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摘要 

 
 本篇論文主要目的是提出一套分析腦電波 α 波空間分佈的微狀態的方法，並探討禪

坐者與一般人的腦電波在微狀態中的特性及差異性。 

首先利用小波分解(wavelet decomposition)和小波重建(wavelet reconstruction)將腦電

波中的 α 波頻帶擷取出來，再以各頻帶的能量比例判斷是否為 α 波，並將這 α 波能量計

算為一個 30 維度的能量份佈(alpha brain mapping)；接著以馬氏(manalanobis)模糊

C-means(MFCM)最為分類法對各個能量分佈情形進行分類，最後選取特定的分類結果作

為狀態分析。 

在微狀態分析的結果中發現，在禪坐者的前額 α 波有較長的微狀態維持時間，根據

相關的研究認為，微狀態所維持的時間與大腦中資訊處理有相當的關聯，一個 較穩定的

腦部活動會有較長的微狀態維持時間，也代表在當時有較少的資訊在處理中，視為較為

穩定的腦波活動狀態。 

 I



Microstate Analysis of Zen-Meditation Brain Topography 

 

Student : Chang-Yi Li    Advisor : Dr. Pei-Chen Lo 

 

Department of Electrical and Control Engineering 

National Chiao-Tung University 

 

 

Abstract 

 
The aim of this study is to propose a method for detecting alpha wave in EEG 

(electroencephalograph) and analyzing the alpha spatial characteristics in a microstate aspect. 

We investigated and compared the brain microstates between Zen-meditation practitioners 

(experimental group) and non-practitioners (control group). 

Firstly, EEG epochs of interest were extracted by alpha-power percentage that is at least 

fifty percent of total power. In the analysis, wavelet decomposition and reconstruction was 

adopted. Then Mahalanobis Fuzzy C-means clustering was employed in the classification 

scheme for various alpha mappings. Finally, the alpha-brain microstates were explored and 

compared for both experimental and control groups. 

The preliminary results reveal a longer duration of frontal-alpha microstate observed in 

Zen-meditation practitioners in comparison with control subjects. From the literatures, a longer 

duration of microstate may imply that the brain is involved in slight information processing, 

reflecting a rather stabilized dynamics. 
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Chapter 1 Introduction 

 

Since Electroencephalography (EEG) was firstly recorded in 1927, the EEG signals have 

been intensively studied in clinical applications and medical science. Nowadays, EEG 

becomes an important clinical tool for diagnosing and monitoring the nervous system 

regarding normal or pathological conditions. In the field of EEG study, the spatial or 

topographical features provide an access to the detection of focal EEG phenomena that have a 

relationship to focal pathology [1], [2]. The spatial distribution of EEG features (to be called 

the “EEG mapping” or the “brain mapping”) over the scalp surface is thus of great importance. 

In clinical applications, its graphical display is an easy and straightforward aid to visual 

inspection of focal activities. A number of methods and techniques have been used for 

constructing the EEG mapping [16-22]. According to our study on Zen-meditation EEG 

during the past ten years, a number of EEG characteristics have been found to be evidently 

linked to the Zen-meditation practice. We have reported our findings on frontal alpha activity 

and beta-dominated phenomena, mainly from the temporal and spectral aspects. In this study, 

we particularly focused on EEG spatial properties during meditation. 

 

In this chapter, we begin with the introduction of EEG researches in recent years and the 
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background of this study.  

 

1.1 Motivation 

 

Studies of meditation EEG have attracted a large number of researchers in life science 

and medicine since a half century ago. The EEG is normally composed of the following 

rhythmic components: δ-wave (0~4Hz), θ-wave (4~8Hz), α-wave (8~13Hz), β-wave 

(13~30Hz), and γ (30~70Hz). Researches during the past several decades have disclosed the 

phenomenon that particular EEG patterns correlated closely with some physiological, mental, 

or emotional states. For instance, occipital α-wave becomes dominant during the eye-closed 

relaxation. Significant and numerous achievements have been reported on EEG rhythmic and 

EEG spatial characteristics applied to brain abnormalities and such pathological case study as 

epilepsy [3-5] and Alzheimer’s disease [6]. Accordingly, EEG has become a feasible tool for 

diagnosing neural disorder diseases. 

In the past two decades, scientists and medical experts have been getting more and more 

interested in meditation phenomena due to its benefits to human health[7-11]. A large variety 

of scientific approaches have been applied to meditation study. Since meditation process 

involves different states of consciousness, EEG thus became the focus of attention of 
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researchers. This thesis mainly reports the results of investigating the brain spatial microstates 

of α-wave for subjects practicing Zen meditation. 

    Most researches of brain spatial topography analyzed long-term EEG signal, but in some 

case of pathology, the phenomenon is transient or transitionary. As epilepsy is a disease and 

can be detected by the momentary unusual EEG signal, and it is hard to find in long-term 

EEG analysis. So we used microstate algorism for detection of transient brain state and hope 

for more applications. 

1.2 Scope of thesis 

In this chapter, background and major goal of the research study are presented. Chpater 2 

introduces the methods and experimental protocol. Results of this study are reported in 

Chapter 3. Finally, we draw a summary conclusion in Chapter 4. 
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Chapter 2 Theories and Methods 

 

EEG (Electroencephalography) is the neurophysiologic measurement of the electrical 

activity of the brain by recording from electrodes placed on the scalp (non-invasive recording) 

or, in special cases, subdurally or in the cerebral cortex (invasive recording). The resulting 

traces are known as an electroencephalogram (EEG) and represent a summation of 

post-synaptic potentials from a large number of neurons. These are sometimes called 

brainwaves, though this use is discouraged, because the brain was not known to broadcast 

electrical waves. The EEG offers a medium for the brain function test, but in clinical use it is 

a "gross correlate of brain activity". We actually do not measure the electrical currents, but 

rather the potential differences between different parts of the brain 

EEG applications in clinic have become more and more favorable because of its 

advantages of economy, safety, and convenience. EEG can be used for detecting apoplexy, 

epilepsy, cephalitis, etc. EEG studies have also been employed in patients who are deeply 

unconscious, to distinguish between brain death and possible reversible conditions. And it is 

also used to investigate other conditions that may affect brain function such as strokes, brain 

injuries, liver and kidney disease and dementia. In this study, we adopted 30-channel 

recording montage as shown in Figure 2.1. 



 

 

Figure 2.1  Electrode locations of the 30-channel recording montage. 

 

This chapter introduces the main theories and methods applied in this study, including 

the wavelet transform, Mahalanobis distance (MD), fuzzy c-means, and the spatial-microstate 

analysis of the brain. The method for feature classification and clustering was named as 

Mahalanobis fuzzy c-means (MFCM) because we adopted the Mahalanobis distance in the 

fuzzy c-means algorithm. 

    This study was aimed to analyze the brain microstates for two groups of subjects: 

5 
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Zen-meditation practitioners and normal, healthy persons within the same age group. The 

meditation duration lasted for almost 50 minutes. We extracted four-second segments for 

brain microstates analysis. How to select appropriate EEG segments, hence, became 

important. Our previous study demonstrated that frontal alpha was highly correlated with 

meditation state, differing from the occipital alpha often observed in normal subjects during 

eye-closed relaxation. Therefore, we focused on the analysis of the frontal-alpha brain 

microstates. The first task thus was to identify the occurrence of frontal-alpha activities. 

Hence we developed the pattern recognition technique to cluster the alpha activities into 

frontal-, parietal-, and occipital-alpha segments. And we analyzed the frontal and occipital 

alpha in meditation and the others (parietal alpha, occipital alpha) in relax by brain microstate. 

The concept of MD includes the correlations of the data. We thus identified patterns of 

similarity based on this characteristic. In the study, brain spatial distributions were clustered 

by the approach of unsupervised pattern recognition. The aim was to group similar objects 

together. As a measure of similarity, the MD can be used to link similar populations together 

by computing the MD between population means (centroids). In combination with FCM, the 

MD replaced the Euclidean distance in the membership value function. Clustering scheme 

applying the fuzzy concept together with data correlation could achieve better efficiency. 

Results of clustering were then investigated by brain microstate analysis. 
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2.1 Outline of the scheme 

 

The entire scheme applied in this study is illustrated in Figure 2.1. This block diagram 

describes the whole scheme correlating different theories and methods to accomplish our aim 

of characterizing the multi-channel EEG spatial behaviors. Following this flowchart, details of 

theories and methods will be introduced. To quantify alpha power, we applied wavelet 

analysis to 2-second windowed segments. Based on the block diagram in Figure 2.2, we then 

present the detailed concept and mathematics of each method in the following sections. 

Firstly, EEG signals were pre-filtered by a band-pass filter with pass band 0.5 – 50 Hz. In 

the next step, wavelet analysis was applied to each 2-second EEG epoch to decompose raw 

EEG into characteristic rhythmic patterns. The epoch was identified to be alpha-dominated if 

the alpha power was at least 50% the total EEG power. 

 In MFCM (Mahalanobis Fuzzy C-means) clustering, we must find the initial cluster 

centers first. This study applied FCM for the determination of the initial centers. Difference 

between MFCM and FCM is that the correlation of data is adopted in MFCM’s computation, 

and distance computation is related to the distribution of data. In some case of clusters that 

cannot be line-separated, but it could be work in MFCM. In microstate analysis, wavelet 

transform was applied to 131ms-windowed EEG that approximately enclosed the longest 

alpha-wave epoch. Because of we went to analysis the mini-second’s brain state, so the 



window would not too bigger and not too to extract the alpha-power. 

 

 

Band-pass filter  
(pass-band: 0.5- 50Hz) 

Extraction of alpha power 
by wavelet analysis 

MFCM (Mahalanobis 
Fuzzy C-means) 

clustering 

Segmentation analysis

Obtain landscape and 
extract dipole vector 

Find maxima GFPs of 
EEG 

Microstate 
Analysis 

EEG signal 

 

Figure 2.2 Flowchart of the entire scheme. 
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2.2 Alpha Wave Detection 

 

    For researching the effects of the alpha-wave, it is important to make sure that a trail of 

EEG is alpha dominate. We use wavelet transform to extract the wavelet coefficients of α, β, γ, 

δ, θ waves, and reconstructed them to calculate the α, β, γ, δ, θ power. Eq. (A.12), defines ρ  

as the percentage of α power to the total power. If 50%ρ >=  we call the EEG is alpha 

dominate. 

100%p
p p p p p

α

α β γ δ θ

ρ =
+ + + +

×                                (2.1) 

    The figure 2.3 is a 5 seconds EEG signal, and we computed the ρ  value in every one 

second. It is obviously that the signal is alpha dominate when 50%ρ >= , and when 50%ρ <  

the signal does not appears alpha-wave. It is easy to see that the method could detect alpha 

successfully. Because of the EEG signal have 30 channels, so we defined that if anyone 

channel is detected as alpha dominate, we can call this signal is alpha dominate. 

 

 

Figure 2.3 Alpha detection: the session with 50%ρ >= is defined as alpha dominated. 
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2.3 Mahalanobis Fuzzy C-Means (MFCM) 

 

Techniques based on the measurement of distances between quantitative features or 

attributes commonly apply such distance measures like Euclidean distance (ED) and 

Mahalanobis distance (MD). Both distances can be calculated either in the original variable 

space or in the principal component (PC) space. The ED is easy to compute and interpret, yet, 

this is not the case for the MD. Nevertheless, MD provides better results of feature clustering 

because it measures the correlations between variables[14,15]. In a sense, MD can be used to 

determine the degree of similarity of an unknown variable to the known one. It differs from 

Euclidean distance in that it takes into account the correlations of the data and is 

scale-invariant, that is, independent of the scale of measurements. 

    Fuzzy c-means (FCM) is a fuzzy classifier based on the cluster means. Instead of 

reaching a crispy decision like “0/1”, “true/false”, or “yes/no”, fuzzy allows the degree of truth 

of a statement ranging between 0 and 1. It is more suitable and feasible for classification and 

analysis of most empirical biomedical data. In this study, we employed MD distance 

measurement in the membership value of FCM and compared the difference of classification 

results with or without correlation computation. 

 

2.3.1 Mahalanobis Distance 



    The correlation is calculated from the inverse of the variance-covariance matrix of the 

data. However, the computation of variance-covariance matrix could cause problems. When 

the empirical data are measured over a large number of variables (for example, channels), 

they may contain a large amount of redundant or correlated information. The resulting 

variance-covariance matrix may become a singular or nearly singular matrix that can not be 

inversed. 

    In the case of object-i with 30 dimensional map ( )1 2 30, ,i i i ix μ μ μ= , the ED with 

regard to the center map can be calculated for each object. Assume totally N objects, ED for 

object-i is computed as 

2 2
1 21 2 30( ) ( ) (i i i iED μ μ μ μ μ μ= − + − + − 2

30 )  for i = 1 to N,          (2.2) 

Where 1iμ to 30iμ are the variables of object-i, 1μ and 30μ are the means the variables of 

center objects. 

To be able to compute the MD, first the variance-covariance matrix xC  is calculated: 

1 ( ) (
( 1)

T )x cC X
N

=
− cX ,                                         (2.3) 

where the X  is the data matrix containing N objects in the rows, cX  is the data matrix 

X subtracted by the variable means X ; ( )cX X X= − . For the 30 dimensional map, X  

can be defined as : 

1,1 1,2 1,30

2,1 2,2 2,30

,1 ,2 ,30N N N

X

μ μ μ
μ μ μ

μ μ μ

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

⎥
⎥

    N subjects.                            (2.4) 
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The MD for object-i ix  is then 

1( ) ( )T
i i x iMD x x C x x−= − −                                       (2.5) 

where x  is the center of the data.  

Figure 2.4(a) plots the simulated data for two variables 1μ  and 2μ  together with the 

circles representing the equal EDs with regard to the center point. Figure 2.4(b) plots the 

simulated data for two variables 1μ  and 2μ  together with the ellipses representing the equal 

MDs with regard to the center point. This example illustrates the effect of taking into account 

the variance-covariance matrix of the data points. 

 

 

Figure 2.4 The distances to the center of the data, (a) with the circles representing the equal EDs, (b) with the 

ellipses representing the equal MDs. 
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2.3.2 Mahalanobis Fuzzy C-Means Algorithm 

 

The fuzzy-based classification algorism was improved by the scheme of c-means. By 

proper design of the membership function, we may improve the performance of classification. 

FCM (Fuzzy c-means) is different from c-means. Method of c-means performs poorly when 

the data set is fuzzy.  

In this study, we employed the Mahalanobis FCM algorithm. Mahalanobis FCM 

algorithm evaluates the MD instead of ED in the membership-function construction. To 

introduce Mahalanobis FCM, we firstly summarize the parameters and variables in Table 2.1. 

 

 

 

 

 

 

 

 

 

 



Table 2.1  Parameters and variables used in Mahalanobis FCM. 

Parameters 

c number of clusters 

chn  the variable’s degree 

D setting number of iterations 

ε allowed deviation 

β exponent weight 

N the number of objects 

k the computing iteration 

{ }|1iX x i N= ≤ ≤  input data matrix, with every row is an 

object. 

iX  data matrix belonging to iP

th
P class 

{ }0 0 ,1iY y i= ≤ c≤  initial centers 

Outputs 

{ } ,1iY y i= ≤ c≤  centers 

( ) ,1 ,1iy i c j Nχ ≤ ≤ ≤ ≤  membership value 
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The strategy of Mahalanobis FCM analysis is described below. 

Step1： 

        Initialization: , ,0 00, i ik y y= = 1 i c≤ ≤  

Step2： 

        Calculate the variance-covariance matrix and the MDs from data to centers 

        , , ,
1 ( ) ( )

( 1)
T

i k i k i kX X
N

=
−

i cC  , 1 ≤  and 1 j N≤ ≤   (2.6) ≤

1
, , , ,( ) ( )T

ij k j i k i k j i kd x y C x y−= − − 1 i c, ≤  and 1 j N≤ ≤  (2.7) ≤

Step3： 

        Compute the membership value 

12
1

,
,

1 ,

c
ij k

ij k
l lj k

d
d

β

χ

−

−

=

⎡ ⎤
⎛ ⎞⎢ ⎥

⎥= ⎜ ⎟⎢ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ 1 i c, ≤  and 1 j N≤ ≤ . (2.8) ≤

        If  and , we let 0l l=
0 0, 0l j kd = ,l j kχ =1, ,ij kχ =0 ( 0i l≠ ) 

Step4： 

        Compute the new centers by, 

        
,

1
, 1

,
1

N

ij k j
j

i k N

ij k
j

x
y

χ

χ

=
+

=

=
∑

∑
 (2.9) 

Step5： 

        If 
1

22

, 1 ,
1

c

i k i k
i

y y ε+
=

⎡ ⎤
− <⎢ ⎥⎣ ⎦

∑ , 

        let , 1i i ky y += , ; 1 i c≤ ≤ ,ij ij kχ χ= , 1 i c≤ ≤  and 1 j N≤ ≤ . 
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Terminate the iteration. 

Step6： 

        If k , terminate the iteration without attaining converged result.  D=

If , update the counter k D< 1k k= + , repeat Steps 2 to 6. 

 

    Since the data have not been classified in the first run of iteration, iX  are not ready at 

the step 2. We thus need to initialize the values of iX . Note that the resulted output may vary 

with the initial centers. Previous research showed that the initial centers significantly affected 

the output. In addition, we developed the scheme of estimating the initial centers by FCM and 

conducting feature clustering by Mahalanobis FCM. 

 

2.3.3 The number of clusters 

 

    Beginning the clustering we should set the clustering numbers, and this number is 

decided by the correlation coefficients of the centers of clusters; when an correlation 

coefficients larger than θ  that it indicates two cluster are similar, then the number will 

subtracted by one. So the initial number of clusters should be large. And in the past of our 

group’s researches, we decided the 0.3θ =  as an suitable number, the cluster could be 

distinguished in this situation. 

16 
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2.4 Brain Spatial Microstates 

 

Researcher have disclosed changes of alpha power in each cerebral-cortex region under 

different states. These studies show that spontaneous alpha exhibits different distributions 

owing to the variation of alpha sources or the propagation ways. Most substantially, alpha 

distribution might be related to the states of alertness. In these studies, alpha power was 

calculated by short-time spectral analysis based on Fourier-transformation method within a 

specific time window. Notice that Fourier approach is restricted by the piecewise stationary 

property that requires a narrow window of analysis and the frequency resolution that desires a 

wide window. In general, the window width is in the range from 1 to 5 seconds. However, 

from the viewpoint of the microscopic neural activities, the message is transmitted on the time 

scale of mini-second. The traditional FFT method is restricted to the window length and is 

difficult to explore the cerebral microstate.  

In the research of Lehmann [16,17], he considered that the consistent neural activities 

would results in higher Global Field Power (GFP). The GFP is defined as the sum of the 

powers of all recoding channels at a specific sampling moment. The activity of each neuron 

could be considered as an electrical dipole vector including magnitude and direction. If each 

vector is uncorrelated with others, the activities would be canceled each other. In some 
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conditions, neurons are driven by the same source that leads to a large GFP. As larger GFP 

often infers better signal-to-noise ratio (SNR), the driven response can be more significant 

with less noise interference. The appearance of local maximal GFP’s is thus an appropriate 

reference for choosing representative brain mappings (landscapes) to be utilized in the spatial 

microstate analysis. The sites of extremes (maximum and minimum) of a particular brain 

mapping compose a current dipole model generating the brain potential distribution recorded 

on the scalp. 

We analyzed the brain microstates for a given time period ‘segment’. A segment is a 

continuous time duration within which the electrode sites of maximal and minimal potential 

are almost immobile (staying in a small region). Alternatively speaking, dipole vectors within 

a segment are stationary in a sense. A spatial segmentation algorithm was developed to 

separate different segments of brain topographical activities. Each particular segment class 

contains brain mappings with two sites of extremes appearing most frequently at a given 

region. As a consequence, the method adopted in this thesis provides rather local and subtle 

temporal information which cannot be accessible based on conventional Fourier analysis.  

Lehmann [16,17] used the raw EEG data (potentials on the recording sites) to extract the 

brain landscapes of interest. His method is not practicable for our aim on the analysis of 

alpha-rhythmic behaviors. We applied the alpha-power for the brain landscape for the 

microstate analyzing. 



A number of approaches and methods have been developed to analyze the EEG signals 

in time, frequency, and spatial domains. A number of methods have been proposed to explore 

various EEG features, in either macroscopic or microscopic aspects. Each particular method 

calls for different lengths of EEG segments and different numbers of channels. In our study, 

we firstly performed feature clustering for 20 minutes EEG signals based on the spatial 

characteristics. Then those 4-second EEG epochs with particular topographic features were 

extracted for microstate analysis. We will demonstrate that, based on a short EEG epoch of 

only a few seconds, the microstates method provides a way of exploring the brain 

topographical behaviors under Zen meditation. 

 

2.4.1 Global Field Power (GFP) 

 

Global field power (GFP) at a given time instant represents the summation of EEG 

powers of all channels at that particular time t. A high GFP stands for a potential distribution 

with many peaks and troughs. According to [18], brain mappings with maximal GFP’s 

normally have better SNR (signal-noise-ration) performance. Hence, GFP provides a 

reference for us to select the appropriate time instants for microstates analysis. Assume a 

series  represents the data of channel- k . GFP is a function of time as shown below: kA

1/ 2
2

1

1( ) ( )
chn

k
kch

GFP i A i
n =

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

∑ ,  (2.10) 
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Where i represents the time point of discrete time signal and  is number of channel. In 

this thesis, the  is defined as 30. 

chn

chn

    Figure 2.5 displays the GFP of a one-second EEG epoch. Apparently, GFP oscillates at a 

rhythm twice the EEG frequency due to the rectification effect. 

 

 

Figure 2.5 The GFP of 1 second EEG epoch. 
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Since alpha activity was our major focus, we applied wavelet decomposition to raw 

EEG to extract alpha-band (8-12Hz) patterns before the GFP evaluation. As a consequence, 

we could reduce the contamination from other rhythmic bands, for example, delta (0-4Hz), 

theta (4-8Hz), and beta (>20Hz). We then computed the GFP of alpha-dominated EEG.  

 

2.4.2 Segmentation Method 

 

A brain microstate is defined as the constant landscape (brain topographical mapping) 

that lasts for a momentarily continuous time segment. The landscape was obtained by a 

131msec moving window. Compute the power in the window and it results a 30 dimensional 

map. Note that we recorded 30-channel EEG in our experiment with a sampling rate of 1,000 

Hz. Within a 4-second EEG epoch, we can obtain almost 4,000 maps. Previous study [18] has 

demonstrated that maximum GFP normally resulted in a good signal-to-noise ratio. This is 

accordingly a moderate clue for choosing the representative maps. We thus focused on the 

locations of extremes (maximum and minimum power value) of brain mappings.  

In our study, brain microstates are characterized by the current dipole vector pointing 

from the minimum to the maximum potential of the multichannel EEG mapping on the scalp. 

As a consequence, it becomes important to determine the appropriate locations (EEG channels) 

where extremes occur. Sometimes the extremes might be influenced by the noise. To deal with 
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the noise problem, we developed an approach for better extracting the extremes. 

First, we employed the spherical-coordinate model of the EEG electrodes to compute 

the average distance DRnR between Cz and each of the rest 29 electrode sites. We then computed 

the local average power (LAP) of brain potentials within the DRnR-radius circle centered on each 

channel. From the set of 30 local average powers (LAP’s), extremes (maximum and minimum) 

could be determined in a sense of better statistical significance. Finally, the centered electrode 

of maximal and minimal LAP forms the dipole vector of the brain microstate.  

In order to obtain the data with an optimal SNR, only the maps at the peaks (local 

maxima) of GFP temporal sequence were selected for brain microstates analysis. These brain 

mappings were reduced to the locations of the extremes (maximum and minimum power 

value).  

The so-called segment of a microstate begins with a particular brain potential map 

BPMR1R characterized by a given dipole vector, and continues as long as the succeeding maps 

the GFP peaks come up with the same dipole vector. That is, minimal and maximal LAP 

locates at the same sites as those of the beginning dipole vector obtained from BPMR1R. The 

segment ends if the extreme LAP sites are out of range and continues if the sites are in the 

pre-defined range. The duration of a segment can be obtained straightforwardly. And th

of a segment is defined by the extreme LAP sites whose have the highest occurrence tim

 In each group, we analyzed four parameters: a) number of maximum GFPs per seconds, 



23 
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b) average duration of a segment, c) number of segments per second, and d) maximum 

duration of the segments. 

 

2.4.3 Selection of the Window of Extreme LAP Site 

 

    In the microstates analysis, we need to designate a circular window for justifying 

whether the extreme LAPs belong to the same microstate. Table 2.2 lists the results of an 

experimental subject with frontal alpha obtained by different threshold ( DRnR : same as the DRnR 

before, ie, average of 29 distances from Cz to others). The threshold is used as the radius of 

the circular window. 

A larger threshold could cause the different microstates as the same state, and on the 

other hand, a smaller threshold could separate one microstate into several segments. Either a 

small or a large threshold may not reliably reflect the evolution of microstates, so we had to 

find a suitable range for this threshold. According to our experiment, the threshold in the 

range of 0.7DRnR ~ 1.5DRnR provides obviously different dipole vectors with the range of 0.5DRnR 

and 2DRnR ; while the locations of dipole vectors in range of 0.7DRnR ~ 1.5DRnR are about the same

as the frontal alpha, so it represent that the efficacy of segmentation are quiet the same in this 

region. Hence the threshold in this range (0.7DRnR ~ 1.5DRnR) is feasible. This study adopted DRnR 

as the threshold



Table 2.2 Results of microstate analysis with different thresholds 

Threshold 0.5 Dn 0.7Dn Dn 1.5Dn 2Dn 

Dipole 
strength 
(mv^2) 

96.5 200 197 173 67 

Dipole 
location 

CPZ – O1 FCZ – P8 FCZ – P8 FZ – P8 O1 – TP8 

 

 

 

2.5 Experimental Protocol 

 

As illustrated in Figure 2.6, the entire recording experiment involved three sessions: pre-, 

mid-, and post-meditation session for experimental subjects who have been practicing Zen 

meditation, and pre-, mid-, and post-relaxation session for control subjects that are normal, 

healthy people within the same age range as the experimental subjects.  

 

Figure 2.6 Experimental protocol. 

 

24 
 



    In this study we selected eight healthy control subjects and eight healthy experiment 

subjects, and they were no medical or psychological disorders present. Tables 2.3 and 2.4 

display the background of control subjects and experimental subjects, respectively 

 

 

Table 2.3 Control subjects 

Control 
subjects

20040302

20040315

20040412

20040414

20040415

20040422

20040426

Gender

Male

Male

Male

Female

Female

Female

Female

Age

24

24

23

23

23

23

22

20040428 Male 21
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Table 2.4 Experiment subjects 

Experiment 
subjects

20040229

20040306

20040314

20040318

20040326

20040520

20040605

Gender

Female

Male

Female

Male

Male

Male

Male

Age

29

30

21

22

28

31

34

Meditation 
experience (years)

7

11

1

2

8

2

7

20040711 Male 28 8
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Chapter 3 Experimental Results 

 

Chapter 3 discusses the experimental results of this research study. The content is 

organized according to two main tasks conducted in the study: 1) EEG spatial feature analysis 

and classification, and 2) brain microstate analysis, which are presented in Sections 3.1 and 

3.2, respectively. 

Inter-subject and intra-subject variations of EEG signals are inevitable and significant. 

Brain spatial microstate is undoubtedly time-dependent. Hence it is important to select the 

epoch of interest from the long EEG record. We used the spatial (brain-mapping) 

classification scheme to extract consecutive four-second epoch within the same class; and 

then analyzed the microstate of the epoch. This chapter presents the results of spatial 

classification and microstate analysis. 

 

3.1 Results of Brain-Mapping Classification 

 

In this section, we report the results of classifying brain topographical mappings by 

Mahalanobis FCM. In addition, results are compared between experimental and control group. 

As mentioned in 2.1, wavelet analysis was applied to each 2-second (pre-filtered by a 

band-pass filter) EEG epoch to decompose raw EEG into characteristic rhythmic patterns. The 
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epoch was identified to be alpha-dominated if the alpha power was at least 50% the total EEG 

power 

 

3.1.1 Control Subjects   

 

Figures 3.1-3.3 display the classification results of one representative subject (20040315) 

in the control group. The results were classified into three clusters (classes). Notice that the 

color charts reflect the associate cluster (Cluster 1, 2, or 3) identified at the time instant of the 

2-sec window centering. The color charts thus display the temporal evolution of 

brain-mapping cluster.  

 



 

Figure 3.1 Results of interpretation and classification of EEG brain mappings for a control subject in the 

pre-session background recording (before main session of relaxation). 
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Figure 3.2 Classification result of one control subject in the main-session recording. 
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Figure 3.3 Classification result of one control subject in the post-session recording. 

 

 

According to the results in Figures 3.1-3.3, all clusters derived contained no 

frontal-alpha activity for all the recording sessions. Very few control subjects had frontal 

alpha cluster. Table 3.1 shows the correlations between each pair of cluster centers. Table 3.2 

lists the distance between each pair of cluster centers, while Table 3.3 lists the standard 

deviation of all members belonging to the same cluster. The inter-cluster distance were larger 

than the within-cluster standard deviation, justifying the effectiveness of this classification 

scheme. 
31 
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Table 3.1 Correlations between clusters 

Cluster\Cluster 1 2 3 

1 1 -0.105 -0.585 

2 -0.105 1 -0.745 

3 -0.585 -0.745 1 

 

Table 3.2 Distance between cluster centers 

Cluster\Cluster 1 2 3 

1  0.742 0.905 

2 0.742  1.5773 

3 0.905 1.5773  

 

Table 3.3 Number of each cluster and standard deviation of cluster members 

Cluster number Standard deviation 

1 109 0.550 

2 87 0.675 

3 86 0.646 

 

 



3.1.2 Experimental Subjects 

 

Figures 3.4-3.6 display the interpretation and classification results of an experimental 

subject (20040306). Three clusters were derived. Same as previous figures, the color bar 

charts display the temporal evolution of brain-mapping cluster. 

 

 

Figure 3.4 Results of interpretation and classification of EEG brain mappings for an experimental subject in the 

pre-session background recording (before main session of meditation). 
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Figure 3.5 Classification result of one experimental subject in the main-session (Zen meditation) recording 
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Figure 3.6 Classification result of an experimental subject in the post-session recording (after main session of 

mediation). 

 

From Figures 3.4-3.6, alpha activities apparently moved toward the frontal regions for 

the meditation subject. In addition, frontal alpha increased in the meditation session that 

occupied approximately one-third record length of the main session. Table 3.4 shows the 

correlations between the three class centers, and the table 3.5 3.6 show the distance between 

centers and the standard deviation. The distances between centers are also larger than the 

standard deviation. 
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Table 3.4 Correlations between clusters 

Cluster\Cluster 1 2 3 

1 1 -0.620 -0.851 

2 -0.620 1 0.116 

3 -0.851 0.116 1 

 

Table 3.5 Distance between cluster centers 

Cluster\Cluster 1 2 3 

1  0.938 1.390 

2 0.938  0.624 

3 1.390 0.624  

 

Table 3.6 Number of each cluster and standard deviation of cluster members 

Cluster number Standard deviation 

1 55 0.603 

2 57 0.632 

3 55 0.525 
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3.2 Results of Microstate Analysis 

 

In the analysis of brain topographic (or, spatial) microstates, we focused on particular 

features extracted by classification in previous sub-section. For the experimental group with 

Zen- meditation experience, four-second frontal alpha and occipital alpha were selected. 

However, control subjects in this study appeared to have rare frontal-alpha activity. We 

accordingly only analyzed the four-second occipital alpha for the control group. 

 

3.2.1 Frontal-alpha and occipital-alpha microstate in experimental group 

 

According to the results in Table 3.7 and Figure 3.7, average duration of the alpha brain 

microstate demonstrates that frontal alpha exhibits a longer, continuous average duration of 

microstate. Figure 3.8 displays the results of dipolar-vector representation for modeling 

frontal-alpha (FA) and occipital-alpha (OA) microstates. One phenomenon to be further 

investigated is that, FA (OA) dipoles might emerge in the regions other than frontal (occipital) 

area. 

 

 

 



 

Table 3.7 Frontal-alpha (FA) and occipital alpha (OA) microstate analysis for experimental subjects (4-second 

epoch). 

Subject 1 2 3 4 5 6 7 8 Mean S.D.
Number of maximum GFPs per second 

FA 25 26.8 28.5 22.8 23 25.8 28.3 20.8 25.1 2.8
OA 27.5 26.5 27.5 26 28.5 24.8 29.8 23.3 26.7 2.1

Average duration of an alpha brain microstate (in ms) 
FA 77.0 82.2 83.1 67.4 99.3 88.2 80.2 92.9 83.8 9.8
OA 63.9 88.7 64.5 70.0 77.5 70.2 58.0 79.3 71.5 9.9

Number of alpha brain microstates per second 
FA 7 6 6 6 6 7 7 5 6.3 0.7
OA 7 7 7 6 5 6 9 6 6.8 1.0

Maximum duration of an alpha brain microstate (in ms) 
FA 198 251 237 221 251 242 197 172 221 29
OA 187 182 202 245 278 187 167 163 201 40
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Figure 3.7 Average duration of brain microstate segments( frontal alpha and occipital alpha) 
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Figure 3.8 Dipolar vector model for alpha brain microstate with the filed minimum and maximum represented by 

circle and black dot, respectively. 

3.2.2 Comparison of occipital-alpha microstates in experimental and control 

groups 

 

The result of average duration of microstate for these two groups shows no obviously 

difference (meditation subjects: 71.5; relax subjects: 68.4). Although the control group’s 

number of microstates is little larger, but its duration is less than experimental group. So we 

think there is no very difference between these two groups. The figure 3.10 shows the 

locations of the two extreme poles, because of the analyzing signal selection of these two 

group is occipital alpha, the most locations are match with the classification result. 
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Table 3.8 Microstate analysis of 4-second occipital alpha mappings for the experiment and control subjects. 

Subject 1 2 3 4 5 6 7 8 Mean S.D.
Number of maximum GFPs per second 

MD 28 27 28 26 29 25 30 23 26.7 1.9
Relax 22 25 26 27 24 27 25 27 25.3 1.7

Average duration of an alpha brain microstate (in ms) 
MD 63.9 88.7 64.5 70.0 77.5 70.2 58.0 79.3 71.5 9.9

Relax 73.8 75.8 63.7 63.4 69.3 69.6 51.5 79.8 68.4 8.8
Number of alpha brain microstates per second 

MD 7 7 7 7 5 6 9 6 6.6 1.0
Relax 6 6 7 8 6 7 7 5 6.3 0.8

Maximum duration of an alpha brain microstate (in ms) 
MD 187 182 202 245 278 187 167 163 201 40

Relax 241 161 188 234 202 247 171 197 205 32
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Figure 3.9 Average duration of brain microstate segments(mediation and relaxation) 
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Figure 3.10 Dipolar vector model for alpha brain microstate with the filed minimum and maximum represented 

by circle and black dot, respectively. 

 

3.2.3 Results in different length of EEG  

 

    Since the research of microstates[18] used four seconds EEG for analysis, and the 

average duration of microstate are about 60~100 ms. So we interest that the analysis time can 

be reduced or not. The following table 3.9 shows the results of microstate analysis in different 

length of EEG signal (2, 2.5, 3, 3.5, and 4 seconds) in frontal alpha and occipital alpha of 

experimental group. The result shows the same thing that the average duration of microstate 

in frontal alpha is longer than in occipital alpha. 
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Table 3.9 The microstate analysis results of 4-seconds EEG with the experiment subjects of frontal alpha (FA) 

and occipital alpha (OA) 

Average duration of alpha brain microstate 
Subject 1 2 3 4 5 6 7 8 Mean S.D.
2 seconds EEG 

FA 62.6 86 67 80.1 90.7 92.8 77.3 70.5 78.4 11.1
OA 57.7 104.5 60.1 67.5 77.5 84.8 73.4 70.8 74.6 15.0

2.5 seconds EEG 
FA 73.2 89.3 75.7 89.3 115.8 89.2 68.7 118.9 90.0 18.7
OA 41.2 77.6 51.2 66.8 63.3 69.8 66 72.1 63.5 11.8

3 seconds EEG 
FA 68.9 107.5 84.8 70.6 90.3 85.2 74.7 113.5 86.9 16.4
OA 63.5 64.1 64.0 65.2 73.2 57.4 79.3 95 70.2 12.1

3.5 seconds EEG 
FA 67.0 83.6 83.6 69.4 72.7 79.1 67.6 88.7 76.5 8.4
OA 72.8 75.2 58.0 64.5 65.0 70 83.9 84.6 71.8 9.4

4 seconds EEG 
FA 77.0 82.2 83.1 67.4 99.3 88.2 80.2 92.8 83.8 9.8
OA 63.9 88.7 64.5 70.0 77.5 70.2 58.0 79.3 71.5 9.9

 

 

3.2.4 Results in frontal alpha and occipital alpha of experimental group (only 

adopts maximum power location of maps) 

 

    In 3.2.1~3.2.3, most of results of Average duration of an alpha brain microstate are less 

than 100 m-seconds, which is considered as a shorter duration of state. So we shown the 

dipoles( in maxima GFPs) in one minute (Fig 3.11). And we found that the location of 

minimum power changed frequently, the minimum power location is usually in the edge; but 



the values of power in the edge locations are very close, so we think the frequently changed 

location of minimum power cause the results of duration of alpha brain microstate shorter. 

Hence following shows the microstate results which the segment only adopts the maximum 

power location. 

 

 

Figure 3.11 Dipoles appear in one minute follow by the time 

 

Table 3.10 showed the results of experimental subjects of FA and OA, the average 

duration of an alpha brain microstate of FA is 208 m-sec that is longer than OA’s, and the 

maximum microstate duration is 517 m-sec also longer than OA’s. And table 3.11 showed the 

results between experimental subjects and control subjects (occipital alpha); the difference of 

results is not obviously. The figure 3.12 and figure 3.13 shows maximum poles locations, and 

it generally matches with the brain mappings. 
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Table 3.10 The microstate analysis results of 4-seconds EEG with the experiment subjects of frontal alpha (FA) 

and occipital alpha (OA) with only maximum power adopted 

Subject 1 2 3 4 5 6 7 8 Mean S.D.
Number of maximum GFPs per second 

FA 25 27 23 25 24 25 27 22 25 1.7
OA 25 26 25 24 23 26 28 23 25 1.7

Average duration of an alpha brain microstate (in ms) 
FA 206 148 234 328 219 172 145 195 208 59
OA 168 115 197 226 167 199 142 193 175 35

Number of alpha brain microstates per second 
FA 4 5 3 3 3 6 3 4 4 1.1
OA 4 6 4 4 5 4 5 4 5 0.8

Maximum duration of an alpha brain microstate (in ms) 
FA 474 393 524 767 736 397 350 492 517 156
OA 451 318 597 576 348 550 394 580 477 113

 

 

 

Figure 3.12 The representative maximum pole locations with the experimental subjects of frontal alpha (FA) and 

occipital alpha (OA). 
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Table 3.11 The microstate analysis results of 4-seconds EEG with the experiment subjects of mediation (MD) 

and control subjects of relaxation (Relax) with only maximum power adopted 

Subject 1 2 3 4 5 6 7 8 Mean S.D.
Number of maximum GFPs per second 

MD 25 26 25 24 23 26 28 23 25 1.7
Relax 26 26 24 25 25 27 26 27 26 1.1

Average duration of an alpha brain microstate (in ms) 
MD 168 115 197 226 167 199 142 193 175 35

Relax 193 126 165 234 152 215 129 138 169 41
Number of alpha brain microstates per second 

MD 4 6 4 4 5 4 5 4 5 0.8
Relax 5 5 5 4 4 4 5 6 5 0.7

Maximum duration of an alpha brain microstate (in ms) 
MD 451 318 597 576 348 550 394 580 477 113

Relax 497 249 388 455 502 475 511 379 432 89

 

 

 

Figure 3.13 The representative maximum pole locations between experimental subjects in mediation (MD) and 

control subjects in relaxation (Ralax). 
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Chapter 4 Conclusion and Discussion 

 

In this thesis, we mainly proposed a novel approach for analyzing the spatial-temporal 

characteristics of various alpha rhythms down to the micro-second portrait, instead of 

long-time property. In our findings, experimental subjects apparently exhibited more frontal 

alpha than control subjects. Preliminary results are summarized as follows. Firstly, average 

duration of the alpha-microstate segment is longer in frontal alpha than in occipital alpha. 

Second, the number of segments (the occipital alpha state shows more segments than does 

frontal alpha). And third, the minimum poles of dipole vectors case the average duration 

shorter, when we ignore the minimum poles then we can obtain a rational number of the 

average duration of microstates. 

 

4.1 Summary of Current Study 

 

    In this thesis we provide a clustering method for the alpha brain maps classification and 

it performed efficiently. And the classification results are tend to separated into frontal, central 

and occipital, so that is useful to us choosing the alpha state characteristics for the microstate 

analysis. In the results of microstate analysis shows obviously difference of the frontal alpha 

group and occipital alpha group in mediation, the longer duration of microstate occurs with 
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frontal alpha than with occipital alpha. And some research shows that in mediation, the region 

of frontal cortex is related with the hormone modulated [29], and it shows more stability of 

alpha brain activity with this reaction. 

    In this thesis we lay stress on the method development, we provide a method for the 

detection of transient EEG activity. So far we don’t have important discovery of results on 

these subjects, but we obtained suitable section of long-term signal for the microstate analysis, 

and it is useful for future researches of transient phenomenon.  

 

4.2 Future Work 

 

Brain microstate analysis can be extended to the exploration of other EEG features. 

Although current study was focused on alpha dipolar-vector model, it is an important and 

appealing issue on the variations of alpha rhythmic compositions based on multi-resolution 

spectral analysis. The phenomenon might be correlated with brain oscillatory model of alpha 

rhythms. Then, the further step may be taken to investigate the spatio-spectral microstate of 

alpha brain either during Zen meditation or at normal relaxation. 
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Appendixes 

 

A.1 Discrete Wavelet Transform 

 

Wavelets are mathematical formulae that decompose data into components with different 

resolutions quantified by the so-call scale. The advantages of wavelet analysis over traditional 

Fourier methods are mainly the capability of analyzing signal with time-varying, 

multi-resolution behaviors. Wavelets were developed independently in the fields of 

mathematics, quantum physics, electrical engineering, seismic geology, etc. The wavelet can 

be characterized by a wave which is bounded with zero average in a limit time range. The 

wavelet transform then allows us to construct a time-frequency relationship, which showed 

the time-varying frequency components. 

    Consider a real or complex continuous function ( )tψ as the mother wavelet or simply 

wavelet. In possesses the characteristics of zero integration and bounded waveform pattern. 

The property of zero integration implies that the function ( )tψ has ripples, while and the 

property of bounded waveform means the energy of function ( )tψ is bounded in a limited 

time range. The area of function ( )tψ  should be small, and its amplitude reduces to zero 

rapidly towards two ends of the waveform. 

    A set of continuous wavelet function can be derived by scaling (expanding or contracting) 
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as well as shifting the mother wavelet function ( )tψ . as follows 

    ( ),
1

a b
t bt

aa
ψ ψ −⎛= ⎜

⎝ ⎠
⎞
⎟ ,                                         (A.1) 

In the above equation,  is a positive real parameter defining the scale and  is a real 

indicating the time shift. The continuous wavelet transform cannot be implemented for digital 

signals. Concept and approach for discrete wavelet transform have thus been developed for 

digital realization and implementation. We modify the parameters  as =  and = , 

respectively, where integer, 

a b

,a b a 0
ma b n

,m n Z∈ 0 1a ≠ . When = 2, then the wavelet is called the 

“Dyadic Wavelet”, and Eq. (2.1) becomes 

0a

    ( ),
1

22
m n mm

k nkψ ψ −⎛= ⎜
⎝ ⎠

⎞
⎟ .                                       (A.2) 

Therefore, the discrete wavelet transform ( ),fDWT m n  is defined below 

    ( ) ( ) *1,
22

f mm
k

k nDWT m n f k ψ −⎛= ⎜
⎝ ⎠

∑ ⎞
⎟ .                           (A.3) 

where the discrete wavelet transform ( ),fDWT m n  was a function of signal ( )f k , and  

was a operation index. 

k

    The discrete wavelet transform is applied to the decomposition of a signal which had into 

the high-frequency components and low frequency components. By the orthogonal wavelet 

basis functions, the input signal ( )x k  is decomposed as 

    ( ) ( ) ( ) ( ) ( ) ( ) (, , 1i j i k i j i k j k
k k k

)1,x n cA k n cD k w n cD k wφ − −= + + +∑ ∑ ∑… n− ,  (A.4) 

where the scaling function is defined as: ( ),j k nφ

    ( ) ( ), 2 2j j
j k nφ φ= n k−                                         (A.5) 
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and the wavelet function  

    ( ) (, 2 2j j
j kw n w n k= )−

i

i

.                                       (A.6) 

     and  are the coefficients corresponded to the basis functions,  represented 

the level of the transformation. The relationship between of discrete wavelet transform and 

inverse discrete wavelet transform of single level is 

icA icD i

DWT: 

     and                               (A.7) ( ) ( ) ( )1 0 2i
n

cA k h n k cA n+ = −∑

    .                                  (A.8) ( ) ( ) ( )1 1 2i
n

cD k h n k cA n+ = −∑

IDWT: 

    ( ) ( ) ( ) ( ) ( )1 0 1 12i i i
k k

cA n cA k h n k cD k h n k+ += − +∑ ∑ 2− .               (A.9) 

    The  and  are the filters and the relationship between scaling function and 

wavelet function as follow: 

( )0h n ( )1h n

    ( ) ( ) (0 2 2
k

n h k nφ φ=∑ )k−  and                                (A.10) 

    ( ) ( ) (1 2 2
k

w n h k n kφ=∑ )− .                                   (A.11) 
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1( )cD k

1( )cA k

 

Figure A.1 Discrete Wavelet Decomposition 

 

[ ]0h n−

[ ]1h n−

2↑

2↑

1( )cA k

1( )cD k

0 ( )cA k

 

Figure A.2 Discrete Wavelet Reconstruction 

 

    Figure A.1 shows the Discrete Wavelet Decomposition process. The signal respectively 

passes through the high-pass and low-pass filters and then is down sampled by 2. We obtain 

the frequency component of the signal by this process for further analysis. Fig A.2 shows the 

process of Discrete Wavelet Reconstruction during which the decomposed signal is 

up-sampled and pass through the filters. By the decomposition and reconstruction, we could 

obtain a signal that has particular frequency component that we need, and in this thesis we 

used Daubechies 6 as the filters. In EEG signal, the most we concern about is alpha wave 

(8~12Hz). Figure A.3 shows that if the signal is 1000 Hz sampling, we could obtain the alpha 
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wave of the signal by the level 6 Wavelet Decomposition. 

 

[ ]0h n 2↓

[ ]0h n 2↓
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0 125Hz∼
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[ ]1h n 2↓

7.8 15.6Hz∼

[ ]1h n 2↓

[ ]1h n 2↓

 

Figure A.3 Extraction the alpha wave by the Wavelet Decomposition. 

 

A.2 Mahalanobis Distance 

 

In the case of object-i with two variables ( )1 2,i i ix μ μ= , the ED with regard to the center 

of data can be calculated for each object. Assume totally N objects, ED for object-i is 

computed as 

2
11 2( ) (i i iED μ μ μ μ= − + − 2

2 )  for i = 1 to N,                      (A.12) 

Where 1iμ and 2iμ are the variables of object-i, 1μ and 2μ are the means of two variables of 

total n objects. 

To be able to compute the MD, first the variance-covariance matrix xC  is calculated: 

1 ( ) (
( 1)

T )x cC X
N

=
− cX ,                                        (A.13) 

where the X  is the data matrix containing N objects in the rows, cX  is the data matrix 
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X subtracted by the variable means X ; ( )cX X X= − . In the case of two variables, 1iμ  

and 2iμ , the variance-covariance matrix is 

2
1 12 1

2
12 1 2 2

xC 2σ ρ σ σ
ρ σ σ σ
⎡ ⎤

= ⎢
⎣ ⎦

⎥ ,                                      (A.14) 

where 2
1σ  and 2

2σ  are the variances of the first and second variables, respectively and 

( )
12 2 2

1 2

det
1 xC

ρ
σ σ

= − ; while 12 1 2ρ σ σ  is the covariance between the two variables. 

The MD for object-i iχ  is then 

1( ) ( )T
i i x iMD x x C x x−= − −                                     (A.15) 

where x  is the center of the data.  

with 

( ) ( )
( ) ( )

2
2 12 1 21

2
12 1 2 1

det det
det det

x x
x

x x

C C
C

C C
σ ρ σ σ

ρ σ σ σ
− ⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

, 

where ( ) 2 2 2
1 2 12det (1 )xC σ σ ρ= −  is the determinant of the variance-covariance matrix. 

    For an object-i ix  measured in two variables, 1iμ  and 2iμ ,  Eq. (A.15) could be 

rewritten, since 

( )( ) ( ) ( )
( )

( ) ( )
( )

2 2
1 2 2 12 1 2 12 1 2 1 2 1 12 1 21

1 21 2 det det
i i i i

i i x
x x

C
C C

σ μ μ μ μ ρ σ σ σ μ μ μ μ ρ σ σ
μ μ μ μ −

⎡ ⎤− − − − − −
⎡ ⎤ ⎢ ⎥− − =⎣ ⎦ ⎢ ⎥

⎣ ⎦

and 

( )( ) ( )
( )

111
11 2 2

22

i

i i x

i

C
μ μ

μ μ μ μ
μ μ

−
⎡ ⎤−
⎢ ⎥⎡ ⎤− −⎣ ⎦ ⎢ ⎥−⎣ ⎦
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( ) ( )( )
( )

( ) ( )( )
( )

2 22 2
1 2 1 2 1 22 1 2 1 12 1 2 1 2 1 2 12 1 2
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i i i i i i

x xC C

σ μ μ μ μ μ μ ρ σ σ σ μ μ μ μ μ μ ρ σ σ− − − − − − − −
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σ σ ρ
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2 2 22
1 2 1 2 11 2 1 2 12 12 1

2 2 2 2 2 2 2 2
1 2 12 1 2 12 1 12

2
1 1 1
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( )2 2

11 2 12 1
2 2 2
1 2 12 1 121 1

i i i
μ μ μ μ μ μ
σ σ ρ σ ρ

⎛ ⎞− − −⎜ ⎟= + −
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so that 

( )2 2

11 2 12 1
122 2

1 2 1 12

1
1

i i i
iMD

μ μ μ μ μ μρ
σ σ σ ρ

⎧ ⎫− ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎪ ⎪= + −⎢⎜ ⎟ ⎜ ⎟⎨ ⎬
−⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎥ .            (A.16) 

 

    This expression shows that the part of second variable which is already explained by the 

first variable is subtracted. In other words, the MD adjusts itself to the correlation within the 

data. When xRi1R and xRi2R are uncorrelated ( 12 0ρ = ), equation (A.16) is reduced to the formula 

for the ED in Eq. (A.12). 
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