The ERSP plot of the
single deviation case of the frontal component was shown in Fig. 4-10 (B). There was
no significant power increase observed in the frontal component in the single
deviation case. These results again demonstrated that the frontal component was the
dominant component of the mathematic calculation in human brain.

We then focused on the ERSP responses in the frontal component when the
mathematic and the deviation task were presented to the subject (i.e. the dual-task
cases). The ERSP plots of the dual-task cases were given in Fig. 4-11. Significant

power increases were observed in the three cases in the frontal component since the
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mathematic task was presented to the subjects in these three cases. The ERSP shown
in Fig. 4-11 (A) was the EEG power response when the math was presented at 400ms
before deviation; Fig. 4-11 (B) showed the ERSP results when the two tasks were
presented at the same time and Fig. 4-11 (C) showed the ERSP results when the math
was presented at 400ms after deviation. The red dot represents the onset of math event
and blue circular represented the onset of deviation event. From the ERSP images we

found the significant power increase time-locked to mathematic equation onsets (red

dot).
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Fig. 4-11: Single subject data.“The ERSP plots of the dual-task cases in the frontal
component. Panels as Fig. 4-10.-Comparing with-the single task, significant power
increases around theta band (5~7.8 Hz) and beta band (12.2~17 Hz) were observed in
the three cases. Case-1 (A), case-2 (B) and case-3 (C).

In order to investigate the distracted effect of stimulus onset asynchrony, five
cases were designed in this experiment. The ERSP images corresponding to the five
cases in the frontal component were compared in Fig. 4-12. We had demonstrated that
the power increase in the frontal component was related to math-task. Thus in case-
1~4, significant power increases in theta band were observed. The power increases in
the three dual-cases including case-1, case-2 and case-3 were slightly different to each
other. The difference might caused by the time of SOA. In Fig. 4-12, the power

increase in case-1 was significantly larger than in case-2 and case-3.
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Fig. 4-12: Single subject data- The ERSP plots./of the five cases in the frontal
component. The right column: the“scalp map of the frontal component for five cases.
The middle columns showed the onset sequences between two tasks. Color bars
showed the power of ERSPs. Pink dashed lines: the event onset. Blue dashed lines:
the mean of reaction time to deviation. Red dashed lines: the mean of reaction time
to math. Black dashed lines: the averaged response time for subjects steering the car
back to the third lane. Red dot: the onset of math events. Blue dot: the onset of
deviation events. Note: the power increase in case-1 was significantly larger than in

case-2 and case-3.

4.2.2.2 ERSP Results in Motor Component

As we mentioned before, the motor component was considered as the dominant
component to the deviation task according to the results of power spectrum

comparison. The ERSP plots of the single-math and single-deviation cases of the left
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motor component were shown in Fig. 4-13 (A) and (B). Since the left and right motor
components were the same phenomena, then here we selected the left motor
component to present. The pink dashed lines in Fig. 4-13 were representing the event
onset, the blue dashed lines indicated when was the subject response to the event (i.e.
the deviation), and the black dashed line indicated when was the car back in the third

lane with the control of the subject.
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Fig. 4-13: Single subject data.”The “‘ERSP plots-of the single-task cases in the motor
component. Panels as Fig. 4-12. Note: the:motor component was the dominant source of the

motor control in human brain.

The ERSP plot of the single-math case of the frontal component was shown in
Fig. 4-10(a). There was power change observed in the motor component in the single
math case and the mu blocking appeared before the red line. This was induced by
pressing a button. Similarly, but the phenomena was weak. Contrarily, a significant
power suppression time-lock to the deviation onset was observed in the motor
component as shown in Fig. 4-13 (B). These results demonstrated that the motor
component was the dominant source of the motor control in human brain. We then
focused on the ERSP responses in the motor component when both the mathematic

and the deviation tasks were presented to the subject (i.e. the dual-task cases). The
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ERSP plots of the dual-task cases were given in Fig. 4-14.

The ERSP images corresponding to the five cases in the motor component were
compared in Fig. 4-14. We found alpha suppression in all cases time-locked to the
event onsets. Because it could be suppressed by a simple motor activity such as
clenching the fist of the contra lateral side, or passively moved. Similarly, we found
maximal alpha suppression in the case of single deviation. Due to subjects just to do
one task which steer wheel. But the duration of alpha suppression in three dual-task
cases was longer than the duration of alpha suppression in the case of single. This
might because the subjects were influenced by the second task when they are trying to

complete the first task.
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Fig. 4-14: Single subject data. The ERSP plots of the five cases in the motor
component (p<0.05). Panels as Fig. 4-12. Note: the alpha suppression briefly

showed after the onsets of event were revealed in all cases. The maximal alpha

suppression was observed in the case-5.
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4.2.2.3 ERSP Results in Parietal Component

Since the parietal component was closer to the motor area, thus power

suppression in alpha band was observed (as shown in Fig. 4-15). In Fig. 4-15, we

found alpha suppression in all cases and the latency of the appeared alpha suppression

are almost the same in all cases, and then we could explain that is time-locked to

event-onset. The ending of alpha suppression was almost in black lines which was the

car back in the third lane with the control of the subjects.
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Fig. 4-15: Single subject data. The ERSP plots of the five cases in the parietal

component (p<0.05). Panels as Fig. 4-12. Note: the alpha suppressions time-locked

to event onsets were observed in all cases.
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4.2.2.4 ERSP Results in Occipital Component

Fig. 4-16 was showed occipital component. In Fig. 4-16, we found the ERPs
were induced by the onset of math presented. The phasic power increases briefly after
the onset of the math occurred around lower frequency band (0~8 Hz) was displayed
in cases-1 to -4. The pattern maybe induced by visual stimulus. The red dashed lines
indicated when was the subject response to the event with pressing a button (i.e. the
mathematic equations). We also found alpha increase after red dashed lines in the
cases with mathematical events; this was called rebound which subjects press a button

to relax.
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Fig. 4-16: Single subject data. The ERSP plots of the five cases in the occipital
component (p<0.05). Panels as Fig. 4-12. Note: the ERPs were induced by the onset
of math presented. The phasic power increases briefly after the onset of the math

occurred around lower frequency band (0~8 Hz) was displayed in cases-1 to -4.

4.2.3 Independent Component (IC) Clustering

To study the cross-subject component stability of ICA decomposition,
components from multiple sessions and subjects were clustered based on their spatial
distributions and EEG characteristics. Component clustering grouped massive
components from multiple sessions and subjects into several significant clusters.
Cluster analysis, k-means, applied to_the,normalized scalp topographies and power
spectra of all 330 (30 channels x*11 subjects) VCOI"nponents from the 11 subjects (see
Data Analysis), and identified at least 7 clusters of cémponents having similar power

spectra and scalp projections.
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Fig. 4-17: The scalp maps for ‘the frontal (‘A), cent:al midline (B), left motor (C), right
motor (D), parietal (E), left occipital (F) and the right'occipital (G) independent component
(IC) clusters across 11 subjects. Uppcr'f’panels:' the: grand mean of the component map.

Lower panels: individual scalp maps for the corresponded IC cluster.

These component clusters also showed functionally distinct activity patterns.
Seven distinct component clusters (as shown in Fig. 4-17) accounted for frontal,
central midline, parietal, left/right motor and left/right occipital, respectively. These
were effectively removed from the activity of the other component clusters by the
ICA decomposition and are not further considered here.

The numbers of components in different clusters were given in Table-5. The
following group EEG responses were studied base on the results of component

clustering.
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Table-4: The Number of Components in Different Clusters

Central Left Right Left Right
Frontal Parietal
Midline Motor  Motor Occipital Occipital
Number
of 10 7 6 8 6 7 5
Subjects

4.2.3.1 Cross-Subject Power Spectra Results

According to the single-subject results’ shown in previous sections, we had
demonstrated that the motor component was:the;dominant component to the deviation
task, and the frontal component was.the.dominant component to the math task. Thus
the cross-subject EEG power spectra related to different cases in these two

components were calculated to show the consistency of our result.
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Fig. 4-18: The grand mean of total power spectra for epochs from five cases in
the frontal cluster across 10 subjects. The upper panel: the averaged scalp maps
for the frontal component across 10 subjects. Red line: case-1, blue line: case-2,
green line: case-3, black line: case-4, pink line: case-5. Note: Comparing with the
single task, power spectral traces for epochs from dual tasks showed statistically
significant increases around theta (5~7.8Hz) and beta (12.2~17Hz) bands.

The grand mean of total power spectra for epochs from five cases in the frontal
cluster across 10 subjects were shown in Fig. 4-18. Comparing with the single task,
power spectral traces for epochs from dual tasks showed statistically significant
increases around theta (5~7.8Hz) and beta (12.2~17Hz) bands. The significance of the
differences in 5 ~ 7.8 Hz and 12.2 ~ 17 Hz were tested and shown in Fig. 4-19 (A)

and (B), respectively.
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Fig. 4-19: The comparison of the averaged power around the 5~7.8 Hz and 12.2~17
Hz between the single task and dualvtaskSTacross 10 subjects in the frontal
component. Left column (A, C, E): statistic test between dual-task cases and single
math. Right column (B, D, F): statistic test between dual-task cases and single
deviation. The upper panel: the averaged scalp maps of the frontal component across

10 subjects. Note: comparing with the single math task, the power around the theta

and beta bands were significantly decreased in the dual tasks (p< 0.01).

The result of statistic test in frontal cluster was shown in Fig. 4-19. Fig. 4-19 (A)
and (B) were showed respectively the statistic test in 5~7.8 Hz and 12.2~17 Hz band
between dual-task cases and single case. We had demonstrated that the difference

between the single-deviation and the dual-task cases we observed in single subject

were also significant in cross-subject results.
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Fig. 4-20: The grand mean of the total power spectra for epochs from five different
cases in the right motor cluster acress!61subjects. Panels as Fig. 4-18. Note:
comparing with other cases, The power. spectral trace for epochs from case-4

showed significantly increased around alpha(8~13Hz) band.

The cross-subject ICA power spectra in the right‘motor cluster corresponding to the
five cases were shown in Fig. 4-20. Significant power differences in alpha band were
observed between cases.

Fig. 4-21 was showed the statistic test in 8~13 Hz band between dual-task cases
and single case. As shown in Fig. 4-21, the difference between single-math and the
dual-task cases were significant. However, the difference between single-deviation
and the dual-task cases were also significant in the testing results. According to the
statistic results shown in Fig. 4-21, we had demonstrated that the difference between
the single-task and the dual-task cases we observed in single subject were also
significant in cross-subject results. Thus, we understood the frequency response in
motor area was not only influenced by the deviation task but also the math task with

pressing a button.
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Fig. 4-21: The comparison of the'averaged alpha power between the single tasks and
dual tasks in the motor cluster:’Left column (A,-C, E): statistic test between
dual-task cases and single math. Right“column (B; D, F): statistic test between
dual-task cases and single deviation. ‘Note: the frequency response in motor area

near the alpha band was not only influenced by the deviation task but also varied by
button press.

4.2.3.2 Cross-Subject ERSP Results

The cross-subject averaged ERSP in the frontal cluster corresponding to the five
cases were shown in Fig. 4-22. Significant power increases related to the math-task
were observed in Fig. 4-22 (A), (B), (C) and (D).

We again demonstrated that the power increase in the frontal cluster is related to
math-task. The theta power increase in the three dual-cases including case-1, case-2

and case-3 were slightly different to each other. Comparing to single-math task (Fig.
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4-22 (A)), the power in dual-task cases were stronger. EEG theta increase was related

to distracted effects in the literatures. Therefore, subjects distracted highest in the case

which math presented at 400ms before deviation. The beta power increase which

induced by mathematical equations in the literatures was appeared in the math-task

and time-locked to mathematics onsets.
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Fig. 4-22: The ERSP images of frontal cluster for five cases: case-4 (A), case-1 (B),
case-2 (C), case-3 (D) and case-5 (E). The right column: the averaged scalp maps for the

Frontal

frontal component across 10 subjects. Color bars showed the magnitude of ERSPs. The

middle column showed the onset sequences between two tasks. Pink dashed lines: the

first event onset. Blue dashed lines: the mean of reaction time to deviation. Red dashed

lines: the mean of reaction time to math. Black dashed lines: the averaged response time

for car returning to the third lane. Red dot: the onset of math occurred. Blue dot: the
onset of deviation presented. Note: the theta (5~7.8 Hz) and beta (12.2~17Hz) power

were increased briefly after the math onset. The strongest power increase was observed

in case-1. The shortest latency of theta band increase was appeared in case-1.
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The comparison of the total power in the four cases with math-task was given in
Fig. 4-23, which suggested that the amount of power increase in 5~7.8 Hz were
different with different time of SOA. The most significant power increase occurred in

case-1.

Total power
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Power (dB)
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Fig. 4-23: The comparison of total power in cross-subject averaged ERSP images in

frontal component between cases. The light blue bar were represented the total
power in the theta (5~7.8 Hz) band. The dark blue bars were represented the total
power in the beta (12.2~17 Hz) band. The bottom insets showed the onset sequences
between two tasks. Note: the most significant power increase was occurred in

case-1.

The comparison of the latency of ERSP time-locked to math onsets in the four
cases with math-task was given in Fig. 4-24, which suggested that the latency of
power increase in 5~7.8 Hz were different with different time of SOA. The shortest
latency of power increase occurred in case-1 and the longest latency of power

increase occurred in case-4.
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Fig. 4-24: Effects of distraction on onsets of theta and beta increases. Latencies were
calculated from cross-subject averaged |ERSP, images of the frontal component.
Panel as Fig. 4-23. Note: the shortest latency .of the theta increase was observed in

case-1 and the longest latency of the theta“in¢rease was revealed in case-4.
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Fig. 4-25: The grand mean of cross-subject averaged ERSP images in left (left block:
8 subjects) and right (right block: 6 subjects) motor components between cases. Left
block: left motor cluster. Right block: right motor cluster. Panels as Fig. 4-22. Note:
the alpha power was suppressed briefly after the first event onsets in all cases and the

strongest alpha suppression was occurred in case-5.
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The cross-subject average ERSP in the left and right motor clusters
corresponding to the five cases were shown in Fig. 4-25. Significant power
suppressions time-locked to event onsets were observed (case-1, case-2, case-3,
case-4, and case-5). In case-4, the alpha suppression was observed continuously until
the red dashed lines which were the subject response to the event with pressing a
button. The alpha suppression continued after the black dashed lines (including case-1,
case-2, case-3, and case-5), it maybe control the steering wheel again in the third lane

for subjects.
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Fig. 4-26: The comparison of total power in cross-subject averaged ERSP images in the

left (left block: 8 subjects) and the right (right block: 6 subjects) motor components
between cases. The light blue bars represented the total power of the alpha (8~13 Hz)
band in individual cases. Note: the most significant power increases were occurred in

case-5.

The comparison of the total power in the five cases was given in Fig. 4-26,
which suggested that the amounts of power increase in alpha band were different with
different time of SOA. The most significant power increase occurred in case-5 (the
single-deviation task) and the smallest power increase occurred in case-4 (the

single-math task).
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Fig. 4-27: The distracted effects on latencies of alpha suppression measured averaged

ERSP images of the motor components. A: the latency of alpha suppression in the left
motor cluster across 8 subjects. B: the latency of alpha suppression in the right motor
cluster across 6 subjects. Note: no apparently differences were observed among the five

cascs.

The comparison of the lateﬁcy of BRSP time-lock to deviation-onset in the five
cases was given in Fig. 4-27, which suggested that the latency of power increase in
alpha band were not different with different tie of SOA. The latency of power

increase was following with the event onsets in both right and motor component.
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Fig. 4-28: The grand mean of averaged ERSP images of the left (left block: 7 subjects)
and right (right block: 5 subjects) occipital clusters for five cases. Panels as Fig. 4-22.
Note: the power at lower frequencies (0~8 Hz) was increased briefly after the onsets of

the math presented. The most significant alpha power increase was occurred in case-4.
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Since the experiment was using visual stimulus, then we could find the pattern
inducing by visual stimulus (as shown in Fig. 4-28). In the occipital cluster, we found
the lower frequency power which was increase time-locked to math onsets and the
most significant alpha power increase which called rebound occurred in case-4. The
lower frequency power was induced by P300 (event-related Potential (ERP))

amplitude, as shown in Fig. 4-29.
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Fig. 4-29: The averaged ERPs of the left (left block: 7 subjects) and right (right

block: 5 subjects) occipital clusters for five cases. Upper panels: the group averaged

'
-1
g

occipital independent component. Red line: case-1, blue line: case-2, green line:
case-3, black line: case-4, pink line: case-5. The bottom panels showed all ERP
traces. The brown arrows indicated the location of the P300. Note the peak of P300

was time-locked to the onset of math presented.

Our results showed that independent component processes in the frontal cortex
exhibited theta (5~7.8 Hz) and beta (12.2~17 Hz) increase that were consistent within
subjects. Compared dual-task to single task, the total power in theta (5 ~ 7.8 Hz) band
of dual-task was higher than single task. Similarly, the case which presented at 400ms
before deviation was highest than that of the other dual-task cases. There was a time

sifting at the onset of theta increase in the cases with math events. The beta (12.2~17
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Hz) increase was induced by math. In occipital component, we found the pattern of
inducing by visual stimulus and rebound which induced by pressing a button. In

motor component there was all alpha suppression time-locked to the event onsets.
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V. Discussion

In the study, the brain dynamics related to distracted effects of stimulus onset
asynchrony (SOA) by using EEG and VR-based realistic driving environment was
investigated. The SOA experimental design was to investigate the distracted level. In
this Chapter, the results after cross-subject analysis would be discussed. Cross-subject
analysis was able to prove that the appeared features were not restricted to specific
subject or experiment, that was, it could ensure the stability and consistency of pour
findings. Firstly, three main cortical areas including frontal component, (which
involved processing of mental tasks), somatosensory component (mu suppression
phenomenon), and occipital component (the visual-induced and rebound-induced
pattern) would be discussed. These: cortical areas: which had the difference between
single and dual-task case would.be selected-to-infer the relationship to the distraction
effect and extent. Different frequency-band in three cortical areas would also be
analyzed. Secondarily, we would compare to other literatures of dual-task experiments.
Finally, we would discuss the correlation between behavior and EEG. The results

would be detailed discussed in the following sections.

5.1 Brain Dynamics Related to Distracted Effect

5.1.1 Distracted Effect in Frontal Area

Frontal lobes are positioned in front of (anterior to) the parietal lobes (as showed
in Fig. 5-1). The frontal lobes have been found in response to impulse control,

judgment, language production, working memory, motor function, problem solving.
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The reports of study were showed divided attention in frontal lobes [46] [47].

Frontal Lobe

Fig. 5-1: Picture showed the principle fissures and lobes cerebrum [55]. The blue

part is the frontal lobe and the white area is the location of parietal lobe.

Fig. 4-23 showed the EEG wesponse (ERSP). in the frontal component under 5
conditions. Compared with the ERSP of single task (case-4 and -5), there were higher
total power in theta (5 ~7.8 ‘Hz) ibandof-dual' tasks (case-1, -2, and -3). The
phenomenon suggested that the dual tasks induced more event-related EEG activity in
theta band, that was, subjects needed to consume more brain source to accomplish
dual tasks at the same time. In a verbal n-back working memory paradigm, evoked
theta activity (4-8 Hz) phase-locked to the visual stimulus was evidence in the
parieto-occipital and frontal regions in all tasks. It is suggested that theta activity of
EEG in the frontal area appears during concentrated performance of mental tasks in
normal subjects and reflects attention processing [15]. During mental work load, the
EEG process producing 5-7 Hz frontal midline theta activity. The process accounting
for the EEG theta increase in midline frontal area during mental work load was
separated from channel data into independent brain sources by ICA [45]. Therefore,
the theta band increase together with the raising workload is associated with

numerous processes such as mental work load, solving problem, encoding, or self
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monitoring.

According to the evidences presented in previous studies, we could first prove
that the subjects were distracted under dual-task conditions in the experiment.
Furthermore, we would like to compare the differences in specific bands among the
three kinds of dual-task conditions, as shown in Fig. 4-24.

Compared with total power intensity among dual-task conditions, the total power
of math-before-400ms was higher than that of the other dual-task cases. It was
suggested that the maximal energy will be induced when the second task present
following the other task is current under processing. In addition, since human visual
sensory needs about at 300 ms to perceive stimulus (P300 activity [48]), 400 ms is
sufficient for subject to process the first task. There was a processing task in brain
first and subjects needed more brain source to manage the second task presented after
the first task at 400 ms. Therefore, the total power in theta (5~7.8 Hz) band of
math-400ms-deviation case was higher than-that of'the other dual-task cases. In the
case of deviation-400ms-math, subjects just dealt with the simple deviation task first,
and then processed the task of math. The theta power in deviaiton-400ms-math case
was not higher than that of math-400ms-deviaiton case. The other fact was the onset
of significant theta power presented, as shown in Fig. 4-24. It was clearly that the
theta power increase presented most early in math-400ms-deviation than that in the
other cases. The early phyasic theta band response in frontal regions primarily
reflected the activation of neural networks involved in allocation of attention related
to target stimulus [49].

We also found power increase in beta band (12.2 ~ 17 Hz) in all cases (as
showed in Fig. 4-22). From the ERSP images, the patterns were time-locked to the
onsets of the math. It is suggested that EEG changed due to a specific component of

mental calculation. Significant differences were obtained in delta and theta band in
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right posterior areas and in the beta band in frontal areas [50].

The presented evidence proved that when human faced a difficult task first and
then the other tasks presented, it would not only be induced the faster attention-related
activation, but also led to the maximal distraction effect in the experiment. The theta
activity of EEG in the frontal area could be used as the index of distracted effect and

distracted extent.

5.1.2 Distracted Effect in Mu Area

Mu rhythm (p rhythm) is an EEG rhythm recorded usually from the motor cortex
of the dominant hemisphere. It is also called aciform rhythm given the shape of the
waveforms. It is a variant of normality, and it can be suppressed by a simple motor
activity such as clenching the fist of the contra lateral side, or passively moved [51]
[52] [53]. Mu suppression is beliéved to be the electrical output of the synchronization
of large portions of pyramidal neurons of the motor cortex which control the hand and
arm movement when it is inactive.

According to the ERSP of single deviation and single math in Fig. 4-25,
respectively, the mu suppression was caused mostly by subjects steering the wheel
and pressing the bottoms (answer mathematical questions). It was obviously that the
mu suppression caused by wheel steering is almost time-locked to the response onset.
The mu suppression caused by bottom press was present before the math reply.
Suggest that it involves motor planning to prepare to answer the math question [54].
As for in the dual-task cases, the mu suppression was mixed by the two main reasons,
wheel steering and bottom press, and it was weaker in dual -task cases than that in

single-task. Due to the more activation in dual-task cases in the frontal lobe, it may be
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reasonable to infer that the math processing occupy more brain source in frontal lobe
so that the less activation was induced in the motor area. However, it was difficult to
find an index of distraction effect and distraction extent in motor area since the mixed/

undistinguishable activity.

5.1.3 Distracted Effect in Occipital Area

The occipital lobe is the visual processing center of the mammalian brain,
containing most of the anatomical region of the visual cortex. The region specialized
for different visual tasks, such as visuospatial processing, color discrimination and
motion perception [55].

In our experiment, we alsoiinvestigated the pattern inducing by visual stimulus.
In Fig. 4-28, power increase inZlow frequency accompanied the onset of math. From
the ERP (Fig. 4-29) activity, we also found the pattern of P300 that involves the visual
induced activity [56]. According to ERSP of the single math case, the alpha increase
was time-locked to the response of math reply. The phenomenon is known as alpha
rebound after a mental task being finished [57]. Compared with other cases with math,
the alpha rebound power was maximal in the single math case. It is suggested that the
subjects were able to concentrate on solving math task without other distraction in the
single-math case. It is also suggested that perceptual switching by the button press
showed characteristic occipital alpha and frontal theta band activity prior to a switch
[59]. The alpha activity was specific to switch, the theta activity was generic to
perceptual processing conditions. These results suggest that the ability to concentrate
attentional effort on the task is responsible for the differences in perceptual switching

rates.
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5.2 Brain Dynamics Related to Dual Task

Of particular importance here, was the observation that interaction elicited by
two visual stimulus. In the literature, subjects viewed the Necker cube continuously
and responded perceptual switching by pressing a button. It suggests that the ability to
concentrate attentional effort on the task is responsible for the difference in perceptual
switching rate [58]. For selective multi objects, human attention requires that its
object be selected from among others, and that the representation of the selective
object be effectively integrated with information in other brain areas mediating higher
cognitive processing. It demonstrates that the main role of cognitive processing in the
brain is in selective attention when+Subjects select object to act [59]. Similarly, in
dual-task coordination, subjects increased distracted interference in selective attention.
Posner et al. [60] postulated that two, tasks, when pérformed simultaneously, do not
interfere with the performance of one another when different brain areas are used for
the two tasks. Brain activation during simultaneous visual and auditory information
processing may result in a summation of the activation during selective visual and
auditory information processing (selective or focused attention). One report is to
investigate how performance of two overlapping discrete tasks is organized and
controlled. It suggests that sequential performance of overlapping tasks is scheduled
in advance and is regulated by initially allocating the central processing channel to
one task and subsequently switching this channel to the other task [61].

In our experiment, because we used two visual stimuli and they would compete
within the same brain source to interfere with the performance of one another. From
the results, the phasic changes around the theta band for the case, which the math

presented at 400ms before the deviation onset, showed the highest distracted effect in
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all cases, not two tasks appeared simultaneously. Then, we inferred that when math
task was presented to the subject, it occupied most of the brain source. Thus when
deviation task appeared the brain immediately allocated to switch to the second task
and the influence would consume many brain sources.

In the case which deviation presented at 400ms before math, since the design of
the deviation task was very simple in our experiment, thus when the deviation was
presented to the subject, it did not consume much brain source. Therefore, when the
second (the math) task appeared the brain could immediately allocate source to switch
the task.

Similarly, when two tasks were presented simultaneously to the subject, the
subject would select an important task from the two tasks and replied to the task
immediately. And thus, brain could easily allocate.source to switch next task, because
brain had organized the operating sequence.

In summary, we investigated thé.relationship between brains activities associated
with dual-task management and thé‘combination of response modalities and observed

several differences in neural activities between dual-task cases and single case.

5.3 The Correlation between Behavioral and

Physiological Responses

In our experiment, we found that the phenomena of trend of response time (math)
and EEG theta increase in frontal lobe were consistency. The response time of math
was the shortest and the EEG theta power increase was the weakest in the case of
single math. Similarly, in the case of case-1 there was the longest of response time of

math and the strongest total power (as shown in Fig. 4-23 and Fig. 4-24).
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In the study, the deviation task was much easier than the math task. Therefore,
this would affect the distraction according the sequence of two tasks. According to the
observation of on-board camera video during driving experiment, it was found that
most subjects took the math as a cue and turned rapidly in the case of
math-400ms-deivation. And when the deviation task appeared in the case-1 subjects
were in order to continuously resolve the mathematical equations, they had to firstly
and rapidly response to the deviation task to avoid hitting the wall. Therefore, we
found that the response time was the shortest in the case of math-400ms-deviation, but
the longest time in the case of single-deviation. In motor component, the alpha
suppression was weaker in the dual-task cases than that in the case of single-deviation.
The trend between response time of deviation and alpha suppression in motor area
was not consistency. This was due’to our designed experiment. To avoid the problem
presented, we could adjust some parameters<in next experiment. Firstly, we had to
increase the degree of difficulty about deviation. When a winding course added the
experiment, subjects consumed more force in-driving. Secondarily, we could control
to be not the same as the ratio of appearing cases and in order to simulate real driving,
we designed higher rate in single deviation similar to oddball paradigm. This was in

order to investigate that the second task affected the primarily task of driving.
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V1. Conclusions

To investigate the brain dynamics related to distracted effects by using EEG
signals, we assessed effects of the stimulus onset asynchrony (SOA) between the
deviation and math presented on the EEG dynamics and we designed five cases with
different SOA. This innovative study was conducted in a VR-environment on a 6
DOF motion platform. Our results showed that behavioral and physiological (EEG)
responses under multiple cases and multiple distracted levels include: (1) Behavior:
the statistic test of response time to math in dual tasks was significantly larger than
that in single task and the response time of single-math was shortest. This was
because there was no another task to interference. However, comparing to the dual
tasks, the response time to deviation was-longest in the case of single-deviation. This
was because the math task of the designed is‘difficult-enough for the subjects and was
considered as a real cue in the experiment. (2) Frontal component: (a) comparing to
the single tasks, the phasic theta (5~7.8 Hz) band increase was higher in dual tasks.
The phasic changes around the theta band for the case, which the math presented at
400ms before the deviation onset, showed the strongest increases among all dual-task
cases. (b) The latencies of the theta increase were shifted along with the onset of math
presented. The latency for the case which the math presented at 400ms before
deviation appeared was the shortest. (¢c) The Beta (12.2 ~ 17 Hz) increase was induced
by the onsets of the math. (3) Motor component: alpha suppressions were time-locked
to onsets of the first event. (4) Occipital component: (a) ERPs time-locked to the
onsets of the math were showed in all cases. In comparison with the single task, the
rebounded activities near the alpha band that induced by the button press were

significantly decreased in the dual tasks.
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When received a dual-task performance, subjects made math as a cue, and they
could steer wheel rapidly. Comparing to among dual-task cases, the phasic theta band
increases was higher in dual tasks. The phasic changes around the theta band for the
case, which the math presented at 400ms before the deviation onset, showed the
highest distracted effect in all cases. Because there was a processing task in brain first
and subjects needed more brain source to manage the second task presented after the
first task at 400 Ms. As for in the dual-task cases, less alpha suppression was in motor
area, but more theta increase was in frontal area. These results demonstrated that
reaction time and multiple cortical EEG sources responded to the car drifting and the
math occurrences differentially in the stimulus onset asynchrony. In addition, results
also suggested that the phasic theta increase in frontal area could be used as the index
for early detecting driver’s distraction in the real dtiving.

In the future, firstly, we=will apply our finding to take one step ahead to
investigate the difference about-spatial-attention between motion and motionless on a
6 DOF motion platform. Secondary;.in order to simulate real driving, we can
investigate multi-sensory attention (such as auditory and visual). We will further
investigate more detailed about the distracted effects of stimulus onset asynchrony. In
the future, we use the study to combine the mechanism of bio-feedback and the

bio-feedback provides a warning for the brain to adapt when subjects distract.
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Appendix

A. Independent Component Analysis (ICA)

The ICA is a statistical “latent variables” model with generative form:
x(1)=As(t) (D

Where A is a linear transform called a mixing matrix and the s, are statistically

mutually independent. The ICA model describes how the observed data are generated

by a process of mixing the components S; . The independent components S, (often
abbreviated as 1Cs) are latent variables, meaning that they cannot be directly observed.

Also the mixing matrix A is assumed:to-be unknown. All we observed are the random

variables X;, and we must estimate both- the mixing matrix and the I1C’s s; using
the X; .

Therefore, given time series of the observed data
X(t)= [Xl(t) X,(t) - Xy (t )]T in N-dimension, ICA will find a linear mapping
W such that the unmixed signals u (t) is statically independent.

u(t) =W x(t). (2)

Supposed the probability density function of the observations X can be expressed as:
p(x)=|det(W )[p(u), 3)

the learning algorithm can be derived using the maximum likelihood formulation with

the log-likelihood function derived as:
N
L(uW )=log|det(W )|+ > log p;(u;), 4)
i=1

Thus, an effective learning algorithm using natural gradient to maximize the
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log-likelihood with respect to W gives:

AW o SEIWV Dy (1 — (o,
oW
Where the nonlinearity
op(u) ap(u) op(uy) '
¢(u):_ ou | _ ou; L ouy ,
p(u) | p(y) pCuy)

and W'W rescales the gradient, simplifies the learning rule and speeds the
convergence considerably. It is difficult to know a priori the parametric density
function p(u), which plays an essential role in the learning process. If we choose to
approximate the estimated probability density function with an Edgeworth expansion
or Gram-Charlier expansion for generalizing the learning rule to sources with either

sub- or super-Gaussian distributions, the nonlinearity- ¢(u) can be derived as:

u — tanh(u):; for super - gaussian sources,

p(u) ={

u + tanh(U): for sub-gaussian sources,

Then,

W= [I —tanh(u)u’ —uu’ ]\N : super - gaussian,
[I +tanh(u)u’ —uu’ ]\N :sub - gaussian,

Since there is no general definition for sub- and super-Gaussian sources, we choose
p(u)=2(N(1,1)+ N(-1,1)) and  p(u)=N(0,1)sech’u) for sub- and

super-Gaussian, respectively, where N(,u, 0'2) is a normal distribution. The learning
rules differ in the sign before the tanh function and can be determined using a

switching criterion as:

k. = 1:super - gaussian,
AW oc [I —Ktanh(u)u" —uu’ ]\N, where< ' uper-g u‘
k; =—1:sub - gaussian,
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where
K = Sign(E{sec hz(ui)}E{Uiz}— E{tanh(u;)u, })’

represents the elements of N-dimensional diagonal matrix K. After ICA training, we
can obtain N ICA components U(t) decomposed from the measured N-channel EEG

data x(t). In this study, N=30, thus we obtain 30 components from 30 channel signals.

X (t) W1,1 W1,2 W1,33
X, (t W W W,

X(t) = 2:() =Wut)=| ' u®+ 7 @+ ug (D).
X33 (t) W33,1 W33,2 W33,33
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