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Abstract

In this dissertation, improved safe reinforcement learning based self adaptive
evolutionary algorithms (ISRL-SAEAs)-are proposed for TSK-type neuro-fuzzy controller
design. The ISRL-SAEAs can improve not only the reinforcement signal designed but also
traditional evolutionary algorithms. There-are two parts in the proposed ISRL-SAEAs. In the
first part, the SAEAs are proposed to solve the following problems: 1) all the fuzzy rules are
encoded into one chromosome; 2) the number of fuzzy rules has to be assigned in advance;
and 3) the population cannot evaluate each fuzzy rule locally. The second part of the
ISRL-SAEAs is the ISRL. In the ISRL, two different strategies (judgment and evaluation) are
used to design the reinforcement signal. Moreover the Lyapunov stability is considered in
ISRL. To demonstrate the performance of the proposed method, the inverted pendulum
control system and tandem pendulum control system are presented. As shown in simulation,

the ISRL-SAEAs perform better than other reinforcement evolution methods.

Keywords: TSK-type neuro-fuzzy controller, FP-growth algorithm, evolutionary algorithm,

safe reinforcement learning, Lyapunov stability.
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Chapter 1

Introduction

In real world application, many control problems are so complex that designing
controllers by conventional means is either impractical or results in poor performance such as
double link control system, inverted pendulum control system, tandem pendulum control
system, water temperature control system, and ball and beam balance system, etc. Among
them, mathematical models for designing controllers are needed. Inaccurate mathematical
modeling of plants usually degrades the performance of the controllers, especially for
nonlinear and complex problems. Moreover, even if the neuro-fuzzy controller is adopted for
avoiding the complex mathematical models, in teal-world applications, precise training data
are usually difficult and expensive to obtain. For solving these problems, this dissertation
provides a methodology for designing such controllers automatically by evolving improved
safe reinforcement learning (ISRL) via neuro-fuzzy controllers using self adaptive
evolutionary algorithms (SAEAs).

The introduction of this dissertation is introduced in this chapter. In Section 1.1, a
motivation of this dissertation is discussed. The research purpose of this dissertation is
introduced in Section 1.2. In Section 1.3, the approach of this dissertation is described. The

overview of this dissertation is introduced in the final section.

1.1 Motivation

Neuro-fuzzy controllers ([1]-[14]) are capable of inferring complex nonlinear

relationships between input and output variables. This property is important when the system



to be modeled is nonlinear. The key advantage of the neuro-fuzzy approach lies in the fact
that it does not require a mathematical description of the system while modeling it. The
system can perform the nonlinear mapping once the system parameters are trained based on a

sequence of input and desired response pairs.

The training of the parameters (parameter learning) is a problem in designing a
neuro-fuzzy controller. Hence, techniques capable of training the system parameters and
finding the global solution while optimizing the overall structure are needed. In this respect,
genetic algorithms (GAs) appear to be better candidates. Among GAs, there are two major
learning structures using for tuning the parameters of neuro-fuzzy controller: supervised
learning ([2], [3], and [6]) and reinforcement learning ([15]-[21]). Among them, for some
real-world applications, precise training data are usually difficult and expensive to obtain. For
this reason, there has been a growing interest in‘teinforcement learning algorithms for neural
controller ([15]-[18]) or fuzzy design ([19]-[21]). For the reinforcement learning problems,
training data are very rough and coatse.and there are only “evaluative” when compared with
the “instructive” feedback in the supervised learning problem. In reinforcement learning, there
is an agent which can choose which action gets the maximum reward in every state. The only

feed back is the reward signal of success or failure.

There are several evolutionary algorithms ([22]-[31]) which have been proposed to tune
the parameters of the fuzzy controller. These algorithms may require one or more of the
following problems: 1) it is difficult to know if it works with different conditions of the
system or it can still controlled or nor in the letter time steps; 2) all the fuzzy rules are
encoded into one chromosome; 3) the number of fuzzy rules has to be assigned in advance; 4)

the population cannot evaluate each fuzzy rule locally.

As mentioned above, improved safe reinforcement learning (ISRL) based self adaptive

evolutionary algorithms (SAEAs) for neuro-fuzzy controller are proposed. The proposed

2



ISRL-SAEAs focus on not only the reinforcement learning but also the structure of the
chromosomes in evolutionary algorithms. Therefore, in reinforcement learning, the
architecture should consider not only how well and how soon the controller controls the
system but also the stability analysis of the reinforcement learning. Moreover, in evolutionary
algorithms, the number of fuzzy rules should be decided automatically and the population

should evaluate each fuzzy rule locally.

1.2 Review of previous works

In recent years, a fuzzy system used for control problems has become a popular research
topic because of classical control theory usually requires a mathematical model for designing
controllers ([1]-[10]). Inaccurate mathematical modeling of plants usually degrades the
performance of the controllers, especially for nonlinear and complex problems ([11]-[14]). A
fuzzy system consists of a set of fuzzy if-then rules. Conventionally, the selection of fuzzy
if-then rules often relies on a substantial amount of heuristic observations to express the
knowledge of proper strategies. Obviously, it is difficult for human experts to examine all the
input-output data from a complex system to find proper rules for a fuzzy system. To cope
with this difficulty, several approaches try to generate if-then rules from numerical data have
been proposed ([2], [3], and [6]). These methods were developed for supervised learning; that
is, the correct “target” output values are given for each input pattern to guide the network's
learning. It is a powerful training technique that can be applied to networks. However, if the
precise training data can be obtained easily, the supervised learning algorithm may be
efficient in many applications. For some real-world applications, precise training data are
usually difficult and expensive to obtain. For this reason, there has been a growing interest in
reinforcement learning problems ([15]-[21]). For the reinforcement learning problems,

training data are very rough and coarse and there are only “evaluative” when compared with



the “instructive” feedback in the supervised learning problem.

In the reinforcement learning, the well known algorithm is Barto and his colleagues’
actor-critic architecture ([17]), which consists of a control network and a critic network.
However, the Barto’s architecture is complicated and is not easy to implement. About this,
several researches proposed time-step reinforcement architecture to improve the Barto’s
architecture ([18]-[20]). In time-step reinforcement architecture, the only available feedback
is a reinforcement signal that notifies the model only when a failure occurs. An accumulator
accumulates the number of time steps before a failure occurs. Even though time-step
reinforcement architecture is easier to implement when compared with Barto’s architecture, it
can only measure the number of time steps before a failure occurs; in other words, it only
evaluates how long the controller works well instead of how soon the system can enter the
desired state, which is also very important.‘Recently, Perkins and Barto proposed a safe
reinforcement learning based on:Lyapunov. function design ([32]). Once the system’s
Lyapunov function is identified, under Lyapunoy-based manipulations on control laws, the
architecture can drive the plant to reach and remain in a predefined desired set of states with
probability 1. Then, the time step for the plant entering the desired set of states can indicate
the concept of how soon the system becomes stable. Therefore, one major part of this
dissertation is identified.

In learning algorithm, the most well known learning algorithm is back-propagation (BP)
([3], [6]-[8]). Since the steepest descent technique used in BP can minimize the error function,
the algorithm may reach the local minima very fast and never find the global solution. In
addition, the performance of BP training depends on the initial values of the system
parameters, and for different network topologies one has to derive new mathematical
expressions for each network layer. Recently, several evolutionary algorithms, such as the
genetic algorithm (GA) ([22]), genetic programming ([23]), evolutionary programming ([24]),

and evolution strategies ([25]), have grown into a popular researching area. They are parallel
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and global search techniques. Because they simultaneously evaluate many points in the search
space, they are more likely to converge toward the global solution. In recent years, there are
several approaches try to use evolutionary algorithms to converge toward the global solutions.
The one important field of these approaches is to use evolutionary algorithms for training
fuzzy models ([26]-[28]).

The evolutionary fuzzy model generates a fuzzy system automatically by incorporating
evolutionary learning procedures. The well-known evolutionary algorithms are the genetic
algorithms (GAs). Several genetic fuzzy models, that is, fuzzy models that are augmented by
a learning process based on GAs, have been proposed ([26]-[28]). In [26], Karr applied GAs
to design the membership functions of a fuzzy controller, with the fuzzy rule set assigned in
advance. Carse et al. ([27]) used the genetic algorithm to evolve fuzzy rule-based controllers.
Lin and Jou ([28]) proposed GA-based ‘fuzzy. reinforcement learning to control magnetic
bearing systems.

Recently, several improved evolutionary algorithms have been proposed. One catalogs is
focus on modified the structure of the chromosomes ([29]-[44]). In such researches, the
chromosomes in population represent partial solution or are with different length. In [29],
Juang et al. proposed genetic reinforcement learning in the design of fuzzy controllers. The
GA adopted in [29] was based upon traditional symbiotic evolution which, when applied to
fuzzy controller design, complemented the local mapping property of a fuzzy rule. In [30],
Bandyopadhyay et al. used the variable-length genetic algorithm (VGA) that allows for
different lengths of chromosomes in a population. In [33], Ting ef al. used multiobjective
(MO) variable length genetic algorithm to solve the problem of placing wireless transmitters
to meet particular objectives. As shown in [33], the authors used multiobjective (MO) variable
length genetic algorithm for searching the optimal number, types, and positions of
heterogeneous transmitters by considering coverage, cost, capacity, and overlap

simultaneously. In [34], Saeidpour et al. used variable length genetic algorithm for fuzzy
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controller design and used it for promotion voltage profile. In [35], Lin and Hsu proposed a
reinforcement self-adaptive evolutionary algorithm with fuzzy system for solving control
problems. As shown in [35], both the number of rules and the adjustment of parameters in the
fuzzy system are designed concurrently by the proposed algorithm. The illustrative example
was conducted to show the performance and applicability of the proposed algorithm.

In [36], the Saha et al. proposed a differential evolution based fuzzy clustering for
automatic clustering data set. The proposed algorithm has been used as a stochastic
optimization tool. As shown in [36], the proposed algorithm performs better than others. In
[37], Tang proposed a hierarchical genetic algorithm. The hierarchical genetic algorithm
([38]-[39]) enables the optimization of the fuzzy system design for a particular application. In
[39], authors used a hierarchical genetic algorithm for solving the multilevel redundancy
allocation problems. As shown in [39],.the authors applied the HGA and a conventional GA
separately for solving two multilevel series redundancy allocation optimization problems. The
simulation results showed that the performance of the HGA is superior to the conventional
GA, because it does not depend on the use of vector coding and preserve the original design
space.

Gomez and Schmidhuber proposed lots of work to evaluate the solution locally ([40] and
[41]). The proposed enforced sub-populations (ESP) used sub-populations of neurons for the
fitness evaluation and overall control. As shown in [40] and [41], the sub-populations that use
to evaluate the solution locally can obtain better performance compared to systems of only
one population be used to evaluate the solution. In [42], Li and Miao proposed using ESP
backpropagation (BP) neural network to the agent controllers in intelligent virtual
environment (IVE). As shown in [42], the ESP was used to solve the task assignment problem
of collaboration in an entertainment IVE platform.

Juang [43] proposed the combination of online clustering and Q-value based GA for

reinforcement fuzzy system (CQGAF) to simultaneously design the number of fuzzy rules
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and free parameters in a fuzzy system. Lin and Xu ([44]) proposed a sequential search-based
dynamic evolution (SSDE) to enable better chromosomes to be initially generated while better
mutation points are determined for performing dynamic-mutation.

Although the above evolutionary learning algorithms ([29]-[44]) improve the
evolutionary learning algorithms through modifying the structure of chromosomes, these
algorithms may have one or more of the following problems: 1) all the fuzzy rules are
encoded into one chromosome; 2) the number of fuzzy rules has to be assigned in advance;
and 3) the population cannot evaluate each fuzzy rule locally.

About above problems, this dissertation focuses on not only the reinforcement learning
but also the evolutionary algorithm. Therefore, in reinforcement learning, the architecture
should consider how soon the system becomes stable. Moreover, in evolutionary algorithm,
the numbers of fuzzy rules should be'decided automatically and the population should

evaluate each fuzzy rule locally.

1.3 Research Purpose

In this dissertation, improved safe reinforcement learning (ISRL) based self adaptive
evolutionary algorithms (SAEAs) for neuro-fuzzy controller is proposed for improving not
only the reinforcement signal designed but also evolutionary algorithms mentioned in Section
1.1. There are two parts in the proposed ISRL-SAEAs.

In the first part, self adaptive evolutionary algorithms (SAEAs) are proposed to solve the
following problems: 1) all the fuzzy rules are encoded into one chromosome; 2) the number of
fuzzy rules has to be assigned in advance; and 3) the population cannot evaluate each fuzzy
rule locally. In this dissertation, the proposed self adaptive evolutionary algorithms (SAEAs)
consist of three different evolution methods to provide different ways to solve the above

problems.



First of all, the hybrid evolutionary algorithm (HEA) with a TSK-type neuro-fuzzy
controller is proposed, the proposed HEA determines the number of fuzzy rules automatically
and processes the variable-length chromosomes. The length of each individual denotes the
total number of genes in that individual. The initial length of each individual may be different
from each other, depending on the total number of rules encoded in it. Individuals with an
equal number of rules constitute the same group. Thus, initially there are several groups in a
population. For keeping the best group in every generation, the elite-based reproduction
strategy (ERS) is proposed. In the ERS, the best group can be reproduced many times for each
generation. The advantages of the proposed HEA are summarized as follows: 1) it determines
the number of fuzzy rules and tunes the free parameters of the neuro-fuzzy controller in a
highly autonomous way. Thus, users need not give it any a priori knowledge or even any
initial information on these. 2) It is applicable to.chromosomes of different lengths. 3) It does
not require precise training data for setting the parameters of the neuro-fuzzy controller.

Although the proposed HEA can determine the number of fuzzy rules automatically, all
the fuzzy rules are encoded into one chromosome. Therefore, partial solution cannot be
evaluated independently in the population. The partial solutions can be characterized as
specializations. The specialization property ensures diversity and prevents a population from
converging to suboptimal solutions. A single partial solution cannot “take over” a population
since it must correspond with other specializations. For solving this problem, the secondary
algorithm of the SAEAs is proposed. In the secondary algorithm of the SAEAs, a self
adaptive group cooperation based symbiotic evolution (SAGC-SE) is proposed not only for
solving the problem that all the fuzzy rules are encoded into one chromosome but also for
letting the population evaluate each fuzzy rule locally. Therefore, in the proposed SAGC-SE,
each chromosome represents only one fuzzy rule and an n-rules TSK-type neuro-fuzzy
controller is constructed by selecting and combining » chromosomes from several groups. The

SAGC-SE, which promotes both cooperation and specialization, ensures diversity and
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prevents a population from converging to suboptimal solutions. In SAGC-SE, there are
several groups in the population. Each group formed by a set of chromosomes represents a
fuzzy rule. The proposed SAGC-SE consists of structure learning and parameter learning. In
structure learning, as well as HEA, the SAGC-SE determines the number of fuzzy rules
automatically and processes the variable length of a combination of chromosomes. In
parameter learning, to let the well-performing groups of individuals for cooperating to
generate better generation, an elite-based compensatory of crossover strategy (ECCS) is
proposed. In the ECCS, each group will cooperate to perform the crossover steps. Therefore,
the better chromosomes of each group will be selected to perform crossover in the next
generation.

The advantages of the proposed SAGC-SE are summarized as follows: 1) the proposed
SAGC-SE determines the number of fuzzy rules automatically. 2) The SAGC-SE uses
group-based population to evaluate the fuzzy rule locally. 3) The SAGC-SE uses the ECCS to
allow the better solutions from different groups to cooperate for generating better solutions in
the next generation.

The SAGC-SE can solve the problem of the HEA that all the fuzzy rules are encoded
into one chromosome. Moreover the SAGC-SE evaluates each fuzzy rule locally for
improving the local consideration of the population. However, in the SAGC-SE, how to select
groups for constructing the complete solution is a major problem. Therefore, for determining
the number of fuzzy rules automatically, the SAGC-SE selects different number of groups to
construct complete solution. In this way, the SAGC-SE selects groups randomly. It’s obvious
that the performance of the SAGC-SE dependents on the method of selecting groups. For
solving this problem, in the third algorithm of the SAEAs, a self adaptive groups based
symbiotic evolution using FP-growth algorithm (SAG-SEFA) is proposed.

As well as SAGC-SE, the SAG-SEFA consists of structure learning and parameter

learning. In structure learning, as well as the SAGC-SE, the proposed SAG-SEFA determines
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the number of fuzzy rules automatically and processes the variable combination of
chromosomes. In parameter learning, although the proposed SAG-SEFA can determine the
suitable number of rules, there still has a problem in which how to select the suitable groups
from many groups (named candidate groups in this paper) in SAG-SEFA to construct
TSK-type neuro-fuzzy controllers with different numbers of rules. Moreover, in consideration
of making the well-performing groups of individuals cooperate for generating better
generation, there is also a problem in which how to select suitable groups used to select
individuals for cooperating to generate better generation. Regarding this, the goals of
parameter learning in SAG-SEFA are used to determine which groups of chromosomes should
be selected to construct TSK-type neuro-fuzzy networks with different numbers of rules and
which groups should be selected for cooperating to generate better generation.

Recently, data mining has become.a'popular research topic ([45]-[48]). Data mining is a
method of mining information from_a database. The database called “transactions”. Data
mining can be regarded as a new way of performing data analysis. One goal of data mining is
to find association rules among sets of items that occur frequently in transactions. To achieve
this goal, several methods have been proposed ([49]-[54]). In [49], the authors proposed a
mining method which ascertains large sets of items to find the association rules in transactions.
Hang et al. ([50]) proposed frequent pattern growth (FP-growth) to mine frequent patterns
without candidate generations. In Hang’s work, items that occur more frequently will have
better chances of sharing information than items that occur less frequently. In [51], an
algorithm of data mining for transaction data with quantitative values was proposed. In [51],
each quantitative item was translated to a fuzzy set and the authors used these fuzzy sets to
find fuzzy rules. Wu et al. ([52]) proposed a data mining method based on GA algorithm that
efficiently improves the traditional GA by using analysis and confidence parameters. In [53],
authors proposed a hybrid model using rough sets and genetic algorithms for fast and efficient

improving answering data mining query which involves a random search over large databases.
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As shown in [53], authors proposed select, aggregate and classification based data mining
queries to implement a hybrid model. The performance of the proposed algorithm is analyzed
for both execution time and classification accuracy and the results obtained are good. In [54],
Dai and Zhang proposed an association rules mining in novel genetic algorithm. The genetic
algorithm in [54] are using for discovering association rules. As shown in [54], the proposed
algorithm avoids generating impossible candidates, and it is more efficient than traditional
ones.

Since data mining can successfully find information from large sets of items, it is useful
to achieve goals of parameter learning in SAG-SEFA. Therefore, the data-mining method
called FP-growth algorithm is adopted since the FP-growth algorithm can find items that
occur frequently in transactions without candidate generations. After the parameter learning
with FP-growth algorithm is performed, the population can search for a better solution from
the combination of individuals that' perform well and explore other combinations of
individuals. Moreover, suitable groups® will cooperate to perform the crossover steps.
Therefore, the better chromosomes of suitable group will be selected to perform crossover in
the next generation.

When compared with SAGC-SE, the proposed SAG-SEFA not only selects the suitable
groups form candidate groups to perform selection steps but also allows the better solutions
from different groups to cooperate for generating better solutions in the next generation.

The second part of the proposed ISRL-SAEAs is an improved safe reinforcement
learning (ISRL). In the ISRL, the feedback takes the form of an accumulator. The accumulator
determines by two different strategies (judgment and evaluation). The judgment strategy
determines the reinforcement signal when the plant fails entering a predefined goal set and the
evaluation strategy applies under the condition that the plant enters the goal set. Moreover the
safe reinforcement learning [32] is considered in ISRL. The key of the ISRL is using an

accumulator determined by two different strategies as the fitness function of the SAEAs. It
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will be observed that the advantage of the proposed ISRL is that it can meet global

optimization capability.

1.4 Approach

To demonstrate the performance of the ISRL-SAEAs for temporal problems, this
dissertation presents two examples and performance contrasts with some other models.

In the first example, the inverted pendulum control system is adopted to evaluate the
performance of the proposed ISRL-SAEAs of this dissertation. This problem is often used as
an example of inherently unstable and dynamic systems to demonstrate both modern and
classical control techniques ([55]-[57]) or the reinforcement learning schemes ([15]-[21]), and
is now used as a control benchmark.

In the second example, the tandéem pendulum control system is adopted to evaluate the
performance of the proposed method of this dissertation. Since the task of an inverted
pendulum control system is too easyto.find solutions quickly through random search, in this
example, a variety of extensions to an inverted pendulum control system have been suggested.
The most challenging extension of an inverted pendulum control system ([58]-[60]) is a
tandem pendulum control system, where two pendulums of different length must be balanced

synchronously.

1.5 Overview of Dissertation

This dissertation consists of six chapters. In Chapter 1, the introduction consists of
motivation, review of previous works, research goal, approach, and overview of this
dissertation.

In Chapter 2, the foundation for the four components of the proposed ISRL-SAEAs by

providing background material on neuro-fuzzy controller, reinforcement learning, Lyapunov
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stability, and evolutionary algorithm.

In Chapter 3, the first part of the proposed ISRL-SAEAs is self adaptive evolution
algorithms (SAEAs). The SAEAs consist of a hybrid evolutionary algorithm (HEA), self
adaptive groups’ cooperation based symbiotic evolution (SAGC-SE), and self adaptive groups
based symbiotic evolution using FP-growth algorithm (SAG-SEFA). These three algorithms
are introduced in this chapter.

In Chapter 4, the second part of the proposed ISRL-SAEAs is the improved safe
reinforcement learning (ISRL). The ISRL consists of novel reinforcement signal designed and
Lyapunov stability analysis. Both of these two components will be introduced in this chapter.

In Chapter 5, to demonstrate the performance of the ISRL-SAEAs for temporal
problems, two examples and performance contrasts with some other models are presented.
The examples of this chapter consist of the'inverted pendulum control system and tandem
pendulum control system.

In Chapter 6, the contributions and outlines some promising directions for future

research are discussed.
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Chapter 2

Foundations

The background material and literature review that relates to the major components of
the research purpose outlined above (neuro-fuzzy controller, reinforcement learning,
Lyapunov stability, and evolutionary algorithm) are introduced in this chapter. The concept of
neuro-fuzzy controller is discussed in the first section. The reinforcement learning schema is
introduced in Section 2.2. In Section 2.3, the Lyapunov stability that the improved safe
reinforcement learning (ISRL) is discussed. The final section focuses on genetic algorithm,
cooperative coevolution, and symbiotici'évelution, the method on which the proposed self

adaptive evolutionary algorithms (SAEAs) are based.

2.1 Neuro-Fuzzy Controller

Neuro-fuzzy modeling has been known as a powerful tool ([1]-[14]) which can facilitate
the effective development of models by combining information from different sources, such
as empirical models, heuristics and data. Neuro-fuzzy models describe systems by means of
fuzzy if-then rules represented in a network structure, to which learning algorithms known
from the area of artificial neural networks can be applied.

A neuro-fuzzy controller is a knowledge-based system characterized by a set of rules,
which model the relationship among control input and output. The reasoning process is
defined by means of the employed aggregation operators, the fuzzy connectives and the
inference method. The fuzzy knowledge base contains the definition of fuzzy sets stored in

the fuzzy database and a collection of fuzzy rules, which constitute the fuzzy rule base. Fuzzy
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rules are defined by their antecedents and consequents, which relate an observed input state to
a desired output. Two typical types of neuro-fuzzy controllers are Mamdani-type and
TSK-type neuro-fuzzy controllers.

For Mamdani-type neuro-fuzzy controllers ([1]), the minimum fuzzy implication is used
in fuzzy reasoning. The neuro-fuzzy controllers employ the inference method proposed by
Mamdani in which the consequence parts are defined by fuzzy sets. A Mamdani-type fuzzy
rule has the form:

IF x1 is Ayj (my;, o) and x; is Azj(inyj , 03 )...and x,, is A,;; (m,; , 0y))
THEN y’is B; (m; ,0;) 2.1)

where m;, ando,; represent a Gaussian membership function with mean and deviation with

ith dimension and jth rule node. The consequences B; of jth rule is aggregated into one fuzzy
set for the output variable y. The ctisp outputis obtained through defuzzification, which
calculates the centroid of the output fuzzy set.

Besides the more common fuzzy inference method proposed by Mamdani, Takagi,
Sugeno and Kang introduced a modified inference scheme ([5]). The first two parts of the
fuzzy inference process, fuzzifier the inputs and applying the fuzzy operator are exactly the
same. A Takagi-Sugeno-Kang (TSK) type fuzzy model employs different implication and
aggregation methods than the standard Mamdani’s type. For TSK-type neuro-fuzzy
controllers ([5]), the consequence of each rule is a function input variable. The general
adopted function is a linear combination of input variables plus a constant term. A TSK-type
fuzzy rule has the form:

IF xy is Ayj(myj, 01j) and x; is Ayi(my; , 03j)...and x,, is A,j (m,; , O )
THEN y’=wgitwipxi+...4w,x, (2.2)
where wy; represents the first parameter of a linear combination of input variables with jth rule

node and wy; represents the ith parameter of a linear combination of ith input variable. Since
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the consequence of a rule is crisp, the defuzzification step becomes obsolete in the TSK
inference scheme. Instead, the model output is computed as the weighted average of the crisp
rule outputs, which is computationally less expensive then calculating the center of gravity.
Recently, there are many researchers ([5], [35], and [44]) to show that using a TSK-type
neuro-fuzzy controller achieves superior performance in network size and learning accuracy
than that of Mamdani-type neuro-fuzzy controllers. According to this reason, in this
dissertation, a TSK-type neuro-fuzzy controller (TNFC) is adopted to perform various
dynamic problems. Therefore, the proposed SAEAs are used to tune free parameters of a
TNFC.

The structure of a TNFC is shown in Fig. 2.1, where n and R are, respectively, the
number of input dimensions and the number of rules. It is a five-layer network structure. The
functions of the nodes in each layer are described as follows:

Layer 1 (Input Node): No function-is_performed in-this layer. The node only transmits input

values to layer 2.

u =x,, (2.3)

where u" denotes the ith node’s input in the kth layer and x, denotes ith input

dimension.

Layer 2 (Membership Function Node): Nodes in this layer correspond to one linguistic label
of the input variables in layerl; that is, the membership value specifying the degree to which
an input value belongs to a fuzzy set ([3]-[4]) is calculated in this layer. In this dissertation,

the Gaussian membership function is adopted in this layer. Therefore, for an external inputx,,

the following Gaussian membership function is used:

-]

@ _ i i

u® = exp| - ———1 2.4)
O

where m; and o, are, respectively, the center and the width of the Gaussian membership
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function of the jth term of the ith input variable x; .
Layer 3 (Rule Node): The output of each node in this layer is determined by the fuzzy AND
operation. Here, the product operation is utilized to determine the firing strength of each rule.

The function of each rule is

uj(3) _ Huz‘(jz) (2.5)

Layer 4 (Consequent Node): Nodes in this layer are called consequent nodes. The input to a
node in layer 4 is the output derived from layer 3, and the other inputs are the input variables

from layer 1 as depicted in Fig. 2.1. The function of a node in this layer is

u® =ul (wy, + Y wyx,) (2.6)

J i
i=1
where the summation is over all the inputs and where w, are the corresponding parameters
of the consequent part.

Layer 5 (Output Node): Each node¢ in this layer corresponds to single output variable. The

node integrates all the actions recommended by layers 3 and 4 and acts as a defuzzifier with

R R n
4 3)
Zuj Zuj (w0j+Z]:wijxi)
y =u® = J; _ J= - = 2.7)
3) (3)
u; 2
j=1 Jj=1

where R is the number of fuzzy rule.
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Figure 2. 1: Structure of the TSK-type neuro-fuzzy controller.

2.2 Reinforcement Learning

Unlike the supervised learning problem;in which the correct “target” output values are
given for each input pattern, the reinforcement learning problem has only very simple
“evaluative” or “critical” information, rather than “instructive” information. Reinforcement
learning algorithm is proposed for determining a sequence of decisions to maximize a
reinforcement signal. At each time step, the agent in states, € S, chooses an action a, € 4
that transfers the environment to the state s,,, and returns a numerical reward, 7,, to the
agent. To lack of knowledge of how to solve the problem, the agent should explore the
environment by trial-and-error learning strategy. Unlike supervised learning, the desired
output in each state is not known in advance in reinforcement learning. In such trial-and-error
learning strategy, an action performs well in the current states may perform badly in the future

states, and vice versa.

The well-known learning methods for solving control problems are dynamic
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programming ([61]). These methods are similarly to the reinforcement learning ([62]). The
necessary component of reinforcement learning methods is shown in Fig. 2.2. The agent
consists of a value function and a strategy. The value function represents how much reward
can be expected from each state if the best known strategy is performed. The strategy
represents how to choose suitable actions from the value function to environment. As shown
in Fig. 2.2, at time step ¢, the agent selects an action a,. The action is applied to the

environment, causing a state transition from s, to s,,,, and a reward 7, is received. The

t+1°

goal of a reinforcement learning method is to find the optimal value function for a given

environment.

There are several reinforcement learning algorithms such as the Q-learning ([63]-[64])
and Sarsa ([65]) algorithms are proposed for computing the value function. These methods are
developed based on the temporal difference leatning algorithm. In the temporal difference
learning method, the value function of each state (V( s, )) is updated using the value function
of the next state (¥(s,,,)). The value function of each state is shown as follows.

V(s)=V(s)+alr+V(s,.)-V(s,)] (2.8)
where V(s, ) increases by the reward 7, plus the difference between the next state AV (s,,,)
and V(s,); «a is the learning rate between 0 to 1; and A is the discount factor between 0 to

1.
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Figure 2. 2: Reinforcement learning method.

In early research, these reinforcement learning algorithms were proposed in simple
environments. Recently, the reinforcement -learning algorithms focus on larger,
high-dimensional environments. These reinforcement learning algorithms are developed base
on the neural networks ([66]-[67]), tadial basis functions ([68]), and neuro-fuzzy network
([18]-[20]).

More recently, there are several researches proposed time-step reinforcement
architectures to provide an easier way to implement the reinforcement learning architecture
when compared with temporal difference learning architectures ([18]-[20]). In time-step
reinforcement architecture, the only available feedback is a reinforcement signal that notifies
the model only when a failure occurs. An accumulator accumulates the number of time steps
before a failure occurs. The goal of the time-step reinforcement method is to maximize the
value function V. The fitness function is defined by:

V =TIME-STEP (2.9)
where TIME-STEP represents how long the experiment is still a “success”. Equation 2.9

reflects the fact that long-time steps before a failure occurs means the controller can control
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the plat well. For example, in evolutionary algorithm, Eq. 2.9 reflects the fact that long-time

steps before a failure occurs means higher fitness of the evolutionary algorithm.

2.3 Lyapunov Stability
Consider a following system:
X = f(x) (2.10)
where f:D — R" represents a locally Lipschitz that maps from an open set D c R”
into R". Suppose that x =0 is an equilibrium point for Eq. 2.10; thatis, f(0)=0.

According to [69], we have the following definition of stability

Definition 2.3.1:
1. Stable, if 35(g) >0, for Ve > 0, such that
(O < o-=x@)| < &, vt =0 (2.11)
2. Asymptotically stable, if it-is stable‘and there exists some y >0 such that
(O <7= lim x(r) =0 (2.12)
3. Globally asymptotically stable, if it is asymptotically stable and there exists
}1_)12 x(t)=0 holds for all x(0).
4. Unstable, if not stable.
The Lyapunov stability theorems ([69]) are introduced as follows.
Theorem 2.3.1 ([69]):
Suppose x =0 is an equilibrium point of Eq. 2.10 and D c R" is an open set containing
x=0.Let V:D — R tobe a continuously differentiable function as following
7(0)=0 and V(x)>0 in D\{0}. (2.13)
According to Eq. 2.13, the following equations hold:

1. If V(x)<0 in D,then x=0 isstable, where V(x) is defined by
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. oV
V(x)=—((x)). (2.14)
ox
2. If D=R", V(x)<0 in D\{0}, and V(x)is radially unbounded. An equilibrium
point x=0 is globally asymptotically stable, when |x| - o and V(x) > .

3. If V(x)<0 inD\ {O}, then x =0 is asymptotically stable.

In reinforcement learning, the most well-known algorithm is Barto and his colleagues’
actor-critic architecture ([17]), which consists of a control network and a critic network.
However, Barto’s architecture is complicated and is not easy to implement. Therefore, there
are several researches proposed time-step reinforcement architectures to improve Barto’s
architecture ([18]-[20]). In time-step reinforcement architecture, the only available feedback
is a reinforcement signal that notifies the model only when a failure occurs. An accumulator
accumulates the number of time steps before a failure occurs. Even though the time-step
reinforcement architecture is easier to implement when compared with Barto’s architecture, it
only measures the number of time steps-before a failure occurs; in other words, it only
evaluates how long the controller works:well instead of how soon the system can enter the
desired state, which is also very important. In [32], Perkins and Barto proposed safe
reinforcement learning based on Lyapunov function design. Once the system’s Lyapunov
function is identified, under Lyapunov-based manipulations on control laws, the architecture
can drive the system to reach and remain in a predefined desired state with probability 1. Then,
the time step for the system entering the desired state can indicate the concept of how soon the
system becomes stable. In this dissertation, the Lyapunov stability theorem is used to design
the reinforcement signal; therefore, the improved safe reinforcement learning (ISRL) is based

on the Lyapunov stability theorem. The details of the ISRL can be found in Chapter 4.
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2.4 Evolution Learning

In this section, the foundations of evolutionary algorithm are introduced. This section
focuses on genetic algorithm, cooperative coevolution and symbiotic evolution, the methods

on which the proposed self adaptive evolutionary algorithms (SAEAs) are based.

2.4.1 Genetic algorithm

Genetic algorithms (GAs) ([22]) are search algorithms inspired by the mechanics of
natural selection, genetics, and evolution. It is widely accepted that the evolution of living
beings is a process that operates on chromosome-organic devices for encoding the structure of
living beings.

The flowchart of the learning process is shown in Fig. 2.3, where Nc is the size of
population, G denote Gth generation. The learning process of the GAs involves three major
steps: reproduction, crossover, and mutation. Reproduction ([70]-[72]) is a process in which
individual strings are copied according to their fitness value. This operator is an artificial
version of neural selection. In GAs, a high fitness value denotes a good fit. In the reproduction
step, the well-known method is the roulette-wheel selection method ([72]) (see Fig.2.4). In
Fig.2.4, the intermediate population is P’, which is generated from identical copies of a

chromosome sampled by spinning the roulette wheel a sufficient number of times.
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In crossover step ([73]-[77]), although reproduction step directs the search toward the best
existing individuals, it cannot create any new individuals. In nature, an offspring has two
parents and inherits genes from both. The main operator working on the parents is the
crossover operator, the operation of which occurred for a selected pair with a crossover rate.
Figure 2.5 illustrates how the crossover works. Crossover produces two offspring from their

parents by exchanging chromosomal genes on either side of a crossover point generated

randomly.

Figure 2. 4: The roulette wheel selection.
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Parents Offsprings

Crossover Points Crossover Points

Figure 2.5: Crossover operator.

In mutation step ([78]-[84]), although the reproduction and crossover would produce many
new strings, they do not introduce any new information to the population at the site of an
individual. Mutation can randomly alter the allele of a gene. The operation is occurred with a
mutation rate. Figure 2.6 illustrates how the mutation works. When an offspring is mutated,

one of its genes selected randomly is changed to.a new value.

Mutation Points Mutation Points

I I
v Y

Figure 2.6: Mutation operator.

Since GAs search many points in the space simultaneously, they have less chance to
reach the local minima than single solution methods. The advantages of GAs are (1) some
individuals have a better chance to come close to the global optima solution, and (2) the
genetic operators allow the GA to search optima solution. According to above reasons, GAs
are suitable for searching the parameters space of neuro-fuzzy controller. For solving the
problem that a neuro-fuzzy controller which performs gradient-descent based learning
algorithms may reach the local minima very fast but never find the global solution, the GAs
sample the parameters space of neuro-fuzzy controllers and recombine those that perform best

on the control problem.
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2.4.2 Cooperative Coevolution

In natural evolution, individuals may compete and/or cooperate with each other for
resources and survival. The fitness of each individual may changes each generation. The
reason is that individuals compete and/or cooperate with other individuals in the environment.
About this phenomenon, recently, many researches try to propose coevolutionary algorithms
to improve the traditional evolutionary algorithm. Most coevolutionary algorithms focus on
competition between individuals in the population ([85]-[87]). Therefore, individuals generate
stronger and stronger strategies to defeat others in every generation.

Another kind of coevolutionary algorithms is proposed to improve cooperation of GAs.
Cooperative coevolution is proposed for reducing the difficult problems through
modularization ([88]). Therefore, in cooperative coevolutionary algorithms, the individuals
represent only partial solutions. The partial “selutions are evolved by evaluating their
performance to complete solutions and tecombining the partial solutions with well
performance to solve the problem.”Cooperative coevolution algorithms can improve the
performance of traditional evolution by dividing the problem into several small problems.

In [89], Holland and Reitman proposed cooperative coevolution algorithms to apply in
classifier systems. The fitness value is assigned to each individual on how well it cooperates
with others. This approach is implemented by a neural network. Recently, there are several
researches try to use coevolution algorithms to radial basis functions ([90]-[93]). In [94], the
authors proposed a cooperative coevolutionary GA that each individual is evaluated
independently on its own population.

More recently, several researches try to propose algorithms to combine cooperative
coevolution with neural networks ([95]-[96]) and neuro-fuzzy controller ([29], [31], and [44])
to improve the performance. The approach called symbiotic evolution will be introduced in

next section.
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2.4.3 Symbiotic Evolution

In this section, an approach of cooperative coevolution is introduced. Therefore, the
symbiotic evolution is discussed. The idea of symbiotic evolution was first proposed in an
implicit fitness sharing algorithm that was used in an immune system model ([97]). The
authors developed artificial antibodies to identify artificial antigens. Because each antibody
can match only one antigen, a different population of antibodies was required to effectively
defend against a variety of antigens.

Unlike traditional GAs that use each individual in a population as a full solution to a
problem, symbiotic evolution assumes that each individual in a population represents only
a partial solution to a problem; complete solutions combine several individuals in the
population. In a normal evolution algorithm, a single individual is responsible for the
overall performance, with a fitness value assigned to that individual according to its
performance. In symbiotic evolution, the fitness of an individual (a partial solution) is
calculated by summing up the fitness values of all possible combinations of that individual
with other current individuals (partial solutions) and dividing the sum by the total number
of combinations.

As shown in [29], [31], [44], and [95]-[96], partial solutions can be characterized as
specializations. The specialization property ensures diversity, which prevents a population
from converging to suboptimal solutions. A single partial solution cannot “take over” a
population since there must be other specializations present. Unlike the standard
evolutionary approach, which always causes a given population to converge, hopefully at
the global optimum, but often at a local one, the symbiotic evolution finds solutions in
different, unconverted populations ([29], [31], [44], and [95]-[96]).

The basic idea of symbiotic evolution is that an individual (i.e., a chromosome) is

used to represent a partial solution. A complete solution is formed when several individuals,
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which are randomly selected from a population, are combined. With the fitness assignment
performed by symbiotic evolution, and with the local property of a fuzzy rule, symbiotic
evolution and the fuzzy system design can complement each other. If a normal GA
evolution scheme is adopted, only the overall performance of the complete solution is
known, not the performance of each partial solution. The best method to replace the
unsuitable partial solutions that degrade the overall performance of a fuzzy system is to use
crossover operations, followed by observing the performance of the offspring.

The structure of the symbiotic evolution is shown in Fig. 2.7, where N is the number
of complete solutions the symbiotic evolution will select individuals to form. The complete
solution is constructed by selecting the individuals from a population. The learning
flowchart is shown in Fig. 2.8, where Nc is the size of population, and G denotes Gth
generation. Compare with genetic algorithm, the difference of symbiotic evolution is
selecting individuals to form a“complete solution (selection step) and to evaluate the
performance of each individual (fitness assignments step).

Chromosome 1

Chromosome 2 |\

Chromosome Complete

‘Chromosomw—l‘ Ne-l Solution]

. \\
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7
e /
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Figure 2.7: Structure of a chromosome in a symbiotic evolution.
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Figure 2.8: Flowchart of the symbiotic evolution.

In the selection step, the sufficient times are needed to select individuals. Therefore,
the selection times must be large enough to let'every individual in population to be selected
sufficiently.

In the fitness assignments step, the fitness value is defined as follows:

Step 1. Randomly choose R individuals in population to form complete solution. The R
represents the number of individuals that the complete solution needs (in this dissertation
R represents the number of fuzzy rules).

Step 2. Evaluate every complete solution with R individuals, which are selected from
stepl, to obtain a fitness value.

Step 3. Divide the fitness value by R and accumulate the divided fitness value to the
selected individuals with their fitness value records are set for zero initially.

Step 4. Divide the accumulated fitness value of each chromosome by the number of

times it has been selected. The average fitness value represents the performance of a
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single individual.

Although the symbiotic evolution uses the specialization property to ensure diversity,
which prevents a population from converging to suboptimal solutions, there still has a
problem that the population cannot evaluate each partial solution locally. For example, the
partial solutions are all encode in a population. In the evolutionary operator, the chromosomes
with better fitness have most chance to reproduce in the offspring. Therefore, the
chromosomes of population may become similarly. This will cause the complete solution hard
to find by combining of the chromosomes in the population. For solving this problem, the
SAEAs are proposed in this dissertation to let the population can evaluate each partial

solution locally. The details of the SAEAs can be found in Chapter 3.
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Chapter 3
Seltf Adaptive Evolutionary
Algorithms

In this chapter, the first part of the proposed ISRL-SAEAs, that is, the self adaptive
evolution algorithms (SAEAS), is introduced. The three methods contained in the SAEAs will
be introduced in the following sections. In the first section, a hybrid evolutionary algorithm
(HEA) is introduced for improving the traditional evolution that the length of individuals in
the population must be predefined. In thé second section, a self adaptive group cooperation
based symbiotic evolution (SAGC-SE) is proposed for providing the local consideration of
the population in the HEA. In the final section, a self adaptive group based symbiotic
evolution using FP-growth algorithm (SAG-SEFA) is discussed to provide the methodology

of selecting groups for performing selection and crossover steps in SAGC-SE.

3.1 Self Adaptive Hybrid Evolutionary Algorithm

In this section, the proposed hybrid evolutionary algorithm (HEA) is introduced.
Recently, many efforts to enhance the traditional GAs have been made ([98]). Among them,
one category focuses on modifying the structure of a population or the role an individual plays
in it ([85]-[87] and [95]-[100]), such as the coevolutionary algorithms ([85]-[87]), distributed
GA ([99]), cellular GA ([100]), and symbiotic evolution ([95]-[97]).

In a traditional evolution algorithm, the number of rules in a model must be predefined.

The length of individuals (chromosomes) in a population is the same and is defined by
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trail-and-error testing. Therefore, for different control problem, the length of an individual
(chromosome) must be redefined. For solving this problem, the hybrid evolutionary algorithm
(HEA) is proposed to decide the number of fuzzy rules automatically.

The proposed HEA combines the modified compact genetic algorithm (MCGA) and the
modified variable-length genetic algorithm (MVGA). In the MVGA, the initial length of each
individual may be different from each other, depending on the total number of rules encoded
in it. Thus, the number of rules does not need to be predefined. In HEA, individuals with an
equal number of rules constitute the same group. Initially, there are several groups in a
population. Unlike the traditional variable-length genetic algorithm (VGA), Bandyopadhyay
et. al. ([30]) used “#” to mean, “does not care”. In the HEA, the variable two-part crossover
(VTC) and variable two-part mutation (VTM) are adopted to make the traditional crossover
and mutation operators applicable to different'lengths of chromosomes. Therefore, using “#”
means that “does not care” is not needed in the VIC and VTM.

In the HEA, a chromosome is divided into two parts. The first part of the chromosome
gives the antecedent parameters of a TSK-type neuro-fuzzy controller while the second part of
the chromosome gives the consequent parameters of a TSK-type neuro-fuzzy controller. Each
part of the chromosome can be performed using the VTC on the overlapping genes of two
chromosomes. In the traditional VGA, Bandyopadhyay et. al. ([30]) only evaluated the
performance of each chromosome in a population. The performance of the number of rules
was not evaluated ([30]). In HEA, the elite-based reproduction strategy is proposed to keep
the best group with the same length chromosomes. Therefore, the best group can be
reproduced many times for each generation. The elite-based reproduction strategy is similar to
the maturing phenomenon in society, where individuals become more suitable to the
environment as they acquire knowledge from society.

In the proposed HEA, the modified compact genetic algorithm (MCGA) is proposed to

carry out the elite-based reproduction strategy. The concept of compact genetic algorithm
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(CGA) ([101]) represents a population as a probability distribution over the set of solutions
and is operationally equivalent to the order-one behavior of the simple GA ([102]). The
advantage of the CGA is that it processes each gene independently and requires less memory
than the normal GA. In the proposed MCGA, the building blocks (BBs) in the MCGA
represent the suitable lengths of the chromosomes and reproduce the individuals according to
the BBs. The coding scheme consists of the coding done by the MVGA and the MCGA. The
MVGA codes the adjustable parameters of a TSK-type neuro-fuzzy controller (TNFC) into an
individual (chromosome), as shown in Fig. 3.1; where MS; represents the parameters of the

antecedent of the jth rule in the TNFC, W, represents the parameters of the consequent of the

Jth rule, w; is the corresponding parameter of the consequent part with the jth rule and ith

input variable, and Ry represents that there are R; fuzzy rules in a TNFC. In Fig. 3.2, the
MCGA codes the probability vector.dnto the building blocks (BBs), where each probability
vector represents the suitability of the number of-fuzzy rules in a TNFC. In MCGA, the
maximum number of rules (Rnax) and minimum-fiumber of rules (Rni,) must be predefined to

prevent the number of fuzzy rules to generate beyond a certain bound (i.e., [ Rimin, Rmax])-

MS; | MS, | MS; | MS, | W, W, - | W W,

my; o, |Mm2 0, m;; O, my; oo | Woj .o wi; eee w

Figure 3.1: Coding the adjustable parameters of a TNFC into a chromosome in the MVGA.

V;?min VRmin +1 VRk VRmax -1 VRmax

Figure 3.2: Coding the probability vector into the building blocks (BBs) in the MCGA.

The learning process of the HEA involves six major operators: initializing, evaluating,

sorting, elite-based reproduction strategy, variable two-part crossover, and variable two-part
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mutation. Figure 3.3 shows the flowchart of the learning process. The whole learning process

is described step-by-step as follows:
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Figure 3.3: Flowchart of/the parameter learning in the HEA.

1. Initializing:
The initializing step sets initial values of the MVGA and MCGA. In the MVGA,
individuals should be generated randomly to construct an initial population. The

initial values of MVGA are generated randomly within a fixed range. The following

formulations show how to generate the initial chromosomes:

Mean: Chr,[ p] = random[m

min ? mmax ]

where ¢c=1, 2, ---, Nc;

(3.1)
p=1,3, -, 2(nxR)-1;
R =R_.,R._+1 - R
Deviation: Chr,[ p]=random[c,;,, C,..] (3.2)
where p=2, 4, -+, 2(nxR)),
Weight: Chr.[ p]= random[w,, , w,,, ] (3.3)

where p =2(nxR,)+1, 2(nxR,)+2, -+, 2(nxR,)+3n+1,
where Chr. represents cth chromosome in a population; R represents they are Ry
rules in a TNFC and N¢ is the total number of chromosomes in each group; p
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represents the pth gene in a Chre; and [0, , 0. 1, [m,,, m,, ] and

max

[w,. ,w,. ]representthe predefined range.

In order to keep the same number of rules in a TNFC, the number of the rules
of each chromosome needs to be generated 5 chromosomes. That is, the number of
chromosomes generated of each group () must be predefined. Therefore, the
population size Nc is set t0 7*(Rmax-Rmin +1). In the MCGA, the probability vectors
of the BBs are set to 0.5 initially.

2. Evaluating:

The evaluating step is to evaluate each chromosome in a population. The goal of
the HEA is to maximize the fitness value. The higher a fitness value, the better the
fitness. The fitness function is used by a reinforcement signal defined in Chapter 4
will be introduced later.

3. Sorting:

After the evaluating step, the chromosomes in the population are sorted. After
sorting the whole population, chromosomes in the top half of population are also
sorted in each group. The sorting step can help performing the reproduction step
because of the best chromosome in each group can be stayed. After sorting the
chromosomes in the population, the algorithm goes to next step.

4. Elite-Based Reproduction Strategy (ERS):

Reproduction is a process in which individual strings are copied according to
their fitness value. In the HEA, an elite-based reproduction strategy (ERS) is
proposed to mimic the maturing phenomenon in society, where individuals become
more suitable to the environment as they acquire more knowledge from society. The
MCGA uses the BBs to represent the suitable length of the chromosomes and

reproduces the chromosomes according to the probability vector in the BBs. The best

performing individuals where in the top half of each population are using to perform
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the ERS. According to the results of the ERS, using the crossover and the mutation
generate the other half individuals. After the ERS, the suitable length of
chromosomes will be preserved and the unsuitable length of chromosomes will be
removed. The detailed of the ERS is shown as follows:

Step 1. Update the probability vectors of the BBs according to the following
equations:

{VRk = VR/; + (Up[_valueRk xA), if Avg < Max_ﬁtRk

Vi, =Vi —(Upt_value, x 1), otherwise (3.4)
Where Rk = Rmin ’ Rmin + 1’ ) Rmax 4
Nc
Avg = fit, I Ne, (3.5)
p=l1

Upt _value, = Total _ fity, Ne , (3.6)

Total _fit, = fity,: (3.7)

g=1
where V, is the probability vector in the BBs and represents the suitable

chromosomes in the group with Ry rules in a population; A is a predefined threshold

value; Avg represents the average fitness value in the whole population; Nc is the

population size; N, represents that there are N, chromosomes in the group that

individuals with Ry rules; fit, is the fitness value of the pth chromosome in all Nc

populations; fit, =~ is the fitness value of the gth chromosome in the group with Ry
rules; and Max _ fit, is the best fitness value in the group with Ry rules. As shown
in Eq. 3.4, if Max _ fit, >Avg, then the suitable chromosomes in the group with Ry

rules should be increased. On the other hand, if Max _ fit, <Avg, then the suitable

chromosomes in the group with R; rules should be decreased. Eq. 3.7 represents the
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sum of the fitness values of the chromosomes in the group with Ry rules.
Step 2. Determine the reproduction number according to the probability vectors of

the BBs as follows:

Rpy =(Nc/2)*(Vy, /Total _Velocy)

whereR, =R . ,R .. +1L-, R ., (3.8)
Rl“il}(
Total Velocy = ZV& (3.9
Ry =Riin

where Ne represents the population size; Rp , is the recorder, and a chromosome has
Ry rules for constructing a TNFC.

Step 3. After step 2, the reproduction number of each group in the top half of a
population is obtained. Then Rp, chromosomes in each group are generated using
the roulette-wheel selection method ([72]).

Step 4. In the proposed ERS, for avoiding suitable number of fuzzy rules may fall in

the local optima solution, the two different actions to update the V, are adopted.

The two deferent actions are defined according to the following equations:

if  Accumulator < ERSTimes

(3.10)
then do Steps 1 to 3
if Best _Fitness, = Best _ Fitness
(3.11)
then Accumulator = Accumulator + 1,
if Accumulator > ERSTimes
(3.12)

then do Step 0 and Accumulator =0,

where ERSTimes is a predefined value; Best _ Fitness, represents the best fitness

value of the best combination of chromosomes in the gth generation; Best Fitness
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represents the best fitness value of the best combination of chromosomes in current
generations. Eqgs. 3.10-3.12 represent that if the best fitness is not changed for a
sufficient generations, the suitable number of fuzzy rules may fall in the local optima
solution.

5. Variable two-part crossover:

Although the ERS operation can search for the best existing individuals, it does
not create any new individuals. In nature, an offspring has two parents and inherits
genes from both. The main operator working on the parents is the crossover operator,
the operation of which occurs for a selected pair with a crossover rate. In the HEA,
the variable two-part crossover (VTC) is proposed to perform this step. In the VTC,
the parents are selected from the enhanced elites. In the VTC, two parents are
selected by using the roulette-wheel selection method ([72]). The two parents may be
selected from the same ot different groups. Performing crossover on the selected
parents creates the offspring.. Since the parents may be of different lengths, the
misalignment of individuals must be avoided in the crossover operation. Therefore, a
variable two-part crossover is proposed to solve this problem. The first part of the
chromosome gives the antecedent parameters of a TNFC while the second part of the
chromosome gives the consequent parameters of a TNFC. The two-point crossover
([76]) is adopted in each part of the chromosome. Thus, new individuals are created
by exchanging the site’s values between the selected sites of the parents’ individuals.
To avoid the misalignment of individuals in the crossover, in the VTC, the selection
of the crossover points in each part will not exceed the shortest length chromosome
of two parents. Two individuals of different lengths using the variable two-part
crossover operation are shown in Fig. 3.4. MS; represents the parameters of the
antecedent part of the jth rule in the TNFC, W, represents the parameters of the

consequent of the jth rule in the TNFC, and R; represents that there are k fuzzy rules
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in a TNFC. After the VTC, the individuals with poor performance are replaced by the

new offspring.

First Part Second Part
Crossover Points Crossover Points

. MS2 B MSJ - m W2 _
MS] - - WRk

6.

Figure 3.4: The variable two-part crossover operation in the HEA.

Variable two-part mutation:

Although the ERS and the VTC produce many new strings; these strings do not
provide any new information to every population at the site of an individual. Mutation
can randomly alter the allele of a gene. In the HEA, the variable two-part mutation
(VTM) is proposed to perform. the mutation operation. The proposed VTM is different
from the traditional mutation and is applicable to chromosomes of different length.
The first and second parts of the chromosome are the same as the VTC. In each part of
a chromosome, uniform mutation ([84]) is adopted, and the mutated gene is drawn
randomly from the domain of the corresponding variable. The VTM operation of each

individual is shown in Fig. 3.5.

First Part Second Part

Mutation Point (Only one gene is generated) Mutation Point(Only one gene is generated)

MS, MS; | .. | MS, w| oW . A

MS, MS; | .. | MS, wo oW . %

Figure 3.5: The variable two-part mutation operation in the HEA.
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After the above-mentioned operations, the problem of groups constituted by the most
suitable number of rules will be solved. The number of elites in other groups will decrease
and most of them will become zero (in most cases, there will be no elites). That is, the
proposed HEA indeed can eliminate unsuitable groups and rules.

As mention above, the proposed HEA has structure-and-parameter learning ability. That
is, it can determine the average optima number of fuzzy rules and tune the free parameters in
a TNFC. The proposed HEA also processes variable lengths of the chromosomes in a

population.

3.2 Self Adaptive Groups Cooperation Based

Symbiotic Evolution

Although the HEA can solve the:problems about deciding the number of fuzzy rules, there
still has a limitation of the proposed HEA:That is; all the fuzzy rules are encoded into one
chromosome. In the HEA, partial solutions cannot be evaluated independently in the
population. The partial solutions can be characterized as specializations. The specialization
property ensures diversity and prevents a population from converging to suboptimal solutions.
A single partial solution cannot “take over” a population since it must correspond with other
specializations. For solving this problem, the self adaptive group cooperation based symbiotic
evolution (SAGC-SE) is proposed.

In this section, the self adaptive group cooperation based symbiotic evolution (SAGC-SE)
will be discussed. In the proposed SAGC-SE, the algorithm is developed from symbiotic
evolution. Unlike the standard evolutionary approach which always causes a given population
to converge, hopefully at the global optimum, the symbiotic evolution finds solutions in
different, unconverted populations ([95]-[97]).

Although the symbiotic evolution uses the specialization property to ensure diversity,
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which prevents a population from converging to suboptimal solutions, there still has a
problem that the population cannot evaluate each partial solution locally. For example, the
partial solutions are all encode into a population. In the evolutionary operator, the
chromosomes with better fitness have most chance to keep in the offspring. Therefore,
chromosomes of a population may become more similarly. The complete solution is hard to
fine by combining of chromosomes in a population.

Recently, Gomez and Schmidhuber proposed lots of work to solve this problem ([40] and
[41]). The proposed enforced sub-populations (ESP) used sub-populations of neurons for the
fitness evaluation and overall control. As shown in [40] and [41], the sub-populations that use
to evaluate the solution locally can obtain better performance compared to systems of only
one population be used to evaluate the solution.

Same with the ESP, the SAGC-SE‘is proposed for solving the problem that that the
population cannot evaluate each fuzzy rule locally. In the SAGC-SE, each chromosome
represents only one fuzzy rule and-an n-rules fuzzy system is constructed by selecting and
combining n chromosomes from several groups. The SAGC-SE, which promotes both
cooperation and specialization, ensures diversity and prevents a population from converging
to suboptimal solutions. In SAGC-SE, compared with normal symbiotic evolution, there are
several groups in a population. Each group formed by a set of chromosomes represents a
fuzzy rule. Compare with the ESP, to let the well-performing groups of individuals to
cooperate for generating better generation, an elite-based compensatory of crossover strategy
(ECCS) is proposed. In the ECCS, each group will cooperate to perform the crossover steps.
Therefore, the better chromosomes of each group will be selected to perform crossover in the
next generation.

The proposed SAGC-SE consists of structure and parameter learning. In structure
learning, as well as HEA, the SAGC-SE determines the number of fuzzy rules automatically

and processes the variable length of a combination of chromosomes. The length of a

41



combination of chromosomes denotes the rule sets that are used to construct a TNFC. To deal
with this, in the SAGC-SE, the numbers of rules in TNFCs are variable. The structure of the
chromosome in the SAGC-SE is shown in Fig. 3.6. As shown in Fig. 3.6, each rule represents
a chromosome that is selected from a group, P, represents that there are Pj;., groups in a

population, and “R;” means that there are Ry rules used to construct a TNFC.

Rule 1 .

Rule 1

Group 1
P Rule 1

Rule 1

Rule R, | TNFC 1

Rule 1

Rule j

Rule /

Rule /

Group j Rulo /

Rule /

Rule j Rule R, | TNFC Ny

Rule R;
Rule Ry

Group Pg..
P P Rule R,

Rule R;

Figure 3.6: The structure of the chromosome in the SAGC-SE.

For determining the suitable number of fuzzy rules, in the SAGC-SE, the two-step
self-adaptive algorithm (TSSA) is proposed. In the proposed TSSA, as well as HEA, the
compact genetic algorithm (CGA) is adopted. The TSSA is different from the MCGA in that
the building blocks (BBs) are used to represent the suitability of TNFCs with different
numbers of fuzzy rules and determine the number of TNFCs with each different number of
fuzzy rules to evaluate the chromosomes. As shown in Fig. 3.7, the TSSA codes the

probability vector into the building blocks (BBs), where R, represents Ry rules (chromosomes)

that are used to form a TNFC, and V, is a probability vector that represents the suitability of

a TNFC with R; fuzzy rules. In the TSSA, as well as MCGA, the maximum and minimum
number of rules must be predefined to prevent the number of fuzzy rules from generating

beyond a certain bound (i.e., [Rmin, Rmax])-
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In parameter learning of the SAGC-SE, to allow groups to cooperate with each other for

generating better solutions, an elite-based compensatory of crossover strategy (ECCS) is

proposed. In SAGC-SE, the coding structure of chromosomes must be suitable for the concept

of each chromosome represents only one fuzzy rule. A fuzzy rule with the form introduced in

Eq. 2.2 is described in Fig. 3.8.
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Figure 3.7: Coding the probability vector into the building blocks (BBs) in the TSSA.
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Figure 3.8: Coding a rule of a TNFC into a chromosome in SAGC-SE.

The learning process of the SAGC-SEiin each group involves six major steps:

initialization, fitness assignment, sorting, elite-based reproduction strategy (ERS), elite-based

compensatory of crossover strategy (ECCS), and mutation strategy. The flowchart of the

learning process is shown in Fig. 3.9 where Nc represents that there are Nc chromosomes in

each group. The learning process is described step-by-step as follows:
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Figure 3.9: The learning process of SAGC-SE.
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1.

Initialization:

Before the SAGC-SE is designed, individuals (chromosomes) forming several
initial groups should be generated. The initial groups of SAGC-SE are generated
randomly within a fixed range. The following formulations show how to generate the
initial chromosomes in each group:

Deviation: Chry. [p]=random[ o o

min ? max ]

where p=2, 4, ..., 2n; g=1,2,..., Pye; c=1,2, ..., N (3.13)

Mean: Chr, . [p]= random[m,,,, m

max ]

where p=1, 3, ..., 2n-1. (3.14)
Weight: Chrg. [p]=random [w,;,, W,..]
where p=2n+1, 2n+2, ..., 3n+2. (3.15)

where Chry . represents cth chromosome in gth group; Pi;.. represents total number
of groups and Nc is the total number of chromosomes in each group; p represents the

pth gene in a Chry.; and [o ool Am ., m_ 1,and [w . , w_ ] represent

the predefined range.
Two-step self-adaptive algorithm (TSSA):

After every group is initialized, the SAGC-SE uses the two-step self-adaptive
algorithm (TSSA) to determine the suitable selection times of each number of rules
(In the SAGC-SE, the numbers of rules are between [Ruyin, Rmax].). “Selection times”
in the SAGC-SE indicates how many TNFCs should be generated in one generation.
In the SAGC-SE, one chromosome represents only one fuzzy rule; several
chromosomes are selected to combine and make a TNFC. The chromosomes should
be evaluated and selected to construct TNFCs. The selection times using in the
SAGC-SE are represented the number of TNFCs (a set of chromosomes) with

different rules in one generation. In traditional symbiotic evolution ([95]-[97]) and

ESP ([41] and [42]), the number of rules is predefined, so only the total selection
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times are defined in all generations. However, in the SAGC-SE, the number of fuzzy
rules is variable; therefore, the selection times with each different number of rules in
the TNFCs in every generation must be determined to evaluate the performance of
each group. To solve this problem, the TSSA is proposed to determine the suitable
selection times (the number of TNFCs with different rules in a generation). The
TSSA is a process that determines the number of TNFCs with R; rules that are
selected from Rj groups in every generation. The TSSA is similar to the maturing
phenomenon in society, where individuals become more suited to society as they
acquire more knowledge.

In the TSSA, the modified compact genetic algorithm (MCGA) is adopted. The
MCGA adopts the building blocks (BBs) to represent the suitable length of
chromosomes and reproduce the'chromosomes according to the BBs. The TSSA is
different from the MCGA in that the building blocks (BBs) are used to represent the
suitability of TNFCs with different numbers of fuzzy rules and to determine how
many TNFCs with each different number of fuzzy rules should be selected to
evaluate the chromosomes in every generation. After the TSSA is carried out, the
selection times of the suitable number of rules in a TNFC will increase, and the
selection times of the unsuitable number of rules in a TNFC will decrease. The
details of the TSSA are as follows:

Step 1.  Initialize the probability vectors of the BBs:

V, =05

(3.16)
where R, = R

min’Rmin +1’“.’Rmax’

Step 2. Update the probability vectors of the BBs according to the following

equations:
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{VRk =Vy +(Upt _value, *2), if Avg< fit,

VRk = VRk —(Upt_valueRk * 1), otherwise (3.17)
where R, =R ., R . +1, -, R __
Rmax
Avg= 3, fity /(R —R,,) (3.18)
Rk=Rmin
Upt _value, = Jity, (3.19)

Rmax
2. fity,
Ry =Ryin

if Fitness, 2(Best _Fitness, —ThreadFitnessvalue)
(3.20)

then fit, = fit, + Fitness ;

where ¥, is the probability vector in the BBs and represents the suitability of
TNFCs with Ry rules; A is a predefined threshold value; Avg represents the average
fitness value in the whole population;. Best _ Fitness, represents the best fitness
value of TNFCs with Ry rules; - fif, ~is the sum of the fitness values of the TNFCs
with R; rules when the fitness values of TNFCs with R; rules greater than
Best _ Fitness, minus a predefined threshold value named ThreadFitnessvalue . As

shown in Eq. 3.17, if fit, 2Avg, then the suitability of TNFCs with Ry rules should

be increased. On the other hand, if fit, <Avg, then the suitability of TNFCs with R,

rules should be decreased.
Step 3. Determine the selection times of TNFCs with different fuzzy rules according

to the probability vectors of the BBs as follows:
Rp, = (Selection_Times)*(V, /Total _Velocy)
where R, =R R . +1, -, R (3.21)

‘min ° min 4 max
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Rmax

Total Velocy = Z Ve (3.22)

+
R =Rsin

where Selection Times represents the total selection times in each generation;
Rp, represents the selection times of TNFCs with Ry rules that are selected from Ry
group in a generation.

Step 4.  After step 3, the selection times of TNFCs with different rules are
obtained. Rp, represents to select Rp, TNFCs, and each TNFC selects Ry
chromosomes from Ry groups in one generation.

Step 5. In the TSSA, as well as MCGA, to prevent suitable selection times from

falling in the local optimal solution, the TSSA uses two different actions to update

the V, . The deferent actions are defined according to the following equations:

if  Accumulator < TSSATimes

(3.23)
then do Steps 1 to 3
if Best Fitness, = Best _ Fitness
(3.24)
then Accumulator = Accumulator + 1,
if  Accumulator > TSSATimes
(3.25)

then do Step 1 and Accumulator = 0.

3. Fitness assignment:

As premised, in SAGC-SE, the fitness value of a single rule (an individual) is
calculated by summing up the fitness values of all the possible combinations which
contains that single rule. The details for assigning the fitness value are described step
by step as follows:

Step 1. Randomly choose R fuzzy rules from the R, groups with size N¢ to form a
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TNFC Rp, times. The Ry represents the number of fuzzy rules. The numbers of

fuzzy rules are variable in SAGC-SE.
Step 2. Evaluate every TNFC with Ry rules, which is generated from stepl, to obtain
a fitness value.
Step 3. Divide the fitness value by R; and accumulate the divided fitness value to the
selected rules with their fitness value records are set for zero initially.
Step 4. Divide the accumulated fitness value of each chromosome by the number of
times it has been selected. The average fitness value represents the performance of a
single rule.

4. Sorting:

After the Fitness assignment step, the chromosomes in each group are sorted.
This step can improve the reproduction step because the well-performing
chromosomes in each group will be kept. After the chromosomes in each group were
sorted, the algorithm goes to-the next step.

5. Elites-based Reproduction Strategy (ERS):

Reproduction is a process in which individuals are copied according to their
fitness values. A fitness value is assigned to each chromosome according to a fitness
assignment step in which a high value denote a good fit. The goal of the SAGC-SE is
to maximize the fitness value. For keeping the stability, an elite-based reproduction
strategy (ERS) is proposed to allow the best combination of chromosomes can be
kept in the next generation. In SAGC-SE, the chromosome with the best fitness value
may not be in the best combination. Therefore, every chromosome in the best
combination must be kept by applying ERS. Other chromosomes in each group, as
well as HEA, are selected under roulette-wheel selection method ([72]). The best

performing chromosomes in the top half of each group ([96]) advance to the next
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generation. The other half is generated by applying crossover and mutation
operations on chromosomes in the top half of the parent generation. In the
reproduction step, the top half of each group must be kept the same number of
chromosomes.

Elite-based compensatory of crossover strategy (ECCS):

Although the ERS can search for the best existing individuals, it does not create
any new individuals. In nature, an offspring has two parents and inherits genes from
both. The main step working on the parents is the crossover step, which occurs on a
selected pair under a crossover rate. Therefore, an elite-based compensatory of
crossover strategy (ECCS) is proposed to improve the crossover operation. The
ECCS mimics the cooperation phenomenon in society, in which individuals become
more suitable for the environment as'they acquire and share more knowledge of their
surroundings. The best performing individuals in the top half of each group that are
called elites are used to select the parents for applying the ECCS. Details of the
ECCS are shown below.

Step 1. The first one of the parents that is used to the crossover operation is selected

from the original group by using the following equations:

Z fitness, ,
Fitness _Ratio,, =*=—————, where =1, 2, -, Nc; (3.26)
z fitness,
c=1
Rand Value[g] = Random[0,1], where g=1, 2, ---, P_; (3.27)
Parent _SiteA[g]=1¢, if
(3.28)

Fitness _Ratio,, | < Rand _Valuelg] < Fitness _Ratio,,,

g,t-1

where Fitness _Ratio,, is a fitness ratio of zth chromosome in the gth group;
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Rand Value[g] [0, 1] is a random value of gth group; Parent SiteA[g] is the
site of the first parent. According to Eq. 3.28, if the Rand Value[g] is greater than
the fitness ratio at (#-1)th chromosome in gth group and equal to or smaller than the
fitness ratio at 7th chromosome in gth group, the site of the first parent of gth group
is assigned to 7.

Step 2. After determining the first parent, the best performing elites in every group
is used to determine the other parent. In this step, the total fitness ratio of every

group is computed as follows:

Nc
Total _Fitness, = Zﬁtnessg’c, where g=1, 2, -, P_; (3.29)
c=1
q
ZTotal _ Fitness,
Total _Fimess _Ratio, = = ,
ZTotal_Fitnessg (3.30)

5

where ¢g=1;-2, «--; P

where Total _Fitness, representsthe summation of all chromosomes’ fitness value
in gth group; Total _Fitness _Ratio, 1is a total fitness ratio of gth group.

Step 3. Determine the other parental group for applying crossover with the

Parent _SiteA[ g]th chromosome according to the following equations:
Group Rand Value[g] = Random[0,]] where g=1, 2, ---, P, ;(3.31)
Parent Group SiteB gl=¢q, if (3.32)
Total _Fitness_Ratio, , < Group_Rand Valudg|<Total _Fitness_Ratio,.

where Group Rand Value[g]€[0,]] is a random value of gth group;
Parent Group SiteB[g] represents the site of the group where the second parent

is selected from.
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Step 4. After the Parent Group SiteB[g]th group is selected, the other parent

which is selected from Parent Group SiteB[g]th group is determined by ECCS

according to the following equations:

t
z ﬁtneSS Selected _g.,b
b=l

Nc ’

Z SUNESS geeieq g.c (3.33)

c=1

Fitness _Ratio Selected gt —

where =1, 2, :--, Nc; Selected g = Parent Group SiteB[g];

Rand Value[g] = Random|0,1], where g=1, 2, ---, P

size >

(3.34)

Parent _SiteB[g]=1, if
(3.35)
Fitness _Ratiog,,.q ., < Rand Value|g] < Fitness Ratiog,, .y ;>

where Fitness _Ratiog,,.., 18 —alfitness ratio of 7th chromosome in the

Parent Group SiteB[g|th group; and Parent SiteB[g] is the site of second
parent.

After  selecting  the  parents from the gth  group and
Parent  Group SiteB[g]th group by ECCS, the individuals ( Parent SiteA[g]th
chromosome and the Parent _SiteB[g]th chromosome) are crossed and separated by
using a two-point crossover ([76]) in the gth group, as shown in Fig. 3.10. In Fig.
3.10, exchanging the site’s values between the selected sites of parents’ individuals
creates new individuals. After this operation, the individuals with poor performances

are replaced by the newly produced offspring.
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Figure 3.10: Two-point crossover.
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7. Mutation strategy:

For emphasizing the capability of the ECCS, the proposed SAGC-SE tries to
simplify the mutation operation. Therefore, a uniform mutation ([84]) is adopted, and
the mutated gene is generated randomly from the domain of the corresponding
variable.

The aforementioned steps are done repeatedly and stopped when the predetermined
condition is achieved. As mention above, a self adaptive group cooperation based symbiotic
evolution (SAGC-SE) is proposed for considering the local evaluation of the population. The
SAGC-SE can determine the suitable number of fuzzy rules and evaluate the fuzzy rule
locally. Moreover, the SAGC-SE can make groups to cooperate with each other for generating

the better chromosomes by using an elites-base compensation crossover strategy (ECCS).

3.3 Self adaptive Groups Based Symbiotic Evolution
using FP-growth Algorithm

Although the SAGC-SE could solve the problem of the HEA that all the fuzzy rules are
encoded into one chromosome. Moreover the SAGC-SE not only evaluates the fuzzy rule
locally but also makes groups to cooperate with each other for generating the better
chromosomes. However, in the SAGC-SE, how to select groups to choose individuals for
constructing a TNFC with different number of rules is a major problem. Therefore, for
determining the number of fuzzy rules automatically, the SAGC-SE selects different number
of groups to construct complete solution. In this way, the SAGC-SE selects groups randomly.
It’s obvious that the performance of the SAGC-SE dependents on how to select individuals
from groups.

In this section, the self adaptive groups based symbiotic evolution using FP-growth

algorithm (SAG-SEFA) will be discussed. The SAG-SEFA is proposed for providing a
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method of how to select groups to select individuals for constructing a TSK-type neuro-fuzzy
controller (TNFC) with different number of rules in the SAGC-SE. Therefore, the SAG-SEFA
is used to determine the suitable number of rules in a TNFC and the suitable groups used to
perform the selection of groups. Moreover, the SAG-SEFA adopts a different way to select
suitable groups to perform crossover steps.

The SAG-SEFA is proposed to improve the SAGC-SE. The purpose of the SAG-SEFA
is to determine not only the suitable number of rules in a TNFC but also the suitable rules that
are used to construct a TNFC. Therefore, the SAG-SEFA, as well as the SAGC-SE, consists
of structure and parameter learning.

In structure learning, as well as SAGC-SE, the SAG-SEFA determines the number of
fuzzy rules automatically and processes the variable length of a combination of chromosomes
by using the TSSA.

In parameter learning, to solve the problem of the SAGC-SE that the chromosomes are
selected randomly to perform selection ‘step. The proposed SAG-SEFA determines which
suitable groups should be selected the chromosomes that will form TNFCs with different rules
and which suitable groups that should be selected to perform selected step. Furthermore, the
SAG-SEFA also provides a different way to determine the suitable groups to perform
crossover step. The SAG-SEFA proposes using the data mining based selection strategy
(DMSS) and the data mining based crossover strategy (DMCS) to determine which groups
should be used to select individuals to form a TNFC with each different rules and to
determine which groups should be used to select individuals to perform crossover steps using
the frequent pattern growth (FP-growth) ([50]) data mining method.

The goal of FP-growth is to find the frequent patterns that do not have candidate
generation. In the proposed DMSS, the FP-growth is used to find from transactions the sets of
groups that occur frequently. In SAG-SEFA, a “transaction” refers to the collection of groups

that perform well. After the candidate sets of frequently-occurring groups have been found,
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the DMSS uses three actions to determine Ry groups that are used to select R, chromosomes to
form TNFCs with Ry rules. The three actions defined in the DMSS are normal, search, and
exploration. In the normal action, as well as SAGC-SE, R; groups that are used to select Ry
chromosomes to form a TNFC are chosen randomly. In the search action, R; groups are
chosen from the set of frequently-occurring groups which chosen from the candidate sets of
frequently-occurring groups. In the exploration action, R; groups are chosen without using the
set of frequently-occurring groups. As well as the DMSS, in the DMCS, the suitable groups
used to select chromosomes to perform the crossover steps are decided based on the three
actions (normal, search, or exploration). Compare with SAGC-SE, the SAG-SEFA provides a
robust way to select groups to perform selection and crossover step. Therefore, the three actions
(normal, search, or exploration) can improve the combination of solutions to avoid fall in the
local optimal solution.

The structure of the chromosome in the SAG-SEFA, as well as SAGC-SE, is shown in
Fig. 3.6. In the proposed SAG-SEFA, as well as the SAGC-SE, the coding structure of the
chromosomes must be suitable for symbiotic evolution. The coding structure is shown in Fig.
3.8.

For determining the suitable number of fuzzy rules, the two-step self-adaptive algorithm
(TSSA) proposed in SAGC-SE is adopted. As well as SAGC-SE, the building blocks (BBs)
are used to represent the suitability of TNFCs with different number of fuzzy rules and to
determine to the number of TNFCs with each different fuzzy rules should be selected to
evaluate the chromosomes. The TSSA codes the probability vector into the building blocks
(BBs) is shown in Fig. 3.7. In the TSSA, the maximum and minimum number of rules must
be predefined to prevent the number of fuzzy rules from generating beyond a certain bound
(i-e., [Rumin, Rmax])-

The learning process of the SAG-SEFA is shown in Fig. 3.11. As shown in Fig. 3.11,

each group involves eight major operators: the initialization, two-step self-adaptive algorithm
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(TSSA), data mining based selection strategy (DMSS), fitness assignment, sorting, elite-based
reproduction strategy (ERS), data mining-based crossover strategy (DMCS), and the mutation
strategy. In the SAG-SEFA, the operators of the initialization, two-step self-adaptive
algorithm (TSSA), sorting, elite-based reproduction strategy (ERS), and the mutation strategy
are same as the SAGC-SE introduced in Section 3.2. About this, the only three operators of
the data mining based selection strategy (DMSS), fitness assignment, and data mining-based

crossover strategy (DMCS) are described step-by-step as follows:

'
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Figure 3.11: Learning process of the SAG-SEFA.
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1.

The data mining based selection strategy (DMSS):

After the TSSA, the selection times of the TNFCs with different rules are
determined. The SAG-SEFA then performs the selection step. The selection step in
the SAG-SEFA can be divided into the selection of groups and the selection of
chromosomes. In the selection of groups, the data mining-based selection strategy
(DMSS) is proposed to improve the selection of the SAGC-SE in which
chromosomes are selected randomly to form TNFCs. In the DMSS, the groups are
selected according to the groups that frequently obtain the best performance. To
defend the groups that frequently obtain the best performance, the FP-growth ([50])
data mining method is adopted. The FP-growth was proposed by Han et al. ([50]).
The goal of FP-growth is to find the frequently-occurring patterns that do not have
candidate generation. In the propoesed  DMSS, the FP-growth is used to find the
frequently-occurring groups from transactions (in the SAG-SEFA, a transaction
means a set of the groups that performs well). After the groups that occur frequently
have been found, the DMSS "selects the R; groups that are used to select
chromosomes to form TNFCs with Ry rules according to the frequently-occurring
groups. To avoid the frequently-occurring groups that may fall in the local optimal
solution, the DMSS uses three actions to select R; groups. The three actions defined
in this paper are normal, search, and exploration. The details of the DMSS are as
follows:

Step 1. The transactions are built in the following equation:
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if  Fitness, = (Best_ Fitness, —ThreadFitnessvalue)

then  Transaction [i] = TNFCRuleSet, [i]

where 1=1, 2, - Ry; (3.36)
Rk = Rmin’ Rmin + 15 ’ Rmax;
j=1, 2, ---, TransactionNum.

where the Fitness, represents the fitness value of TNFC with Ry rules;

ThreadFitnessvalue is the predefined value; TransactionNum 1is the total number

of transactions; Transaction [i] represents the ith item in the jth transaction; and

TNF CRuleSet ; [i] denotes the ith group of the selected R groups used to select

chromosomes to form a TNFC:with'R; rules. The transactions have the form shown
in Table 3.1. As shown in-Table 3.1, every transaction represents the R; groups that
form a TNFC with Ry rules. For example, as shown in Table 3.1, the first transaction
of the transaction set means that the 3-rule TNFC that is selected from the first group,
fourth group, and eighth group performs well. The step of building transactions

continues in the normal, search, and exploration actions.

Table 3.1: Transactions in a FP-growth.

Transaction index Groups
1 1,4,8
2 2,4,7,10

TransactionNum 1,3,4,6,8,9

Step 2. Normal action:
After the transactions are built, the DMSS selects groups according to different

action types. If the action type is normal, the DMSS selects the groups, using the
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following equation:

if  Accumulator < NormalTimes

then  Grouplndex(i] = Random([l, P, ]; (3.37)

where i=1, 2, -, R,;R, =R R +1, -+ R

min > min max *

where Accumulator defined in Eq. 3.23-3.25 is used to determine what action
should be adopted; Grouplndex|[i] represents the selected ith group of the Ry
groups; and P indicates that there are P, groups in a population in the
SAG-SEFA. In this action, the algorithm is used to accumulate the transaction set.
Therefore, the groups that perform well will be stored in a transaction if the groups
fit Eq. 3.36. If the best fitness value does not improve for a sufficient number of
generations (NormalTimes), the DMSS selects the groups according to another
action type (which go to the next steps).

Step 3. Find the groups that occur frequently:

If the action is the search or ‘exploration action (the Accumulator exceeds the
NormalTimes), the DMSS uses FP-growth to find the groups that occur frequently in
transactions. The frequently-occurring groups are found according to the predefined
Minimum_Support. Minimum_Support represents the minimum fraction of
transactions that contain an item set. After Minimum Support is defined, data
mining using FP-growth will be performed. The FP-growth algorithm can be viewed
as having two parts: construction of the FP-tree and FP-growth. The sample
transactions shown in Table 3.2 are given as examples. Minimum_ Support=3 is
considered in this example.

(1) Construction of FP-tree:
To construct the FP-tree, the first step is to scan the transactions and

retrieve the frequent 1-groupset in transactions. The frequent 1-groupset
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represents the set of one group which has support counts bigger than
Minimum_Suppor in transactions. The result is shown in Table 3.3. Then the
retrieved frequently-occurring groups are ordered by descending order based on
their supports, as shown in Table 3.4. The ordered list in Table 3.4 is called the
F-list. After the F-list is obtained, the next step is to discard the
infrequently-occurring groups and sort the remaining groups in the same order
as in the F-list in each transaction. The result is shown in Table 3.5. The ordered
transactions are then used to construct the FP-tree. The steps for constructing
the FP-tree are illustrated in Fig. 3.12 (a). In Fig. 3.12 (a), formed by scanning
the last transaction, the right-most chart is called the prefix-tree of the frequent
I-groupset. Each node of the prefix-tree is composed of one group, a count of
the frequent 1-groupset, and'a node frequently-occurring group link. Then the
complete FP-tree is created by combining the prefix-tree of the 1-groupset and
the header-table. An example of an FP-tree is shown in Fig. 3.12 (b). This
FP-tree is constructed from the transactions shown in Table 3.2.
(2) FP-growth:

The FP-growth algorithm is done by following steps: construction of a
conditional group base, construction of a corresponding conditional FP-tree,
mining the frequently-occurring groups on the conditional FP-tree, and
concatenation of the suffix group and the frequently-occurring groups on the
conditional FP-tree.

First, select each frequent 1-groupset as a suffix group, and find the
corresponding set of paths connecting to the root of the FP-tree. The set of
prefix paths is called the conditional group base. Then accumulate the count for
each group in the base to construct the conditional FP-tree of the corresponding

suffix group. After mining the frequently-occurring groups on the conditional

60



FP-tree, FP-growth data mining is completed by the concatenation of the suffix
group with the generated frequently-occurring groups. The groups generated by
the FP-growth, shown in Table 3.6, are then thrown into the pool that is called

FrequentPool.  FrequentPool represents the candidate sets of the

frequently-occurring groups.

Table 3.2: Sample transactions.

Transaction index Groups
1 {b,c,e, £, g h,p}
2 {a,b,c, f,1, m, o}
3 {c, f, 1, m, o}
4 {b,c,e,s,p}
5 {a,b,c,d, f,m, 0}

Table 3.3: Frequent 1-groupset of sample transactions.

Group name count Group name count
B 4 M 3
C 5 O 3
F 4

Table 3.4: F-list of sample transactions.

Group name count Group name count
C 5 M 3
B 4 o 3
F 4

Table 3.5: Transactions after discarding the infrequent groups and sorting the remaining

groups in the same order as the F-list.

Transaction index Groups Ordered Groups
1 {b,c,e, 1, g h,p} {c, b, f}
2 {a,b,c, £, 1, m, o} {c, b, f, m, o}
3 {c, f,1, m, o} {c,f, m, o}
4 {b,c,e,s,p} {c, b}
5 {a,b,c,d,f,m, 0} {c,b,f,m, o}
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Figure 3.12: (a) Steps for constructing the FP-tree of sample transactions. (b) FP-tree of

sample transactions.

Table 3.6: Frequently-occurring groups generated by FP-growth with Minimum_Support = 3.

Suffix group Cond. group base ~ Cond. FP-tree Frequent groups

B c4 c:4 cb:4

F Cb:3,c:1 c:4,cb:3 cf:4, bf:3, cbf:3

M cbf:2, cf:l cf:3 cm:3, fm:3, cfm:3

O cbfm:2; cfm:1 cfm:3 co:3, fo:3, mo:3, cfo:3,

cmo:3, fmo:3, cfmo:3

Step 4.  Select the groups according to two different actions:
After the groups that frequently occur are identified, the DMSS selects groups

according to two different actions as follows:

(1) In the search action, the groups are selected from the items that frequently occur

by using the following equation:
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if  NormalTimes < Accumulator < SearchingTimes

then  Grouplndex[i] = w,

where

w = Randoml(]1, P

ize

1 and w e FrequentltemSet|q]; (3.38)
FrequentltemSet[q] = Random| FrequentPool|;
q=1 2, ---, FrequentPoolNumi;

i=1,2, - R;R =R, R +1 - R

min ? min max ?

where SearchingTimes is a predefined value that is used to judge whether the
search action needs to be taken or not; FrequentPool represents the candidate
sets of groups that frequently occur and which are obtained from FP-growth;
FrequentPoolNum represents| the total number of sets in FrequentPool ; and
FrequentltemSet[i] represents a.set of frequently-occurring groups selected
from FrequentPool randomly.-In Eq. 3.38, if R, is greater than the size of
FrequentltemSet[q], the remaining groups are selected by using Eq. 3.37. In this
action, the algorithm tries to search for a better solution in the set of solutions
that performs well frequently. Therefore, the groups are selected according to the
candidate groups that perform well frequently. In this action, the groups that
perform well will also be stored in a transaction if the groups fit Eq. 3.36. If the
best fitness value does not improve for a sufficient number of generations
(SearchingTimes), the DMSS selects groups according to the exploration action
type.

(2) In the exploration action, the groups are selected according to the groups that

occur frequently by using the following equation:
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if  SearchingTimes < Accumulator < ExploringTimes

then  Grouplndex[i]l=w,

where

(3.39)
w = Random|[1, PulationSize] and w ¢ FrequentltemSet[i];

FrequentltemSet[i] = Random| FrequentPool];

i=1,2, - R R =R, R, +1 - R

where ExploringTimes is a predefined value that is used to judge whether the
exploration action needs to be taken or not. In this action, the algorithm tries to
find a better solution without using the solutions that perform well frequently.
This is because when the candidate groups that perform well frequently do not
improve for a sufficient number of generations, the candidate groups may fall in
the local optimal solutions. Therefore, the groups are selected without the
candidate groups that perform well frequently. In this action, the groups that
perform well will also be stored in a transaction if the groups fit Eq. 3.36. If the
best fitness value does not improve for a sufficient number of generations
(ExploringTimes), the DMSS selects groups according to the normal action type.
In the SAG-SEFA, ExploringTimes is equal to TSSATimes of the TSSA.

Step 5. After the R; groups are selected, the R, chromosomes are selected from the

Ry groups as the following equation:

Chromosomelndex|i] = q,
where
q = Random(1, N_];
i=1 2, - R,

(3.40)

where N_ represents the number of chromosomes in each group; and

Chromosomelndex[i] represents the index of a chromosome that is selected from
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the ith group.
2. Fitness assignment:

As previously stated, for the SAG-SEFA, the fitness value of a rule (an
individual) is calculated by summing up the fitness values of all the possible
combinations in the chromosomes that are selected from the R, groups that are
decided according to the DMSS. The details for assigning the fitness value are

described step by step below:

Step 1. Choose Ry fuzzy rules to construct a TNFC Rp,, times from the R, groups

with size Nc. The R, groups are obtained from the DMSS.
Step 2. Evaluate every TNFC that is generated from stepl to obtain a fitness value.
Step 3. Divide the fitness value by R, and accumulate the divided fitness value to
the selected rules with their fitness valuerecords that were set to zero initially.
Step 4. Divide the accumulated fitness value of each chromosome from the R,
groups by the number of times it has'been selected. The average fitness value
represents the performance of a rule.

3. The data mining based crossover strategy (DMCS):

In the SAG-SEFA, the data mining based crossover strategy (DMCS) is
proposed to perform the crossover operation. The DMCS mimics the cooperation
phenomenon in society, in which individuals become more suited to the environment
as they acquire and share more knowledge of their surroundings. Similar to the
DMSS, the DMCS uses FP-growth to select the parental groups to perform crossover
operations in the next generation. Moreover, the DMCS also uses threes actions to
select parental groups from the FrequentPool according to the set of
frequently-occurring groups. The best performing individuals in the top half of the

selected parental groups that are called elites are used to select the parents for
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performing with the DMCS. Details of the DMCS are given below:
Step 1. The first one of the parents that is used to perform the crossover operation is

selected from the original group by using the following equations:

!

z fitness,,

Fitness _Ratio, ,=‘=—————, where =1, 2, ---, Nc (3.41)
fitness,,
c=1
Rand Value[ g]= Random[0,1],
(3.42)
where g=1, 2, ---, Pg;
Parent _Sited[g]=1t, if
(3.43)

Fitness _ Ratio < Rand _Value[g] < Fitness _ Ratio

g, 1-1 19

where Fitness _Ratio, , 1s a fitness ratio of the fitness value of the 7#th chromosome

t

in the gth group; Rand Value[g]<[0, 1] is the random values of the gth group;

Parent _SiteA[g] 1s the site where the first parent is. According to Eq. 3.43, if the

Rand Value[g] 1is greater than'the fitness ratio at the (#-1)th chromosome in the gth

group and smaller or equal to the fitness ratio at the /th chromosome in the gth group,

the site of the first parent of the gth group is assigned to 7.

Step 2. After the first parent is determined, the second parental group is decided

according to different actions as follows:

(1) In the normal action, the elites performing the best in each group are used to
determine the other parent. In this step, the total fitness ratio of every group is

computed according to the following equations:

Nc
Total _ Fitness , = ; fitness ., (3.44)

Whereg =1’27'”9PSize;
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9
Z Total _ Fitness
. . bel
Total _ Fitness _ Ratio , = Pi: , (3.45)
g=1

Total _ Fitness ,

Where q :1,25“.’PS1‘Z(3’

where Total _Fitness, represents the summation of the fitness value of every

chromosome in the gth group and Total _Fitness _Ratio, 1is a total fitness ratio

of the gth group. After the total fitness ratio is computed, the group from which
the chromosome is selected to be the other parent to perform crossover with the

Parent _SiteA[g]th chromosome in the gth group is determined according to the

following equations:

Group Rand Value[g]= Random[0, 1] where g=1, 2, -, P (3.46)

Parent _Group _SiteBlg|=gq,  if (3.47)
Total _Fitness _Ratio, ; <Group  Rand Value[g]<Total _Fitness _Ratio,
where Group Rand Value[g]<€[0,1]1s a random value in the gth group and
Parent Group SiteB[g] represents the site of the group that the second parent is
selected from.
(2) In the search action, the second parent is decided according to the following

equations:
Frequentlt emSet [q] = Random [ FrequentPo ol |

(3.48)
where ¢ =1, 2, ---, FrequentPo olNum ;

Parent _Group _SiteB[g]=w, if we Frequentlt emSet[q]. (3.49)

(3) In the exploration action, the second parent is decided according to the following

equations:
Frequentlt emSet[q] = Random [ FrequentPo ol |

(3.50)
where q=1, 2, ---, FrequentPo olNum;,
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Parent Group SiteB[g]=w, if w ¢ Frequentlt emSet|[q]. (3.51)

Step 3. After the Parent Group SiteB[g]th group is selected, the DMCS selects
the other parents in the selected Parent Group SiteB[g]th group according to the

following equations:

t

z ﬁtness Selected _g, b

) ) _ bl
Fitness _ Ratio Selected _g, t

Nc ’

Z ﬁtneSS Selected _g, ¢ (3.52)
c=1
where t=1, 2, ---, Nc; Selected g = Parent Group SiteB[g];
Rand _Valuelg]= Random([0, 1], where g=1, 2, -+, P ; (3.53)
Parent _SiteB[g]=1, if
(3.54)

Fitness _Ratio g, ..0q , 1 <Rand _Value[g]< Fitness _Ratio g, .0y o >
where  Fitness _ Ratiog,,,~, ,/ 15 @ fitness ratio of the fitness value of the rth

chromosome in the Parent . Group SiteB[g]th group and Parent _SiteB[g] 1is the
site where the second parent is.

After the DMCS selects the parents from the gth group and the
Parent Group _SiteB[g]th group, the individuals ( Parent SiteA[g]th chromosome
and the Parent SiteB[g] th chromosome) are crossed and separated using a

two-point crossover ([76]) in the gth group, as shown in Fig. 3.10.

The aforementioned steps are done repeatedly and stopped when the predetermined

condition is achieved. In this section, a SAG-SEFA with a TNFC is proposed. The

SAG-SEFA has structure and parameter learning ability. That is, it can determine the suitable

number of fuzzy rules and efficiently tune the parameters in the TNFC. The goal of using the

SAS-SEFA is to determine the suitable groups for performing the selection and crossover

steps for improving the problem of the SAGC-SE. The DMSS and DMCS are proposed to

select the suitable groups for performing the selection and crossover steps.
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Chapter 4
Improved Safe Reinforcement

Learning

In this chapter, the other part of the proposed ISRL-SAEAs is introduced. Therefore,
improved safe reinforcement learning (ISRL) is discussed. In this dissertation, the self
adaptive evolution algorithms (SAEAs) are trained by using the ISRL. The ISRL will be
introduced in the following sections. In Section 4.1, the safe reinforcement learning that the
ISRL is based is introduced. The safe reinforcement learning is based on Lyapunov function
design ([32]). Once the system’s Lyapunov function is identified, under Lyapunov-based
manipulations on control laws, the architecture can drive the plant to reach and remain in a
predefined desired set of states with probability 1. The structure of the ISRL is introduced in
Section 4.2. Therefore, the schematic diagram and flowchart of the ISRL are introduced.
Moreover, the Lyapunov function used in ISRL is also introduced. In the final section, the
fitness function of the SAEAs is introduced. Therefore, two strategies of the ISRL are
discussed. There are two strategies in the ISRL, judgment and evaluation strategies. The
judgment strategy measures the fitness value of controller that fails to guide the system into
the goal set. The evaluation strategy measures the fitness value of controller that successfully
guide the system into the goal set. In the ISRL, the control laws of the system are designed
according to Lyapunov function. However, for different control systems, different control
laws of the system are needed. Therefore, the Lyapunov-based manipulations on control laws

are defined in Chapter 5.
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4.1 Safe Reinforcement Learning

Although supervised learning is a powerful training technique that can be applied to
networks. However, if the precise training data can be obtained easily, the supervised learning
algorithm may be efficient in many applications. For some real-world applications, precise
training data are usually difficult and expensive to obtain. For this reason, there has been a
growing interest in reinforcement learning problems ([15]-[21]). For the reinforcement
learning problems, training data are very rough and coarse and there are only “evaluative”
when compared with the “instructive” feedback in the supervised learning problem.

Unlike the supervised learning problem, in which the correct “target” output values are
given for each input pattern to perform the fuzzy controller learning, the reinforcement
learning problem has only very simple “evaluative” or “critical” information, rather than
“instructive” information, available for learning. In the extreme case, there is only a single bit
of information to indicate whether the output is right or wrong. To solve reinforcement
learning problems, the most popular approach’is temporal difference (TD) reinforcement
learning ([17]). The well-known TD-based reinforcement learning is the adaptive heuristic
critic (AHC). The AHC consists of an action network and an evaluation network. Based on
the AHC, in [17], Barto and his colleagues proposed an actor-critic architecture which
consists of a control network and a critic network. However, the Barto’s architecture is
complicated and is not easy to implement. For solving this problem, several researches
proposed time-step reinforcement architecture to improve the Barto’s architecture ([18]-[20]).
In [18]-[20], the time-step reinforcement architecture has a structure in which the only
available feedback is a reinforcement signal that notifies the model only when a failure occurs.
An accumulator accumulates the number of time steps before a failure occurs. The goal of the
time-step reinforcement method is to maximize the value function V. The fitness function is

defined by Eq. 2.9. Equation 2.9 reflects the fact that long-time steps before a failure occurs
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(to keep the desired control goal longer) mean the controller can control the plat well. For
example, in evolutionary algorithm, Eq. 2.9 reflects the fact that long-time steps before a
failure occurs mean higher fitness of the evolutionary algorithm. As shown in [18]-[20],
time-step reinforcement architecture is simpler and easier to implement than [17].

Even though time-step reinforcement architecture is easier to implement when compared
with Barto’s architecture, it can only measure the number of time steps before a failure occurs;
in other words, it only evaluates how long the system can enter the desired state, which is also
very important. Moreover, Eq. 2.9 of the time-step reinforcement architecture only indicates
the system does not perform out of the boundaries. Therefore, the system could not evaluate
how well the system controls the plant. For example, in the ball and beam balance system, Eq.
2.9 of the time-step reinforcement architecture represents how long before the beam deviates
beyond a certain angle or the ball reaches the'end of the beam. However, the system cannot
evaluate how well the plant controls the ball near the center of the beam. Recently, Perkins
and Barto proposed a safe reinforcement learning based on Lyapunov function design ([32]).
Once the system’s Lyapunov function is identified, under Lyapunov-based manipulations on
control laws, the architecture can drive the plant to reach and remain in a predefined desired
set of states with probability 1. The purpose of [32] is to guide the system to reach and remain
in a set of goal states. Several properties defined in [32] are listed below to express a safety
constraint that the controller uses to satisfy. Let S denotes the state set, 7c .S and G denotes
the set of goal states.

Property 4.1 (Remain in 7) With probability 1, if s,€7,then s, €T, for V¢>0.

Property 4.2 (Reach 7) With probability 1, 37>0 suchthat s €T .

Property 4.3 (Reach and Remain in 7) With probability 1, 37>0 such that s, €7 for
Vtzrt.

Property 4.4 (Converge in 7) With probability 1, lim, 8,(s,)=0, where 6,:S—>R" is a

11—

distance-to-7 function which satisfies J,(s)=0 for se7 and 8,(s)>0 for seT.
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In [32], when T=G, Properties 4.1, 4.3, 4.4 represent of an achievement of stability.
Lyapunov's direct method is mainly used to study the stability of systems of differential
equations. Authors in [32] extend this method to the reinforcement learning problem. If the
controller is designed such that it reduces the Lyapunov function of the plant in each time step,

the controller could reach and remain in the goal sets.

4.2 Structure of the ISRL

Although safe reinforcement learning can let the control system to reach and remain in the
goal set, it cannot evaluate how soon the system meets the control goal. The system using safe
reinforcement learning only can make sure the control system to reach and remain in the goal
set. However how soon the control system reaches the goal set is not considered in safe
reinforcement learning. It is importantto indicate.the control system how soon to reach the
goal set. For solving above problém, in this dissertation, the improved safe reinforcement
learning is proposed. In this section, the other/part of the proposed ISRL-SAEAs, that is,
improved safe reinforcement learning (ISRL) is discussed. In this dissertation, the self
adaptive evolution algorithms (SAEAs) are trained by using the improved safe reinforcement
learning (ISRL).

As shown in safe reinforcement, once the system’s Lyapunov function is identified, under
Lyapunov-based manipulations on control laws, the architecture can drive the plant to reach
and remain in a predefined desired set of states with probability 1. About this, in the proposed
ISRL, the time step for the plant entering the desired set of states can be modified to indicate
the concept of how soon the system becomes stable.

In the proposed ISRL, a reinforcement signal is designed based on Lyapunov function.
The purpose of ISRL is to guide the system to reach and remain in a set of goal states. Several

properties defined in [32] are listed above to express a safety constraint that we want the
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controller to satisfy. Therefore, the improved safe reinforcement learning with self adaptive
evolution algorithms (ISRL-SAEAs), which are constructed on a TNFC, are based on
Lyapunov analysis. The schematic diagram of the ISRL-SAEAs is shown in Fig. 4.1. The
TNFC acts as a control network to determine a proper action according to the current input
vector (environment state). The feedback signal in Fig. 4.1 is the reinforcement fitness value
that plays a role as a performance measurement. The reinforcement fitness value is evaluating
how soon the plant can meet the desired set of states. The reinforcement fitness value is also
used as the fitness function of the SAEAs. Each string with higher fitness value represents the
better-fitted individual in the population. It will be observed that the advantage of the
proposed ISRL-SAEAs is that its capability of meeting global optimum.

The flowchart of the ISRL-SAEAs is shown in Fig. 4.2. The proposed ISRL-SAEAs runs
in a feed forward fashion to control the'envitonment (plant) until the controller guides the
plant into a predefined goal set. The concept of “goal set” proposed in this paper is referenced
from [32]. In [32], authors proposed-a Lyapunov-based design for reinforcement learning. The

purpose of [32] is to guide the system to reach and remain in a goal set comprising goal states.

SAFAs < Femtorcement -

Fitness value

i Chromosomes

TNEFC Builder

'

State F
TNFC E— Plﬂllt

Figure 4.1: Schematic diagram of the ISRL-SAEAs for the TNFC.
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—> Input Training Data

l

Forward Signal Propagation

(TNEFC)
Determine the Best Action

:

Reinforcement Learning
Algorithm

(TNFC)
ISLR-SAEASs

Figure 4.2: Flowchart of the ISRL-SAEAs.

In the simulations of ISRL-SAEAs, when 7=G, Properties 4.1, 4.3, 4.4 represent of an
achievement of stability. Lyapunov's direct method is mainly used to study the stability of
systems of differential equations. Authors in [32] extend this method to the reinforcement
learning problem. The proposed ISRL conducts one Lyapunov-style theorem proposed in [32],
which provides criterion for designing the reinforcement learning agent. The theorem is listed
below. Let L:S — R denotes a function positive on 7=S-T7T, and A denotes a fixed real
number.

Theorem 4.1 [If Vs¢T, actions ae A(s), all possible next state s' (either s'eT or
L(s)—L(s\=A ), then from any s,&T, the environment enters T within [L(s))/A]| time
steps.

The proof of Theorem 4.1 can be found in [32]. Theorem 4.1 provides a guarantee of a
plant's meeting the goal state, if the controller is designed such that it reduces the Lyapunov
function of the plant in each time step. Therefore, the main concept of the proposed ISRL is to

identify a Lyapunov function of a control plant then design the action choices so that the
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reinforcement learning satisfies the above theorem.

4.3 Two Strategies in the ISRL

The main concept of the proposed ISRL is to identify a Lyapunov function of a control
plant then design the action choices so that the reinforcement learning satisfies the Theorem

4.1. The learning process of the ISRL is shown in Fig. 4.3. As shown in Fig. 4.3,

Thres TimeStep is a predefined parameter that represents the controller that is deemed
unsuccessful if it is not able to guide the system into the goal set before Thres TimeStep ;
Stable TimeSteps is the predefined parameter that indicates the success of a controller if it
controls the plant for such a period; successful range represents the boundary of the
parameters of the control plant; the strict constraint will be defined later. There are two
strategies in the ISRL, judgment and evaluation strategies. The judgment strategy measures
the fitness value of controller that fails to guide the system into the goal set. The evaluation
strategy measures the fitness value of controller that successfully guide the system into the

goal set. The details of the two strategies in the ISRL are shown as follows:
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Figure 4.3: Learning process of the ISRL.

Staregy 1. Judgment strategy:
Under the condition that the controller fails to control the plant into the goal set, the
fitness value is calculated by the following two cases. Case 1 represents the controller fails

under a relative looser constraint. Case 2, on the contrary, represents the failure under the
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strict constraint defined in this dissertation.

Case 1. If the system fails at time step 7 under a loose constraint, before entering goal set, then

1 t-1
x ;
Thres TimeStep Thres TimeStep

Fitness Value = (4.1)

where the Thres TimeStep 1is a predefined parameter. The controller is deemed
unsuccessful if it is not able to guide the system into the goal set before Thres TimeStep .
Case 2. If the plant works under the original successful range, but fails at time step ¢ under a

strict constraint before entering the goal set, then

1
X
Thres _TimeStep

Fitness Value = . 4.2)

The strict constraint is defined by Eq. 4.3. It shrinks the successful range as the time step
increases.

Strict Range=Original Rangex o, where

Thres TimeStep +A—t . .
( Thres_TimeStep)’ ift <Thres TimeStep . 43)

o=
A .
( A hres T imeStep) , otherwise

where A is a parameter that simply prevents the modified range from becoming zero.

According to Eq. 4.3, when ¢ < Thres TimeStep , this equation provides a better fitness value
for the controller that guides the plant into the goal set sooner. When ¢ > Thres TimeStep ,
this equation provides a penalty for the controller that exceeds the defined range.
Strategy 2. Evaluation strategy

Under the condition that the controller successfully controls the system into the goal set,
the fitness value is calculated by the following two cases. Case 1 represents the system enters
the goal set, but falls beyond the range defined in Eq. 4.3. Case 2 represents the controller
successfully controls the system.
Case 1. If the system enters the goal set at time step #; and falls beyond the range defined in

Eq. 4.3 at time step ,, then
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Fitness Value = tl x(t,—t); (4.4)

Case 2. If the system enters the goal set at time step #; and stabilizes the system for

Stable TimeSteps then

Fitness Value= Thres StableT imeSteps-l-(tl x Stable _TimeSteps); 4.5)

1

where Thres StableTimeSteps is the predefined parameter; Stable TimeSteps is the predefined
parameter that indicates the success of a controller if it controls the plant for such a period.

In the ISRL, the control laws of the system are designed according to Lyapunov function.
However, for different control systems, we need to define different control laws of the system.

Therefore, the Lyapunov-based manipulations on control laws are defined in Chapter 5.
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Chapter 5

Control Illustration

To demonstrate the performance of the ISRL-SAEAs for temporal problems, in this
chapter, two examples and performance contrasts with some other models are presented. The
examples used in this chapter are described as follows.

In Section 5.1, the inverted pendulum control system is adopted to evaluate the
performance of the proposed ISRL-SAEAs. Therefore, the three methods of the ISRL-SAEAs
are evaluated in this example. This problem is often used as an example of inherently unstable
and dynamic systems to demonstrate both'modern and classical control techniques ([55]-[57])
or the reinforcement learning schemes ([15]-[21]), and is now used as a control benchmark.

In Section 5.2, the tandem ‘pendulum control system is adopted to evaluate the
performance of the three methods of the ISRL-SAEAs. Since the task of an inverted
pendulum control system is too easy to find solutions quickly through random search, in this
example, a variety of extensions to a basic inverted pendulum control problem have been
suggested. The most challenging extension of an inverted pendulum control system is a
tandem pendulum control system ([58]-[60]), where two pendulums of different length must
be balanced synchronously.

In the experiments, a Pentium 4 chip with a 1.5GHz CPU, a 512MB memory, and the

visual C++ 6.0 simulation software are used to implement the control systems.
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5.1 Inverted Pendulum Control System

In this section, the classic control problem of an inverted pendulum control system is
adopted to evaluate the performance of the ISRL-SAEAs. Figure 5.1 depicts the inverted
pendulum control system. This system is often used as an example of inherently unstable and
dynamic system to demonstrate both modern and the classic control techniques ([55]-[57]), or
the reinforcement learning schemes ([15]-[21]), and is now used as a control benchmark. The
bottom of the pendulum is hinged to a cart that travels along a finite-length track to its right or
left. Both the cart and the pendulum can move only in the vertical plane; that is, each has only

one degree of freedom.

Figure 5.1: The inverted pendulum control system.

The only control action is F, which is the amount of force (in Newfons) applied to cart to
move it toward left or right. The system fails when the pendulum falls past a certain angle
(£ 12 is used here) or the cart runs into the bounds of its track (the distance is 2.4 m from the
center to each bound of the track). Using Lagrange’s method, the model of the inverted

pendulum control system can be obtained as follows:

x: (m+M)i+mL(@cosO—6*sind)=F (5.1)
0: Xcos@+LO—gsinh=0 (5.2)
where

L = 0.5 m, the length of the pendulum;

80



M = 1.0 kg, the mass of the cart;
m= 0.1 kg, the mass of the pendulum,;
g = 9.8 m/s, acceleration due to the gravity;

Let ¢=(x,0)", we can rewrite Egs. 5.1 and 5.2 into general dynamic form as follows:

D(q)§+C(q, 4)4+G(q)=7 (5.3)
where
D( )_ m+M mLcost 54
9= mL cos @ ml* 54)
N —mLOsin 0
C(q,q)—{o 0 } (5.5)

G(q){ " } (5.6)

—mgLsin @
r=[F 0] (5.7)

The total mechanical energy of the system can be’derived from

N .
E(q. 4)=74'D(a)q+P(q) (5.8)
where P(q) denotes the potential energy of the system, mgLcos@ in this case, and

G(q):aP(Q)'

3 The purpose of this control task is to determine a sequence of forces
q

applying to the cart to balance the pendulum upright, and maintain the cart as stationary as
possible. Hence, we define a goal set comprising near-upright and near-stationary states as
G = {()'c, 0,0): ”()'c, 0, 9)” < 0.001} . When the state of inverted pendulum control system is in
G,, according to Eq. 5.8, the total mechanical energy E of the system is mgL equaling 0.49.

We define a Lyapunov function V(g,q)=0.49—-E(q,q). The purpose of this control

problem can be transformed to the problem of achieving V(gq,q)=0. So we define another

goal set G, ={(¢,9):V(q,9) = 0}.
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The time derivative of £ with respect to time is

E(q, 9)=4"D(q)i+4"D(g)d+4d"G(q)

=37 (-C(g. 9)q~Gla)+7)+ 30 D(0)i+d'Gla) (5

=4'r
=xF
that shows the derivative of E is proportional to the product of the speed of cart and input
force. Hence in this paper, following [32], a control law for the learning agent based on

Lyapunov analysis is proposed as follows:

sgn(x)F, if E(g, ¢)<0.49

P(q, q):{ (5.10)

0, ifE(q, q) >0.49
where sgn(x)={lifx >0, and -1 otherwise} and.F is the output of the TNFC that is limited

in [-10,10]. P(q, q) guarantees the descent of the Lyapunov function; as a result, this

control law satisfies the Theorem 4.1 defined in [32]. Denote the state of the environment at
time step ¢ Z(qt, q,) =s,. Theorem 4.1 tells that the agent will bring the environment to G,

within [L(s,)/A]| steps, and remains the environment in the set {s: L(s,,,) <L(s,)}. In the

t+1
simulation, since the descent step size can not be ensured. Theorem 4.1 can be reduced to the
form that the agent will bring the environment to G, and remain the environment until it
achieves G, eventually, if the controlling time step is long enough.

In the simulation of inverted pendulum control system, the original successful region of
the variables are—12° <# <12°and -2.4m<x<2.4m. The strict successful region of € is
described in Eq. 4.3. The constraints on the variables are—12° <0 <12°, -2.4m< x < 2.4m,

and -10N< f < 10N. A control strategy is deemed successful if it can meet the control goal

(0 and 6 decade to zero). The four input variables (@, 6, x, x) and the output A7) are

82



normalized between 0 and 1 over the following ranges: €: [-12, 12], 0: [-240, 240], x:
[-2.4, 2.4],x: [-3.26, 3.26], and f(£): [-10, 10]. The ranges of & and x are calculated by
experiments with extreme boundary conditions. The car is placed the location of 2.4m (or
-2.4m) with pendulum angle set for -12° (or 12%) respectively, then applies the maximum
force of -10N (or 10N) to the cart. When the system fails, the observed @ and x are the
boundaries. The four normalized state variables are used as inputs to the TNFC. The values
are floating-point numbers assigned to the SAEAs initially. The fitness function is defined
according to Eq. 4.1-4.5.

In this example, the performance evaluation of the SAEAs consists of the HEA,
SACG-SE, and SAG-SEFA. In the following sections, the performances of three methods are
discussed.

5.1.1  Evaluating performance of'the' HEA

The initial parameters of the proposed ISRI.-HEA in this example are determined by
parameter exploration ([103]). The first study in parameter exploration was proposed by De
Jong ([103]). As shown in [103], a small population size is good for the initial performance,
and a large population size is good for long-term performance. Moreover, a low mutation rate
is good for on-line performance, and a high mutation rate is good for off-line performance. In
[104], the author found from his simulation that the best population size and mutation rate
were 30 and 0.01, respectively. How parameters affect the methods in this study are as follows:
1) the population size affects both the final performance and the efficiency of GA’s; 2) the
crossover rate deals with the frequency to which the crossover step is applied; 3) the mutation
rate deals with the second search step which increases the variability of the population. In this
study, the parameters are found using the method given in [104]. Therefore, the number of
fuzzy rules has the range from 2 to 20 in increments of 1, the group size has the range from 10
to 100 in increments of 10, the crossover rate has the range from 0.25 to 1 in increments of

0.05, and the mutation rate has the range from 0 to 0.3 in exponential increments. The other
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parameters listed in the ISRL-HEA are defined as the same way. The parameters set for the

proposed ISRL-HEA are shown in Table 5.1.

Table 5.1 : The initial parameters of the ISRL-HEA before training.

Parameters Value Parameters Value
N, 100 Stable TimeSteps 5000
Crossover Rate 0.5 Thres _TimeStep 1000
Mutation Rate 0.3 ERSTimes 50
[ O in > O max | [0, 2] A 10
L7720 5 1 | [0, 2] A 0.01
[ Wnin > Winax ] [-20, 20] n 7
[Runins Rinax] [3,12] Generations 300
Thres _StableTimeSteps 500

In this example, the coding of a rule in a chromosome is the form in Fig. 3.31 in Section
3.1. A total of thirty runs were performed.:Each run started at the different initial state (6 and
x aresetfor 0, & and x are settandomly within a predefined range). The learning curves
of ISRL-HEA are shown in Fig. 5.2. In this-figure, there are thirty runs each run represents
that how soon the TNFC can meet the goal'state. The fitness value is defined according to Egs.
4.1-4.5. The higher fitness value by the end of each run represents that the sooner the plant
meets the goal set. When the ISRL-HEA is stopped, the best string from the population in the
final generation is selected and applied on the testing phase of the inverted pendulum control
system. The results of the probability vectors in MCGA are shown in Fig. 5.3. In this figure,
the final average number of rules is 5.

The testing results, which consist of the pendulum angle, pendulum angular velocity (in
degrees/seconds), and cart velocity (in meters/seconds) are shown in Fig. 5.4. A total of thirty
runs were executed in the testing phase. Each line in Fig. 5.4 represents a single run that starts
form a different initial state. The results shown in this figure are the first 1,000 of 6,000
control time steps ( Thres TimeStep + Stable TimeSteps ). As shown in Fig. 5.4, the

ISRL-HEA successfully controlled the inverted pendulum control system in all thirty runs
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(the pendulum angle, pendulum angular velocity, and cart velocity decrease to 0).
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Figure 5.4: Control results of the inverted pendulum control system using the ISRL-HEA in Example 1. (a)

Angle of the pendulum. (b) Angular velocity of the pendulum. (¢) Velocity of the cart.

The reinforcement symbiotic evolution (R-SE) ([29]) and the reinforcement genetic
algorithm (R-GA) ([26]) were applied to the same control task to compare with the
performance of the ISRL-HEA. In the simulation of [29] and [26], parameters of learning are
found by using the method given in [104]. Therefore, four rules were set for the R-SE and
R-GA, the population size ranges from 10 to 250 in increments of 10, the crossover rate
ranges from 0.25 to 1 in increments of 0.05, and the mutation rate ranges from 0 to 0.3 in
exponential increments. The resulting parameters set for these methods (R-SE and the R-GA)
are shown as follows: 1) the population sizes of the R-SE and the R-GA were 170 and 70,
respectively; 2) the crossover rates of the R-SE and the R-GA were 0.55 and 0.6, respectively;
3) the mutation rate of the R-SE and the R-GA were 0.08 and 0.02, respectively. In R-SE ([29])
and R-GA ([26]), the reinforcement signal is designed base on time-step reinforcement
architecture ([18]-[20]). The fitness function in R-SE and R-GA is defined according to

Fitness Value =TIME STEP (5.11)
where TIME STEP represents how long the experiment is a “success” in one generation. In
this example, Eq. 5.11 represents how long before the pendulum falls apart a certain angle
(|8 >12°) or the cart runs into the bounds of its track (| x|>2.4m). A control strategy is

deemed successful if it can balance a pendulum for 6,000 time steps.

86



The simulation was carried out for 30 runs. The testing results of the R-SE and R-GA are
shown in Figs. 5.5 and 5.6. The results shown in these figures are the first 1,000 of 6,000
control time steps. As shown in Figs. 5.5 and 5.6, not every line meets the control goal (x, &
and @ decay to zero). It’s obvious that the ISRL-HEA obtains better result when compared

with [29] and [26], since the %, @ and @ of the ISRL swing in a smaller range near zero.
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Figure 5.5: Control results of the inverted pendulum control system using the R-SE in Example 1. (a)

Angle of the pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.
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Figure 5.6: Control results of the inverted pendulum’control system using the R-GA in Example 1. (a)

Angle of the pendulum. (b) Angular velocity of the pendulum. (d) Velocity of the cart.

In the further simulation, we select the best-trained individual of the ISRL-HEA, R-GA
and R-SE in the training phase, and extend the control time steps to 100,000 in the testing
phase. The simulation results, which consist of the pendulum angle, angular velocity of the
pendulum, and the cart velocity, are shown in Fig. 5.7. Each line in Fig. 5.7 represents the
result of the last 1000 time steps in a run that starts from the different initial state. As shown
in Fig. 5.7 (d)-(i), not every line meets the control goal G; in the R-SE and R-GA. Moreover,
the pendulum angle may swing outside the boundary at the last 1000 time steps. However, in
the proposed ISRL-HEA, each line can meet the control goal G; and the pendulum is kept
upright during the last 1000 time steps. The percentage that the R-SE and the R-GA controls

the plant to G; are 56% (with 13 runs that the plant unreach G; and 4 out of 13 runs that the
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pendulum swings outside the boundary) and 54% (with 14 runs that the plant unreach G, and
5 out of 14 runs that the pendulum swings outside the boundary) respectively. The reason is
that the fitness function used in the R-SE and R-GA only evaluates how long before the

pendulum falls apart a certain angle (| €|>12°) or the cart runs into the bounds of its track
(| x> 2.4m). Therefore, the system may not reach G; and when the control time steps are
extend to 100,000 in the testing phase the pendulum may swing outside the boundary.
However, in the ISRL-HEA, the percentage that the plant remains in G; during the last 1000
time steps is 100%. It’s obvious that the ISRL allows the pendulum angle, angular velocity of

the pendulum and the cart velocity to swing a small range near zero and stabilize the control

system.
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Figure 5.7: Control results of the inverted pendulum control system in Example 1. (a) Angle of the
pendulum of ISRL-HEA. (b) Angular velocity of the pendulum of ISRL-HEA. (c) Velocity of the cart of
ISRL-HEA. (d) Angle of the pendulum of R-SE. (e) Angular velocity of the pendulum of R-SE. (f) Velocity
of the cart of R-SE. (g) Angle of the pendulum of R-GA. (h) Angular velocity of the pendulum of R-GA. (i)
Velocity of the cart of R-GA.

The accuracy and CPU time comparison of ISRL-HEA, R-SE, and R-GA are shown in

Table 5.2. The ISRL-HEA needs less CPU time than R-SE and R-GA. The reason is that the
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ISRL adopts a strict restriction in the earlier time steps and evaluates the control system by
how soon the plant can meet the control goal. The individual in ISRL-HEA with better
performance means it controls the plant to the goal set sooner. As a result, the CPU time of
ISRL-HEA is dramatic less than that of R-SE and R-GA. For example, in the R-SE and R-GA,
if one individual fails around 5000 time step, this individual is set with a high fitness value
and causes other individuals in the population to approach. At the time when most individuals
fail around 5000 time step, the evolution in one generation becomes very time-consuming. As
shown in the Table 5.2, when compared with the traditional reinforcement signal design, the
proposed ISRL can reduce the CPU time and always control the plant to the goal set.
Moreover, the HEA can determine the fuzzy rules automatically without trail and error
testing.

The genetic reinforcement learning’ fot‘neuro control (GENITOR) ([57]), symbiotic
adaptive neuro-evolution (SANE) ([96]), temporal difference and genetic algorithm-based
reinforcement learning (TDGAR) ([20]), combination of online clustering and Q-value based
GA for reinforcement fuzzy system (CQGAF) ([43]), efficient reinforcement learning through
dynamical symbiotic evolution (ERDSE) ([44]), and enforce sub-population (ESP) ([40])
have been applied to the same control task and the simulation results are listed in Table 5.2.
The accuracy of the controller meet the control goal and keep the pendulum in 100000 time
steps and the CPU time are shown in Table 5.2. A total of thirty runs were executed. Each run
started at the different initial state. The initial parameters of these methods ([57], [96], [20],
[43], [44], and [40]) are determined according to [104]. In these methods, the network size has
the range from R,,;, to R, in increments of 1. This dissertation determines the network sizes
by executing an evolutionary algorithm with fixed string length for each specification (R, to
Ryac in increments of 1) of the number of network sizes and then computes the average of the
generations. In [57], the normal evolutionary algorithm is used to evolve the weights of a

fully-connected two-layer neural network, with additional connections from each input unit to
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the output layer. After trial-and-error tests, the network size is ten. In [96], the symbiotic
evolutionary algorithm is used to evolve a two-layer neural network. In [96], the network size
is ten. The TDGAR ([20]) that consists of the critic network and action network to the
learning system. The critic network is a standard three-layer feedforward network using
sigmoid functions in the hidden layer and output layer. The action network is a fuzzy neural
network with five layers of nodes and each layer performs one stage of the fuzzy inference
process. There are five hidden nodes and five fuzzy rules in the critic network and the action
network. In CQGAF ([43]), the fuzzy controller with Q-value based genetic algorithm is
proposed to solve controller problems. After trial-and-error tests, the final average number of
rules in CQGATF of thirty runs is 8 by using the on-line clustering algorithm. In ERDSE ([44]),
the TSK type neuro-fuzzy controller is adopted to solve controller problems. After
trial-and-error tests, the number of rules'in ERDSE is 7. In ESP ([40]), the author proposed
enforced sub-populations to evaluate solution locally. There are five sub-populations in ESP.
The other parameters set for six methods ([57], 1961, [20], [43], [44], and [40]) are as follows:
1) the population sizes of the six methods are 130, 170, 100, 130, 80 and 40, respectively; 2)
the crossover rates of the six methods are 0.45, 0.55, 0.35, 0.45, 0.8 and 0.5, respectively; 3)
the mutation rate of the six methods are 0.21, 0.17, 0.16, 0.24, 0.1 and 0.18, respectively.
When each training step is stopped, the best combination of strings from the population in the
final generation is selected and tested with different initial states in thirty times.

As shown in Table 5.2, the proposed ISRL-HEA is more feasible and effective when
compared with other existing models ([26], [29], [57], [96], [20], [43], [44], and [40]). The
advantages of the ISRL-HEA can be listed as follows:

1. Using the concept of statistics, the ISRL-HEA computes the suitable number of fuzzy rules
by probability to avoid the flaw that the number of fuzzy rules has to be assigned in
advance under different environments.

2. The ISRL enhances the stability of the control system by using the design of
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Lyapunov-based safe reinforcement learning. It has better capability to stabilize the plant

under different initial states.

Table 5. 2: Performance comparison of various existing models.

Method CPU time Accuracy
Mean Best Worst Std.

GENITOR ([57]) 120.95 61.34 320.36 92.95 50%
SANE ([96]) 97.56 48.54 254.84 83.56 61%
R-GA ([26]) 89.83 34.85 192.93 69.94 54%
R-SE ([29]) 73.14 28.66 149.43 57.87 56%

TDGAR ([20]) 69.13 26.54 112.73 41.58 53%
ESP ([40]) 58.32 22.08 95.57 35.27 56%
ERDSE ([44]) 51.19 20.77 88.53 30.74 67%
CQGAF ([43)) 48.82 18.79 84.39 26.31 59%
ISRL-HEA 39.97 15.10 71.01 18.23 100%

To demonstrate the proposed ISRL,1n this-example the safe reinforcement learning (SRL)
([32]) is used. Therefore, the SRL-HEA is used to-compare performance with the proposed
ISRL-HEA. The simulation was carried out for 30 runs. The goal sets are defined same as the
ISRL-HEA. The testing results of the SRL-HEA are shown in Fig. 5.8. The results shown in
Fig. 5.8 are the first 1,000 of 100,000 control time steps. As shown in Fig. 5.8, although each
line can meet the control goal. The time steps the SRL-HEA needs to meet the control goal
are longer than the ISRL-HEA (as shown in Fig. 5.4). The accuracy, CPU time, and time steps
that the systems need to meet the control goal of the ISRL-HEA and SRL-HEA are shown in
Table 5.3. As shown in this table, the proposed ISRL-HEA is more feasible and effective
when compared with SRL-HEA. The reason is that the ISRL-HEA can evaluate how soon the

system meets the control goal.
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Figure 5. 8: Control results of the inverted pendulum control system using the SRL-HEA in Example 1. (a)

Angle of the pendulum. (b) Angular velocity of the pendulum. (d) Velocity of the cart.

Table 5. 3: Performance comparison of ISRL-HEA and SRL-HEA.

Method Time steps CPU Time Accuracy
Best Mean Worst Std. Best Mean Worst  Std.
ISRL-HEA | 85 287 421 92 15.10 3997 71.01 18.23 | 100%
SRL-HEA | 257 754 1483 338 | 21.37 56.64 92.71 33.52 | 100%

Moreover, to demonstrate the efficiency of the proposed ERS, in this example the three

different methods are used such as:

the proposed ISRL-HEA (Type I), the proposed

ISRL-HEA without ERS (Type 1), and the fixed length genetic algorithm (Type III). In Type

I method, the proposed ISRL-HEA combines the MVGA and the ERS. In Type II method, the

proposed ISRL-HEA without using the probability vectors to determine the number of fuzzy
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rules. That is, only MVGA are used. In Type III method, the ISRL are used with a genetic
algorithm that has fixed length. In Type III method, we determine the number of fuzzy rules
by executing a genetic algorithm with fixed string length for each specification (R, t0 Ry in
increments of 1) of the number of fuzzy rules and then compute the average of the generations.
All the three methods are designed base on ISRL. Table 5.4 shows the performance
comparison of three methods.

As shown in Table 5.4, compare to Type I and Type II method, the Type I method needs
few CPU time to balance the control system. The reason is that the ERS can determine the
suitable number of fuzzy rules automatically. Although the Type II method can also find the
number of fuzzy rules with MVGA, however, the number of individuals with same length is
fixed. Therefore, the evolutionary algorithm needs more CPU time to search the solution. In
the proposed ERS, the number of individuals:with same length is determined according to
their performance.

Compare to Type I and Type I[II.method, the Type I needs few CPU time to balance the
control system. The reason is that the Type | method uses ERS to determine the number of
fuzzy rules automatically. However, in Type III method, the number of fuzzy rules is
determined by trial-and-error testing. Therefore, the average of the generations of the Type I

method is larger than the Type I method.

Table 5. 4: Performance comparison of three different methods.

Method Mean Best Worst Std.
Type I method 39.97 15.10 71.01 18.23
Type II method 57.31 25.45 98.82 30.93
Type I1I method 85.83 30.85 183.93 60.94

5.1.2  Evaluating performance of the SACG-SE

In this section, the inverted pendulum control system is used to evaluate the performance

of the SACG-SE. The initial parameters of the proposed ISRL-SACG-SE in this example are
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determined by parameter exploration ([104]). The parameters set for the ISRL-SACG-SE are

shown in Table 5.5.

Table 5. 5: The initial parameters of the ISRL-SACG-SE before training.

Parameters Value Parameters Value
N, 20 Stable _TimeSteps 5000
Crossover Rate 0.4 Thres TimeStep 1000
Mutation Rate 0.15 TSSATimes 50

(O in+ O | [0, 2] 4 10
[ > T ] [0, 2] A 0.01

[ Winin > Winax ] [-20,20] |7 7
[Rinin> Rimax] [3, 12] Generations 300
Pyize 18 Thres _StableTimeSteps 500

A total of thirty runs were performed. Each run started at the different initial state (&
and x aresetfor0, & and x are set randomly according to the predefined ranges). Figure
5.9 shows one run of the results of the probability vectors in the TSSA. In this figure, the final
optimal number of rules is 4. Table 5.6 shows the mean, best, and worst of the optimal
number of rules from thirty runs. The learning curve of the ISRL-SACG-SE after thirty runs
is shown in Fig. 5.10. In this figure, there are thirty runs each run represents how soon the
TNFC can meet the goal state. When ISRL-SACG-SE is stopped, the best combination of

strings from the groups in the final generation is selected and tested on the inverted pendulum

control system.
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Figure 5. 9: The results of the probability vectors in the TSSA.

Table 5. 6: The number of rules from thirty runs of the TSSA.

Method Mean Best Worst

ISRL-SACG-SE 4 3 10

The simulation was carried out for thirty tuns. The successful results, which consist of
the pendulum angle, angular velocity of the pendulum (in degrees/seconds), and the velocity
of the cart (in meters/seconds) are shown in Fig./5:11. Each line in Fig. 5.11 represents each
run with a different initial state. The results shown in this figure are the first 1,000 of 6,000
control time steps (Thres TimeStep + Stable TimeSteps ). As shown in Fig. 5.11, the
ISRL-SACG-SE successfully controlled the inverted pendulum control system in all thirty
runs (the pendulum angle, pendulum angular velocity, and cart velocity decrease to 0).

As well as ISRL-HEA, we select the best-trained individual of the proposed
ISRL-SACG-SE in the training phase, and extend the control time steps to 100,000 in the
testing phase. The simulation results, which consist of the pendulum angle, the pendulum
angular velocity, and the cart velocity, are shown in Fig. 5.12. Each line in Fig. 5.12
represents the result of the last 1000 time steps in a run that starts from the different initial
state. As shown in Fig. 5.12, each line can meet the control goal G; and the pendulum is kept

upright during the last 1000 time steps. In the ISRL-SACG-SE, the percentage that the plant
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remains in G; during the last 1000 time steps is 100%. It’s obvious that the ISRL allows the
pendulum angle, the pendulum angular velocity and the cart velocity to swing a small range

near zero and stabilize the control system.
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Figure 5. 10: The learning curve of the SACG-SE.
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Figure 5. 11: Control results of the inverted pendulum control system using the ISRL-SACG-SE in
Example 1 (first 1000 time). (a) Angle of the pendulum. (b) Angular velocity of the pendulum. (¢) Velocity

of the cart.
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Figure 5. 12: Control results of the inverted pendulum control system using the ISRL-SACG-SE in
Example 1 (last 1000 time). (a) Angle of the pendulum. (b) Angular velocity of the pendulum. (c¢) Velocity

of the cart.

In this example, in order to demonstrate the effectiveness and efficiency of the proposed
ISRL-SACG-SE, the R-SE ([29]) and R-GA ([26]) are used to compare with ISRL-SACG-SE.
As shown in Fig. 5.7 (d)-(1), the accuracy of the TNFC with the R-SE and R-GA that the
pendulum does not swing outside the boundary after 6,000 time steps are 56% and 54%.
However, in the ISRL-SACG-SE, the accuracy of the TNFC success meet the control goal
and keep the pendulum in 100,000 time steps is 100%. As shown in Fig. 5.12 and 5.7, the
ISRL-SACG-SE can perform better than the R-SE and R-GA.

The accuracy and CPU time comparison of the ISRL-SACG-SE, R-SE, and R-GA are

shown in Table 5.7. As shown in the Table 5.7, when compared with the traditional
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reinforcement signal design, the proposed ISRL reduces the CPU time and always controls the

plant to the goal set. Moreover, the SACG-SE can not only determine the fuzzy rules

automatically without trail and error testing but also let the chromosomes that perform well to
cooperate for generating better solutions.

Compare to HEA, the SACG-SE can obtain smaller CPU times because of the SACG-SE
considers both of cooperation and specialization. As shown in Fig. 5.2 and 5.10, the learning
curves of the SACG-SE converge more quickly than those of the HEA. The worst, mean, best
and standard deviation of CPU time of the HEA and SACG-SE are shown in Table 5.7. As
shown in this table, the SACG-SE obtains better performance than the HEA.

The GENITOR ([57]), SANE ([96]), TDGAR ([20]), CQGAF ([43]), ERDSE ([44]), and
ESP ([40]) methods have been applied to the same control problem. The accuracy and CPU
time are shown in Table 5.7. A total of thirty:runs were performed. Each run started at the
different initial state. The initial parameters of these methods ([57], [69], [20], [43], [44], and
[40]) are determined according to. Section 5.1.1. The control time steps for testing are
extended to 100,000 time steps. As shown in Table 5.7, the proposed ISRL-SACG-SE is more
feasible and effective when compared with other existing models ([26], [29], [57], [96], [20],
[43], [44], and [40]). The advantages of the ISRL-SACG-SE can be listed as follows:

1. Using the TSSA, the ISRL-SACG-SE computes by probability the suitable number of
fuzzy rules to avoid the flaw that the number of fuzzy rules has to be assigned in advance
under different environments.

2. The ISRL enhances the stability of the control system by using the design of
Lyapunov-based safe reinforcement learning. It has better capability to stabilize the plant
under different initial states.

3. The ECCS lets the well-perform chromosomes to cooperate for generating better solutions
in the generations.

4. The Group-based symbiotic evolution can evaluate the solution locally.
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Table 5. 7: Performance comparison of various existing models in Example 1.

Method CPU time Accuracy
Mean Best Worst Std.

GENITOR ([57]) 120.95 61.34 320.36 92.95 50%
SANE ([96]) 97.56 48.54 254.84 83.56 61%
R-GA ([26]) 89.83 34.85 192.93 69.94 54%
R-SE ([29]) 73.14 28.66 149.43 57.87 56%

TDGAR ([20]) 69.13 26.54 112.73 41.58 53%
ESP ([40]) 58.32 22.08 95.57 35.27 56%
ERDSE ([44]) 51.19 20.77 88.53 30.74 67%
CQGAF ([43]) 48.82 18.79 84.39 26.31 59%
ISRL-HEA 39.97 15.10 71.01 18.23 100%
ISRL-SACG-SE 30.54 10.23 49.21 11.12 100%

For demonstrating the efficiency of the each component of the proposed SACG-SE (the
group-based symbiotic evolution (GSE), TSSA, and ECCS), in this example, five different
methods: the proposed ISRL-SACG-SE without TSSA (Type I), the ISRL-SACG-SE without
ECCS (Type II), the ISRL-SACG-SE without TSSA and ECCS(Type III), and the SE method
(Type 1V), and the proposed ISRL-SACG-SE (Type V) are used. In the Type I, III, IV
methods, the number of fuzzy rules is determined according to trail and error testing and then
compute the average of the generations. In Type II method, each group performs the
two-point crossover strategy independently. In Type III, only GSE is used. In the Type IV
method, the SE ([29]) with ISRL is adopted. In the Type V method, the ISRL-SACG-SE uses
the TSSA to determine fuzzy rules automatically and the proposed ECCS is adopted to
perform crossover strategy. In the Type I, III, IV methods, the parameters are set according to
[104]. In Type I, III, IV methods, we determine the number of fuzzy rules by executing Type I,
III, IV methods with fixed string length for each specification of the number of fuzzy rules
and then compute the average of the generations. All the five methods are designed base on
ISRL. The performance of five methods is shown in Table 5.8.

In Table 5.8, comparing Type IV with Type III, the GSE outperform than SE because of
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the chromosomes that use to evaluate the solution locally can obtain better performance
compared to systems of only one population be used to evaluate the solution. Comparing Type
I with Type V method, the Type V method needs few CPU time to balance the control system.
The reason is that the TSSA can determine the suitable number of fuzzy rules automatically.
However, in Type I method, the number of fuzzy rules is determined by trial-and-error testing.
Therefore, the average of the generations of the Type I method is larger than Type V method.
Comparing Type II with Type V method, it is observed that the SACG-SE (Type V) performs
better than Type Il method. It is observed that ECCS can reduce CPU time. As shown in Table

5.8, the proposed ISRL-SACG-SE (Type V) performs better than other four types of methods.

Table 5. 8: Performance comparison of different methods.

CPU Time
Method
Mean Best Worst Std.
Type | 51.54 18.23 83.21 31.12
Type 11 4593 1641 76.87 27.39
Type III 58.43 22.18 98.91 38.55
Type IV 68.26 26.63 131.25 5143
Type V 30.54 10.23 49.21 11.12

5.1.3  Evaluating performance of the SAG-SEFA

The initial parameters of the proposed ISRL-SAG-SEFA in this example are determined
by parameter exploration ([104]). The parameters set for the ISRL-SAG-SEFA are shown in
Table 5.9. As shown in Table 5.9, the Minimum Suppor used in FP-growth is set as half
number of transactions according to [52]. Minimum_ Suppor effects the number of frequent
item sets (the number of suitable group sets). If Minimum Suppor is too small, large number
of frequent item sets will be generated, which cause the system unable to estimate superior
group sets. On the contrary, when the Minimum_Suppor is too large, few frequent item sets
will be generated, which causes the system unable to pick chromosomes in a sufficient

amount of suitable group sets. After experimenting in this paper, and referring to [52], we can
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see that when Minimum_Suppor is set as half number of transactions, the performance is

satisfactory.
Table 5. 9: The initial parameters of the ISRL-SAG-SEFA before training.
Parameters Value Parameters Value
Py 16 Stable TimeSteps 5000
Nc 10 Thres _TimeStep 1000
Selection _Times 200 TSSAimes 30
NormalTimes 10 A 10
SearchingTimes 15 A 0.01
ExploringTimes 20 n 7
Crossover Rate 0.5 Generations 300
Mutation Rate 0.2 Minimum_Suppor TransactionNum/ 2
ThreadFitnessvalue 550 Thres _StableTimeSteps 500

The coding of a rule in a chromosome is the form given in Fig. 3.10. The values are
floating-point numbers initially assigned using the ISRL-SAG-SEFA. A total of thirty runs
were performed in this simulation. Each run started at the different initial state (6 and x are
set for 0, 6 and x are set randomly according to the predefined ranges). The mean, best,
and worst of the optimal number of rules by performing the TSSA from thirty runs is shown

in Table 5.10.

Table 5. 10: The number of rules from thirty runs of the TSSA.

Method Mean Best Worst
ISRL-SAG-SEFA 5 3 10

The learning curve of the ISRL-SAG-SEFA after thirty runs is shown in Fig. 5.13. In this
figure, there are thirty runs each run represents that how soon the TNFC can meet the goal
state. When ISRL-SAG-SEFA is stopped, the best combination of strings from the groups in
the final generation is selected and tested on the inverted pendulum control system. The
successful results, which consist of the pendulum angle, angular velocity of the pendulum (in

degrees/seconds), and the velocity of the cart (in meters/seconds) are shown in Fig. 5.14. Each
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line in Fig. 5.14 represents each run with a different initial state. The results shown in this
figure are the first 1,000 of 6,000 control time steps (Thres TimeStep + Stable TimeSteps ).
As shown in Fig. 5.14, the ISRL-SAG-SEFA successfully controlled the inverted pendulum
control system in all thirty runs (the pendulum angle, pendulum angular velocity, and cart
velocity decrease to 0).

As well as the ISRL-HEA and ISRL-SACG-SE, we select the best-trained individual of
the proposed ISRL-SAG-SEFA in the training phase, and extend the control time steps to
100,000 in the testing phase. The simulation results, which consist of the pendulum angle, the
pendulum angular velocity, and the cart velocity, are shown in Fig. 5.15. Each line in Fig.
5.15 represents the result of the last 1000 time steps in a run that starts from the different
initial state. As shown in Fig. 5.15, the proposed ISRL-SAG-SEFA, each line can meet the
control goal G; and the pendulum is keptupright during the last 1000 time steps. Moreover, in
the ISRL-SAG-SEFA, the percentage that the plant remains in G; during the last 1000 time
steps is 100%. It’s obvious that the ISRL allows the pendulum angle, the pendulum angular
velocity, and the cart velocity to swing a small range near zero and stabilize the control

system.
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Figure 5. 13: The learning curve of the ISRL-SAG-SEFA.
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of the cart.

In this example, in order to demonstrate the effectiveness and efficiency of the proposed
ISRL-SAG-SEFA, the R-SE ([29]) and R-GA ([26]) are also used to compare with
ISRL-SAG-SEFA. As shown in Fig. 5.7 (d)-(i), the accuracy of the TNFC with the R-SE and
R-GA that the pendulum does not swing outside the boundary after 6,000 time steps are 56%
and 54%. However, in the ISRL-SAG-SEFA, the accuracy of the TNFC success meet the
control goal and keep the pendulum in 100,000 time steps is 100%. As shown in Fig. 5.7 and
5.15, the ISRL-SAG-SEFA can perform better than the R-SE and R-GA.

The accuracy and CPU time comparison of ISRL-SAG-SEFA, R-SE, and R-GA are
shown in Table 5.11. The ISRL-SAG-SEFA needs less CPU time than R-SE and R-GA. The
reason is that the ISRL adopt a strict restriction in earlier time steps and evaluate the control
system by how soon the system can meet the control goal. Therefore, the individuals in
ISRL-SAG-SEFA have the high performance and the system can reach and remain the control
goal in the earlier time steps. About this, the CPU time of ISRL-SACG-SE is dramatic less
than that of R-SE and R-GA.

Compare to SACG-SE, the SAG-SEFA can obtain smaller CPU times because of the

SAG-SEFA not only considers both of cooperation and specialization but also selects suitable
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groups to perform selection and crossover by using data-mining method. As shown in Fig.

5.10 and 5.13, the learning curves of the SAG-SEFA converge more quickly than those of the

SACG-SE. The worst, mean, best, and standard deviation of CPU time of the SACG-SE and

SAG-SEFA are shown in Table 5.11. As shown in this table, the SAG-SEFA obtains small

CPU time than the SACG-SE.

The [57], [96], [20], [43], [44], and [40] have been applied to the same control problem.
Their simulation results are listed in Table 5.11. Table 5.11 shows the accuracy and CPU time
for the control model. The initial parameters of these methods ([57], [96], [20], [43], [44], and
[40]) are determined according to Section 5.1.1. The control time steps for testing are
extended to 100,000 time steps. As shown in Table 5.11, the proposed ISRL-SAG-SEFA is
more feasible and effective when compared with other existing models ([29], [26], [57], [96],
[20], [43], [44], and [40]). The advantages of the ISRL-SAG-SEFA can be listed as follows:

1. Using the TSSA, the ISRL-SAG-SEFA computes by probability the suitable number of
fuzzy rules to avoid the flaw that'the number of fuzzy rules has to be assigned in advance
under different environments.

2. The ISRL enhances the stability of the control system by using the design of
Lyapunov-based safe reinforcement learning. It has better capability to stabilize the plant
under different initial states.

3. The Group-based symbiotic evolution can evaluate the solution locally.

4. The SAG-SEFA not only considers both of cooperation and specialization but also selects

suitable groups to perform selection and crossover by using DMSS and DMCS.
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Table 5. 11: Performance comparison of various existing models in Example 1.

Method CPU time Accuracy
Mean Best Worst Std.

GENITOR ([57]) 120.95 61.34 320.36 92.95 50%
SANE ([96]) 97.56 48.54 254.84 83.56 61%
R-GA ([26]) 89.83 34.85 192.93 69.94 54%
R-SE ([29]) 73.14 28.66 149.43 57.87 56%

TDGAR ([20]) 69.13 26.54 112.73 41.58 53%
ESP ([40]) 58.32 22.08 95.57 35.27 56%
ERDSE ([44]) 51.19 20.77 88.53 30.74 67%
CQGAF ([43]) 48.82 18.79 84.39 26.31 59%
ISRL-HEA 39.97 15.10 71.01 18.23 100%
ISRL-SACG-SE 30.54 10.23 49.21 11.12 100%
ISRL- SAG-SEFA 18.12 5.31 28.51 8.34 100%

To demonstrate the efficiency of the proposed TSSA, DMSS, and DMCS, in this
example, the six different methods, the SAG=SEFA using only TSSA (Type I), SE (Type II),
GSE (Type III), SAG-SEFA (Type:1V), SAG-SEEA using only TSSA and DMSS (Type V),
and SAG-SEFA using only TSSA and DMCS (Type VI), are used. In Type I method, the
groups are selected randomly to construct TNFC with different numbers of rules and each
group performs crossover strategy independently. In Type II method, the traditional symbiotic
evolution is used. In Type Il method, the group-based symbiotic evolution (GSE) is adopted
with fixed number of rules. In Type IV method, SAG-SEFA uses the proposed TSSA, DMSS,
and DMCS to perform structure and parameter learning. In Type V method, SAG-SEFA uses
only the proposed TSSA and DMSS; therefore, the each group performs crossover strategy
independently. In Type VI method, SAG-SEFA uses only the proposed TSSA and DMCS;
therefore, the groups are selected randomly to construct TNFC with different numbers of rules.
In the six methods, the parameters are set according to [104]. In Type II and III methods, we
determine the number of fuzzy rules by executing Type II and III methods with fixed string

length for each specification of the number of fuzzy rules and then compute the average of the
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CPU time. All the three are designed base on ISRL. The performance (accuracy and CPU
time) compared of the six methods is shown in Table 5.12.

In Table 5.12, comparing Type II with Type III, the GSE outperform than SE because of
the chromosomes that use to evaluate the solution locally can obtain better performance
compared to systems of only one population be used to evaluate the solution. However,
comparing Type I with Type III method, the Type I method needs few CPU time to balance
the control system. The reason is that the TSSA can determine the suitable number of fuzzy
rules automatically. However, in Type III method, the number of fuzzy rules is determined by
trial-and-error testing. Therefore, the average of the generations of the Type III method is
larger than Type I method. Comparing Type I with Type V method, it is observed that DMSS
can reduce CPU time because of the chromosomes from suitable groups can be selected to
construct TNFS models with different,numbers of rules. Comparing Type 1 with Type VI
method, it is observed that DMCS:can reduce CPU time. This is because the chromosomes
from suitable groups can be selected to.cooperate for generating better solutions. As shown in

Table 5.12, the SAG-SEFA (Type 1V) performs better (CPU time) than other methods.

Table 5. 12: Performance comparison of six different methods in Example 1.

CPU Time
Method
Mean Best Worst Std.
Type 1 45.93 16.41 76.87  27.39
Type 11 68.26 26.63 131.25 51.43
Type 111 58.43 22.18 98.91 38.55
Type IV 18.12 5.31 28.51 8.34
Type V 27.37 12.83 36.55 15.17
Type VI 24.23 9.19 33.71 13.09

5.2 Tandem Pendulum Control System

Although the ISRL-SAEAs can obtain better performance than other methods in an

inverted pendulum control system; however, in such classic setup of a pendulum balancing
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problem, the task is too easy to find solutions quickly through random search. About this, in
this example, a variety of extensions to a basic cart-pendulum balancing problem have been
suggested. In [58]-[60], the author proposed several variations of an inverted pendulum
control system. The most challenging extension of an inverted pendulum control system
([58]-[60]) 1s a tandem pendulum control system, where two pendulums of different length
must be balanced synchronously. Therefore, a tandem pendulum control system is used to
evaluate the proposed ISRL-SAEAs. As shown in Fig. 5.16, a tandem pendulum control

system is the problem of learning how to balance two pendulums. There are four state

variables in the system: @, the angle of the ith pendulum; 0., the angular velocity of the ith

s Vi

pendulum. The only control action is », which is the amount of force applied to cart to move it

toward left or right. The system fails when the pendulum falls past a certain angle (£36" is

used here).

________l:Q_D______*

_
.
.

Ing

Figure 5. 16: The tandem pendulum control system.

The motion equations of the tandem pendulum control system ([58]-[60]) are described as

follow:
J,0. =mglsin(0)-mlucos(6,), i=1,2 (5.12)

where for 6, denotes the angle between ith pendulum and the vertical, J; is the inertia moment
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with respect to the pivot point, m; is the mass of the ith pendulum, /; is the distance between
the center of mass and the pivot, g is the gravity acceleration, and u is the acceleration of the
cart which is used as the control input.

By setting the potential energy of ith pendulum at the vertical to be 0, its energy consists
of the kinetic energy of rotation with respect to the pivot and the potential energy is expressed

as the following equation:
E(0,0) =0+ mgh (cos(6)) -1 (5.13)

A control strategy attempts to drive E; and E, to zero is obtained according to the

Lyapunov function as show below:
1 ., .
VZEEm i=1, 2. (5.14)

Using the fallowing equation:

E, = —mglub,cos(8,): (5.15)
We can obtain
V=-Gu, (5.16)
where
G= imi gl0. cos(0,). (5.17)

i=l1
The parameters used for the tandem pendulum control system are shown in Table 5.13.

Table 5. 13: The parameters for the tandem pendulum control system.

Parameters Description Value

o Angle of the pendulum [-36, 36] deg.
u Force applied to cart [-10, 10] N

/ ) Half length of 1st pendulum 0.5m

[, Half length of 2" pendulum 0.05m

m, mass of the 1st pendulum 0.1kg

m, mass of the 2nd pendulum 0.01kg
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The purpose of this control task is to determine a sequence of forces applying to the cart
to balance the pendulums upright, and maintains the cart as stationary as possible. Hence, we

define a goal set comprising near-upright and near-stationary states as

G, ={(6.6): ©@.6)

‘ < 0.001} . When the state of the tandem pendulum control system is in

G,, according to Eq. 5.13, the total mechanical energy E of the system is 0. Let ¢ =6, we
2

define a Lyapunov function V(q,q) = %ZEi(q, ¢)* . The purpose of this control problem
i=1

can be transformed to the problem of achieving V' (g,q)=0. So we define another goal set
G, ={(¢,9):V(q,9) =0}

According to Eq. 5.15, the derivative of E is proportional to the product of the speed of
angular and input force. Hence in this paper, following [32], a control law for the learning

agent based on Lyapunov analysis is proposed as follows:

( q):{sgn(q)F, if E(q, 4)<0 518)

0, ifE(g; ¢)=0
where sgn(q)={1ifx >0, and -1 otherwise}-—and F is the output of the TNFC that is limited
in [-10,10]. P (q, q) guarantees the descent of the Lyapunov function; as a result, this
control law satisfies the Theorem 4.1 defined in [32]. Denote the state of the environment at
time step 7 =(q,, ¢, ) =s, . Theorem 4.1 tells that the agent will bring the environment to G,

within [L(s,)/A]| steps, and remain the environment in the set {s: L(s,,) < L(s,)}. In our

simulation, since the descent step size can not be ensured. Theorem 4.1 can be reduced to the
form that the agent will bring the environment to G, and remain the environment until it

achieves G, eventually, if the controlling time step is long enough.

In the simulation of the tandem pendulum control system, the original successful region

of the variables is—36° < @, <36°. The strict successful region of & is described in Eq. 5.13.

The constraints on the variables are—36" <6, <36° and -10N<uz < 10N. A control strategy
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is deemed successful if it can meet the control goal (@ and @ decade to zero). The four

input variables (6,, 91, 0,, 92) and the output u(7) are normalized between 0 and 1, and

u(?): [-10, 10]. The four normalized state variables are used as inputs to the TNFC. The values
are floating-point numbers assigned to the SAEAs initially. The fitness function is defined
according to Eq. 4.1-4.5.

In this example, the performance evaluation of the SAEAs consists of the HEA,
SACG-SE, and SAG-SEFA. In the following sections, the performances of three methods are
discussed.

5.2.1  Evaluating performance of the HEA
The initial parameters of the proposed ISRL-HEA in this example are determined by

parameter exploration ([104). The parameters set for the ISRL-HEA are shown in Table 5.14.

Table 5. 14: The initial parameters of ISRL-HEA before training.

Parameters Value Parameters Value
N. 80 Stable _TimeSteps 5000
Crossover Rate 0.4 Thres _TimeStep 1000
Mutation Rate 025 ERSTimes 50

[ O tmin > O imax | [0, 2] A 10

(77 i s P ] [0, 2] Y 0.01

[ Wnin > Winax | [-20, 20] n 7
[Rumin> Rimax) [3,12] Generations 500
Thres _StableTimeSteps 500

In this example, the coding of a rule in a chromosome is the form in Fig. 3.1 in Section
3.1. A total of thirty runs were performed. Each run started at the different initial state (éi are

set for 0, 6, are set randomly within a predefined range). The learning curves of ISRL-HEA

are shown in Fig. 5.17. In this figure, there are thirty runs each run represents that how soon
the TNFC can meet the goal state. The fitness value is defined according to Eqgs. 4.1-4.5. The

higher fitness value by the end of each run represents that the sooner the plant meets the goal
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set. When the ISRL-HEA is stopped, the best string from the population in the final
generation is selected and applied on the testing phase of a tandem pendulum control system.
After performing the MCGA, the final average number of rules is 6.

The testing results, which consist of the pendulums angle and the pendulums angular
velocity (in degrees/seconds) are shown in Fig. 5.18. A total of thirty runs were executed in
the testing phase. Each line in Fig. 5.18 represents a single run that starts form a different
initial state. The results shown in this figure are the first 1,000 of 6,000 control time steps
(Thres _TimeStep + Stable TimeSteps ). As shown in Fig. 5.18, the ISRL-HEA successfully
controlled the tandem pendulum control system in all thirty runs (the pendulums angle,

pendulums angular velocity decrease to 0).
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Figure 5. 17: The learning curves of the ISRL-HEA.
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Figure 5. 18: Control results of the tandem pendulum control system using the ISRL-HEA. (a) Angle of the
first pendulum. (b) Angle of the second pendulum. (¢) Angular velocity of the first pendulum. (d) Angular

velocity of the second pendulum.

As well as Section 5.1.1, the R-SE ([29]) and R-GA ([26]) were applied to this example
to compare to the performance of the ISRL-HEA. The parameters are found using the method
given in [104]. In R-SE ([29]) and (R-GA [26]), the reinforcement signal is designed based on
time-step reinforcement architecture ([18]-[20]). The fitness function in R-SE and R-GA to
train the TNFC is defined according to

Fitness Value =TIME STEP (5.19)
where TIME STEP represents how long the experiment is a “success” in one generation. In
this example, Eq. 5.19 represents how long before the pendulum falls apart a certain angle
(36" is used here). A control strategy is deemed successful if it can balance pendulums for
6,000 time steps.

The simulation was carried out for 30 runs. The testing results of the R-SE and R-GA are
shown in Figs. 5.19 and 5.20. The results shown in these figures are the first 1,000 of 6,000

control time steps. As shown in Figs. 5.19 and 5.20, not every line meets the control goal (6,

and 6. decay to zero). It’s obvious that the ISRL-HEA obtains better result when compared

with [29] and [26], since &, and Qi of the ISRL swing in a smaller range near zero.
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Figure 5. 20: Control results of the tandem pendulum control system using the R-GA. (a) Angle of the first
pendulum. (b) Angle of the second pendulum. (c¢) Angular velocity of the first pendulum. (d) Angular

velocity of the second pendulum.

In the further simulation, we select the best-trained individual of the proposed
ISRL-HEA, R-GA and R-SE in the training phase, and extend the control time steps to
100,000 in the testing phase. The simulation results, which consist of the pendulums angle
and pendulums angular velocity, are shownin Fig, 5.21. Each line in Fig. 5.21 represents the
result of the last 1000 time steps in a run-that-starts from the different initial state. As shown
in Fig. 5.21 (e)-(1), not every line meets the control goal G, in the R-SE and R-GA. Moreover,
the pendulums angle may swing outside the boundary at the last 1000 time steps. However, in
the proposed ISRL-HEA, each line can meet the control goal G, and the pendulums are kept
upright during the last 1000 time steps. The percentage that the R-SE and the R-GA controls
the plant to G; are 53% (with 14 runs that the plant unreach G; and 4 out of 13 runs that the
pendulum swings outside the boundary) and 50% (with 15 runs that the plant unreach G; and
5 out of 14 runs that the pendulum swings outside the boundary) respectively. However, in
the ISRL-HEA, the percentage that the plant remains in G; during the last 1000 time steps is
100%. It’s obvious that the ISRL allows the pendulums angle, the pendulums angular velocity

and the cart velocity to swing a small range near zero and stabilize the control system.
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Figure 5. 21: Control results of the tandem pendulum control system. (a) Angle of the first pendulum of

ISRL-HEA. (b) Angle of the second pendulum of ISRL-HEA. (c¢) Angular velocity of the first pendulum of

ISRL-HEA. (d) Angular velocity of the second pendulum of ISRL-HEA. (e) Angle of the first pendulum of

R-SE. (f) Angle of the second pendulum of R-SE. (g) Angular velocity of the first pendulum of R-SE. (h)

Angular velocity of the second pendulum of R-SE. (i) Angle of the first pendulum of R-GA. (j) Angle of the

second pendulum of R-GA. (k) Angular velocity of the first pendulum of R-GA. (1) Angular velocity of the

second pendulum of R-GA.
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The accuracy and CPU time comparison of ISRL-HEA, R-SE, and R-GA are shown in
Table 5.15. The ISRL-HEA needs less CPU time than R-SE and R-GA. The reason is that the
ISRL adopts a strict restriction in the earlier time steps and evaluates the control system by
how soon the plant can meet the control goal. The individuals in ISRL-HEA with better
performance mean it controls the plant to the goal set sooner.

The GENITOR ([57]), SANE (][96]), TDGAR ([20]), CQGAF ([43]), ERDSE ([44]), and
enforce sub-population (ESP) ([40]) methods have been applied to the same control task and
the simulation results are listed in Table 5.15. The accuracy of the controller meets the control
goal and keep the pendulum in 100000 time steps and the CPU time are shown in Table 5.15.
A total of thirty runs were executed. Each run started at the different initial state. The initial
parameters of these methods ([57], [96], [20], [43], [44], and [40]) are determined according
to [104]. In these methods, we determine/the size of network structure by executing
algorithms with fixed string length for each specification of the size of network structure and
then compute the average of the generations./As shown in Table 5.15, the proposed
ISRL-HEA is more feasible and effective when compared with other existing models ([26],

[29], [57], [96], [20], [43], [44], and [40]).

Table 5. 15: Performance comparison of various existing models.

Method CPU time Accuracy
Mean Best Worst Std.

GENITOR ([57]) 412.49 91.85 572.54 109.69 56%
SANE ([96]) 225.73 63.87 276.54 60.23 57%
R-GA ([26]) 218.34 49.56 251.68 52.97 52%
R-SE ([29]) 192.67 47.49 241.67 47.38 53%

TDGAR ([20]) 231.45 56.37 258.74 54.05 56%
ESP ([40]) 187.96 39.54 238.95 46.32 54%
ERDSE ([44]) 123.73 26.18 214.51 37.89 55%
CQGAF ([43)) 105.52 24.67 203.18 34.42 53%
ISRL-HEA 87.23 23.54 113.18 28.92 100%
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5.2.2  Evaluating performance of the SACG-SE
The initial parameters of the proposed ISRL-SACG-SE in this example are determined

by parameter exploration ([104]). The parameters set for the ISRL-SACG-SE are shown in

Table 5.16.
Table 5. 16: The initial parameters of ISRL-SACG-SE before training.
Parameters Value Parameters Value
N, 30 Stable TimeSteps 5000
Crossover Rate 0.35 Thres _TimeStep 1000
Mutation Rate 0.25 TSSATimes 50
[ O in» O max | [0, 2] A 10
[(m, ..M .. ] [0, 2] A 0.01
[ Winin > Winax 1 [-20, 20] n 7
[Rumins Rinax] [3, 12] Generations 500
P.. 20 Thres _StableTimeSteps 500

A total of thirty runs were performed. Each run started at the different initial state (éi are

set for 0, 6, are set randomly according to the predefined ranges). After performing the
TSSA, the final average number of rules is 6. The learning curves of the SACG-SE after thirty
runs are shown in Fig. 5.22. In this figure, there are thirty runs each run represents that how
soon the TNFC can meet the goal state. When SACG-SE is stopped, the best combination of
strings from the groups in the final generation is selected and tested on the tandem pendulum
control system.

The simulation was carried out for thirty runs. The simulation results, which consist of
the pendulums angle and angular velocity of pendulums, are shown in Fig. 5.23. Each line in
Fig. 5.23 represents each run with a different initial state. The results shown in this figure are
the first 1,000 of 6,000 control time steps (7Thres _TimeStep + Stable TimeSteps ). As shown
in Fig. 5.23, the ISRL-SACG-SE successfully controlled the tandem pendulum control system

in all thirty runs (the pendulums angle and pendulums angular velocity decrease to 0).
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As well as ISRL-HEA, we select the best-trained individual of the proposed
ISRL-SACG-SE in the training phase, and extend the control time steps to 100,000 in the
testing phase. The simulation results, which consist of the pendulums angle and the
pendulums angular velocity, are shown in Fig. 5.24. Each line in Fig. 5.24 represents the
result of the last 1000 time steps in a run that starts from the different initial state. As shown
in Fig. 5.24, each line can meet the control goal G, and the pendulums are kept upright during
the last 1000 time steps. The percentage that the plant remains in G; during the last 1000 time
steps is 100%. It’s obvious that the ISRL allows the pendulums angle, the pendulums angular

velocity and the cart velocity to swing a small range near zero and stabilize the control

system.
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Figure 5. 23: Control results of the tandem pendulum control system using the ISRL-SACG-SE (first 1000
time). (a) Angle of the first pendulum. (b) Angle of the second pendulum. (c) Angular velocity of the first

pendulum. (d) Angular velocity of the second pendulum.
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Figure 5. 24: Control results of the tandem pendulum control system using the ISRL-SACG-SE (last 1000
time). (a) Angle of the first pendulum. (b) Angle of the second pendulum. (c¢) Angular velocity of the first

pendulum. (d) Angular velocity of the second pendulum.
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In this example, in order to demonstrate the effectiveness and efficiency of the proposed
ISRL-SACG-SE, the R-SE ([29]) and R-GA ([26]) are used to compare with ISRL-SACG-SE.
As shown in Fig. 5.21 (e)-(l), the accuracy of the TNFC with the R-SE and R-GA the
pendulum does not swing outside the boundary after 6,000 time steps are 53% and 50%.
However, in the ISRL-SACG-SE, the accuracy of the TNFC success meets the control goal
and keeps the pendulums in 100,000 time steps is 100%. As shown in Figs. 5.21 and 5.24, the
ISRL-SACG-SE can perform better than the R-SE and R-GA.

The accuracy and CPU time comparison of the ISRL-SACG-SE, R-SE, and R-GA are
shown in Table 5.17. As shown in Table 5.17, when compared with the traditional
reinforcement signal design, the proposed ISRL can reduce the CPU time and always control
the plant to the goal set. Moreover, the SACG-SE not only can determine the fuzzy rules
automatically without trail and error testing'but also let the chromosomes that perform well to
cooperate for generating better solutions.

The GENITOR ([57]), SANE (196]); TDGAR([20]), CQGAF ([43]), ERDSE ([44]), and
enforce sub-population (ESP) ([40]) methods have been applied to the same control problem
and the simulation results are listed in Table 5.17. The accuracy and CPU time are shown in
Table 5.17. A total of thirty runs were performed. Each run started at a different initial state.
The initial parameters of these methods ([57], [69], [20], [43], [44], and [40]) are determined
according to [104]. The control time steps for testing are extended to 100,000 time steps. As
shown in Table 5.17, the proposed ISRL-SACG-SE is more feasible and effective when

compared with other existing models ([26], [29], [57], [96], [20], [43], [44], and [40]).
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Table 5. 17: Performance comparison of various existing models in Example 2.

Method CPU time Accuracy
Mean Best Worst Std.

GENITOR [57] 412.49 91.85 572.54 109.69 56%
SANE [96] 225.73 63.87 276.54 60.23 57%
R-GA [26] 218.34 49.56 251.68 52.97 52%
R-SE [29] 192.67 47.49 241.67 47.38 53%

TDGAR [20] 231.45 56.37 258.74 54.05 56%
ESP [40] 187.96 39.54 238.95 46.32 54%
ERDSE [44] 123.73 26.18 214.51 37.89 55%
CQGAF [43] 105.52 24.67 203.18 34.42 53%
ISRL-SACG-SE 65.74 18.50 84.43 23.18 100%

5.2.3  Evaluating performance of the SAG-SEFA
The initial parameters of the proposed ISRL-SAG-SEFA in this example are determined

by parameter exploration ([104]). The parameters, set for the ISRL-SAG-SEFA are shown in

Table 5.18.
Table 5. 18: The initial parameters of ISRL-SAG-SEFA before training.
Parameters Value Parameters Value
Pii-e 18 Stable _TimeSteps 5000
Nc 20 Thres _TimeStep 1000
Selection _Times 250 TSSAimes 30
NormalTimes 20 A 10
SearchingTimes 25 A 0.01
ExploringTimes 30 n 7
Crossover Rate 0.5 Generations 500
Mutation Rate 0.2 Minimum_Suppor TransactionNum/ 2
ThreadFitnessvalue 550 Thres _StableTimeSteps 500

The coding of a rule in a chromosome is the form given in Fig. 3.10. The values are

floating-point numbers initially assigned using the ISRL-SAG-SEFA. A total of thirty runs

were performed in this simulation. Each run started at a different initial state (éi are set for 0,
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0. are set randomly according to the predefined ranges). After performing the TSSA, the
final average number of rules is 5.

The learning curves of the ISRL-SAG-SEFA after thirty runs are shown in Fig. 5.25. In
this figure, there are thirty runs each run represents that how soon the TNFC can meet the
goal state. When ISRL-SAG-SEFA is stopped, the best combination of strings from the
groups in the final generation is selected and tested on the tandem pendulum control system.
The successful results, which consist of the pendulums angle and angular velocity of the
pendulums, are shown in Fig. 5.26. Each line in Fig. 5.26 represents each run with a different
initial state. The results shown in this figure are the first 1,000 of 6,000 control time steps
( Thres TimeStep + Stable TimeSteps ). As shown in Fig. 5.26, the ISRL-SAG-SEFA
successfully controlled the tandem pendulum control system in all thirty runs (the pendulums
angle and pendulums angular velocity decteaseto 0).

As well as ISRL-HEA and ISRL-SACG-SE, we sclect the best-trained individual of the
proposed ISRL-SAG-SEFA in the training phase, and extend the control time steps to 100,000
in the testing phase. The simulation results, which consist of the pendulums angle, the
pendulums angular velocity, and the cart velocity, are shown in Fig. 5.27. Each line in Fig.
5.27 represents the result of the last 1000 time steps in a run that starts from the different
initial state. As shown in Fig. 5.27, each line can meet the control goal G; and the pendulums
are kept upright during the last 1000 time steps. However, in the ISRL-SAG-SEFA, the
percentage that the plant remains in G; during the last 1000 time steps is 100%. It’s obvious
that the ISRL allows the pendulums angle, the pendulums angular velocity to swing a small

range near zero and stabilize the control system.

126



=
=

~
=

@
=

.....

@
=

Angle af 1ha Firsi Pand ulum
w =
= =

o
=

Bl f00 150 200 260 00 w0 40 48
Canaratione
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Figure 5. 26: Control results of the tandem pendulum control system using the ISRL-SAG-SEFA (first 1000
time). (a) Angle of the first pendulum. (b) Angle of the second pendulum. (c) Angular velocity of the first

pendulum. (d) Angular velocity of the second pendulum.
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Figure 5. 27: Control results of the tandem pendulum control system using the ISRL-SAG-SEFA (last 1000
time). (a) Angle of the first pendulum. (b) Angle of the second pendulum. (c) Angular velocity of the first

pendulum. (d) Angular velocity of the second pendulum.

In this example, in order to demonstrate the effectiveness and efficiency of the proposed
ISRL-SAG-SEFA, the R-SE ([29]) and R-GA ([26]) are used to compare with
ISRL-SAG-SEFA. As shown in Fig. 5.21 (e)-(l), the accuracy of the TNFC with the R-SE and
R-GA the pendulum does not swing outside the boundary after 6,000 time steps are 53% and
50%. However, in the ISRL-SAG-SEFA, the accuracy of the TNFC success meets the control
goal and keeps the pendulums in 100,000 time steps is 100%. As shown in Fig. 5.21 and 5.27,
the ISRL-SAG-SEFA can perform better than the R-SE and R-GA.

The GENITOR ([57]), SANE ([96]), TDGAR ([20]), CQGAF ([43]), ERDSE ([44]), and

ESP ([40]) have been applied to the same control problem. Their simulation results are listed
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in Table 5.19. The accuracy and CPU time are shown in Table 5.19. The initial parameters of

these methods ([57], [69], [20], [43], [44], and [40]) are determined according to [104]. The

control time steps for testing are extended to 100,000 time steps. As shown in Table 5.19, the

proposed ISRL-SAG-SEFA is more feasible and effective when compared with other existing

models (([26], [29], [57], [96], [20], [43], [44], and [40]).

Table 5. 19: Performance comparison of various existing models in Example 2.

Method CPU time Accuracy
Mean Best Worst Std.

GENITOR ([57]) 412.49 91.85 572.54 109.69 56%
SANE ([96]) 225.73 63.87 276.54 60.23 57%
R-GA ([26]) 218.34 49.56 251.68 52.97 52%
R-SE ([29]) 192.67 47.49 241.67 47.38 53%

TDGAR ([20]) 231.45 56.37 258.74 54.05 56%
ESP ([40]) 187.96 39.54 238.95 46.32 54%
ERDSE ([44]) 123.73 26,18 214.51 37.89 55%
CQGAF ([43]) 105:52 24.67 203.18 34.42 53%
ISRL-SAG-SEFA 41.91 11.36 62.54 17.32 100%

129



Chapter 6

Conclusion

The goal of this dissertation is to provide a stable and robust way for applying
evolutionary algorithm to neuro-fuzzy controllers. In order for a proposed method to be stable
and robust, it must not only perform the stability analysis but also decide the number of fuzzy
rules automatically. This dissertation proposes a complete approach to achieve this goal.
Therefore, improved safe reinforcement learning based self adaptive evolutionary algorithms
(ISRL-SAEAs) for neuro-fuzzy controller is proposed. The ISRL-SAEAs consist of two parts:
improved safe reinforcement learning (ISRL). and self adaptive evolutionary algorithms
(SAEAs). This chapter summarizes the contributions of this dissertation of these two parts

(ISRL and SAEAs), and then makes-a conclusion and discusses the future research.

6.1 Contributions

The proposed ISRL-SAEAs can be divided into two parts: improved safe reinforcement
learning (ISRL) and self adaptive evolutionary algorithms (SAEAs). Each of these two parts

has different contributions. The contributions are discussed as follows.
1. Self Adaptive Evolutionary Algorithms (SAEAs)

The goals of SAEAs are to reduce the number of parameters in traditional evolution
method (ie. initial network size), consider both of cooperation and specialization, and
determine the suitable groups for performing selection and crossover steps. The SAEAs
consist of three method: the hybrid evolutionary algorithm (HEA), self adaptive group

cooperation based symbiotic evolution (SAGC-SE), and self adaptive group based

130



symbiotic evolution using FP-growth algorithm (SAG-SEFA). The contributions of these
three methods are discussed as follows.
(1) Hybrid Evolutionary Algorithm (HEA)

The HEA has structure-and-parameter learning ability. That is, it can determine
the average optima number of fuzzy rules and tune the free parameters in the TNFC.
The proposed learning method also processes variable length of the chromosomes
in a population. Computer simulations have shown that the proposed HEA has a
better performance than the other methods. The well performance of each
component of the proposed HEA has been demonstrated.

(2) Self Adaptive Group Cooperation based Symbiotic Evolution (SAGC-SE)

The SAGC-SE can determine number of fuzzy rules automatically by using
two-step self-adaptive algorithm (TSSA), evaluate the fuzzy rule locally by using
group-based symbiotic evolution, and let groups to cooperate with each other to
generate the better chromosomes/by using an elites-base compensation crossover
strategy (ECCS). The advantages of the proposed SAGC-SE are summarized as
follows: 1) the SAGC-SE can determine the average optima number of fuzzy rules;
2) the SAGC-SE uses group-based population to evaluate each fuzzy rule locally; 3)
the SAGC-SE uses the ECCS to let the better solutions from different groups to
cooperate for generating better solutions in the next generation.

Computer simulations have shown that the SAGC-SE that considers both of
cooperation and specialization has a better performance than the HEA. The well
performance of each component of the SAGC-SE has also been demonstrated.

(3) Self Adaptive Group based Symbiotic Evolution using FP-growth Algorithm

(SAG-SEFA)

The proposed SAG-SEFA has structure and parameter learning ability. That is,

it can determine the suitable number of fuzzy rules and efficiently tune the
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parameters in the TNFC. The goal of the SAG-SEFA is to determine the suitable
groups to perform the selection and crossover steps. The advantages of the proposed
SAG-SEFA are summarized as follows: 1) the SAG-SEFA uses the group-based
population so that each group represents only one fuzzy rule; 2) the TSSA is used to
determine the suitable number of rules; 3) the SAG-SEFA uses group-based
population to evaluate the fuzzy rule locally; 4) the DMSS and DMCS are used to
select the suitable groups to perform the selection step and crossover step; 5) it
performs better and converges more quickly than some genetic methods.
Computer simulations have shown that the proposed SAG-SEFA that considers
how to select the suitable groups for performing selection and crossover steps has a
better performance than the SAGC-SE. The well performance of each component of

the proposed SAG-SEFA has also been demonstrated.
2. Improved Safe Reinforcement Eearming (ISRL)

To solve the problem of how soon the system can enter the desired state and
consider the stability analysis, the ISRETis proposed. In the ISRL, the reinforcement
signal is measured by two different strategies (judgment and evaluation strategies). The
judgment strategy determines the reinforcement signal when the plant fails entering a
predefined goal set, and the evaluation strategy applies under the condition that the plant
enters the goal set. The key to the ISRL is using the Lyapunov-based manipulations on
control laws to drive the plant to reach and remain in a predefined desired set of states
with probability 1. Then, the time step for the plant entering the desired set of states can
indicate the concept of how soon the system becomes stable. It will be observed that the
advantage of the proposed ISRL is that it can meet global optimization capability.

As shown in simulation results, the proposed ISRL can not only work with different
conditions of the system but also still controlled in the letter time steps. Moreover, the

learning results are smoother than the traditional reinforcement signal design.
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6.2 Future Research

The goal of this dissertation is to provide a stable and robust way for applying
evolutionary algorithm with neuro-fuzzy controller to control problems. This dissertation has
developed the proposed ISRL-SAEAs to achieve this goal. Although the ISRL-SAEAs can
obtain better performance than other methods, there still has a limitation of the ISRL-SAEAs.
The initial parameters are determined by practical experimentation or trial-and-error tests.
There is not a systematic method to determine the initial parameters. In the future work, how
to find a well-defined method to define such parameters is an important work. Furthermore, in
the simulation, the noise toleration can be further considered in the future. Therefore, the
more robust method may be obtained.

Moreover, in the experiments in Chapters 5, a controller is successful if it can achieve
goal sets during evolution. That is, the simulation environment used for training is also used
for testing. However, in real-world applications, the environment used to test may be different
with the environment used to train. The reason/is that the environment used to test is time
consuming. About this problem, for letting the evolutionary algorithms can be used in
real-world applications, a controller transfer is needed to transfer the simulation environment
to the environment used to test. How to design a controller transfer of the ISRL-SAEAs is

also a future work of this dissertation.
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