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Microstate Analysis of Zen-Meditation Brain Topography

Student : Chang-Yi Li Advisor : Dr. Pei-Chen Lo

Department of Electrical and Control Engineering

National Chiao-Tung University

Abstract

The aim of this study is to propose a method for/detecting alpha wiave in EEG
(electroencephalograph) and analyzing the alpha spatial characteristics in a microstate aspect.
We investigatediand compared theé brain microstates between Zen-meditation practitioners
(experimental group) and non=practitioners (control group).

Firstly, EEG epochs:of interest were extracted by alpha-power percentage that is at least
fifty percent of total power. In the analysis, wavelet decomposition and reconstruction was
adopted. Then Mahalanobis Fuzzy C-means clustering was employed in the classification
scheme for various alpha mappings. Finally, the alpha-brain microstates were explored and
compared for both experimental and control groups.

The preliminary results reveal a longer duration of frontal-alpha microstate observed in
Zen-meditation practitioners in comparison with control subjects. From the literatures, a longer
duration of microstate may imply that the brain is involved in slight information processing,

reflecting a rather stabilized dynamics.
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Chapter 1 Introduction

Since Electroencephalography (EEG) was firstly recorded in 1927, the EEG signals have
been intensively studied in clinical applications and medical science. Nowadays, EEG
becomes an important clinical tool for diagnosing and monitoring the nervous system
regarding normal or pathological conditions. In the field of EEG study, the spatial or
topographical features provide an access to the detection of focal EEG phenomena that have a
relationship to focal pathology [1], [2]. The spatialdisttibution of EEG features (to be called
the “EEG mapping” or the “brain mapping”) ever the sealp surface is thus of great importance.
In clinical applieations, its graphical display is an easy and straightforward aid to visual
inspection of focal activities. A number of methods and techniques have been used for
constructing the EEG'mapping [16-22]. According to our study on Zen-meditation EEG
during the past ten years, a'number of EEG characteristics have been found to be evidently
linked to the Zen-meditation practice. We have reported our findings on frontal alpha activity
and beta-dominated phenomena, mainly from the temporal and spectral aspects. In this study,

we particularly focused on EEG spatial properties during meditation.

In this chapter, we begin with the introduction of EEG researches in recent years and the



background of this study.

1.1 Motivation

Studies of meditation EEG have attracted a large number of researchers in life science

and medicine since a half century ago. The EEG is normally composed of the following

rhythmic components: d-wave (0~4Hz),.0-wave (4~8Hz), a-wave.(8~13Hz), B-wave

(13~30Hz), and y.(30~70Hz). Researchesiduring the past several decades have disclosed the

phenomenon that particular EEG patterns correlated closely with some physiological, mental,

or emotional states. For instance, oceipital a-wave becomes dominant during the eye-closed

relaxation. Significant and numerous ‘achievements have been teported on EEG rhythmic and

EEG spatial characteristics:applied to brain abnormalities and such pathological case study as

epilepsy [3-5] and Alzheimer’s disease [6]. Accordingly, EEG has become a feasible tool for

diagnosing neural disorder diseases.

In the past two decades, scientists and medical experts have been getting more and more

interested in meditation phenomena due to its benefits to human health[7-11]. A large variety

of scientific approaches have been applied to meditation study. Since meditation process

involves different states of consciousness, EEG thus became the focus of attention of
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researchers. This thesis mainly reports the results of investigating the brain spatial microstates

of a-wave for subjects practicing Zen meditation.

Most researches of brain spatial topography analyzed long-term EEG signal, but in some

case of pathology, the phenomenon is transient or transitionary. As epilepsy is a disease and

can be detected by the momentary unusual EEG signal, and it is hard to find in long-term

EEG analysis. So we used microstate algorism for detection of transient brain state and hope

for more applications.

1
introduces the methods and experime [ is study are reported in



Chapter 2 Theories and Methods

EEG (Electroencephalography) is the neurophysiologic measurement of the electrical
activity of the brain by recording from electrodes placed on the scalp (non-invasive recording)
or, in special cases, subdurally or in the cerebral cortex (invasive recording). The resulting
traces are known as an electroencephalogram (EEG) and represent a summation of
post-synaptic potentialsfrom a large number of neurons. These are sometimes called
brainwaves, though this use is discouraged, because the brain was not known to broadcast
electrical waves!The EEG offers a medium for the brain function test, but in clinical use it is
a "gross correlate of brain activity". We actually do not measure the electrical currents, but

rather the potential differences between difterent parts of the brain

EEG applications in clinic have become more and more favorable because of its
advantages of economy, safety, and convenience! EEG can be used for detecting apoplexy,
epilepsy, cephalitis, etc. EEG studies have also been employed in patients who are deeply
unconscious, to distinguish between brain death and possible reversible conditions. And it is
also used to investigate other conditions that may affect brain function such as strokes, brain
injuries, liver and kidney disease and dementia. In this study, we adopted 30-channel

recording montage as shown in Figure 2.1.



Channel locations

30 of 30 electrode locations shown

Click on electrodes to toggle name/mumber

Figure 2.1 Electrode locations of the 30-channel recording.montage.

This chapter introduces the main theories and methods applied in this study, including

the wavelet transform, Mahalanobis distance (MD), fuzzy c-means, and the spatial-microstate

analysis of the brain. The method for feature classification and clustering was named as

Mahalanobis fuzzy c-means (MFCM) because we adopted the Mahalanobis distance in the

fuzzy c-means algorithm.

This study was aimed to analyze the brain microstates for two groups of subjects:



Zen-meditation practitioners and normal, healthy persons within the same age group. The

meditation duration lasted for almost 50 minutes. We extracted four-second segments for

brain microstates analysis. How to select appropriate EEG segments, hence, became

important. Our previous study demonstrated that frontal alpha was highly correlated with

meditation state, differing from the occipital alpha often observed in normal subjects during

eye-closed relaxation. Therefore, we focused on the analysis of the frontal-alpha brain

microstates. The first task thus,was to identify the occurrence of frontal-alpha activities.

Hence we developed:the pattern recognition technique.to cluster the alpha activities into

frontal-, parietal4.and occipital-alpha segments. And we analyzed the frontal and occipital

alpha in meditation and the others (parietal alpha,.occipital alpha) in relax by brain microstate.

The concept of MD includes the correlations of the data. We thus‘identified patterns of

similarity based onrthis characteristic. In the Study; brain spatial distributions were clustered

by the approach of unsupervised-pattern recognition, The aim was to group similar objects

together. As a measure of similarity, the MD can be used to link similar populations together

by computing the MD between population means (centroids). In combination with FCM, the

MD replaced the Euclidean distance in the membership value function. Clustering scheme

applying the fuzzy concept together with data correlation could achieve better efficiency.

Results of clustering were then investigated by brain microstate analysis.



2.1 Outline of the scheme

The entire scheme applied in this study is illustrated in Figure 2.1. This block diagram
describes the whole scheme correlating different theories and methods to accomplish our aim
of characterizing the multi-channel EEG spatial behaviors. Following this flowchart, details of
theories and methods will be introduced. To quantify alpha power, we applied wavelet
analysis to 2-second windowed segments. Based on the block diagram in Figure 2.2, we then
present the detailed concept-and mathematics of eachimethod in the following sections.

Firstly, EEG.signals were-pre-filtered by a band-pass filter with.pass band 0.5 — 50 Hz. In
the next step, wavelet analysis was applied to.each2-second EEG epoch to decompose raw
EEG into characteristic rhythmic patterns. The epoch was identified to be alpha-dominated if
the alpha power was at least 50% the ‘total EEG power.

In MFCM (Mahalanebis Fuzzy C-means) clusteting, we must find the initial cluster
centers first. This study applied FCM for the determination of the initial centers. Difference
between MFCM and FCM is that the correlation of data is adopted in MFCM’s computation,
and distance computation is related to the distribution of data. In some case of clusters that
cannot be line-separated, but it could be work in MFCM. In microstate analysis, wavelet
transform was applied to 131ms-windowed EEG that approximately enclosed the longest

alpha-wave epoch. Because of we went to analysis the mini-second’s brain state, so the



window would not too bigger and not too to extract the alpha-power.

EEG signal

A 4

Band-pass filter
(pass-band: 0.5- 50Hz)

h 4

Extraction of alpha power

by wavelet analysis

A 4

MFCM (Mahalanobis

Fuzzy C-means)

clustering

A

Obtain landscape and

extract dipole vector

A 4

Find maxima GFPs of

Microstate <
EEG

Analysis

\ | Segmentation analysis

Figure 2.2 Flowchart of the entire scheme.



2.2 Alpha Wave Detection

For researching the effects of the alpha-wave, it is important to make sure that a trail of
EEG is alpha dominate. We use wavelet transform to extract the wavelet coefficients of a, B, v,
0, 8 waves, and reconstructed them to calculate the a, 3, y, 3, 0 power. Eq. (A.12), defines p

as the percentage of o power to the total power. If p >=50% we call the EEG is alpha

dominate.
pa + pﬁ +
The figure co value in every one
second. It is obvio a domi > 0% , and when p < 50%

od could detect alpha
successfully. Becaus signal have 30 channels, so ined that if anyone

channel is detected as alpha dominz hi 1 1s alpha dominate.

my

oy
.
(%)
()
F-
(4.

Figure 2.3 Alpha detection: the session with p >=50% is defined as alpha dominated.



2.3 Mahalanobis Fuzzy C-Means (MFCM)

Techniques based on the measurement of distances between quantitative features or
attributes commonly apply such distance measures like Euclidean distance (ED) and
Mahalanobis distance (MD). Both distances can be calculated either in the original variable
space or in the principal component (PC) space. The ED is easy to compute and interpret, yet,
this is not the case for the MD: Nevertheless, MD provides better results of feature clustering
because it measures the correlations between.variables[ 14,15]. Inta sense, MD can be used to
determine the degree of similarity-of an unknown variable to the'known one. It differs from
Euclidean distance in that it takes into accountthe correlations of the data and is
scale-invariant, that is, independent.of the scale of measurements.

Fuzzy c-mean§ (FCM) is a fuzzy classifier based on the cluster means. Instead of
reaching a crispy decision like “0/17, “true/false”, or.“yes/no”’, fuzzy allows the degree of truth
of a statement ranging between 0 and 1. It 1S more suitable and feasible for classification and
analysis of most empirical biomedical data. In this study, we employed MD distance
measurement in the membership value of FCM and compared the difference of classification

results with or without correlation computation.

2.3.1 Mahalanobis Distance

10



The correlation is calculated from the inverse of the variance-covariance matrix of the
data. However, the computation of variance-covariance matrix could cause problems. When
the empirical data are measured over a large number of variables (for example, channels),
they may contain a large amount of redundant or correlated information. The resulting
variance-covariance matrix may become a singular or nearly singular matrix that can not be
inversed.

In the case of object-i with'30 dimensional map | X,.= (14, 4, 443, ) , the ED with
regard to the center map can be calculated-for each object. Assume totally N objects, ED for

object-i is computed as

ED, =\ (tly = 4,)" # (s — 5 )+ (pt = 1i5g)’ fori=11to N, 2.2)

Where 4,to iy, are the variables of object-l, ;1 and ;30 are the means the variables of

center objects.

To be able to compute the MD, first the variance-covatiance:matrix C, is calculated:

1

C. =g K X, (2.3)

where the X is the data matrix containing N objects in the rows, X, is the data matrix

c

X subtracted by the variable means Y; X, = ( X=X ) . For the 30 dimensional map, X
can be defined as :

Mg Hipo 0 Hizo

Hyy Koy Hs 30

X = N subjects. (2.4)

Hng Hnz 0 Hnjo
11



The MD for object-i X, is then

MD, = /(X - X)C; (% —X)" (2.5)
where X is the center of the data.

Figure 2.4(a) plots the simulated data for two variables p; and u, together with the

circles representing the equal EDs with regard to the center point. Figure 2.4(b) plots the

simulated data for two variables 4z and g, together with the ellipses representing the equal
MDs with regard to the centerpoint. This example illustrates the effect of taking into account

the variance-covariance matrix of the data-points.

4 4
(a) (b)
3 a-
13 L] 13 Ll
2 3 |
1] 3 5 16 3 5
i -
15 1 " 5 1 o
o pa e a- 4 P # v i [ ] 19/ d e
4 7 B0 # 34 = 20 ’
. a4 ar P a7 Az : )
10, 2 i w
-2 2
# ¥ L] L1} 1 L
= | .|
4 - 3 -
i "] 1 2 1 <] 1 2 3 L] 5 ] 4 3 2 v ' 3 4 Ll

Figure 2.4  The distances to the center of the data, (a) with the circles representing the equal EDs, (b) with the

ellipses representing the equal MDs.
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2.3.2 Mahalanobis Fuzzy C-Means Algorithm

The fuzzy-based classification algorism was improved by the scheme of c-means. By
proper design of the membership function, we may improve the performance of classification.
FCM (Fuzzy c-means) is different from c-means. Method of c-means performs poorly when

the data set is fuzzy.

In this study, we employe gorithm. Mahalanobis FCM

nction construction. To

algorithm evaluates the

introduce Mahal 1 nd variables in Table 2.1.

13



Table 2.1 Parameters and variables used in Mahalanobis FCM.

Parameters
c number of clusters
n., the variable’s degree
D setting number of iterations
€ allowed deviation

Y ={y;}.1<i<c centers

(Ziy),l <i<cl<j<N membership value

14



The strategy of Mahalanobis FCM analysis is described below.

Stepl :
Initialization: K =0,y,, =Y,, 1<i<c
Step2 -
Calculate the variance-covariance matrix and the MDs from data to centers
Cik:L(Xik)T(Xik) , 1<i<c and 1< j<N (2.6)
O (N=D) ¢ ’
2.7)
Step3 -
(2.8)
Step4 -
(2.9)
Step5 -

b
<&,

1t | Sl |
i=1

let ¥, =V, 1S1<C; 2 =154, 1S1<C and 1< J<N.

15



Terminate the iteration.

Step6 -

If k =D, terminate the iteration without attaining converged result.

If k <D, update the counter k =k +1, repeat Steps 2 to 6.

Since the data have not been classified in the first run of iteration, X, are not ready at

the step 2. We thus need to initialize the values of X.. Note that the resulted output may vary

with the initial centers. Previous research.showed that:the initial eenters significantly affected

the output. In addition, we developed thesscheme of estimating the initial centers by FCM and

conducting feature clustering by Mahalanobis FCM.

2.3.3 The number of clusters

Beginning the clustering we should set the clustering numbers, and this number is

decided by the correlation coefficients of the centers of clusters; when an correlation

coefficients larger than @ that it indicates two cluster are similar, then the number will

subtracted by one. So the initial number of clusters should be large. And in the past of our

group’s researches, we decided the € =0.3 as an suitable number, the cluster could be

distinguished in this situation.

16



2.4 Brain Spatial Microstates

Researcher have disclosed changes of alpha power in each cerebral-cortex region under
different states. These studies show that spontaneous alpha exhibits different distributions
owing to the variation of alpha sources or the propagation ways. Most substantially, alpha
distribution might be related to the states of alertness. In these studies, alpha power was
calculated by short-timeispectral analysis based on Fourier-transformation method within a
specific time window. Notice that Fourier-approach is restricted by the piecewise stationary
property that requires a narrow window of analysis@and the frequency resolution that desires a
wide window. Imgeneral, the window width is in the range from 1 to Sgseconds. However,
from the viewpoint of the microscopic neural activities, the message is transmitted on the time
scale of mini-second. The traditional FFT method is restricted toithe window length and is

difficult to explore the cerebral microstate.

In the research of Lehmann [16,17], he considered that the consistent neural activities
would results in higher Global Field Power (GFP). The GFP is defined as the sum of the
powers of all recoding channels at a specific sampling moment. The activity of each neuron
could be considered as an electrical dipole vector including magnitude and direction. If each

vector is uncorrelated with others, the activities would be canceled each other. In some

17



conditions, neurons are driven by the same source that leads to a large GFP. As larger GFP

often infers better signal-to-noise ratio (SNR), the driven response can be more significant

with less noise interference. The appearance of local maximal GFP’s is thus an appropriate

reference for choosing representative brain mappings (landscapes) to be utilized in the spatial

microstate analysis. The sites of extremes (maximum and minimum) of a particular brain

mapping compose a current dipole model generating the brain potential distribution recorded

on the scalp.

We analyzed the brain microstates for a given'time period ‘segment’. A segment is a

continuous time duration within which the electrode sites of maximal and minimal potential

are almost immeobile (staying in a small region): Alternatively speaking, dipole vectors within

a segment are stationary in a sense. A _spatial segmentation algorithm'was developed to

separate different seginents of brain topographical activities. ;Eachiparticular segment class

contains brain mappings with two sites-of extremes appearing most frequently at a given

region. As a consequence, the method adopted in this thesis provides rather local and subtle

temporal information which cannot be accessible based on conventional Fourier analysis.

Lehmann [16,17] used the raw EEG data (potentials on the recording sites) to extract the

brain landscapes of interest. His method is not practicable for our aim on the analysis of

alpha-rhythmic behaviors. We applied the alpha-power for the brain landscape for the

microstate analyzing.

18



A number of approaches and methods have been developed to analyze the EEG signals
in time, frequency, and spatial domains. A number of methods have been proposed to explore
various EEG features, in either macroscopic or microscopic aspects. Each particular method
calls for different lengths of EEG segments and different numbers of channels. In our study,
we firstly performed feature clustering for 20 minutes EEG signals based on the spatial
characteristics. Then those 4-second EEG epochs with particular topographic features were
extracted for microstate analysis. We will demonstrate that, based on a short EEG epoch of
only a few seconds, the microstates method provides-a way, of exploring the brain

topographical behaviors under-Zen meditation:

2.4.1 Global Field Power,(GFP)

Global field power (GFP) at.a given time instanttepresents the summation of EEG
powers of all channels at that particular time t. A high GFP stands for a potential distribution
with many peaks and troughs. According to [ 18], brain mappings with maximal GFP’s
normally have better SNR (signal-noise-ration) performance. Hence, GFP provides a
reference for us to select the appropriate time instants for microstates analysis. Assume a

series A, represents the data of channel-k . GFP is a function of time as shown below:

GFP(i) {i% Aj(i)} , (2.10)

ch k=1
19



Where i represents the time point of discrete time signal and n, is number of channel. In

this thesis, the n, 1is defined as 30.

Figure 2.5 displays the GFP of a one-second EEG epoch. Apparently, GFP oscillates at a

rhythm twice the EEG frequency due to the rectification effect.

13

Ll =N

L b = R ) |m | m | = T} n | R |.n |.x QR ~ |m |m S | Q|| u ] - L=l THOO ms

Figure 2.5 The GFP of 1 second EEG epoch.
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Since alpha activity was our major focus, we applied wavelet decomposition to raw
EEG to extract alpha-band (8-12Hz) patterns before the GFP evaluation. As a consequence,
we could reduce the contamination from other rhythmic bands, for example, delta (0-4Hz),

theta (4-8Hz), and beta (>20Hz). We then computed the GFP of alpha-dominated EEG.

2.4.2 Segmentation Method

A brain microstate is defined as the.constant.landscape (brain topographical mapping)
that lasts for a mementarily continuous time segment. The landscape was obtained by a
13 1msec moving window. Compute the power in .the window and it results a 30 dimensional
map. Note that we recorded 30-channelLEEG in our experiment with a‘sampling rate of 1,000
Hz. Within a 4-second EEG epoch;‘'we can obtain almost 4,000 maps. Previous study [18] has
demonstrated that maximum GFP.normally resulted in'a good signal-to-noise ratio. This is
accordingly a moderate clue for choosing the representative maps. We thus focused on the
locations of extremes (maximum and minimum power value) of brain mappings.

In our study, brain microstates are characterized by the current dipole vector pointing
from the minimum to the maximum potential of the multichannel EEG mapping on the scalp.
As a consequence, it becomes important to determine the appropriate locations (EEG channels)
where extremes occur. Sometimes the extremes might be influenced by the noise. To deal with

21



the noise problem, we developed an approach for better extracting the extremes.

First, we employed the spherical-coordinate model of the EEG electrodes to compute

the average distance D, between Cz and each of the rest 29 electrode sites. We then computed

the local average power (LAP) of brain potentials within the Dp-radius circle centered on each

channel. From the set of 30 local average powers (LAP’s), extremes (maximum and minimum)

could be determined in a sense of better statistical significance. Finally, the centered electrode

of maximal and minimal LAPforms the dipole vector of'the brain microstate.

In order to obtain the data with an-eptimal. SNRsonly the maps at the peaks (local

maxima) of GFPitemporal sequence weresselected for brain microstates analysis. These brain

mappings were reduced to the locations of the extremes (maximum and minimum power

value).

The so-called’segment of'a microstate begins with a particular'brain potential map

BPM, characterized by a given dipole vector, and continues as long as the succeeding maps at

the GFP peaks come up with the same dipole vector. That is, minimal and maximal LAP

locates at the same sites as those of the beginning dipole vector obtained from BPM,. The

segment ends if the extreme LAP sites are out of range and continues if the sites are in the

pre-defined range. The duration of a segment can be obtained straightforwardly. And the class

of a segment is defined by the extreme LAP sites whose have the highest occurrence times.

In each group, we analyzed four parameters: a) number of maximum GFPs per seconds,

22



b) average duration of a segment, ¢) number of segments per second, and d) maximum

duration of the segments.

2.4.3 Selection of the Window of Extreme LAP Site

In the microstates analysis, we need to designate a circular window for justifying

whether the extreme LAPs belong to the same microstate: Table 2.2 lists the results of an

experimental subjectiwith frontal alpha.ebtained by different threshold ( D, : same as the D,

before, ie, average,of 29 distances-from €z to others). The threshold.is used as the radius of

the circular window.

A larger threshold could cause-the.different microstates as the same state, and on the

other hand, a smallér threshold:could separate one‘microstate into séveral segments. Either a

small or a large threshold may net reliably reflect thesevolution of microstates, so we had to

find a suitable range for this threshold. According to our experiment, the threshold in the

range of 0.7D,, ~ 1.5D,, provides obviously different dipole vectors with the range of 0.5D,,

and 2Dy, ; while the locations of dipole vectors in range of 0.7D, ~ 1.5D, are about the same

as the frontal alpha, so it represent that the efficacy of segmentation are quiet the same in this

region. Hence the threshold in this range (0.7D,, ~ 1.5Dy,) is feasible. This study adopted D,,

as the threshold.
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Table 2.2 Results of microstate analysis with different thresholds

Threshold 0.5 Dn 0.7Dn Dn 1.5Dn 2Dn
Dipole
strength 96.5 200 197 173 67
(mv”2)
Dipole CPZ-01 FCZ - P8 FCZ - P8 FZ — P8 O1 - TPS8
location

As illustrated i he-entire-recording-experiment involved three sessions: pre-,
mid-, and post-meditation s ave been practicing Zen
meditation, and pre-, mid-, and i ontrol subjects that are normal,

healthy people within the same age range as the experimental subjects.

pre-meditation mid-meditation post-meditation
(pre-relaxation) (mid-relaxation) (post-relaxation)
-%— Smins —---— 20mins —»-— Smins —

Figure 2.6 Experimental protocol.
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In this study we selected eight healthy control subjects and eight healthy experiment

subjects, and they were no medical or psychological disorders present. Tables 2.3 and 2.4

display the background of control subjects and experimental subjects, respectively

Table 2.3 Control subjects

s(ljl(l)ajl;rc(‘zl Gender Age
20040302 Male 24
20040315 Male 24
20040412 Male 23
20040414 Female 23
20040415 Female 23
20040422 Female 23
20040426 Female 22
20040428 Male 21
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Table 2.4 Experiment subjects

EZEE?Lﬁznt Gender Age exp gfizcrilict:tglelars)
20040229 Female 29 7
20040306 Male 30 11
20040314 Female 21 1
20040318 Male 22 2
20040326 Male 28 8
20040520 Male 31 2
20040605 Male 34 7
20040711 Male 28 8
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Chapter 3 Experimental Results

Chapter 3 discusses the experimental results of this research study. The content is
organized according to two main tasks conducted in the study: 1) EEG spatial feature analysis
and classification, and 2) brain microstate analysis, which are presented in Sections 3.1 and
3.2, respectively.

Inter-subject and intra-subject variations of EEG signals are inevitable and significant.
Brain spatial microstate is undoubtedly,time-dependent. Hence itis important to select the
epoch of interestifrom the long-EEG record. We used the spatial (brain-mapping)
classification scheme toiextract consecutive four-second epoch within the same class; and
then analyzed the microstate of the epoch. This chapter presents the results of spatial

classification and microstate analysis.

3.1 Results of Brain-Mapping Classification

In this section, we report the results of classifying brain topographical mappings by
Mahalanobis FCM. In addition, results are compared between experimental and control group.
As mentioned in 2.1, wavelet analysis was applied to each 2-second (pre-filtered by a
band-pass filter) EEG epoch to decompose raw EEG into characteristic rhythmic patterns. The
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epoch was identified to be alpha-dominated if the alpha power was at least 50% the total EEG

power

3.1.1 Control Subjects

Figures 3.1-3.3 display the classification results of one representative subject (20040315)

in the control group. The res ge clusters (classes). Notice that the
color charts reflect the associat ] ed at the time instant of the

2-sec window cente . evolution of

brain-mapping
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Non alpha
dominated

Eye closed I

Cluster 2

60 100 140 180 220 260

Time (second)
| | | |

260 300 340 360

Time (second)

Cluster 3

Figure 3.1 Results of interpretation and‘classification of EEG brain mappings for a control subject in the

pre=session background recording (before main session of relaxation).
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Relax l Non alpha i

dominated

Cluster 1

400 440 480 520 360 600
Time (second)

600 440 480 520 560 800
Time (second)

| | | | | | | |
800 B4 BEO 920 060 1000
Time (second)

L | | | | | | | J

1000 1040 1080 1120 1160 1200
Time (second)

L | | | | | | | | | ]
1200 1240 1280 1320 1360 1400

Time (second)

L | | | | | | | | | ]

1400 14440 1480 1520 1560 1600
Time (second)

Figure 3.2 Classification result of one control subject in the main-session recording.
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Non alpha
dominated

Eye closed l

1
1

|
1660 1700 1740 1780 820 1860
Time (second)

1860 1900 1940 1980
Time (second)

Figure 3.3 Classification result of one control'subject in the post-session recording.

According to the resultsin Figures 3.1-3.3, all clusters derived contained no

frontal-alpha activity for all the recording sessions. Very few control subjects had frontal

alpha cluster. Table 3.1 shows the correlations between each pair of cluster centers. Table 3.2

lists the distance between each pair of cluster centers, while Table 3.3 lists the standard

deviation of all members belonging to the same cluster. The inter-cluster distance were larger

than the within-cluster standard deviation, justifying the effectiveness of this classification

scheme.
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Table 3.1 Correlations between clusters

Cluster\Cluster 1 2 3
1 1 -0.105 -0.585
2 -0.105 1 -0.745
3 -0.585 -0.745 1
enters
= o
luster . 3
"
i — . -
1 L 5
—— |
1 3
3 73
o B = E
ol
i ~
Table 3.3 N . ter an ; n of cluster members
Cluster number Standard deviation
1 109 0.550
2 87 0.675
3 86 0.646




3.1.2 Experimental Subjects

Figures 3.4-3.6 display the interpretation and classification results of an experimental
subject (20040306). Three clusters were derived. Same as previous figures, the color bar

charts display the temporal evolution of brain-mapping cluster.

Non alpha
Eye CIOSEd I dominated

Cluster 1 Cluster 3

| | | | | | | | | | |
1660 1700 1740 1780 1820 1860
Time (second)

1860 1904 1940 1980
Time (second)

Figure 3.4 Results of interpretation and classification of EEG brain mappings for an experimental subject in the

pre-session background recording (before main session of meditation).
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Non alpha
dominated

Meditation

400 440 480 520 560 600
Time (second)

| l | | | |
600 440 480 520 560 800
Time (sccond)

| | | | |
BO0 840 8RO 920 Q60 1000
Time (second)

l |
1000 1040 1080 1120 1160 1200
Time (sccond)

1200 12440 1280 1320 1260 1400
Time (second)

1400 1440 1480 1520 1560 1600
Time (sccond)

Figure 3.5 Classification result of one experimental subject in the main-session (Zen meditation) recording
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Non alpha
Eye closed I .

dominated

Cluster 1

Cluster 2

| | | | | | | |
1660 1700 1740 1780 1820 1860
Time (second)

1860 ]'Jﬂﬂ 94{} I'JS{J
Time (second)

Figure 3.6 Classification result of an experimental subject:in the post-session recording (after main session of

mediation).

From Figures 3.4-3.6; alpha.activities apparently moved toward the frontal regions for

the meditation subject. In addition, frontal alpha increased in the meditation session that

occupied approximately one-third record length of the main session. Table 3.4 shows the

correlations between the three class centers, and the table 3.5 3.6 show the distance between

centers and the standard deviation. The distances between centers are also larger than the

standard deviation.
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Table 3.4 Correlations between clusters

Cluster\Cluster 1 2 3
1 1 -0.620 -0.851
2 -0.620 1 0.116
3 -0.851 0.116 1
<2 T
. Table 3.5 Di ste
'
i T = g
uster\ !
e 1
|
| 5
2 4
5 " | l.r

Table 3.6 Number of each cluster and standard deviation of cluster members

Cluster number Standard deviation
1 55 0.603
2 57 0.632
3 55 0.525
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3.2 Results of Microstate Analysis

In the analysis of brain topographic (or, spatial) microstates, we focused on particular
features extracted by classification in previous sub-section. For the experimental group with
Zen- meditation experience, four-second frontal alpha and occipital alpha were selected.
However, control subjects in this study appeared to have rare frontal-alpha activity. We

accordingly only analyzed the four-second occipital alpha for the control group.

3.2.1 Frontal-alpha and occipital-alpha microstate in experimental group

According 'to the results in Table 3.7 and Figure 3.7, average duration of the alpha brain
microstate demonstrates that frontal alpha exhibits'a‘longer, continuous average duration of
microstate. Figure 3.8 displays the results of dipolar,vector representation for modeling
frontal-alpha (FA) and occipital-alpha (OA) microstates. One phenomenon to be further
investigated is that, FA (OA) dipoles might emerge in the regions other than frontal (occipital)

area.
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Table 3.7 Frontal-alpha (FA) and occipital alpha (OA) microstate analysis for experimental subjects (4-second

epoch).

Subject 1 2 3 4 5 6 7
Number of maximum GFPs per second
FA 25 268 285 228 23 258 283
OA 27.5 265 275 26 285 248 298
Average duration of an alpha brain microstate (in ms)
FA 77.0 822 831 674, 993, 832 80.2
OA 639 88.7 645" 700 775 702 58.0

Number of alpha brain'microstates per second
FA 7 § 6 6 6 i 7
OA 7 7 7 6 5 6 9
Maximum duration of an alpha-brain microstate (in-ms)
FA 198MEL S w23 2 2k 20l a2 B RO
OA 187 1828 202 245 278 , 187 167

8 Mean
20.8 25.1
23.3 26.7
929 83.8
79.3 71.5

5 6.3

6 6.8
172 221
163 201

100

80
ms 60 L
40

20

O s e s e 7

8

mean

S.D.

2.8
2.1

9.8
9.9

0.7
1.0

29
40

HFA
L OA

subject

Figure 3.7 Average duration of brain microstate segments( frontal alpha and occipital alpha)
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IHie]

think there is no very difference between these two groups. The figure 3.10 shows the

locations of the two extreme poles, because of the analyzing signal selection of these two

group is occipital alpha, the most locations are match with the classification result.
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Table 3.8 Microstate analysis of 4-second occipital alpha mappings for the experiment and control subjects.

Subject
Number of maximum GFPs per second

MD

Relax

Average duration of an alpha brain microstate (in ms)

MD

Relax

Number of alpha brain microstates per second

MD

Relax

1 2 3 4 5

28 27 28 26 29
22 25 26 27 24

639 887 645 70.0 775
73.8 758 6377 634 693

7 7 7 7 5
6 6 7 8 6

Maximum duration of an_alpha brain microstate (in ms)

MD

Relax

90
80
70
60
50

40}

30
20
10

187 182+ .202. 245 278
241 16l 188 23494202

6 7
25 30
27 25
70.2  58.0
69.6 51.5
6 9

7 7

187 167
24y - NG

8 Mean S.D.
23 267 1.9
27 253 1.7

79.3 715 9.9
79.8 684 8.8
66 1.0
63 0.8
163 201 40
197 205 32

1 2 3 4 5

Figure 3.9 Average duration of brain microstate segments(mediation and relaxation)

40

6

7

8

mean

B MD
Ll Relax

subject




Sobject 2 3 4 5 6 7 8

E2QQOOHOO0

PE-THE FPEL-F4 P3I-T7 FPE-FY F7-CZ P4 - F3

Control . e
{Relax) T L
P} - F3 P4 -Fd FZ-P3 O1-FI8 CP4 -F8 CP4-FPl O2-F3 (OP4- 17
Figure 3.10 Dipolar vector model for alp e with the filed minimum and maximum represented

JHip=1

3.2.3 Results

Since the research i | used four se or analysis, and the

- |
est that the analysis time can
be reduced or not. The following t: OWS sults of microstate analysis in different
length of EEG signal (2, 2.5, 3, 3.5, and 4 seconds) in frontal alpha and occipital alpha of
experimental group. The result shows the same thing that the average duration of microstate

in frontal alpha is longer than in occipital alpha.
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Table 3.9 The microstate analysis results of 4-seconds EEG with the experiment subjects of frontal alpha (FA)

and occipital alpha (OA)

Average duration of alpha brain microstate
Subject 1 2 3 4 5 6 7 8 Mean S.D.
2 seconds EEG
FA 62.6 86 67 80.1 90.7 928 773 70.5 784 11.1
OA 577 1045 60.1 67.5 775 848 734 70.8 746 150
2.5 seconds EEG
FA 73.2 89.3 757 893 1158 892 687 1189 90.0 18.7
OA 41.2 77.6 512 66.8 63.3 69.8 66 72.1 635 11.8
3 seconds EEG
FA 68.9 107.5 848 706 903 852 % 747 1135 869 164
OA 63.5 64:l0 640 652 732 574 793 95 702 12.1
3.5 seconds EEG
FA 67.0 83.6 83.6 69.4= 727" 79.1. 676 = 887 76.5 8.4
OA 72.8 752 580 64.5 65.0 70 839 84.6 71.8 9.4
4 seconds EEG
FA 77.0 822" 83.1 674 993 882 80.2 92.8 83.8 9.8
OA 63.9 88.7 645 70,0 .+ 77.5 702 580 .79.3 715 9.9

3.2.4 Results in frontal alpha and occipital alpha of experimental group (only

adopts maximum power location of maps)

In 3.2.1~3.2.3, most of results of Average duration of an alpha brain microstate are less
than 100 m-seconds, which is considered as a shorter duration of state. So we shown the
dipoles( in maxima GFPs) in one minute (Fig 3.11). And we found that the location of

minimum power changed frequently, the minimum power location is usually in the edge; but
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the values of power in the edge locations are very close, so we think the frequently changed

location of minimum power cause the results of duration of alpha brain microstate shorter.

Hence following shows the microstate results which the segment only adopts the maximum

power location.

Q0

P4-C3 P4-TP7 F4-TP7 F4-0Z FC4-PR FC4- P8

S “ - e P -

FC4-P8 FC4-P3 F4-P4 FC4-PR F4-P8 FZ-0Z FZ-0Z FZ-0I

O

FZ-01 FZ-P3 F4-P4 C3I-P7T C4-P7T (C3-01 (C3-02 C3-01

Figure:3.11 Dipoles appear in one minute follow by the time

Table 3.10 showed the results of experimental subjects of FA and OA, the average
duration of an alpha brain microstate of FA is 208 m-sec that is longer than OA’s, and the
maximum microstate duration is 517 m-sec also longer than OA’s. And table 3.11 showed the
results between experimental subjects and control subjects (occipital alpha); the difference of
results is not obviously. The figure 3.12 and figure 3.13 shows maximum poles locations, and

it generally matches with the brain mappings.
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Table 3.10 The microstate analysis results of 4-seconds EEG with the experiment subjects of frontal alpha (FA)

and occipital alpha (OA) with only maximum power adopted

Subject 1 2 3 4 5 6 7 8 Mean S.D.
Number of maximum GFPs per second
FA 25 27 23 25 24 25 27 22 25 1.7
OA 25 26 25 24 23 26 28 23 25 1.7
Average duration of an alpha brain microstate (in ms)
FA 206 148 234 328, 219, 172 145 195 208 59
OA 168 115 197 226 167 199 142 193 175 35

Number of alpha brain'microstates per second
FA 4 5 3 3 3 6 3 4 4 1.1
OA 4 6 4 4 5 4 5 4 5 038
Maximum duration of an alpha-brain microstate (in ms)
FA 47475 393524 767 736 397 3500 492 517 156
OA 451 318" 597 576 348 550 394 580 477 113

Subject i 5 3 4 .
gl

5 6 7 8
F4 F& F4 F F3 E3 EP1 K

. ODOOOO000
rZ Crz P3 PZ o2 P7 ] 4

Figure 3.12 The representative maximum pole locations with the experimental subjects of frontal alpha (FA) and

occipital alpha (OA).
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Table 3.11 The microstate analysis results of 4-seconds EEG with the experiment subjects of mediation (MD)

and control subjects of relaxation (Relax) with only maximum power adopted

Subject 1 2 3 4 5 6 7 8 Mean S.D.
Number of maximum GFPs per second
MD 25 26 25 24 23 26 28 23 25 1.7
Relax 26 26 24 25 25 27 26 27 26 1.1
Average duration of an alpha brain microstate (in ms)
MD 168 115 197 226 167 199 142 193 175 35
Relax 193 126 165 234 152 215 129 138 169 41

Number of alpha brain microstatesper second
MD 4 6 4 4 5 4 5 4
Relax 5 5 5 4 4 4 5 6
Maximum duration of an alpha braimsmicrostate.(in ms)
MD 451 318 597576 — 348 550 = 394 580 477 113
Relax 497 1= 249  388——455 w 502 1 4754 5117 379 432 &9

9]

0.8
0.7

9]

Subject

TOOLLLOOO
“OOVOOOO0

Figure 3.13 The representative maximum pole locations between experimental subjects in mediation (MD) and

(2]
Fad
=
th
=
=]
= 5

control subjects in relaxation (Ralax).
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Chapter 4 Conclusion and Discussion

In this thesis, we mainly proposed a novel approach for analyzing the spatial-temporal
characteristics of various alpha rhythms down to the micro-second portrait, instead of
long-time property. In our findings, experimental subjects apparently exhibited more frontal
alpha than control subjects. Preliminary results are summarized as follows. Firstly, average
duration of the alpha-microstate segment is longer in frontal alpha than in occipital alpha.
Second, the number of segments (the oecipital-alpha state shows.more segments than does
frontal alpha). And third, the minimum peles of dipole vectors case the average duration
shorter, when we ignore the minimum poles then we can obtain a rational number of the

average duration of microstates.

4.1 Summary of Current Study

In this thesis we provide a clustering method for the alpha brain maps classification and
it performed efficiently. And the classification results are tend to separated into frontal, central
and occipital, so that is useful to us choosing the alpha state characteristics for the microstate
analysis. In the results of microstate analysis shows obviously difference of the frontal alpha
group and occipital alpha group in mediation, the longer duration of microstate occurs with
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frontal alpha than with occipital alpha. And some research shows that in mediation, the region

of frontal cortex is related with the hormone modulated [29], and it shows more stability of

alpha brain activity with this reaction.

In this thesis we lay stress on the method development, we provide a method for the

detection of transient EEG activity. So far we don’t have important discovery of results on

these subjects, but we obtained suitable section of long-term signal for the microstate analysis,

and it is useful for future researches of transient phenomenon.

4.2 Future Work

Brain microgstate analysis ¢an.be extended to the exploration of other EEG features.

Although current study‘was focused on alpha dipolar-vector model, it is an important and

appealing issue on the variations of alpha rhythmic compositions based on multi-resolution

spectral analysis. The phenomenon might be correlated with brain oscillatory model of alpha

rhythms. Then, the further step may be taken to investigate the spatio-spectral microstate of

alpha brain either during Zen meditation or at normal relaxation.
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Appendixes

A.1 Discrete Wavelet Transform

Wavelets are mathematical formulae that decompose data into components with different
resolutions quantified by the so-call scale. The advantages of wavelet analysis over traditional
Fourier methods are mainly the capability of analyzing signal with time-varying,
multi-resolution behaviors. Wavelets were-developedindependently in the fields of
mathematics, quantum physics,-electricaliengineering, seismic geology, etc. The wavelet can
be characterized by a wave which is bounded. with zero average in a limit time range. The
wavelet transform then allows us to.construct a time-frequency relationship, which showed
the time-varying fréquency components.

Consider a real or complex continuous function iy (t) as.the mother wavelet or simply
wavelet. In possesses the characteristics of zero integration and bounded waveform pattern.
The property of zero integration implies that the functiony (t) has ripples, while and the
property of bounded waveform means the energy of function  (t)is bounded in a limited
time range. The area of functiony (t) should be small, and its amplitude reduces to zero
rapidly towards two ends of the waveform.

A set of continuous wavelet function can be derived by scaling (expanding or contracting)
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as well as shifting the mother wavelet functiony (t). as follows

Vap (t)=%w[%} (A.D)
In the above equation, a is a positive real parameter defining the scale and b is a real
indicating the time shift. The continuous wavelet transform cannot be implemented for digital
signals. Concept and approach for discrete wavelet transform have thus been developed for
digital realization and implementation. We modify the parameters a,b as a=aj and b=n,

respectively, where m,n e Znteger, a, #1. When a,=2, then the wavelet is called the

“Dyadic Wavelet”, and Eq. (2.1) becomes

k —
Vi lK) = J;—w[z—”j (A2)

Therefore, the discrete wavelet transform DWT, (m,n) is defined below

DWT, ( \/_ P (%} . (A.3)
where the discrete wayelet transform - DWT,(m,n) swas a function'of signal f (k),and k
was a operation index.
The discrete wavelet transform is applied to the decomposition of a signal which had into
the high-frequency components and low frequency components. By the orthogonal wavelet

basis functions, the input signal x(k) is decomposed as

x(n)= ZCA (k)i (N ZCD W, (M) +...+ D cD (Kw_, (n), (A4

k

where the scaling function ¢;, (n)is defined as:
¢j,k(n):\/27j¢(2jn—k) (A.5)
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and the wavelet function

w,, (n)=v2'w(2'n—k). (A.6)

CA and cD, are the coefficients corresponded to the basis functions, i represented
the level of the transformation. The relationship between of discrete wavelet transform and

inverse discrete wavelet transform of single level is

DWT:
cA, (k)=>_hy(n—2k ! (A.7)
D, (k)=3 (n). 2 (A.8)
IDWT:
cA(n)= (A.9)
The h,(n en scaling function and

$(n) =3 h, (kK)V2p(2n=k —— : (A.10)

(A.11)

w(n)= Zk:hl (kK)V2¢(2n—k).
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» h[n] 12 > cD(k)

cA (K)—>

» hy[n] L2 —» cAK)

Figure A.1 Discrete Wavelet Decomposition

cD,(k). =¥ T2 > h[-n]

CA (K)

CAK) == T2 = »h[-n]

Figure A.2 DiscretertWavelet Reconstruction

Figure A.1 shows.the Discrete Wavelet Decomposition progess. The signal respectively
passes through the high-pass and low-pass filters and then is down sampled by 2. We obtain
the frequency component of the signal by this process for further analysis. Fig A.2 shows the
process of Discrete Wavelet Reconstruction during which the decomposed signal is
up-sampled and pass through the filters. By the decomposition and reconstruction, we could
obtain a signal that has particular frequency component that we need, and in this thesis we
used Daubechies 6 as the filters. In EEG signal, the most we concern about is alpha wave

(8~12Hz). Figure A.3 shows that if the signal is 1000 Hz sampling, we could obtain the alpha
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wave of the signal by the level 6 Wavelet Decomposition.

Level 1 Level 2 Level 6
x[n] hin] —» 12 —»
0~ 500Hz hin] > L2 h[n] 12 |—
hin] > L2 .. 7.8~15.6Hz
0~250Hz Rl ol 42
0~125Hz n] v
0~7.8Hz

Decomposition.

A.2 Mahal

In the case of object-i the ED with regard to the center
of data can be calculate

ects, ED for object-i is

computed as

ED, = (s, — 14,)" +(thp — 11,)° fori=1toN, (A.12)
Where 4, and g, are the variables of object-i, ;1 and ;2 are the means of two variables of
total n objects.

To be able to compute the MD, first the variance-covariance matrix C, is calculated:

C,=—!
(N=1)

(X' (X)), (A.13)

where the X is the data matrix containing N objects in the rows, X_ is the data matrix

c
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X subtracted by the variable means X ; X, = ( X=X ) . In the case of two variables, 4,

and 4, , the variance-covariance matrix is

2
C :|: O-l 10120-10-2:|’ (A14)

X 2
P120,0, 0,
where o] and o) are the variances of the first and second variables, respectively and

det(C,)

2 2
0,0,

P =.1- ; while p,,0,0, is the covariance between the two variables.

The MD for object-i y, is th

MD, = (A.15)
where X is the
with
C, =
where det(C,) =00, ¢ variance-covariance matrix.
For an object-i X, mesa ] and u,, Eq. (A.15)could be

rewritten, since

- - _ O-z(ﬂi _; )_(:ui _; ),0 0,0 O-z(ﬂi _; )_(/Ji _; ),0 0,0
[(ﬂn_ﬂl)('uiz_'uZ)]Cxlz — 1det((;x) 2121212 2det(Clx) S

and

[ A

(7
(o)
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B 0'22 (:uil _;1 )2 _(:Uiz _;2)(%1 _;1)/0120'10'2 0_12 (,Uiz _;2 )2 _(:uil _;1)(/42 _;2)/0120'10'2
- det(C,) det(C,)

2

—Z(ﬂu _;1)(/42 _;2):0120-10-2 +0, (,u“ _;l)plzz
olo; (l—pé)

B o, (:uil _;1)2 (1_,0122)“'0'12 (:uiz _;2)

2

(/Jil _;1 )2 N (/Jiz _;2) ~ (,Un _;1)(%2 _;z)Pu N iy (/uil _;1 )2
o or(l-pY) ;o) (1-pp) o (1-07)

:(’u“_;1)2+[ ﬂiz_pz _ ﬂil_;1 T

0'2\/1_,0122 0'1\/1_,0122

MD:\/(HH_'UI) o, | 2 ! (A.16)

This expre ha of se 1 eady explained by the

first variable is subt . s, the d] i e correlation within the

9) is reduced to the formula

for the ED in Eq. (A.12).
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