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摘要 

 在無線感測網路中因頻寬與能量的限制，每個感測器只能傳送有限個位元數

至 融 合 中 心 ， 此 融 合 中 心 接 收 資 料 並 且 利 用 最 佳 線 性 不 偏 估 計

(best-linear-unbiased-estimator)融合規則估計未知參數。本論文中有兩種最

佳能量分配策略被考慮：最小能量分散式估計及最小均方誤差(minimal mean 

square error)分散式估計。第一種策略為最小化總能量並滿足某程度的效能限

制，而此效能限制為對量測雜訊變異量機率分佈取平均後的均方誤差。第二種策

略為最小化平均均方誤差並滿足某程度的總能量限制。我們也考慮最小能量分散

式估計在路徑衰減的拉瑞衰減通道中，而這個感測器與融合中心之間的通道用二

進位對稱式通道(binary symmetric channel)來表示。現今有關能量分配的相關

研究皆需已知瞬間雜訊變異量，而本論文提出的演算法只需知道長期雜訊變異量

的統計特性。而這個問題被表示成凸型最佳化問題(convex optimization)，並

且得到封閉式最佳解，最後從此演算法中可以發現一些與其他相關研究共同的特

性。根據模擬結果，此演算法確實能顯著的改進能量使用效率比起均衡式能量分

配。 
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Abstract 

In a wireless sensor network, due to bandwidth and energy limitation, each 
sensor is only able to transmit a finite number of bits to the fusion center (FC) which 
combines the received bits to estimate the unknown parameter by the 
best-linear-unbiased-estimator (BLUE) fusion rule. In this thesis, the optimal power 
allocation strategies are considered for two cases: minimal energy decentralized 
estimation and minimal mean square error decentralized estimation. In the first case, 
the minimization of total energy is subject to a certain performance constraint in terms 
of mean square error (MSE) averaged over the noise variance distribution. In the 
second case, the minimization of the average MSE is subject to a certain energy 
constraint. We also consider the minimal energy decentralized estimation over 
rayleigh fading channels with path loss. The wireless links between sensors and the 
FC are characterized by the binary symmetric channels (BSCs). While most of the 
existing related works require the knowledge of instantaneous noise variance for 
energy allocation, the proposed approach instead relies on an associated model. The 
problems can be reformulated in the form of convex optimization and the closed-form 
optimal solutions are obtained. The proposed schemes share several attractive features 
of the existing designs and are seen to significantly improve energy efficiency against 
the uniform allocation schemes by the simulation results. 
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Chapter 1 Equation Chapter 1 Section 1 

 

Introduction 

 

Wireless sensor networks (WSNs) are ideal for environmental monitoring 

applications because of their low implementation cost, agility, and robustness to 

sensor failures. A popular WSN architecture consists of a fusion center (FC) and a 

large number of spatially distributed sensors. The FC can be either a standard base 

station or a mobile access point such as an unmanned aerial vehicle hovering over the 

sensor field. Each sensor in a WSN is responsible for local data collection as well as 

occasional transmission of a summary of its observations to the FC via a wireless link. 

In a practical WSN, each sensor has only limited computation and communication 

capabilities due to various design considerations such as small size battery, bandwidth, 

and cost.  

As a result, it is difficult for sensors to send their entire real-valued observations 

to the FC. Instead, a more practical decentralized estimation scheme is to let each 

sensor quantize its real-valued local measurement to an appropriate length and send 

the resulting discrete message (typically short) to the FC, while the latter combines all 

the received messages to produce a final estimate of the unknown parameter. 

Naturally, the message lengths are dictated by the power and bandwidth limitations, 
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sensor noise characteristics, wireless channel condition as well as the desired final 

estimation accuracy. 

Recently, several decentralized estimation schemes (DES) [1, 2, 3] have been 

proposed for parameter estimation in the presence of additive sensor noise. These 

DESs require each sensor to send only a few bits to the fusion center, with the 

message length determined by the sensor’s local SNR. Performance of the resulting 

estimator is shown to be within a constant factor of the best linear unbiased estimator 

(BLUE) performance. 

In a practical WSN, the wireless links from sensors to the FC may have different 

qualities, depending on the sensor locations relative to the FC. Intuitively, local 

message length should depend not only on the quality of sensor’s observation (i.e., 

local SNR), but also on the quality of its wireless link to the FC. In particular, even if 

a sensor has a high quality observation, it should not perform any local quantization 

or transmission when its wireless link to the FC is weak, in order to conserve sensor 

energy. In general, minimizing the total sensor energy consumption for a 

decentralized estimation task is essential to ensure long lifespan of a WSN. Motivated 

by these considerations, the authors of [4, 5] proposed optimal coded and uncoded 

transmission strategies for sensor networks which can minimize the required energy 

per transmitted bit, although no consideration was given to the quantization effect and 

the accuracy of final estimation.  

As energy efficiency is a critical concern for sensor network design [6, 7, 8], the 

decentralized estimation is formulated as optimal bit-loading problem. In the practical 

system the probability density function (pdf) of the observation noise is hard to 

characterize, especially for a large scale sensor network. The signal processing 

algorithms that do not require knowledge of the sensor noise pdf have been proposed 

[7, 8]. While most of the existing related works require the knowledge of 
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instantaneous noise variances for energy allocation, the proposed approach instead 

relies on an associated statistical model. In order to improve the estimation 

performance against the variation of sensing conditions, repeated update of the noise 

profile would be needed. This comes inevitably at the cost of more training overhead 

and extra energy consumption. If the sensing environment is harsh, the sensing noise 

will change quickly. The proposed signal processing algorithm which relies on an 

associated sensing noise variance model is needed 

This thesis is organized as follows. In Chapter 2, we introduce the system model 

of wireless sensor networks and decentralized estimation scheme. In Chapter 3, 

minimal energy decentralized estimation based on long-term noise variance 

knowledge is proposed. In Chapter 4, minimal mean square error decentralized 

estimation based on long-term noise variance knowledge is proposed. In Chapter 5, 

we consider minimal energy decentralized estimation with the noisy channel between 

each sensor and the FC by exploiting long term noise variance information. The main 

results are presented and the numerical performance of the proposed schemes are 

illustrated. Finally, we conclude this thesis and propose some potential future works in 

Chapter 6. 
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Chapter 2 Equation Chapter (Next) Section 1 

 

Wireless Sensor Network Overview 

 

Recent technological advances in Wireless Sensor Networks have led to the 

emergence of small, inexpensive, and low-power sensor devices with limited 

on-board processing and communication capabilities. When suitably programmed and 

deployed in large scale, such networked sensors can cooperate to accomplish various 

high-level tasks. Sensor networks of this type are well-suited for situation awareness 

applications such as environmental monitoring (air, water, and soil), smart factory 

instrumentation, military surveillance, precision agriculture, intelligent transportation 

and space exploration. 

WSNs deploy geographically distributed sensor nodes to collect information of 

interest. The collected information is then aggregated via wireless transmissions at a 

fusion center to generate the final intelligence. A typical wireless sensor network 

consists of a fusion center and a number of sensors. The sensors typically have limited 

energy resources and communication capability. Each sensor in the network makes an 

observation of the quantity of interest, generates a local signal, and then sends it to the 

fusion center where the received sensor signals are combined to produce a final 

estimate of the observed quantity. 
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Since sensors have only small-size batteries whose replacement can be costly, 

sensor network operations must be energy efficient in order to maximize network 

lifespan. A main objective of current sensor network research is to design 

energy-efficient devices and algorithms to support all aspects of network operations.  

2.1 System Model of Wireless Sensor 
Networks 
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Figure 2.1 : System Model of Wireless Sensor Network 
 

A common WSN architecture consists of a fusion center and a number of 

geographically distributed sensors. Such network architecture can be used to 

accomplish a joint signal processing task such as decentralized estimation and 

detection. In this chapter, we consider decentralized estimation of an unknown by a 

set of distributed sensor nodes and a fusion center. The sensors collect real-valued 

data, perform a local data compression and send the resulting discrete messages to the 

fusion center, while the latter combines the received messages to produce a final 

estimate of the observed signal. 

The universal decentralized estimation schemes (DESs) let each sensor send to 
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the fusion center a short discrete message whose length is determined by the local 

signal-to-noise ratio (SNR), while guaranteeing a mean squared estimation error 

(MSE) performance that is within a constant factor of that achieved by the centralized 

best linear unbiased estimator (BLUE). However, this chapter still assumes that the 

wireless channel between sensor and fusion center are ideal without any distortion. 

2.1.1 Measurement and Quantization of Each Sensor 

Consider a set of N distributed sensors, each making observations on 

deterministic source signal θ . The observations are corrupted by additive noise. The 

local observation at the ith node is  

 ,  1 ,i ix n i Nθ= + ≤ ≤   (2.1) 

where ni is zero-mean measurement noise with variance 2
iσ . A commonly used 

statistical description for sensor noise variance is [6, 7]  

 N  (2.2) 

where 

2 ,  1 ,i iz iσ δ α= + ≤ ≤

 models the network-wide noise variance threshold, αδ  controls the 

underlying variation from the nominal minimum, and 2
1iz χ∼  is a central 

Chi-Square distributed random variable with degrees-of-freedom equal to one[10, 

i

p-24]. Due to bandwidth and power limitations each sensor quantizes its observation 

into a b -bit message, and then transmits this locally processed data to the FC to 

generate a final estimate of θ . In this thesis the uniform quantization scheme with 

nearest-rounding [11, 12] is adopted.  

The quantized message at the ith sensor can be modeled as 

 ,  1 ,i i im x q i N= + ≤ ≤  (2.3) 

here is the quantization error which is uniformlyw  distributed with zero mean and iq  
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variance 2 2 12 4 i
i

b
q Rσ = ⋅  [11]. [ ]2, 2R R−  is the available signal amplitude range 

common th to all sensors. Wi  and (2.3),

 

(2.1)  the received data from all sensor output 

can be expressed in a vector form as 

,θ= + +m 1 n q  (2.4) 

here , w 1[ ..... ]Nm m Τ=m [1.....1]Τ=1 , n1[ ..... ]Nn Τ=n , 1[ ..... ]Nq qq  and ( )Τ= Τi  

denotes the transpose. 

2.1.2 Best Linear Unbiased Estimator (BLUE) 

In order to generate a final estimate of θ , the Best Linear Unbiased Estimator 

(BLUE) [9] is used in the 

(2.5) 

e observe the data set 

FC. This estimator can be determined with knowledge of 

only the first and second moments of the PDF. The BLUE is defined in (2.5). 

 
1

ˆ [ ].n
n

a m nθ
=

= ∑  
N

W { }[1], [2],..., [ ]m m m N  whose PDF ( ; )p θx  depends on an 

unknown parameter θ . Th  to be determined. If we constrain this 

estimator to be unbiased ( )ˆE

e an’s are constants

θ θ=  and to minimize the variance ( )ˆvar θ . Then the 

BLUE is given by 

 
1

1
ˆ ,θ

Τ −

Τ −=
1 C m
1 C 1

 (2.6) 

C is covariance matrix. The minimum variance of the BLUE is 

 

where (2.7). 

( ) 2
1Τ −⎜ ⎟

⎝ ⎠ 1 C 1
1ˆ ˆvar .Eθ θ θ⎛ ⎞= − =  (2.7) 

By assuming that the noise component {n, q} in (2.4)

with

 are mutually independent 

 covariance matrices Cn and Cq , then C is given by n q= +C C C . By further 

assuming that the measurement noise ni‘s are i.i.d, and the q oise quantization n i’s are 

independent across all sensors, the mean square error (MSE) incurred by θ̂  can be 
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immediately computed as [9] 

1
2

2 2
1

1ˆ ,
4 /12i

N

b
i i

E
R

θ θ
σ

−

−
=

⎛ ⎞⎛ ⎞− = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ +⎝ ⎠
∑  (2.8) 

where 2
iσ  is defined in (2.2). 

2.2 Decentralized Estimation Scheme (DES) 

In this thesis, a star-like sensor network is considered. Each sensor in the 

netw

ralized estimation of a noise-corrupted deterministic parameter is 

cons

ork collects an observation, computes a local message and sends it to a fusion 

center. Sensor nodes do not communicate with each other. To reduce the 

communication requirement from sensors to the fusion center, local 

quantization/compression at each sensor site is needed. In fact, a central problem in 

sensor network research is to design discrete local message functions and the final 

fusion function in a way that minimizes the total bandwidth requirement while 

satisfying an overall system performance requirement. Clearly, optimal design of 

these functions will depend on the underlying sensor noise distributions. 

Unfortunately, characterizing the exact noise probability distributions for a large 

number of sensors is impractical, especially for applications in a dynamic sensing 

environment.  

The decent

idered. The sensor noises are assumed to be additive, zero mean, spatially 

uncorrelated, but otherwise unknown and possibly different across sensors due to 

varying sensor quality and inhomogeneous sensing environment. The classical BLUE 

linearly combines the real-valued sensor observations to minimize the MSE. 

Unfortunately, such a scheme cannot be implemented in a practical 

bandwidth-constrained sensor network due to its requirement to transmit real-valued 
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messages. In paper [3], the authors construct a decentralized estimation scheme (DES) 

where each sensor compresses its observation to a small number of bits with length 

proportional to the local sensor signal-to-noise ratio (SNR). The resulting compressed 

bits from different sensors are then collected and combined by the fusion center to 

estimate the unknown parameter. It is shown that the MSE of the DES is within a 

constant factor of 25/8 to that achieved by the classical centralized BLUE estimator. 

2.3 Mean Square Error (MSE) of 

That the sensor messages 

Decentralized Estimation 

{ }: 1,2,...,im k K=  are perfectly received by the FC 

with ding to (2.1) and  no errors is assumed. Accor (2.3), mi can be represented as 

 ,  1 ,i i im n q i Nθ= + + ≤ ≤  (2.9) 

( ) ,iE m θ=  (2.10) 

 ( ) 2 2 4 /12,i  (2.11) b
i ivar m Rσ −= +

where ni is the sensor measurement noise and qi is quantization noise. Therefore the 

final estimator is  

1

 
( ) ( )1 1

1 .
N N

i

i ii i

m
var m var m

θ
−

= =

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑  (2.12) 

otice that  is an unbiased estimator of θ every mi is an unbiased N θ  since 

quantization of xi. It has an MSE : 
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( )

( )

2

21

1 1

22

2
1 1

1
var( ) var( )

1
var( ) (var( ))

N N
i

i ii i

N N i

i ii i

D E

mE
m m

E m

m m

θ θ

θ

θ

−

= =

−

= =

= −

⎡ ⎤⎛ ⎞⎛ ⎞ −⎢ ⎥⎜= ⎜ ⎟⎢⎜ ⎟⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

⎟
⎥   

1

1

1 .
var( )

N

i im

−

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑  (2.13) 

When each mi is transmitted to the FC through a nonperfect channel with finite 

power, bit error occurs. It will impact on the estimation t accuracy at the FC. The links 

between each sensor and the FC are modeled as a memoryless binary symmetric 

channel. Suppose the probability of bit error achieved by sensor i is i
bp  and  is 

the decoded version of  at the receiver. Let 

im′

im D′  denote the MSE achieved by the 

estimator (2.12) based on the received message 1 2{ , ,..., }Nm m m′ ′ ′ .According to [6], if 

{ }i
bp  satisfy (for some ) 

 

0 0p >

0
4 ,  1 ,

3

i
b

i

NpRp i
σ

≥ ≤ N≤  (2.14) 

then 

 
( )

( )

1
2

0
1

2
0

11
var( )

1 .

N

i i
D p

m

p D

−

=

⎛ ⎞
′ ≤ + ⎜ ⎟

⎝ ⎠

= +

∑
 (2.15) 

It shows that the actual achieved MSE is at most a constant factor away from 

what is achievable with perfect sensor channels, provided that each sensor’s bit error 

rate (BER) is bounded above (2.14). Because the perfect MSE D  is easier to derived, 

the upper bound of actual achieved MSE D′  in (2.15) will be sed to formulate the 

optimization problem later. 

 u
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Chapter 3 Equation Chapter (Next) Section 1 

 

Minimal Energy Decentralized 

Estimation Based on Sensor Noise 

Variance Statistics 

 

This chapter studies minimal-energy decentralized estimation in sensor network 

under BLUE fusion rule. While most of the existing related works [6, 7, 8] require the 

knowledge of instantaneous noise variances for energy allocation, the proposed 

approach instead relies on an associated statistical model. Subject to severe energy 

and bandwidth limitation, each sensor in this scenario is allowed to transmit only a 

quantized version of its raw measurement to the FC to generate a final parameter 

estimate. While quantized message with longer bit length provide improved data 

fidelity, the consumed transmission energy is however proportional to the bit loads. 

As energy efficiency is a critical concern for sensor network design, the 

minimal-energy decentralized estimation problem which formulated in an optimal 

bit-loading setup has been recently considered. 

One key feature common to the existing related works is that the energy 
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allocated to each sensor must be determined via instantaneous local sensor noise 

he BLUE principle. In 

order to improve the estimation performance against the variation of sensing 

nditions, repeated update of the noise profile would be needed. This comes 

inevitably at the cost of more training overhead and extra energy consumption. One 

or long-term) 

information of the noise characteristics. 

alized 

estimation by exploiting long term noise variance information. A commonly used 

s used and the estimation performance is 

assessed through an MSE based metric average with respect to the considered 

stribution. A closed-form expression of the overall MSE requirement is derived. The 

analysis of the energy-minimization problem is formulated in the form of convex 

optim

characteristics (the noise variance), if the fusion rule follows t

co

typical approach to resolving such a drawback is to exploit the partial (

This chapter attempts to provide a solution to minimal-energy decentr

statistical model [6, 7] for noise variance i

di

ization. The problem is then analytically solved. 

The proposed optimal scheme shares several interesting aspects pertaining to 

those based on the instantaneous noise variance information. Sensors with bad 

channel quality (specified via the path distance to FC) are shut off to conserve energy, 

and for those active nodes the allocated energy is proportional to the individual 

channel gain. Simulation results show that the proposed optimal solution yields 

significant energy saving against the equal-bit allocation policy. 

3.1 Average Mean Square Error of 
Decentralized Estimation 

For a fixed set of noise variances 2
iσ ’s, the energy minimization problem 
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subject to an allowable parameter distortion γ  (in terms of MSE) can be formulated 

as 

 
( )

1

2 21 1

1
12 4 i

N N
i b

i i i R
Min ,  subject to ,E γ

σ

−

−
= =

⎛ ⎞
⎜ ⎟ ≤
⎜ ⎟+⎝ ⎠

where E

∑ ∑  (3.1) 

 i is the consumed energy for transmitting the message mi. (3.1) is equivalent to 

 
( )

1

1

1Min ,  subject to .
N N

i
E γ

2 21 12 4 i
i b

i Riσ
−

−
= +

In or

=
≥∑ ∑  (3.2) 

der to obtain universal solution with averaged measurement noise conditions, the 

following optimization problem is considered: 

 
( )

1

1 1

1Min ,  subject to ( ) ,
12 4 i

N N

i i i

E p d
z R2i b

γ
δ α

−

= =
≥

+ +
∑ ∑∫ z z  (3.3) 

where 1 2[ , ,..., ]Nz z z Τ=z  with ( )p z  denoting the associated distribution. In the 

optimization problem (3.3), the equivalent MSE performance metric in (3.2) is 

averaged with respect to the noise variance statistic characterized in 

−z

(2.2). 

average MSE performance measure. Since 

 To solve (3.3), a crucial step is to derive an analytic expression of the 

2
1iz χ∼  is a central i.i.d. Chi-Square 

distributed random variable with degrees-of-freedom equal to one[10, p-24] 

 2
exp( / 2), 0,

( ) 2
0, 0.

z z
p z z

z
χ π

1

1⎧ − ≥⎪= ⎨
⎪ <⎩

 (3.4) 

The average MSE performance can be derived as 

( )21

2

1 ( )
12 4

1

i

i

N

b
i

zN

p d
z R

e d

δ α −
=

−
∞

+ +

= ⋅

∑∫

∑ ∫

z z z

0
1 2

i

i
i i i i

z
z zα β π= +

   

2

0
1

1 ,
N e dz

2 ( )

iz

i
i i i iz zπ α β

−
∞= ∑∫  (3.5) 

= +
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where 2 4 12ib
i Rβ δ −= + . The following lemma, with proof given in Appendix A, 

provides a closed-form expression of the integral involved in the summation in (3.5). 

 

Lemma 3.1 : With 0α >  and 0iβ >  as defined in (3.5), we have 

22

0
2 Q( )

,
iiz

i
i

ee dz
β α

( )i i i iz z
π β α−

∞ ⋅ ⋅
=∫  (3.6)  

α β αβ+

where 
2 2

Q( )
2

t

x
ex dt

π

−
∞= ∫  is the Gaussian tail function. 

 (3.3) can be equivalently 

rewritten as 

 

With (3.5) and Lemma 3.1, the optimization problem

2
1

1 1

Q( )2Min ,  subject to  .
iN N i

i
i i i

e
E

β α β απ γ
α β

−

= =
≥∑ ∑  (3.7) 

Exact solution to problem (3.7) appear intractable since the target MSE is highly 

is to derive an easy-to-tackle lower bound on 

nonlinear in b . We will thus seek for the suboptimal alternatives which can 

otherwise admit simple analytic expression. The underlying approach toward this end 

i

the target MSE metric, and then replace 

the MSE constraint in (3.7) by one which forces the lower bound to be above 1γ − . 

Such a procedure will considerably simplify the analysis without incurring any loss in 

the desired MSE performance. This is done with the aid of the next lemma with proof 

given in Appendix B. 

Lemma 3.2 : The following inequality holds: 

 

( )2 12 ,ib α− ⎞2

1 1

Q( )2 1Q
iN Ni

i ii

e
cN R

N

β α β απ δ α
α β= =

⎛
≥ +⎜ ⎟

⎝ ⎠
∑ ∑  (3.8)  

14 



2

2

2

12

ec
R

δ απ
α δ

= ⋅
+

which c is a constant defined by . 

Lemma 3.2 suggests that we can replace the MSE constraint in (3.7) by the 

following one without incurring any loss in the target MSE: 

1

1

1 2Q ,
12

ibN

i

RcN
N

δ γ
α α

−
−

=

⎛ ⎞⎛ ⎞
+ ≥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑  (3.9) 

or equivalently 

1

1

1 2 Q
12

ibN

i

R
N c

δ 1 .
Nα γα

−
−

=

⎛ ⎞ ⎛ ⎞
+ ≤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑  (3.10) 

is one-to-on e will thus instead focus on 

the optim

Since e and monotone decreasing, w( )Q i  

ization problem with a modified MSE performance constraint: 

 1

1 1

1Min ,  subject to 2 Q .
12

i
N N

b
i

i i

RE
cNN

δ
γ αα

− −

= =

⎛ ⎞
≤ −⎜ ⎟

⎝ ⎠
∑ ∑  (3.11) 

his optimization problem will lead to a simple closed-form solution. 

3.2 Energy Density Factor of Sensor Nodes 

T

We assume that each sensor sends messages to FC using a separate channel. This 

can be achieved by using a multiple access technique such as TDMA or FDMA. Each 

channel is corrupted by additive white Gaussian noise (AWGN) with power spectral 

density N0/2: 

 2ˆ ,i i iim d m vκ−= +  (3.12) 

where ˆ im  is the received message at FC and vi is the AWGN. The signal power 

ceive  the FC is assumed to be inversely proportional to d at idκ  where  is the idre

distance between sensor i and the FC, and κ  is the path loss exponent common to all 

15 



sensor-to-FC links. Suppose that message mi has length bi bit. 

We will assume that energy Ei required for transmission of mi is proportional to 

QAM is used, the consumed energy at the ith 

sensor is defined as 

 

the number of bits in the message. If M-

,  1 ,i i iE w b i N= ≤ ≤  (3.13) 

where energy density factor wi is defined as [4, 5, 7] 

( ) ( )2 1 4 1 2
ln ,

s s

i i
b

w d
s sP

κρ
−⎛ ⎞− −

⎜ ⎟= ⋅ ⋅
⎜
⎝ ⎠

 
⎟

 (3.14) 

in which ρ  is a constant depending on the noise profile, s is the number of bits per 

QAM symbol, and Pb is the target bit error rate. With (3.13), the specification of the 

nergy allocated to the ith sensor amounts to determining th

bits b . 

For a fixed set of noise variances 

e e number of quantization 

i

2
iσ ’

ter distortion level 

s, the energy minimization problem 

subject to an allowable parame γ  (in terms of MSE) can be 

rmulated as fo

1 1Min ,  subject to 2 Qi
N N

b
i i

Rw b 
1 1

.
12i i cNN

δ
γ αα= =

− − ⎛ ⎞
≤ −

⎝ ⎠
 (3.15) 

x 

optimization problem and will moreover lead to a simple closed-form solution as 

show

form Solution 

The final optimization problem is as follows 

⎜ ⎟∑ ∑

In (3.15), the cost function is linear and the constrain is convex. It is thus a conve

n below. 

3.3 Problem Formulation and Optimal 
Closed-

16 



1

1

1

Min ,  

1
12

N
i i

N
b

i
i

w b

R
cNN

δ
γ αα

− −

=

⎞subject to 2 Q ,  0,  1 .i

i

b i N

=

⎛
 

≤ − ≥ ≤ ≤⎜ ⎟∑

In or

⎝ ⎠

∑
 (3.16) 

der to solve problem(3.16), let us form the Lagrangian function as  

 
( )1 1L ,..., , , ,...,N N

N
i i

b b

w b

λ μ μ

1

1 1 1

12 Q .
12

i
N Nb

i i
i i i

R b
cNN

δλ μ
γ αα

− −

= = =

⎛ ⎞⎛ ⎞
+ − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑
 (3.17) 

The associated set of Karush-Kuhn-Tucker (KKT) [14] conditions is as followed: 

 

= ∑

( )ln 2 2
0,  1 ,

12

ib

i i
R

w i
N

λ μ
α

−−
+ ⋅ − = ≤ ≤ N  (3.18) 

1

1
2 Q 0,

12
ib

i cNN
λ

γ αα
− −

=
 1NR δ⎛ ⎞⎛ ⎞

− + =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑  (3.19) 

 0,  0,  0,  0,  1 .i i i ib b i Nλ μ μ≥ ≥ = ≥ ≤ ≤  (3.20) 

If 0λ = , equation (3.18) implies 0i iwμ = >  for all 1 i N≤ ≤ , and hence 0ib = , 

1 i N≤ ≤ . This case should be precluded since othe arwise all sensors will rem in silent. 

We must have 0λ > . It means that the M E constraint in (3.16) is active so that 

 

S

1 12 Q .i
N

bR

112 i cNN
δ

γ αα =

− − ⎛ ⎞
= −⎜ ⎟

⎝ ⎠

Solving (3.18) and (3.21) leads to 

 

∑  (3.21) 

( )2log ,
12i

i i

Rb
N w
λ

α μ

⎧ ⎫⎪ ⎪= ⎨ ⎬
−⎪ ⎪⎩ ⎭

 (3.22) 

 

where 

( )

( )
1

1ln 2 .
Q 1 ( )

N
i i

i
w

cN

μ
λ λ

γ δ α
=

−

−
= =

−

∑
 (3.23) 

By taking into account the constraint 0 , the optimal pair ib ≥ ( ),opt optb λi  is given 
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by the next lemma with proof given in Appendix C. 

 

Lemma 3.3: Assume 1 2 Nw w w without loss of generality≥ ≥ ⋅⋅⋅ ≥  , and define the 

function: 

( ) 1 .

N
i

i N K

K

w
f K

N w
= − +=

⋅

∑
  (3.24) 

Let be such that 11 K N≤ ≤  ( )1 1 1f K − <  and Then we have 1( ) 1f K ≥ . 

1

2 1

0, 1 ,

log , 1 ,
12

opt opt
i

i

i N K

b R N K i N
Nw

λ
α

≤ ≤ −⎧
⎪

⎧ ⎫= ⎨ ⎪ ⎪ − + ≤ ≤⎨ ⎬⎪
⎪ ⎪⎩ ⎭⎩

  (3.25) 

where  

( )
1 1

1 .
Q 1 ( )

N
j

j N Kopt
w

cN
λ

γ δ α
= − +

−=
−

∑
  (3.26) 

3.4 Discussions of Optimal Solution 

1. The target distortion level γ  cannot be set unlimitedly small. It is otherwise 

bounded by the MSE attained by the benchmark estimate based on un-quantized 

real-valued sensor measurements (i.e., the case when , 1b i N= ∞ ≤ ≤ ). By i

setting b = ∞ the average MSE formula specified in i  in 

allowable 

(3.7), the minimal 

γ  can be immediately determined as 

1
2 2Q .δ π

α αδ

−

Neδ αγ
⎡ ⎤⎛ ⎞

⎥⎜ ⎟⎜ ⎟ ⎥⎝ ⎠
 (3.27) 

. Since 0 , a necessary condition for valida

(3.15) is therefore 

≥ ⎢
⎢⎣ ⎦

 

2 ting the MSE constraint in ib≤ < ∞
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1 1Q 0
cN

δ
γ α

− ⎛ ⎞ .− ≥⎜ ⎟
⎝ ⎠

 (3.28) 

By definition of the constant c in Lemma 3.2 and with (3.28), the MSE 

attainable by the proposed method is lower bounded by 

( )

1

2
2

2Q .
12

Ne
R

δ α δ πγ
α α δ

−
⎡

 
⎤⎛ ⎞⎢ ⎥≥ ⎜ ⎟⎜ ⎟⎢ ⎥+⎝ ⎠⎢ ⎥⎣ ⎦

 (3.29) 

(3.29) is indeed larger than the lower bound (3.27). 

3. In (3.14), the energy density factor is proportional to the path loss , if 

the same bit error rate is assumed throughout a

corres sors deploye ay from e usually 

with poor background channel gain. In this point, the proposed optimal solution 

(3.25) is intuitively attractive. The sensors with large 

conserve energy. A similar energy conservation strategy via shutting off the 

ors with poor channel links is found in [6], in which a scenario with 

instantaneous noise variance available to the FC is considered. 

. From(3.25), the assigned message length is invers

those active sensors. This is intuitively reasonable since sensors with better link 

rformance. 

), the equal-bit 

 

The lower bound 

iw  idκ

ll the links. The large values of 

iw  pond to the sen d far aw  the FC. They ar

iw  are turned off to 

sens

4 ely proportional to iw  for 

conditions should be allocated with more bits to realize desired pe

5. Based on the inequality constraint for average MSE in (3.15

schemes maintaining the desired MSE can be obtained by solving 

12 1Q .
bR

12 cN
δ

γ αα

−
− ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

It leads to 

 (3.30) 
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( )( )2 1
log .

α
⎬

12 Q 1
Rb
cNα γ δ−

⎧ ⎫
⎪ ⎪= ⎨ 

⎡ ⎤−⎪ ⎪⎣ ⎦⎩ ⎭

rical simu

gy saving when compared with equal-bit 

scheme (3.31). 

3.5 Numerical Simulation 

N

 (3.31) 

Nume lations in the next section show that the proposed optimal 

scheme (3.25) yields significant ener

For a fixed set of energy density factors , 1w i≤ ≤i , the performance is 

measured via the percentage of energy saving (PES) [6, 7]: 

 1 1

1

100,

N N
opt

i i i
i i

N
ib w∑

i

b w w b
PES = =

=

−
= ×

∑ ∑
 (3.32) 

ely in ly set 

 where 

where opt  and b  are defined respectiv (3.25) and (3.31). We simpib

i iw dκ= 3.5κ = 2 and 10 10i id Z= + 1iZ χ∼ with  being i.i.d. Chi-Square 

distributed random variable. The results are averaged over 50000 independent trials. 

The total number of sensors is N=1500 under 0.005γ = . 

The Figure 3.1(a) shows the PES for 0.1 1.6α≤ ≤  and Figure 3.1(b) depicts the 

uted b  in comp (3.31) with fixed 0.8δ = . That the PES exhibits two “jumps” can be 

rved. This accounts for the two level change of b  as obse α  varies. Within each 

tion of constant b , energy efficiency of the optimal solution α  dura  improves as 

increases (a large α  corresponds to a more inhomogeneous sensing environ ent). 

ilar phenomenon has been observed in the existing works relying 

dge [6, 7]. When the sensing condition 

m

We note that a sim

on instantaneous noise variance knowle

from poor measurement quality and will be shut off. It leads to improved energy 

becomes more inhomogeneous, it is more likely that a large fraction of sensors suffers 
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effic oise variance 

description would reflect the long-term characteristic of the schemes [6, 7], this 

consistency is expected. 

iency. Since the proposed solution (3.25) based on statistical n

 
Figure 3.1 : PES for fixed minimal noise variance threshold ( 0.8δ = ) 

 

 We repeat the experiment by fixing 0.4α =  and varying the minimal threshold 

δ . The results are shown in Figure 3.2. Obviously, the PES exhibits a counter 

denc pared t re 3.1. For e ation oten y as com o Figu ach dur f constant b , the energy 

saving achieved by proposed optimal solution is lower as δ  increases. This is 

reasonable because the large minimal noise variance threshold results in severe noise 

corru ore sensor n

uf mation

ption in all sensor measurement. M odes should be turned on to 

provide a s ficient amount of infor  for MSE reduction. 
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Figure 3.2 : PES for fixed noise variance variation ( 0.4α = ) 

3.6 Summary 

This chapter provides a solution to the minimal-energy decentralized estimation 

problem by exploiting a statistical noise variance model. Based on a closed-form 

expression of the MSE performance measure averaged over the noise variance 

distribution, energy minimization is reformulated as convex optimization problem. 

The proposed solution simply allocates energies to sensors with large channel gain

nd shut off those suffering from poor link quality. Numerical simulation shows that 

f reduc

w

 

a

the proposed optimal solution is capable o ing about 80% energy consumption 

hen compared with the uniform-allocation scheme. The energy saving efficiency is 

particularly significant when the minimal measurement noise variance threshold is 

small or the variation factor is large. 
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Chapter 4 Equation Chapter (Next) Section 1 

 

Minimal Mean Square Error 

Decentralized Estimation Based on 

Sensor Noise Variance Statistics 

 

Relying on partial noise variance knowledge in the form of the background 

distribution, the problem of minimizing total transmission energy under an allowable

average distortion level is recently considered in [15]. This chapter considers the 

o find the optimal bit load which minimizes the average 

distortion under a fixed total energy budget. The main contribution of the current 

work

 

counterpart problem: how t

 can be summarized as follows: 

i. While the design metric, the reciprocal of the average MSE is shown in [15] 

to be highly nonlinear in the sensor bit load. Several analytic approximation 

relations are used to derive an associated tractable low bound. 

ii. By maximizing this lower bound, the problem can be further formulated in 

the form of convex optimization which yields a closed-form solution. 

The analytic results reveal that under limited energy budget, sensors with bad 

23 



link quality should be shut off toward utmost estimation accuracy, and energy 

allocated to those active nodes should be proportional to the individual channel gain. 

A similar energy conservation policy is also found in the previous work [6, 7, 15]. 

Numerical simulations show the effectiveness of the proposed scheme which 

outperforms the uniform allocation strategy under an energy-limited environment. 

4.1 Average Mean Square Error of 
Decentralized Estimation 

The MMSE decentralized estimation which is counterpart problem of (3.1) can 

be formulated as  

 
1

2
1 1

1Min ,  subject to ,
4 i

N N
i Tb

i ii
E E

σ β

−

−
= =

⎛ ⎞
≤⎜ ⎟⎜ ⎟+⎝ ⎠

∑ ∑  (4.1) 

or equivalently, 

 2
1 1

1Max ,  subject to ,
4 i

N N
i Tb

i ii
E E

σ β −
= =

≤
+

∑ ∑  (4.2) 

where 2 12Rβ =  and  is allowable energy level. The equivalent MSE cost 

function is averaged with respect to the noise variance statistic characterized in (2.2): 

 

TE

( )
1 1

1Max ,  subject ,
4 i

N N
i Tb

i ii
to p d E

zδ α β −
= =

≤
+ +

∑ ∑∫z z z E  (4.3) 

where  with [ ]1 2, ,...., Nz z z Τ=z ( )p z  denoting the associated distribution. In order 

to solve problem (4.3), the first step is to find an analytic expression of the equivalent 

average MSE metric. 

By equation (3.5) and lemma 3.1, problem (4.3) can be equivalently rewritten as 
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( ) ( )
( ) 

4 2

1

Q 4
,  

subject to .

bi
ib

N

N
i T

i

e

E E

δ β α
δ β α

−+ −

=

⎛ ⎞⋅ +⎜ ⎟
⎝ ⎠

≤∑

 (4.4) 

Exact solution to the considered optimization (4.4) appears formidable to tackle 

ormulation which 

is more tractable is proposed and an analytic solution can be obtained. By the 

1
Max 2

4 ibi
π

α δ β −=
⋅

+
∑

because the cost function is highly nonlinear in ib . An alternative f

following approximation to Q(.) function [16, p115] 

 ( )
( )

2 2x

1 1 2

1Q ,
2 1 2

ex
x xπ π π π− −

⎡ − ⎤
⎢ ⎥≈ ⎢ ⎥− + +⎢ ⎥⎣ ⎦

 (4.5) 

and some straightforward manipulations, the cost function can be approximated by 

 

( ) ( )
( )

( )( ) ( ) ( )

4 2

1

Q 4
2

4

.

bi
i

i

b
N

bi

e
δ β α

δ β α
π

α δ β

−+ −

−=

⎛ ⎞⋅ +⎜ ⎟
⎝ ⎠⋅
+

≈

∑

∑

 (4.6) 

The main advantage of (4.6) is that it can lead to an associated lower bound in a 

more tractable form. Thought maximizing this lower bound we can eventually obtain 

a closed-form optimal solution. By the inequality equation: 

 

21 1 1

1

1 4 4 2 4i i i

N

i b b bπ δ β π δ β πα δ β= − − −− −− + + + + +

( ) ( ) ( )2
4 2 4 4 ,i i ib b bδ β πα δ β δ β πα+ + + ≤ + +  (4.7) 

ximated cost function in (4.6) can be lower bounded by  

− − −

the appro
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( )( ) ( ) ( )

( )( ) ( )

( )

2

1 11 1 4 4

1

i ib bi π δ β π δ β πα

1 1 1

1

1

1 4 4 2 4

1

4

i i i

i

N

i b b b

N

N

bi

π δ β π δ β πα δ β

δ β α

= − − −− −

− −− −= ⎡ ⎤− + + + +

−
=

− + + + + +

≥

⎣ ⎦

=
+ +

∑

∑

∑

  

( )1

4 .
4

i

i

bN

b
i β α δ=

=
+ +

∑   

We will thus focus on maximizing the lower bound

(4.8) 

: 

 
( )1 1

Max ,  subject to .
4 i

i Tb
i i

4 ibN N
E E

β α δ= =
≤

+ +
∑ ∑  (4.9) 

The cost function is simple in (4.9). It can lead to an analytic solution of the 

ptimization problem. 

gy Density Factor of Sensor Nodes 

We assume that each sensor sends messages to FC using a separate channel. This 

achieved by  a m

density N0/2: 

 

o

4.2 Ener

can be  using ultiple access technique such as TDMA or FDMA. Each 

channel is corrupted by additive white Gaussian noise (AWGN) with power spectral 

2ˆ ,i iim d m vκ−
i= +  (4.10) 

is the receivedwhere  message at FC and vˆ im  i is the AWGN. The signal power 

received at the FC is assumed to be inversely proportional to idκ  where id  is the 

distance between sensor i and the FC, and κ  is the path loss exponent common to all 

sens

We assume that the ith sensor sends the bi-bit message mi by using quadratic 

or-to-FC links. 
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amplitude modulation with a constellation size 2bi. The consumed energy is [4, 5, 6, 

17] 

 ( )2 1 ,  1ib
i iE w i N.= − ≤ ≤  (4.11) 

The energy density factor wi is defined as 

 2
P

κ ⎛ ⎞

⎝ ⎠

in which 

ln ,i i
b

w dρ= ⋅ ⎜ ⎟  (4.12) 

ρ  is a constant depending on the noise profile, and Pb is the target bit error 

rate assumed common to all sensor-to-FC links. 

With (4.11), the specification of the energy allocated to the ith sensor amounts to 

etermining the number of quantization bits bi. For a fixed sd et of noise variances 

2
iσ ’s, the MSE minimization problem subject to an allowable energy level  can 

 

TE

be formulated as  

( ) ( )
1 1

4Max ,  subject to 2 1 .
4

i
i

i

bN N
b

i Tb
i i

w E
β α δ= =

− ≤
+ +

∑ ∑  (4.13) 

, it follows Since 0ib ≥ ( ) ( )
1 1

2 1 4 1i i
N Nb b

i i
i i

w w
= =

− ≤ −∑ ∑ . This implies that we can 

replace the total energy constraint in (4.13) by the following one without violating the 

over

=

With the aid of (4.14) and by performing a change of variable with 

the optimization problem then becomes 

 

all energy budget requirement: 

 ( )
1

4 1 .i
N b

i Tw E− ≤∑  (4.14) 
i

4 1ib
iB = − , 

( ) ( )1 1

1Max ,  subject to .
N N

i
i i T

i ii

B w B E
Bα β δ α δ= =

+
≤

+ + + +
∑ ∑  (4.15) 

In (4.15), the intermediate variable iB  

 Wh

is relaxed to be a nonnegative real number so 

as to render the problem tractable. ile the optimal real-valued iB  is computed, 
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the associated bit loads can be obtain through upper integer rounding. The major 

advantage of the alternative problem formulation is that it admits the form of convex 

ptimization and can lead to a simple closed-form solution. It is shown 

section. 

4.3 Problem Formulation and Optimal 
Closed-form Solution 

The finial optimization problem is as followed 

o in the next 

( ) ( )1

1

1Max ,  

subject to ,  0,  1 .

      

N
i i T iw B E B i N≤ ≥ ≤ ≤∑  (4.16)  

                                                                     

N
i

i i

i

B
Bα β δ α δ=

=

+
+ + + +

∑

In order to solve problem (4.16), let us form the Lagrangian as 

 
( )

( ) ( )

1 1,..., , , ,...,N NL b b λ μ μ

1 1 1
i i T i i

i i iiBα β δ α δ= = =+ + + + ⎝ ⎠

The associated set of KKT conditions [14] is as followed: 

 

1 .
N N N

iB w B E Bλ μ
⎛ ⎞+

= − − +⎜ ⎟∑ ∑ ∑
 (4.17) 

( ) ( ) 2 0,  1 ,i i
i

w i
B

β λ μ N
α β δ α δ

− + = ≤ ≤  (4.18) 
+ + + +⎡ ⎤⎣ ⎦

N
i i T

i
w B Eλ

=

⎛ ⎞
 ,

1
0− =⎜ ⎟

⎝ ⎠
∑  (4.19) 

i i i0,  0,  0,  b 0,  1 i N.ibλ μ μ≥ ≥ = ≥ ≤ ≤  (4.20) 

The condition (4.18) leads to 

 1 1 .iB β β

i iwδ λ μ α δ
⎛ ⎞

α
= −

+ − +⎝ ⎠

If 

+⎜ ⎟  (4.21) 

 for all 1 i N0λ = ≤ ≤, equation (4.18) implies 0i  and hence μ >
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0,   1 i Nib = ≤ ≤ . This case should be precluded since all sensors are turned off. From 

(4.19) and (4.21), λ  can be obtained:  

 
1N

1iα δ 1
1 .

N
i T i

i
w E w

β βλ
α δ

−

=+ +⎝ ⎠⎝ =

⎛ ⎞⎛ ⎛= + +⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠ ⎠

∑ ∑  (4.22) 

In (4.21)

⎞⎞

,λ  and iμ ’s should be determined to fulfill the desired constraints. 

 1 2 Nw w w≥ ≥ ⋅⋅⋅⋅⋅⋅ ≥  is assumed without loss of generality and we define the 

 

function 

( )

1
1T iE

,  1 .i K
N

i K

N

K i

w
f K K N=

=

= ≤ ≤  (4.23) 

1

β −
⎛ ⎞

w w

α δ
+ +

+⎝ ⎠

∑

Let  be the unique integer such that 

⎜ ⎟ ∑

1 K N≤ ≤ ( )1 1 1f K − <  and . If 

, then set 

( ) 1f K ≥

( ) 1f K ≥  for all 1 K N≤ ≤ 1 1K = . The existence and uniqueness of such 

K1 is shown in Lemma 4.1 with proof given in Appendix D. 

 

Lemma 4.1 : ( )f K  defined (in (4.23) is monotone increasing and ) 1f N > .  

If K1 such that ( )1 1f K ≥  exists, then K1+1 will lead to ( )1 1 1f K + ≥ . 

 

The optimal solution pair is given by 

 

( ),opt opt
iB λ  

1

1

0,                                                1 -1,    

1opt

opt
i

B
w

β β
α δ λ

⎪
= ⎛ ⎞⎨

+⎩

 ) 
1 ,   ,i

i K

K i N
α δ

≤ ≤⎧

− + ≤ ≤⎜ ⎟⎪ +⎝ ⎠

(4.24

where 

 
1 1i K i Kα δ α δ

1

1 .
N N

opt
i T iw E wβ βλ

−

= =+ +

⎛ ⎞⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑  (4.25) 

⎝ ⎠

Since 4 1i
iB = −  and with b (4.24) (4.25), the optimal bit load is 
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1 1

1

2 1
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1 log 1 ,   K .
opt N Ni

i j T j

i K

b
w w E w i Nβ β

≤ ≤ −⎧
1

2 j K j Kα δ α δ

−

= =

⎧ ⎫⎡ ⎤ ⎡ ⎤= ⎨ ⎪ ⎪⎛ ⎞+ + − ≤ ≤⎢ ⎥ ⎢ ⎥⎨ ⎬
+ +⎝ ⎠⎢ ⎥ ⎢ ⎥⎪ ⎪

⎜ ⎟
⎣ ⎦ ⎣ ⎦⎩ ⎭

⎪

  (4.26) 

t average distortion level then equals 

∑ ∑

⎪

⎪
⎪⎩

 

The resultan

( )
 

( )1

1
4 2

4
2

optbi
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ib

i K

e Q
MSE

δ β α
δ β α

π

−
−

⎛ ⎞
+⎜ ⎟⎜ ⎟ −⎝ ⎠

=

⎛ ⎞
⎛ ⎞⎜

.
4
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i

N

bα δ β −

⎟
+⎜ ⎟⎜ ⎟

⎝ ⎠ ⎟
⎟

+ ⎟
⎜ ⎟
⎝ ⎠

 (4.27) 

4.4 Discussions of Optimal Solution 

1. The minimal average MSE is attained when all the raw sensor measurements 

⎜= ⋅
⎜
⎜

∑

with infinite-precision (i.e., 0,   1ib i N ) are availabl= ≤ ≤ e to the FC. Hence, by 

setting in the mean MSE formula specified (4.4), we have the following 

performance bound 

 

ib = ∞  

( )
1

2
min

2Q .MSE Neδ α πδ α
−

⎡

αδ
⎤

= ⎢ ⎥
⎣ ⎦

 (4.28) 

Formula (4.28) reveals the impacts of the noise model parameters α  and δ  

on the estimation performance. It is easy to see from (4.28) that minim

MSE increases with 

the al 

α . This implies the estimation accuracy degrades as the 

sensing environm es more and more inhomogeneous (corresponding to 

large 

ent becom

α ). Furthermore it can be checked that MSEmin also increases with the 

δ . This is reasonable since large δminimal noise power threshold  implies 

poor measurement quality of all sensor data and a less accurate p rameter 

estimate. Although these facts are inferred based on

measure (4.28), similar tendency is also observed for

a

 the idealized distortion 

MSE  in (4.27) attained 
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with 

2. The energy

links with the same ). Large value of wi correspond to sensors deployed far 

away from the FC, usually with poor background channel gains. In this point, the 

proposed optimal solution is intuitively attractive. The senso

the (K1-1)th largest wi’s are turned off to conserve energy. A similar energy 

is also 

found in [6, 7, 15]. 

s is inversely proportional to 

sensor data quantization. 

 density factor wi is proportional to the path loss id  (assuming all κ

κ

rs associated with 

conservation strategy via shutting off sensors with poor channel links 

From (4.26), the assigned message length for those active 

node iw . This is intuitively reasonable since 

sensors with better link conditions should be allocated with more bits (energy) to 

improve the estimation accuracy. 

3. In order to prevent sensors from exhausting energy quickly, one natural way is to 

impose an 

 

additional peak energy constraint: 

( )2 1 ,  1 .ib
i Pw E i N− ≤

requirement (4.29), there 

does not seem to exist a closed-form optimal solution. As a simple suboptimal 

de inde set 

≤ ≤  (4.29) 

In optimization problem (4.16), with extra inequality 

alternative, we can first identify the infeasible no x 

({ ) }1,   i Pi w E K i NΓ = ≤ ≤  from (4.26)2 1
opt
ib − >  and then instead fix the 

energy associated with each of these nodes to be EP. The resultant solution is 

thus 

( )
1

1
1

2 1

2

0,                                                                                      1 K 1,

1 log 1 ,  K  and ,
2

g 1 ,

i

N N
i i j T i

j K j K

P i

i

b w w E w i N i

E w

β β
α δ α δ

−

= =

≤ ≤ −

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪⎛ ⎞= + + − ≤ ≤ ∉Γ⎢ ⎥ ⎢ ⎥⎨ ⎬⎜ ⎟+ +⎝ ⎠⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭
+

∑ ∑

1                                                                          K  and .i N i

⎧
⎪
⎪⎪
⎨
⎪

≤ ≤ ∈Γlo
⎪
⎪⎩
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  (4.30) 

The actual solution can be obtained by using the iterative proced

[18] with (4.30) as an initialization point. The algorithm to derive the optimal 

analytical solution is followed. 

(1) Solve the problem without individual power constraints (4.16) to obtain the 

solution (4.26).  

ures reported in 

Set the index set ( ){ }12 1 ,   
opt
ib

i Pi w E K i NΓ = − > ≤ ≤ . 

( )2log 1opt
P iib E= +(2) Set w  for i∈Γ . 

Set ( )2 1ib
T T iiE E w∈Γ= − −∑

ove ib  for i∈Γ  from

. 

Rem  the design variable space. 

(3) Repeat the first and second steps until Γ  is empty in the first step. 

To prove that the algorithm leads to the global optimum, we need only to prove 

 when we that in the second step we do not lose optimality of opt
ib  for i∈Γ

set ( )2log 1opt
P iib E w= +  for i∈Γ . 

We compare the sim

4.5 Numerical Simulation 

ulated performance of proposed optimal solution (4.26) 

against the uniform energy allocation scheme with bit load determined through 

 ( )2 1 ,  1ib
i Tw E N i .N− = ≤ ≤  (4.31) 

In (4.31), bi is computed via lower integer rounding so that the resultant total energy 

can be kept below ET. It leads to 

 2log 1 .T

i
b

Nw
E⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (4.32) 

32 



In each independent run we simply choose i iw dκ= , where 2κ =  and 

0.5 0.3i id Z= +  with ( )2
1iZ zχ∼  being i.i.d.. The total numbe

the following experiments we set the numb N=200, and consider 

three . 

r of trial is 50000. In 

er of sensors to be 

1

N
T i

i
E wγ

=
= ∑  with 0.25,  1,  3γ =  respectively  different levels of total energy

correspond to the low, medium, and high energy cases. 

With fixed 2δ = , Figure 4.1 shows the computed average MSE as α  varies 

 0.5 to 8. With fixed 2from α = , Figure 4.2 shows the average MSE as δ  varies 

 0.5 to 8. Both figures show that the estimation accuracy improves as Efrom

increases. It is expect

alloc

environm

T 

ed. The proposed solution (4.26) outperforms uniform energy 

ation (4.32), especially when ET is small. It is more effective in an energy-limited 

ent. The simulated average MSE increases with both α  and β . 
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2δ =Figure 4.1 : Average MSE for fixed minimal noise variance threshold ( ) 
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al noi ria
 

Figure 4.2 : Average MSE for fixed noise variance variation ( 2α = ) 

4.6 Su

This chapter provides a solution to th ma ation 

problem

expre

distribution, MSE minimization is reformulated as convex optimization problem. The 

analytic closed-form solution reveals the energy saving policy. The proposed solution 

 channel gain and shut off those 

suffering from poor link quality. Numerical simulation shows that the estimation 

accu

hus is 

ore effective in an energy-limited environment. 

mmary 

e mini l-MSE decentralized estim

 by exploiting a statistical noise variance model. Based on a closed-form 

ssion of the MSE performance measure averaged over the noise variance 

simply allocates energies to sensors with a large

racy improves as total energy increases. The proposed solution outperforms 

uniform energy allocation especially when the total used energy is small, and t

m
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Chapter 5 Equation Chapter (Next) Section 1 

Minimal Energy Decentralized 

r Noise 

 n  esign, the 

minimal-energy decentralized estimation problem which is formulated in an optimal 

bit-loading setup has been recently considered. In order to improve the estimation 

performance against the variation of sensing conditions, repeated update of the noise 

profile would be needed. This comes inevitably at the cost of more training overhead 

and extra energy consumption. One typical approach to resolving such a drawback is 

to exploit the partial (or long-term) information of the noise characteristics. 

Another key feature common to the existing related works [1, 6, 7 ] is that they 

all assume error-free transmission. They consider the sensors experiencing the perfect 

wireless channel. There is no bit error in the wireless channels between sensors and 

 

Estimation over Rayleigh Fading 

Channel Based on Senso

Variance Statistics 

 

As energy efficiency is a critical concern for sensor etwork d
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the FC. The work in [6] uses the upper bound (2.15) to show that the actual achieved 

MSE is at most a constant factor away from what is achievable with perfect sensor 

channels. It use the MSE constraint with perfect channel to formulate the convex 

optimization problem which derive an optimal bit loading scheme. Chapter 3 and 

Chapter 4 of my thesis also use the MSE constraint with perfect channel to formulate 

the optimization problems instead by the long-term information of the noise 

characteristics. The work in [19] considers the noisy channel between each sensor and 

the FC by modeling it as a binary symmetric channel (BSC) model with crossover 

probability which is controlled by the transmitted bit energy, but it uses the 

instantaneous local sensor noise characteristics to formulate the optimization problem. 

This chapter attempts to provide a solution to the minimal-energy decentralized 

estimation with the noisy channel between each sensor and the FC by exploiting long

term ] for ise 

variance is used and the estimation performance is assessed through an MSE based 

metric average with respect to the considered distribution. The BSC models [19] are 

used to characterize the wireless multi-path fading channels with path loss. A 

closed-form expression for the overall MSE requirement is derived. The analysis of 

the energy-minimization problem is formulated in the form of convex optimization. 

The problem is then analytically solved. 

The proposed suboptimal scheme shares several interesting aspects pertaining to 

those based on the instantaneous noise variance information. Sensors with bad 

channel quality (specified via the path distance to FC) are shut off to conserve energy, 

and for those active nodes the allocated energy is proportional to the individual 

channel gain. Simulation results show that the proposed optimal solution yields 

energy saving against the equal-bit allocation policy. 

 

 noise variance information. A commonly used statistical model [6, 7 no
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5.1 System Model 

There are N spatially deployed sensors which cooperate with a FC for estimating 

an unknown deterministic parameter θ  where [ ]0,  1θ ∈ . In order to simplify the 

[ ]following analysis, we set 0,  1θ ∈ whic ial case for general case  h is a spec

[ ]2,  2R Rθ ∈ −  where R is the parameter range. The following analytic results for 

the general case and special case are different in a constant factor.  

The local observation at the ith node is 

 ,   1 ,i ix n i Nθ= + ≤ ≤  (5.1) 

where ni is a zero-mean measurement noise with variance [6, 7] 

 2 .i izσ δ α= +  (5.2) 

In (5.2),  models the network-wide noise variance threshold, αδ  controls the 

underlying variation from the nominal minimum, and 2
1iz χ∼  is a central 

Chi-Square distributed random variable with degrees-of-freedom equal to one. Due to 

bandwidth and power limitations each sensor quantizes its observation into a bi-bit 

message, and then transmits this locally processed data to the FC to generate a final 

estimate of θ .  

The uniform quantization scheme with nearest-rounding is adopted. The 

quantized message at the ith sensor can be modeled as 

 ,  1 ,i i im x q i N= + ≤ ≤  (5.3) 

where qi is the quantization error which is uniformly distributed with zero mean and 

variance ( )2 1 12 4 i
i

b
qσ = ⋅ , and [0, 1] is the available signal amplitude range common 

to all sensors. The quantized value mi can be modeled as  
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( ) 
1k

2 ,
ib i k

i km a −

=

w

length is 

= ∑  (5.4) 

here  is the kth quantization bit of the ith sensor in which the quantization bit 

bi. The quantization bit 

( )i
ka

( )i
ka  is transmitted through the wireless channel to 

he ith sensor 

can be modeled as  

i k
k

the FC and is received as ( )ˆ i
ka . The messages received in the FC from t

 ( )ˆ 2 ,
ib i ky a −

1=
(5.5) 

or.  

ded transmissions and channels that are 

 independent fading effects. Under these 

nditions, we can model the wireless air-interface between the ith sensor and the FC 

 a binary symmetric channel (BSC) with crossover probability 

= ∑  

where ( )ˆ i
ka  is the kth quantization bit received in the FC from the ith sens

For simplicity, we consider only unco

memoryless with different bits experiencing

co

as iε . The BSC model 

shown in Figure 5.1 can be used to characterize a more general class of channels 

including multi-path fading. 

 
Figure 5.1 : Binary symmetric channel 

 

The received message yi in the FC from the ith sensor can thus be model as 

 ,i i iy m c= +  (5.6) 

where ci is the wireless channel error induced by the BSC with crossover probability 
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iε . The received data in the FC can be expressed in a vector form as  

 ,θ= + + +y 1 n q c  (5.7) 

where [ ]1 2, ,...., Ny y y Τ=y , [ ]1,1,...,1 Τ=1 , [ ]1 2, ,..., Nn n n Τ=n , [ ]1 2, ,..., Nq q q Τ=q , 

Τ Τ

We focus on linear fusion rules for parameter recovery. By assuming that the 

noise component {

[ ]1 2, ,..., Nc c c=c , and i( ) denotes the transpose. 

}, ,n q c  in (5.7) are mutually independent with covariance 

matrices nC , qC  and cC , the parameter θ  is retrieved by the BLUE estimator via 

 
1

1
ˆ

Τ −

Τ − n q c
1 C m
1 C 1

,   where .θ = = + +C C C C  (5.8) 

We further assume that the measurement noise ni’s are i.i.d., and the quantization 

noise qi’s and wireless channel noise ci’s are independent across all sensors. The MSE 

incurred by θ̂  can be immediately computed as 

 ( ) ( ) ( ) ( )

1

var var varn q c

−
12 1

1

1ˆ .
N

i i i i
E θ θ

−Τ −

=

⎛ ⎞⎡ ⎤− = = ⎜
+ +⎣ ⎦

5.2 Variance of Distortion in Binary 

⎟⎢ ⎥ ⎜ ⎟
⎝ ⎠
∑1 C 1  (5.9) 

Symmetric Channel (BSC) 

We assume that measurement value xi’s are uniform distributed within [0, 1] in 

all sensors. Then the quantization bit ( )i
ka  is equal prior probability at 1 or 0. Some 

useful relations between ( )ia  and ( )ˆ ia  can be obtained: 

( ) ( )

k k

ˆ ,i i
k k iE a a ε⎡ ⎤ − =  (5.10) ⎢ ⎥⎣ ⎦

 ( ) ( ) 2
ˆ .i i

ik kE a a ε
⎡ ⎤

− =⎢ ⎥
⎣ ⎦

 (5.11) 

39 



The mean of the wireless channel error ci can be derived as 

 ˆ 2 .
ib i i kE c E y m E a a[ ] [ ] ( ) ( )

1
i i i k k

k

−

=
⎢ ⎥⎣ ⎦

Because the quantization bit ( )i
ka  is equal prior probability at 1 or 0, we can derive  

 ) ( ) 0.i i
ka ⎤

⎡ ⎤= − = −∑  (5.12) 

ˆkE a⎡ ( − =⎥⎦
 (5.13) 

5.13), the wireless channel error c

⎢⎣

By (5.12) and (

 

i is zero mean. The upper bound of 

the wireless channel error variance can be derived as 

( ) ( )( ) ( ) ( )
2 2

1 1
ˆ2 2

ibi i ik k
k k

k k
E a a− −

= =

⎡ ⎤ ⎡ ⎤⎛ ⎞⎥ ⎢ ⎥≤ −⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠⎣ ⎦

∑  22 ˆ
ib i

i i i k kE c E y m E a a⎡ ⎤⎡ ⎤ ⎢= − = −⎢ ⎥⎣ ⎦ ⎣ ⎦ ∑
⎣ ⎦

( ) ( ) ( ) ( ) ( ) ( )2
2ˆ ˆ ˆ2

i i ib b bi i i i ik
k k k k h hE a a a a a a−⎢

= − + − −⎢∑ ∑ ∑
1 1 1

2 2 .i k h

k k h
h k

− −

= = =
≠

⎡ ⎤
⎥
⎥

⎢ ⎥
⎣ ⎦

 (5.14) 

, (5.1

the final formulation of the upper bound is  

 

By (5.10) 1), (5.14) and the following Lemma with proof given in Appendix E, 

2 2 2

1 1 1

2 2
22 42 2 4

3 3

i i i

i i

b b b

i i i
k k h

h k

b bi i i iε ε ε εε

= = =
2 2 2k k h

i

E c ε ε− − −

≠

− −

⎣ ⎦

⎛ ⎞ ⎛ ⎞+ −

⎡ ⎤ ≤ +

= −⎜ ⎟ ⎜ ⎟

∑ ∑ ∑

  

⋅ + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2
2 32 3 2 .

3 2 1
ibi i i

i

ε ε ε
ε

−
⎛ ⎞+⎜ ⎟≤ − ⋅
⎜ ⎟+⎝ ⎠

 

 (5.15) 

Lemma 5.1 : If 0 0.5iε≤ ≤ , we can obtain the following inequality: 

2
2 2 2 3

22 2 4 2 .
3 3 3 2 1

i i ib b bi i i i i i i
i

i
ε

ε
− − −2 4 2 3ε ε ε ε ε ε ε⎛ ⎞⎛ ⎞ ⎛ ⎞+ − +⎜ ⎟− ⋅ + ⋅ ≤ − ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ 

⎜
⎝ ⎠

R) in BSC 

⎟+⎝ ⎠ ⎝ ⎠
 (5.16) 

5.3 Average Bit Error Rate (BE
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M g Channel with ode over Rayleigh Fadin
Path Loss 

channels with path loss. The average bit error probability for BPSK in Rayleigh 

fading channel is [20] 

 

We consider that the links between sensors and the FC are Rayleigh fading 

1 1 ,
2 1

b

b

r
r

ε
⎡ ⎤

= −⎢ ⎥+⎣ ⎦
 (5.17) 

where is the average SNR per bit which is defined as br  

 ,r
b

Pr =  
totalN

(5.18) 

wher re P  is the received power and N  is the power of the noise introduced by the 

receiver front-end. 

With the effect of path loss, the received power can be expressed as [20] 

total

 ,r tP P G d κ−= ⋅ ⋅

where P  is the transmission power, d is the distance between a sensor and the FC, 

and G is the gain factor at d=1

 (5.19) 

(m). The energy per bit is defined as 

t

 ,t bw P T= ⋅  (5.20) 

where Tb is the bit duration.  

Considering the individual sensor and with (5.17), (5.18), (5.19), and (5.20), we 

have  

 
0

1 1 .
2

i
i

w
G d wκε

⎡

i i

⎤
= −⎢ ⎥

+⎢ ⎥⎣ ⎦
(5.21) 

where 

 

is the crossover probability of the BSC between the ith sensor and the FC iε  

(because the quantization bits at sensors are all equal prior probability at 1 or 0), d  is 

the distance between the ith sensor and the FC, wi is the transmission energy per bit in 

i
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the ith sensor, and ( )0 b totalG T N G= ⋅  is a constant depending on the noise profile 

d path loss gain factor. an

verage Mean Square Error of 
Decentral d E

We assume that the consumed energy for transmitting one bit at each sensor is 

the same. Then the total consumed energy for transmitting the message mi at the ith 

for 

5.4 A
ize stimation 

sensor is proportional to number of bits bi. That is 

  1 .i iE wb i N= ≤ ≤  (5.22) 

With (5.22), the specification of the energy allocated to the ith sensor thus amounts to 

idetermining the number of quantization bits b . For a fixed set of measurement noise 

variances iσ ’s and distances d ’s between sensors and the FC, the energy 

minimization problem subject to an allowable pa

i

rameter distortion level γ  (in term 

f MSE) can be formulated as o

( )

1
 1

1

1subject to , 0,  and 1
,

N
i

i i i i i
b i

z f b
γ

−

=

⎛ ⎞

Min , 

,

N
i

i
b

N
α β ε

=

≤ ≥ ≤ ≤⎜ ⎟⎜ ⎟
⎝ ⎠
∑

+ +

∑
 (5.23) 

where 4
12

ib

iβ δ
−

= +  and ( )
2

2 32 3, 2
3 2 1

ibi i i
i i

i
f b ε ε ε
ε

ε
−

⎛ ⎞+⎜ ⎟= − ⋅
⎜ ⎟+

, or equivalently, 

 

⎝ ⎠

)(

1

1

Min , 

subject to , 0,
,

i
i

i
i

b

b
b

γ
ε

=

−

=
≥ ≥

+ +

∑

∑
1

1  and 1 .

N

N

i i i i
i N

z fα β
≤ ≤

 (5.24) 

We will consider the following optimization p

MSE performance metric in (5.24) is instead averaged with respect to the noise 

roblem, in which the equivalent 
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variance statistic characterized in (5.2): 

1i 

( ) ( )2
1

1

1

Min , 

1subject to , 0,  and 1 ,
,

N
i

N
i

i i i i i

b

p d b i N
z f b χ γ

α β ε
−

=
≥ ≥ ≤ ≤

+ +

∑

∑∫z z z
 (5.25) 

 

=

( )2
1

2
0,                           0,

z
z

χ ⎝ ⎠⎨
⎪

1 exp ,   0,
2
z z

p z π
⎧ −⎛ ⎞ ≥⎪ ⎜ ⎟=

<⎩

 (5.26) 

here  with ( )2
1

pχ z1 2[ , ,..., ]Nz z z=zw  denoting

s can be obtained through upper 

integer rounding. The solution to the problem (5.25) is discussed next. 

To solve (5.25), a crucial step is to derive an analytic expression of the average 

MSE performance measure. We have  

 

 the associated distribution. In 

(5.25), the constraint that all bi are nonnegative integers are relaxed to be 0ib ≥  so 

as to render the problem tractable. The suboptimal bi’

( )

( )

1
2

1

1 izN
i

i i i

e dz
−

∞

=
= ⋅∑ ∫0

1 ( )
,

, 2

N

i i i i i

i i i

p d
z f b

z f b z

α β ε

α β ε π

= + +

+ +

∑∫z z z

  

( )( )
2

0
1

1 .
2 ,

izN
i

i i i i i i

e dz
z f b zπ α β ε

−
∞

=
=

+ +
∑ ∫  (5.27) 

he following lemma, with proof given in Appendix F, provid

expression for (5.27). 

 

Lemma 5.2 : With 

T es a closed-form 

0α >  and , we have 0ix >

22

0
2 Q(

.
( )

ii xz
i

i
i i i i

e xe dz
z x z x

α )π α
α α

−
∞ ⋅ ⋅

=
+∫  (5.28) 

where 
2 2

Q( )
2

t

x
ex dt

π

−
∞= ∫  is the Gaussian tail function. 
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By lemma 5.2 and change of the variable ( ),i i i ix f bβ ε= + , we have 

( )
( )( ) ( )( )

( )( )

 

2iz

i i i

0

, 2

( , )

2 Q( , )
.

,

i i i

i
i i i i i
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⋅ ⋅ +
=

+

∫
 (5.29) 

With (5.27) and (5.2

−

9), the optimization problem (5.25) can be equivalently rewritten 

as 

 

1

subject to 

N
i

i

( )( ) ( )( )( )
( )

, 2
1

1

Min , 

Q ,2 ,
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                 0,  and 1 .
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e f b
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β ε β β ε απ γ
α β ε

+
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=

+
≥

+

≥ ≤ ≤

∑

∑  (5.30) 

Exact solutions to problem (5.30) appear intractable since the design constraint is 

al alternatives which can 

therwise admit sim le analytic expressions. T

end is to derive an easy-to-tackle lower bound on the target MSE metric. Then we 

replace the MSE constraint in (5.30) by one which forces the lower bound to be above 

=

highly nonlinear in ib . We will thus seek for suboptim

o he underlying approach toward this p

1γ − . Such a procedure will considerably simplify the analysis without incurring any 

loss in the desired MSE performance. This is done with the aid of the next lemma 

with proof given in Appendix G. 

 

Lemma 5.3 : The following inequality holds: 

( )( ) ( ( )) )(
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( )

, 2

1

Q2
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1 4

i i i
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i i i i
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⎞⎛ ⎞+⎜ ⎟

,i i if bε α+

1
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12i
d N

Nα α α=

⎛
⎜ ⎟

∑
 (5.31) 

≥ ⋅ ⋅ + +
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑
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α δ ε
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⎝ ⎠=

+ +
where , maxε  is the m

probability of all links between sensors and the FC, and is the allowable 

maximum bits length of all sensors. 

ut incurring any los

 

aximum crossover 

max

 

Lemma 5.3 suggests that we can replace the MSE constraint in (5.30) by the 

following one witho s in the target MSE: 

b  

( ) 1

1

1 4Q ,
12

ibN i i

i

f b
d N

N
εδ γ

α α α

−
−

=
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∑  (5.32) 

or equivalently, 

 ( ) 1

1 1

1 ,
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+ ≤⎜ ⎟⎜ ⎟∑ ∑  (5.33) 

since ( )Q i  is one-to-one and monotone decreasing.  

We will thus instead focus on the optimization problem with a modified MSE 

performance constraint: 

 ( )i

1

-b 1

i=1 i=1
subject to 2 + , N Q , 
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            0,  and 1 ,
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N
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or equivalently, 

1

3
-

1 1

Min , 
N

ib∑
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2 112
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i i

i

N N
b bi

i i i
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∑ ∑  (5.35) 
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∑ . The main advantage of the 

alternative design formulation in (5.35) is that the cost function is linear and the 

onstraints are convex. It is thus a convex optimization problem and w

simple closed-form solution as shown below. 

5.5 Problem Formulation and Suboptimal 
 

The finial optimization problem as follows:  

 

γ
⎛ ⎞
⎜

c ill lead to a 

Closed-form Solution

1
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2 112
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 (5.36) 

To solve problem (5.36), let us form the Lagrangian as: 
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1 1 1 1

, , ,...,

2 2 .
2 112
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λ μ
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31
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∑ ∑

The associated set of KKT conditions [14] is followed: 

( )
331 biε −

⎛ ⎞
⎜ ⎟1 ln 2 2 0,  1 ,i

i i Nλ μ+
2 112 iε

− − − = ≤ ≤  (5.38) 
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 N 0,  0,  0,  0, 1 .i i i ib b iλ μ μ≥ ≥ ≥ = ≤ ≤  (5.40) 

0λ = , equation (5.38) implies 1 0iμ = >We first observe that, if  for all 

, and hence  for all 1 i N≤ ≤ 0ib = 1 i N≤ ≤

, we m

. This case should be precluded since all 

sensors will remain silent. Accordingly ust have 0λ >  which means that the 
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MSE constraint in (5.35) is active so that  
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1 1 2 112 i i iε= = +

Solving 

32 2 .i i
N Nb biR NAε −− =∑ ∑  (5.41) 

.41) leads to  (5.38) and (5
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here  
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The can be obtained finally: 

 

⋅ ⋅
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By taking into account the constraint , the suboptimal bit length 

⎢=
⎢ ⎥

 

0ib ≥ subopt
ib  is 

given by the next Lemma with proof given in Appendix H. 

 

Lemma 5.4 : Assume 1 2 .... Nε ε ε≤ ≤ ≤  without loss of generality, and define the 

function: 

 ( )
( )( )31 12 3 2 1

,   1 .
i i

Y i i N
A

ε ε− +
= ≤ ≤  (5.45) 

ind the maximum K1 such that ( )1 1Y K ≥ . F Then we define the function: 

 ( ) ( ) 1,   1 .KZ i Y i i N=
N

⋅ ≤ ≤  (5.46) 

 such that Find the maximum K2 ( )2 1Z K ≥ . Then we have 
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( )log 2 ,  1 2.
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K i N
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+ ≤ ≤⎪⎩

1. We note that the target disto

 (5.47) 

5.6 Discussions of Suboptimal Solution 

rtion level γ  cannot be set unlimitedly small. It is 

ark estimate based on 

un-quantized real-valued sensor measurements. It is the case for 

N  By setting 

lower bounded by the MSE attained by the benchm

,  1 .ib i= ∞ ≤ ≤ ib = ∞  in the average MSE formula specified in 

(5.32), the minimal allowable γ  can be immediately determin

 

ed as 
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2. If this bit-loading optimization problem has the proposed suboptimal solution, 

there must be some index i leading to . From (5.42), the constraint 0ib ≥ 0ib ≥  

also implies  
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12 2 1
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i=

From (5.43), we have  
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(5.50) 

By (5.49) and (5.50), we can derive  
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or equivalently  
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1 3 2 1i
e

ε=
= + −

⎜ ⎟+⎝ ⎠
∑ . It is the upper bound of the 

designed average MSE. 

3. Recall from (5.21) that the bit error rate is proportional to the path gain idκ  

ge 

iε  

(if the same transmission energy is assumed throughout all sensors). Lar

values of iε  correspond to sensors deployed far away from the FC. They are 

gain. By this point the proposed 

suboptimal solution is intuitively attractive. The sensors associated with the 

usually with poor background channel 

( )2 1N K− − th largest iε ’s are turned off to conserve energy. We note that a 

similar energy conservation strategy via shutting off sensors alone poor channel 

links is also found in [19], in which the scenario with instantaneous noise 

riances available to the FC is considered. va

4. From (5.47), we further note that the assigned message length is inversely 

proportional to iε  for those active nodes. This is intuitively reasonable since 

sensors with better link conditions should be allocated with more bits to realize 

the desired MSE performance. 

bit 

an be obtained by solving 

 

5. Based on the inequality constraint for average MSE in (5.35), the equal-

scheme maintaining the desired MSE c
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leading to 
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2 112
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Nb ε
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⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟= −⎨ ⎬⎜ ⎟+⎪ ⎪⎝ ⎠⎩ ⎭
∑ N A⋅  (5.54) 

Simulation results in the next section show that the proposed suboptimal scheme 

. 

 

(5.47) yields energy saving when compared with (5.54)
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5.7 Numerical Simulation 

For a fixed set of distances between sensors and the FC ( N ), the 

 

 

,  1id i≤ ≤

performance is measured via the percentage of energy saving (PES) [6, 7]:

1 1

1

100,

N N
subopt

i i i
i i

N
i

i

b w w b
PES

b w

= =

=

−
= ×

∑ ∑

∑
 (5.55) 

where subopt
ib  and are defined respectively in (5.47) and (5.54). We assume that 

e transmission energy per bit is 1(mW) throughout all se

dista

 b  

th nsors. A fixed set of 

nces  for 1id i N≤ ≤  induces a fixed set of bit error rate N for 1i iε ≤

(5.21) w 89 10G

≤  by 

ith 3.5κ =  0 3.44and 5−= × [20]. We simply set 5 20i id Z= + (m) 

with 2
1iZ χ∼  being i.i.d. Chi-Square distributed rando riable. The results are 

averaged over 50000 independent trials. T

m va

he total number of s 50 

under

ensors is N=1

0.02γ = .  

Figure 5.2(a) shows the PES by fixing 0.85δ =  for 0.7 1.4α≤ ≤  and Figure 

 shows that energy efficiency of the 

suboptimal solution improves as 

5.2(b) depicts the average active sensors. It

α  increases (a large α  corresponds to a more 

homogeneous sensing environment). We note that a similar p

observed in the existing works [6, 7] relying on instantaneous noise variance 

perfect wireless channel. When the sensing condition 

becomes more inhomogeneous, it is more likely that a large fraction of sensors suffers 

from poor measurement quality and will be shut off. It leads to improved energy 

solution (5.47) based on statistical noise variance 

description would reflect the long-term characteristic of the schemes [6, 7], this 

consistency is expected. 

in henomenon has been 

knowledge and considering the 

efficiency. Since the proposed 

50 



0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
20

40

60

80

Noise variance variation α

(a)

P
E

S

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
20

40

60

80

100

N ce variation αA
v

oise varian

er
ag

e 
nu

m
be

r o
f

ve
 

or
s

(b)

 
Figure 5.2 : PES for fixed minimal noise variance

 a
ct

i
se

ns

 threshold ( 0.85δ = ) 
 

 fixing We repeat the experiment by 1.45α =  and varying the minimal threshold 

δ . The results are shown in Figure 5.3. Obviously, the PES exhibits a counter 

tendency as compared to Figure 5.2. It shows that the energy saving achieved by 

proposed suboptimal solution is lower as δ  increases. This is reasonable because the 

ll sensor 

measurement. More sensor nodes should be turned on to provide a sufficient amount 

large minimal noise variance threshold results in severe noise corruption in a

of information for MSE reduction. 
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Figure 5.3 : PES for fixed noise variance variation ( 1.45α = ) 

5.8 Summary 

This chapter provides a solution to the minimal-energy decentralized estimation 

problem by exploiting a statistical noise variance model and considering the 

nonperfect wireless channel between sensors and the FC. The wireless channel is 

Rayle  path loss. We use BSC model to characterize this 

ex nce 

measure averaged ov

reformulated as convex optimization problem. The analytic closed-form solution 

reveals the energy saving policy. The proposed solution simply allocates energies to 

sensors with

comp

igh fading channel with

wireless channel. Based on a closed-form pression of the MSE performa

er the noise variance distribution, energy minimization is 

 large channel gain and shut off those suffering from poor link quality. We 

are the proposed suboptimal solution with the uniform-allocation scheme. 
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Numerical simul

significan

variation factor is lar

ation shows that the energy saving efficiency is particularly 

t when the minimal measurement noise variance threshold is small or the 

ge. 
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Chapter 6  

 

appropriate length and send the resulting discrete message to 

the FC. The FC combines all the received messages to produce a final estimate of the 

unknown parameter. Naturally, the message lengths are determined by the power and 

bandwidth limitation, sensor noise characteristics, wireless channel conditions, and 

the desired final estimation accuracy. 

As energy efficiency is a critical concern for sensor network design [6, 7, 8], the 

decentralized estimation is formulated as optimal bit-loading problem. In the practical 

 

Conclusion 

In this thesis, we consider the wireless sensor network (WSN) which is used for 

environmental monitoring. A popular WSN architecture consists of a fusion center 

and a large number of spatially distributed sensors. Each sensor in a WSN is 

responsible for local data collection and occasional transmission of a summary of its 

observations to the FC via a wireless link. In a practical WSN, each sensor has only 

limited computation and communication capability due to various design 

consideration such as small size battery, bandwidth and cost. As a result, it is difficult 

for sensor to send their entire real-valued observation to the FC. Instead, a more 

practical decentralized estimation scheme is to let each sensor quantize its real-value 

local measurement to an 
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system the probability density function (pdf) of the observation noise is hard to 

characterize, especially for a large scale sensor network. The signal processing 

algorithms that do not require knowledge of the sensor noise pdf have been proposed 

[7, 8]. 

While most of the existing related works require the knowledge of instantaneous 

noise variances for energy allocation, the proposed approach instead relies on 

long-term noise variance knowledge. In order to improve the estimation performance 

against the variation of sensing conditions, repeated update of the noise profile would 

be needed. This comes inevitably at the cost of more training overhead and extra 

energy consumption. If the sensing environment is harsh, the sensing noise will 

change quickly. The proposed signal processing algorithm which relies on an 

associated sensing noise variance model is needed. Especially when the sensing 

environ  know i e FC, 

the proposed signal processing algorithm is useful. 

inimization problem is formulated in the form of 

convex optimization with the average MSE constraint and then the problem is 

analytically solved. Chapter 4 of this thesis considers the counterpart problem: how to 

find the optimal bit load which minimizes the average MSE distortion under a fixed 

total energy budget. 

Another key feature common to Chapter 3 and Chapter 4 of this thesis is that we 

all assume error-free transmission. We consider the sensors experiencing the perfect 

ment is harsher or the instantaneous noise variance is hard to n th

Chapter 3 of this thesis attempts to provide a solution to minimal-energy 

decentralized estimation by exploiting long-term noise variance information. A 

commonly used statistical model [6, 7] for noise variance is used and the estimation 

performance is assessed through an MSE based metric average with respect to the 

considered distribution. A closed-form expression of the overall MSE requirement is 

derived. The analysis of the energy-m
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wireless channel. There is no bit error in the wireless channels between sensors and 

the FC. Chapter 5 of this thesis considers the noisy channel between each sensor and 

the FC by modeling it as a binary symmetric channel (BSC) model with crossover 

probability which is controlled by the transmitted bit energy and it use the long-term 

noise variance knowledge to formulate the optimization problem. The BSC models 

are used to characterize the wireless multi-path fading channels with path loss. A 

closed-form expression of the overall MSE requirement is derived and the 

optimization problem is then analytically solved. 

The proposed signal processing algorithms share several interesting aspects 

pertaining to those based on the instantaneous noise variance information. Sensors 

with bad channel quality (specified via the path distance to FC) are shut off to 

conserve energy, and for those active nodes the allocated energy is proportional to the

individual c posed s emes yield 

ual-bit allocation policy. 

gn the problem with correlated sensor measurement noise, 

the resu

 

hannel gain. The simulation results show that the pro ch

energy saving against the eq

 Furthermore, if we desi

lts may be more suited for practical systems. In general environment, the 

sensor measurement noises of the adjacent sensors are highly correlated. We can also 

consider the wireless time-varying channel between sensors and the FC. The results 

may be useful for mobile sensor network. However, it is not easy for us to derive the 

closed-form formula of the average MSE. 
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AppendixEquation Chapter  1 Section 1 

Appendix A : Proof of Lemma 3.1 

By change of variable i iu zα β= + , and hence ( )i iz u β α= − , we have 
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It thus suffices to check 
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−∫  (A.2) 

Let us define 2csciu β θ= , and hence 22 csc cotidu dβ θ θ= − . θ We then have 

 ( )
2csc 22 0 2 2
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i i i

e edu d
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β θ αα

β π β θ θ
β β θ β θ
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∫ ∫ θ   

22 2 sin
0

2 .i

i
e dπ β α θ θ

β
−= ∫  (A.3) 

We note that the  function admits the following alternative expression [13, 

p-71]: 

 

Q( )i

2 22 2sin
0

1Q( ) .xx e dπ θ θ
π

−= ∫  (A.4) 

The assertion (A.2) follows immediately from (A.3) and (A.4). 
 

Appendix B : Proof of Lemma 3.2 

We first observe that, since 2 4 1ib
i Rβ δ −= + 2  and 0 ib≤ ≤ ∞ , we have 

2 2ie eβ α δ α≥  and 2 12i Rβ δ≤ + , leading to 
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2 2

2

Q2 2 Q .
12

i
i

i
i

e e

R

β α δ αβ απ π β α
α αβ δ

⋅ ≥ ⋅ ⋅
+

 (A.5) 
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one-to-one and monotone decreasing, we have 
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 then imply Inequalities (A.5) and (A.6)
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Further, since is convex for , it follows 
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and hence 
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and the result thus follows. 
 

Appendix C : Proof of Lemma 3.3 

λ  in (3.23) into (3.22), it is straightforward to see that the 

constraint 0 is equivalent to 
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μ ≥  must be properly chosen to simultaneously meet (A.10) and the 

equality constraint (3.21). The equation (3.23) can be rewritten as  

 ( ) ( )1 1

1
Q 1 ( ) .
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i
w cNλ μ γ δ α− −
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− = −∑  (A.11) 
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We observe (3.22). The constraint 0ib ≥  also implies 

 ( ) ( )1 12 .i iw R Nλ μ α− − ≤  (A.12) 

( )1Q 1 12cN Rγ δ α α− − ≤From (A.11) and (A.12), we have  or  
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Note that constraint (A.13) is equivalent to  

12 Q 1 ( )cN

 
( )

1

2
2

2
12 12
R

R
δ α δ π

α α α δ
Q .Neγ

−
⎛ ⎞⎛ ⎞⎜ ⎟≤ +⎜ ⎟⎜ ⎟  (A.14) ⎜ ⎟+⎜ ⎟⎝ ⎠⎝ ⎠

Since this upper bound is feasible, we may without loss of generality chose γ  to be 

within this range so that (A.13) holds. Then we must solve iμ  such that  
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Appendix D : Proof of Lemma 4.1 
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and then we have 0 1η< < . From (A.17) and (A.18), the lower bound of ( )1 1f K +  

can be obtained: 
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he result of (A.19) is from the assumption

f K

( )1 1f K ≥T . 
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Appendix E : Proof of Lemma 5.1 
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If 0 0.5iε< < , then the useful inequality can be derived: 
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The inequality (5.16) can be proofed by (A.20) and (A.21). 

Appendix F : Proof of Lemma 5.2 

By change of variable x
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It thus suffices to check 
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Let us define 2csciu x θ= , and hence 22 csc cotidu x dθ θ θ= − . We then have 
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e note that the function admits the following alter

 

W native expression  Q( )i  

2 22 2sin
0

1Q( ) .xe dπ θx θ
π

−= ∫  (A.25) 

The assertion (A.23) follows immediately from (A.24) and (A.25). 

Appendix G : Proof of Lemma 5.3 
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Inequalities (A.28) and (A.29) then imply  
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Further, since is convex for , it follows Q( )t  0t >
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and the result thus follows. 
 

Appendix H : Proof of Lemma 5.4 

It is straightforward to see that the constraint  is equivalent to  0ib ≥
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Then we set 0 for 1 1i i Kμ = ≤ ≤  and N1 for 1 1i K iμ = + ≤ ≤ . By setting iμ , the 

inequality (A.33) becomes  
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Finally we find the first K2th sensor such that the inequality (A.35) holds and the 

closed-form suboptimal solution is shown in (5.47). 
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