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無線感測網路之無參數低複雜度改變檢測 
 

學生：羅楚威      指導教授：李大嵩 博士 

 

國立交通大學電信工程學系碩士班 

 

摘要 

 

吾人考慮感測器警報機率分佈改變偵測的問題。在無參數改變偵測的架構

下，吾人基於 Rao test 發表一套演算法。吾人也將感測器分群並且估計各群的期

望值來做檢測。我們獲得了理論上的效能。我們所提出方法的複雜度為線性，適

用於多感測器的情況之下。吾人也考慮在感測器與資料融合中心的連線上有干擾

情況時的效能增強。
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Nonparametric Low Complexity Change Detection 

in Wireless Sensor Networks 
 

Student: Chu-Wei Lo    Advisor: Dr. Ta-Sung Lee 

 

Department of Communication Engineering 

National Chiao Tung University 

 

Abstract 

The problem of detecting changes in the distribution of alarmed sensors is 

considered. Under a nonparametric change detection framework, we present an 

algorithm based on the Rao test. We also partition sensors into small groups and 

estimate their mean to perform detection. Theoretical performance guarantees are 

obtained. Our approach has linear complexity, which is suitable to large number of 

sensors. We also enhance change detection performance for sensors-to-fusion links 

with interference. 
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Notations 

A  collection set of sensors 

iα  the sensor i changes its state at two time slots 

D  Kullback Leibler distance 

fD  f -divergences 

F  σ-algebra 

Hi hypothesis i 

I  The Fisher information 
( )m
ip   the alarm probability of sensor i at time m 
( )iP  probability measures under hypothesis Hi 

DP  detection probability 

FP  false alarm probability 

S  number of sensors 

T  number of training 

u  mean of the Normal distribution 

X  sample space 
( )t
iX  the symbol that the ith sensor transmits to fusion center at time t 
( )t
iY  the received signal with ( )t

iX  as the input to the BSC 
2
iσ  variance of the Normal distribution 
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Chapter 1  
 
Introduction 

 
 Due to remarkable advances in the electronics industry, we have been enabled to 

construct low-power, low-cost, multifunctional sensors nodes [1] that are small in size 

and can transmit information in short distances. These sensor nodes are able to perform 

sensing, communication, and data/signal processing. A sensor network is composed of 

a large number of sensor nodes that are densely deployed either inside the prescribed 

phenomenon or very close to it [2]. In order to monitor the change of the environment, 

we shall seek for methods to detect the occurrence of change efficiently yet rapidly. 

 We consider the change detection problem in wireless sensor networks. We are 

interested in the change in the geographical distribution of alarmed sensors at two 

consecutive time instants. There are many related application of the change detection 

problem, e.g., health, military, and home surveillance. The problem of change 

detection in sensor field has been considered in different setting (mostly parametric) 

[3], [4]. A classical approach is the Kolmogorov-Smirnov two-sample test [5] in which 

the empirical cumulative distributions are compared, and the maximum difference in 

the empirical cumulative distribution functions is used as the test statistic. In [6], they 

focus on the same problem as ours based on the criteria of Vapnik-Chervonenkis 

dimension [7] and A-distance [8]. There are many other change detection problems 
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that have been considered [6,9,10], but they all deal with detecting some phenomenon 

change by one observer over a long time period but not with detecting the geographical 

change by many observers(sensors) in two time instants. In [6], the complexity of the 

algorithms is quite intensive when the total number of sensors is large. We find that 

partitioning sensors into some small groups to perform detection has a lower 

complexity without degrading the performance.  

The thesis is organized as follows. Chapter 2 gives some preliminaries. In chapter 

3, we develop the main algorithms and evaluate their performance. Our algorithm 

needs to estimate the probability distribution before changing based on the data 

samples. Hence, we will calculate the lower bound of the training data number. In 

Chapter 4 We will consider the problem of performance enhancement when the 

sensor-to-fusion link is modeled by a binary symmetric channel. Then, we will 

compare our algorithm with other algorithms in Chapter 5. Finally, chapter 6 concludes 

the thesis.
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Chapter 2  
 
Preliminary 
 In this chapter, we introduce our system model and some useful theorem in our 

thesis. We introduce f-divergence that is related to Kullback-Leibler distance. It is often 

useful to think of Kullback Leibler distance as a distance between two distributions. 

Then, we introduce the Fisher information and the Cramér-Rao lower bound. They are 

related to the criteria that we use to solve the composite hypothesis problem—the Rao 

test[11] — and the proof of minimum variance estimator. Finally, we introduce 

Neyman-Pearson hypothesis test. 

 

2.1 System Model of Change Detection in Sensor 

Networks 
 In this section, we define the mathematical model and introduce the notation used 

through the thesis. There are S sensors deployed in the observation space. Let two 

probability measures (1)P  and (2)P  be on the same measure space ( , )X F  where 

( )( , , )tX F P  forms the t-th collection the locations of the alarmed sensors. In 

( )( , , )tX F P  shown in Figure 2.1, X is sample space and F is a σ-algebra. 
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Figure 2.1: Probability distributions for all sensors before and after change 

 
A sensor transmits a symbol designated by 1 to fusion center when it is alarmed, 

and transmits symbol 0 when otherwise. Let ( )t
iX  be the symbol that the ith sensor 

transmits to fusion center at time t: 

 
   (silence)

at time 
   (alarm)

( )
0

1
t

iX t
⎧⎪= ⎨
⎪⎩

.  (2.1) 

Figure 2.2 is the system block, in which each sensor-to-fusion link is modeled as a 

binary symmetric channel (BSC) accounting for, e.g., Rayleigh fading. ( )t
iY  is the 

received signal with ( )t
iX  as the input to the BSC. The fusion center combines signals 

from all sensors to decide the change of the geographical distribution of the alarming 

sensors. Change detection is tested based on the data collected over two consecutive 

time instants. We define ( )m
ip to be the alarm probability of sensor i at time m. The 

probability iα that the sensor i changes its state at two time slots is 

 ( ) ( )(1) (2) (2) (1)1 1 .i i i i ip p p pα = − + −  (2.2) 

Note that if (1)
ip  is equal to 0.5, iα  is always equal to 0.5, no matter what the value of 

(2)
ip  is. 
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Figure 2.2: Block diagram of sensor networks 

 

2.2 f-Divergences 

 A commonly used measure of the distance between two PDF is the 

f -divergences proposed by Cisiszár (1967). Let [ ) { }∞ → ℜ −∞ ∞∪: 0, ,f be a convex 

function with = (1) 0f . The f -divergence between two probability measures 

 and u v  on ℜ d  is defined by  

 
{ }=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

( )
( , ) sup ( ) ,

( )
j

j
f j

A A j j

u A
D u v v A f

v A
 (2.3) 

where the supremum is taken over all finite measurable partitions ℜ  of dA . If λ  is a 

measure dominating  and u v —i.e., both  and u v  are absolutely continuous with 

respect to λ —and λ= /p du d  and  /q dv dλ=  are the corresponding densities, 

then the  f -divergences may be put in the form 

 ( )
( , ) ( ) ( ).

( )f
p x

D u v q x f x
q x

λ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∫  (2.4) 
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Information divergence is obtained by taking  ( ) logf x x x= : 

 
{ }

( )
( , ) sup ( )log .

( )j

j
j

A A j j

u A
I u v u A

v A=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (2.5) 

( , )I u v  is called the Kullback-Leilber (KL) distance. By Jensen’s inequality, 

( , ) 0fD u v ≥  and  ( , ) 0fD u u = . Note that  ( , ) ( , )I u v I v u≠ . We will use KL distance 

to measure distance between two PDF in the followed chapter.  

 

2.3 Fisher Information and Cramér-Rao 

Inequality 
The Fisher information [12]  ( ) I θ is the number of information that an observed 

random variable X carries about an unknown parameter θ  when the underlying PDF is 

characterized by f(x;θ). Because the expectation of the score is zero and the variance is 

simply the second moment of the score, the derivative of the logarithm of the likelihood 

function with respect to θ is the Fisher information  ( ) I θ defined by 

 
2

( ) ln ( ; ) .I E f xθθ θ
θ

⎡ ⎤∂
= ⎢ ⎥

⎢ ⎥∂⎣ ⎦
 (2.6) 

It is assumed that the PDF f(x;θ) satisfies the “regularity” condition [12] 

 ln ( ; )
0          .

f x
E for all

θ θ
θ

∂⎡ ⎤ =⎢ ⎥∂⎣ ⎦
 (2.7) 

The regularity condition will be satisfied if the order of differentiation and integration 

can be interchanged. The Fisher information may also be expressed in other different 

forms. It is usually easy to calculate. It follows form the identity [12] 

 
2 2

2

ln ( ; ) ln ( ; )
.

f x f x
E E

θ θ
θ θ

⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ = −⎢ ⎥⎜ ⎟ ⎢ ⎥∂ ∂⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦
 (2.8) 

The mean squared error of any unbiased estimator T(X) of the parameter θ is the 

lower bounded by the reciprocal of the Fisher information, i.e., 
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 1
var( ) .

( )
T

I θ
≥  (2.9) 

This lower bound is called the Cramér-Rao lower bound which yields the lowest 

possible variance for all unbiased estimators. A unbiased estimator T is said to be 

efficient if it attains the Cramér-Rao lower bound, i.e., 1
 var( ) .

( )
T

I θ
=  It gives us a 

lower bound on the error of estimation in the estimation of θ form the observable data. 

Also, this allows us to immediately determine if an estimator exists and attains the 

bound. An estimator attaining the Cramér-Rao lower bound is called minimum 

variance unbiased (MVU) estimator. 

  

2.4 Central Limit Theorem 
Results of many observations demonstrate that the sum of a large number of 

random variables converages toward the Normal one. The central limit theorem [13] 

provides a sufficient condition for this to hold. 

Let 1 2, ,..., NX X X be a set of N independent random variables and each Xi have an 

arbitrary probability distribution with finite mean iu and finite variance 2
iσ . The 

central limit theorem state that the random variable 

 1 1

2
1

N N
i ii i

N
ii

x u
X

σ
= =

=

−
= ∑ ∑

∑
 (2.10) 

has a limiting cumulative distribution function which approaches a normal distribution. 

Note that the central the limit theorem shows the normal convergence of the 

characteristic function but not as yet the normal convergence of the PDF. Even though 

the PDF of interest (the difference between the numbers of alarming sensors) is a 

Bernoulli distribution which is discontinuous whereas the Gaussian is continuous, this 

result will not be changed. However, the integrals of discrete PDF, for large N, behave 

like integrals of the Gaussian PDF. This is why the distribution function of X tends to a 
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Gaussian distribution function but not necessarily to a Gaussian PDF. The "fuzzy" 

central limit theorem [13] says that data which are influenced by many small and 

unrelated random effects are approximately normally distributed. 

 In our research, each sensor has different probability. Hence, when we observe the 

whole of phenomenon of sensor, the central limit theorem can help us to model this 

situation suitably. 

 

2.5 Neyman-Pearson Hypothesis Test 
For composite hypothesis testing, we have many different definitions of optimality. 

Three most common formulations are—Bayes, minimax, and Neyman-Pearson [14]. In 

the Bayesian formulation, optimality is defined in terms of minimizing the cost 

function, define as the average risk; in the minimax formulation, prior probabilities are 

not assumed known and optimality is defined in term of minimizing the maximum of 

the conditional expected costs under the hypothesis. In practical problems, we often 

cannot obtain all the information about hypothesis to construct the cost function. In 

such cases an alternative design criterion, known as Neyman-Pearson criterion, is often 

utilized. 

In testing two possible hypotheses, H0 versus H1, there are two types of error that 

can be made: H0 can be falsely rejected or H1 can be falsely rejected. The first one is 

called “missing” and the second called “false alarm”. Correct acceptance of H1 is called 

“detection”. The Neyman-Pearson criterion to place a bound on the false-alarm 

probability and then to minimize the missing probability subject to this constraint; i.e., 

the Neyman-Pearson design criterion is 

  subject to max ( ) ( ) ,D FP P
δ

δ δ α≤  (2.11) 

where δ is our detector, and α is the upper bound which is known as the level of 



 

`  9

the test. Thus the goal of the Neyman-Pearson hypothesis test is to find the most 

powerfulα -level test of H0 versus H1. Note that the Neyman-Pearson criterion 

recognizes asymmetry in importance of the two hypotheses. 

There are three properties for the Neyman-Pearson design. Assume the hypothesis 

pair in which probability   jP has density   jp for  0 j = and  1,j = and suppose 

that 0.α >  

(1)Optimality: Let   δ� be any decision rule satisfying  ( ) ,FP δ α≤� and let  '  δ� be 

any decision rule of the form 

 

       if 

    if 

       if 

1 0

1 0

1 0

1 ( ) ( )

'( ) ( ) ( ) ( )

0 ( ) ( ),

p y p y

y r y p y p y

p y p y

η

δ η

η

⎧ >
⎪⎪= =⎨
⎪

<⎪⎩

�  (2.12) 

where  0 η ≥ and  0 ( ) 1 r y≤ ≤ are such that  ( ') .FP δ α=� Then  ( ') ( ).D DP Pδ δ≥� � That 

is, any size-αdecision rule of the above form is a Neyman-Pearson rule. 

 (2)Existence: For every ( ) 0,1  α ∈ there is a decision rule, NPδ� , above form 

with ( ) 0r y r= , for which  ( )F NPP δ α=� . 

 (3)Uniqueness: Assume that  ''  δ� is anyα-level Neyman Pearson decision rule 

for H0 versus H1. Then  ''  δ� must be of the above form except possibly on a subset of

Γ having zero probability under H0 and H1. 

 

2.6 Summary 
 In this chapter, we introduce system model and many theorems that will be used 

in the following context. We will discuss system model without noise in Chapter 3; the 

problem of sensor model with noise will be considered in Chapter 4. We will impose 

Kullback-Leilber distance which relates to f-divergence to find the strategy of detection 

in the Section 3.2. Fisher information relates to the Rao test in Section 3.1 and 
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Cramér-Rao lower bound that will be exploited in the proof of minimum variance 

estimator in Section 3.3.2. The central limit theorem will be used when every sensor 

has different PDF and we want to model the PDF of sum of sensors information in 

Section 3.1.2, Section 3.2.2, and Chapter 4. The Neyman-Pearson test is related to the 

Rao test in Section 3.1.  
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Chapter 3  
 
Nonparametric Change Detection in 
Sensors Networks  

 
In this chapter, we consider the change detection problem in wireless sensor 

networks. We are interested in the change in the geographical distribution of alarmed 

sensors from data collections at two different times, as in [6]. Assume PDF of alarmed 

sensors does not change during a period of T time instants, and can thus be estimated 

by using the data samples collected during this time interval. We assume that the PDF 

after change is unknown. We will propose a Rao test based solution since this Rao’s 

strategy requires the maximum likelihood parameter estimation priori to change but 

does not involve those upon the occurrence of change. In the next few sections, we will 

use the Rao test and Kullback Leibler distance to solve our problem. Finally, we will 

propose the partition method in our algorithm since we care about the geographical 

change of probability distribution. 

 

3.1 Rao Test  
In this part, we will introduce the method of the Rao test. The Rao test [11] has 

the asymptotic detection performance as the generalized likelihood ratio test. For finite 
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data records, there is no guarantee that the performance will be the same. The main 

benefit is that this asymptotically equivalent statistic may be easier to compute. This is 

especially true of the Rao test for which it is not necessary to determine the maximum 

likelihood estimator for 1H , but only the maximum likelihood estimator for 0H to be 

found. The PDF is denoted  ( ; )p x θ . The hypothesis test is 

 0 0

1 0

:

: .

θ θ

θ θ

=

≠

H

H
 (3.1) 

The Rao test just only needs to know 0θ , and is particularly suitable for the considered 
scenario. The Rao test decides 1 H  if 

 1
0

0 0

ln ( ; ) ln ( ; )
( ) ( ) ,

T

R
p p

T
x x

x I= =
θ θ

θ γθ θ θ θθ θ
−∂ ∂

= >
∂ ∂

 (3.2) 

where 0( )I θ  denote the Fisher information matrix, and γ  is a threshold. In (3.2) it is 

implicitly assumed that the PDFs under 0H  and 1H differ only in the value of .θ  The 

maximum likelihood estimator for 1H  need not to be found for the Rao test. This is 

advantageous when 

  

3.1.1 Rao Test for Independent and Identically 

Distributed Sensors 
In this part, we consider the simple homogeneous case, i.e., the alarming 

probabilities among sensors are independent and are identically distributed. We also 

assume for the moment that the channel is errorless (the cross-over probability of each 

BSC is zero). Under this condition, the number of sensors that change state x between 

two collections is Bernoulli distributed: 

   x N xN
p x

x
α α α −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

( ; ) (1 ) ,  (3.3) 

where α  is the probability of sensor changing state between two collections from 

(2.2). The composite hypothesis testing: 
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 0 0

1 0

:

: .

H

H

α α

α α

=

≠
  

where 0α denotes the probability of sensor changing state between two collections 

before change occurs. The Fisher information for a Bernoulli distribution is given by 

 

( )

( ) ( ) ( )

I( ) ln ( ; )

!
ln ( )

!( )!

ln ln ( )

( )

( )
( )

,
( )

x s x

E p x

N
E

x N x

E x N x

x N x
E

x N x
E

N N

N

α α
α

α α
α

α α
α

α α α

α α

α α
α α

α α

−

⎡ ⎤∂
= − ⎢ ⎥∂⎣ ⎦

⎡ ⎤⎛ ⎞∂
= − −⎢ ⎥⎜ ⎟−∂ ⎝ ⎠⎣ ⎦

⎡ ⎤∂
= − + − −⎡ ⎤⎢ ⎥⎣ ⎦∂⎣ ⎦

∂ −⎡ ⎤⎡ ⎤= − −⎢ ⎥⎢ ⎥∂ −⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤−

= +⎢ ⎥⎢ ⎥−⎢ ⎥⎣ ⎦⎣ ⎦
−

= +
−

=
−

2

2

2

2

2

2

2 2

2 2

1

1

1

1

1
1

1

  

and 

 ( )ln ( ; ) .
x N x

p x α
α α α
∂ −

= −
∂ −1

 

 
Substituting above result into the formula of Rao test gives 

 
2

0 0

0 0

(1 )
( ) .

1R
x N x

T x
N

α α γ
α α
⎛ ⎞− −

= − >⎜ ⎟−⎝ ⎠
 (3.4) 

Such that 

 2
0( ) ' .x Nα γ− >  (3.5) 

Thus the Rao test in our case claims change occurs if the squared difference between 

the measurement x and the mean 0Nα  exceeds a certain threshold ' .γ  

3.1.2 Rao Test for Independent and Different 

Distributed Sensors 
In this part, we consider the inhomogeneous case in which the alarming 
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probabilities of sensors are distinct. This case arises, e.g., when the alarming 

probabilities of sensors are identical but the BSC’s assume different cross-over 

probabilities across the sensor-to-fusion links. We do not care the changes of 

probability distribution in each sensor, but in the area. Hence, we combine sensors in 

the same area to perform detection. By the central limit theorem, when the number of 

sensors is large and sensors are independent, the probability distribution of the number 

of sensors alarming looks like the Normal distribution. So, the PDF of number of 

sensor alarming is denoted by 2( ; , ),p x u σ  where p is the Normal distribution, u  is 

the mean, and 2σ  is variance. Consider the composite hypothesis problem 

 
2 2

0 0 0

2 2
1 0 0

: ,

: , .

u u

u u

H

H

σ σ

σ σ

= =

≠ ≠
 (3.6) 

This is a two-parameters composite hypothesis problem. The Normal distribution, 

2( , )N u σ belongs to the exponential family and its log-likelihood function ( | )l xθ  is 

 
( )22

2

1
ln(2 )

2 2
x uπσ
σ
−

− −  (3.7) 

where ( )2, .uθ σ=  The Fisher information matrix ,
U

E
θ

∂⎡ ⎤= − ⎢ ⎥∂⎣ ⎦
I  where U is given 

by 

 
2

2 2 4 2

( ) 1
, , .

2 2
l l x u x u
u σ σ σ σ

⎛ ⎞∂ ∂ − −⎛ ⎞ = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (3.8) 

Taking the derivative with respect to ,θ  we have 

 
( )

1 2
2 4

2
1 2
2 2 4 4 6

1

.
1

2

x uU U
U u u

U U x u x u
σ σ

θ
σ σ σ σ σ

− −∂ ∂ ⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟∂ ∂ ∂= = ⎜ ⎟⎜ ⎟∂ ∂ − −∂ ⎜ ⎟⎜ ⎟ − −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (3.9) 

So, the Fisher information matrix I is 

 
2

4

2 01
.

2 0 1
U

E
σ

θ σ

⎛ ⎞∂⎡ ⎤ ⎜ ⎟− =⎢ ⎥ ⎜ ⎟∂⎣ ⎦ ⎝ ⎠
 (3.10) 

The Rao test decides 1H , if 
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 (3.11) 

The statistic (3.10) is forth moment of 0.x u− Compare (3.10) with (3.4), (3.10) is the 

square of (3.4). 

 

3.2 Kullback Leibler Distance 
 In probability theory and information theory, the Kullback Leibler distance is a 

measure of the distance between two distributions. In statistics, it arises as an expected 

logarithm of the likelihood ratio. The Kullback Leibler distance  ( || ) D p q is a measure 

of the inefficiency of incorrectly taking the distribution as q when the true distribution 

is instead p. For example, if we knew the true distribution of the random variable, then 

we could construct a code with average description length  ( )H p . If, instead, we use 

the code for a distribution q, we would need  ( ) ( || )H p D p q+ bits on the average to 

describe the random variable. 

 The Kullback Leibler distance between two probability mass functions p(x) and 

q(x) is defined as 

 

( )
( || ) ( )log

( )

( )
log .

( )

x

p

p x
D p q p x

q x

p x
E

q x

∈
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

∑

            

X
 (3.12) 

The Kullback Leibler distance is always non-negative, it is zero if only if p=q [12]. 

However, it is not a true distance measure between distributions because it is not 

symmetric and does not satisfy the triangle inequality, 
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 ( || ) ( || ).D p q D q p≠  (3.13) 

Nonetheless, it is often useful to think of Kullback Leibler distance as a distance 

between two distributions. The Kullback Leibler distance remains well-defined for 

continuous distributions, and furthermore is invariant under parameter transformations. 

 

3.2.1 Kullback Leibler Distance for Independent and 

Identically Distributed Sensors 
 In the Section 3.1, we discuss the detection problem from the viewpoint of the 

Rao test. In this section, we will consider this problem from another viewpoint, the 

Kullback Leibler distance. First, we discuss the homogeneous case in which the 

alarming probabilities of sensors are distinct. We also assume that the error probability 

in the binary symmetric channel is equal to zero. Under above condition, the number of 

sensors that change state between two collections is a Bernoulli distribution. We 

assume that p and q are the alarming probabilities before and after change occurs, and 

then we have: 

 x N xN
p x

x
α α α −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

( ; ) (1 )  (3.14) 

and 

 x N xN
q x

x
α α α −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

( ; ') ( ') (1 ') ,  (3.15) 

where N is the number of sensors, x is number of alarming sensors,αis from (2.2), 

α α= + Δ' , and α α− ≤ Δ ≤ −1 . Because sensors have the same probability 

distribution, we remove the index word i ofα . The Kullback Leibler distance 

( || ) D p q between p and q is 



 

`  17

 

-
-

-
0

-
-

-
0

-

(1 - )
( || ) (1 - ) log

( ') (1 - ')

(1 - )
          (1 - ) log

( ) (1 - ( ))

1
          (1 - ) log

(1

x N xN
x N x

x N x
x

x N xN
x N x

x N x
x

x N x

N
D p q

x

N

x

N

x

α α
α α

α α

α α
α α

α α

α α

=

=

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟= ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜⎜ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟= ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜⎜ +Δ +Δ⎝ ⎠⎝ ⎠

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑

∑

-0

.
) (1 - )

1 -

N

x N xx

α α
=

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Δ Δ⎜ ⎟⎜ + ⎟⎟⎜⎝ ⎠

∑

 (3.16) 

We declare the probability distribution changed if the Kullback Leibler 

distance  ( || ) D p q is larger thanλ. Otherwise, we declare the probability distribution 

non-changed. This composite hypothesis test can be written as 

 
            
versus

            

0

1

: ( || )

: ( || ) .

H D p q

H D p q

λ

λ

≤

>

 (3.17) 

Actually, this composite hypothesis problem (3.16) can be rewritten as 

 
             
versus

               

0

1

:

: .

H

H or

ε η

ε η

≤ Δ ≤

Δ < Δ >

 (3.18) 

Hence, we decide H1 if 

 
      

or 

      .

x N

x N

α ε

α η

− <

− >

 (3.19) 

Compare (3.18) with (3.5), and we find that (3.5) is equivalent to (3.18) when .ε η− =  

However, from (3.16) and (3.17), the values of ε  and η  in (3.18) is difficultly to 

obtain. We have to use numerical method to get them. This is an obstruction for us to 

use the composite testing from the viewpoint of the Kullback Leibler distance. 

 

3.2.2 Kullback Leibler Distance for Independent and 

Different Distributed Sensors 
For the inhomogeneous case the central limit theorem implies that, when the 



 

`  18

number of sensors is large and sensors are independent, the probability distribution of 

the number of sensors alarming likes the Normal distribution. So, the PDFs of 

non-changed p and changed q are approximately given by 

 

          

and
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 (3.20) 

The Kullback Leibler distance  ( || ) D p q between p and q is 
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 (3.21) 

where 1 0u u uΔ = − , and 2
2 2
1 0 .σ

σ σΔ = − This case with two variables is difficult to 

analyze, and we cannot get the variance from only one data sample. Hence, we only 

consider the variance invariant case. The Kullback Leibler distance  ( || ) D p q  

between p and q is 

 

2
0

22
00

2 22
0 10

2
1

2
0 0

2 22

( )
exp

21 ( )
( || ) exp log

2 ( )2 exp
2

1 ( ) (2 2 )
exp .

2 22
u u

x u

x u
D p q dx

x u

x u x u
dx

σ
σπσ

σ

σ σπσ

∞

−∞

∞

−∞

⎛ ⎞⎡ ⎤−
−⎜ ⎟⎢ ⎥⎡ ⎤− ⎣ ⎦⎜ ⎟= −⎢ ⎥ ⎜ ⎟⎡ ⎤−⎣ ⎦ −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

⎡ ⎤− −Δ − − Δ
= −⎢ ⎥

⎣ ⎦

∫
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 (3.22) 

We declare the probability distribution changes if the Kullback Leibler 

distance  ( || ) D p q is larger thanλ. Otherwise, we declare the probability distribution 

does not change. The composite hypothesis test can be written as 
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versus

            

0
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: ( || )
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H D p q
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 (3.23) 

Also, this composite hypothesis problem (3.22) can be rewritten as 

 
             
versus

               

0

1

:

: .

u

u u

H

H or

ε η

ε η

≤ Δ ≤

Δ < Δ >

 (3.24) 

Hence, we decide H1 if 

 
     

or
      

0

0

,

.

x u

x u

ε

η

− <

− >
 (3.25) 

 

3.3 Algorithm of Nonparametric Low 

Complexity Change Detection in Wireless Sensor 

Networks 
 In this section, we propose our nonparametric low complexity change detection 

algorithm based on the results of sections 3.1 and 3.2. We propose to partition sensors 

into several small groups according to their position. If we find that the probability 

distribution of at least one among these groups changes, we declare that the two 

probability distributions are different. We also have to estimate a parameter in our 

algorithm. We calculate the lower bound of the number of the data samples for 

estimation. Then, we discuss the performance of our algorithm and simulations. 

 

3.3.1 Algorithm 
 We are interested in the change in the geographical distribution of alarmed 

sensors. Hence, we propose to partition sensors into several small groups according to 
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their positions to detect geographical distribution change. If we find that the 

probability distribution of at least one among these groups changes, we declare that 

the two probability distributions are different. 

 In (3.5) and (3.11), we derive the results of composite hypothesis testing by the 

Rao test. Alternatively, in (3.19) and (3.25), we got the results of composite hypothesis 

testing based on the Kullback Leibler distance. However, we have to use numerical 

methods to find the values of ε  and η  in (3.19) and (3.25). This increases the 

difficulty of implementing our algorithm. From (3.5) and (3.11), we propose that if the 

composite hypothesis testing is: 

 
 for all 

 for some 

( ) ( )
0 0

( ) ( )
1 0

: , 1,...,

: , .

j j

j j

m m j K

m m j

H

H

= =

≠
 (3.26) 

where ( )
0
jm  is the mean of distribution of jth partition under 0H  and K is the number 

of partitions, we decide H1 if 

 ( ) ( ) ( )
0 ,j j jx m r− >  for some j , (3.27) 

where ( )jx is the number of sensor changing state and ( )jr is a threshold in the jth 

partition. We assume that the PDF under 0H does not change during a periods of T time 

instants (we call T “training number”). Since we do not know the PDF under 0H , we 

have to estimate the mean ( )
0
jm . We estimate ( )

0
jm as 

 
1

( ) ( )
0

0

1
ˆ [ ].

T
j j

t

m x t
T

−

=
= ∑  (3.28) 

This estimator is a minimum variance unbiased estimator for both homogeneous and 

inhomogeneous cases, and we will proof it later. Then, we design the thresholds of 

partitions by Neyman-Pearson’s criterion that maximizes the detection probability 

subject to that the false alarm probability is not larger than the threshold. 

 There are five steps in our algorithm: 
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Step1. Partition sensors into K groups according to their position. 

Step2. Record the number of sensor changing state in each partition. 

Step3. During T pairs of consecutive two time instants, we estimate the mean in each 

partition by summing average (3.28). 

Step4. According to Neyman-Person test, we set threshold in (3.27) for every 

partition. 

Step5. In every two time instants, repeat the test of (3.27). 

 

3.3.2 Lower Bound on Training Number 
 From previous section, we have designed the algorithm of change detection. In 

our algorithm, we have to know the original probability distribution via the observe 

sample sequence (a “training” process). We address the problem: how large the number 

of data samples is needed for guaranteeing the estimation accuracy to be within a 

prescribed level? This is an important issue in our research. We have to do a tradeoff 

between the detection performance and the calculation complexity. First, for the 

homogeneous case consider the set of observations 

 [ ] ( ; ), 0,1,..., 1,x t c t t Tα= = −  (3.29) 

where  Binormail distribution ( ; ) ( ; ) (1 )x N x
N

c t p x
x

α α α α −
⎛ ⎞⎟⎜ ⎟∼ = −⎜ ⎟⎜ ⎟⎜⎝ ⎠

 and N is the 

number of sensors. Then, the estimator  

 [ ]
1

0

1
ˆ

T

t

x t
NT

α
−

=
= ∑  (3.30) 

from Section 3.3 is minimum variance unbiased estimator[15]. Because  
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−
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∂

 

A good approximation for the Binomial distribution is the Normal distribution 

when  (1 ) 1.Nα α− � In our problem, N is usually large. Hence, the Normal 

distribution is a good approximation for the Binomial distribution. The probability 

distribution of ˆ α is approximated 
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We want to know how large T can guarantee the probability that the deviation of the 

estimated mean from the true mean ˆ  N α α− is less than D to be greater than  .ε  

Toward a solution we note that 
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 Now, we discuss the general inhomogeneous case. Consider the observation 

 [ ] 2( ; , ), 0,1,..., 1,x t c t m t Tσ= = −  (3.33) 

where  Normal distribution 
2
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σπσ
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estimator 
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is the minimum variance unbiased estimator. Because 
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(3.35) 

So, the probability distribution of ˆ  m can be written 
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From (3.7), 
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 (3.37) 

We can find that (3.7) is the same with (3.12). Hence, we get a lower bound in the 

common use. 
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3.3.3 Performance 
 In this section, we present the detection probability DP  and false alarm 

probability FP  for our estimator. From (3.27), the detection probability ( )j
DP  and 

false alarm probability ( )j
FP  in the jth partition are 
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 (3.38) 

In the homogeneous case, the PDF ( )( )j
jP x  of number x(j)of sensor changing state in 

jth partition is the Binomial distribution B(S, α), where S is the number of sensors, 

α is probability of sensor changing state. The detection probability ( )j
DP  and false 

alarm probability ( )j
FP  can be determined by 
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 (3.39) 

where ⎣ ⎦  is the floor function and ⎡ ⎤  is the ceil function. When  (1 ) 1,N �α α−  

the Normal distribution is a good approximation for the Binomial distribution. Then 

(3.39) can be approximated by 
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 (3.40) 

where Φ is the CDF of the Normal distribution N(0,1) and 1α  denotes the alarming 

probability after change occurs. From (3.40), when the number of sensors tends to 

infinity, the false alarm probability approaches zero and the detection probability is 

approaches unity. So, if we want to improve the detection performance, we have to 

increase the number of sensors in a partition. However, if we increase the number of 

sensors in a partition, the number of partitions is decreased (since the total number of 

sensors is fixed) and this may incur geographical detection performance degradation. 

There is thus a tradeoff between the number of partitions and the achievable 

performance. 

 In the inhomogeneous case, the PDF ( )( )j
jP x  of number x(j) of sensor changing 

state in jth partition is the Normal distribution 2( , )N m σ . The false alarm probability 

and detection probability can be written as 
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 (3.41) 

From above description, we present the detection probability and the false alarm 

probability in each partition. Now, we will discuss the total detection probability DP  

and the false alarm probability FP . From (3.26), we have FP : 
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 (3.42) 

We also assume jA  is the jth combination of partition with distribution change, and 

the set of total combinations is { }1 2,...,, .jA A A A= We have DP  

 { } ( ) ( )( ) ( )1 Pr 1 1 .
j j j

a b
D j D D

A A a A b A

P A P P
∈ ∈ ∈Ω−

= − − −∑ ∏ ∏  (3.43) 

 

3.4 Computer Simulation 
In this part, we show our simulation result by the Matlab. In Figure 3.1, we set the 

number of sensors to be 4096. The ( , )x y  is the coordinate of sensor,  

{ }0,1,...,61x ∈  and { }0,1,...,61y ∈ . Before change occurs, sensors have identical 

alarming probability equal to 0.8. The change occurs in sensors position at 

{ }0,1,..., 31x ∈  and { }0,1,..., 31y ∈ with alarming probability decreases to 0.7. Use 

100,000 Monte Carlo runs. As our description in Section (3.3.3), if we want to improve 

the detection performance, we have to increase the number of sensors in a partition. 

In Figure 3.2, we set the number of sensors to be 3600. We partition sensors in to 

nine groups. Before change occurs, sensors have identical alarming probability equal 

to 0.8. The change occurs in two partitions, with alarming probability decreases to 0.7. 

We simulate the training number from 11 to 24. Use 50,000 Monte Carlo runs. We 

have a tradeoff between performance and complexity. In this case, we find that we 

have performance similar to the optimal optimum as the training number equals 24. 

 



 

`  27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pf

P
d

4 partitions (theorem)
16 partitions (theorem)
64 partitions (theorem)
4 partitions
16 partitions
64 partitions

  

Figure 3.1: Receiver operating characteristics for different partition number 
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Figure 3.2: Receiver operating characteristics for different training number 
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3.5 Summary  
 In this chapter, we consider our detection problem from two different aspects, the 

Rao’s test and the Kullback Leibler distance in Section 3.1 and Section 3.2. We then 

propose a new change detection algorithm, and then discuss the lower bound on 

training number required for estimating the ensemble statistics. Finally, we 

demonstrate via numerical simulation the performance of the proposed method.  
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Chapter 4  
 
Detection Performance Enhancement 
Against Binary Symmetric Channel 
Links  

 
Our previous discussions assume that all the sensor-to-fusion links are error-free. 

In this chapter we model each communication link as a BSC. We introduce a criterion 

for characterizing the received data quality, and propose a method for detection 

performance improvement via dropping sensors yielding bad data quality.  

 

4.1 Definition of Data Quality 
 Since all the sensor-to-fusion links are modeled as binary symmetric channels 

with distinct cross-over probabilities, the number of sensor changing state in every 

partition is Normally distributed according to 2( , )N m σ . From (3.41), we have 
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Under the same false alarm probability in jth partition 
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 (3.44) 

where ( )jΔ := 0 1m m− , and k is a constant. We want to find the combination α  of 

sensors in jth partition that 
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(3.45) 

where ( )jA  are all possible combinations of sensors in jth partition, ( )j
iΔ  is the 

difference of mean of sensor i at jth partition, ( )j
liσ  is the variance of sensor i at jth 

partition in lH , ( )j
iΔ  and ( )

1
j
iσ  are unknown parameters. While problem (4.2) 

appears quite difficult to be tackled, it motivates us to develop a method for dropping 

sensors with bad data quality for detection performance improvement. 

 In Figure 4.1, the alarming probability of sensor i is changed by BSC. The 

changed alarm probability '
ip  is  

 (1 - 2 ) .i i ip p ε+  (3.46) 

The state-changing probability '
0iα  for sensor i before change occurs is 

 ( )' ' 2 2 2 22 1 (-8 8 - 2) (8 - 8 2) - 2 2 .i i i i i i i i i ip p p p p p p pε ε− = + + + +  (3.47) 

After change occurs, the ip  becomes i ip + Δ . The state-changing probability '
0iα  

for sensor i after change occurs is 

 ( ) ( ) ( )( )' ' ' '1 1i i i ip p p p+ Δ − + − + Δ  (3.48) 
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Figure 4.1 The binary symmetric channel with error probability εi 

 

 When the error probability iε  approaches to 0.5, '
0iα  and '

1iα  approach to 0.5; 

the difference of mean approaches to minimum (zero); the variance approaches to 

maximum ( 1
4

). If we include this sensor in our detection process, the difference of 

mean of two distributions will not be increased, but the variances of them will be 

increased. This would make the detection performance decrease. Hence, we propose to 

drop sensors with an alarming probability close to 0.5, which is the worst-case choice.  

 

4.2 Adaptive Method 
 In previous section, we have proposed that we shall drop sensors whose alarming 

probabilities are near 0.5. However, if we drop too many sensors, the detection 

performance will be degraded also instead since available number of data samples 

would be small. We propose the following “adaptive method” for obtaining a 

satisfactory solution: 

Step 1. First, we do not drop any sensors, record the performance, and set zero and 

unity as the left-point and right-point.  

Step 2. Then, we drop sensors with alarming probability 0.5± D and record the 

performance again, where D is zero added with step value d. If the latter 

performs better than the former, we record better performance and increase 
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D by the same step value. If the latter instead performs worse than the 

former, jump the process to Step 4. 

Step 3. Then, we drop the sensor with alarming probability which distance to 0.5 is 

less than new D and compare its performance with the better performance 

recorded before. If the new performance is better than the former, we record 

the better performance and increase D by the same step value again. We 

repeat Step 3 until the performance is degraded or D is equal to the left-point. 

If the performance is degraded, we set D as the right-point. We sure that 

maximum of performance exists between left-point and right-point. Else if D 

is equal to the right-point, we set half of step value as the new one, and set 

left-point as D, and increase D by new step value, and repeat Step 3.  

Step 4. We set half of step value as the new one and decrease D by new step value. 

Repeat Step 4 until the performance is degraded or D is equal to the 

left-point. If the performance is degraded, we set D as the right-point, and 

we sure that maximum exist between left-point and right-point, and set half 

of step value as the new one and decrease D by new step value, and repeat 

Step 3. Else if D is equal to the left-point, we set half of step value as the 

new one, and set right-point as D, and decrease D by new step value, and 

repeat Step 4. 

 

4.3 Computer Simulations 
We set the number of sensors to be 3600. We partition sensors in to nine groups. 

Before change occurs, sensors have identical alarming probability equal to 0.8. The 

change occurs in two partitions, with alarming probability decreasing to 0.7. The 

channel model is Rayleigh fading channel. The first step value is 0.02. In Figure 4.2, 
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SNR is 1dB. In Figure 4.3, SNR is 3dB (10,000 Monte Carlo runs are conducted). 

From simulations, we can find that as the iteration number increased the detection 

performance is enhanced. 
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Figure 4.2: Use the adaptive method for BSC with SNR = 1 dB 
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Figure 4.3: Use the adaptive method for BSC with SNR = 3 dB 

 

4.4 Conclusions 
In this chapter, we consider the problem of performance degradation since 

sensor-to-fusion links are no longer error-free. We try to drop some sensors with bad 

data quality to maximize detection performance. This method we proposed is called 

adaptive method. From simulations, we find the method is really useful. 
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Chapter 5  
 
Comparison with Other Methods 

 
 In the chapter, we compare our method with [6], which presents several 

nonparametric change detection and estimation algorithms based on an application of 

Vapnik-Chervonenkis (VC) theory [7]. The methods in [6] are all based on the 

A-distance [8] as the measure of distance between two distributions. We will compare 

our method with three algorithms reported in [6], namely the search in axis-aligned 

rectangles (SAR) algorithm, the search in axis-aligned strips (SAS) algorithm, and the 

search in diagonal-defined axis-aligned rectangles (SDR) algorithm, in terms of 

complexity and the detection performance.  

 

5.1 Comparison of Complexity 
 In this section, we first compare the complexity of the aforementioned three 

algorithms. In [6], the authors define the collection ⊆A F  of measurable set to 

model the set of geographical areas that are of practical interest. For example, they 

may be interested in the number of alarmed sensors in a circle centered at some 

location with some radius. They are interested in whether there is a change in 

probability measure on A and, if there is a change, where the maximum change of 

probability occurs. The detection problem in [6] is formulated as 
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The estimation problem, on the other hand, is to estimate the event *A ∈A  that 

gives the maximum change. For example, using the A-distance measure 

 1 2* argmax ( ) ( ) .
A

A P A P A
∈

= −
A

 

Since the number of the collection of sets A is possibly infinite, they need to reduce 

search in A. There are three different search algorithms with different performance and 

complexity, i.e., the search in axis-aligned rectangles (SAR), the search in axis-aligned 

strips (SAS), and the search in diagonal-defined axis-aligned rectangles (SDR). 

 We assume S is the total number of data points in the two collections, T is the 

number of training samples, and P is the number of partition. In our algorithm, the 

complexity of training calls for TS+TP additions and P multiplications. The TP 

additions and P multiplications is from summing average. The complexity of search is 

2S+P additions. Hence, the complexity of our algorithm is O(S), which is linear in the 

number of total sensors. In [6], the complexity of SAR is O(S3), the complexity of SAS 

is O(SlogS), and the complexity of SDR is O(S2). Based on these facts our algorithm 

has lower complexity than those in [6]. 

 

5.2 Simulations 
 In the simulation, the distribution of collected sensors is a mixture of two 2-D 

uniform distributions, one on a s s×  square D and the other centered at ∈0x D  

with radius r. Specifically, the probability density function of the 2-D random vector x 

is given by 
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where x0, p, q and e are parameters,0 r s< � and 0 1.q p≤ < ≤  

 This model corresponds to the scenario when sensors are uniformly distributed in 

D, and a sensor is alarmed with probability p if it is within distance r from ∈0x D  

and q if it falls outside this distance. We consider the ideal case that data transmission 

is errorless; hence 1-p is the (uniform) miss detection probability and q is the (uniform) 

false alarm probability at sensors. 

 Under hypothesis 0H , two sets of sample points are drawn i.i.d. from the same; 

under 1H , one set of sample points are drawn from p
0x

, and the other set of sample 

points are drawn independently from '
0

p
x

 for some other center '
0x . 

We set s to be 180, p = 0.98, q = 0.02, and r = s/12. We partition sensors in to 

100 groups, and the number of training is 100. In Figure 5.1, 

(50,60)=0x and (50,90)='0x . In Figure 5.2, (50,60)=0x and (50,61)='0x  (10,000 

Monte Carlo runs are conducted). 

 In the first case, it is relatively easy to detect whether the change occurs or not. 

The propose method is comparable to Tong’s three algorithms. For the second case, in 

which the locations of the sets of alarming sensors before and after change occurs 

almost coincide, the proposed approach significantly outperforms Tong’s algorithms. 

Such a performance advantage comes from (i) our method performs the training 

process to obtain some knowledge of the distribution of change, (ii) our method resorts 

to region partition, which can better reflect the actual tendency in distribution caused 
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by the change effect. 
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Figure 5.1: Receiver operating characteristics for (50,60)=0x  and (50,90)='0x  
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Figure 5.2: Receiver operating characteristics for (50,60)=0x and (50,61)='0x  
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5.3 Summary 
 Our algorithm has lower complexity (linear in the total number of sensors) than 

the three algorithms proposed by Tong in [6]. Simulation results also show that our 

algorithm exhibits better change detection capability in some critical cases where the 

locations of the sets of alarming sensors before and after change occurs almost 

coincide. Although our algorithm has lower complexity and good performance than 

others, it only applies to the conditions allow training. If training is not allowed, our 

algorithm does not work. 
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Chapter 6  
 
Conclusions 
 In this thesis, we have presented a nonparametric approach to the detection of 

changes in the distribution of alarmed sensors. The proposed approach relies on 

partitioning sensors into several groups in the sensing area. Then, we estimate via data 

training the mean of the related distributions to perform change detection. We exactly 

study the performance in terms of missing and false alarm probabilities in our 

approach. Compared with existing methods, our algorithm not only has a low 

complexity (O(S)) but also yields improved detection performance. We also provide a 

lower bound of the number of training sample; this serves as a useful guideline for 

determining the number of training required for guaranteeing prescribed estimation 

accuracy. We also study the performance enhancement problem when the 

sensors-to-fusion links are non-ideal and are modeled as BSC. We propose an approach 

to find a global/local maximum of detection probability under the same false alarming 

probability. We got performance enhancement in practice by our method. 
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