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a b s t r a c t

Effective utilization of communication resources is crucial for improving performance
in multiprocessor/communication systems. In this paper, the mutually independent
hamiltonicity is addressed for its effective utilization of resources on the binary wrapped
butterfly graph. Let G be a graph with N vertices. A hamiltonian cycle C of G is represented
by 〈u1, u2, . . . , uN , u1〉 to emphasize the order of vertices on C . Two hamiltonian cycles
of G, namely C1 = 〈u1, u2, . . . , uN , u1〉 and C2 = 〈v1, v2, . . . , vN , v1〉, are said to be
independent if u1 = v1 and ui 6= vi for all 2 ≤ i ≤ N . A collection of m hamiltonian
cycles C1, . . . , Cm, starting from the same vertex, are m-mutually independent if any two
different hamiltonian cycles are independent. The mutually independent hamiltonicity of
a graph G, denoted by IHC(G), is defined to be themaximum integerm such that, for each
vertex u ofG, there exists a set ofm-mutually independent hamiltonian cycles starting from
u. Let BF(n) denote the n-dimensional binary wrapped butterfly graph. Then we prove that
IHC(BF(n)) = 4 for all n ≥ 3.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Amultiprocessor/communication interconnection network is usuallymodeled as a graph, inwhich the vertices correspond
to processors/nodes, and the edges correspond to connections or communication links. In this paper, we use the terms,
graphs and networks, interchangeably. Designing an interconnection network ismulti-objected and complicated [1]. Hence,
the topological properties of various interconnection networks have been widely addressed by many researchers [2–11].
Among various kinds of popular network topologies, butterfly networks are very suitable for VLSI implementation and
parallel computing. In particular, the binary wrapped butterfly graph has gained many researchers’ efforts for its nice
topological properties. For example, it belongs to the family of constant degree-four Cayley graphs [12,13]. Therefore, it is
vertex-transitive. Moreover, the hamiltonian properties were addressed in research by [2,3,11]. Until recently it is believed
that the presence of such a constant-degree network topology, with both logarithmic diameter and optimal fault tolerance is
critical to improve the performance of peer-to-peer architectures [14,15]. In practice, Malkhi et al. [16] build a peer-to-peer
lookup network on the basis of butterfly graphs.
Network embedding [1] is an interesting subject, because the portability of the guest network onto the host network

would permit executing the guest specified algorithms on the host with as little modification as possible. In the research
of [4,7,9–11], embedding of various topologies, such as rings, linear arrays, and binary trees, etc., onto the butterfly networks
had been addressed. In particular, the ring is a popular network topology, since many efficient communication algorithms
have been designed based on a ring structure. For instance, the token ring [17] often serves as the underlying connection
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architecture of the local area network. In addition, the advantages of rings were discussed by Tel [18]. In this paper, we
study the problem of embedding mutually independent hamiltonian cycles, as proposed by Sun et al. [19], onto a binary
wrapped butterfly graph; that is, if some vertex is fixed as the start, any two of such hamiltonian cycles will traverse
different vertices at every time step except the start-up and termination. Recently, Lin et al. [20] investigated how to embed
the mutually independent hamiltonian cycles onto star networks and pancake networks. Moreover, Hsieh and Weng [21]
further concerned the fault-tolerant embedding of pairwise independent hamiltonian paths on faulty hypercubes.
The concept of mutually independent hamiltonian cycles can be applied in many different areas. For example,

communication applications on the interconnection network are often viewed as the interleaving of local computation and
global communication stages. Such applications can be performed via a message routing protocol, by which information is
transmitted along the communication links in packets of equal size. For the sake of simplification, the store-and-forward all-
port communicationmodel [8] has beenwidely adopted as one basic routing scheme, inwhich every processor is assumed to
be capable of exchangingmessages of fixed length,with all of its neighbors at each time step. Although routingmessages over
a spanning tree of the given network is intuitively the best strategy for message transmission, Baldi and Ofek [22] presented
a systematic comparison between ring and tree embedding for group (many-to-many) multicast, and concluded that ring
embedding remains a promising alternative. It is worth mentioning that there may be two potential shortcomings incurred
by routingmessages in a ring structured network [1]. One is that at least twomessage packets are likely to reside in the same
processor, so as to provoke contention for the local computation resources. The other is that two or more message packets
will contend for the use of some communication link (in the same direction). Clearly, mutually independent hamiltonian
cycles can ease the effects of these two shortcomings.
As another example, a Latin square of order n is an n × n array containing the integers from 1 to n, arranged so that

each integer appears exactly once in each row, and exactly once in each column. If we delete some rows from a Latin
square, we will get a Latin rectangle. Obviously, a Latin square of order n can be thought of as the intermediate vertices of
nmutually independent hamiltonian cycles on the complete graph with n+ 1 vertices. Thus, the concept behind mutually
independent hamiltonian cycles can be interpreted as a Latin square/rectangle for graphs. Furthermore, we consider the
following scenario. A tour agency will organize a 10-day tour to Japan in the Christmas vacation. Suppose that there will
be many people joining this tour. However, the maximum number of people staying in each local area is limited, say 100
people, for the sake of a hotel contract. One trivial solution is based on the First-Come-First-Served intuition. So, only 100
people can join this tour. Note that we cannot schedule the tour in a pipelined manner, because the holiday period is fixed.
Fortunately, we observe that scheduling a tour is like a hamiltonian cycle of a graph, inwhich a vertex denotes a hotel and an
edge denotes the connection between two hotels if they can be traveled in a reasonable time. Therefore, we can organize all
the attendants into a number of subgroups; each subgroup has its own tour in such away, that no two subgroupswill stay in
the same area during the same time period. So any two different tours are indeed independent hamiltonian cycles. If there
exist five mutually independent hamiltonian cycles, then we may allow up to 500 attendees to visit Japan on a Christmas
vacation. Obviously, if we can find the maximum number of mutually independent hamiltonian cycles, the number of tour
attendants would be maximized.
The rest of this paper is organized as follows. In Section 2, the terminologies and notations are defined. In Section 3, the

nearly recursive construction of the n-dimensional binary wrapped butterfly network, denoted by BF(n), is introduced. The
basic properties of BF(n) are given in Section 4. In Section 5, we show that BF(n) has fourmutually independent hamiltonian
cycles starting from any vertex. Finally, the concluding remarks are given in Section 6.

2. Definitions

In this paper, we concentrate on loopless undirected graphs. For the notations and graph-theoretic terminologies, we
follow the ones given by Bondy andMurty [23]. A graph G is a two-tuple (V , E), where V is a nonempty set, and E is a subset
of {(u, v) | (u, v) is an unordered pair of V }. We say that V = V (G) is the vertex set and E = E(G) is the edge set. Two vertices
u and v are adjacent if (u, v) ∈ E. The number of vertices in a graph G is denoted by |V (G)|. The degree of any vertex u in a
graph G, denoted by degG(u), is the number of edges incident with u. The maximum and minimum degrees of graph G are
denoted by∆(G) and δ(G), respectively. A graph G is k-regular if∆(G) = δ(G) = k.
A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Let S be a nonempty subset of V (G). The subgraph

induced by S is the subgraph of Gwith the vertex set S and with the edge set consisting of those edges that join two vertices
in S. Analogously, the subgraph generated by a nonempty set F ⊆ E(G) is the subgraph of G with the edge set F and with
the vertex set consisting of those vertices incident to at least one edge of F . Two graphs G1 and G2 are isomorphic if there is
a bijection µ from V (G1) onto V (G2), such that (u, v) ∈ E(G1) if and only if (µ(u), µ(v)) ∈ E(G2). The bijection µ is called
an isomorphism.
A path P of length k from vertex x to vertex y in a graph G is a sequence of distinct vertices 〈v1, v2, . . . , vk+1〉 such that

v1 = x, vk+1 = y, and (vi, vi+1) ∈ E(G) for every 1 ≤ i ≤ k. We also write P as 〈x, P, y〉 to emphasize its beginning and
ending vertices. The i-th vertex of P is denoted by P(i); i.e., P(i) = vi. Both P(1) and P(k + 1) are terminal vertices of P . In
particular, let P−1 = 〈vk+1, vk, . . . , v1〉 denote the reverse of P . For convenience, we use V (P) to denote the set of vertices
traversed by P . A cycle is a path with at least three vertices, such that the first vertex is adjacent to the last one. To emphasize
the vertex order on a cycle, a cycle of length k is represented by 〈v1, v2, . . . , vk, v1〉. A hamiltonian cycle (or hamiltonian path)
of a graph G is a cycle (or path) that spans G. Two hamiltonian cycles starting from the same vertex s in a graph G, namely
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Fig. 1. (a) BF(3); (b) BF(3)with level-0 vertices replicated to ease visualization.

C1 = 〈v1, v2, . . . , v|V (G)|, v1〉 andC2 = 〈u1, u2, . . . , u|V (G)|, u1〉, are independent if v1 = u1 = s and vi 6= ui for 2 ≤ i ≤ |V (G)|.
A collection of m hamiltonian cycles C1, . . . , Cm, starting from the same vertex, are m-mutually independent if Ci and Cj are
independent whenever i 6= j. Moreover, themutually independent hamiltonicity of a graph G, denoted by IHC(G), is defined
to be the maximum integer m, such that for any vertex u of G, there exists a set of m-mutually independent hamiltonian
cycles starting from u. It is trivial that IHC(G) ≤ δ(G) for any graph G.
Let Zn = {0, 1, . . . , n − 1} denote the set of integers modulo n. The n-dimensional binary wrapped butterfly graph

(or butterfly graph for short) BF(n) is a graph with the vertex set Zn × Zn2. Each vertex is labeled by a two-tuple
〈`, a0 . . . a` . . . an−1〉with a level ` ∈ Zn and an n-bit binary string a0a1 . . . an−1 ∈ Zn2. A level-` vertex 〈`, a0 . . . a` . . . an−1〉
is adjacent to two vertices, 〈(` + 1)mod n, a0 . . . a` . . . an−1〉 and 〈(` − 1)mod n, a0 . . . a`−1 . . . an−1〉, by straight edges, and is
adjacent to another two vertices, 〈(` + 1)mod n, a0 . . . a`−1a`a`+1 . . . an−1〉 and 〈(` − 1)mod n, a0 . . . a`−2a`−1a` . . . an−1〉, by
cross edges. More formally, the edges of BF(n) can be defined in terms of four generators g , g−1, f , and f −1 as follows [13]:

g(〈`, a0 . . . a` . . . an−1〉) = 〈(`+ 1)mod n, a0 . . . a` . . . an−1〉,
f (〈`, a0 . . . a` . . . an−1〉) = 〈(`+ 1)mod n, a0 . . . a`−1a`a`+1 . . . an−1〉,
g−1(〈`, a0 . . . a` . . . an−1〉) = 〈(`− 1)mod n, a0 . . . a` . . . an−1〉, and
f −1(〈`, a0 . . . a`−1 . . . an−1〉) = 〈(`− 1)mod n, a0a1 . . . a`−2a`−1a` . . . an−1〉,

where a` ≡ a`+ 1 (mod 2). Throughout this paper, a level-` edge of BF(n) is an edge that joins a level-` vertex and a level-
(`+1)mod n vertex. To avoid the degenerate case, we only concern the case that n ≥ 3. So, BF(n) is 4-regular. Fig. 1(a) depicts
the structure of BF(3) and Fig. 1(b) is another layout of BF(3)with the replication of level-0 vertices to ease visualization.

3. Nearly recursive construction of BF(n)

For any ` ∈ Zn and i ∈ Z2, we use BF i`(n) to denote the subgraph of BF(n) induced by {〈h, a0 . . . a` . . . an−1〉 ∈ V (BF(n)) |
a` = i}. Obviously, {BF 0` (n), BF

1
` (n)} forms a partition of BF(n). Moreover, BF

i
`1
(n) is isomorphic to BF j`2(n) for any i, j ∈ Z2

and any `1, `2 ∈ Zn. With this observation, Wong [11] proposed a stretching operation to obtain BF i`(n) from BF(n − 1).
More precisely, the stretching operation can be described as follows.
Let i ∈ Z2 and ` ∈ Zn for n ≥ 3. Furthermore, let =n denote the set of all subgraphs of BF(n). Suppose that G ∈ =n. We

define the following subsets of V (BF(n+ 1)) and E(BF(n+ 1)):
V1 = {〈h, a0 . . . a`−1ia` . . . an−1〉 | 0 ≤ h < `, 〈h, a0 . . . a`−1a` . . . an−1〉 ∈ V (G)},
V2 = {〈h+ 1, a0 . . . a`−1ia` . . . an−1〉 | ` < h ≤ n− 1, 〈h, a0 . . . a`−1a` . . . an−1〉 ∈ V (G)},
V3 = {〈`, a0 . . . a`−1ia` . . . an−1〉 | 〈`, a0 . . . a`−1a` . . . an−1〉 is incident to a level-(`− 1)mod n edge in G},
V4 = {〈`+ 1, a0 . . . a`−1ia` . . . an−1〉 | 〈`, a0 . . . a`−1a` . . . an−1〉 is incident to a level-` edge in G},
E1 = {(〈h, a0 . . . a`−1ia` . . . an−1〉, 〈h+ 1, b0 . . . b`−1ib` . . . bn−1〉) | 0 ≤ h < `,

(〈h, a0 . . . a`−1a` . . . an−1〉, 〈h+ 1, b0 . . . b`−1b` . . . bn−1〉) ∈ E(G)},

E2 = {(〈h+ 1, a0 . . . a`−1ia` . . . an−1〉, 〈(h+ 2)mod (n+1), b0 . . . b`−1ib` . . . bn−1〉) | ` ≤ h ≤ n− 1,
(〈h, a0 . . . a`−1a` . . . an−1〉, 〈(h+ 1)mod n, b0 . . . b`−1b` . . . bn−1〉) ∈ E(G)},

and
E3 = {(〈`, a0 . . . a`−1ia` . . . an−1〉, 〈`+ 1, a0 . . . a`−1ia` . . . an−1〉) | 〈`, a0 . . . a`−1a` . . . an−1〉 is incident to at

least one level-(`− 1)mod n edge and at least one level-` edge in G}.
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Fig. 2. (a) A subgraph G of BF(3); (b) γ 00 (G) in γ
0
0 (BF(3)); (c) γ

0
1 (G) in γ

0
1 (BF(3)).

Fig. 3. (a) BF 0,00,1 (4); (b) BF
0,0
0,2 (4); (c) BF

0,0
0,3 (4); (d) BF

0,0,0
0,2,3 (4); (e) BF

0,0,0
0,1,3 (4); (g) BF

0,0,0
0,1,2 (4).

Then, the stretching function γ i` :
⋃
n≥3 =n →

⋃
n≥4 =n is defined by assigning γ

i
`(G) as the graph with the vertex set

V1∪V2∪V3∪V4 and the edge set E1∪E2∪E3. Clearly γ i` is well-defined and one-to-one. We have γ
i
`(G) ∈ =n+1 if G ∈ =n. In

particular, γ i`(BF(n)) = BF
i
`(n+1). In Fig. 2, we illustrate a subgraph G of BF(3), γ

0
0 (G) in γ

0
0 (BF(3)), and γ

0
1 (G) in γ

0
1 (BF(3)).

Obviously, γ i`1(BF(n)) is isomorphic to γ
j
`2
(BF(n)) for any `1, `2 ∈ Zn and i, j ∈ Z2. Moreover, γ i`(P) is a path in BF(n+ 1) if

P is a path in BF(n).
In fact, BF(n) can be further partitioned. Let m be an integer with 1 ≤ m ≤ n. Assume that `1, . . . , `m ∈ Zn,

such that `1 < · · · < `m. For any i1, . . . , im ∈ Z2, we use BF
i1,...,im
`1,...,`m

(n) to denote the subgraph of BF(n) induced by
{〈h, a0 . . . an−1〉 ∈ V (BF(n)) | a`j = ij for 1 ≤ j ≤ m}. In Fig. 3, we illustrate BF

0,0
0,1 (4), BF

0,0
0,2 (4), BF

0,0
0,3 (4), BF

0,0,0
0,2,3 (4),

BF 0,0,00,1,3 (4), and BF
0,0,0
0,1,2 (4). Clearly BF

0,0
0,1 (4) is isomorphic with BF

0,0
0,3 (4). Moreover, BF

0,0,0
0,2,3 (4), BF

0,0,0
0,1,3 (4), and BF

0,0,0
0,1,2 (4) are

also isomorphic. However, BF 0,00,1 (4) is not isomorphic to BF
0,0
0,2 (4).

Lemma 1. Assume that n ≥ 3 and i, j, k ∈ Z2. Then BF
i,j
0,1(n) is isomorphic with BF

i,j
0,n−1(n); BF

i,j,k
0,1,2(n), BF

i,j,k
0,1,n−1(n), and

BF i,j,k0,n−2,n−1(n) are isomorphic.
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Obviously, {BF i1,...,im`1,...,`m
(n) | i1, . . . , im ∈ Z2, `1, . . . , `m ∈ Zn, `1 < · · · < `m} forms apartition ofBF(n) for any1 ≤ m ≤ n.

To avoid the complication caused from modular arithmetic, we restrict our attention on the case that 1 ≤ m ≤ n − 1,
0 ≤ `1 < · · · < `m, and `j < n−m+ j− 1 for each 1 ≤ j ≤ m. The following two lemmas can be easily verified.

Lemma 2. Let 1 ≤ m ≤ n − 1. Suppose that i1, . . . , im ∈ Z2 and `1, . . . , `m are integers such that 0 ≤ `1 < · · · < `m and
`j < n−m+ j− 1 for each 1 ≤ j ≤ m. Then

BF i1,...,im`1,...,`m
(n) =


γ
im
`m
◦ γ

im−1
`m−1
◦ · · · ◦ γ

i3
`3
(BF i1,i2`1,`2

(3)) if m = n− 1,

γ
im
`m
◦ γ

im−1
`m−1
◦ · · · ◦ γ

i2
`2
(BF i1`1(3)) if m = n− 2,

γ
im
`m
◦ γ

im−1
`m−1
◦ · · · ◦ γ

i1
`1
(BF(n−m)) otherwise.

Lemma 3. Let G be a connected spanning subgraph of BF i,j0,1(n), with i, j ∈ Z2 and n ≥ 3. Assume that 2 ≤ ` ≤ n− 1. Let

F0 = {〈`, a0 . . . an−1〉 ∈ V (G) | 〈`, a0 . . . an−1〉 is not incident to any level-(`− 1) edge in G},
F1 = {〈`, a0 . . . an−1〉 ∈ V (G) | 〈`, a0 . . . an−1〉 is not incident to any level-` edge in G}.

For any p, q ∈ Z2, let

F0 = {〈`, a0 . . . a`−1pqa` . . . an−1〉 | 〈`, a0 . . . a`−1a` . . . an−1〉 ∈ F0}
∪{〈`+ 1, a0 . . . a`−1pqa` . . . an−1〉 | 〈`, a0 . . . a`−1a` . . . an−1〉 ∈ F0},

F1 = {〈`+ 1, a0 . . . a`−1pqa` . . . an−1〉 | 〈`, a0 . . . a`−1a` . . . an−1〉 ∈ F1}
∪{〈`+ 2, a0 . . . a`−1pqa` . . . an−1〉 | 〈`, a0 . . . a`−1a` . . . an−1〉 ∈ F1},

M0 =
⋃

〈`,a0...an−1〉6∈F0∪F1

{(〈`, a0 . . . a`−1pqa` . . . an−1〉, 〈`+ 1, a0 . . . a`−1pqa` . . . an−1〉)} , and

M1 =
⋃

〈`,a0...an−1〉6∈F0∪F1

{(〈`+ 1, a0 . . . a`−1pqa` . . . an−1〉, 〈`+ 2, a0 . . . a`−1pqa` . . . an−1〉)}.

Then F0 ∩ F1 = ∅, F0 ∩ F1 = ∅, F0 ∪ F1 = V (BF
i,j,p,q
0,1,`,`+1(n+ 2))− V (γ

q
`+1 ◦ γ

p
` (G)), and M0 ∪M1 ⊆ E(γ

q
`+1 ◦ γ

p
` (G)).

Let G be a subgraph of BF(n). A cycle C in G is called an `-scheduled cycle of G if every level-` vertex of G is incident to
a level-(` − 1)mod n edge and a level-` edge on C [11]. Furthermore, a cycle C in G is a totally scheduled cycle of G if it is an
`-scheduled cycle of G for all ` ∈ Zn [11]. Obviously, γ i`(C)with i ∈ {0, 1} is a totally scheduled cycle of γ

i
`(G) if C is a totally

scheduled cycle of G.

Lemma 4 ([11]). Let n ≥ 3. Then BF(n) has a totally scheduled hamiltonian cycle.

By stretching operation, we have the following two corollaries.

Corollary 1. Assume that n ≥ 3 and i, j, k ∈ Z2. Then there exists a totally scheduled hamiltonian cycle of BF
i,j,k
0,1,2(n) including

all straight edges of level 0, level 1, and level 2.

Corollary 2. Assume that n ≥ 4 and i, j, p, q ∈ Z2. Then there exists a totally scheduled hamiltonian cycle of BF
i,j,p,q
0,1,2,3(n)

including all straight edges of level 0, level 1, level 2, and level 3 in BF i,j,p,q0,1,2,3(n).

4. Basic properties of BF(n)

Suppose that e1 = (u1, v1) and e2 = (u2, v2) are either any two cross edges of BF(n), or any two straight edges of BF(n).
Since BF(n) is vertex-transitive, there exists an isomorphismµ over V (BF(n)), such that u2 = µ(u1) and v2 = µ(v1). Clearly,
every hamiltonian cycle of BF(n) includes at least one cross edge and at least one straight edge.

Lemma 5. For any edge e of BF(n) with n ≥ 3, there exists a totally scheduled hamiltonian cycle of BF(n) including e.

Lemma 6. Assume that i, j, k ∈ Z2. Let e be any edge of BF
i,j,k
0,1,2(4) such that e 6∈ {(〈3, ijk0〉, 〈0, ijk0〉), (〈3, ijk1〉, 〈0, ijk1〉)}.

Then there exists a totally scheduled hamiltonian cycle C of BF i,j,k0,1,2(4) such that e ∈ E(C).

Proof. Obviously, 〈〈0, ijk0〉, 〈1, ijk0〉, 〈2, ijk0〉, 〈3, ijk0〉, 〈0, ijk1〉, 〈1, ijk1〉, 〈2, ijk1〉, 〈3, ijk1〉, 〈0, ijk0〉〉 is the unique hamil-
tonian cycle of BF i,j,k0,1,2(4). Thus, this lemma is proved. �
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Fig. 4. (a) A weakly 2-scheduled hamiltonian path P1 of BF
i,j
0,1(4) joins 〈1, ij00〉 to 〈2, ij10〉; (b) γ

0
3 ◦ γ

0
2 (P1) in BF

i,j,0,0
0,1,2,3(6) = γ

0
3 ◦ γ

0
2 (BF

i,j
0,1(4)); (c) a weakly

2-scheduled hamiltonian path P2 of BF
i,j
0,1(4) joins 〈1, ij00〉 to 〈2, ij00〉; (d) γ

0
3 ◦ γ

0
2 (P2) in BF

i,j,0,0
0,1,2,3(6).

Table 1
Hamiltonian paths of BF i,j0,1(4) between 〈1, ij00〉 and 〈2, ijpq〉 for any p, q ∈ Z2

〈〈1, ij00〉, 〈0, ij00〉, 〈3, ij01〉, 〈2, ij11〉, 〈1, ij11〉, 〈0, ij11〉, 〈3, ij11〉, 〈2, ij01〉, 〈1, ij01〉, 〈0, ij01〉, 〈3, ij00〉, 〈2, ij10〉, 〈1, ij10〉, 〈0, ij10〉, 〈3, ij10〉, 〈2, ij00〉〉

〈〈1, ij00〉, 〈0, ij00〉, 〈3, ij00〉, 〈2, ij00〉, 〈3, ij10〉, 〈0, ij11〉, 〈1, ij11〉, 〈2, ij11〉, 〈3, ij01〉, 〈0, ij01〉, 〈1, ij01〉, 〈2, ij01〉, 〈3, ij11〉, 〈0, ij10〉, 〈1, ij10〉, 〈2, ij10〉〉

〈〈1, ij00〉, 〈0, ij00〉, 〈3, ij00〉, 〈2, ij00〉, 〈3, ij10〉, 〈2, ij10〉, 〈1, ij10〉, 〈0, ij10〉, 〈3, ij11〉, 〈0, ij11〉, 〈1, ij11〉, 〈2, ij11〉, 〈3, ij01〉, 〈0, ij01〉, 〈1, ij01〉, 〈2, ij01〉〉

〈〈1, ij00〉, 〈0, ij00〉, 〈3, ij01〉, 〈2, ij01〉, 〈1, ij01〉, 〈0, ij01〉, 〈3, ij00〉, 〈2, ij00〉, 〈3, ij10〉, 〈2, ij10〉, 〈1, ij10〉, 〈0, ij10〉, 〈3, ij11〉, 〈0, ij11〉, 〈1, ij11〉, 〈2, ij11〉〉

By stretching operation and Corollary 1, we have the following corollary.

Corollary 3. Suppose that n ≥ 5. Let e be any edge of BF i,j,k0,1,2(n) with i, j, k ∈ Z2. Then there exists a totally scheduled
hamiltonian cycle of BF i,j,k0,1,2(n) including e.

A path P of BF(n) is weakly `-scheduled if there is at least one non-terminal level-` vertex v of P , such that v is incident
to a level-(` − 1) mod n edge and a level-` edge on P . Fig. 4 illustrates two weakly 2-scheduled hamiltonian paths P1 and
P2 of BF

i,j
0,1(4) and their images γ

0
3 ◦ γ

0
2 (P1) and γ

0
3 ◦ γ

0
2 (P2) on γ

0
3 ◦ γ

0
2 (BF

i,j
0,1(4)) = BF

i,j,0,0
0,1,2,3(6), respectively.

Lemma 7. Let n ≥ 4 and i, j ∈ Z2. Suppose that s is any level-1 vertex of BF
i,j
0,1(n) and d is any level-2 vertex of BF

i,j
0,1(n). Then

there exists a weakly 2-scheduled hamiltonian path of BF i,j0,1(n), joining s to d.

Proof. Without loss of generality, we assume that s = 〈1, ij0n−2〉 and d = 〈2, ijpqx〉with p, q ∈ Z2 and x ∈ Zn−42 . We prove
this lemma by induction on n. The induction bases are listed in Tables 1 and 2.
As the inductive hypothesis, we assume that the statement holds for BF i,j0,1(n − 2) with n ≥ 6. Now, we partition

BF i,j0,1(n) into {BF
i,j,h,k
0,1,2,3(n) | h, k ∈ Z2}. By the inductive hypothesis, there exists a weakly 2-scheduled hamiltonian

path P00 of BF i,j0,1(n − 2) joining 〈1, ij0
n−4
〉 to 〈2, ijx〉. Hence, there is at least one non-terminal level-2 vertex of P00, say

v = 〈2, ijy〉 with y 6= x, such that v is incident to a level-1 edge and a level-2 edge on P00. By Lemma 2, we have
BF i,j,0,00,1,2,3(n) = γ 03 ◦ γ

0
2 ◦ γ

j
1(BF

i
0(n − 3)) = γ 03 ◦ γ

0
2 (BF

i,j
0,1(n − 2)). Thus, γ

0
3 ◦ γ

0
2 (P

00) is a path on BF i,j,0,00,1,2,3(n) joining s to
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Table 2
Hamiltonian paths of BF i,j0,1(5) between 〈1, ij000〉 and 〈2, ijpqx〉 for any p, q, x ∈ Z2

〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij001〉, 〈3, ij011〉, 〈2, ij111〉, 〈1, ij111〉, 〈0, ij111〉, 〈4, ij111〉, 〈3, ij111〉, 〈2, ij011〉,
〈1, ij011〉, 〈0, ij011〉, 〈4, ij011〉, 〈3, ij001〉, 〈2, ij101〉, 〈1, ij101〉, 〈0, ij101〉, 〈4, ij101〉, 〈3, ij101〉, 〈2, ij001〉,
〈1, ij001〉, 〈0, ij001〉, 〈4, ij000〉, 〈3, ij010〉, 〈2, ij110〉, 〈1, ij110〉, 〈0, ij110〉, 〈4, ij110〉, 〈3, ij110〉, 〈2, ij010〉,
〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij000〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉, 〈3, ij100〉, 〈2, ij000〉〉

〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij001〉, 〈3, ij011〉, 〈2, ij111〉, 〈1, ij111〉, 〈0, ij111〉, 〈4, ij111〉, 〈3, ij111〉, 〈2, ij011〉,
〈1, ij011〉, 〈0, ij011〉, 〈4, ij011〉, 〈3, ij001〉, 〈2, ij101〉, 〈1, ij101〉, 〈0, ij101〉, 〈4, ij101〉, 〈3, ij101〉, 〈2, ij001〉,
〈1, ij001〉, 〈0, ij001〉, 〈4, ij000〉, 〈3, ij010〉, 〈2, ij110〉, 〈1, ij110〉, 〈0, ij110〉, 〈4, ij110〉, 〈3, ij110〉, 〈2, ij010〉,
〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij000〉, 〈2, ij000〉, 〈3, ij100〉, 〈4, ij100〉, 〈0, ij100〉, 〈1, ij100〉, 〈2, ij100〉〉

〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij001〉, 〈3, ij011〉, 〈2, ij111〉, 〈1, ij111〉, 〈0, ij111〉, 〈4, ij111〉, 〈3, ij111〉, 〈2, ij011〉,
〈1, ij011〉, 〈0, ij011〉, 〈4, ij011〉, 〈3, ij001〉, 〈2, ij101〉, 〈1, ij101〉, 〈0, ij101〉, 〈4, ij101〉, 〈3, ij101〉, 〈2, ij001〉,
〈1, ij001〉, 〈0, ij001〉, 〈4, ij000〉, 〈3, ij000〉, 〈2, ij000〉, 〈3, ij100〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉,
〈3, ij110〉, 〈4, ij110〉, 〈0, ij110〉, 〈1, ij110〉, 〈2, ij110〉, 〈3, ij010〉, 〈4, ij010〉, 〈0, ij010〉, 〈1, ij010〉, 〈2, ij010〉〉

〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij001〉, 〈3, ij011〉, 〈2, ij111〉, 〈1, ij111〉, 〈0, ij111〉, 〈4, ij111〉, 〈3, ij111〉, 〈2, ij011〉,
〈1, ij011〉, 〈0, ij011〉, 〈4, ij011〉, 〈3, ij001〉, 〈2, ij101〉, 〈1, ij101〉, 〈0, ij101〉, 〈4, ij101〉, 〈3, ij101〉, 〈2, ij001〉,
〈1, ij001〉, 〈0, ij001〉, 〈4, ij000〉, 〈3, ij010〉, 〈2, ij010〉, 〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij000〉, 〈2, ij000〉,
〈3, ij100〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉, 〈3, ij110〉, 〈4, ij110〉, 〈0, ij110〉, 〈1, ij110〉, 〈2, ij110〉〉

〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij000〉, 〈3, ij000〉, 〈2, ij000〉, 〈3, ij100〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉,
〈3, ij110〉, 〈2, ij010〉, 〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij010〉, 〈2, ij110〉, 〈1, ij110〉, 〈0, ij110〉, 〈4, ij110〉,
〈0, ij111〉, 〈1, ij111〉, 〈2, ij111〉, 〈3, ij011〉, 〈4, ij011〉, 〈0, ij011〉, 〈1, ij011〉, 〈2, ij011〉, 〈3, ij111〉, 〈4, ij111〉,
〈3, ij101〉, 〈4, ij101〉, 〈0, ij101〉, 〈1, ij101〉, 〈2, ij101〉, 〈3, ij001〉, 〈4, ij001〉, 〈0, ij001〉, 〈1, ij001〉, 〈2, ij001〉〉

〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij000〉, 〈3, ij000〉, 〈2, ij000〉, 〈3, ij100〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉,
〈3, ij110〉, 〈2, ij010〉, 〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij010〉, 〈2, ij110〉, 〈1, ij110〉, 〈0, ij110〉, 〈4, ij110〉,
〈0, ij111〉, 〈1, ij111〉, 〈2, ij111〉, 〈3, ij011〉, 〈4, ij001〉, 〈0, ij001〉, 〈1, ij001〉, 〈2, ij001〉, 〈3, ij001〉, 〈4, ij011〉,
〈0, ij011〉, 〈1, ij011〉, 〈2, ij011〉, 〈3, ij111〉, 〈4, ij111〉, 〈3, ij101〉, 〈4, ij101〉, 〈0, ij101〉, 〈1, ij101〉, 〈2, ij101〉〉

〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij000〉, 〈3, ij000〉, 〈2, ij000〉, 〈3, ij100〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉,
〈3, ij110〉, 〈2, ij010〉, 〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij010〉, 〈2, ij110〉, 〈1, ij110〉, 〈0, ij110〉, 〈4, ij110〉,
〈0, ij111〉, 〈1, ij111〉, 〈2, ij111〉, 〈3, ij111〉, 〈4, ij111〉, 〈3, ij101〉, 〈4, ij101〉, 〈0, ij101〉, 〈1, ij101〉, 〈2, ij101〉,
〈3, ij001〉, 〈2, ij001〉, 〈1, ij001〉, 〈0, ij001〉, 〈4, ij001〉, 〈3, ij011〉, 〈4, ij011〉, 〈0, ij011〉, 〈1, ij011〉, 〈2, ij011〉〉

〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij000〉, 〈3, ij010〉, 〈2, ij110〉, 〈1, ij110〉, 〈0, ij110〉, 〈4, ij110〉, 〈3, ij110〉, 〈2, ij010〉,
〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij000〉, 〈2, ij000〉, 〈3, ij100〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉,
〈0, ij101〉, 〈1, ij101〉, 〈2, ij101〉, 〈3, ij001〉, 〈4, ij011〉, 〈0, ij011〉, 〈1, ij011〉, 〈2, ij011〉, 〈3, ij011〉, 〈4, ij001〉,
〈0, ij001〉, 〈1, ij001〉, 〈2, ij001〉, 〈3, ij101〉, 〈4, ij101〉, 〈3, ij111〉, 〈4, ij111〉, 〈0, ij111〉, 〈1, ij111〉, 〈2, ij111〉〉

〈2, ij00x〉 or joining s to 〈4, ij00x〉. By Corollary 2, there is a totally scheduled hamiltonian cycle Chk of BF i,j,h,k0,1,2,3(n) including
all straight edges of level 2 and level 3 for any h, k ∈ Z2.
Let Fk = {〈2, ijw〉 ∈ V (P00) | 〈2, ijw〉 is not incident to any level-(k+ 1) edge on P00}with k ∈ {0, 1}. Obviously, P00 is a

connected spanning subgraph of BF i,j0,1(n− 2). By Lemma 3, we have V (γ
0
3 ◦ γ

0
2 (P

00)) = V (BF i,j,0,00,1,2,3(n))− (F0 ∪ F1), where
F0 = {〈2, ij00w〉 | 〈2, ijw〉 ∈ F0}∪{〈3, ij00w〉 | 〈2, ijw〉 ∈ F0} and F1 = {〈3, ij00w〉 | 〈2, ijw〉 ∈ F1}∪{〈4, ij00w〉 | 〈2, ijw〉 ∈
F1}. In addition, we have F0 ∩ F1 = ∅. If γ 03 ◦ γ

0
2 (P

00) joins s to 〈2, ij00x〉, let P00 = γ 03 ◦ γ
0
2 (P

00) and F̃0 = F0. Otherwise, let
P00 = 〈s, γ 03 ◦ γ

0
2 (P

00), 〈4, ij00x〉, 〈3, ij00x〉, 〈2, ij00x〉〉 and F̃0 = F0 − {〈2, ij00x〉, 〈3, ij00x〉}. For any h, k ∈ Z2, let

Xhk0 = {(〈2, ijhkw〉, 〈3, ijhkw〉) | 〈2, ij00w〉 and 〈3, ij00w〉 are in F̃0},

Y hk0 = {(〈2, ijhkw〉, 〈3, ijh̄kw〉) | 〈2, ij00w〉 and 〈3, ij00w〉 are in F̃0},

Xhk1 = {(〈3, ijhkw〉, 〈4, ijhkw〉) | 〈3, ij00w〉 and 〈4, ij00w〉 are in F1}, and

Y hk1 = {(〈3, ijhkw〉, 〈4, ijhk̄w〉) | 〈3, ij00w〉 and 〈4, ij00w〉 are in F1}.

Then we consider the following four cases.
Case 1: If pq = 00, then d = 〈2, ij00x〉. It is noticed that v 6∈ F0 ∪ F1. Let

A = {(〈2, ij10y〉, 〈3, ij00y〉), (〈2, ij00y〉, 〈3, ij10y〉), (〈2, ij11y〉, 〈3, ij01y〉),
(〈2, ij01y〉, 〈3, ij11y〉), (〈3, ij11y〉, 〈4, ij10y〉), (〈3, ij10y〉, 〈4, ij11y〉)} and

B = {(〈2, ij00y〉, 〈3, ij00y〉), (〈2, ij10y〉, 〈3, ij10y〉), (〈2, ij01y〉, 〈3, ij01y〉),
(〈2, ij11y〉, 〈3, ij11y〉), (〈3, ij10y〉, 〈4, ij10y〉), (〈3, ij11y〉, 〈4, ij11y〉)}.

It follows from Lemma 3, that (〈2, ij00y〉, 〈3, ij00y〉) ∈ E(P00). By Corollary 2, we have (〈2, ij10y〉, 〈3, ij10y〉) ∈
E(C10), (〈2, ij01y〉, 〈3, ij01y〉) ∈ E(C01), (〈2, ij11y〉, 〈3, ij11y〉) ∈ E(C11), (〈3, ij10y〉, 〈4, ij10y〉) ∈ E(C10), and
(〈3, ij11y〉, 〈4, ij11y〉) ∈ E(C11). Then the subgraph P of BF i,j0,1(n), generated by (E(P00)∪ E(C

10)∪ E(C01)∪ E(C11)∪ A)− B,
forms a weakly 2-scheduled path of BF i,j0,1(n) between s and d. Clearly, we have V (P) = V (BF

i,j
0,1(n)) − (F0 ∪ F̃1). Since



T.-L. Kueng et al. / Mathematical and Computer Modelling 48 (2008) 1814–1825 1821

Fig. 5. (a) P00 = γ 03 ◦ γ
0
2 (P

00), C10 , C01 , and C11; (b) the path P generated by (E(P00) ∪ E(C10) ∪ E(C01) ∪ E(C11) ∪ A) − B; (c) the path P ′ generated by
(E(P) ∪ (X000 ∪ Y

00
0 ∪ Y

10
0 ) ∪ (X

00
1 ∪ Y

00
1 ∪ Y

01
1 ))− (X

10
0 ∪ X

01
1 ) to cover all vertices of F̃0 ∪ F1 .

Chk includes all straight edges of level 2 and level 3 in BF i,j,h,k0,1,2,3(n), we have X
10
0 ⊂ E(C

10) and X011 ⊂ E(C
01). Moreover,

we have (X100 ∪ X
01
1 ) ∩ B = ∅. Therefore, it follows that (X

10
0 ∪ X

01
1 ) ⊂ E(P). Let P ′ be the subgraph generated by

(E(P)∪ (X000 ∪ Y
00
0 ∪ Y

10
0 )∪ (X

00
1 ∪ Y

00
1 ∪ Y

01
1 ))− (X

10
0 ∪ X

01
1 ). Then P

′ is a weakly 2-scheduled hamiltonian path of BF i,j0,1(n)
joining s to d. See Fig. 5 for illustration, in which γ 03 ◦ γ

0
2 (P

00) is supposed to join s and 〈2, ij00x〉.
Case 2: If pq = 10, then d = 〈2, ij10x〉. Let

A = {(〈2, ij00x〉, 〈3, ij10x〉), (〈2, ij11y〉, 〈3, ij01y〉), (〈2, ij01y〉, 〈3, ij11y〉),
(〈3, ij11y〉, 〈4, ij10y〉), (〈3, ij10y〉, 〈4, ij11y〉)} and

B = {(〈2, ij10x〉, 〈3, ij10x〉), (〈2, ij01y〉, 〈3, ij01y〉), (〈2, ij11y〉, 〈3, ij11y〉),
(〈3, ij10y〉, 〈4, ij10y〉), (〈3, ij11y〉, 〈4, ij11y〉)}.

Obviously, the subgraph P , generated by (E(P00) ∪ E(C10) ∪ E(C01) ∪ E(C11) ∪ A)− B, forms a weakly 2-scheduled path of
BF i,j0,1(n) between s and d. Moreover, the subgraph P

′, generated by (E(P)∪(X000 ∪Y
00
0 ∪Y

10
0 )∪(X

00
1 ∪Y

00
1 ∪Y

01
1 ))−(X

10
0 ∪X

01
1 ),

is a weakly 2-scheduled hamiltonian path of BF i,j0,1(n) joining s to d.
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Case 3: If pq = 01, then d = 〈2, ij01x〉. Let

A = {(〈2, ij00x〉, 〈3, ij10x〉), (〈2, ij11x〉, 〈3, ij01x〉), (〈3, ij11x〉, 〈4, ij10x〉)} and
B = {(〈2, ij01x〉, 〈3, ij01x〉), (〈2, ij11x〉, 〈3, ij11x〉), (〈3, ij10x〉, 〈4, ij10x〉)}.

Obviously, the subgraph P , generated by (E(P00) ∪ E(C10) ∪ E(C01) ∪ E(C11) ∪ A)− B, forms a weakly 2-scheduled path of
BF i,j0,1(n), between s and d. Moreover, the subgraph P

′, generated by (E(P)∪(X000 ∪Y
00
0 ∪Y

10
0 )∪(X

00
1 ∪Y

00
1 ∪Y

01
1 ))−(X

10
0 ∪X

01
1 ),

is a weakly 2-scheduled hamiltonian path of BF i,j0,1(n) joining s to d.
Case 4: If pq = 11, then d = 〈2, ij11x〉. Let

A = {(〈2, ij00x〉, 〈3, ij10x〉), (〈3, ij11x〉, 〈4, ij10x〉), (〈3, ij01y〉, 〈4, ij00y〉), (〈3, ij00y〉, 〈4, ij01y〉)} and
B = {(〈3, ij10x〉, 〈4, ij10x〉), (〈3, ij00y〉, 〈4, ij00y〉), (〈3, ij01y〉, 〈4, ij01y〉), (〈2, ij11x〉, 〈3, ij11x〉)}.

The subgraph P , generated by (E(P00) ∪ E(C10) ∪ E(C01) ∪ E(C11) ∪ A) − B, forms a weakly 2-scheduled path of BF i,j0,1(n)
between s and d. Moreover, the subgraph P ′, generated by (E(P) ∪ (X000 ∪ Y

00
0 ∪ Y

10
0 ) ∪ (X

00
1 ∪ Y

00
1 ∪ Y

01
1 ))− (X

10
0 ∪ X

01
1 ), is

a weakly 2-scheduled hamiltonian path of BF i,j0,1(n) joining s to d. �

By symmetry, the next corollary can be proved in the way similar to Lemma 7.

Corollary 4. Assume that n ≥ 4 and i, j ∈ Z2. Let s be any level-1 vertex of BF
i,j
0,1(n) and d be any level-0 vertex of BF

i,j
0,1(n).

Then there exists a weakly 0-scheduled hamiltonian path of BF i,j0,1(n) joining s to d.

Lemma 8. Assume that n ≥ 4. Let s = 〈1, 0n〉, d1 = 〈2, 0210n−3〉, and d2 = 〈0, 0n〉. Then there exist two hamiltonian
paths H1 and H2 of BF

0,0
0,1 (n), such that the following conditions are all satisfied: (i) H1 joins s to d1, (ii) H2 joins s to d2,

and (iii) H1(1) = H2(1) = s and H1(t) 6= H2(t) for each 2 ≤ t ≤
∣∣∣V (BF 0,00,1 (n))∣∣∣ = n2n−2.

Proof. Let u1 = g(s) = 〈2, 0n〉, u2 = f (u1) = g(d1) = 〈3, 0210n−3〉, u3 = g−1(d1) = 〈1, 0210n−3〉, u4 = f (u2), and
u5 = g(u1) = f (d1) = 〈3, 0n〉. Note that u4 = 〈0, 0011〉 if n = 4 and u4 = 〈4, 02120n−4〉 if n ≥ 5. We partition BF

0,0
0,1 (n)

into {BF 0,0,00,1,2 (n), BF
0,0,1
0,1,2 (n)}. By Corollary 1, there is a hamiltonian cycle C0 of BF

0,0,0
0,1,2 (n) including all straight edges of level

2. Thus, we have (u1, u5) ∈ E(C0). By Lemma 6 and Corollary 3, there is a hamiltonian cycle C1 of BF
0,0,1
0,1,2 (n), such that

(u2, u4) ∈ E(C1). It is noticed that s and d1 are vertices of degree two in BF
0,0,0
0,1,2 (n) and BF

0,0,1
0,1,2 (n), respectively. Therefore, we

can write C0 = 〈s, u1, u5, P0, d2, s〉 and C1 = 〈d1, u2, u4, P1, u3, d1〉. As an illustrative example, Fig. 6(a) depicts C0 and C1 on
BF 0,00,1 (4). Fig. 6(b) illustrates the abstraction of C0 and C1 for general n. Since {(u1, u2), (d1, u5)} ⊂ E(BF

0,0
0,1 (n)), we set

H1 = 〈s, d2, P−10 , u5, u1, u2, u4, P1, u3, d1〉 and
H2 = 〈s, u1, u2, u4, P1, u3, d1, u5, P0, d2〉.

Then it can be verified, as shown on Fig. 6(c), that H1 and H2 satisfy the conditions. �

Lemma 9. Given any k ∈ {0, 1} and n ≥ 4, let (b1, w1) be a level-1 straight edge of BF 1,1,k0,1,n−1(n) and (b2, w2) be a level-0
straight edge of BF 1,1,k0,1,n−1(n) such that w1 andw2 are two distinct level-1 vertices. Then there exist two hamiltonian paths H1 and
H2 of BF

1,1
0,1 (n), such that the following conditions are all satisfied:

(i) H1(1) = b1 and H1(n2n−2) = w1,
(ii) H2(1) = b2 and H2(n2n−2) = w2, and
(iii) H1(t) 6= H2(t) for each 1 ≤ t ≤ n2n−2.

Proof. Without loss of generality, we assume that k = 0. Let u1 = gn−3(b1), u2 = f (u1), u3 = g(u2), u4 = g(u3),
u5 = gn−3(u4) = g−1(u2), u6 = f (u5) = g−1(w1), v1 = f −1(b2), v2 = g−n+3(v1), v3 = g−1(v2), v4 = g−1(v3) = g(v1),
v5 = f −1(v4) = g−1(b2), and v6 = g−n+3(v5) = g(w2). By Corollary 1, BF

1,1,0
0,1,2 (n) has a totally scheduled hamiltonian cycle.

By Lemma 1, BF 1,1,00,1,n−1(n) is isomorphic with BF
1,1,0
0,1,2 (n). Hence, there also exists a totally scheduled hamiltonian cycle C0 of

BF 1,1,00,1,n−1(n). It is noticed thatw1 is adjacent to u6. Moreover,w1, u6, b2, andw2 are all vertices of degree two in BF
1,1,0
0,1,n−1(n).

Accordingly, C0 can be written as C0 = 〈w1, b1, P0, u1, u6, w1〉, where P0 = 〈b1, P01, v5, b2, w2, v6, P02, u1〉.
By Lemma 6, BF 1,1,10,1,2 (4) has a totally scheduled hamiltonian cycle C such that e ∈ E(C) if e ∈ E(BF 1,1,10,1,2 (4)) −

{(〈3, 1110〉, 〈0, 1110〉), (〈3, 1111〉, 〈0, 1111〉)}. By Lemma 1, BF 1,1,10,1,3 (4) is isomorphic with BF
1,1,1
0,1,2 (4). Hence, BF

1,1,1
0,1,3 (4) has

a totally scheduled hamiltonian cycle C such that e ∈ E(C) if e ∈ E(BF 1,1,10,1,3 (4)) − {(〈2, 1101〉, 〈3, 1101〉), (〈2, 1111〉,
〈3, 1111〉)}. Obviously, (u5, u2) is a level-(n − 3) for any n ≥ 4. Therefore, we have (u5, u2) ∈ E(BF 1,1,10,1,3 (4)) −
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Fig. 6. Illustration for Lemma 8.

Fig. 7. Illustration for Lemma 9. In (a), (b1, w1) = (〈2, 1100〉, 〈1, 1100〉) and (b2, w2) = (〈0, 1110〉, 〈1, 1110〉) are assumed. In (c), we let R1 =
〈v1, P−111 , u4, u3, u2, , u5, P

−1
12 , v2〉 and R0 = 〈v5, P

−1
01 , b1, w1, u6, u1, P

−1
02 , v6〉.

{(〈2, 1101〉, 〈3, 1101〉), (〈2, 1111〉, 〈3, 1111〉)}. It follows that BF 1,1,10,1,3 (4) has a totally scheduled hamiltonian cycle C1 such
that (u5, u2) ∈ E(C1). By Corollary 3, BF

1,1,1
0,1,2 (n), n ≥ 5, has a totally scheduled hamiltonian cycle including any required edge.

Since BF 1,1,10,1,n−1(n) is isomorphic with BF
1,1,1
0,1,2 (n), it has a totally scheduled hamiltonian cycle C1 such that (u5, u2) ∈ E(C1)

if n ≥ 5. In short, by Lemma 6 and Corollary 3, there is a totally scheduled hamiltonian cycle C1 of BF
1,1,1
0,1,n−1(n), such that

(u5, u2) ∈ E(C1). Since u2, u3, v3, and v4 are vertices of degree two in BF
1,1,1
0,1,n−1(n), we write C1 = 〈u3, u4, P1, u5, u2, u3〉,

where P1 = 〈u4, P11, v1, v4, v3, v2, P12, u5〉. Fig. 7(a) depicts C0 and C1 on BF
1,1
0,1 (4). Fig. 7(b) illustrates the abstraction of C0

and C1 for general n. Then we set

H1 = 〈b1, P01, v5, b2, w2, v6, P02, u1, u2, u3, u4, P11, v1, v4, v3, v2, P12, u5, u6, w1〉 and
H2 = 〈b2, v1, P−111 , u4, u3, u2, u5, P

−1
12 , v2, v3, v4, v5, P

−1
01 , b1, w1, u6, u1, P

−1
02 , v6, w2〉.

Sincew1 6= w2, u2 6= v2, u3 6= v3, u4 6= v4, and u6 6= v6, it can be checked that H1 and H2 satisfy the conditions. See Fig. 7(c)
for illustration. �
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Table 3
4-mutually independent hamiltonian cycles C1, C2, C3, C4 of BF(3) starting from vertex 〈0, 000〉

C1 〈〈0, 000〉, 〈2, 001〉, 〈0, 001〉, 〈1, 001〉, 〈2, 011〉, 〈0, 011〉, 〈1, 011〉, 〈0, 111〉, 〈2, 111〉, 〈1, 111〉, 〈2, 101〉, 〈1, 101〉,
〈0, 101〉, 〈2, 100〉, 〈0, 100〉, 〈1, 100〉, 〈2, 110〉, 〈0, 110〉, 〈1, 110〉, 〈0, 010〉, 〈2, 010〉, 〈1, 010〉, 〈2, 000〉, 〈1, 000〉, 〈0, 000〉〉

C2 〈〈0, 000〉, 〈1, 000〉, 〈2, 000〉, 〈0, 001〉, 〈1, 001〉, 〈2, 011〉, 〈0, 011〉, 〈1, 111〉, 〈2, 101〉, 〈0, 101〉, 〈1, 101〉, 〈2, 111〉,
〈0, 110〉, 〈1, 010〉, 〈2, 010〉, 〈0, 010〉, 〈1, 110〉, 〈2, 100〉, 〈0, 100〉, 〈1, 100〉, 〈2, 110〉, 〈0, 111〉, 〈1, 011〉, 〈2, 001〉, 〈0, 000〉〉

C3 〈〈0, 000〉, 〈1, 100〉, 〈2, 100〉, 〈0, 100〉, 〈1, 000〉, 〈2, 010〉, 〈0, 010〉, 〈1, 110〉, 〈2, 110〉, 〈0, 111〉, 〈1, 111〉, 〈0, 011〉,
〈2, 011〉, 〈1, 011〉, 〈2, 001〉, 〈0, 001〉, 〈1, 001〉, 〈0, 101〉, 〈2, 101〉, 〈1, 101〉, 〈2, 111〉, 〈0, 110〉, 〈1, 010〉, 〈2, 000〉, 〈0, 000〉〉

C4 〈〈0, 000〉, 〈2, 000〉, 〈1, 000〉, 〈2, 010〉, 〈0, 010〉, 〈1, 010〉, 〈0, 110〉, 〈2, 110〉, 〈1, 110〉, 〈2, 100〉, 〈0, 101〉, 〈1, 001〉,
〈2, 001〉, 〈0, 001〉, 〈1, 101〉, 〈2, 111〉, 〈0, 111〉, 〈1, 011〉, 〈2, 011〉, 〈0, 011〉, 〈1, 111〉, 〈2, 101〉, 〈0, 100〉, 〈1, 100〉, 〈0, 000〉〉

5. Mutually independent hamiltonian cycles of BF(n)

Theorem 1. For all n ≥ 3, IHC(BF(n)) = 4.

Proof. It is trivial that IHC(BF(n)) ≤ δ(BF(n)) = 4. Suppose that n = 3. Since BF(3) is vertex-transitive, we only find
4-mutually independent hamiltonian cycles starting from vertex 〈0, 000〉. A set {C1, C2, C3, C4} of four hamiltonian cycles is
listed in Table 3. It is easy to check that they are mutually independent.
For n ≥ 4, we partition BF(n) into {BF i,j0,1(n) | i, j ∈ Z2}. Since BF(n) is vertex-transitive, we assume that the beginning

vertex is s = 〈1, 0n〉. Let u1 = 〈2, 0210n−3〉, u2 = f −1(u1) = 〈1, 0120n−3〉, u3 = g−1(u2) = 〈0, 0120n−3〉, u4 = f (u3) =
〈1, 130n−3〉, u5 = g(u4) = 〈2, 130n−3〉, u6 = f −1(u5) = 〈1, 1010n−3〉, u7 = f −1(s) = 〈0, 10n−1〉, v1 = g−1(s) = 〈0, 0n〉,
v2 = f (v1) = 〈1, 10n−1〉, v3 = g(v2) = 〈2, 10n−1〉, v4 = f −1(v3) = 〈1, 120n−2〉, v5 = g−1(v4) = 〈0, 120n−2〉, v6 =
f (v5) = 〈1, 010n−2〉, and v7 = g(v6) = f (s) = 〈2, 010n−2〉. Obviously, {u1, u2, u3, u4, u5, u6, u7, v1, v2, v3, v4, v5, v6, v7}
consists of 14 different vertices of BF(n), such that all (u1, u2), (u3, u4), (u5, u6), (u7, s), (v1, v2), (v3, v4), (v5, v6), and (v7, s)
are in E(BF(n)). By Lemma 8, there exist two hamiltonian paths P1 and P2 of BF

0,0
0,1 (n) such that (1) P1 joins s to u1, (2) P2

joins s to v1, and (3) P1(1) = P2(1) = s and P1(t) 6= P2(t) for each 2 ≤ t ≤ n2n−2. By Corollary 4, there is a hamiltonian
path Q1 of BF

0,1
0,1 (n) joining u2 to u3. Similarly, there is a hamiltonian path R1 of BF

1,0
0,1 (n) joining u6 to u7. By Lemma 7,

there is a hamiltonian path Q2 of BF
1,0
0,1 (n) joining v2 to v3. Again, there is a hamiltonian path R2 of BF

0,1
0,1 (n) joining v6 to

v7. Applying Lemma 9, we can find two hamiltonian paths S1 and S2 of BF
1,1
0,1 (n), such that (1) S1 joins u4 to u5, (2) S2 joins

v4 to v5, and (3) S1(t) 6= S2(t) for each 1 ≤ t ≤ n2n−2. We set C1 = 〈s, P1, u1, u2,Q1, u3, u4, S1, u5, u6, R1, u7, s〉 and
C2 = 〈s, P2, v1, v2,Q2, v3, v4, S2, v5, v6, R2, v7, s〉. Figs. 8(a) and (b) illustrate C1 and C2, respectively. Obviously, C1 and C2
are both hamiltonian cycles of BF(n). In what follows, we claim that C1 and C2 are independent: first, Lemma 8 guarantees
that C1(t) 6= C2(t) for all 2 ≤ t ≤ n2n−2. Next, we have C1(t) 6= C2(t) for n2n−2 + 1 ≤ t ≤ n2n−1, because C1 and C2
pass through the vertices of BF 0,10,1 (n) and BF

1,0
0,1 (n), respectively. Moreover, Lemma 9 guarantees that C1(t) 6= C2(t) for all

n2n−1 + 1 ≤ t ≤ 3× n2n−2. Finally, we have C1(t) 6= C2(t) for 3× n2n−2 + 1 ≤ t ≤ n2n since C1 and C2 pass through the
vertices of BF 1,00,1 (n) and BF

0,1
0,1 (n), respectively. As a consequence, C1 and C2 are independent.

Let u′3 = 〈0, 01
20n−41〉, u′4 = f (u

′

3) = 〈1, 1
30n−41〉, u′5 = g(u

′

4) = 〈2, 1
30n−41〉, u′6 = f

−1(u′5) = 〈1, 1010
n−41〉,

v′3 = 〈2, 10
n−21〉, v′4 = f

−1(v′3) = 〈1, 1
20n−31〉, v′5 = g

−1(v′4) = 〈0, 1
20n−31〉, and v′6 = f (v

′

5) = 〈1, 010
n−31〉. Obviously,

u′i 6= ui and v
′

i 6= vi for 3 ≤ i ≤ 6. By Corollary 4, there is a hamiltonian path Q3 of BF
0,1
0,1 (n) joining u2 to u

′

3. Similarly, there
is a hamiltonian path R3 of BF

1,0
0,1 (n) joining u

′

6 to u7. By Lemma 7, there is a hamiltonian path Q4 of BF
1,0
0,1 (n) joining v2 to v

′

3.
Similarly, there is a hamiltonian path R4 of BF

0,1
0,1 (n) joining v

′

6 to v7. We apply Lemma 9 to construct two hamiltonian paths
S3 and S4 of BF

1,1
0,1 (n), such that (1) S3 joins u

′

4 to u
′

5, (2) S4 joins v
′

4 to v
′

5, and (3) S3(t) 6= S4(t) for all 1 ≤ t ≤ n2
n−2. Then

we set O1 = 〈s, P1, u1, u2,Q3, u′3, u
′

4, S3, u
′

5, u
′

6, R3, u7, s〉 and O2 = 〈s, P2, v1, v2,Q4, v
′

3, v
′

4, S4, v
′

5, v
′

6, R4, v7, s〉. Similar to
C1 and C2, O1 and O2 are independent.
Let C3 = O−11 and C4 = O

−1
2 . For clarity, we list C1, C2, C3, and C4 as follows.

C1 = 〈s, P1, u1, u2,Q1, u3, u4, S1, u5, u6, R1, u7, s〉,
C2 = 〈s, P2, v1, v2,Q2, v3, v4, S2, v5, v6, R2, v7, s〉,
C3 = 〈s, u7, R−13 , u

′

6, u
′

5, S
−1
3 , u

′

4, u
′

3,Q
−1
3 , u2, u1, P−11 , s〉, and

C4 = 〈s, v7, R−14 , v
′

6, v
′

5, S
−1
4 , v

′

4, v
′

3,Q
−1
4 , v2, v1, P−12 , s〉.

Then it is easy to check that C1, C2, C3, and C4 are 4-mutually independent hamiltonian cycles of BF(n) starting from vertex s.
See Fig. 8 for illustration. �



T.-L. Kueng et al. / Mathematical and Computer Modelling 48 (2008) 1814–1825 1825

Fig. 8. Illustration for Theorem 1. (a) C1; (b) C2; (c) C3; (d) C4 .

6. Conclusion

In this paper, we discuss the applications of mutually independent hamiltonian cycles, and prove that IHC(BF(n)) = 4
for all n ≥ 3. Wong [11] presented a recursive method to construct a hamiltonian cycle on the k-ary wrapped butterfly
network, which is the generalization of the binary wrapped butterfly graph. Let BF(k, n) denote the n-dimensional k-ary
wrapped butterfly network. Then we have BF(n) ∼= BF(2, n). As an extension of our current research, it is intriguing to
investigate the mutually independent hamiltonicity of BF(k, n) for k ≥ 3. By definition, BF(k, n) is 2k-regular. Therefore,
we intuitively conjecture that IHC(BF(k, n)) = 2k for every n ≥ 3. Since our current approach to proving that
IHC(BF(2, n)) = 4 depends upon Lemmas 7–9, it is inductive. For this reason, it is complicated to directly apply our
approach to proving that IHC(BF(k, n)) = 2k for all k ≥ 3. Perhaps it can be proved algebraically because BF(k, n) is a
Cayley graph.
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