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Abstract 

In this dissertation, improved safe reinforcement learning based self adaptive 

evolutionary algorithms (ISRL-SAEAs) are proposed for TSK-type neuro-fuzzy controller 

design. The ISRL-SAEAs can improve not only the reinforcement signal designed but also 

traditional evolutionary algorithms. There are two parts in the proposed ISRL-SAEAs. In the 

first part, the SAEAs are proposed to solve the following problems: 1) all the fuzzy rules are 

encoded into one chromosome; 2) the number of fuzzy rules has to be assigned in advance; 

and 3) the population cannot evaluate each fuzzy rule locally. The second part of the 

ISRL-SAEAs is the ISRL. In the ISRL, two different strategies (judgment and evaluation) are 

used to design the reinforcement signal. Moreover the Lyapunov stability is considered in 

ISRL. To demonstrate the performance of the proposed method, the inverted pendulum 

control system and tandem pendulum control system are presented. As shown in simulation, 

the ISRL-SAEAs perform better than other reinforcement evolution methods. 

 

Keywords: TSK-type neuro-fuzzy controller, FP-growth algorithm, evolutionary algorithm, 

safe reinforcement learning, Lyapunov stability. 
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Chapter 1                          

Introduction 
  

In real world application, many control problems are so complex that designing 

controllers by conventional means is either impractical or results in poor performance such as 

double link control system, inverted pendulum control system, tandem pendulum control 

system, water temperature control system, and ball and beam balance system, etc. Among 

them, mathematical models for designing controllers are needed. Inaccurate mathematical 

modeling of plants usually degrades the performance of the controllers, especially for 

nonlinear and complex problems. Moreover, even if the neuro-fuzzy controller is adopted for 

avoiding the complex mathematical models, in real-world applications, precise training data 

are usually difficult and expensive to obtain. For solving these problems, this dissertation 

provides a methodology for designing such controllers automatically by evolving improved 

safe reinforcement learning (ISRL) via neuro-fuzzy controllers using self adaptive 

evolutionary algorithms (SAEAs). 

 The introduction of this dissertation is introduced in this chapter. In Section 1.1, a 

motivation of this dissertation is discussed. The research purpose of this dissertation is 

introduced in Section 1.2. In Section 1.3, the approach of this dissertation is described. The 

overview of this dissertation is introduced in the final section. 

 

1.1 Motivation 

Neuro-fuzzy controllers ([1]-[14]) are capable of inferring complex nonlinear 

relationships between input and output variables. This property is important when the system 

nonlinear and complex problems. Moreover, even if t
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to be modeled is nonlinear. The key advantage of the neuro-fuzzy approach lies in the fact 

that it does not require a mathematical description of the system while modeling it. The 

system can perform the nonlinear mapping once the system parameters are trained based on a 

sequence of input and desired response pairs. 

The training of the parameters (parameter learning) is a problem in designing a 

neuro-fuzzy controller. Hence, techniques capable of training the system parameters and 

finding the global solution while optimizing the overall structure are needed. In this respect, 

genetic algorithms (GAs) appear to be better candidates. Among GAs, there are two major 

learning structures using for tuning the parameters of neuro-fuzzy controller: supervised 

learning ([2], [3], and [6]) and reinforcement learning ([15]-[21]). Among them, for some 

real-world applications, precise training data are usually difficult and expensive to obtain. For 

this reason, there has been a growing interest in reinforcement learning algorithms for neural 

controller ([15]-[18]) or fuzzy design ([19]-[21]). For the reinforcement learning problems, 

training data are very rough and coarse and there are only “evaluative” when compared with 

the “instructive” feedback in the supervised learning problem. In reinforcement learning, there 

is an agent which can choose which action gets the maximum reward in every state. The only 

feed back is the reward signal of success or failure.  

There are several evolutionary algorithms ([22]-[31]) which have been proposed to tune 

the parameters of the fuzzy controller. These algorithms may require one or more of the 
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system or it can still controlled or nor in the letter time steps; 2) all the fuzzy rules are 
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ISRL-SAEAs focus on not only the reinforcement learning but also the structure of the 

chromosomes in evolutionary algorithms. Therefore, in reinforcement learning, the 

architecture should consider not only how well and how soon the controller controls the 

system but also the stability analysis of the reinforcement learning. Moreover, in evolutionary 

algorithms, the number of fuzzy rules should be decided automatically and the population 

should evaluate each fuzzy rule locally. 

 

1.2 Review of previous works 

In recent years, a fuzzy system used for control problems has become a popular research 

topic because of classical control theory usually requires a mathematical model for designing 

controllers ([1]-[10]). Inaccurate mathematical modeling of plants usually degrades the 

performance of the controllers, especially for nonlinear and complex problems ([11]-[14]). A 

fuzzy system consists of a set of fuzzy if-then rules. Conventionally, the selection of fuzzy 

if-then rules often relies on a substantial amount of heuristic observations to express the 

knowledge of proper strategies. Obviously, it is difficult for human experts to examine all the 

input-output data from a complex system to find proper rules for a fuzzy system. To cope 

with this difficulty, several approaches try to generate if-then rules from numerical data have 

been proposed ([2], [3], and [6]). These methods were developed for supervised learning; that 

is, the correct “target” output values are given for each input pattern to guide the network's 

learning. It is a powerful training technique that can be applied to networks. However, if the 

precise training data can be obtained easily, the supervised learning algorithm may be 

efficient in many applications. For some real-world applications, precise training data are 

usually difficult and expensive to obtain. For this reason, there has been a growing interest in 

reinforcement learning problems ([15]-[21]). For the reinforcement learning problems, 

training data are very rough and coarse and there are only “evaluative” when compared with 
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the “instructive” feedback in the supervised learning problem. 

In the reinforcement learning, the well known algorithm is Barto and his colleagues’ 

actor-critic architecture ([17]), which consists of a control network and a critic network. 

However, the Barto’s architecture is complicated and is not easy to implement. About this, 

several researches proposed time-step reinforcement architecture to improve the Barto’s 

architecture ([18]-[20]). In time-step reinforcement architecture, the only available feedback 

is a reinforcement signal that notifies the model only when a failure occurs. An accumulator 

accumulates the number of time steps before a failure occurs. Even though time-step 

reinforcement architecture is easier to implement when compared with Barto’s architecture, it 

can only measure the number of time steps before a failure occurs; in other words, it only 

evaluates how long the controller works well instead of how soon the system can enter the 

desired state, which is also very important. Recently, Perkins and Barto proposed a safe 

reinforcement learning based on Lyapunov function design ([32]). Once the system’s 

Lyapunov function is identified, under Lyapunov-based manipulations on control laws, the 

architecture can drive the plant to reach and remain in a predefined desired set of states with 

probability 1. Then, the time step for the plant entering the desired set of states can indicate 

the concept of how soon the system becomes stable. Therefore, one major part of this 

dissertation is identified. 

In learning algorithm, the most well known learning algorithm is back-propagation (BP) 

([3], [6]-[8]). Since the steepest descent technique used in BP can minimize the error function, 

the algorithm may reach the local minima very fast and never find the global solution. In 

addition, the performance of BP training depends on the initial values of the system 

parameters, and for different network topologies one has to derive new mathematical 

expressions for each network layer. Recently, several evolutionary algorithms, such as the 

genetic algorithm (GA) ([22]), genetic programming ([23]), evolutionary programming ([24]), 

and evolution strategies ([25]), have grown into a popular researching area. They are parallel 
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and global search techniques. Because they simultaneously evaluate many points in the search 

space, they are more likely to converge toward the global solution. In recent years, there are 

several approaches try to use evolutionary algorithms to converge toward the global solutions. 

The one important field of these approaches is to use evolutionary algorithms for training 

fuzzy models ([26]-[28]). 

The evolutionary fuzzy model generates a fuzzy system automatically by incorporating 

evolutionary learning procedures. The well-known evolutionary algorithms are the genetic 

algorithms (GAs). Several genetic fuzzy models, that is, fuzzy models that are augmented by 

a learning process based on GAs, have been proposed ([26]-[28]). In [26], Karr applied GAs 

to design the membership functions of a fuzzy controller, with the fuzzy rule set assigned in 

advance. Carse et al. ([27]) used the genetic algorithm to evolve fuzzy rule-based controllers. 

Lin and Jou ([28]) proposed GA-based fuzzy reinforcement learning to control magnetic 

bearing systems.  

Recently, several improved evolutionary algorithms have been proposed. One catalogs is 

focus on modified the structure of the chromosomes ([29]-[44]). In such researches, the 

chromosomes in population represent partial solution or are with different length. In [29], 

Juang et al. proposed genetic reinforcement learning in the design of fuzzy controllers. The 

GA adopted in [29] was based upon traditional symbiotic evolution which, when applied to 

fuzzy controller design, complemented the local mapping property of a fuzzy rule. In [30], 

Bandyopadhyay et al. used the variable-length genetic algorithm (VGA) that allows for 

different lengths of chromosomes in a population. In [33], Ting et al. used multiobjective 

(MO) variable length genetic algorithm to solve the problem of placing wireless transmitters 

to meet particular objectives. As shown in [33], the authors used multiobjective (MO) variable 

length genetic algorithm for searching the optimal number, types, and positions of 

heterogeneous transmitters by considering coverage, cost, capacity, and overlap 

simultaneously. In [34], Saeidpour et al. used variable length genetic algorithm for fuzzy 
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controller design and used it for promotion voltage profile. In [35], Lin and Hsu proposed a 

reinforcement self-adaptive evolutionary algorithm with fuzzy system for solving control 

problems. As shown in [35], both the number of rules and the adjustment of parameters in the 

fuzzy system are designed concurrently by the proposed algorithm. The illustrative example 

was conducted to show the performance and applicability of the proposed algorithm. 

In [36], the Saha et al. proposed a differential evolution based fuzzy clustering for 

automatic clustering data set. The proposed algorithm has been used as a stochastic 

optimization tool. As shown in [36], the proposed algorithm performs better than others. In 

[37], Tang proposed a hierarchical genetic algorithm. The hierarchical genetic algorithm 

([38]-[39]) enables the optimization of the fuzzy system design for a particular application. In 

[39], authors used a hierarchical genetic algorithm for solving the multilevel redundancy 

allocation problems. As shown in [39], the authors applied the HGA and a conventional GA 

separately for solving two multilevel series redundancy allocation optimization problems. The 

simulation results showed that the performance of the HGA is superior to the conventional 

GA, because it does not depend on the use of vector coding and preserve the original design 

space. 

Gomez and Schmidhuber proposed lots of work to evaluate the solution locally ([40] and 

[41]). The proposed enforced sub-populations (ESP) used sub-populations of neurons for the 

fitness evaluation and overall control. As shown in [40] and [41], the sub-populations that use 

to evaluate the solution locally can obtain better performance compared to systems of only 

one population be used to evaluate the solution. In [42], Li and Miao proposed using ESP 

backpropagation (BP) neural network to the agent controllers in intelligent virtual 

environment (IVE). As shown in [42], the ESP was used to solve the task assignment problem 

of collaboration in an entertainment IVE platform. 

Juang [43] proposed the combination of online clustering and Q-value based GA for 

reinforcement fuzzy system (CQGAF) to simultaneously design the number of fuzzy rules 

allocation problems. As shown in [39], the authors 
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and free parameters in a fuzzy system. Lin and Xu ([44]) proposed a sequential search-based 

dynamic evolution (SSDE) to enable better chromosomes to be initially generated while better 

mutation points are determined for performing dynamic-mutation. 

Although the above evolutionary learning algorithms ([29]-[44]) improve the 

evolutionary learning algorithms through modifying the structure of chromosomes, these 

algorithms may have one or more of the following problems: 1) all the fuzzy rules are 

encoded into one chromosome; 2) the number of fuzzy rules has to be assigned in advance; 

and 3) the population cannot evaluate each fuzzy rule locally. 

About above problems, this dissertation focuses on not only the reinforcement learning 

but also the evolutionary algorithm. Therefore, in reinforcement learning, the architecture 

should consider how soon the system becomes stable. Moreover, in evolutionary algorithm, 

the numbers of fuzzy rules should be decided automatically and the population should 

evaluate each fuzzy rule locally. 

 

1.3 Research Purpose 

In this dissertation, improved safe reinforcement learning (ISRL) based self adaptive 

evolutionary algorithms (SAEAs) for neuro-fuzzy controller is proposed for improving not 

only the reinforcement signal designed but also evolutionary algorithms mentioned in Section 

1.1. There are two parts in the proposed ISRL-SAEAs. 

In the first part, self adaptive evolutionary algorithms (SAEAs) are proposed to solve the 

following problems: 1) all the fuzzy rules are encoded into one chromosome; 2) the number of 

fuzzy rules has to be assigned in advance; and 3) the population cannot evaluate each fuzzy 

rule locally. In this dissertation, the proposed self adaptive evolutionary algorithms (SAEAs) 

consist of three different evolution methods to provide different ways to solve the above 

problems. 

the numbers of fuzzy rules should be decided automathe numbers of fuzzy rules should be decided automa
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First of all, the hybrid evolutionary algorithm (HEA) with a TSK-type neuro-fuzzy 

controller is proposed, the proposed HEA determines the number of fuzzy rules automatically 

and processes the variable-length chromosomes. The length of each individual denotes the 

total number of genes in that individual. The initial length of each individual may be different 

from each other, depending on the total number of rules encoded in it. Individuals with an 

equal number of rules constitute the same group. Thus, initially there are several groups in a 

population. For keeping the best group in every generation, the elite-based reproduction 

strategy (ERS) is proposed. In the ERS, the best group can be reproduced many times for each 

generation. The advantages of the proposed HEA are summarized as follows: 1) it determines 

the number of fuzzy rules and tunes the free parameters of the neuro-fuzzy controller in a 

highly autonomous way. Thus, users need not give it any a priori knowledge or even any 

initial information on these. 2) It is applicable to chromosomes of different lengths. 3) It does 

not require precise training data for setting the parameters of the neuro-fuzzy controller.  

Although the proposed HEA can determine the number of fuzzy rules automatically, all 

the fuzzy rules are encoded into one chromosome. Therefore, partial solution cannot be 

evaluated independently in the population. The partial solutions can be characterized as 

specializations. The specialization property ensures diversity and prevents a population from 

converging to suboptimal solutions. A single partial solution cannot “take over” a population 

since it must correspond with other specializations. For solving this problem, the secondary 

algorithm of the SAEAs is proposed. In the secondary algorithm of the SAEAs, a self 

adaptive group cooperation based symbiotic evolution (SAGC-SE) is proposed not only for 

solving the problem that all the fuzzy rules are encoded into one chromosome but also for 

letting the population evaluate each fuzzy rule locally. Therefore, in the proposed SAGC-SE, 

each chromosome represents only one fuzzy rule and an n-rules TSK-type neuro-fuzzy 

controller is constructed by selecting and combining n chromosomes from several groups. The 

SAGC-SE, which promotes both cooperation and specialization, ensures diversity and 

initial information on these. 2) It is applicable to chromosomes of different lengths. 3)

not require precise training data for setting the parameters of the neuro-fuzzy controller.  

Although the proposed HEA can determine the number 
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prevents a population from converging to suboptimal solutions. In SAGC-SE, there are 

several groups in the population. Each group formed by a set of chromosomes represents a 

fuzzy rule. The proposed SAGC-SE consists of structure learning and parameter learning. In 

structure learning, as well as HEA, the SAGC-SE determines the number of fuzzy rules 

automatically and processes the variable length of a combination of chromosomes. In 

parameter learning, to let the well-performing groups of individuals for cooperating to 

generate better generation, an elite-based compensatory of crossover strategy (ECCS) is 

proposed. In the ECCS, each group will cooperate to perform the crossover steps. Therefore, 

the better chromosomes of each group will be selected to perform crossover in the next 

generation. 

The advantages of the proposed SAGC-SE are summarized as follows: 1) the proposed 

SAGC-SE determines the number of fuzzy rules automatically. 2) The SAGC-SE uses 

group-based population to evaluate the fuzzy rule locally. 3) The SAGC-SE uses the ECCS to 

allow the better solutions from different groups to cooperate for generating better solutions in 

the next generation. 

The SAGC-SE can solve the problem of the HEA that all the fuzzy rules are encoded 

into one chromosome. Moreover the SAGC-SE evaluates each fuzzy rule locally for 

improving the local consideration of the population. However, in the SAGC-SE, how to select 

groups for constructing the complete solution is a major problem. Therefore, for determining 

the number of fuzzy rules automatically, the SAGC-SE selects different number of groups to 

construct complete solution. In this way, the SAGC-SE selects groups randomly. It’s obvious 

that the performance of the SAGC-SE dependents on the method of selecting groups. For 

solving this problem, in the third algorithm of the SAEAs, a self adaptive groups based 

symbiotic evolution using FP-growth algorithm (SAG-SEFA) is proposed.  

As well as SAGC-SE, the SAG-SEFA consists of structure learning and parameter 

learning. In structure learning, as well as the SAGC-SE, the proposed SAG-SEFA determines 
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the number of fuzzy rules automatically and processes the variable combination of 

chromosomes. In parameter learning, although the proposed SAG-SEFA can determine the 

suitable number of rules, there still has a problem in which how to select the suitable groups 

from many groups (named candidate groups in this paper) in SAG-SEFA to construct 

TSK-type neuro-fuzzy controllers with different numbers of rules. Moreover, in consideration 

of making the well-performing groups of individuals cooperate for generating better 

generation, there is also a problem in which how to select suitable groups used to select 

individuals for cooperating to generate better generation. Regarding this, the goals of 

parameter learning in SAG-SEFA are used to determine which groups of chromosomes should 

be selected to construct TSK-type neuro-fuzzy networks with different numbers of rules and 

which groups should be selected for cooperating to generate better generation. 

Recently, data mining has become a popular research topic ([45]-[48]). Data mining is a 

method of mining information from a database. The database called “transactions”. Data 

mining can be regarded as a new way of performing data analysis. One goal of data mining is 

to find association rules among sets of items that occur frequently in transactions. To achieve 

this goal, several methods have been proposed ([49]-[54]). In [49], the authors proposed a 

mining method which ascertains large sets of items to find the association rules in transactions. 

Hang et al. ([50]) proposed frequent pattern growth (FP-growth) to mine frequent patterns 

without candidate generations. In Hang’s work, items that occur more frequently will have 

better chances of sharing information than items that occur less frequently. In [51], an 

algorithm of data mining for transaction data with quantitative values was proposed. In [51], 

each quantitative item was translated to a fuzzy set and the authors used these fuzzy sets to 

find fuzzy rules. Wu et al. ([52]) proposed a data mining method based on GA algorithm that 

efficiently improves the traditional GA by using analysis and confidence parameters. In [53], 

authors proposed a hybrid model using rough sets and genetic algorithms for fast and efficient 

improving answering data mining query which involves a random search over large databases. 

Recently, data mining has become a popular research
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As shown in [53], authors proposed select, aggregate and classification based data mining 

queries to implement a hybrid model. The performance of the proposed algorithm is analyzed 

for both execution time and classification accuracy and the results obtained are good. In [54], 

Dai and Zhang proposed an association rules mining in novel genetic algorithm. The genetic 

algorithm in [54] are using for discovering association rules. As shown in [54], the proposed 

algorithm avoids generating impossible candidates, and it is more efficient than traditional 

ones. 

Since data mining can successfully find information from large sets of items, it is useful 

to achieve goals of parameter learning in SAG-SEFA. Therefore, the data-mining method 

called FP-growth algorithm is adopted since the FP-growth algorithm can find items that 

occur frequently in transactions without candidate generations. After the parameter learning 

with FP-growth algorithm is performed, the population can search for a better solution from 

the combination of individuals that perform well and explore other combinations of 

individuals. Moreover, suitable groups will cooperate to perform the crossover steps. 

Therefore, the better chromosomes of suitable group will be selected to perform crossover in 

the next generation. 

When compared with SAGC-SE, the proposed SAG-SEFA not only selects the suitable 

groups form candidate groups to perform selection steps but also allows the better solutions 

from different groups to cooperate for generating better solutions in the next generation. 

The second part of the proposed ISRL-SAEAs is an improved safe reinforcement 

learning (ISRL). In the ISRL, the feedback takes the form of an accumulator. The accumulator 

determines by two different strategies (judgment and evaluation). The judgment strategy 

determines the reinforcement signal when the plant fails entering a predefined goal set and the 

evaluation strategy applies under the condition that the plant enters the goal set. Moreover the 

safe reinforcement learning [32] is considered in ISRL. The key of the ISRL is using an 

accumulator determined by two different strategies as the fitness function of the SAEAs. It 
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will be observed that the advantage of the proposed ISRL is that it can meet global 

optimization capability. 

 

1.4 Approach 

To demonstrate the performance of the ISRL-SAEAs for temporal problems, this 

dissertation presents two examples and performance contrasts with some other models. 

In the first example, the inverted pendulum control system is adopted to evaluate the 

performance of the proposed ISRL-SAEAs of this dissertation. This problem is often used as 

an example of inherently unstable and dynamic systems to demonstrate both modern and 

classical control techniques ([55]-[57]) or the reinforcement learning schemes ([15]-[21]), and 

is now used as a control benchmark.   

In the second example, the tandem pendulum control system is adopted to evaluate the 

performance of the proposed method of this dissertation. Since the task of an inverted 

pendulum control system is too easy to find solutions quickly through random search, in this 

example, a variety of extensions to an inverted pendulum control system have been suggested. 

The most challenging extension of an inverted pendulum control system ([58]-[60]) is a 

tandem pendulum control system, where two pendulums of different length must be balanced 

synchronously. 

 

1.5 Overview of Dissertation 

This dissertation consists of six chapters. In Chapter 1, the introduction consists of 

motivation, review of previous works, research goal, approach, and overview of this 

dissertation. 

In Chapter 2, the foundation for the four components of the proposed ISRL-SAEAs by 

providing background material on neuro-fuzzy controller, reinforcement learning, Lyapunov 

In the second example, the tandem pendulum control 
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stability, and evolutionary algorithm. 

In Chapter 3, the first part of the proposed ISRL-SAEAs is self adaptive evolution 

algorithms (SAEAs). The SAEAs consist of a hybrid evolutionary algorithm (HEA), self 

adaptive groups’ cooperation based symbiotic evolution (SAGC-SE), and self adaptive groups 

based symbiotic evolution using FP-growth algorithm (SAG-SEFA). These three algorithms 

are introduced in this chapter. 

In Chapter 4, the second part of the proposed ISRL-SAEAs is the improved safe 

reinforcement learning (ISRL). The ISRL consists of novel reinforcement signal designed and 

Lyapunov stability analysis. Both of these two components will be introduced in this chapter. 

In Chapter 5, to demonstrate the performance of the ISRL-SAEAs for temporal 

problems, two examples and performance contrasts with some other models are presented. 

The examples of this chapter consist of the inverted pendulum control system and tandem 

pendulum control system. 

In Chapter 6, the contributions and outlines some promising directions for future 

research are discussed. 
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Chapter 2          

Foundations 
 

The background material and literature review that relates to the major components of 

the research purpose outlined above (neuro-fuzzy controller, reinforcement learning, 

Lyapunov stability, and evolutionary algorithm) are introduced in this chapter. The concept of 

neuro-fuzzy controller is discussed in the first section. The reinforcement learning schema is 

introduced in Section 2.2. In Section 2.3, the Lyapunov stability that the improved safe 

reinforcement learning (ISRL) is discussed. The final section focuses on genetic algorithm, 

cooperative coevolution, and symbiotic evolution, the method on which the proposed self 

adaptive evolutionary algorithms (SAEAs) are based. 

 

2.1 Neuro-Fuzzy Controller 

Neuro-fuzzy modeling has been known as a powerful tool ([1]-[14]) which can facilitate 

the effective development of models by combining information from different sources, such 

as empirical models, heuristics and data. Neuro-fuzzy models describe systems by means of 

fuzzy if–then rules represented in a network structure, to which learning algorithms known 

from the area of artificial neural networks can be applied. 

A neuro-fuzzy controller is a knowledge-based system characterized by a set of rules, 

which model the relationship among control input and output. The reasoning process is 

defined by means of the employed aggregation operators, the fuzzy connectives and the 

inference method. The fuzzy knowledge base contains the definition of fuzzy sets stored in 

the fuzzy database and a collection of fuzzy rules, which constitute the fuzzy rule base. Fuzzy 
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rules are defined by their antecedents and consequents, which relate an observed input state to 

a desired output. Two typical types of neuro-fuzzy controllers are Mamdani-type and 

TSK-type neuro-fuzzy controllers.  

For Mamdani-type neuro-fuzzy controllers ([1]), the minimum fuzzy implication is used 

in fuzzy reasoning. The neuro-fuzzy controllers employ the inference method proposed by 

Mamdani in which the consequence parts are defined by fuzzy sets. A Mamdani-type fuzzy 

rule has the form:  

IF x1 is A1j (m1j , σσσσ1j ) and x2 is A2j(m2j , σσσσ2j )…and xn is Anj (mnj , σσσσnj) 

             THEN y’ is Bj (mj ,σσσσj )                                     (2.1)                                  

where ijm , and ijσ  represent a Gaussian membership function with mean and deviation with 

ith dimension and jth rule node. The consequences Bj of jth rule is aggregated into one fuzzy 

set for the output variable y
’
. The crisp output is obtained through defuzzification, which 

calculates the centroid of the output fuzzy set. 

Besides the more common fuzzy inference method proposed by Mamdani, Takagi, 

Sugeno and Kang introduced a modified inference scheme ([5]). The first two parts of the 

fuzzy inference process, fuzzifier the inputs and applying the fuzzy operator are exactly the 

same. A Takagi-Sugeno-Kang (TSK) type fuzzy model employs different implication and 

aggregation methods than the standard Mamdani’s type. For TSK-type neuro-fuzzy 

controllers ([5]), the consequence of each rule is a function input variable. The general 

adopted function is a linear combination of input variables plus a constant term. A TSK-type 

fuzzy rule has the form: 

IF x1 is A1j (m1j , σσσσ1j ) and x2 is A2j(m2j , σσσσ2j )…and xn is Anj (mnj , σσσσnj ) 

 THEN y’=w0j+w1jx1+…+wnjxn                                 (2.2) 

where w0j represents the first parameter of a linear combination of input variables with jth rule 

node and wij represents the ith parameter of a linear combination of ith input variable. Since 
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the consequence of a rule is crisp, the defuzzification step becomes obsolete in the TSK 

inference scheme. Instead, the model output is computed as the weighted average of the crisp 

rule outputs, which is computationally less expensive then calculating the center of gravity. 

Recently, there are many researchers ([5], [35], and [44]) to show that using a TSK-type 

neuro-fuzzy controller achieves superior performance in network size and learning accuracy 

than that of Mamdani-type neuro-fuzzy controllers. According to this reason, in this 

dissertation, a TSK-type neuro-fuzzy controller (TNFC) is adopted to perform various 

dynamic problems. Therefore, the proposed SAEAs are used to tune free parameters of a 

TNFC. 

The structure of a TNFC is shown in Fig. 2.1, where n and R are, respectively, the 

number of input dimensions and the number of rules. It is a five-layer network structure. The 

functions of the nodes in each layer are described as follows: 

Layer 1 (Input Node): No function is performed in this layer. The node only transmits input 

values to layer 2. 

,)1(

ii xu =                                      (2.3) 

where )(k

iu  denotes the ith node’s input in the kth layer and ix  denotes ith input 

dimension. 

Layer 2 (Membership Function Node): Nodes in this layer correspond to one linguistic label 

of the input variables in layer1; that is, the membership value specifying the degree to which 

an input value belongs to a fuzzy set ([3]-[4]) is calculated in this layer. In this dissertation, 

the Gaussian membership function is adopted in this layer. Therefore, for an external input ix , 

the following Gaussian membership function is used: 
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where ijm and ijσ are, respectively, the center and the width of the Gaussian membership 

functions of the nodes in each layer are described 
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function of the jth term of the ith input variable ix . 

Layer 3 (Rule Node): The output of each node in this layer is determined by the fuzzy AND 

operation. Here, the product operation is utilized to determine the firing strength of each rule. 

The function of each rule is 

         ∏=
i

ijj uu )2()3(
                                   (2.5) 

Layer 4 (Consequent Node): Nodes in this layer are called consequent nodes. The input to a 

node in layer 4 is the output derived from layer 3, and the other inputs are the input variables 

from layer 1 as depicted in Fig. 2.1. The function of a node in this layer is  

)(
1

0

)3()4( ∑
=

+=
n

i

iijjjj xwwuu                           (2.6) 

where the summation is over all the inputs and where ijw  are the corresponding parameters 

of the consequent part. 

Layer 5 (Output Node): Each node in this layer corresponds to single output variable. The 

node integrates all the actions recommended by layers 3 and 4 and acts as a defuzzifier with 
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where R is the number of fuzzy rule. 
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Figure 2. 1: Structure of the TSK-type neuro-fuzzy controller. 

 

2.2 Reinforcement Learning 

Unlike the supervised learning problem, in which the correct “target” output values are 

given for each input pattern, the reinforcement learning problem has only very simple 

“evaluative” or “critical” information, rather than “instructive” information. Reinforcement 

learning algorithm is proposed for determining a sequence of decisions to maximize a 

reinforcement signal. At each time step, the agent in state Sst ∈ , chooses an action Aat ∈  

that transfers the environment to the state 1+ts  and returns a numerical reward, tr , to the 

agent. To lack of knowledge of how to solve the problem, the agent should explore the 

environment by trial-and-error learning strategy. Unlike supervised learning, the desired 

output in each state is not known in advance in reinforcement learning. In such trial-and-error 

learning strategy, an action performs well in the current states may perform badly in the future 

states, and vice versa. 

The well-known learning methods for solving control problems are dynamic 

Reinforcement Learning 

Unlike the supervised learning problem, in which th

Reinforcement Learning Reinforcement Learning Reinforcement Learning Reinforcement Learning 

Unlike the supervised learning problem, in which th

Reinforcement Learning Reinforcement Learning Reinforcement Learning 
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programming ([61]). These methods are similarly to the reinforcement learning ([62]). The 

necessary component of reinforcement learning methods is shown in Fig. 2.2. The agent 

consists of a value function and a strategy. The value function represents how much reward 

can be expected from each state if the best known strategy is performed. The strategy 

represents how to choose suitable actions from the value function to environment. As shown 

in Fig. 2.2, at time step t , the agent selects an action ta . The action is applied to the 

environment, causing a state transition from ts  to 1+ts , and a reward tr  is received. The 

goal of a reinforcement learning method is to find the optimal value function for a given 

environment. 

There are several reinforcement learning algorithms such as the Q-learning ([63]-[64]) 

and Sarsa ([65]) algorithms are proposed for computing the value function. These methods are 

developed based on the temporal difference learning algorithm. In the temporal difference 

learning method, the value function of each state (V( ts )) is updated using the value function 

of the next state (V( 1+ts )). The value function of each state is shown as follows. 

[ ],)()()()( 1 ttttt sVsVrsVsV −++= +λα                    (2.8) 

where V( ts ) increases by the reward tr  plus the difference between the next state )( 1+tsVλ  

and V( ts ); α  is the learning rate between 0 to 1; and λ  is the discount factor between 0 to 

1.  
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Figure 2. 2: Reinforcement learning method. 

 

In early research, these reinforcement learning algorithms were proposed in simple 

environments. Recently, the reinforcement learning algorithms focus on larger, 

high-dimensional environments. These reinforcement learning algorithms are developed base 

on the neural networks ([66]-[67]), radial basis functions ([68]), and neuro-fuzzy network 

([18]-[20]).  

More recently, there are several researches proposed time-step reinforcement 

architectures to provide an easier way to implement the reinforcement learning architecture 

when compared with temporal difference learning architectures ([18]-[20]). In time-step 

reinforcement architecture, the only available feedback is a reinforcement signal that notifies 

the model only when a failure occurs. An accumulator accumulates the number of time steps 

before a failure occurs. The goal of the time-step reinforcement method is to maximize the 

value function V. The fitness function is defined by: 

V =TIME-STEP                                    (2.9) 

where TIME-STEP represents how long the experiment is still a “success”. Equation 2.9 

reflects the fact that long-time steps before a failure occurs means the controller can control 

environments. Recently, the reinforcement learning 
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the plat well. For example, in evolutionary algorithm, Eq. 2.9 reflects the fact that long-time 

steps before a failure occurs means higher fitness of the evolutionary algorithm. 

 

2.3 Lyapunov Stability 

Consider a following system: 

 )(xfx =ɺ                                  (2.10) 

where nRDf →:  represents a locally Lipschitz that maps from an open set nRD ⊂  

into nR . Suppose that 0x =  is an equilibrium point for Eq. 2.10; that is, 0)0( =f . 

According to [69], we have the following definition of stability 

Definition 2.3.1: 

1. Stable, if 0for  0,)( >∀>∃ εεδ , such that  

0,)()0( ≥∀<⇒< ttxx εδ                    (2.11) 

2. Asymptotically stable, if it is stable and there exists some 0>γ  such that  

0)(lim)0( =⇒<
∞→

txx
t

γ                        (2.12) 

3. Globally asymptotically stable, if it is asymptotically stable and there exists 

0)(lim =
∞→

tx
t

 holds for all )0(x . 

4. Unstable, if not stable. 

The Lyapunov stability theorems ([69]) are introduced as follows. 

Theorem 2.3.1 ([69]): 

Suppose 0=x  is an equilibrium point of Eq. 2.10 and nRD ⊂  is an open set containing 

0=x . Let RDV →:  to be a continuously differentiable function as following 

0)0( =V  and 0)( >xV  in { }0\D .          (2.13) 

According to Eq. 2.13, the following equations hold: 

1. If  0)( ≤xVɺ  in D ,then 0=x  is stable, where )(xVɺ  is defined by 

)()0( tx
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))(()( xf
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xV

∂
∂

=ɺ .                          (2.14) 

2. If nRD = , 0)( <xVɺ  in { }0\D , and )(xV is radially unbounded. An equilibrium 

point 0=x  is globally asymptotically stable, when ∞→x  and ∞→)(xV . 

3. If 0)( <xVɺ  in { }0\D , then 0=x  is asymptotically stable. 

In reinforcement learning, the most well-known algorithm is Barto and his colleagues’ 

actor-critic architecture ([17]), which consists of a control network and a critic network. 

However, Barto’s architecture is complicated and is not easy to implement. Therefore, there 

are several researches proposed time-step reinforcement architectures to improve Barto’s 

architecture ([18]-[20]). In time-step reinforcement architecture, the only available feedback 

is a reinforcement signal that notifies the model only when a failure occurs. An accumulator 

accumulates the number of time steps before a failure occurs. Even though the time-step 

reinforcement architecture is easier to implement when compared with Barto’s architecture, it 

only measures the number of time steps before a failure occurs; in other words, it only 

evaluates how long the controller works well instead of how soon the system can enter the 

desired state, which is also very important. In [32], Perkins and Barto proposed safe 

reinforcement learning based on Lyapunov function design. Once the system’s Lyapunov 

function is identified, under Lyapunov-based manipulations on control laws, the architecture 

can drive the system to reach and remain in a predefined desired state with probability 1. Then, 

the time step for the system entering the desired state can indicate the concept of how soon the 

system becomes stable. In this dissertation, the Lyapunov stability theorem is used to design 

the reinforcement signal; therefore, the improved safe reinforcement learning (ISRL) is based 

on the Lyapunov stability theorem. The details of the ISRL can be found in Chapter 4. 
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2.4 Evolution Learning 
In this section, the foundations of evolutionary algorithm are introduced. This section 

focuses on genetic algorithm, cooperative coevolution and symbiotic evolution, the methods 

on which the proposed self adaptive evolutionary algorithms (SAEAs) are based. 

2.4.1 Genetic algorithm 

Genetic algorithms (GAs) ([22]) are search algorithms inspired by the mechanics of 

natural selection, genetics, and evolution. It is widely accepted that the evolution of living 

beings is a process that operates on chromosome-organic devices for encoding the structure of 

living beings.  

The flowchart of the learning process is shown in Fig. 2.3, where Nc is the size of 

population, G denote Gth generation. The learning process of the GAs involves three major 

steps: reproduction, crossover, and mutation. Reproduction ([70]-[72]) is a process in which 

individual strings are copied according to their fitness value. This operator is an artificial 

version of neural selection. In GAs, a high fitness value denotes a good fit. In the reproduction 

step, the well-known method is the roulette-wheel selection method ([72]) (see Fig.2.4). In 

Fig.2.4, the intermediate population is P’, which is generated from identical copies of a 

chromosome sampled by spinning the roulette wheel a sufficient number of times.  
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Figure 2. 3: Flowchart of the genetic algorithm. 
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Figure 2. 4: The roulette wheel selection. 

 

In crossover step ([73]-[77]), although reproduction step directs the search toward the best 

existing individuals, it cannot create any new individuals. In nature, an offspring has two 

parents and inherits genes from both. The main operator working on the parents is the 

crossover operator, the operation of which occurred for a selected pair with a crossover rate. 

Figure 2.5 illustrates how the crossover works. Crossover produces two offspring from their 

parents by exchanging chromosomal genes on either side of a crossover point generated 

randomly.  
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Figure 2.5: Crossover operator. 

In mutation step ([78]-[84]), although the reproduction and crossover would produce many 

new strings, they do not introduce any new information to the population at the site of an 

individual. Mutation can randomly alter the allele of a gene. The operation is occurred with a 

mutation rate. Figure 2.6 illustrates how the mutation works. When an offspring is mutated, 

one of its genes selected randomly is changed to a new value.  

 

Figure 2.6: Mutation operator. 

Since GAs search many points in the space simultaneously, they have less chance to 

reach the local minima than single solution methods. The advantages of GAs are (1) some 

individuals have a better chance to come close to the global optima solution, and (2) the 

genetic operators allow the GA to search optima solution. According to above reasons, GAs 

are suitable for searching the parameters space of neuro-fuzzy controller. For solving the 

problem that a neuro-fuzzy controller which performs gradient-descent based learning 

algorithms may reach the local minima very fast but never find the global solution, the GAs 

sample the parameters space of neuro-fuzzy controllers and recombine those that perform best 

on the control problem. 

one of its genes selected randomly is changed to a one of its genes selected randomly is changed to a 
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2.4.2 Cooperative Coevolution 

In natural evolution, individuals may compete and/or cooperate with each other for 

resources and survival. The fitness of each individual may changes each generation. The 

reason is that individuals compete and/or cooperate with other individuals in the environment. 

About this phenomenon, recently, many researches try to propose coevolutionary algorithms 

to improve the traditional evolutionary algorithm. Most coevolutionary algorithms focus on 

competition between individuals in the population ([85]-[87]). Therefore, individuals generate 

stronger and stronger strategies to defeat others in every generation. 

Another kind of coevolutionary algorithms is proposed to improve cooperation of GAs. 

Cooperative coevolution is proposed for reducing the difficult problems through 

modularization ([88]). Therefore, in cooperative coevolutionary algorithms, the individuals 

represent only partial solutions. The partial solutions are evolved by evaluating their 

performance to complete solutions and recombining the partial solutions with well 

performance to solve the problem. Cooperative coevolution algorithms can improve the 

performance of traditional evolution by dividing the problem into several small problems. 

In [89], Holland and Reitman proposed cooperative coevolution algorithms to apply in 

classifier systems. The fitness value is assigned to each individual on how well it cooperates 

with others. This approach is implemented by a neural network. Recently, there are several 

researches try to use coevolution algorithms to radial basis functions ([90]-[93]). In [94], the 

authors proposed a cooperative coevolutionary GA that each individual is evaluated 

independently on its own population.  

More recently, several researches try to propose algorithms to combine cooperative 

coevolution with neural networks ([95]-[96]) and neuro-fuzzy controller ([29], [31], and [44]) 

to improve the performance. The approach called symbiotic evolution will be introduced in 

next section. 
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2.4.3 Symbiotic Evolution 

In this section, an approach of cooperative coevolution is introduced. Therefore, the 

symbiotic evolution is discussed. The idea of symbiotic evolution was first proposed in an 

implicit fitness sharing algorithm that was used in an immune system model ([97]). The 

authors developed artificial antibodies to identify artificial antigens. Because each antibody 

can match only one antigen, a different population of antibodies was required to effectively 

defend against a variety of antigens. 

Unlike traditional GAs that use each individual in a population as a full solution to a 

problem, symbiotic evolution assumes that each individual in a population represents only 

a partial solution to a problem; complete solutions combine several individuals in the 

population. In a normal evolution algorithm, a single individual is responsible for the 

overall performance, with a fitness value assigned to that individual according to its 

performance. In symbiotic evolution, the fitness of an individual (a partial solution) is 

calculated by summing up the fitness values of all possible combinations of that individual 

with other current individuals (partial solutions) and dividing the sum by the total number 

of combinations. 

As shown in [29], [31], [44], and [95]-[96], partial solutions can be characterized as 

specializations. The specialization property ensures diversity, which prevents a population 

from converging to suboptimal solutions. A single partial solution cannot “take over” a 

population since there must be other specializations present. Unlike the standard 

evolutionary approach, which always causes a given population to converge, hopefully at 

the global optimum, but often at a local one, the symbiotic evolution finds solutions in 

different, unconverted populations ([29], [31], [44], and [95]-[96]). 

The basic idea of symbiotic evolution is that an individual (i.e., a chromosome) is 

used to represent a partial solution. A complete solution is formed when several individuals, 
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which are randomly selected from a population, are combined. With the fitness assignment 

performed by symbiotic evolution, and with the local property of a fuzzy rule, symbiotic 

evolution and the fuzzy system design can complement each other. If a normal GA 

evolution scheme is adopted, only the overall performance of the complete solution is 

known, not the performance of each partial solution. The best method to replace the 

unsuitable partial solutions that degrade the overall performance of a fuzzy system is to use 

crossover operations, followed by observing the performance of the offspring. 

The structure of the symbiotic evolution is shown in Fig. 2.7, where N is the number 

of complete solutions the symbiotic evolution will select individuals to form. The complete 

solution is constructed by selecting the individuals from a population. The learning 

flowchart is shown in Fig. 2.8, where Nc is the size of population, and G denotes Gth 

generation. Compare with genetic algorithm, the difference of symbiotic evolution is 

selecting individuals to form a complete solution (selection step) and to evaluate the 

performance of each individual (fitness assignments step).  

 

Figure 2.7: Structure of a chromosome in a symbiotic evolution. 
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Figure 2.8: Flowchart of the symbiotic evolution. 

 

In the selection step, the sufficient times are needed to select individuals. Therefore, 

the selection times must be large enough to let every individual in population to be selected 

sufficiently. 

In the fitness assignments step, the fitness value is defined as follows: 

Step 1. Randomly choose R individuals in population to form complete solution. The R 

represents the number of individuals that the complete solution needs (in this dissertation, 

R represents the number of fuzzy rules). 

Step 2. Evaluate every complete solution with R individuals, which are selected from 

step1, to obtain a fitness value. 

Step 3. Divide the fitness value by R and accumulate the divided fitness value to the 

selected individuals with their fitness value records are set for zero initially. 

Step 4. Divide the accumulated fitness value of each chromosome by the number of 

times it has been selected. The average fitness value represents the performance of a 
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single individual. 

Although the symbiotic evolution uses the specialization property to ensure diversity, 

which prevents a population from converging to suboptimal solutions, there still has a 

problem that the population cannot evaluate each partial solution locally. For example, the 

partial solutions are all encode in a population. In the evolutionary operator, the chromosomes 

with better fitness have most chance to reproduce in the offspring. Therefore, the 

chromosomes of population may become similarly. This will cause the complete solution hard 

to find by combining of the chromosomes in the population. For solving this problem, the 

SAEAs are proposed in this dissertation to let the population can evaluate each partial 

solution locally. The details of the SAEAs can be found in Chapter 3. 
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Chapter 3                                  

Self Adaptive Evolutionary 

Algorithms 
 

In this chapter, the first part of the proposed ISRL-SAEAs, that is, the self adaptive 

evolution algorithms (SAEAs), is introduced. The three methods contained in the SAEAs will 

be introduced in the following sections. In the first section, a hybrid evolutionary algorithm 

(HEA) is introduced for improving the traditional evolution that the length of individuals in 

the population must be predefined. In the second section, a self adaptive group cooperation 

based symbiotic evolution (SAGC-SE) is proposed for providing the local consideration of 

the population in the HEA. In the final section, a self adaptive group based symbiotic 

evolution using FP-growth algorithm (SAG-SEFA) is discussed to provide the methodology 

of selecting groups for performing selection and crossover steps in SAGC-SE. 

 

3.1 Self Adaptive Hybrid Evolutionary Algorithm 

In this section, the proposed hybrid evolutionary algorithm (HEA) is introduced. 

Recently, many efforts to enhance the traditional GAs have been made ([98]). Among them, 

one category focuses on modifying the structure of a population or the role an individual plays 

in it ([85]-[87] and [95]-[100]), such as the coevolutionary algorithms ([85]-[87]), distributed 

GA ([99]), cellular GA ([100]), and symbiotic evolution ([95]-[97]). 

In a traditional evolution algorithm, the number of rules in a model must be predefined. 

The length of individuals (chromosomes) in a population is the same and is defined by 
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trail-and-error testing. Therefore, for different control problem, the length of an individual 

(chromosome) must be redefined. For solving this problem, the hybrid evolutionary algorithm 

(HEA) is proposed to decide the number of fuzzy rules automatically. 

The proposed HEA combines the modified compact genetic algorithm (MCGA) and the 

modified variable-length genetic algorithm (MVGA). In the MVGA, the initial length of each 

individual may be different from each other, depending on the total number of rules encoded 

in it. Thus, the number of rules does not need to be predefined. In HEA, individuals with an 

equal number of rules constitute the same group. Initially, there are several groups in a 

population. Unlike the traditional variable-length genetic algorithm (VGA), Bandyopadhyay 

et. al. ([30]) used “#” to mean, “does not care”. In the HEA, the variable two-part crossover 

(VTC) and variable two-part mutation (VTM) are adopted to make the traditional crossover 

and mutation operators applicable to different lengths of chromosomes. Therefore, using “#” 

means that “does not care” is not needed in the VTC and VTM. 

In the HEA, a chromosome is divided into two parts. The first part of the chromosome 

gives the antecedent parameters of a TSK-type neuro-fuzzy controller while the second part of 

the chromosome gives the consequent parameters of a TSK-type neuro-fuzzy controller. Each 

part of the chromosome can be performed using the VTC on the overlapping genes of two 

chromosomes. In the traditional VGA, Bandyopadhyay et. al. ([30]) only evaluated the 

performance of each chromosome in a population. The performance of the number of rules 

was not evaluated ([30]). In HEA, the elite-based reproduction strategy is proposed to keep 

the best group with the same length chromosomes. Therefore, the best group can be 

reproduced many times for each generation. The elite-based reproduction strategy is similar to 

the maturing phenomenon in society, where individuals become more suitable to the 

environment as they acquire knowledge from society. 

In the proposed HEA, the modified compact genetic algorithm (MCGA) is proposed to 

carry out the elite-based reproduction strategy. The concept of compact genetic algorithm 

and mutation operators applicable to different leng
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(CGA) ([101]) represents a population as a probability distribution over the set of solutions 

and is operationally equivalent to the order-one behavior of the simple GA ([102]). The 

advantage of the CGA is that it processes each gene independently and requires less memory 

than the normal GA. In the proposed MCGA, the building blocks (BBs) in the MCGA 

represent the suitable lengths of the chromosomes and reproduce the individuals according to 

the BBs. The coding scheme consists of the coding done by the MVGA and the MCGA. The 

MVGA codes the adjustable parameters of a TSK-type neuro-fuzzy controller (TNFC) into an 

individual (chromosome), as shown in Fig. 3.1; where MSj represents the parameters of the 

antecedent of the jth rule in the TNFC, Wj represents the parameters of the consequent of the 

jth rule, ijw  is the corresponding parameter of the consequent part with the jth rule and ith 

input variable, and Rk represents that there are Rk fuzzy rules in a TNFC. In Fig. 3.2, the 

MCGA codes the probability vector into the building blocks (BBs), where each probability 

vector represents the suitability of the number of fuzzy rules in a TNFC. In MCGA, the 

maximum number of rules (Rmax) and minimum number of rules (Rmin) must be predefined to 

prevent the number of fuzzy rules to generate beyond a certain bound (i.e., [Rmin, Rmax]). 

 

m11 11σ

MS1 MS2 ... MSj W1... W2 ... Wj ...

m21 21σ ... mi1 1iσ mn1... w0j ...... wij njw

kRW
kRMS

 

Figure 3.1: Coding the adjustable parameters of a TNFC into a chromosome in the MVGA. 

 

minRV  1min +RV  … 
kRV  … 1max −RV  

maxRV  

Figure 3.2: Coding the probability vector into the building blocks (BBs) in the MCGA. 

 

The learning process of the HEA involves six major operators: initializing, evaluating, 

sorting, elite-based reproduction strategy, variable two-part crossover, and variable two-part 
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mutation. Figure 3.3 shows the flowchart of the learning process. The whole learning process 

is described step-by-step as follows: 
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Figure 3.3: Flowchart of the parameter learning in the HEA. 

 

1. Initializing:  

The initializing step sets initial values of the MVGA and MCGA. In the MVGA, 

individuals should be generated randomly to construct an initial population. The 

initial values of MVGA are generated randomly within a fixed range. The following 

formulations show how to generate the initial chromosomes: 
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where Chrc represents cth chromosome in a population; Rk represents they are Rk 

rules in a TNFC and NC is the total number of chromosomes in each group; p 
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represents the pth gene in a Chrc; and [ minσ , maxσ ], [ minm , maxm ], and 

],[ maxmin ww represent the predefined range. 

In order to keep the same number of rules in a TNFC, the number of the rules 

of each chromosome needs to be generated η chromosomes. That is, the number of 

chromosomes generated of each group (η) must be predefined. Therefore, the 

population size Nc is set to η*(Rmax-Rmin +1). In the MCGA, the probability vectors 

of the BBs are set to 0.5 initially. 

2. Evaluating:  

The evaluating step is to evaluate each chromosome in a population. The goal of 

the HEA is to maximize the fitness value. The higher a fitness value, the better the 

fitness. The fitness function is used by a reinforcement signal defined in Chapter 4 

will be introduced later.  

3. Sorting:  

After the evaluating step, the chromosomes in the population are sorted. After 

sorting the whole population, chromosomes in the top half of population are also 

sorted in each group. The sorting step can help performing the reproduction step 

because of the best chromosome in each group can be stayed. After sorting the 

chromosomes in the population, the algorithm goes to next step. 

4. Elite-Based Reproduction Strategy (ERS):  

Reproduction is a process in which individual strings are copied according to 

their fitness value. In the HEA, an elite-based reproduction strategy (ERS) is 

proposed to mimic the maturing phenomenon in society, where individuals become 

more suitable to the environment as they acquire more knowledge from society. The 

MCGA uses the BBs to represent the suitable length of the chromosomes and 

reproduces the chromosomes according to the probability vector in the BBs. The best 

performing individuals where in the top half of each population are using to perform 
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the ERS. According to the results of the ERS, using the crossover and the mutation 

generate the other half individuals. After the ERS, the suitable length of 

chromosomes will be preserved and the unsuitable length of chromosomes will be 

removed. The detailed of the ERS is shown as follows: 

Step 1. Update the probability vectors of the BBs according to the following 

equations: 
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where 
kRV  is the probability vector in the BBs and represents the suitable 

chromosomes in the group with Rk rules in a population; λ is a predefined threshold 

value; Avg represents the average fitness value in the whole population; Nc is the 

population size; 
kRN  represents that there are 

kRN chromosomes in the group that 

individuals with Rk rules; fitp is the fitness value of the pth chromosome in all Nc 

populations; qRk
fit  is the fitness value of the qth chromosome in the group with Rk 

rules; and 
kRfitMax _  is the best fitness value in the group with Rk rules. As shown 

in Eq. 3.4, if
kRfitMax _ ≥Avg, then the suitable chromosomes in the group with Rk 

rules should be increased. On the other hand, if
kRfitMax _ <Avg, then the suitable 

chromosomes in the group with Rk rules should be decreased. Eq. 3.7 represents the 
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sum of the fitness values of the chromosomes in the group with Rk rules. 

Step 2. Determine the reproduction number according to the probability vectors of 

the BBs as follows: 
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where Nc represents the population size; Rp
kR is the recorder, and a chromosome has 

Rk rules for constructing a TNFC. 

Step 3. After step 2, the reproduction number of each group in the top half of a 

population is obtained. Then 
kRRp  chromosomes in each group are generated using 

the roulette-wheel selection method ([72]). 

Step 4. In the proposed ERS, for avoiding suitable number of fuzzy rules may fall in 

the local optima solution, the two different actions to update the 
kRV  are adopted. 

The two deferent actions are defined according to the following equations:  

    

3to1Stepsdothen

if ERSTimesrAccumulato ≤

                            (3.10) 

;1then

__if

+=

=

rAccumulatorAccumulato

FitnessBestFitnessBest g

                    (3.11) 

 

,0and0Stepdothen

if

=

>

rAccumulato

ERSTimesrAccumulato

                  (3.12) 

where ERSTimes is a predefined value; gFitnessBest _  represents the best fitness 

value of the best combination of chromosomes in the gth generation; FitnessBest _  

the roulette-wheel selection method ([72]). 
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represents the best fitness value of the best combination of chromosomes in current 

generations. Eqs. 3.10-3.12 represent that if the best fitness is not changed for a 

sufficient generations, the suitable number of fuzzy rules may fall in the local optima 

solution. 

5. Variable two-part crossover:  

Although the ERS operation can search for the best existing individuals, it does 

not create any new individuals. In nature, an offspring has two parents and inherits 

genes from both. The main operator working on the parents is the crossover operator, 

the operation of which occurs for a selected pair with a crossover rate. In the HEA, 

the variable two-part crossover (VTC) is proposed to perform this step. In the VTC, 

the parents are selected from the enhanced elites. In the VTC, two parents are 

selected by using the roulette-wheel selection method ([72]). The two parents may be 

selected from the same or different groups. Performing crossover on the selected 

parents creates the offspring. Since the parents may be of different lengths, the 

misalignment of individuals must be avoided in the crossover operation. Therefore, a 

variable two-part crossover is proposed to solve this problem. The first part of the 

chromosome gives the antecedent parameters of a TNFC while the second part of the 

chromosome gives the consequent parameters of a TNFC. The two-point crossover 

([76]) is adopted in each part of the chromosome. Thus, new individuals are created 

by exchanging the site’s values between the selected sites of the parents’ individuals. 

To avoid the misalignment of individuals in the crossover, in the VTC, the selection 

of the crossover points in each part will not exceed the shortest length chromosome 

of two parents. Two individuals of different lengths using the variable two-part 

crossover operation are shown in Fig. 3.4. MSj represents the parameters of the 

antecedent part of the jth rule in the TNFC, Wj represents the parameters of the 

consequent of the jth rule in the TNFC, and Rk represents that there are k fuzzy rules 
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in a TNFC. After the VTC, the individuals with poor performance are replaced by the 

new offspring. 
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Figure 3.4: The variable two-part crossover operation in the HEA. 

 

6. Variable two-part mutation:  

 Although the ERS and the VTC produce many new strings; these strings do not 

provide any new information to every population at the site of an individual. Mutation 

can randomly alter the allele of a gene. In the HEA, the variable two-part mutation 

(VTM) is proposed to perform the mutation operation. The proposed VTM is different 

from the traditional mutation and is applicable to chromosomes of different length. 

The first and second parts of the chromosome are the same as the VTC. In each part of 

a chromosome, uniform mutation ([84]) is adopted, and the mutated gene is drawn 

randomly from the domain of the corresponding variable. The VTM operation of each 

individual is shown in Fig. 3.5. 
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Figure 3.5: The variable two-part mutation operation in the HEA. 
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After the above-mentioned operations, the problem of groups constituted by the most 

suitable number of rules will be solved. The number of elites in other groups will decrease 

and most of them will become zero (in most cases, there will be no elites). That is, the 

proposed HEA indeed can eliminate unsuitable groups and rules. 

As mention above, the proposed HEA has structure-and-parameter learning ability. That 

is, it can determine the average optima number of fuzzy rules and tune the free parameters in 

a TNFC. The proposed HEA also processes variable lengths of the chromosomes in a 

population.  

 

3.2 Self Adaptive Groups Cooperation Based 

Symbiotic Evolution 

Although the HEA can solve the problems about deciding the number of fuzzy rules, there 

still has a limitation of the proposed HEA. That is, all the fuzzy rules are encoded into one 

chromosome. In the HEA, partial solutions cannot be evaluated independently in the 

population. The partial solutions can be characterized as specializations. The specialization 

property ensures diversity and prevents a population from converging to suboptimal solutions. 

A single partial solution cannot “take over” a population since it must correspond with other 

specializations. For solving this problem, the self adaptive group cooperation based symbiotic 

evolution (SAGC-SE) is proposed. 

In this section, the self adaptive group cooperation based symbiotic evolution (SAGC-SE) 

will be discussed. In the proposed SAGC-SE, the algorithm is developed from symbiotic 

evolution. Unlike the standard evolutionary approach which always causes a given population 

to converge, hopefully at the global optimum, the symbiotic evolution finds solutions in 

different, unconverted populations ([95]-[97]). 

Although the symbiotic evolution uses the specialization property to ensure diversity, 
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which prevents a population from converging to suboptimal solutions, there still has a 

problem that the population cannot evaluate each partial solution locally. For example, the 

partial solutions are all encode into a population. In the evolutionary operator, the 

chromosomes with better fitness have most chance to keep in the offspring. Therefore, 

chromosomes of a population may become more similarly. The complete solution is hard to 

fine by combining of chromosomes in a population. 

Recently, Gomez and Schmidhuber proposed lots of work to solve this problem ([40] and 

[41]). The proposed enforced sub-populations (ESP) used sub-populations of neurons for the 

fitness evaluation and overall control. As shown in [40] and [41], the sub-populations that use 

to evaluate the solution locally can obtain better performance compared to systems of only 

one population be used to evaluate the solution. 

Same with the ESP, the SAGC-SE is proposed for solving the problem that that the 

population cannot evaluate each fuzzy rule locally. In the SAGC-SE, each chromosome 

represents only one fuzzy rule and an n-rules fuzzy system is constructed by selecting and 

combining n chromosomes from several groups. The SAGC-SE, which promotes both 

cooperation and specialization, ensures diversity and prevents a population from converging 

to suboptimal solutions. In SAGC-SE, compared with normal symbiotic evolution, there are 

several groups in a population. Each group formed by a set of chromosomes represents a 

fuzzy rule. Compare with the ESP, to let the well-performing groups of individuals to 

cooperate for generating better generation, an elite-based compensatory of crossover strategy 

(ECCS) is proposed. In the ECCS, each group will cooperate to perform the crossover steps. 

Therefore, the better chromosomes of each group will be selected to perform crossover in the 

next generation. 

The proposed SAGC-SE consists of structure and parameter learning. In structure 

learning, as well as HEA, the SAGC-SE determines the number of fuzzy rules automatically 

and processes the variable length of a combination of chromosomes. The length of a 
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combination of chromosomes denotes the rule sets that are used to construct a TNFC. To deal 

with this, in the SAGC-SE, the numbers of rules in TNFCs are variable. The structure of the 

chromosome in the SAGC-SE is shown in Fig. 3.6. As shown in Fig. 3.6, each rule represents 

a chromosome that is selected from a group, Psize represents that there are Psize groups in a 

population, and “Rk” means that there are Rk rules used to construct a TNFC.  
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Figure 3.6: The structure of the chromosome in the SAGC-SE. 

 

For determining the suitable number of fuzzy rules, in the SAGC-SE, the two-step 

self-adaptive algorithm (TSSA) is proposed. In the proposed TSSA, as well as HEA, the 

compact genetic algorithm (CGA) is adopted. The TSSA is different from the MCGA in that 

the building blocks (BBs) are used to represent the suitability of TNFCs with different 

numbers of fuzzy rules and determine the number of TNFCs with each different number of 

fuzzy rules to evaluate the chromosomes. As shown in Fig. 3.7, the TSSA codes the 

probability vector into the building blocks (BBs), where Rk represents Rk rules (chromosomes) 

that are used to form a TNFC, and 
kRV  is a probability vector that represents the suitability of 

a TNFC with Rk fuzzy rules. In the TSSA, as well as MCGA, the maximum and minimum 

number of rules must be predefined to prevent the number of fuzzy rules from generating 

beyond a certain bound (i.e., [Rmin, Rmax]). 
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In parameter learning of the SAGC-SE, to allow groups to cooperate with each other for 

generating better solutions, an elite-based compensatory of crossover strategy (ECCS) is 

proposed. In SAGC-SE, the coding structure of chromosomes must be suitable for the concept 

of each chromosome represents only one fuzzy rule. A fuzzy rule with the form introduced in 

Eq. 2.2 is described in Fig. 3.8. 

minRV  1kRV +  … 
kRV  … 

max 1RV −  
maxRV  

Figure 3.7: Coding the probability vector into the building blocks (BBs) in the TSSA. 

 

 

 

 

Figure 3.8: Coding a rule of a TNFC into a chromosome in SAGC-SE. 

 

The learning process of the SAGC-SE in each group involves six major steps: 

initialization, fitness assignment, sorting, elite-based reproduction strategy (ERS), elite-based 

compensatory of crossover strategy (ECCS), and mutation strategy. The flowchart of the 

learning process is shown in Fig. 3.9 where Nc represents that there are Nc chromosomes in 

each group. The learning process is described step-by-step as follows: 
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1. Initialization: 

Before the SAGC-SE is designed, individuals (chromosomes) forming several 

initial groups should be generated. The initial groups of SAGC-SE are generated 

randomly within a fixed range. The following formulations show how to generate the 

initial chromosomes in each group: 

Deviation: Chrg,c [p]=random[ minσ , maxσ ] 

where p=2, 4, …, 2n; g=1, 2,…, Psize; c=1, 2, …, NC.     (3.13) 

     Mean: Chrg,c [p]= random[ minm , maxm ] 

     where p=1, 3, …, 2n-1.                                  (3.14) 

  Weight: Chrg,c [p]= random [ minw , maxw ] 

         where p=2n+1, 2n+2, …, 3n+2.                           (3.15) 

where Chrg,c represents cth chromosome in gth group; Psize represents total number 

of groups and NC is the total number of chromosomes in each group; p represents the 

pth gene in a Chrg,c; and [ minσ , maxσ ], [ minm , maxm ], and [ minw , maxw ] represent 

the predefined range. 

2. Two-step self-adaptive algorithm (TSSA): 

After every group is initialized, the SAGC-SE uses the two-step self-adaptive 

algorithm (TSSA) to determine the suitable selection times of each number of rules 

(In the SAGC-SE, the numbers of rules are between [Rmin, Rmax].). “Selection times” 

in the SAGC-SE indicates how many TNFCs should be generated in one generation. 

In the SAGC-SE, one chromosome represents only one fuzzy rule; several 

chromosomes are selected to combine and make a TNFC. The chromosomes should 

be evaluated and selected to construct TNFCs. The selection times using in the 

SAGC-SE are represented the number of TNFCs (a set of chromosomes) with 

different rules in one generation. In traditional symbiotic evolution ([95]-[97]) and 

ESP ([41] and [42]), the number of rules is predefined, so only the total selection 

th chromosome in 

 is the total number of chromosomes in each group; 

[σ ], [ m

number of chromosomes in each group; number of chromosomes in each group; 

th chromosome in 

 is the total number of chromosomes in each group; 

minσ ], [

number of chromosomes in each group; 

maxσ ], [

number of chromosomes in each group; 

], [

number of chromosomes in each group; 

min , 

 is the total number of chromosomes in each group; number of chromosomes in each group; number of chromosomes in each group; number of chromosomes in each group; number of chromosomes in each group; number of chromosomes in each group; 

min , min

number of chromosomes in each group; 
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times are defined in all generations. However, in the SAGC-SE, the number of fuzzy 

rules is variable; therefore, the selection times with each different number of rules in 

the TNFCs in every generation must be determined to evaluate the performance of 

each group. To solve this problem, the TSSA is proposed to determine the suitable 

selection times (the number of TNFCs with different rules in a generation). The 

TSSA is a process that determines the number of TNFCs with Rk rules that are 

selected from Rk groups in every generation. The TSSA is similar to the maturing 

phenomenon in society, where individuals become more suited to society as they 

acquire more knowledge. 

In the TSSA, the modified compact genetic algorithm (MCGA) is adopted. The 

MCGA adopts the building blocks (BBs) to represent the suitable length of 

chromosomes and reproduce the chromosomes according to the BBs. The TSSA is 

different from the MCGA in that the building blocks (BBs) are used to represent the 

suitability of TNFCs with different numbers of fuzzy rules and to determine how 

many TNFCs with each different number of fuzzy rules should be selected to 

evaluate the chromosomes in every generation. After the TSSA is carried out, the 

selection times of the suitable number of rules in a TNFC will increase, and the 

selection times of the unsuitable number of rules in a TNFC will decrease. The 

details of the TSSA are as follows: 

Step 1. Initialize the probability vectors of the BBs: 

    
, , ,1 , where

5.0

maxminmin RRRR

V

k

Rk

⋯+=

=
                     (3.16) 

Step 2. Update the probability vectors of the BBs according to the following 

equations: 
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where 
kRV  is the probability vector in the BBs and represents the suitability of 

TNFCs with Rk rules; λ is a predefined threshold value; Avg represents the average 

fitness value in the whole population; _
kRBest Fitness  represents the best fitness 

value of TNFCs with Rk rules; 
kRfit  is the sum of the fitness values of the TNFCs 

with Rk rules when the fitness values of TNFCs with Rk rules greater than 

_
kRBest Fitness minus a predefined threshold value named essvalueThreadFitn . As 

shown in Eq. 3.17, if
kRfit ≥Avg, then the suitability of TNFCs with Rk rules should 

be increased. On the other hand, if
kRfit <Avg, then the suitability of TNFCs with Rk 

rules should be decreased. 

Step 3. Determine the selection times of TNFCs with different fuzzy rules according 

to the probability vectors of the BBs as follows: 

kRRp  = ( _ )*( / _ )
kRSelection Times V Total Velocy                       

where min min max, 1, ,kR R R R= + ⋅⋅⋅                                (3.21) 
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where TimesSelection _  represents the total selection times in each generation; 

kRRp  represents the selection times of TNFCs with Rk rules that are selected from Rk 

group in a generation. 

Step 4. After step 3, the selection times of TNFCs with different rules are 

obtained. 
kRRp  represents to select 

kRRp  TNFCs, and each TNFC selects Rk 

chromosomes from Rk groups in one generation. 

Step 5. In the TSSA, as well as MCGA, to prevent suitable selection times from 

falling in the local optimal solution, the TSSA uses two different actions to update 

the 
kRV . The deferent actions are defined according to the following equations: 
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3. Fitness assignment: 

As premised, in SAGC-SE, the fitness value of a single rule (an individual) is 

calculated by summing up the fitness values of all the possible combinations which 

contains that single rule. The details for assigning the fitness value are described step 

by step as follows:  

Step 1. Randomly choose Rk fuzzy rules from the Rmax groups with size NC to form a 

to

TSSATimes

                                 (3.23)                                  (3.23)                                  (3.23)                                  (3.23) 

TSSATimes

                                 (3.23) 

to

TSSATimes

                                 (3.23)                                  (3.23) 

3

                                 (3.23) 

3

TSSATimesTSSATimesTSSATimesTSSATimes



 49

TNFC 
kRRp  times. The Rk represents the number of fuzzy rules. The numbers of 

fuzzy rules are variable in SAGC-SE. 

Step 2. Evaluate every TNFC with Rk rules, which is generated from step1, to obtain 

a fitness value. 

Step 3. Divide the fitness value by Rk and accumulate the divided fitness value to the 

selected rules with their fitness value records are set for zero initially. 

Step 4. Divide the accumulated fitness value of each chromosome by the number of 

times it has been selected. The average fitness value represents the performance of a 

single rule.  

4. Sorting: 

After the Fitness assignment step, the chromosomes in each group are sorted. 

This step can improve the reproduction step because the well-performing 

chromosomes in each group will be kept. After the chromosomes in each group were 

sorted, the algorithm goes to the next step. 

5. Elites-based Reproduction Strategy (ERS): 

Reproduction is a process in which individuals are copied according to their 

fitness values. A fitness value is assigned to each chromosome according to a fitness 

assignment step in which a high value denote a good fit. The goal of the SAGC-SE is 

to maximize the fitness value. For keeping the stability, an elite-based reproduction 

strategy (ERS) is proposed to allow the best combination of chromosomes can be 

kept in the next generation. In SAGC-SE, the chromosome with the best fitness value 

may not be in the best combination. Therefore, every chromosome in the best 

combination must be kept by applying ERS. Other chromosomes in each group, as 

well as HEA, are selected under roulette-wheel selection method ([72]). The best 

performing chromosomes in the top half of each group ([96]) advance to the next 
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generation. The other half is generated by applying crossover and mutation 

operations on chromosomes in the top half of the parent generation. In the 

reproduction step, the top half of each group must be kept the same number of 

chromosomes. 

6. Elite-based compensatory of crossover strategy (ECCS):  

Although the ERS can search for the best existing individuals, it does not create 

any new individuals. In nature, an offspring has two parents and inherits genes from 

both. The main step working on the parents is the crossover step, which occurs on a 

selected pair under a crossover rate. Therefore, an elite-based compensatory of 

crossover strategy (ECCS) is proposed to improve the crossover operation. The 

ECCS mimics the cooperation phenomenon in society, in which individuals become 

more suitable for the environment as they acquire and share more knowledge of their 

surroundings. The best performing individuals in the top half of each group that are 

called elites are used to select the parents for applying the ECCS. Details of the 

ECCS are shown below. 

Step 1. The first one of the parents that is used to the crossover operation is selected 

from the original group by using the following equations: 
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where tgRatioFitness ,_  is a fitness ratio of tth chromosome in the gth group; 
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]1,0[][_ ∈gValueRand  is a random value of gth group; ][_ gSiteAParent  is the 

site of the first parent. According to Eq. 3.28, if the ][_ gValueRand  is greater than 

the fitness ratio at (t-1)th chromosome in gth group and equal to or smaller than the 

fitness ratio at tth chromosome in gth group, the site of the first parent of gth group 

is assigned to t. 

Step 2. After determining the first parent, the best performing elites in every group 

is used to determine the other parent. In this step, the total fitness ratio of every 

group is computed as follows: 
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where gFitnessTotal _  represents the summation of all chromosomes’ fitness value 

in gth group; qRatioFitnessTotal __  is a total fitness ratio of qth group. 

Step 3. Determine the other parental group for applying crossover with the 

][_ gSiteAParent th chromosome according to the following equations: 
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where ]1,0[][__ ∈gValueRandGroup  is a random value of gth group;  

][__ gSiteBGroupParent  represents the site of the group where the second parent 

is selected from. 
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Step 4. After the ][__ gSiteBGroupParent th group is selected, the other parent 

which is selected from ][__ gSiteBGroupParent th group is determined by ECCS 

according to the following equations: 

];[___;,,2,1where

,_

1

,_

1

,_

,_

gSiteBGroupParentgSelectedNct

fitness

fitness

RatioFitness
Nc

c

cgSelected

t

b

bgSelected

tgSelected

==

=

∑

∑

=

=

⋯

  (3.33) 

;,,2,1where],1,0[][_ sizePgRandomgValueRand ⋯==      (3.34) 

,_][__

if,][_
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lgSiteBParent

≤<

=

−

(3.35) 

where tgSelectedRatioFitness ,__  is a fitness ratio of tth chromosome in the 

][__ gSiteBGroupParent th group; and ][_ gSiteBParent  is the site of second 

parent. 

After selecting the parents from the gth group and 

][__ gSiteBGroupParent th group by ECCS, the individuals ( ][_ gSiteAParent th 

chromosome and the ][_ gSiteBParent th chromosome) are crossed and separated by 

using a two-point crossover ([76]) in the gth group, as shown in Fig. 3.10. In Fig. 

3.10, exchanging the site’s values between the selected sites of parents’ individuals 

creates new individuals. After this operation, the individuals with poor performances 

are replaced by the newly produced offspring. 

j2σj1σ njσ

j2σj1σ njσ

j2σj1σ njσ

j2σj1σ njσ
 

Figure 3.10: Two-point crossover. 

gSelected __  is a fitness ratio of tgSelected

]]] th group; and Parentth group; and th group; and th group; and 

tg ,_  is a fitness ratio of t,

th group; and th group; and th group; and th group; and 
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7. Mutation strategy: 

For emphasizing the capability of the ECCS, the proposed SAGC-SE tries to 

simplify the mutation operation. Therefore, a uniform mutation ([84]) is adopted, and 

the mutated gene is generated randomly from the domain of the corresponding 

variable. 

The aforementioned steps are done repeatedly and stopped when the predetermined 

condition is achieved. As mention above, a self adaptive group cooperation based symbiotic 

evolution (SAGC-SE) is proposed for considering the local evaluation of the population. The 

SAGC-SE can determine the suitable number of fuzzy rules and evaluate the fuzzy rule 

locally. Moreover, the SAGC-SE can make groups to cooperate with each other for generating 

the better chromosomes by using an elites-base compensation crossover strategy (ECCS). 

 

3.3 Self adaptive Groups Based Symbiotic Evolution 

using FP-growth Algorithm 

Although the SAGC-SE could solve the problem of the HEA that all the fuzzy rules are 

encoded into one chromosome. Moreover the SAGC-SE not only evaluates the fuzzy rule 

locally but also makes groups to cooperate with each other for generating the better 

chromosomes. However, in the SAGC-SE, how to select groups to choose individuals for 

constructing a TNFC with different number of rules is a major problem. Therefore, for 

determining the number of fuzzy rules automatically, the SAGC-SE selects different number 

of groups to construct complete solution. In this way, the SAGC-SE selects groups randomly. 

It’s obvious that the performance of the SAGC-SE dependents on how to select individuals 

from groups. 

In this section, the self adaptive groups based symbiotic evolution using FP-growth 

algorithm (SAG-SEFA) will be discussed. The SAG-SEFA is proposed for providing a 
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method of how to select groups to select individuals for constructing a TSK-type neuro-fuzzy 

controller (TNFC) with different number of rules in the SAGC-SE. Therefore, the SAG-SEFA 

is used to determine the suitable number of rules in a TNFC and the suitable groups used to 

perform the selection of groups. Moreover, the SAG-SEFA adopts a different way to select 

suitable groups to perform crossover steps. 

The SAG-SEFA is proposed to improve the SAGC-SE. The purpose of the SAG-SEFA 

is to determine not only the suitable number of rules in a TNFC but also the suitable rules that 

are used to construct a TNFC. Therefore, the SAG-SEFA, as well as the SAGC-SE, consists 

of structure and parameter learning. 

In structure learning, as well as SAGC-SE, the SAG-SEFA determines the number of 

fuzzy rules automatically and processes the variable length of a combination of chromosomes 

by using the TSSA. 

In parameter learning, to solve the problem of the SAGC-SE that the chromosomes are 

selected randomly to perform selection step. The proposed SAG-SEFA determines which 

suitable groups should be selected the chromosomes that will form TNFCs with different rules 

and which suitable groups that should be selected to perform selected step. Furthermore, the 

SAG-SEFA also provides a different way to determine the suitable groups to perform 

crossover step. The SAG-SEFA proposes using the data mining based selection strategy 

(DMSS) and the data mining based crossover strategy (DMCS) to determine which groups 

should be used to select individuals to form a TNFC with each different rules and to 

determine which groups should be used to select individuals to perform crossover steps using 

the frequent pattern growth (FP-growth) ([50]) data mining method. 

The goal of FP-growth is to find the frequent patterns that do not have candidate 

generation. In the proposed DMSS, the FP-growth is used to find from transactions the sets of 

groups that occur frequently. In SAG-SEFA, a “transaction” refers to the collection of groups 

that perform well. After the candidate sets of frequently-occurring groups have been found, 

In parameter learning, to solve the problem of the 
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the DMSS uses three actions to determine Rk groups that are used to select Rk chromosomes to 

form TNFCs with Rk rules. The three actions defined in the DMSS are normal, search, and 

exploration. In the normal action, as well as SAGC-SE, Rk groups that are used to select Rk 

chromosomes to form a TNFC are chosen randomly. In the search action, Rk groups are 

chosen from the set of frequently-occurring groups which chosen from the candidate sets of 

frequently-occurring groups. In the exploration action, Rk groups are chosen without using the 

set of frequently-occurring groups. As well as the DMSS, in the DMCS, the suitable groups 

used to select chromosomes to perform the crossover steps are decided based on the three 

actions (normal, search, or exploration). Compare with SAGC-SE, the SAG-SEFA provides a 

robust way to select groups to perform selection and crossover step. Therefore, the three actions 

(normal, search, or exploration) can improve the combination of solutions to avoid fall in the 

local optimal solution.  

The structure of the chromosome in the SAG-SEFA, as well as SAGC-SE, is shown in 

Fig. 3.6.  In the proposed SAG-SEFA, as well as the SAGC-SE, the coding structure of the 

chromosomes must be suitable for symbiotic evolution. The coding structure is shown in Fig. 

3.8. 

For determining the suitable number of fuzzy rules, the two-step self-adaptive algorithm 

(TSSA) proposed in SAGC-SE is adopted. As well as SAGC-SE, the building blocks (BBs) 

are used to represent the suitability of TNFCs with different number of fuzzy rules and to 

determine to the number of TNFCs with each different fuzzy rules should be selected to 

evaluate the chromosomes. The TSSA codes the probability vector into the building blocks 

(BBs) is shown in Fig. 3.7. In the TSSA, the maximum and minimum number of rules must 

be predefined to prevent the number of fuzzy rules from generating beyond a certain bound 

(i.e., [Rmin, Rmax]). 

The learning process of the SAG-SEFA is shown in Fig. 3.11. As shown in Fig. 3.11, 

each group involves eight major operators: the initialization, two-step self-adaptive algorithm 
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(TSSA), data mining based selection strategy (DMSS), fitness assignment, sorting, elite-based 

reproduction strategy (ERS), data mining-based crossover strategy (DMCS), and the mutation 

strategy. In the SAG-SEFA, the operators of the initialization, two-step self-adaptive 

algorithm (TSSA), sorting, elite-based reproduction strategy (ERS), and the mutation strategy 

are same as the SAGC-SE introduced in Section 3.2. About this, the only three operators of 

the data mining based selection strategy (DMSS), fitness assignment, and data mining-based 

crossover strategy (DMCS) are described step-by-step as follows: 

 

Figure 3.11: Learning process of the SAG-SEFA. 
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1. The data mining based selection strategy (DMSS): 

After the TSSA, the selection times of the TNFCs with different rules are 

determined. The SAG-SEFA then performs the selection step. The selection step in 

the SAG-SEFA can be divided into the selection of groups and the selection of 

chromosomes. In the selection of groups, the data mining-based selection strategy 

(DMSS) is proposed to improve the selection of the SAGC-SE in which 

chromosomes are selected randomly to form TNFCs. In the DMSS, the groups are 

selected according to the groups that frequently obtain the best performance. To 

defend the groups that frequently obtain the best performance, the FP-growth ([50]) 

data mining method is adopted. The FP-growth was proposed by Han et al. ([50]). 

The goal of FP-growth is to find the frequently-occurring patterns that do not have 

candidate generation. In the proposed DMSS, the FP-growth is used to find the 

frequently-occurring groups from transactions (in the SAG-SEFA, a transaction 

means a set of the groups that performs well). After the groups that occur frequently 

have been found, the DMSS selects the Rk groups that are used to select 

chromosomes to form TNFCs with Rk rules according to the frequently-occurring 

groups. To avoid the frequently-occurring groups that may fall in the local optimal 

solution, the DMSS uses three actions to select Rk groups. The three actions defined 

in this paper are normal, search, and exploration. The details of the DMSS are as 

follows: 

Step 1. The transactions are built in the following equation:  

candidate generation. In the proposed DMSS, the FP-
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have been found, the DMSS selects the 

frequently-occurring groups from transactions (in tfrequently-occurring groups from transactions (in t

candidate generation. In the proposed DMSS, the FP-

frequently-occurring groups from transactions (in t

means a set of the groups that performs well). Afte

frequently-occurring groups from transactions (in t

means a set of the groups that performs well). Afte

frequently-occurring groups from transactions (in t

means a set of the groups that performs well). Afte

frequently-occurring groups from transactions (in t

means a set of the groups that performs well). Aftemeans a set of the groups that performs well). Afte

frequently-occurring groups from transactions (in tfrequently-occurring groups from transactions (in t

means a set of the groups that performs well). Aftemeans a set of the groups that performs well). Afte

frequently-occurring groups from transactions (in tfrequently-occurring groups from transactions (in tfrequently-occurring groups from transactions (in tfrequently-occurring groups from transactions (in t

means a set of the groups that performs well). Aftemeans a set of the groups that performs well). Afte

frequently-occurring groups from transactions (in t

means a set of the groups that performs well). Afte



 58

.,,2,1

;,,1,

;,,2,1where

][C][then

)_(if

maxminmin

nNumTransactioj

RRRR

Ri

iRuleSetTNFinTransactio

essvalueThreadFitnFitnessBestFitness

k

k

Rj

RR

k

kk

⋅⋅⋅=

⋅⋅⋅+=

⋅⋅⋅=

=

−≥

          (3.36) 

where the 
kRFitness  represents the fitness value of TNFC with Rk rules; 

essvalueThreadFitn  is the predefined value; nNumTransactio  is the total number 

of transactions; ][inTransactio j  represents the ith item in the jth transaction; and 

][C iRuleSetTNF
kR  denotes the ith group of the selected Rk groups used to select 

chromosomes to form a TNFC with Rk rules. The transactions have the form shown 

in Table 3.1. As shown in Table 3.1, every transaction represents the Rk groups that 

form a TNFC with Rk rules. For example, as shown in Table 3.1, the first transaction 

of the transaction set means that the 3-rule TNFC that is selected from the first group, 

fourth group, and eighth group performs well. The step of building transactions 

continues in the normal, search, and exploration actions. 

Table 3.1: Transactions in a FP-growth. 

Transaction index Groups 

1 1, 4, 8 

2 2, 4, 7, 10 

… … 

nNumTransactio  1, 3, 4, 6, 8, 9 

 

Step 2. Normal action: 

After the transactions are built, the DMSS selects groups according to different 

action types. If the action type is normal, the DMSS selects the groups, using the 

chromosomes to form a TNFC with Rk rules. The transactions have the form shown k

in Table 3.1. As shown in Table 3.1, every transact
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following equation: 
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where rAccumulato  defined in Eq. 3.23-3.25 is used to determine what action 

should be adopted; ][iGroupIndex  represents the selected ith group of the Rk 

groups; and SizeP  indicates that there are SizeP  groups in a population in the 

SAG-SEFA. In this action, the algorithm is used to accumulate the transaction set. 

Therefore, the groups that perform well will be stored in a transaction if the groups 

fit Eq. 3.36. If the best fitness value does not improve for a sufficient number of 

generations (NormalTimes), the DMSS selects the groups according to another 

action type (which go to the next steps).  

Step 3. Find the groups that occur frequently: 

If the action is the search or exploration action (the Accumulator exceeds the 

NormalTimes), the DMSS uses FP-growth to find the groups that occur frequently in 

transactions. The frequently-occurring groups are found according to the predefined 

Minimum_Support. Minimum_Support represents the minimum fraction of 

transactions that contain an item set. After Minimum_Support is defined, data 

mining using FP-growth will be performed. The FP-growth algorithm can be viewed 

as having two parts: construction of the FP-tree and FP-growth. The sample 

transactions shown in Table 3.2 are given as examples. Minimum_Support=3 is 

considered in this example. 

(1) Construction of FP-tree: 

To construct the FP-tree, the first step is to scan the transactions and 

retrieve the frequent 1-groupset in transactions. The frequent 1-groupset 
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If the action is the search or exploration action (
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represents the set of one group which has support counts bigger than 

Minimum_Suppor in transactions. The result is shown in Table 3.3. Then the 

retrieved frequently-occurring groups are ordered by descending order based on 

their supports, as shown in Table 3.4. The ordered list in Table 3.4 is called the 

F-list. After the F-list is obtained, the next step is to discard the 

infrequently-occurring groups and sort the remaining groups in the same order 

as in the F-list in each transaction. The result is shown in Table 3.5. The ordered 

transactions are then used to construct the FP-tree. The steps for constructing 

the FP-tree are illustrated in Fig. 3.12 (a). In Fig. 3.12 (a), formed by scanning 

the last transaction, the right-most chart is called the prefix-tree of the frequent 

1-groupset. Each node of the prefix-tree is composed of one group, a count of 

the frequent 1-groupset, and a node frequently-occurring group link. Then the 

complete FP-tree is created by combining the prefix-tree of the 1-groupset and 

the header-table. An example of an FP-tree is shown in Fig. 3.12 (b). This 

FP-tree is constructed from the transactions shown in Table 3.2. 

(2) FP-growth: 

The FP-growth algorithm is done by following steps: construction of a 

conditional group base, construction of a corresponding conditional FP-tree, 

mining the frequently-occurring groups on the conditional FP-tree, and 

concatenation of the suffix group and the frequently-occurring groups on the 

conditional FP-tree. 

First, select each frequent 1-groupset as a suffix group, and find the 

corresponding set of paths connecting to the root of the FP-tree. The set of 

prefix paths is called the conditional group base. Then accumulate the count for 

each group in the base to construct the conditional FP-tree of the corresponding 

suffix group. After mining the frequently-occurring groups on the conditional 
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FP-tree, FP-growth data mining is completed by the concatenation of the suffix 

group with the generated frequently-occurring groups. The groups generated by 

the FP-growth, shown in Table 3.6, are then thrown into the pool that is called 

FrequentPool. olFrequentPo  represents the candidate sets of the 

frequently-occurring groups. 

Table 3.2: Sample transactions. 

Transaction index Groups 

1 {b, c, e, f, g, h, p} 

2 {a, b, c, f, i, m, o} 

3 {c, f, i, m, o} 

4 {b, c, e, s, p} 

5 {a, b, c, d, f, m, o} 

 

Table 3.3: Frequent 1-groupset of sample transactions. 

Group name count Group name count 

B 4 M 3 

C 5 O 3 

F 4   

 

Table 3.4: F-list of sample transactions. 

Group name count Group name count 

C 5 M 3 

B 4 O 3 

F 4   

 

Table 3.5: Transactions after discarding the infrequent groups and sorting the remaining 

groups in the same order as the F-list. 

Transaction index Groups Ordered Groups 

1 {b, c, e, f, g, h, p} {c, b, f} 

2 {a, b, c, f, i, m, o} {c, b, f, m, o} 

3 {c, f, i, m, o} {c, f, m, o} 

4 {b, c, e, s, p} {c, b} 

5 {a, b, c, d, f, m, o} {c, b, f, m, o} 

 

count Group name count 

B 4 M 3 

C 5 O 3 

F 4 

B 4 M 3 

C 5 O 3 

count Group name count 

B 4 M 3 

count Group name count 

B 4 M 3 

C 5 O 3 

F 4 

B 4 M 3 B 4 M 3 B 4 M 3 

C 5 O 3 

B 4 M 3 

C 5 O 3 

B 4 M 3 B 4 M 3 B 4 M 3 B 4 M 3 B 4 M 3 

F 4 

B 4 M 3 
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  (a)                              (b) 

Figure 3.12: (a) Steps for constructing the FP-tree of sample transactions. (b) FP-tree of 

sample transactions. 

  

Table 3.6: Frequently-occurring groups generated by FP-growth with Minimum_Support = 3. 

Suffix group Cond. group base Cond. FP-tree Frequent groups 

B c:4 c:4 cb:4 

F Cb:3, c:1 c:4, cb:3 cf:4, bf:3, cbf:3 

M cbf:2, cf:1 cf:3 cm:3, fm:3, cfm:3 

O cbfm:2, cfm:1 cfm:3 co:3, fo:3, mo:3, cfo:3, 

cmo:3, fmo:3, cfmo:3 

 

 

Step 4. Select the groups according to two different actions: 

After the groups that frequently occur are identified, the DMSS selects groups 

according to two different actions as follows:  

(1) In the search action, the groups are selected from the items that frequently occur 

by using the following equation: 

M cbf:2, cf:1 cf:3 

O cbfm:2, cfm:1 cfm:3 

M cbf:2, cf:1 cf:3 

O cbfm:2, cfm:1 cfm:3 

M cbf:2, cf:1 cf:3 

O cbfm:2, cfm:1 cfm:3 O cbfm:2, cfm:1 cfm:3 O cbfm:2, cfm:1 cfm:3 O cbfm:2, cfm:1 cfm:3 O cbfm:2, cfm:1 cfm:3 O cbfm:2, cfm:1 cfm:3 O cbfm:2, cfm:1 cfm:3 O cbfm:2, cfm:1 cfm:3 O cbfm:2, cfm:1 cfm:3 O cbfm:2, cfm:1 cfm:3 
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where imesSearchingT  is a predefined value that is used to judge whether the 

search action needs to be taken or not; olFrequentPo  represents the candidate 

sets of groups that frequently occur and which are obtained from FP-growth; 

olNumFrequentPo represents the total number of sets in olFrequentPo ; and 

][iemSetFrequentIt  represents a set of frequently-occurring groups selected 

from olFrequentPo  randomly. In Eq. 3.38, if kR is greater than the size of 

][qemSetFrequentIt , the remaining groups are selected by using Eq. 3.37. In this 

action, the algorithm tries to search for a better solution in the set of solutions 

that performs well frequently. Therefore, the groups are selected according to the 

candidate groups that perform well frequently. In this action, the groups that 

perform well will also be stored in a transaction if the groups fit Eq. 3.36. If the 

best fitness value does not improve for a sufficient number of generations 

(SearchingTimes), the DMSS selects groups according to the exploration action 

type. 

(2) In the exploration action, the groups are selected according to the groups that 

occur frequently by using the following equation: 

sets of groups that frequently occur and which are 
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where imesExploringT  is a predefined value that is used to judge whether the 

exploration action needs to be taken or not. In this action, the algorithm tries to 

find a better solution without using the solutions that perform well frequently. 

This is because when the candidate groups that perform well frequently do not 

improve for a sufficient number of generations, the candidate groups may fall in 

the local optimal solutions. Therefore, the groups are selected without the 

candidate groups that perform well frequently. In this action, the groups that 

perform well will also be stored in a transaction if the groups fit Eq. 3.36. If the 

best fitness value does not improve for a sufficient number of generations 

(ExploringTimes), the DMSS selects groups according to the normal action type. 

In the SAG-SEFA, ExploringTimes is equal to TSSATimes of the TSSA. 

Step 5. After the Rk groups are selected, the Rk chromosomes are selected from the 

Rk groups as the following equation: 

,,,2,1            

];,1[            

where

,][

k

c

Ri

NRandomq

qiIndexChromosome

⋅⋅⋅=

=

=

                         (3.40) 

where cN  represents the number of chromosomes in each group; and 

][iIndexChromosome  represents the index of a chromosome that is selected from 
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the ith group. 

2. Fitness assignment: 

As previously stated, for the SAG-SEFA, the fitness value of a rule (an 

individual) is calculated by summing up the fitness values of all the possible 

combinations in the chromosomes that are selected from the kR  groups that are 

decided according to the DMSS. The details for assigning the fitness value are 

described step by step below: 

Step 1. Choose Rk fuzzy rules to construct a TNFC 
kRRp times from the kR  groups 

with size NC. The kR  groups are obtained from the DMSS. 

Step 2. Evaluate every TNFC that is generated from step1 to obtain a fitness value. 

Step 3. Divide the fitness value by kR  and accumulate the divided fitness value to 

the selected rules with their fitness value records that were set to zero initially. 

Step 4. Divide the accumulated fitness value of each chromosome from the kR  

groups by the number of times it has been selected. The average fitness value 

represents the performance of a rule. 

3. The data mining based crossover strategy (DMCS): 

In the SAG-SEFA, the data mining based crossover strategy (DMCS) is 

proposed to perform the crossover operation. The DMCS mimics the cooperation 

phenomenon in society, in which individuals become more suited to the environment 

as they acquire and share more knowledge of their surroundings. Similar to the 

DMSS, the DMCS uses FP-growth to select the parental groups to perform crossover 

operations in the next generation. Moreover, the DMCS also uses threes actions to 

select parental groups from the olFrequentPo  according to the set of 

frequently-occurring groups. The best performing individuals in the top half of the 

selected parental groups that are called elites are used to select the parents for 

the selected rules with their fitness value records
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performing with the DMCS. Details of the DMCS are given below: 

Step 1. The first one of the parents that is used to perform the crossover operation is 

selected from the original group by using the following equations: 
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where
tgRatioFitness ,_  is a fitness ratio of the fitness value of the tth chromosome 

in the gth group; ]1,0[][_ ∈gValueRand  is the random values of the gth group; 

][_ gSiteAParent  is the site where the first parent is. According to Eq. 3.43, if the 

][_ gValueRand  is greater than the fitness ratio at the (t-1)th chromosome in the gth 

group and smaller or equal to the fitness ratio at the tth chromosome in the gth group, 

the site of the first parent of the gth group is assigned to t. 

Step 2. After the first parent is determined, the second parental group is decided 

according to different actions as follows:  

(1) In the normal action, the elites performing the best in each group are used to 

determine the other parent. In this step, the total fitness ratio of every group is 

computed according to the following equations: 
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where 
gFitnessTotal _  represents the summation of the fitness value of every 

chromosome in the gth group and 
qRatioFitnessTotal __  is a total fitness ratio 

of the qth group. After the total fitness ratio is computed, the group from which 

the chromosome is selected to be the other parent to perform crossover with the 

][_ gSiteAParent th chromosome in the gth group is determined according to the 

following equations: 

;,,2,1where]1,0[][__ SizePgRandomgValueRandGroup ⋯==   (3.46) 
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where ]1,0[][__ ∈gValueRandGroup  is a random value in the gth group and  

][__ gSiteBGroupParent  represents the site of the group that the second parent is 

selected from. 

(2) In the search action, the second parent is decided according to the following 

equations: 
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(3) In the exploration action, the second parent is decided according to the following 

equations: 
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].[if,][__ qemSetFrequentItwwgSiteBGroupParent ∉=       (3.51) 

Step 3. After the ][__ gSiteBGroupParent th group is selected, the DMCS selects 

the other parents in the selected ][__ gSiteBGroupParent th group according to the 

following equations: 
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where 
tgSelectedRatioFitness ,__  is a fitness ratio of the fitness value of the tth 

chromosome in the ][__ gSiteBGroupParent th group and ][_ gSiteBParent  is the 

site where the second parent is. 

After the DMCS selects the parents from the gth group and the 

][__ gSiteBGroupParent th group, the individuals ( ][_ gSiteAParent th chromosome 

and the ][_ gSiteBParent th chromosome) are crossed and separated using a 

two-point crossover ([76]) in the gth group, as shown in Fig. 3.10. 

The aforementioned steps are done repeatedly and stopped when the predetermined 

condition is achieved. In this section, a SAG-SEFA with a TNFC is proposed. The 

SAG-SEFA has structure and parameter learning ability. That is, it can determine the suitable 

number of fuzzy rules and efficiently tune the parameters in the TNFC. The goal of using the 

SAS-SEFA is to determine the suitable groups for performing the selection and crossover 

steps for improving the problem of the SAGC-SE. The DMSS and DMCS are proposed to 

select the suitable groups for performing the selection and crossover steps. 

gSelected _
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Chapter 4                 

Improved Safe Reinforcement 

Learning 
  

In this chapter, the other part of the proposed ISRL-SAEAs is introduced. Therefore, 

improved safe reinforcement learning (ISRL) is discussed. In this dissertation, the self 

adaptive evolution algorithms (SAEAs) are trained by using the ISRL. The ISRL will be 

introduced in the following sections. In Section 4.1, the safe reinforcement learning that the 

ISRL is based is introduced. The safe reinforcement learning is based on Lyapunov function 

design ([32]). Once the system’s Lyapunov function is identified, under Lyapunov-based 

manipulations on control laws, the architecture can drive the plant to reach and remain in a 

predefined desired set of states with probability 1. The structure of the ISRL is introduced in 

Section 4.2. Therefore, the schematic diagram and flowchart of the ISRL are introduced. 

Moreover, the Lyapunov function used in ISRL is also introduced. In the final section, the 

fitness function of the SAEAs is introduced. Therefore, two strategies of the ISRL are 

discussed. There are two strategies in the ISRL, judgment and evaluation strategies. The 

judgment strategy measures the fitness value of controller that fails to guide the system into 

the goal set. The evaluation strategy measures the fitness value of controller that successfully 

guide the system into the goal set. In the ISRL, the control laws of the system are designed 

according to Lyapunov function. However, for different control systems, different control 

laws of the system are needed. Therefore, the Lyapunov-based manipulations on control laws 

are defined in Chapter 5. 
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4.1 Safe Reinforcement Learning 

Although supervised learning is a powerful training technique that can be applied to 

networks. However, if the precise training data can be obtained easily, the supervised learning 

algorithm may be efficient in many applications. For some real-world applications, precise 

training data are usually difficult and expensive to obtain. For this reason, there has been a 

growing interest in reinforcement learning problems ([15]-[21]). For the reinforcement 

learning problems, training data are very rough and coarse and there are only “evaluative” 

when compared with the “instructive” feedback in the supervised learning problem. 

Unlike the supervised learning problem, in which the correct “target” output values are 

given for each input pattern to perform the fuzzy controller learning, the reinforcement 

learning problem has only very simple “evaluative” or “critical” information, rather than 

“instructive” information, available for learning. In the extreme case, there is only a single bit 

of information to indicate whether the output is right or wrong. To solve reinforcement 

learning problems, the most popular approach is temporal difference (TD) reinforcement 

learning ([17]). The well-known TD-based reinforcement learning is the adaptive heuristic 

critic (AHC). The AHC consists of an action network and an evaluation network. Based on 

the AHC, in [17], Barto and his colleagues proposed an actor-critic architecture which 

consists of a control network and a critic network. However, the Barto’s architecture is 

complicated and is not easy to implement. For solving this problem, several researches 

proposed time-step reinforcement architecture to improve the Barto’s architecture ([18]-[20]). 

In [18]-[20], the time-step reinforcement architecture has a structure in which the only 

available feedback is a reinforcement signal that notifies the model only when a failure occurs. 

An accumulator accumulates the number of time steps before a failure occurs. The goal of the 

time-step reinforcement method is to maximize the value function V. The fitness function is 

defined by Eq. 2.9. Equation 2.9 reflects the fact that long-time steps before a failure occurs 
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(to keep the desired control goal longer) mean the controller can control the plat well. For 

example, in evolutionary algorithm, Eq. 2.9 reflects the fact that long-time steps before a 

failure occurs mean higher fitness of the evolutionary algorithm. As shown in [18]-[20], 

time-step reinforcement architecture is simpler and easier to implement than [17]. 

Even though time-step reinforcement architecture is easier to implement when compared 

with Barto’s architecture, it can only measure the number of time steps before a failure occurs; 

in other words, it only evaluates how long the system can enter the desired state, which is also 

very important. Moreover, Eq. 2.9 of the time-step reinforcement architecture only indicates 

the system does not perform out of the boundaries. Therefore, the system could not evaluate 

how well the system controls the plant. For example, in the ball and beam balance system, Eq. 

2.9 of the time-step reinforcement architecture represents how long before the beam deviates 

beyond a certain angle or the ball reaches the end of the beam. However, the system cannot 

evaluate how well the plant controls the ball near the center of the beam. Recently, Perkins 

and Barto proposed a safe reinforcement learning based on Lyapunov function design ([32]). 

Once the system’s Lyapunov function is identified, under Lyapunov-based manipulations on 

control laws, the architecture can drive the plant to reach and remain in a predefined desired 

set of states with probability 1. The purpose of [32] is to guide the system to reach and remain 

in a set of goal states. Several properties defined in [32] are listed below to express a safety 

constraint that the controller uses to satisfy. Let S denotes the state set, T⊂ S and G denotes 

the set of goal states. 

Property 4.1 (Remain in T) With probability 1, if 0s T∈ , then ts T∈ , for 0t∀ ≥ . 

Property 4.2 (Reach T) With probability 1, 0t∃ ≥  such that ts T∈ . 

Property 4.3 (Reach and Remain in T) With probability 1, 0τ∃ ≥  such that ts T∈  for 

t τ∀ ≥ . 

Property 4.4 (Converge in T) With probability 1, lim ( ) 0t T tsδ→∞ = , where :T Sδ +→ℝ  is a 

distance-to-T function which satisfies ( ) 0T sδ =  for s T∈  and ( ) 0T sδ >  for s T∉ . 
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In [32], when T=G, Properties 4.1, 4.3, 4.4 represent of an achievement of stability. 

Lyapunov's direct method is mainly used to study the stability of systems of differential 

equations. Authors in [32] extend this method to the reinforcement learning problem. If the 

controller is designed such that it reduces the Lyapunov function of the plant in each time step, 

the controller could reach and remain in the goal sets. 

 

4.2 Structure of the ISRL 

Although safe reinforcement learning can let the control system to reach and remain in the 

goal set, it cannot evaluate how soon the system meets the control goal. The system using safe 

reinforcement learning only can make sure the control system to reach and remain in the goal 

set. However how soon the control system reaches the goal set is not considered in safe 

reinforcement learning. It is important to indicate the control system how soon to reach the 

goal set. For solving above problem, in this dissertation, the improved safe reinforcement 

learning is proposed. In this section, the other part of the proposed ISRL-SAEAs, that is, 

improved safe reinforcement learning (ISRL) is discussed. In this dissertation, the self 

adaptive evolution algorithms (SAEAs) are trained by using the improved safe reinforcement 

learning (ISRL). 

As shown in safe reinforcement, once the system’s Lyapunov function is identified, under 

Lyapunov-based manipulations on control laws, the architecture can drive the plant to reach 

and remain in a predefined desired set of states with probability 1. About this, in the proposed 

ISRL, the time step for the plant entering the desired set of states can be modified to indicate 

the concept of how soon the system becomes stable. 

In the proposed ISRL, a reinforcement signal is designed based on Lyapunov function. 

The purpose of ISRL is to guide the system to reach and remain in a set of goal states. Several 

properties defined in [32] are listed above to express a safety constraint that we want the 
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controller to satisfy. Therefore, the improved safe reinforcement learning with self adaptive 

evolution algorithms (ISRL-SAEAs), which are constructed on a TNFC, are based on 

Lyapunov analysis. The schematic diagram of the ISRL-SAEAs is shown in Fig. 4.1. The 

TNFC acts as a control network to determine a proper action according to the current input 

vector (environment state). The feedback signal in Fig. 4.1 is the reinforcement fitness value 

that plays a role as a performance measurement. The reinforcement fitness value is evaluating 

how soon the plant can meet the desired set of states. The reinforcement fitness value is also 

used as the fitness function of the SAEAs. Each string with higher fitness value represents the 

better-fitted individual in the population. It will be observed that the advantage of the 

proposed ISRL-SAEAs is that its capability of meeting global optimum. 

The flowchart of the ISRL-SAEAs is shown in Fig. 4.2. The proposed ISRL-SAEAs runs 

in a feed forward fashion to control the environment (plant) until the controller guides the 

plant into a predefined goal set. The concept of “goal set” proposed in this paper is referenced 

from [32]. In [32], authors proposed a Lyapunov-based design for reinforcement learning. The 

purpose of [32] is to guide the system to reach and remain in a goal set comprising goal states.  

 

 

Figure 4.1: Schematic diagram of the ISRL-SAEAs for the TNFC. 
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Figure 4.2: Flowchart of the ISRL-SAEAs. 

 

 In the simulations of ISRL-SAEAs, when T=G, Properties 4.1, 4.3, 4.4 represent of an 

achievement of stability. Lyapunov's direct method is mainly used to study the stability of 

systems of differential equations. Authors in [32] extend this method to the reinforcement 

learning problem. The proposed ISRL conducts one Lyapunov-style theorem proposed in [32], 

which provides criterion for designing the reinforcement learning agent. The theorem is listed 

below. Let :L S →ℝ denotes a function positive on cT S T= − , and ∆  denotes a fixed real 

number.  

Theorem 4.1 If s T∀ ∉ , actions a ∈A(s), all possible next state s' (either 's T∈  or 

( ) ( ')L s L s− ≥ ∆ ), then from any ts T∉ , the environment enters T within ( ) /tL s ∆    time 

steps. 

 The proof of Theorem 4.1 can be found in [32]. Theorem 4.1 provides a guarantee of a 

plant's meeting the goal state, if the controller is designed such that it reduces the Lyapunov 

function of the plant in each time step. Therefore, the main concept of the proposed ISRL is to 

identify a Lyapunov function of a control plant then design the action choices so that the 
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reinforcement learning satisfies the above theorem. 

 

4.3 Two Strategies in the ISRL 

The main concept of the proposed ISRL is to identify a Lyapunov function of a control 

plant then design the action choices so that the reinforcement learning satisfies the Theorem 

4.1. The learning process of the ISRL is shown in Fig. 4.3. As shown in Fig. 4.3, 

_Thres TimeStep  is a predefined parameter that represents the controller that is deemed 

unsuccessful if it is not able to guide the system into the goal set before _Thres TimeStep ; 

Stable_TimeSteps is the predefined parameter that indicates the success of a controller if it 

controls the plant for such a period; successful range represents the boundary of the 

parameters of the control plant; the strict constraint will be defined later. There are two 

strategies in the ISRL, judgment and evaluation strategies. The judgment strategy measures 

the fitness value of controller that fails to guide the system into the goal set. The evaluation 

strategy measures the fitness value of controller that successfully guide the system into the 

goal set. The details of the two strategies in the ISRL are shown as follows: 

strategies in the ISRL, judgment and evaluation str

the fitness value of controller that fails to guide the system into the goal set. The evaluation 

strategy measures the fitness value of controller that successfully guide the system into the 

the fitness value of controller that fails to guide the system into the goal set. The evaluation  the system into the goal set. The evaluation  the system into the goal set. The evaluation 

strategies in the ISRL, judgment and evaluation strstrategies in the ISRL, judgment and evaluation str

the fitness value of controller that fails to guide the system into the goal set. The evaluation 

strategy measures the fitness value of controller t

the fitness value of controller that fails to guide

strategy measures the fitness value of controller t

the fitness value of controller that fails to guidethe fitness value of controller that fails to guide

strategies in the ISRL, judgment and evaluation strstrategies in the ISRL, judgment and evaluation strstrategies in the ISRL, judgment and evaluation str

strategy measures the fitness value of controller tstrategy measures the fitness value of controller t
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Figure 4.3: Learning process of the ISRL. 

 

Staregy 1. Judgment strategy: 

 Under the condition that the controller fails to control the plant into the goal set, the 

fitness value is calculated by the following two cases. Case 1 represents the controller fails 

under a relative looser constraint. Case 2, on the contrary, represents the failure under the 

Does time step <  
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+Stable_TimeSteps)+Stable_TimeSteps)+Stable_TimeSteps)

No
Does time step <  

Thres_TimeStep
No

Does time step <  

? 

Does time step <  Does time step <  
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strict constraint defined in this dissertation. 

Case 1. If the system fails at time step t under a loose constraint, before entering goal set, then 

1 -1
 _  ;

_ _

t
Fitness Value

Thres TimeStep Thres TimeStep
= ×          (4.1) 

where the _Thres TimeStep  is a predefined parameter. The controller is deemed 

unsuccessful if it is not able to guide the system into the goal set before _Thres TimeStep . 

Case 2. If the plant works under the original successful range, but fails at time step t under a 

strict constraint before entering the goal set, then  

1
 _ .

_
Fitness Value t

Thres TimeStep
= ×                     (4.2) 

The strict constraint is defined by Eq. 4.3. It shrinks the successful range as the time step 

increases. 

( )
( )

_ = _ ,  where

_
,  if _

_

,  
_

Strict Range Original Range

Thres TimeStep A t
t Thres TimeStep

Thres TimeStep

A otherwise
Thres TimeStep

δ

δ

×

+ − ≤= 



;  (4.3) 

where A is a parameter that simply prevents the modified range from becoming zero. 

According to Eq. 4.3, when  _t Thres TimeStep≤ , this equation provides a better fitness value 

for the controller that guides the plant into the goal set sooner. When  _t Thres TimeStep> , 

this equation provides a penalty for the controller that exceeds the defined range. 

Strategy 2. Evaluation strategy 

 Under the condition that the controller successfully controls the system into the goal set, 

the fitness value is calculated by the following two cases. Case 1 represents the system enters 

the goal set, but falls beyond the range defined in Eq. 4.3. Case 2 represents the controller 

successfully controls the system. 

Case 1. If the system enters the goal set at time step t1 and falls beyond the range defined in 

Eq. 4.3 at time step t2, then 

_ = _ ,  where_ = _ ,  where

Thres TimeStep A t

( )

Thres TimeStep A t

( )( )
Thres TimeStep

( )( )

Thres TimeStep A tThres TimeStep A t

 is a parameter that simply prevents the modified r

otherwiseotherwise

Thres TimeStep
Thres TimeStep A t

( )

Thres TimeStep A t
_

( )
Thres TimeStep_

otherwise( )( )

Thres TimeStep A t
Thres TimeStep

( ) ,  

Thres TimeStep

otherwise( ) otherwise

Thres TimeStepThres TimeStep
Thres TimeStep A t

Thres TimeStep

( )( )( )
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2 1

1

1
 _ ( ) ;Fitness Value t t

t
= × −                        (4.4) 

Case 2. If the system enters the goal set at time step t1 and stabilizes the system for 

Stable_TimeSteps then 

1

1
_  _ +( _ );Fitness Value Thres StableTimeSteps Stable TimeSteps

t
= ×      (4.5) 

where Thres_StableTimeSteps is the predefined parameter; Stable_TimeSteps is the predefined 

parameter that indicates the success of a controller if it controls the plant for such a period.  

In the ISRL, the control laws of the system are designed according to Lyapunov function. 

However, for different control systems, we need to define different control laws of the system. 

Therefore, the Lyapunov-based manipulations on control laws are defined in Chapter 5. 
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Chapter 5              

Control Illustration 
 

To demonstrate the performance of the ISRL-SAEAs for temporal problems, in this 

chapter, two examples and performance contrasts with some other models are presented. The 

examples used in this chapter are described as follows. 

In Section 5.1, the inverted pendulum control system is adopted to evaluate the 

performance of the proposed ISRL-SAEAs. Therefore, the three methods of the ISRL-SAEAs 

are evaluated in this example. This problem is often used as an example of inherently unstable 

and dynamic systems to demonstrate both modern and classical control techniques ([55]-[57]) 

or the reinforcement learning schemes ([15]-[21]), and is now used as a control benchmark.  

In Section 5.2, the tandem pendulum control system is adopted to evaluate the 

performance of the three methods of the ISRL-SAEAs. Since the task of an inverted 

pendulum control system is too easy to find solutions quickly through random search, in this 

example, a variety of extensions to a basic inverted pendulum control problem have been 

suggested. The most challenging extension of an inverted pendulum control system is a 

tandem pendulum control system ([58]-[60]), where two pendulums of different length must 

be balanced synchronously. 

In the experiments, a Pentium 4 chip with a 1.5GHz CPU, a 512MB memory, and the 

visual C++ 6.0 simulation software are used to implement the control systems. 
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5.1 Inverted Pendulum Control System 

In this section, the classic control problem of an inverted pendulum control system is 

adopted to evaluate the performance of the ISRL-SAEAs. Figure 5.1 depicts the inverted 

pendulum control system. This system is often used as an example of inherently unstable and 

dynamic system to demonstrate both modern and the classic control techniques ([55]-[57]), or 

the reinforcement learning schemes ([15]-[21]), and is now used as a control benchmark. The 

bottom of the pendulum is hinged to a cart that travels along a finite-length track to its right or 

left. Both the cart and the pendulum can move only in the vertical plane; that is, each has only 

one degree of freedom. 

 

Figure 5.1: The inverted pendulum control system. 

 

The only control action is F, which is the amount of force (in Newtons) applied to cart to 

move it toward left or right. The system fails when the pendulum falls past a certain angle 

(± 12 is used here) or the cart runs into the bounds of its track (the distance is 2.4 m from the 

center to each bound of the track). Using Lagrange’s method, the model of the inverted 

pendulum control system can be obtained as follows: 

 x: 2( ) ( cos sin )m M x mL Fθ θ θ θ+ + − =ɺɺ ɺɺɺ                          (5.1) 

    θ : cos sin 0x L gθ θ θ+ − =ɺɺɺɺ                                      (5.2) 

  where                                                         

 L = 0.5 m, the length of the pendulum;                                   
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  M = 1.0 kg, the mass of the cart;          

 m = 0.1 kg, the mass of the pendulum;                                

  g = 9.8 m/s , acceleration due to the gravity;                                            

Let ( , )Tq x θ= , we can rewrite Eqs. 5.1 and 5.2 into general dynamic form as follows: 

( ) ( ) ( ),  D q q C q q q G q τ+ + =ɺɺ ɺ ɺ                              (5.3) 

      where 

                     ( ) 2

cos

cos

m M mL
D q

mL mL

θ
θ

+ 
=  
 

             (5.4) 

 ( ) 0 sin
,

0 0

mL
C q q

θ θ −
=  
 

 
ɺ

ɺ                 (5.5) 

 ( )
0

sin
G q

mgL θ
 

=  − 
                    (5.6) 

 [ ]0
T

Fτ =                            (5.7) 

The total mechanical energy of the system can be derived from 

                         ( ) ( ) ( )1
,  

2

TE q q q D q q P q= +ɺ ɺ ɺ                 (5.8) 

where ( )P q  denotes the potential energy of the system, cosmgL θ  in this case, and 

( ) ( )P q
G q

q

∂
=

∂
.  The purpose of this control task is to determine a sequence of forces 

applying to the cart to balance the pendulum upright, and maintain the cart as stationary as 

possible. Hence, we define a goal set comprising near-upright and near-stationary states as 

{ }1 ( , , ) :  ( , , ) 0.001G x xθ θ θ θ= ≤ɺ ɺɺ ɺ . When the state of inverted pendulum control system is in 

1G , according to Eq. 5.8, the total mechanical energy E of the system is mgL equaling 0.49. 

We define a Lyapunov function ),(49.0),( qqEqqV ɺɺ −= . The purpose of this control 

problem can be transformed to the problem of achieving 0),( =qqV ɺ . So we define another 

goal set }0),(:),{(2 == qqVqqG ɺɺ . 

0

The total mechanical energy of the system can be de

[[F

The total mechanical energy of the system can be deThe total mechanical energy of the system can be de

[F[

The total mechanical energy of the system can be de

τ =τ

The total mechanical energy of the system can be deThe total mechanical energy of the system can be de
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    The time derivative of E with respect to time is 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

1
,  

2

1
- ,  

2

T T T

T T T

T

E q q q D q q q D q q q G q

q C q q q G q q D q q q G q

q

xF

τ

τ

= + +

= − + + +

=

=

ɺ ɺɺ ɺ ɺɺ ɺ ɺ ɺ

ɺɺ ɺ ɺ ɺ ɺ ɺ

ɺ

ɺ

   (5.9) 

that shows the derivative of E is proportional to the product of the speed of cart and input 

force. Hence in this paper, following [32], a control law for the learning agent based on 

Lyapunov analysis is proposed as follows: 

( )
( )

( )
( ) ,  if E ,  < 0.49 

,  
0,  if E ,  0.49 

sgn x F q q
P q q

q q


= 

≥

ɺ ɺ
ɺ

ɺ
                  (5.10) 

where ( ) {1 if 0, and -1 otherwise}sgn x x= ≥ɺ  and F is the output of the TNFC that is limited 

in [-10,10]. ( ),  P q qɺ  guarantees the descent of the Lyapunov function; as a result, this 

control law satisfies the Theorem 4.1 defined in [32]. Denote the state of the environment at 

time step t = ( ),  t t tq q s=ɺ . Theorem 4.1 tells that the agent will bring the environment to 1G  

within 0( ) /L s ∆    steps, and remains the environment in the set 1{ :  ( ) ( )}t ts L s L s+ ≤ . In the 

simulation, since the descent step size can not be ensured. Theorem 4.1 can be reduced to the 

form that the agent will bring the environment to 1G  and remain the environment until it 

achieves 2G  eventually, if the controlling time step is long enough. 

In the simulation of inverted pendulum control system, the original successful region of 

the variables are �� 1212 ≤≤− θ and -2.4m x≤ ≤ 2.4m. The strict successful region of θ  is 

described in Eq. 4.3. The constraints on the variables are �� 1212 ≤≤− θ , -2.4m ≤≤ x 2.4m, 

and -10N ≤≤ f 10N. A control strategy is deemed successful if it can meet the control goal 

(θ  and θɺ  decade to zero). The four input variables ),,,( xx ɺɺθθ  and the output f(t) are 

( ) {1 if 0, and -1 otherwise} and F

 guarantees the descent of the Lyapunov function; a

control law satisfies the Theorem 4.1 defined in [3

 guarantees the descent of the Lyapunov function; a guarantees the descent of the Lyapunov function; a

 and ( ) {1 if 0, and -1 otherwise} and 

 guarantees the descent of the Lyapunov function; a

control law satisfies the Theorem 4.1 defined in [3

 guarantees the descent of the Lyapunov function; a guarantees the descent of the Lyapunov function; a

( ) {1 if 0, and -1 otherwise}( ) {1 if 0, and -1 otherwise}
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normalized between 0 and 1 over the following ranges: θ : [-12, 12], θɺ : [-240, 240], x : 

[-2.4, 2.4], xɺ : [-3.26, 3.26], and f(t): [-10, 10]. The ranges of θɺ  and xɺ  are calculated by 

experiments with extreme boundary conditions. The car is placed the location of 2.4m (or 

-2.4m) with pendulum angle set for -12�  (or 12� ) respectively, then applies the maximum 

force of -10N (or 10N) to the cart. When the system fails, the observed θɺ  and xɺ  are the 

boundaries. The four normalized state variables are used as inputs to the TNFC. The values 

are floating-point numbers assigned to the SAEAs initially. The fitness function is defined 

according to Eq. 4.1-4.5. 

In this example, the performance evaluation of the SAEAs consists of the HEA, 

SACG-SE, and SAG-SEFA. In the following sections, the performances of three methods are 

discussed. 

5.1.1 Evaluating performance of the HEA 

The initial parameters of the proposed ISRL-HEA in this example are determined by 

parameter exploration ([103]). The first study in parameter exploration was proposed by De 

Jong ([103]). As shown in [103], a small population size is good for the initial performance, 

and a large population size is good for long-term performance. Moreover, a low mutation rate 

is good for on-line performance, and a high mutation rate is good for off-line performance. In 

[104], the author found from his simulation that the best population size and mutation rate 

were 30 and 0.01, respectively. How parameters affect the methods in this study are as follows: 

1) the population size affects both the final performance and the efficiency of GA’s; 2) the 

crossover rate deals with the frequency to which the crossover step is applied; 3) the mutation 

rate deals with the second search step which increases the variability of the population. In this 

study, the parameters are found using the method given in [104]. Therefore, the number of 

fuzzy rules has the range from 2 to 20 in increments of 1, the group size has the range from 10 

to 100 in increments of 10, the crossover rate has the range from 0.25 to 1 in increments of 

0.05, and the mutation rate has the range from 0 to 0.3 in exponential increments. The other 
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parameters listed in the ISRL-HEA are defined as the same way. The parameters set for the 

proposed ISRL-HEA are shown in Table 5.1.  

Table 5.1 : The initial parameters of the ISRL-HEA before training. 

Parameters Value Parameters Value 

Nc 100 _Stable TimeSteps  5000 

Crossover Rate 0.5 _Thres TimeStep  1000 

Mutation Rate 0.3 ERSTimes  50 

[ minσ , maxσ ] [0, 2] A 10 

[ minm , maxm ] [0, 2] λ 0.01 

[ minw , maxw ] [-20, 20] η 7 

[Rmin, Rmax] [3, 12] Generations 300 

_Thres StableTimeSteps  500   

 

In this example, the coding of a rule in a chromosome is the form in Fig. 3.31 in Section 

3.1. A total of thirty runs were performed. Each run started at the different initial state (θɺ  and 

xɺ  are set for 0, θ  and x  are set randomly within a predefined range). The learning curves 

of ISRL-HEA are shown in Fig. 5.2. In this figure, there are thirty runs each run represents 

that how soon the TNFC can meet the goal state. The fitness value is defined according to Eqs. 

4.1-4.5. The higher fitness value by the end of each run represents that the sooner the plant 

meets the goal set. When the ISRL-HEA is stopped, the best string from the population in the 

final generation is selected and applied on the testing phase of the inverted pendulum control 

system. The results of the probability vectors in MCGA are shown in Fig. 5.3. In this figure, 

the final average number of rules is 5. 

The testing results, which consist of the pendulum angle, pendulum angular velocity (in 

degrees/seconds), and cart velocity (in meters/seconds) are shown in Fig. 5.4. A total of thirty 

runs were executed in the testing phase. Each line in Fig. 5.4 represents a single run that starts 

form a different initial state. The results shown in this figure are the first 1,000 of 6,000 

control time steps ( _Thres TimeStep + _Stable TimeSteps ). As shown in Fig. 5.4, the 

ISRL-HEA successfully controlled the inverted pendulum control system in all thirty runs 
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(the pendulum angle, pendulum angular velocity, and cart velocity decrease to 0). 

 

Figure 5.2: The learning curves of the ISRL-HEA. 

 

 

Figure 5.3: The probability vectors of the ERS step in the ISRL-HEA. 

 

 

(a)                                 (b) 
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(c) 

Figure 5.4: Control results of the inverted pendulum control system using the ISRL-HEA in Example 1. (a) 

Angle of the pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart. 

 

The reinforcement symbiotic evolution (R-SE) ([29]) and the reinforcement genetic 

algorithm (R-GA) ([26]) were applied to the same control task to compare with the 

performance of the ISRL-HEA. In the simulation of [29] and [26], parameters of learning are 

found by using the method given in [104]. Therefore, four rules were set for the R-SE and 

R-GA, the population size ranges from 10 to 250 in increments of 10, the crossover rate 

ranges from 0.25 to 1 in increments of 0.05, and the mutation rate ranges from 0 to 0.3 in 

exponential increments. The resulting parameters set for these methods (R-SE and the R-GA) 

are shown as follows: 1) the population sizes of the R-SE and the R-GA were 170 and 70, 

respectively; 2) the crossover rates of the R-SE and the R-GA were 0.55 and 0.6, respectively; 

3) the mutation rate of the R-SE and the R-GA were 0.08 and 0.02, respectively. In R-SE ([29]) 

and R-GA ([26]), the reinforcement signal is designed base on time-step reinforcement 

architecture ([18]-[20]). The fitness function in R-SE and R-GA is defined according to 

Fitness_Value =TIME_STEP                  (5.11) 

where TIME_STEP represents how long the experiment is a “success” in one generation. In 

this example, Eq. 5.11 represents how long before the pendulum falls apart a certain angle 

( °> 12||θ ) or the cart runs into the bounds of its track ( m4.2|| >x ). A control strategy is 

deemed successful if it can balance a pendulum for 6,000 time steps. 
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The simulation was carried out for 30 runs. The testing results of the R-SE and R-GA are 

shown in Figs. 5.5 and 5.6. The results shown in these figures are the first 1,000 of 6,000 

control time steps. As shown in Figs. 5.5 and 5.6, not every line meets the control goal ( xɺ , θ  

and θɺ  decay to zero). It’s obvious that the ISRL-HEA obtains better result when compared 

with [29] and [26], since the xɺ , θ  and θɺ  of the ISRL swing in a smaller range near zero. 

 

(a)                               (b) 

 

(c) 

Figure 5.5: Control results of the inverted pendulum control system using the R-SE in Example 1. (a) 

Angle of the pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart. 

 

(a)                               (b) 
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(a)                                  (b) 

 

(c) 

Figure 5.6: Control results of the inverted pendulum control system using the R-GA in Example 1. (a) 

Angle of the pendulum. (b) Angular velocity of the pendulum. (d) Velocity of the cart. 

 

In the further simulation, we select the best-trained individual of the ISRL-HEA, R-GA 

and R-SE in the training phase, and extend the control time steps to 100,000 in the testing 

phase. The simulation results, which consist of the pendulum angle, angular velocity of the 

pendulum, and the cart velocity, are shown in Fig. 5.7. Each line in Fig. 5.7 represents the 

result of the last 1000 time steps in a run that starts from the different initial state. As shown 

in Fig. 5.7 (d)-(i), not every line meets the control goal G1 in the R-SE and R-GA. Moreover, 

the pendulum angle may swing outside the boundary at the last 1000 time steps. However, in 

the proposed ISRL-HEA, each line can meet the control goal G1 and the pendulum is kept 

upright during the last 1000 time steps. The percentage that the R-SE and the R-GA controls 

the plant to G1 are 56% (with 13 runs that the plant unreach G1 and 4 out of 13 runs that the 

Figure 5.6: Control results of the inverted pendulum control system using the R-GA in Example 1. (a) 

Angle of the pendulum. (b) Angular velocity of the pendulum. (d) Velocity of the cart. 

(c) 

Figure 5.6: Control results of the inverted pendulum control system using the R-GA in Example 1. (a) 

Angle of the pendulum. (b) Angular velocity of the 

Figure 5.6: Control results of the inverted pendulum control system using the R-GA in Example 1. (a) Figure 5.6: Control results of the inverted penduluFigure 5.6: Control results of the inverted penduluFigure 5.6: Control results of the inverted penduluFigure 5.6: Control results of the inverted penduluFigure 5.6: Control results of the inverted penduluFigure 5.6: Control results of the inverted pendulu



 89

pendulum swings outside the boundary) and 54% (with 14 runs that the plant unreach G1 and 

5 out of 14 runs that the pendulum swings outside the boundary) respectively. The reason is 

that the fitness function used in the R-SE and R-GA only evaluates how long before the 

pendulum falls apart a certain angle ( °> 12||θ ) or the cart runs into the bounds of its track 

( m4.2|| >x ). Therefore, the system may not reach G1 and when the control time steps are 

extend to 100,000 in the testing phase the pendulum may swing outside the boundary. 

However, in the ISRL-HEA, the percentage that the plant remains in G1 during the last 1000 

time steps is 100%. It’s obvious that the ISRL allows the pendulum angle, angular velocity of 

the pendulum and the cart velocity to swing a small range near zero and stabilize the control 

system. 

 

(a)                                 (b) 

 

(c) (d) 
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 (e)                                  (f) 

 

(g)                                 (h) 

 

(i) 

Figure 5.7: Control results of the inverted pendulum control system in Example 1. (a) Angle of the 

pendulum of ISRL-HEA. (b) Angular velocity of the pendulum of ISRL-HEA. (c) Velocity of the cart of 

ISRL-HEA. (d) Angle of the pendulum of R-SE. (e) Angular velocity of the pendulum of R-SE. (f) Velocity 

of the cart of R-SE. (g) Angle of the pendulum of R-GA. (h) Angular velocity of the pendulum of R-GA. (i) 

Velocity of the cart of R-GA. 

 

The accuracy and CPU time comparison of ISRL-HEA, R-SE, and R-GA are shown in 

Table 5.2. The ISRL-HEA needs less CPU time than R-SE and R-GA. The reason is that the 

(g)                                 (h) (g)                                 (h) (g)                                 (h) (g)                                 (h) (g)                                 (h) (g)                                 (h) 



 91

ISRL adopts a strict restriction in the earlier time steps and evaluates the control system by 

how soon the plant can meet the control goal. The individual in ISRL-HEA with better 

performance means it controls the plant to the goal set sooner. As a result, the CPU time of 

ISRL-HEA is dramatic less than that of R-SE and R-GA. For example, in the R-SE and R-GA, 

if one individual fails around 5000 time step, this individual is set with a high fitness value 

and causes other individuals in the population to approach. At the time when most individuals 

fail around 5000 time step, the evolution in one generation becomes very time-consuming. As 

shown in the Table 5.2, when compared with the traditional reinforcement signal design, the 

proposed ISRL can reduce the CPU time and always control the plant to the goal set. 

Moreover, the HEA can determine the fuzzy rules automatically without trail and error 

testing. 

The genetic reinforcement learning for neuro control (GENITOR) ([57]), symbiotic 

adaptive neuro-evolution (SANE) ([96]), temporal difference and genetic algorithm-based 

reinforcement learning (TDGAR) ([20]), combination of online clustering and Q-value based 

GA for reinforcement fuzzy system (CQGAF) ([43]), efficient reinforcement learning through 

dynamical symbiotic evolution (ERDSE) ([44]), and enforce sub-population (ESP) ([40]) 

have been applied to the same control task and the simulation results are listed in Table 5.2. 

The accuracy of the controller meet the control goal and keep the pendulum in 100000 time 

steps and the CPU time are shown in Table 5.2. A total of thirty runs were executed. Each run 

started at the different initial state. The initial parameters of these methods ([57], [96], [20], 

[43], [44], and [40]) are determined according to [104]. In these methods, the network size has 

the range from Rmin to Rmax in increments of 1. This dissertation determines the network sizes 

by executing an evolutionary algorithm with fixed string length for each specification (Rmin to 

Rmax in increments of 1) of the number of network sizes and then computes the average of the 

generations. In [57], the normal evolutionary algorithm is used to evolve the weights of a 

fully-connected two-layer neural network, with additional connections from each input unit to 

The genetic reinforcement learning for neuro contro

adaptive neuro-evolution (SANE) ([96]), temporal di

reinforcement learning (TDGAR) ([20]), combination 

GA for reinforcement fuzzy system (CQGAF) ([43]), e

adaptive neuro-evolution (SANE) ([96]), temporal diadaptive neuro-evolution (SANE) ([96]), temporal di

The genetic reinforcement learning for neuro contro

adaptive neuro-evolution (SANE) ([96]), temporal di

reinforcement learning (TDGAR) ([20]), combination 

adaptive neuro-evolution (SANE) ([96]), temporal di

reinforcement learning (TDGAR) ([20]), combination 

adaptive neuro-evolution (SANE) ([96]), temporal di

reinforcement learning (TDGAR) ([20]), combination 

adaptive neuro-evolution (SANE) ([96]), temporal di

reinforcement learning (TDGAR) ([20]), combination reinforcement learning (TDGAR) ([20]), combination 

adaptive neuro-evolution (SANE) ([96]), temporal diadaptive neuro-evolution (SANE) ([96]), temporal di

reinforcement learning (TDGAR) ([20]), combination reinforcement learning (TDGAR) ([20]), combination 

adaptive neuro-evolution (SANE) ([96]), temporal diadaptive neuro-evolution (SANE) ([96]), temporal diadaptive neuro-evolution (SANE) ([96]), temporal diadaptive neuro-evolution (SANE) ([96]), temporal di

reinforcement learning (TDGAR) ([20]), combination reinforcement learning (TDGAR) ([20]), combination 

adaptive neuro-evolution (SANE) ([96]), temporal di

reinforcement learning (TDGAR) ([20]), combination 
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the output layer. After trial-and-error tests, the network size is ten. In [96], the symbiotic 

evolutionary algorithm is used to evolve a two-layer neural network. In [96], the network size 

is ten. The TDGAR ([20]) that consists of the critic network and action network to the 

learning system. The critic network is a standard three-layer feedforward network using 

sigmoid functions in the hidden layer and output layer. The action network is a fuzzy neural 

network with five layers of nodes and each layer performs one stage of the fuzzy inference 

process. There are five hidden nodes and five fuzzy rules in the critic network and the action 

network. In CQGAF ([43]), the fuzzy controller with Q-value based genetic algorithm is 

proposed to solve controller problems. After trial-and-error tests, the final average number of 

rules in CQGAF of thirty runs is 8 by using the on-line clustering algorithm. In ERDSE ([44]), 

the TSK type neuro-fuzzy controller is adopted to solve controller problems. After 

trial-and-error tests, the number of rules in ERDSE is 7. In ESP ([40]), the author proposed 

enforced sub-populations to evaluate solution locally. There are five sub-populations in ESP. 

The other parameters set for six methods ([57], [96], [20], [43], [44], and [40]) are as follows: 

1) the population sizes of the six methods are 130, 170, 100, 130, 80 and 40, respectively; 2) 

the crossover rates of the six methods are 0.45, 0.55, 0.35, 0.45, 0.8 and 0.5, respectively; 3) 

the mutation rate of the six methods are 0.21, 0.17, 0.16, 0.24, 0.1 and 0.18, respectively. 

When each training step is stopped, the best combination of strings from the population in the 

final generation is selected and tested with different initial states in thirty times. 

 As shown in Table 5.2, the proposed ISRL-HEA is more feasible and effective when 

compared with other existing models ([26], [29], [57], [96], [20], [43], [44], and [40]). The 

advantages of the ISRL-HEA can be listed as follows:  

1. Using the concept of statistics, the ISRL-HEA computes the suitable number of fuzzy rules 

by probability to avoid the flaw that the number of fuzzy rules has to be assigned in 

advance under different environments. 

2. The ISRL enhances the stability of the control system by using the design of 

trial-and-error tests, the number of rules in ERDSE

enforced sub-populations to evaluate solution locally. There are five sub-populations in ESP. 

The other parameters set for six methods ([57], [96], [20], [43], [44], and [40]) are as follows: 

1) the population sizes of the six methods are 130,
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Lyapunov-based safe reinforcement learning. It has better capability to stabilize the plant 

under different initial states. 

Table 5. 2: Performance comparison of various existing models. 

CPU time Method 

Mean Best Worst Std. 

Accuracy 

GENITOR ([57]) 120.95 61.34 320.36 92.95 50% 

SANE ([96]) 97.56 48.54 254.84 83.56 61% 

R-GA ([26]) 89.83 34.85 192.93 69.94 54% 

R-SE ([29]) 73.14 28.66 149.43 57.87 56% 

TDGAR ([20]) 69.13 26.54 112.73 41.58 53% 

ESP ([40]) 58.32 22.08 95.57 35.27 56% 

ERDSE ([44]) 51.19 20.77 88.53 30.74 67% 

CQGAF ([43]) 48.82 18.79 84.39 26.31 59% 

ISRL-HEA 39.97 15.10 71.01 18.23 100% 

 

To demonstrate the proposed ISRL, in this example the safe reinforcement learning (SRL) 

([32]) is used. Therefore, the SRL-HEA is used to compare performance with the proposed 

ISRL-HEA. The simulation was carried out for 30 runs. The goal sets are defined same as the 

ISRL-HEA. The testing results of the SRL-HEA are shown in Fig. 5.8. The results shown in 

Fig. 5.8 are the first 1,000 of 100,000 control time steps. As shown in Fig. 5.8, although each 

line can meet the control goal. The time steps the SRL-HEA needs to meet the control goal 

are longer than the ISRL-HEA (as shown in Fig. 5.4). The accuracy, CPU time, and time steps 

that the systems need to meet the control goal of the ISRL-HEA and SRL-HEA are shown in 

Table 5.3. As shown in this table, the proposed ISRL-HEA is more feasible and effective 

when compared with SRL-HEA. The reason is that the ISRL-HEA can evaluate how soon the 

system meets the control goal. 

To demonstrate the proposed ISRL, in this example t

([32]) is used. Therefore, the SRL-HEA is used to c

ISRL-HEA. The simulation was carried out for 30 run
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(a)                                  (b) 

 

(c) 

Figure 5. 8: Control results of the inverted pendulum control system using the SRL-HEA in Example 1. (a) 

Angle of the pendulum. (b) Angular velocity of the pendulum. (d) Velocity of the cart. 

 

Table 5. 3: Performance comparison of ISRL-HEA and SRL-HEA. 

Time steps CPU Time Method 

Best Mean Worst Std. Best Mean Worst Std. 

Accuracy 

ISRL-HEA 85 287 421 92 15.10 39.97 71.01 18.23 100% 

SRL-HEA 257 754 1483 338 21.37 56.64 92.71 33.52 100% 

 

Moreover, to demonstrate the efficiency of the proposed ERS, in this example the three 

different methods are used such as: the proposed ISRL-HEA (Type I), the proposed 

ISRL-HEA without ERS (Type II), and the fixed length genetic algorithm (Type III). In Type 

I method, the proposed ISRL-HEA combines the MVGA and the ERS. In Type II method, the 

proposed ISRL-HEA without using the probability vectors to determine the number of fuzzy 

Figure 5. 8: Control results of the inverted pendulum control system using the SRL-HEA in Example 1. (

Angle of the pendulum. (b) Angular velocity of the pendulum. (d) Velocity of the cart. 

(c) 

Figure 5. 8: Control results of the inverted pendulum control system using the SRL-HEA in Example 1. (

pendulum. (d) Velocity of the cart. 

Figure 5. 8: Control results of the inverted pendulum control system using the SRL-HEA in Example 1. (um control system using the SRL-HEA in Example 1. (Figure 5. 8: Control results of the inverted pendulFigure 5. 8: Control results of the inverted pendulum control system using the SRL-HEA in Example 1. (Figure 5. 8: Control results of the inverted pendulFigure 5. 8: Control results of the inverted pendulFigure 5. 8: Control results of the inverted pendul
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rules. That is, only MVGA are used. In Type III method, the ISRL are used with a genetic 

algorithm that has fixed length. In Type III method, we determine the number of fuzzy rules 

by executing a genetic algorithm with fixed string length for each specification (Rmin to Rmax in 

increments of 1) of the number of fuzzy rules and then compute the average of the generations. 

All the three methods are designed base on ISRL. Table 5.4 shows the performance 

comparison of three methods. 

As shown in Table 5.4, compare to Type I and Type II method, the Type I method needs 

few CPU time to balance the control system. The reason is that the ERS can determine the 

suitable number of fuzzy rules automatically. Although the Type II method can also find the 

number of fuzzy rules with MVGA, however, the number of individuals with same length is 

fixed. Therefore, the evolutionary algorithm needs more CPU time to search the solution. In 

the proposed ERS, the number of individuals with same length is determined according to 

their performance. 

Compare to Type I and Type III method, the Type I needs few CPU time to balance the 

control system. The reason is that the Type I method uses ERS to determine the number of 

fuzzy rules automatically. However, in Type III method, the number of fuzzy rules is 

determined by trial-and-error testing. Therefore, the average of the generations of the Type I 

method is larger than the Type I method. 

Table 5. 4: Performance comparison of three different methods. 

Method Mean Best Worst Std. 

Type I method 39.97 15.10 71.01 18.23 

Type II method 57.31 25.45 98.82 30.93 

Type III method 85.83 30.85 183.93 60.94 

 

5.1.2 Evaluating performance of the SACG-SE  

In this section, the inverted pendulum control system is used to evaluate the performance 

of the SACG-SE. The initial parameters of the proposed ISRL-SACG-SE in this example are 

the proposed ERS, the number of individuals with sa

Compare to Type I and Type III method, the Type I n
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the proposed ERS, the number of individuals with sa

Compare to Type I and Type III method, the Type I nCompare to Type I and Type III method, the Type I nCompare to Type I and Type III method, the Type I nCompare to Type I and Type III method, the Type I nCompare to Type I and Type III method, the Type I nCompare to Type I and Type III method, the Type I nCompare to Type I and Type III method, the Type I nCompare to Type I and Type III method, the Type I nCompare to Type I and Type III method, the Type I nCompare to Type I and Type III method, the Type I n



 96

determined by parameter exploration ([104]). The parameters set for the ISRL-SACG-SE are 

shown in Table 5.5. 

Table 5. 5: The initial parameters of the ISRL-SACG-SE before training. 

Parameters Value Parameters Value 

Nc 20 _Stable TimeSteps  5000 

Crossover Rate 0.4 _Thres TimeStep  1000 

Mutation Rate 0.15 TSSATimes  50 

[ minσ , maxσ ] [0, 2] A 10 

[ minm , maxm ] [0, 2] λ 0.01 

[ minw , maxw ] [-20, 20] η 7 

[Rmin, Rmax] [3, 12] Generations 300 

Psize 18 _Thres StableTimeSteps  500 

 

A total of thirty runs were performed. Each run started at the different initial state (θɺ  

and xɺ  are set for 0, θ  and x  are set randomly according to the predefined ranges). Figure 

5.9 shows one run of the results of the probability vectors in the TSSA. In this figure, the final 

optimal number of rules is 4. Table 5.6 shows the mean, best, and worst of the optimal 

number of rules from thirty runs. The learning curve of the ISRL-SACG-SE after thirty runs 

is shown in Fig. 5.10. In this figure, there are thirty runs each run represents how soon the 

TNFC can meet the goal state. When ISRL-SACG-SE is stopped, the best combination of 

strings from the groups in the final generation is selected and tested on the inverted pendulum 

control system.  
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Figure 5. 9: The results of the probability vectors in the TSSA. 

 

Table 5. 6: The number of rules from thirty runs of the TSSA. 

Method Mean Best Worst 

ISRL-SACG-SE 4 3 10 

 

The simulation was carried out for thirty runs. The successful results, which consist of 

the pendulum angle, angular velocity of the pendulum (in degrees/seconds), and the velocity 

of the cart (in meters/seconds) are shown in Fig. 5.11. Each line in Fig. 5.11 represents each 

run with a different initial state. The results shown in this figure are the first 1,000 of 6,000 

control time steps ( _Thres TimeStep + _Stable TimeSteps ). As shown in Fig. 5.11, the 

ISRL-SACG-SE successfully controlled the inverted pendulum control system in all thirty 

runs (the pendulum angle, pendulum angular velocity, and cart velocity decrease to 0).  

As well as ISRL-HEA, we select the best-trained individual of the proposed 

ISRL-SACG-SE in the training phase, and extend the control time steps to 100,000 in the 

testing phase. The simulation results, which consist of the pendulum angle, the pendulum 

angular velocity, and the cart velocity, are shown in Fig. 5.12. Each line in Fig. 5.12 

represents the result of the last 1000 time steps in a run that starts from the different initial 

state. As shown in Fig. 5.12, each line can meet the control goal G1 and the pendulum is kept 

upright during the last 1000 time steps. In the ISRL-SACG-SE, the percentage that the plant 
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remains in G1 during the last 1000 time steps is 100%. It’s obvious that the ISRL allows the 

pendulum angle, the pendulum angular velocity and the cart velocity to swing a small range 

near zero and stabilize the control system. 

 

Figure 5. 10: The learning curve of the SACG-SE. 

 

 

(a)                                 (b) 

 

(c) 

Figure 5. 11: Control results of the inverted pendulum control system using the ISRL-SACG-SE in 

Example 1 (first 1000 time). (a) Angle of the pendulum. (b) Angular velocity of the pendulum. (c) Velocity 

of the cart. 
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(a)                                 (b) 

 

(c) 

Figure 5. 12: Control results of the inverted pendulum control system using the ISRL-SACG-SE in 

Example 1 (last 1000 time). (a) Angle of the pendulum. (b) Angular velocity of the pendulum. (c) Velocity 

of the cart. 

 

In this example, in order to demonstrate the effectiveness and efficiency of the proposed 

ISRL-SACG-SE, the R-SE ([29]) and R-GA ([26]) are used to compare with ISRL-SACG-SE. 

As shown in Fig. 5.7 (d)-(i), the accuracy of the TNFC with the R-SE and R-GA that the 

pendulum does not swing outside the boundary after 6,000 time steps are 56% and 54%. 

However, in the ISRL-SACG-SE, the accuracy of the TNFC success meet the control goal 

and keep the pendulum in 100,000 time steps is 100%. As shown in Fig. 5.12 and 5.7, the 

ISRL-SACG-SE can perform better than the R-SE and R-GA. 

The accuracy and CPU time comparison of the ISRL-SACG-SE, R-SE, and R-GA are 

shown in Table 5.7. As shown in the Table 5.7, when compared with the traditional 

Figure 5. 12: Control results of the inverted penduFigure 5. 12: Control results of the inverted pendu

(c) (c) 
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reinforcement signal design, the proposed ISRL reduces the CPU time and always controls the 

plant to the goal set. Moreover, the SACG-SE can not only determine the fuzzy rules 

automatically without trail and error testing but also let the chromosomes that perform well to 

cooperate for generating better solutions. 

Compare to HEA, the SACG-SE can obtain smaller CPU times because of the SACG-SE 

considers both of cooperation and specialization. As shown in Fig. 5.2 and 5.10, the learning 

curves of the SACG-SE converge more quickly than those of the HEA. The worst, mean, best 

and standard deviation of CPU time of the HEA and SACG-SE are shown in Table 5.7. As 

shown in this table, the SACG-SE obtains better performance than the HEA. 

The GENITOR ([57]), SANE ([96]), TDGAR ([20]), CQGAF ([43]), ERDSE ([44]), and 

ESP ([40]) methods have been applied to the same control problem. The accuracy and CPU 

time are shown in Table 5.7. A total of thirty runs were performed. Each run started at the 

different initial state. The initial parameters of these methods ([57], [69], [20], [43], [44], and 

[40]) are determined according to Section 5.1.1. The control time steps for testing are 

extended to 100,000 time steps. As shown in Table 5.7, the proposed ISRL-SACG-SE is more 

feasible and effective when compared with other existing models ([26], [29], [57], [96], [20], 

[43], [44], and [40]). The advantages of the ISRL-SACG-SE can be listed as follows:  

1. Using the TSSA, the ISRL-SACG-SE computes by probability the suitable number of 

fuzzy rules to avoid the flaw that the number of fuzzy rules has to be assigned in advance 

under different environments. 

2. The ISRL enhances the stability of the control system by using the design of 

Lyapunov-based safe reinforcement learning. It has better capability to stabilize the plant 

under different initial states. 

3. The ECCS lets the well-perform chromosomes to cooperate for generating better solutions 

in the generations. 

4. The Group-based symbiotic evolution can evaluate the solution locally. 
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Table 5. 7: Performance comparison of various existing models in Example 1. 

CPU time Method 

Mean Best Worst Std. 

Accuracy 

GENITOR ([57]) 120.95 61.34 320.36 92.95 50% 

SANE ([96]) 97.56 48.54 254.84 83.56 61% 

R-GA ([26]) 89.83 34.85 192.93 69.94 54% 

R-SE ([29]) 73.14 28.66 149.43 57.87 56% 

TDGAR ([20]) 69.13 26.54 112.73 41.58 53% 

ESP ([40]) 58.32 22.08 95.57 35.27 56% 

ERDSE ([44]) 51.19 20.77 88.53 30.74 67% 

CQGAF ([43]) 48.82 18.79 84.39 26.31 59% 

ISRL-HEA 39.97 15.10 71.01 18.23 100% 

ISRL-SACG-SE 30.54 10.23 49.21 11.12 100% 

 

For demonstrating the efficiency of the each component of the proposed SACG-SE (the 

group-based symbiotic evolution (GSE), TSSA, and ECCS), in this example, five different 

methods: the proposed ISRL-SACG-SE without TSSA (Type I), the ISRL-SACG-SE without 

ECCS (Type II), the ISRL-SACG-SE without TSSA and ECCS(Type III), and the SE method 

(Type IV), and the proposed ISRL-SACG-SE (Type V) are used. In the Type I, III, IV 

methods, the number of fuzzy rules is determined according to trail and error testing and then 

compute the average of the generations. In Type II method, each group performs the 

two-point crossover strategy independently. In Type III, only GSE is used. In the Type IV 

method, the SE ([29]) with ISRL is adopted. In the Type V method, the ISRL-SACG-SE uses 

the TSSA to determine fuzzy rules automatically and the proposed ECCS is adopted to 

perform crossover strategy. In the Type I, III, IV methods, the parameters are set according to 

[104]. In Type I, III, IV methods, we determine the number of fuzzy rules by executing Type I, 

III, IV methods with fixed string length for each specification of the number of fuzzy rules 

and then compute the average of the generations. All the five methods are designed base on 

ISRL. The performance of five methods is shown in Table 5.8.  

In Table 5.8, comparing Type IV with Type III, the GSE outperform than SE because of 
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the chromosomes that use to evaluate the solution locally can obtain better performance 

compared to systems of only one population be used to evaluate the solution. Comparing Type 

I with Type V method, the Type V method needs few CPU time to balance the control system. 

The reason is that the TSSA can determine the suitable number of fuzzy rules automatically. 

However, in Type I method, the number of fuzzy rules is determined by trial-and-error testing. 

Therefore, the average of the generations of the Type I method is larger than Type V method. 

Comparing Type II with Type V method, it is observed that the SACG-SE (Type V) performs 

better than Type II method. It is observed that ECCS can reduce CPU time. As shown in Table 

5.8, the proposed ISRL-SACG-SE (Type V) performs better than other four types of methods. 

Table 5. 8: Performance comparison of different methods. 

CPU Time 
Method 

Mean Best Worst Std. 

Type I 51.54 18.23 83.21 31.12 

Type II 45.93 16.41 76.87 27.39 

Type III 58.43 22.18 98.91 38.55 

Type IV 68.26 26.63 131.25 51.43 

Type V 30.54 10.23 49.21 11.12 

 

5.1.3 Evaluating performance of the SAG-SEFA 

The initial parameters of the proposed ISRL-SAG-SEFA in this example are determined 

by parameter exploration ([104]). The parameters set for the ISRL-SAG-SEFA are shown in 

Table 5.9. As shown in Table 5.9, the Minimum_Suppor used in FP-growth is set as half 

number of transactions according to [52]. Minimum_Suppor effects the number of frequent 

item sets (the number of suitable group sets). If Minimum_Suppor is too small, large number 

of frequent item sets will be generated, which cause the system unable to estimate superior 

group sets. On the contrary, when the Minimum_Suppor is too large, few frequent item sets 

will be generated, which causes the system unable to pick chromosomes in a sufficient 

amount of suitable group sets. After experimenting in this paper, and referring to [52], we can 
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see that when Minimum_Suppor is set as half number of transactions, the performance is 

satisfactory. 

Table 5. 9: The initial parameters of the ISRL-SAG-SEFA before training. 

Parameters Value Parameters Value 

Psize 16 _Stable TimeSteps  5000 

NC 10 _Thres TimeStep  1000 

TimesSelection _  200 TSSAimes  30 

NormalTimes 10 A 10 

SearchingTimes 15 λ 0.01 

ExploringTimes 20 η 7 

Crossover Rate 0.5 Generations 300 

Mutation Rate 0.2 Minimum_Suppor 2/nNumTransactio  

essvalueThreadFitn  550 _Thres StableTimeSteps  500 

 

The coding of a rule in a chromosome is the form given in Fig. 3.10. The values are 

floating-point numbers initially assigned using the ISRL-SAG-SEFA. A total of thirty runs 

were performed in this simulation. Each run started at the different initial state (θɺ  and xɺ  are 

set for 0, θ  and x  are set randomly according to the predefined ranges). The mean, best, 

and worst of the optimal number of rules by performing the TSSA from thirty runs is shown 

in Table 5.10.  

Table 5. 10: The number of rules from thirty runs of the TSSA. 

Method Mean Best Worst 

ISRL-SAG-SEFA 5 3 10 

 

The learning curve of the ISRL-SAG-SEFA after thirty runs is shown in Fig. 5.13. In this 

figure, there are thirty runs each run represents that how soon the TNFC can meet the goal 

state. When ISRL-SAG-SEFA is stopped, the best combination of strings from the groups in 

the final generation is selected and tested on the inverted pendulum control system. The 

successful results, which consist of the pendulum angle, angular velocity of the pendulum (in 

degrees/seconds), and the velocity of the cart (in meters/seconds) are shown in Fig. 5.14. Each 

floating-point numbers initially assigned using the ISRL-SAG-SEFA. A total of thirty runs 

were performed in this simulation. Each run started at the different initial state (
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line in Fig. 5.14 represents each run with a different initial state. The results shown in this 

figure are the first 1,000 of 6,000 control time steps ( _Thres TimeStep + _Stable TimeSteps ). 

As shown in Fig. 5.14, the ISRL-SAG-SEFA successfully controlled the inverted pendulum 

control system in all thirty runs (the pendulum angle, pendulum angular velocity, and cart 

velocity decrease to 0). 

As well as the ISRL-HEA and ISRL-SACG-SE, we select the best-trained individual of 

the proposed ISRL-SAG-SEFA in the training phase, and extend the control time steps to 

100,000 in the testing phase. The simulation results, which consist of the pendulum angle, the 

pendulum angular velocity, and the cart velocity, are shown in Fig. 5.15. Each line in Fig. 

5.15 represents the result of the last 1000 time steps in a run that starts from the different 

initial state. As shown in Fig. 5.15, the proposed ISRL-SAG-SEFA, each line can meet the 

control goal G1 and the pendulum is kept upright during the last 1000 time steps. Moreover, in 

the ISRL-SAG-SEFA, the percentage that the plant remains in G1 during the last 1000 time 

steps is 100%. It’s obvious that the ISRL allows the pendulum angle, the pendulum angular 

velocity, and the cart velocity to swing a small range near zero and stabilize the control 

system. 

 

Figure 5. 13: The learning curve of the ISRL-SAG-SEFA. 
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(a)                                 (b) 

 

(c) 

Figure 5. 14: Control results of the inverted pendulum control system using the ISRL-SAG-SEFA in 

Example 1 (first 1000 time). (a) Angle of the pendulum. (b) Angular velocity of the pendulum. (c) Velocity 

of the cart. 
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(c) 

Figure 5. 15: Control results of the inverted pendulum control system using the ISRL-SAG-SEFA in 

Example 1 (last 1000 time). (a) Angle of the pendulum. (b) Angular velocity of the pendulum. (c) Velocity 

of the cart. 

 

In this example, in order to demonstrate the effectiveness and efficiency of the proposed 

ISRL-SAG-SEFA, the R-SE ([29]) and R-GA ([26]) are also used to compare with 

ISRL-SAG-SEFA. As shown in Fig. 5.7 (d)-(i), the accuracy of the TNFC with the R-SE and 

R-GA that the pendulum does not swing outside the boundary after 6,000 time steps are 56% 

and 54%. However, in the ISRL-SAG-SEFA, the accuracy of the TNFC success meet the 

control goal and keep the pendulum in 100,000 time steps is 100%. As shown in Fig. 5.7 and 

5.15, the ISRL-SAG-SEFA can perform better than the R-SE and R-GA. 

The accuracy and CPU time comparison of ISRL-SAG-SEFA, R-SE, and R-GA are 

shown in Table 5.11. The ISRL-SAG-SEFA needs less CPU time than R-SE and R-GA. The 

reason is that the ISRL adopt a strict restriction in earlier time steps and evaluate the control 

system by how soon the system can meet the control goal. Therefore, the individuals in 

ISRL-SAG-SEFA have the high performance and the system can reach and remain the control 

goal in the earlier time steps. About this, the CPU time of ISRL-SACG-SE is dramatic less 

than that of R-SE and R-GA. 

Compare to SACG-SE, the SAG-SEFA can obtain smaller CPU times because of the 

SAG-SEFA not only considers both of cooperation and specialization but also selects suitable 
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groups to perform selection and crossover by using data-mining method. As shown in Fig. 

5.10 and 5.13, the learning curves of the SAG-SEFA converge more quickly than those of the 

SACG-SE. The worst, mean, best, and standard deviation of CPU time of the SACG-SE and 

SAG-SEFA are shown in Table 5.11. As shown in this table, the SAG-SEFA obtains small 

CPU time than the SACG-SE. 

The [57], [96], [20], [43], [44], and [40] have been applied to the same control problem. 

Their simulation results are listed in Table 5.11. Table 5.11 shows the accuracy and CPU time 

for the control model. The initial parameters of these methods ([57], [96], [20], [43], [44], and 

[40]) are determined according to Section 5.1.1. The control time steps for testing are 

extended to 100,000 time steps. As shown in Table 5.11, the proposed ISRL-SAG-SEFA is 

more feasible and effective when compared with other existing models ([29], [26], [57], [96], 

[20], [43], [44], and [40]). The advantages of the ISRL-SAG-SEFA can be listed as follows: 

1. Using the TSSA, the ISRL-SAG-SEFA computes by probability the suitable number of 

fuzzy rules to avoid the flaw that the number of fuzzy rules has to be assigned in advance 

under different environments. 

2. The ISRL enhances the stability of the control system by using the design of 

Lyapunov-based safe reinforcement learning. It has better capability to stabilize the plant 

under different initial states. 

3. The Group-based symbiotic evolution can evaluate the solution locally. 

4. The SAG-SEFA not only considers both of cooperation and specialization but also selects 

suitable groups to perform selection and crossover by using DMSS and DMCS. 
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Table 5. 11: Performance comparison of various existing models in Example 1. 

CPU time Method 

Mean Best Worst Std. 

Accuracy 

GENITOR ([57]) 120.95 61.34 320.36 92.95 50% 

SANE ([96]) 97.56 48.54 254.84 83.56 61% 

R-GA ([26]) 89.83 34.85 192.93 69.94 54% 

R-SE ([29]) 73.14 28.66 149.43 57.87 56% 

TDGAR ([20]) 69.13 26.54 112.73 41.58 53% 

ESP ([40]) 58.32 22.08 95.57 35.27 56% 

ERDSE ([44]) 51.19 20.77 88.53 30.74 67% 

CQGAF ([43]) 48.82 18.79 84.39 26.31 59% 

ISRL-HEA 39.97 15.10 71.01 18.23 100% 

ISRL-SACG-SE 30.54 10.23 49.21 11.12 100% 

ISRL- SAG-SEFA 18.12 5.31 28.51 8.34 100% 

 

To demonstrate the efficiency of the proposed TSSA, DMSS, and DMCS, in this 

example, the six different methods, the SAG-SEFA using only TSSA (Type I), SE (Type II), 

GSE (Type III), SAG-SEFA (Type IV), SAG-SEFA using only TSSA and DMSS (Type V), 

and SAG-SEFA using only TSSA and DMCS (Type VI), are used. In Type I method, the 

groups are selected randomly to construct TNFC with different numbers of rules and each 

group performs crossover strategy independently. In Type II method, the traditional symbiotic 

evolution is used. In Type III method, the group-based symbiotic evolution (GSE) is adopted 

with fixed number of rules. In Type IV method, SAG-SEFA uses the proposed TSSA, DMSS, 

and DMCS to perform structure and parameter learning. In Type V method, SAG-SEFA uses 

only the proposed TSSA and DMSS; therefore, the each group performs crossover strategy 

independently. In Type VI method, SAG-SEFA uses only the proposed TSSA and DMCS; 

therefore, the groups are selected randomly to construct TNFC with different numbers of rules. 

In the six methods, the parameters are set according to [104]. In Type II and III methods, we 

determine the number of fuzzy rules by executing Type II and III methods with fixed string 

length for each specification of the number of fuzzy rules and then compute the average of the 
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CPU time. All the three are designed base on ISRL. The performance (accuracy and CPU 

time) compared of the six methods is shown in Table 5.12.  

In Table 5.12, comparing Type II with Type III, the GSE outperform than SE because of 

the chromosomes that use to evaluate the solution locally can obtain better performance 

compared to systems of only one population be used to evaluate the solution. However, 

comparing Type I with Type III method, the Type I method needs few CPU time to balance 

the control system. The reason is that the TSSA can determine the suitable number of fuzzy 

rules automatically. However, in Type III method, the number of fuzzy rules is determined by 

trial-and-error testing. Therefore, the average of the generations of the Type III method is 

larger than Type I method. Comparing Type I with Type V method, it is observed that DMSS 

can reduce CPU time because of the chromosomes from suitable groups can be selected to 

construct TNFS models with different numbers of rules. Comparing Type I with Type VI 

method, it is observed that DMCS can reduce CPU time. This is because the chromosomes 

from suitable groups can be selected to cooperate for generating better solutions. As shown in 

Table 5.12, the SAG-SEFA (Type IV) performs better (CPU time) than other methods. 

Table 5. 12: Performance comparison of six different methods in Example 1. 

CPU Time 
Method 

Mean Best Worst Std. 

Type I 45.93 16.41 76.87 27.39 

Type II 68.26 26.63 131.25 51.43 

Type III 58.43 22.18 98.91 38.55 

Type IV 18.12 5.31 28.51 8.34 

Type V 27.37 12.83 36.55 15.17 

Type VI 24.23 9.19 33.71 13.09 
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problem, the task is too easy to find solutions quickly through random search. About this, in 

this example, a variety of extensions to a basic cart-pendulum balancing problem have been 

suggested. In [58]-[60], the author proposed several variations of an inverted pendulum 

control system. The most challenging extension of an inverted pendulum control system 

([58]-[60]) is a tandem pendulum control system, where two pendulums of different length 

must be balanced synchronously. Therefore, a tandem pendulum control system is used to 

evaluate the proposed ISRL-SAEAs. As shown in Fig. 5.16, a tandem pendulum control 

system is the problem of learning how to balance two pendulums. There are four state 

variables in the system: iθ , the angle of the ith pendulum; iθɺ , the angular velocity of the ith 

pendulum. The only control action is u, which is the amount of force applied to cart to move it 

toward left or right. The system fails when the pendulum falls past a certain angle ( 36± �  is 

used here).  

2l

2θ

F

2mg

1θ

1l

1mg

 

Figure 5. 16: The tandem pendulum control system. 

 

The motion equations of the tandem pendulum control system ([58]-[60]) are described as 

follow: 

( ) ( )sin cos ,         1,  2i i i i i i i iJ m gl m l u iθ θ θ= − =ɺɺ             (5.12) 

where for iθ denotes the angle between ith pendulum and the vertical, Ji is the inertia moment 

θ
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with respect to the pivot point, mi is the mass of the ith pendulum, li is the distance between 

the center of mass and the pivot, g is the gravity acceleration, and u is the acceleration of the 

cart which is used as the control input. 

By setting the potential energy of ith pendulum at the vertical to be 0, its energy consists 

of the kinetic energy of rotation with respect to the pivot and the potential energy is expressed 

as the following equation: 

( )2

1 1 1

1
( , ) (cos 1)

2
i i i i iE J m glθ θ θ θ= + −ɺ ɺ                   (5.13) 

A control strategy attempts to drive E1 and E2 to zero is obtained according to the 

Lyapunov function as show below: 

21
,  1,  2.

2
iV E i= =                                  (5.14) 

Using the fallowing equation: 

( )cosi i i i iE m gl uθ θ= − ɺɺ .                             (5.15) 

We can obtain  

V Gu= −ɺ ,                                       (5.16) 

where 

∑
=

=
2

1

)cos(
i

iii glmG θθɺ .                         (5.17) 

The parameters used for the tandem pendulum control system are shown in Table 5.13. 

Table 5. 13: The parameters for the tandem pendulum control system. 

Parameters Description Value 

θ  Angle of the pendulum [-36, 36] deg. 

u  Force applied to cart [-10, 10] N 

1l  Half length of 1st pendulum 0.5m 

2l  Half length of 2
nd

 pendulum 0.05m 

1m  mass of the 1st pendulum 0.1kg 

2m  mass of the 2nd pendulum 0.01kg 

 

 

)i i i i iE m gl ui i i i ii i i i i .                             (5.15) 

,                                       (5.16) 

(i i i i i(θ θ(cosi i i i ii i i i i( )i i i i iE m gl ui i i i iθ θθ θ(i i i i ii i i i i(i i i i i(i i i i iθ θcosi i i i icosθ θi i i i iθ θcosi i i i icosi i i i iE m gl ui i i i ii i i i iθ θi i i i ii i i i i
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The purpose of this control task is to determine a sequence of forces applying to the cart 

to balance the pendulums upright, and maintains the cart as stationary as possible. Hence, we 

define a goal set comprising near-upright and near-stationary states as 

{ }1 ( , ) :  ( , ) 0.001i i i iG θ θ θ θ= ≤ɺ ɺ . When the state of the tandem pendulum control system is in 

1G , according to Eq. 5.13, the total mechanical energy E of the system is 0. Let θ=q , we 

define a Lyapunov function ∑
=

=
2

1

2) ,(
2

1
) ,(

i

i qqEqqV ɺɺ . The purpose of this control problem 

can be transformed to the problem of achieving 0) ,( =qqV ɺ . So we define another goal set 

}0),(:),{(2 == qqVqqG ɺɺ . 

    According to Eq. 5.15, the derivative of E is proportional to the product of the speed of 

angular and input force. Hence in this paper, following [32], a control law for the learning 

agent based on Lyapunov analysis is proposed as follows: 

( )
( )

( )
( ) ,  if E ,  < 0 

,  
0,  if E ,  =0 

sgn q F q q
P q q

q q


= 


ɺ ɺ
ɺ

ɺ
                (5.18) 

where ( ) {1 if 0, and -1 otherwise}sgn q x= ≥ɺ  and F is the output of the TNFC that is limited 

in [-10,10]. ( ),  P q qɺ  guarantees the descent of the Lyapunov function; as a result, this 

control law satisfies the Theorem 4.1 defined in [32]. Denote the state of the environment at 

time step t = ( ),  t t tq q s=ɺ .Theorem 4.1 tells that the agent will bring the environment to 1G  

within 0( ) /L s ∆    steps, and remain the environment in the set 1{ :  ( ) ( )}t ts L s L s+ ≤ . In our 

simulation, since the descent step size can not be ensured. Theorem 4.1 can be reduced to the 

form that the agent will bring the environment to 1G  and remain the environment until it 

achieves 2G  eventually, if the controlling time step is long enough. 

In the simulation of the tandem pendulum control system, the original successful region 

of the variables is �� 3636 ≤≤− iθ . The strict successful region of θ  is described in Eq. 5.13. 

The constraints on the variables are �� 3636 ≤≤− iθ  and -10N ≤≤ u 10N. A control strategy 

agent based on Lyapunov analysis is proposed as fol

( )
( ) ,  if E ,  < 0 

( )( )( )( )
( ) ,  if E ,  < 0 

( )( )
sgn q F q q( ) ,  if E ,  < 0 ( ) ,  if E ,  < 0 

( )( )( )( )( )
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

sgn q F q qsgn q F q qsgn q F q q
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is deemed successful if it can meet the control goal (θ  and θɺ  decade to zero). The four 

input variables ),,,( 2211 θθθθ ɺɺ  and the output u(t) are normalized between 0 and 1, and 

u(t): [-10, 10]. The four normalized state variables are used as inputs to the TNFC. The values 

are floating-point numbers assigned to the SAEAs initially. The fitness function is defined 

according to Eq. 4.1-4.5. 

In this example, the performance evaluation of the SAEAs consists of the HEA, 

SACG-SE, and SAG-SEFA. In the following sections, the performances of three methods are 

discussed. 

5.2.1 Evaluating performance of the HEA 

The initial parameters of the proposed ISRL-HEA in this example are determined by 

parameter exploration ([104). The parameters set for the ISRL-HEA are shown in Table 5.14.  

Table 5. 14: The initial parameters of ISRL-HEA before training. 

Parameters Value Parameters Value 

Nc 80 _Stable TimeSteps  5000 

Crossover Rate 0.4 _Thres TimeStep  1000 

Mutation Rate 0.25 ERSTimes  50 

[ minσ , maxσ ] [0, 2] A 10 

[ minm , maxm ] [0, 2] λ 0.01 

[ minw , maxw ] [-20, 20] η 7 

[Rmin, Rmax] [3, 12] Generations 500 

_Thres StableTimeSteps  500   

 

In this example, the coding of a rule in a chromosome is the form in Fig. 3.1 in Section 

3.1. A total of thirty runs were performed. Each run started at the different initial state ( iθɺ  are 

set for 0, iθ  are set randomly within a predefined range). The learning curves of ISRL-HEA 

are shown in Fig. 5.17. In this figure, there are thirty runs each run represents that how soon 

the TNFC can meet the goal state. The fitness value is defined according to Eqs. 4.1-4.5. The 

higher fitness value by the end of each run represents that the sooner the plant meets the goal 

Table 5. 14: The initial parameters of ISRL-HEA bef

Parameters Value Parameters Value

0.25 

Parameters Value Parameters Value

Table 5. 14: The initial parameters of ISRL-HEA bef

Parameters Value Parameters Value

0.4 

Parameters Value Parameters ValueParameters Value Parameters Value

80 

0.4 

80 

Parameters Value Parameters ValueParameters Value Parameters ValueParameters Value Parameters Value

0.4 
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set. When the ISRL-HEA is stopped, the best string from the population in the final 

generation is selected and applied on the testing phase of a tandem pendulum control system. 

After performing the MCGA, the final average number of rules is 6. 

The testing results, which consist of the pendulums angle and the pendulums angular 

velocity (in degrees/seconds) are shown in Fig. 5.18. A total of thirty runs were executed in 

the testing phase. Each line in Fig. 5.18 represents a single run that starts form a different 

initial state. The results shown in this figure are the first 1,000 of 6,000 control time steps 

( _Thres TimeStep + _Stable TimeSteps ). As shown in Fig. 5.18, the ISRL-HEA successfully 

controlled the tandem pendulum control system in all thirty runs (the pendulums angle, 

pendulums angular velocity decrease to 0). 

 

Figure 5. 17: The learning curves of the ISRL-HEA. 

 

 

(a)                                 (b) 
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(c)                                  (d) 

Figure 5. 18: Control results of the tandem pendulum control system using the ISRL-HEA. (a) Angle of the 

first pendulum. (b) Angle of the second pendulum. (c) Angular velocity of the first pendulum. (d) Angular 

velocity of the second pendulum. 

 

As well as Section 5.1.1, the R-SE ([29]) and R-GA ([26]) were applied to this example 

to compare to the performance of the ISRL-HEA. The parameters are found using the method 

given in [104]. In R-SE ([29]) and (R-GA [26]), the reinforcement signal is designed based on 

time-step reinforcement architecture ([18]-[20]). The fitness function in R-SE and R-GA to 

train the TNFC is defined according to  

Fitness_Value =TIME_STEP                  (5.19) 

where TIME_STEP represents how long the experiment is a “success” in one generation. In 

this example, Eq. 5.19 represents how long before the pendulum falls apart a certain angle 

( 36± �  is used here). A control strategy is deemed successful if it can balance pendulums for 

6,000 time steps.  

The simulation was carried out for 30 runs. The testing results of the R-SE and R-GA are 

shown in Figs. 5.19 and 5.20. The results shown in these figures are the first 1,000 of 6,000 

control time steps. As shown in Figs. 5.19 and 5.20, not every line meets the control goal ( iθ  

and iθɺ  decay to zero). It’s obvious that the ISRL-HEA obtains better result when compared 

with [29] and [26], since iθ  and iθɺ  of the ISRL swing in a smaller range near zero.  
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(a)                                 (b) 

 

(c)                                (d) 

Figure 5. 19: Control results of the tandem pendulum control system using the R-SE. (a) Angle of the first 

pendulum. (b) Angle of the second pendulum. (c) Angular velocity of the first pendulum. (d) Angular 

velocity of the second pendulum. 
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(c) (d) 

Figure 5. 20: Control results of the tandem pendulum control system using the R-GA. (a) Angle of the first 

pendulum. (b) Angle of the second pendulum. (c) Angular velocity of the first pendulum. (d) Angular 

velocity of the second pendulum. 

 

In the further simulation, we select the best-trained individual of the proposed 

ISRL-HEA, R-GA and R-SE in the training phase, and extend the control time steps to 

100,000 in the testing phase. The simulation results, which consist of the pendulums angle 

and pendulums angular velocity, are shown in Fig. 5.21. Each line in Fig. 5.21 represents the 

result of the last 1000 time steps in a run that starts from the different initial state. As shown 

in Fig. 5.21 (e)-(l), not every line meets the control goal G1 in the R-SE and R-GA. Moreover, 

the pendulums angle may swing outside the boundary at the last 1000 time steps. However, in 

the proposed ISRL-HEA, each line can meet the control goal G1 and the pendulums are kept 

upright during the last 1000 time steps. The percentage that the R-SE and the R-GA controls 

the plant to G1 are 53% (with 14 runs that the plant unreach G1 and 4 out of 13 runs that the 

pendulum swings outside the boundary) and 50% (with 15 runs that the plant unreach G1 and 

5 out of 14 runs that the pendulum swings outside the boundary) respectively. However, in 

the ISRL-HEA, the percentage that the plant remains in G1 during the last 1000 time steps is 

100%. It’s obvious that the ISRL allows the pendulums angle, the pendulums angular velocity 

and the cart velocity to swing a small range near zero and stabilize the control system. 
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(a)                                 (b) 

 

(c)                                (d) 

 

(e)                                 (f) 
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(g)                                (h) 

 

(i) (j) 

 

(k)                                 (l) 

Figure 5. 21: Control results of the tandem pendulum control system. (a) Angle of the first pendulum of 

ISRL-HEA. (b) Angle of the second pendulum of ISRL-HEA. (c) Angular velocity of the first pendulum of 

ISRL-HEA. (d) Angular velocity of the second pendulum of ISRL-HEA. (e) Angle of the first pendulum of 

R-SE. (f) Angle of the second pendulum of R-SE. (g) Angular velocity of the first pendulum of R-SE. (h) 

Angular velocity of the second pendulum of R-SE. (i) Angle of the first pendulum of R-GA. (j) Angle of the 

second pendulum of R-GA. (k) Angular velocity of the first pendulum of R-GA. (l) Angular velocity of the 

second pendulum of R-GA. 
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The accuracy and CPU time comparison of ISRL-HEA, R-SE, and R-GA are shown in 

Table 5.15. The ISRL-HEA needs less CPU time than R-SE and R-GA. The reason is that the 

ISRL adopts a strict restriction in the earlier time steps and evaluates the control system by 

how soon the plant can meet the control goal. The individuals in ISRL-HEA with better 

performance mean it controls the plant to the goal set sooner.  

The GENITOR ([57]), SANE ([96]), TDGAR ([20]), CQGAF ([43]), ERDSE ([44]), and 

enforce sub-population (ESP) ([40]) methods have been applied to the same control task and 

the simulation results are listed in Table 5.15. The accuracy of the controller meets the control 

goal and keep the pendulum in 100000 time steps and the CPU time are shown in Table 5.15. 

A total of thirty runs were executed. Each run started at the different initial state. The initial 

parameters of these methods ([57], [96], [20], [43], [44], and [40]) are determined according 

to [104]. In these methods, we determine the size of network structure by executing 

algorithms with fixed string length for each specification of the size of network structure and 

then compute the average of the generations. As shown in Table 5.15, the proposed 

ISRL-HEA is more feasible and effective when compared with other existing models ([26], 

[29], [57], [96], [20], [43], [44], and [40]). 

Table 5. 15: Performance comparison of various existing models. 

CPU time Method 

Mean Best Worst Std. 

Accuracy 

GENITOR ([57]) 412.49 91.85 572.54 109.69 56% 

SANE ([96]) 225.73 63.87 276.54 60.23 57% 

R-GA ([26]) 218.34 49.56 251.68 52.97 52% 

R-SE ([29]) 192.67 47.49 241.67 47.38 53% 

TDGAR ([20]) 231.45 56.37 258.74 54.05 56% 

ESP ([40]) 187.96 39.54 238.95 46.32 54% 

ERDSE ([44]) 123.73 26.18 214.51 37.89 55% 

CQGAF ([43]) 105.52 24.67 203.18 34.42 53% 

ISRL-HEA 87.23 23.54 113.18 28.92 100% 
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5.2.2 Evaluating performance of the SACG-SE 

The initial parameters of the proposed ISRL-SACG-SE in this example are determined 

by parameter exploration ([104]). The parameters set for the ISRL-SACG-SE are shown in 

Table 5.16. 

Table 5. 16: The initial parameters of ISRL-SACG-SE before training. 

Parameters Value Parameters Value 

Nc 30 _Stable TimeSteps  5000 

Crossover Rate 0.35 _Thres TimeStep  1000 

Mutation Rate 0.25 TSSATimes  50 

[ minσ , maxσ ] [0, 2] A 10 

[ minm , maxm ] [0, 2] λ 0.01 

[ minw , maxw ] [-20, 20] η 7 

[Rmin, Rmax] [3, 12] Generations 500 

Psize 20 _Thres StableTimeSteps  500 

 

A total of thirty runs were performed. Each run started at the different initial state ( iθɺ are 

set for 0, iθ  are set randomly according to the predefined ranges). After performing the 

TSSA, the final average number of rules is 6. The learning curves of the SACG-SE after thirty 

runs are shown in Fig. 5.22. In this figure, there are thirty runs each run represents that how 

soon the TNFC can meet the goal state. When SACG-SE is stopped, the best combination of 

strings from the groups in the final generation is selected and tested on the tandem pendulum 

control system. 

The simulation was carried out for thirty runs. The simulation results, which consist of 

the pendulums angle and angular velocity of pendulums, are shown in Fig. 5.23. Each line in 

Fig. 5.23 represents each run with a different initial state. The results shown in this figure are 

the first 1,000 of 6,000 control time steps ( _Thres TimeStep + _Stable TimeSteps ). As shown 

in Fig. 5.23, the ISRL-SACG-SE successfully controlled the tandem pendulum control system 

in all thirty runs (the pendulums angle and pendulums angular velocity decrease to 0). 

A total of thirty runs were performed. Each run sta
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As well as ISRL-HEA, we select the best-trained individual of the proposed 

ISRL-SACG-SE in the training phase, and extend the control time steps to 100,000 in the 

testing phase. The simulation results, which consist of the pendulums angle and the 

pendulums angular velocity, are shown in Fig. 5.24. Each line in Fig. 5.24 represents the 

result of the last 1000 time steps in a run that starts from the different initial state. As shown 

in Fig. 5.24, each line can meet the control goal G1 and the pendulums are kept upright during 

the last 1000 time steps. The percentage that the plant remains in G1 during the last 1000 time 

steps is 100%. It’s obvious that the ISRL allows the pendulums angle, the pendulums angular 

velocity and the cart velocity to swing a small range near zero and stabilize the control 

system. 

 

Figure 5. 22: The learning curve of the SACG-SE. 

 

 

(a)                                (b) 
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(c)                                 (d) 

Figure 5. 23: Control results of the tandem pendulum control system using the ISRL-SACG-SE (first 1000 

time). (a) Angle of the first pendulum. (b) Angle of the second pendulum. (c) Angular velocity of the first 

pendulum. (d) Angular velocity of the second pendulum. 

 

 

(a) (b) 

 

(c)                               (d) 

Figure 5. 24: Control results of the tandem pendulum control system using the ISRL-SACG-SE (last 1000 

time). (a) Angle of the first pendulum. (b) Angle of the second pendulum. (c) Angular velocity of the first 

pendulum. (d) Angular velocity of the second pendulum. 
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In this example, in order to demonstrate the effectiveness and efficiency of the proposed 

ISRL-SACG-SE, the R-SE ([29]) and R-GA ([26]) are used to compare with ISRL-SACG-SE. 

As shown in Fig. 5.21 (e)-(l), the accuracy of the TNFC with the R-SE and R-GA the 

pendulum does not swing outside the boundary after 6,000 time steps are 53% and 50%. 

However, in the ISRL-SACG-SE, the accuracy of the TNFC success meets the control goal 

and keeps the pendulums in 100,000 time steps is 100%. As shown in Figs. 5.21 and 5.24, the 

ISRL-SACG-SE can perform better than the R-SE and R-GA. 

The accuracy and CPU time comparison of the ISRL-SACG-SE, R-SE, and R-GA are 

shown in Table 5.17. As shown in Table 5.17, when compared with the traditional 

reinforcement signal design, the proposed ISRL can reduce the CPU time and always control 

the plant to the goal set. Moreover, the SACG-SE not only can determine the fuzzy rules 

automatically without trail and error testing but also let the chromosomes that perform well to 

cooperate for generating better solutions. 

The GENITOR ([57]), SANE ([96]), TDGAR ([20]), CQGAF ([43]), ERDSE ([44]), and 

enforce sub-population (ESP) ([40]) methods have been applied to the same control problem 

and the simulation results are listed in Table 5.17. The accuracy and CPU time are shown in 

Table 5.17. A total of thirty runs were performed. Each run started at a different initial state. 

The initial parameters of these methods ([57], [69], [20], [43], [44], and [40]) are determined 

according to [104]. The control time steps for testing are extended to 100,000 time steps. As 

shown in Table 5.17, the proposed ISRL-SACG-SE is more feasible and effective when 

compared with other existing models ([26], [29], [57], [96], [20], [43], [44], and [40]). 
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Table 5. 17: Performance comparison of various existing models in Example 2. 

CPU time Method 

Mean Best Worst Std. 

Accuracy 

GENITOR [57] 412.49 91.85 572.54 109.69 56% 

SANE [96] 225.73 63.87 276.54 60.23 57% 

R-GA [26] 218.34 49.56 251.68 52.97 52% 

R-SE [29] 192.67 47.49 241.67 47.38 53% 

TDGAR [20] 231.45 56.37 258.74 54.05 56% 

ESP [40] 187.96 39.54 238.95 46.32 54% 

ERDSE [44] 123.73 26.18 214.51 37.89 55% 

CQGAF [43] 105.52 24.67 203.18 34.42 53% 

ISRL-SACG-SE 65.74 18.50 84.43 23.18 100% 

 

5.2.3 Evaluating performance of the SAG-SEFA 

The initial parameters of the proposed ISRL-SAG-SEFA in this example are determined 

by parameter exploration ([104]). The parameters set for the ISRL-SAG-SEFA are shown in 

Table 5.18. 

Table 5. 18: The initial parameters of ISRL-SAG-SEFA before training. 

Parameters Value Parameters Value 

Psize 18 _Stable TimeSteps  5000 

NC 20 _Thres TimeStep  1000 

TimesSelection _  250 TSSAimes  30 

NormalTimes 20 A 10 

SearchingTimes 25 λ 0.01 

ExploringTimes 30 η 7 

Crossover Rate 0.5 Generations 500 

Mutation Rate 0.2 Minimum_Suppor 2/nNumTransactio  

essvalueThreadFitn  550 _Thres StableTimeSteps  500 

 

The coding of a rule in a chromosome is the form given in Fig. 3.10. The values are 

floating-point numbers initially assigned using the ISRL-SAG-SEFA. A total of thirty runs 

were performed in this simulation. Each run started at a different initial state ( iθɺ  are set for 0, 

by parameter exploration ([104]). The parameters se
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iθ  are set randomly according to the predefined ranges). After performing the TSSA, the 

final average number of rules is 5. 

The learning curves of the ISRL-SAG-SEFA after thirty runs are shown in Fig. 5.25. In 

this figure, there are thirty runs each run represents that how soon the TNFC can meet the 

goal state. When ISRL-SAG-SEFA is stopped, the best combination of strings from the 

groups in the final generation is selected and tested on the tandem pendulum control system. 

The successful results, which consist of the pendulums angle and angular velocity of the 

pendulums, are shown in Fig. 5.26. Each line in Fig. 5.26 represents each run with a different 

initial state. The results shown in this figure are the first 1,000 of 6,000 control time steps 

( _Thres TimeStep + _Stable TimeSteps ). As shown in Fig. 5.26, the ISRL-SAG-SEFA 

successfully controlled the tandem pendulum control system in all thirty runs (the pendulums 

angle and pendulums angular velocity decrease to 0). 

As well as ISRL-HEA and ISRL-SACG-SE, we select the best-trained individual of the 

proposed ISRL-SAG-SEFA in the training phase, and extend the control time steps to 100,000 

in the testing phase. The simulation results, which consist of the pendulums angle, the 

pendulums angular velocity, and the cart velocity, are shown in Fig. 5.27. Each line in Fig. 

5.27 represents the result of the last 1000 time steps in a run that starts from the different 

initial state. As shown in Fig. 5.27, each line can meet the control goal G1 and the pendulums 

are kept upright during the last 1000 time steps. However, in the ISRL-SAG-SEFA, the 

percentage that the plant remains in G1 during the last 1000 time steps is 100%. It’s obvious 

that the ISRL allows the pendulums angle, the pendulums angular velocity to swing a small 

range near zero and stabilize the control system. 
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Figure 5. 25: The learning curve of the SAG-SEFA. 

 

 

(a)                                 (b) 

 

(c)                                (d) 

Figure 5. 26: Control results of the tandem pendulum control system using the ISRL-SAG-SEFA (first 1000 

time). (a) Angle of the first pendulum. (b) Angle of the second pendulum. (c) Angular velocity of the first 

pendulum. (d) Angular velocity of the second pendulum.  
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(a) (b) 

 

 

(c)                                (d) 

Figure 5. 27: Control results of the tandem pendulum control system using the ISRL-SAG-SEFA (last 1000 

time). (a) Angle of the first pendulum. (b) Angle of the second pendulum. (c) Angular velocity of the first 

pendulum. (d) Angular velocity of the second pendulum. 

 

In this example, in order to demonstrate the effectiveness and efficiency of the proposed 

ISRL-SAG-SEFA, the R-SE ([29]) and R-GA ([26]) are used to compare with 

ISRL-SAG-SEFA. As shown in Fig. 5.21 (e)-(l), the accuracy of the TNFC with the R-SE and 

R-GA the pendulum does not swing outside the boundary after 6,000 time steps are 53% and 

50%. However, in the ISRL-SAG-SEFA, the accuracy of the TNFC success meets the control 

goal and keeps the pendulums in 100,000 time steps is 100%. As shown in Fig. 5.21 and 5.27, 

the ISRL-SAG-SEFA can perform better than the R-SE and R-GA. 
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in Table 5.19. The accuracy and CPU time are shown in Table 5.19. The initial parameters of 

these methods ([57], [69], [20], [43], [44], and [40]) are determined according to [104]. The 

control time steps for testing are extended to 100,000 time steps. As shown in Table 5.19, the 

proposed ISRL-SAG-SEFA is more feasible and effective when compared with other existing 

models (([26], [29], [57], [96], [20], [43], [44], and [40]). 

Table 5. 19: Performance comparison of various existing models in Example 2. 

CPU time Method 

Mean Best Worst Std. 

Accuracy 

GENITOR ([57]) 412.49 91.85 572.54 109.69 56% 

SANE ([96]) 225.73 63.87 276.54 60.23 57% 

R-GA ([26]) 218.34 49.56 251.68 52.97 52% 

R-SE ([29]) 192.67 47.49 241.67 47.38 53% 

TDGAR ([20]) 231.45 56.37 258.74 54.05 56% 

ESP ([40]) 187.96 39.54 238.95 46.32 54% 

ERDSE ([44]) 123.73 26.18 214.51 37.89 55% 

CQGAF ([43]) 105.52 24.67 203.18 34.42 53% 

ISRL-SAG-SEFA 41.91 11.36 62.54 17.32 100% 
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Chapter 6           

Conclusion 
 

The goal of this dissertation is to provide a stable and robust way for applying 

evolutionary algorithm to neuro-fuzzy controllers. In order for a proposed method to be stable 

and robust, it must not only perform the stability analysis but also decide the number of fuzzy 

rules automatically. This dissertation proposes a complete approach to achieve this goal. 

Therefore, improved safe reinforcement learning based self adaptive evolutionary algorithms 

(ISRL-SAEAs) for neuro-fuzzy controller is proposed. The ISRL-SAEAs consist of two parts: 

improved safe reinforcement learning (ISRL) and self adaptive evolutionary algorithms 

(SAEAs). This chapter summarizes the contributions of this dissertation of these two parts 

(ISRL and SAEAs), and then makes a conclusion and discusses the future research. 

 

6. 1 Contributions 

The proposed ISRL-SAEAs can be divided into two parts: improved safe reinforcement 

learning (ISRL) and self adaptive evolutionary algorithms (SAEAs). Each of these two parts 

has different contributions. The contributions are discussed as follows. 

1.  Self Adaptive Evolutionary Algorithms (SAEAs) 

The goals of SAEAs are to reduce the number of parameters in traditional evolution 

method (ie. initial network size), consider both of cooperation and specialization, and 

determine the suitable groups for performing selection and crossover steps. The SAEAs 

consist of three method: the hybrid evolutionary algorithm (HEA), self adaptive group 

cooperation based symbiotic evolution (SAGC-SE), and self adaptive group based 
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symbiotic evolution using FP-growth algorithm (SAG-SEFA). The contributions of these 

three methods are discussed as follows. 

(1) Hybrid Evolutionary Algorithm (HEA) 

The HEA has structure-and-parameter learning ability. That is, it can determine 

the average optima number of fuzzy rules and tune the free parameters in the TNFC. 

The proposed learning method also processes variable length of the chromosomes 

in a population. Computer simulations have shown that the proposed HEA has a 

better performance than the other methods. The well performance of each 

component of the proposed HEA has been demonstrated. 

(2) Self Adaptive Group Cooperation based Symbiotic Evolution (SAGC-SE) 

The SAGC-SE can determine number of fuzzy rules automatically by using 

two-step self-adaptive algorithm (TSSA), evaluate the fuzzy rule locally by using 

group-based symbiotic evolution, and let groups to cooperate with each other to 

generate the better chromosomes by using an elites-base compensation crossover 

strategy (ECCS). The advantages of the proposed SAGC-SE are summarized as 

follows: 1) the SAGC-SE can determine the average optima number of fuzzy rules; 

2) the SAGC-SE uses group-based population to evaluate each fuzzy rule locally; 3) 

the SAGC-SE uses the ECCS to let the better solutions from different groups to 

cooperate for generating better solutions in the next generation.  

Computer simulations have shown that the SAGC-SE that considers both of 

cooperation and specialization has a better performance than the HEA. The well 

performance of each component of the SAGC-SE has also been demonstrated. 

(3) Self Adaptive Group based Symbiotic Evolution using FP-growth Algorithm 

(SAG-SEFA) 

The proposed SAG-SEFA has structure and parameter learning ability. That is, 

it can determine the suitable number of fuzzy rules and efficiently tune the 

two-step self-adaptive algorithm (TSSA), evaluate t
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parameters in the TNFC. The goal of the SAG-SEFA is to determine the suitable 

groups to perform the selection and crossover steps. The advantages of the proposed 

SAG-SEFA are summarized as follows: 1) the SAG-SEFA uses the group-based 

population so that each group represents only one fuzzy rule; 2) the TSSA is used to 

determine the suitable number of rules; 3) the SAG-SEFA uses group-based 

population to evaluate the fuzzy rule locally; 4) the DMSS and DMCS are used to 

select the suitable groups to perform the selection step and crossover step; 5) it 

performs better and converges more quickly than some genetic methods. 

Computer simulations have shown that the proposed SAG-SEFA that considers 

how to select the suitable groups for performing selection and crossover steps has a 

better performance than the SAGC-SE. The well performance of each component of 

the proposed SAG-SEFA has also been demonstrated. 

2. Improved Safe Reinforcement Learning (ISRL) 

To solve the problem of how soon the system can enter the desired state and 

consider the stability analysis, the ISRL is proposed. In the ISRL, the reinforcement 

signal is measured by two different strategies (judgment and evaluation strategies). The 

judgment strategy determines the reinforcement signal when the plant fails entering a 

predefined goal set, and the evaluation strategy applies under the condition that the plant 

enters the goal set. The key to the ISRL is using the Lyapunov-based manipulations on 

control laws to drive the plant to reach and remain in a predefined desired set of states 

with probability 1. Then, the time step for the plant entering the desired set of states can 

indicate the concept of how soon the system becomes stable. It will be observed that the 

advantage of the proposed ISRL is that it can meet global optimization capability. 

As shown in simulation results, the proposed ISRL can not only work with different 

conditions of the system but also still controlled in the letter time steps. Moreover, the 

learning results are smoother than the traditional reinforcement signal design. 
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6. 2 Future Research 

The goal of this dissertation is to provide a stable and robust way for applying 

evolutionary algorithm with neuro-fuzzy controller to control problems. This dissertation has 

developed the proposed ISRL-SAEAs to achieve this goal. Although the ISRL-SAEAs can 

obtain better performance than other methods, there still has a limitation of the ISRL-SAEAs. 

The initial parameters are determined by practical experimentation or trial-and-error tests. 

There is not a systematic method to determine the initial parameters. In the future work, how 

to find a well-defined method to define such parameters is an important work. Furthermore, in 

the simulation, the noise toleration can be further considered in the future. Therefore, the 

more robust method may be obtained. 

Moreover, in the experiments in Chapters 5, a controller is successful if it can achieve 

goal sets during evolution. That is, the simulation environment used for training is also used 

for testing. However, in real-world applications, the environment used to test may be different 

with the environment used to train. The reason is that the environment used to test is time 

consuming. About this problem, for letting the evolutionary algorithms can be used in 

real-world applications, a controller transfer is needed to transfer the simulation environment 

to the environment used to test. How to design a controller transfer of the ISRL-SAEAs is 

also a future work of this dissertation. 
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