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Abstract

In a wireless sensor network, -due tobandwidth and energy limitation, each
sensor is only able to transmit a finite.number.of bits to the fusion center (FC) which
combines the received bits to estimate the unknown parameter by the
best-linear-unbiased-estimator (BLUE) fusion rule. In this thesis, the optimal power
allocation strategies are considered for two cases: minimal energy decentralized
estimation and minimal mean square error decentralized estimation. In the first case,
the minimization of total energy is subject to a certain performance constraint in terms
of mean square error (MSE) averaged over the noise variance distribution. In the
second case, the minimization of the average MSE is subject to a certain energy
constraint. We also consider the minimal energy decentralized estimation over
rayleigh fading channels with path loss. The wireless links between sensors and the
FC are characterized by the binary symmetric channels (BSCs). While most of the
existing related works require the knowledge of instantaneous noise variance for
energy allocation, the proposed approach instead relies on an associated model. The
problems can be reformulated in the form of convex optimization and the closed-form
optimal solutions are obtained. The proposed schemes share several attractive features
of the existing designs and are seen to significantly improve energy efficiency against
the uniform allocation schemes by the simulation results.
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Chapter 1

Introduction

Wireless sensor networks (WSNs) are ideal for environmental monitoring
applications because of their low implementation cost, agility, and robustness to
sensor failures. A popular WSN .architecture consists of a fusion center (FC) and a
large number of spatially distributed sensors:-The FC can be either a standard base
station or a mobile access point’such as-anrunmanned aerial vehicle hovering over the
sensor field. Each sensor in a WSN' is responsible for local data collection as well as
occasional transmission of a summary of its observations to the FC via a wireless link.
In a practical WSN, each sensor has only limited computation and communication
capabilities due to various design considerations such as small size battery, bandwidth,
and cost.

As a result, it is difficult for sensors to send their entire real-valued observations
to the FC. Instead, a more practical decentralized estimation scheme is to let each
sensor quantize its real-valued local measurement to an appropriate length and send
the resulting discrete message (typically short) to the FC, while the latter combines all
the received messages to produce a final estimate of the unknown parameter.

Naturally, the message lengths are dictated by the power and bandwidth limitations,



sensor noise characteristics, wireless channel condition as well as the desired final
estimation accuracy.

Recently, several decentralized estimation schemes (DES) [1, 2, 3] have been
proposed for parameter estimation in the presence of additive sensor noise. These
DESs require each sensor to send only a few bits to the fusion center, with the
message length determined by the sensor’s local SNR. Performance of the resulting
estimator is shown to be within a constant factor of the best linear unbiased estimator
(BLUE) performance.

In a practical WSN, the wireless links from sensors to the FC may have different
qualities, depending on the sensor locations relative to the FC. Intuitively, local
message length should depend not only on the quality of sensor’s observation (i.e.,
local SNR), but also on the quality:of its wireless link to the FC. In particular, even if
a sensor has a high quality observation, it sheuld.not perform any local quantization
or transmission when its wireless link-to-the-FC is/weak, in order to conserve sensor
energy. In general, minimizing'<the. total= sensor energy consumption for a
decentralized estimation task is essential to ensure long lifespan of a WSN. Motivated
by these considerations, the authors of [4, 5] proposed optimal coded and uncoded
transmission strategies for sensor networks which can minimize the required energy
per transmitted bit, although no consideration was given to the quantization effect and
the accuracy of final estimation.

As energy efficiency is a critical concern for sensor network design [6, 7, 8], the
decentralized estimation is formulated as optimal bit-loading problem. In the practical
system the probability density function (pdf) of the observation noise is hard to
characterize, especially for a large scale sensor network. The signal processing
algorithms that do not require knowledge of the sensor noise pdf have been proposed

[7, 8]. While most of the existing related works require the knowledge of
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instantaneous noise variances for energy allocation, the proposed approach instead
relies on an associated statistical model. In order to improve the estimation
performance against the variation of sensing conditions, repeated update of the noise
profile would be needed. This comes inevitably at the cost of more training overhead
and extra energy consumption. If the sensing environment is harsh, the sensing noise
will change quickly. The proposed signal processing algorithm which relies on an
associated sensing noise variance model is needed

This thesis is organized as follows. In Chapter 2, we introduce the system model
of wireless sensor networks and decentralized estimation scheme. In Chapter 3,
minimal energy decentralized estimation based on long-term noise variance
knowledge is proposed. In Chapter 4, minimal mean square error decentralized
estimation based on long-term noise variance knowledge is proposed. In Chapter 5,
we consider minimal energy decentralized estimation with the noisy channel between
each sensor and the FC by exploiting.long.term-noise variance information. The main
results are presented and the numerical _performance of the proposed schemes are
illustrated. Finally, we conclude this thesis and propose some potential future works in

Chapter 6.



Chapter 2

Wireless Sensor Network Overview

Recent technological advances in Wireless Sensor Networks have led to the
emergence of small, inexpensive, and low-power sensor devices with limited
on-board processing and communication,eapabilities. When suitably programmed and
deployed in large scale, such networked sensors can -cooperate to accomplish various
high-level tasks. Sensor networks of.this type are well-suited for situation awareness
applications such as environmental ‘monitoring (air, water, and soil), smart factory
instrumentation, military surveillance, precision agriculture, intelligent transportation
and space exploration.

WSNs deploy geographically distributed sensor nodes to collect information of
interest. The collected information is then aggregated via wireless transmissions at a
fusion center to generate the final intelligence. A typical wireless sensor network
consists of a fusion center and a number of sensors. The sensors typically have limited
energy resources and communication capability. Each sensor in the network makes an
observation of the quantity of interest, generates a local signal, and then sends it to the
fusion center where the received sensor signals are combined to produce a final

estimate of the observed quantity.



Since sensors have only small-size batteries whose replacement can be costly,
sensor network operations must be energy efficient in order to maximize network
lifespan. A main objective of current sensor network research is to design

energy-efficient devices and algorithms to support all aspects of network operations.

2.1 System Model of Wireless Sensor
Networks

S,

X1

/ SQ

Sn

Figure 2.1 : System Model of Wireless Sensor Network

A common WSN architecture consists of a fusion center and a number of
geographically distributed sensors. Such network architecture can be used to
accomplish a joint signal processing task such as decentralized estimation and
detection. In this chapter, we consider decentralized estimation of an unknown by a
set of distributed sensor nodes and a fusion center. The sensors collect real-valued
data, perform a local data compression and send the resulting discrete messages to the
fusion center, while the latter combines the received messages to produce a final
estimate of the observed signal.

The universal decentralized estimation schemes (DESSs) let each sensor send to
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the fusion center a short discrete message whose length is determined by the local
signal-to-noise ratio (SNR), while guaranteeing a mean squared estimation error
(MSE) performance that is within a constant factor of that achieved by the centralized
best linear unbiased estimator (BLUE). However, this chapter still assumes that the

wireless channel between sensor and fusion center are ideal without any distortion.

2.1.1 Measurement and Quantization of Each Sensor

Consider a set of N distributed sensors, each making observations on
deterministic source signal &. The observations are corrupted by additive noise. The

local observation at the ith node is
Xi:0+ni,1£iSN, (21)

where n; is zero-mean measurement noise With variance . A commonly used
statistical description for sensor:noise variance is [6, 7]
or=6+az;, 1<i<N, (2.2)

where 6 models the network-wide noise variance threshold, « controls the

underlying variation from the nominal minimum, and z ~ » is a central

Chi-Square distributed random variable with degrees-of-freedom equal to one[10,
p-24]. Due to bandwidth and power limitations each sensor quantizes its observation
into a bi-bit message, and then transmits this locally processed data to the FC to
generate a final estimate of &. In this thesis the uniform quantization scheme with
nearest-rounding [11, 12] is adopted.

The quantized message at the ith sensor can be modeled as
mi:Xi-f‘qi,lSiSN, (23)

where @; is the quantization error which is uniformly distributed with zero mean and



variance o} —R2/12-4% [11]. [-R/2,R/2] is the available signal amplitude range

common to all sensors. With (2.1) and (2.3), the received data from all sensor output

can be expressed in a vector form as
m=10+n+q, (2.4)

where m=[m...my1", 1=[L..0", n=[n..ny]1", q=[g....ax]" and (+)'

denotes the transpose.

2.1.2 Best Linear Unbiased Estimator (BLUE)

In order to generate a final estimate of &, the Best Linear Unbiased Estimator
(BLUE) [9] is used in the FC. This estimator can be determined with knowledge of

only the first and second moments.of the PDF. The.BLUE is defined in (2.5).
=
0 ="> a,m[n]. (2.5)
=1
We observe the data set {m[1],m[2], ., m[N]}" whose PDF p(x;6) depends on an

unknown parameter &. The a,’s are constants to be determined. If we constrain this

estimator to be unbiased E(é)z @ and to minimize the variance var(é). Then the

BLUE is given by

T -1
0= 1TC LY (2.6)
1'C1
where C is covariance matrix. The minimum variance of the BLUE is (2.7).
A ~ 2 1
var(9)=E(0—9‘ j:m. 2.7)

By assuming that the noise component {n, q} in (2.4) are mutually independent

with covariance matrices Cnand Cq, then C is given by C=C,+C,. By further

assuming that the measurement noise n;‘s are i.i.d, and the quantization noise g;’s are

independent across all sensors, the mean square error (MSE) incurred by 6 can be



immediately computed as [9]

-1
A 2 N 1
E|6-6] |= , 2.8
U ‘j [Eai2+R24_bi /12} 9

where o is defined in (2.2).

2.2 Decentralized Estimation Scheme (DES)

In this thesis, a star-like sensor network is considered. Each sensor in the
network collects an observation, computes a local message and sends it to a fusion
center. Sensor nodes do not communicate with each other. To reduce the
communication requirement from sensors to the fusion center, local
quantization/compression at each .sensor site iS needed. In fact, a central problem in
sensor network research is to design discrete local -message functions and the final
fusion function in a way that minimizes-the total bandwidth requirement while
satisfying an overall system performance. requirement. Clearly, optimal design of
these functions will depend on the underlying sensor noise distributions.
Unfortunately, characterizing the exact noise probability distributions for a large
number of sensors is impractical, especially for applications in a dynamic sensing
environment.

The decentralized estimation of a noise-corrupted deterministic parameter is
considered. The sensor noises are assumed to be additive, zero mean, spatially
uncorrelated, but otherwise unknown and possibly different across sensors due to
varying sensor quality and inhomogeneous sensing environment. The classical BLUE
linearly combines the real-valued sensor observations to minimize the MSE.
Unfortunately, such a scheme cannot be implemented in a practical

bandwidth-constrained sensor network due to its requirement to transmit real-valued

8



messages. In paper [3], the authors construct a decentralized estimation scheme (DES)
where each sensor compresses its observation to a small number of bits with length
proportional to the local sensor signal-to-noise ratio (SNR). The resulting compressed
bits from different sensors are then collected and combined by the fusion center to
estimate the unknown parameter. It is shown that the MSE of the DES is within a

constant factor of 25/8 to that achieved by the classical centralized BLUE estimator.

2.3 Mean Square Error (MSE) of
Decentralized Estimation

That the sensor messages {mi k=12,.., K} are perfectly received by the FC

with no errors is assumed. According to, (2:1)-and (2.3), m;can be represented as

mi:9+ni+qi,1SiSN, (29)
E(m;)=4, (2.10)
var (m; )= o2 +R*47% /12, (2.11)

where njis the sensor measurement noise and g; is quantization noise. Therefore the

final estimator is

N 1N .
5:(2 1m.)j > M (2.12)

ivar (m;)

Notice that @ is an unbiased estimator of & since every m; is an unbiased

quantization of x;. It has an MSE :



2
N1 )TN m-
[[.Zi var(m;) ] E var(m;) ]

=(§;}2§E(|mi9|2)

iavar(m) ) i3 (var(m,))?

-1
31 (2.13)
i var(m;) ' '

When each m;is transmitted to the FC through a nonperfect channel with finite
power, bit error occurs. It will impact on the estimation t accuracy at the FC. The links

between each sensor and the FC are modeled as a memoryless binary symmetric
channel. Suppose the probability of bit error.achieved by sensor i is pﬂ, and m is
the decoded version of m, at the receiver. Let.D’ -denote the MSE achieved by the

estimator (2.12) based on the received message '{m;;m,,...,my }.According to [6], if

{pti,} satisfy (for some py>0)

i
0o 2 R % 1<i<N, (2.14)

Oj

then

(2.15)

It shows that the actual achieved MSE is at most a constant factor away from
what is achievable with perfect sensor channels, provided that each sensor’s bit error
rate (BER) is bounded above (2.14). Because the perfect MSE D is easier to derived,
the upper bound of actual achieved MSE D’ in (2.15) will be used to formulate the

optimization problem later.

10



Chapter 3

Minimal Energy Decentralized
Estimation Based on Sensor Noise

Variance Statistics

This chapter studies minimal-energy decentralized estimation in sensor network
under BLUE fusion rule. While most of the existing related works [6, 7, 8] require the
knowledge of instantaneous noise variances for energy allocation, the proposed
approach instead relies on an associated statistical model. Subject to severe energy
and bandwidth limitation, each sensor in this scenario is allowed to transmit only a
quantized version of its raw measurement to the FC to generate a final parameter
estimate. While quantized message with longer bit length provide improved data
fidelity, the consumed transmission energy is however proportional to the bit loads.
As energy efficiency is a critical concern for sensor network design, the
minimal-energy decentralized estimation problem which formulated in an optimal
bit-loading setup has been recently considered.

One key feature common to the existing related works is that the energy

11



allocated to each sensor must be determined via instantaneous local sensor noise
characteristics (the noise variance), if the fusion rule follows the BLUE principle. In
order to improve the estimation performance against the variation of sensing
conditions, repeated update of the noise profile would be needed. This comes
inevitably at the cost of more training overhead and extra energy consumption. One
typical approach to resolving such a drawback is to exploit the partial (or long-term)
information of the noise characteristics.

This chapter attempts to provide a solution to minimal-energy decentralized
estimation by exploiting long term noise variance information. A commonly used
statistical model [6, 7] for noise variance is used and the estimation performance is
assessed through an MSE based metric average with respect to the considered
distribution. A closed-form expression of the overall MSE requirement is derived. The
analysis of the energy-minimization problem is formulated in the form of convex
optimization. The problem is then analytically-solved:

The proposed optimal scheme shares.several interesting aspects pertaining to
those based on the instantaneous noise variance information. Sensors with bad
channel quality (specified via the path distance to FC) are shut off to conserve energy,
and for those active nodes the allocated energy is proportional to the individual
channel gain. Simulation results show that the proposed optimal solution yields

significant energy saving against the equal-bit allocation policy.

3.1 Average Mean Square Error of
Decentralized Estimation

For a fixed set of noise variances o7 ’s, the energy minimization problem

12



subject to an allowable parameter distortion y (in terms of MSE) can be formulated

as

1
Min 3'E., subj 3 L
in " E., subject to
=i dof +(RY/12)47™

<7 (3.1)
where E;is the consumed energy for transmitting the message m;. (3.1) is equivalent to

N N
Min Y E;, subject to Y — 21 >y (3.2)
= ol +(R%/12)47®

In order to obtain universal solution with averaged measurement noise conditions, the

following optimization problem is considered:

p(z)dz =71, (3.3)

N N 1
Min ) E;, subjectto | >’
=i IZi=1§+ozzi +(R2/12)4‘bi

where z:[zl,zz,...,zN]T with .p(z) denoting the associated distribution. In the

optimization problem (3.3), the ‘equivalent MSE performance metric in (3.2) is
averaged with respect to the noise variance statistic characterized in (2.2).

To solve (3.3), a crucial step'is to derive an analytic expression of the
average MSE performance measure. Since z ~;(12 is a central i.i.d. Chi-Square
distributed random variable with degrees-of-freedom equal to one[10, p-24]

1
——exp(-2z/2), z>0,
pzf(z): \N2rz P( ) (3.4)
0, z<0.

The average MSE performance can be derived as

N 1
IZ E5+azi +(R2/12)4_bi

p(z)dz
N © l e_zi/2
‘.Zfo Ry
i azi+p; 271

1 N e_zi/2

0

= \/ZEJ‘O (aZi +ﬂi)\/zdzi,

13
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(3.5)



where S =0+ R24‘bi/12. The following lemma, with proof given in Appendix A,

provides a closed-form expression of the integral involved in the summation in (3.5).

Lemma3.1:With >0 and £ >0 asdefinedin (3.5), we have

g 4/ _ 2P Q)
jo (3.6)
(a7 +ﬂ.)f af
—t2/2
where Q(X) = j fdt is the Gaussian tail function.

With (3.5) and Lemma 3.1, the optimization problem (3.3) can be equivalently

rewritten as

25 W“Q(Jﬂ/a)
Min Y E;, subject to ' 3.7
3 VA o7

Exact solution to problem (3.7) appear intractable since the target MSE is highly

nonlinear in b;. We will thus seek: for‘the suboptimal alternatives which can
otherwise admit simple analytic expression: The underlying approach toward this end

IS to derive an easy-to-tackle lower bound on the target MSE metric, and then replace

the MSE constraint in (3.7) by one which forces the lower bound to be above 7/_1

Such a procedure will considerably simplify the analysis without incurring any loss in
the desired MSE performance. This is done with the aid of the next lemma with proof

given in Appendix B.

Lemma 3.2 : The following inequality holds:

N eﬂ,/Za Q( ﬂ| ) -b,
\/72 \/J [ Zi( 5/a +R2 /\/12—04)} (3.8)

14



5/20:
NE R2/12

Lemma 3.2 suggests that we can replace the MSE constraint in (3.7) by the

which c is a constant defined by ¢ = ,/2”

following one without incurring any loss in the target MSE:

1N([s Ro™ 1
ol (2T o o
or equivalently
1 N([s R2™ 4 1
WE{\M \/12a]SQ (chJ' o0

Since Q(+) is one-to-one and monotone decreasing, we will thus instead focus on
the optimization problem with a modified MSE performance constraint:

N )
Min ) E., subject to b - —. 3.11
E : ) «/1—2— Z‘i Q (CN}/) a (3.11)

This optimization problem will lead to a simple closed-form solution.

3.2 Energy Density Factor of Sensor Nodes

We assume that each sensor sends messages to FC using a separate channel. This
can be achieved by using a multiple access technique such as TDMA or FDMA. Each
channel is corrupted by additive white Gaussian noise (AWGN) with power spectral

density No/2:

M =d™%m. + v, (3.12)
where m; is the received message at FC and v; is the AWGN. The signal power
received at the FC is assumed to be inversely proportional to d where d; is the

distance between sensor i and the FC, and « is the path loss exponent common to all

15



sensor-to-FC links. Suppose that message m; has length b; bit.

We will assume that energy E;required for transmission of m;is proportional to
the number of bits in the message. If M-QAM is used, the consumed energy at the ith
sensor is defined as

E; =wb, 1<i<N, (3.13)

where energy density factor w;is defined as [4, 5, 7]

@ _1)-In 2] | (3.14)

Wi = pa7 S sk
b

in which p is a constant depending on the noise profile, s is the number of bits per
QAM symbol, and Py is the target bit error rate. With (3.13), the specification of the
energy allocated to the ith sensor amounts to determining the number of quantization
bits b;.

For a fixed set of noise:variances 'o;.’s, the energy minimization problem
subject to an allowable parameter (distortion_level: » (in terms of MSE) can be

formulated as

N R
Min > wb;, subject to

Soh ot L) @
i—1 \/12aNi§12 =Q (CN}/) a (3.15)

In (3.15), the cost function is linear and the constrain is convex. It is thus a convex
optimization problem and will moreover lead to a simple closed-form solution as

shown below.

3.3 Problem Formulation and Optimal
Closed-form Solution

The final optimization problem is as follows

16



N
Min ZWibi,
i=1

. _ Fo) .
subject to 270 < —. b >0, 1<i<N.
: \/1205 Z © (CNJ’J N

In order to solve problem(3.16), let us form the Lagrangian function as

(3.16)

L( ,bN,/l,,ul,...,,uN)

S e ﬁ p G
I:1Wb +/1(\/12_NZ [ch}r a] iZ‘iy,b,.

The associated set of Karush-Kuhn-Tucker (KKT) [14] conditions is as followed:

(~In2)R27" :
Wi+ A ——— i =0, 1<i <N, 3.18
[ 2N H; ( )
2 o[ L 5
—|+,/<|=0, 3.19
[\/12 N iz Z (chJ a] (3.19)
220, 420, =0, b>0:1<i<N. (3.20)

If 1=0, equation (3.18) implies  =w;>0 for all 1<i<N, and hence b, =0,
1<i< N. This case should be precluded since otherwise all sensors will remain silent.

We must have 4 > 0. It means that the MSE constraint in (3.16) is active so that

b gt L) [3

\/JTN z (CN}/) a (3:21)

Solving (3.18) and (3.21) leads to
RA
b, —|OQZ{MN (Wi_,ui)}, (3.22)
where
N
B _Z(Wi—/li)
A=Aln2= =L . (3.23)

Q' (L/(cNy)) -5/

By taking into account the constraint b, >0, the optimal pair (biOpt,ZOpt) is given

17



by the next lemma with proof given in Appendix C.

Lemma 3.3: Assume w; =W, >--->wy Wwithout loss of generality, and define the
function:
N
2w
f(K)=ihked (3.24)

N - wy

Let 1<K; <N besuchthat f(K;—1)<1 and f(K;)>1.Then we have

0, 1<i<N-K,,
poPt — Topt 3.25
! Iogz{L}, N-K;+1<i<N, (3:25)
\/12(1 NWi
where
N
s U
pu- =ik L (3.26)

QH(UENY))= o/

3.4 Discussions of Optimal Solution

1. The target distortion level y cannot be set unlimitedly small. It is otherwise

bounded by the MSE attained by the benchmark estimate based on un-quantized
real-valued sensor measurements (i.e., the case when b, =, 1<i<N). By
setting by = in the average MSE formula specified in (3.7), the minimal

allowable » can be immediately determined as

-1
;/Z{Ne‘y/Z“Q( é] 2—”] . (3.27)

a |\Nao
2. Since 0<b; <oo, a necessary condition for validating the MSE constraint in

(3.15) is therefore
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Q! (ij - \E >0, (3.28)
cNy a

By definition of the constant ¢ in Lemma 3.2 and with (3.28), the MSE
attainable by the proposed method is lower bounded by

-1
> | Ned/2« \E] 2z | 3.29
7 Q[ a \a(5+R?/12) (29

The lower bound (3.29) is indeed larger than the lower bound (3.27).
In (3.14), the energy density factor w; is proportional to the path loss d;*, if

the same bit error rate is assumed throughout all the links. The large values of

w; correspond to the sensors deployed far away from the FC. They are usually
with poor background channel-gain. In this point, the proposed optimal solution
(3.25) is intuitively attractive. The sensors. with large w; are turned off to
conserve energy. A similar energy-conservation strategy via shutting off the
sensors with poor channel links..is found in [6], in which a scenario with
instantaneous noise variance available to the FC is considered.

From(3.25), the assigned message length is inversely proportional to w; for
those active sensors. This is intuitively reasonable since sensors with better link
conditions should be allocated with more bits to realize desired performance.
Based on the inequality constraint for average MSE in (3.15), the equal-bit
schemes maintaining the desired MSE can be obtained by solving

-b
RZ” _ Q! (Lj _ é (3.30)
12a cNy a

It leads to
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% a0 )]

Numerical simulations in the next section show that the proposed optimal

(3.31)

scheme (3.25) yields significant energy saving when compared with equal-bit

scheme (3.31).

3.5 Numerical Simulation

For a fixed set of energy density factors w;, 1<i<N, the performance is

measured via the percentage of energy saving (PES) [6, 7]:

NN
b w; - > wp™
PES = =L _--=12d x100, (3.32)
by w
i

=z

where biOpt and b are defined respectively in (3.25) and (3.31). We simply set

W, =dX where x=35 and d; =20+10Z, with Z, ~ 2 being i.i.d. Chi-Square
distributed random variable. The results are averaged over 50000 independent trials.
The total number of sensors is N=1500 under y = 0.005.

The Figure 3.1(a) shows the PES for 0.1<« <1.6 and Figure 3.1(b) depicts the
computed b in (3.31) with fixed &=0.8. That the PES exhibits two “jumps” can be
observed. This accounts for the two level change of b as « varies. Within each
duration of constant b, energy efficiency of the optimal solution improves as «
increases (a large a corresponds to a more inhomogeneous sensing environment).
We note that a similar phenomenon has been observed in the existing works relying
on instantaneous noise variance knowledge [6, 7]. When the sensing condition
becomes more inhomogeneous, it is more likely that a large fraction of sensors suffers

from poor measurement quality and will be shut off. It leads to improved energy
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efficiency. Since the proposed solution (3.25) based on statistical noise variance
description would reflect the long-term characteristic of the schemes [6, 7], this

consistency is expected.

(a)
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?5_ z.-f' l: _ _/-.-o-'""-"_
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(b)

25F
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Moise vatiance variation oo

Figure 3.1 : PES for fixed minimal noise variance threshold (6 =0.8)

We repeat the experiment by fixing « =0.4 and varying the minimal threshold
o . The results are shown in Figure 3.2. Obviously, the PES exhibits a counter
tendency as compared to Figure 3.1. For each duration of constant b, the energy
saving achieved by proposed optimal solution is lower as o increases. This is
reasonable because the large minimal noise variance threshold results in severe noise
corruption in all sensor measurement. More sensor nodes should be turned on to

provide a sufficient amount of information for MSE reduction.
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Figure 3.2 : PES for fixed noise variance variation (¢ =0.4)

3.6 Summary

This chapter provides a solution to the minimal-energy decentralized estimation
problem by exploiting a statistical noise variance model. Based on a closed-form
expression of the MSE performance measure averaged over the noise variance
distribution, energy minimization is reformulated as convex optimization problem.
The proposed solution simply allocates energies to sensors with large channel gain
and shut off those suffering from poor link quality. Numerical simulation shows that
the proposed optimal solution is capable of reducing about 80% energy consumption
when compared with the uniform-allocation scheme. The energy saving efficiency is
particularly significant when the minimal measurement noise variance threshold is

small or the variation factor is large.
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Chapter 4

Minimal Mean Square Error
Decentralized Estimation Based on

Sensor Noise Variance Statistics

Relying on partial noise variance knowledge in the form of the background
distribution, the problem of minimizing total transmission energy under an allowable
average distortion level is recently considered in [15]. This chapter considers the
counterpart problem: how to find the optimal bit load which minimizes the average
distortion under a fixed total energy budget. The main contribution of the current
work can be summarized as follows:

I. While the design metric, the reciprocal of the average MSE is shown in [15]
to be highly nonlinear in the sensor bit load. Several analytic approximation
relations are used to derive an associated tractable low bound.

ii. By maximizing this lower bound, the problem can be further formulated in
the form of convex optimization which yields a closed-form solution.

The analytic results reveal that under limited energy budget, sensors with bad
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link quality should be shut off toward utmost estimation accuracy, and energy
allocated to those active nodes should be proportional to the individual channel gain.
A similar energy conservation policy is also found in the previous work [6, 7, 15].
Numerical simulations show the effectiveness of the proposed scheme which

outperforms the uniform allocation strategy under an energy-limited environment.

4.1 Average Mean Square Error of
Decentralized Estimation

The MMSE decentralized estimation which is counterpart problem of (3.1) can

be formulated as

-1
Min {IN%GIZ s le . Subjectto %Ei < Eq, (4.1)
or equivalently,
N 1 : N
Max Z‘im subject to igiEi <E, (4.2)

where ﬂ:R2/12 and E; is allowable energy level. The equivalent MSE cost
function is averaged with respect to the noise variance statistic characterized in (2.2):

N 1
Ziad+azi+p

N
(z)dz, subjectto > E; < Er, (4.3)
i=1

Max P
470

where z=[2,2,...., Zy ]T with p(z) denoting the associated distribution. In order

to solve problem (4.3), the first step is to find an analytic expression of the equivalent
average MSE metric.

By equation (3.5) and lemma 3.1, problem (4.3) can be equivalently rewritten as
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(5+ﬂ4*bi )/Za e S+ by o
Maxﬂ-ie ( ( __ﬂ4 )/ j
i-1 a(s+pa™) (4.4)

N
subjectto > E; < Ey.
i=1

Exact solution to the considered optimization (4.4) appears formidable to tackle

because the cost function is highly nonlinear in b;. An alternative formulation which
IS more tractable is proposed and an analytic solution can be obtained. By the
following approximation to Q(.) function [16, p115]

1 e /2

Q(x)~ 7
( ) \/E (1—7z_1)x+7r_1\/X2+27z'

and some straightforward manipulations, the cost function can be approximated by

ol 07472 -Q( (o547, “]

(4.5)

NS
= a(5+pat) (4.6)
3 t

‘ 1(1— n—l)(m /4o )+ 72_1\/(5+ 7 )2 + 27ra(5+ /4 )

The main advantage of (4.6) is that it can lead to an associated lower bound in a
more tractable form. Thought maximizing this lower bound we can eventually obtain

a closed-form optimal solution. By the inequality equation:

\/(5+ /4o )2 + 27za(5+ﬂ4_bi ) < (5+ /40 )+ ra, (4.7)

the approximated cost function in (4.6) can be lower bounded by
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1
FHr-x)(s+ a7 )+ n—l\/(5+ B4 )2 +27a(5+ 47" )

N 1
>
ié(l—;r‘l)(5+ﬂ4_bi )+;f1 [(5+ﬂ4‘bi )+7ra}
N 1
=2
i:1(5+,34 b )+a
N 4%
= (4.8)
E,B+(a +§)4bi
We will thus focus on maximizing the lower bound:
I bject to 3" (49)
Max > ——— subjectto > E; < E;. :
S p+(a+s)dh =i

The cost function is simple in (4.9)..lt. can lead to an analytic solution of the

optimization problem.

4.2 Energy Density:Factor of Sensor Nodes

We assume that each sensor sends messages to FC using a separate channel. This
can be achieved by using a multiple access technique such as TDMA or FDMA. Each
channel is corrupted by additive white Gaussian noise (AWGN) with power spectral

density No/2:

M =d™%m, + v, (4.10)
where m; is the received message at FC and v; is the AWGN. The signal power
received at the FC is assumed to be inversely proportional to d where d; is the

distance between sensor i and the FC, and « is the path loss exponent common to all
sensor-to-FC links.

We assume that the ith sensor sends the bi-bit message m; by using quadratic
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amplitude modulation with a constellation size 2”. The consumed energy is [4, 5, 6,
17]
B =w (2" -1), 1<i<N. (4.11)

The energy density factor w; is defined as
w; = pd -In [—2 j (4.12)
| | R)

in which p is a constant depending on the noise profile, and Py, is the target bit error
rate assumed common to all sensor-to-FC links.
With (4.11), the specification of the energy allocated to the ith sensor amounts to

determining the number of quantization bits b;. For a fixed set of noise variances
Giz s, the MSE minimization problem subject to an allowable energy level E; can

be formulated as

Max %L subject to ‘N;w- (Zbi —1) <E (4.13)
i=1/3+(06+5)4b" i - '

N N
Since b; >0, it follows Zwi(Zbi —1)§Zwi (4bi —1). This implies that we can
i=1 i=1

replace the total energy constraint in (4.13) by the following one without violating the

overall energy budget requirement:

%wi (4% 1)<, (4.14)
i=1

With the aid of (4.14) and by performing a change of variable with B; = 451,

the optimization problem then becomes

N B; +1 : N
Max ! , Subjectto > w:B: < E+. 4.15
E(a+ﬂ+5)+(a+5)5i J ,% e (4.15)

In (4.15), the intermediate variable B; is relaxed to be a nonnegative real number so

as to render the problem tractable. While the optimal real-valued B; is computed,
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the associated bit loads can be obtain through upper integer rounding. The major
advantage of the alternative problem formulation is that it admits the form of convex
optimization and can lead to a simple closed-form solution. It is shown in the next

section.

4.3 Problem Formulation and Optimal
Closed-form Solution

The finial optimization problem is as followed

N B +1
Max E(a+ﬁ+5)+(a+5)8i'

N
subject to > w;B; < By B2 0, 1<i<N. (4.16)
i=1

In order to solve problem (4.16), let us form the Lagrangian as

L(by,.... by A, 24, )

% B, +1 ; % B _E % 5 (4.17)
— L3 wW:B: — + -B..
izl(a+ﬂ+§)+(a+5)8i i=1 i T i:]_ﬂl !
The associated set of KKT conditions [14] is as followed:
p >— AW + 4 =0, 1<i<N, (4.18)
[(a+B+5)+(a+5)B;]
N
/I(ZwiBi —ET]=0, (4.19)
i=1
120, ,LliZO, ,Llibi:O, biZO, 1S|SN (420)

The condition (4.18) leads to

B-— |/ —(1+ij. (4.21)
a+o lWi—/,li a+o

If A=0, equation (4.18) implies s >0 for all 1<i<N and hence
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b, =0, 1<i<N. This case should be precluded since all sensors are turned off. From

(4.19) and (4.21), /A can be obtained:

ﬁ=£[§\/ﬁ](5 +(1+ a{i&

In (4.21),4 and g; s should be determined to fulfill the desired constraints.

-1

N
]Zwi] . (4.22)
i=1

Wy =Wy >eeee >wy Is assumed without loss of generality and we define the

function

-1
Er (1+ﬂ] +% W,

f(K)= a+0) K 1<K <N, (4.23)

Let 1<K; <N be the unique integer such that f(K;-1)<1 and f(K)>1. If

f(K)>1 forall 1<K <N, thenset K;=1.The existence and uniqueness of such

Kj is shown in Lemma 4.1 with-proof given-in Appendix D.

Lemma4.l: f(K) definedin (4.28)-is:-monotone increasing and f(N)>1.

If Ky such that f (K;)>1 exists, then Ki+1 will lead to  f (K;+1)>1.

The optimal solution pair (Bi°pt,/1°pt) is given by

0, 1<i<K; -1,

opt _
A L—[u p j Ky <i<N, (4.24)
a+5\ A%w, a+d

e

i=K;

where

j > w }1. (4.25)

i=K;

Since B; =4 —1 and with (4.24) (4.25), the optimal bit load is
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0, 1<i<K, -1,

biopt: 1 N -1 N )
Elog2 {\/W,z \/Wij} {ET+[1+ B jz Wj:l_afﬁ , Ki<i<N.

=Ky a+o =K,
(4.26)
The resultant average distortion level then equals
. -1
(5+ﬂ4b' " J /Za o
e Q[\/(5+ﬂ4_b' )/aj
_ N
MSE =| V27 - ). (4.27)

=K, \/a(5+ pa pt)

4.4 Discussions of Optimal Solution

1. The minimal average MSE is attained when all the raw sensor measurements
with infinite-precision (i.e4 b =0, 1<1.<'N)are available to the FC. Hence, by
setting b, = in the mean MSE formula specified (4.4), we have the following

performance bound

-1
MSE i {Newa Q(y5/a) \/%} . (4.28)

Formula (4.28) reveals the impacts of the noise model parameters « and o
on the estimation performance. It is easy to see from (4.28) that the minimal
MSE increases with « . This implies the estimation accuracy degrades as the
sensing environment becomes more and more inhomogeneous (corresponding to
large «). Furthermore it can be checked that MSEni, also increases with the
minimal noise power threshold ¢ . This is reasonable since large 6 implies
poor measurement quality of all sensor data and a less accurate parameter
estimate. Although these facts are inferred based on the idealized distortion

measure (4.28), similar tendency is also observed for MSE in (4.27) attained
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with sensor data quantization.
The energy density factor w; is proportional to the path loss d* (assuming all

links with the same «). Large value of w; correspond to sensors deployed far
away from the FC, usually with poor background channel gains. In this point, the
proposed optimal solution is intuitively attractive. The sensors associated with
the (K;-1)th largest w;’s are turned off to conserve energy. A similar energy
conservation strategy via shutting off sensors with poor channel links is also

found in [6, 7, 15]. From (4.26), the assigned message length for those active
nodes is inversely proportional to \/W, This is intuitively reasonable since
sensors with better link conditions should be allocated with more bits (energy) to
improve the estimation accuracy:

In order to prevent sensors from exhausting.energy quickly, one natural way is to

impose an additional peak gnergy, constraint:
W (2'”- —1) <Ep, 1Si<N. (4.29)
In optimization problem (4.16), with extra inequality requirement (4.29), there

does not seem to exist a closed-form optimal solution. As a simple suboptimal

alternative, we can first identify the infeasible node index set
1“={i|wi(2biopt —1)> Ep, K{<i<N; from (4.26) and then instead fix the

energy associated with each of these nodes to be Ep. The resultant solution is

thus

0, 1<i<K, -1,
L1og \/Wi\/ﬁ_lE{u p j%w _ B Lk, <i<NandieT
2 V2 e T a+d)%, | a+s| 1= ’
log, (1+ Ep /W), Ki<i<NandieTl.
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(4.30)

The actual solution can be obtained by using the iterative procedures reported in
[18] with (4.30) as an initialization point. The algorithm to derive the optimal
analytical solution is followed.

(1) Solve the problem without individual power constraints (4.16) to obtain the

solution (4.26).

Set the index set F:{i|wi (Zbiopt —1)> Ep, Ki<i<N|.
(2) Set b =log, (1+Ep/w;) for iel.
Set By =By - X (2% -1).
Remove b; for ieI" from the design variable space.
(3) Repeat the first and second steps-until, I" is empty in the first step.

To prove that the algorithm leads to-the glebal-optimum, we need only to prove

that in the second step we do not“lose optimality of bi°pt for ie” when we

set b =log, (1+Ep/w;) forliel;

4.5 Numerical Simulation

We compare the simulated performance of proposed optimal solution (4.26)

against the uniform energy allocation scheme with bit load determined through
e
wi (2% -1)=E /N, 1<i<N. (4.31)

In (4.31), biis computed via lower integer rounding so that the resultant total energy

can be kept below Er. It leads to

b =log, (S—Jvuj. (4.32)
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In each independent run we simply choose w =d , where x=2 and

d; =0.5+0.3Z; with Z; ~ Z(z) being i.i.d.. The total number of trial is 50000. In
the following experiments we set the number of sensors to be N=200, and consider

N
three different levels of total energy. E; =py> w; with »=0.25, 1, 3 respectively
i=1

correspond to the low, medium, and high energy cases.

With fixed 6 =2, Figure 4.1 shows the computed average MSE as « varies
from 0.5 to 8. With fixed o =2, Figure 4.2 shows the average MSE as ¢ varies
from 0.5 to 8. Both figures show that the estimation accuracy improves as Er
increases. It is expected. The proposed solution (4.26) outperforms uniform energy
allocation (4.32), especially when Ey is small. It is more effective in an energy-limited

environment. The simulated average MSE increases with both « and 2.

a
10 S | | |
' & y=0.25 (uniform) ]
©— v =0.25 (optimal) J
-~ #x ~ 4 =0.4 (uniform) ]
—#4— y=0.4 (optimal) 8
O O~ | - y=1(uniform) D
c BTN —4— y =1 (optimal)
b9 -~ »= 4 =3 (uniform) ]
/ —— y =3 (optimal)
10'1 — -~ — benchmark performance (4.1)

average MSE

0 1 2 3 4 5 6 7 8
noise variance variation ¢

Figure 4.1 : Average MSE for fixed minimal noise variance threshold (6 =2)
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Figure 4.2 : Average MSE for fixed noise variance variation (o =2)

4.6 Summary

This chapter provides a solution to the minimal-MSE decentralized estimation
problem by exploiting a statistical noise variance model. Based on a closed-form
expression of the MSE performance measure averaged over the noise variance
distribution, MSE minimization is reformulated as convex optimization problem. The
analytic closed-form solution reveals the energy saving policy. The proposed solution
simply allocates energies to sensors with a large channel gain and shut off those
suffering from poor link quality. Numerical simulation shows that the estimation
accuracy improves as total energy increases. The proposed solution outperforms
uniform energy allocation especially when the total used energy is small, and thus is

more effective in an energy-limited environment.
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Chapter 5

Minimal Energy Decentralized
Estimation over Rayleigh Fading
Channel Based on Sensor Noise

Variance Statistics

As energy efficiency is a critical concern for sensor network design, the
minimal-energy decentralized estimation problem which is formulated in an optimal
bit-loading setup has been recently considered. In order to improve the estimation
performance against the variation of sensing conditions, repeated update of the noise
profile would be needed. This comes inevitably at the cost of more training overhead
and extra energy consumption. One typical approach to resolving such a drawback is
to exploit the partial (or long-term) information of the noise characteristics.

Another key feature common to the existing related works [1, 6, 7 ] is that they
all assume error-free transmission. They consider the sensors experiencing the perfect

wireless channel. There is no bit error in the wireless channels between sensors and
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the FC. The work in [6] uses the upper bound (2.15) to show that the actual achieved
MSE is at most a constant factor away from what is achievable with perfect sensor
channels. It use the MSE constraint with perfect channel to formulate the convex
optimization problem which derive an optimal bit loading scheme. Chapter 3 and
Chapter 4 of my thesis also use the MSE constraint with perfect channel to formulate
the optimization problems instead by the long-term information of the noise
characteristics. The work in [19] considers the noisy channel between each sensor and
the FC by modeling it as a binary symmetric channel (BSC) model with crossover
probability which is controlled by the transmitted bit energy, but it uses the
instantaneous local sensor noise characteristics to formulate the optimization problem.

This chapter attempts to provide a solution to the minimal-energy decentralized
estimation with the noisy channel between each sensor and the FC by exploiting long
term noise variance information. A.commonly used statistical model [6, 7] for noise
variance is used and the estimation performance is assessed through an MSE based
metric average with respect to the ‘eonsidered-distribution. The BSC models [19] are
used to characterize the wireless multi-path fading channels with path loss. A
closed-form expression for the overall MSE requirement is derived. The analysis of
the energy-minimization problem is formulated in the form of convex optimization.
The problem is then analytically solved.

The proposed suboptimal scheme shares several interesting aspects pertaining to
those based on the instantaneous noise variance information. Sensors with bad
channel quality (specified via the path distance to FC) are shut off to conserve energy,
and for those active nodes the allocated energy is proportional to the individual
channel gain. Simulation results show that the proposed optimal solution yields

energy saving against the equal-bit allocation policy.
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5.1 System Model

There are N spatially deployed sensors which cooperate with a FC for estimating

an unknown deterministic parameter ¢ where ee[o, 1]. In order to simplify the
following analysis, we set He[O, 1] which is a special case for general case

ee[—R/Z, R/Z] where R is the parameter range. The following analytic results for

the general case and special case are different in a constant factor.
The local observation at the ith node is
Xi=9+ni, 1S|SN, (51)
where n; is a zero-mean measurement noise with variance [6, 7]
O'iz =0 +aij. (5.2)
In (5.2), 6 models the network-wide noise variance threshold, « controls the

underlying variation from the .nominal=~rminimum, and zi~;(12 Is a central

Chi-Square distributed random variable with'degrees-of-freedom equal to one. Due to
bandwidth and power limitations each sensor quantizes its observation into a bi-bit
message, and then transmits this locally processed data to the FC to generate a final
estimate of 6.

The uniform quantization scheme with nearest-rounding is adopted. The

quantized message at the ith sensor can be modeled as
mi:Xi-i‘qi,lSiSN, (53)

where @ is the quantization error which is uniformly distributed with zero mean and

varianceaéi :]/(12~4'°i ) and [0, 1] is the available signal amplitude range common

to all sensors. The quantized value m; can be modeled as
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b,
m = a2, (5.4)
k=1

where al((i) is the kth quantization bit of the ith sensor in which the quantization bit
length is b;. The quantization bit ai(j) is transmitted through the wireless channel to

the FC and is received as éi(j). The messages received in the FC from the ith sensor

can be modeled as
b.

yi =Y alo, (5.5)
k=1

where é|((i) is the kth quantization bit received in the FC from the ith sensor.

For simplicity, we consider only_ uncoded transmissions and channels that are
memoryless with different bits experiencing .indepéndent fading effects. Under these
conditions, we can model the wireless air-interface bétween the ith sensor and the FC
as a binary symmetric channel (BSC) with crassover probability &;. The BSC model
shown in Figure 5.1 can be used to"characterize a more general class of channels

including multi-path fading.

. éz’) 1 4 é:')
1 i 1
CH
0 0

Figure 5.1 : Binary symmetric channel

The received message y; in the FC from the ith sensor can thus be model as
yj =M +G;, (5.6)

where ¢; is the wireless channel error induced by the BSC with crossover probability
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& . The received data in the FC can be expressed in a vector form as

y=10+n+q+c, (5.7)

where y:[yl,yz,....,yN]T, 1:[1,1,...,1]T, n=[n1,n2,...,nN]T, qz[ql,qz,...,qN]T,

c=[c;,Cp,esCy ]T ,and (+)' denotes the transpose.
We focus on linear fusion rules for parameter recovery. By assuming that the

noise component {n,q,c} in (5.7) are mutually independent with covariance

matrices C,, Cy and C, the parameter ¢ is retrieved by the BLUE estimator via
1"c'm
1'c™1

We further assume that the measurement noise n;’s are i.i.d., and the quantization

0=

, Where C=C, +C, +Cq. (5.8)

noise g;’s and wireless channel noise-ci’s are independent across all sensors. The MSE

incurred by 6 can be immediately computed as

: Ué B QH N (1TC_11)_1 X (% var(ny)+ varl(qi )+ var (c; )]_l' 9)

5.2 Variance of Distortion in Binary
Symmetric Channel (BSC)

We assume that measurement value x;’s are uniform distributed within [0, 1] in

all sensors. Then the quantization bit al((i) is equal prior probability at 1 or 0. Some

useful relations between a|((i) and é,((i) can be obtained:
i
E{

al) —aﬁ‘)H g, (5.10)

3l —al((‘)ﬂ:gi. (5.11)
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The mean of the wireless channel error ¢; can be derived as
b [ i
E[Ci]=E[yi—mi]=ZE[éﬁ)—aﬁ)}Z"‘. (5.12)
k=1

Because the quantization bit al((i) is equal prior probability at 1 or 0, we can derive
E [él((‘) —aﬁ‘)} -0, (5.13)

By (5.12) and (5.13), the wireless channel error c;is zero mean. The upper bound of

) _ 2
0-tfe ]

the wireless channel error variance can be derived as

oo i1

> (a2

k=1

B g2 BB ol
—E| Y éﬁ')—aﬁ')‘ 2% 33 8l —al!) aﬁ')—aﬁ')‘z—kz—h . (5.14)
k=1 ek

By (5.10), (5.11), (5.14) and thefollowing Lemmawith proof given in Appendix E,

the final formulation of the upper bound-is

by b b
E |:Ci2:| < &j Z 2_2k +8i2 Z Z 2_k2_h
k=1 k:lﬂzjk
+

. .2 .2_ .
_| &i+ee —2g7. 2y Al =& | 4b
3 3
2 3 2
S \/‘C"I + 28| _ 3(9| _2_bi ) (5.15)
3 26 +1

Lemmab5.1:If 0<¢g <0.5, we can obtain the following inequality:

2
0,2 2_ o 4252 3
& +2¢; _zgiz.g—bi+ A — & 470 < \/8'+25' _ | B 270 (5.16)
3 3 3 2¢; +1

5.3 Average Bit Error Rate (BER) in BSC
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Mode over Rayleigh Fading Channel with
Path Loss

We consider that the links between sensors and the FC are Rayleigh fading
channels with path loss. The average bit error probability for BPSK in Rayleigh

fading channel is [20]

p =1{1— "o } (5.17)

1+ I‘b

where 1, is the average SNR per bit which is defined as

G =1 (5.18)

- l
N total

where P, is the received power and _Niga 1S the power of the noise introduced by the

receiver front-end.

With the effect of path loss, the received power can be expressed as [20]
P=PR-G.-d%, (5.19)
where B is the transmission power, d is the distance between a sensor and the FC,

and G is the gain factor at d=1(m). The energy per bit is defined as
w=R Ty, (5.20)

where Ty, is the bit duration.

Considering the individual sensor and with (5.17), (5.18), (5.19), and (5.20), we

& =1[1— /L] (5.21)
2 GodiK +W

where ¢&; is the crossover probability of the BSC between the ith sensor and the FC

have

(because the quantization bits at sensors are all equal prior probability at 1 or 0), d; is

the distance between the ith sensor and the FC, w; is the transmission energy per bit in
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the ith sensor, and Gy = (T - Nyggay )/G is a constant depending on the noise profile

and path loss gain factor.

5.4 Average Mean Square Error of
Decentralized Estimation

We assume that the consumed energy for transmitting one bit at each sensor is
the same. Then the total consumed energy for transmitting the message m; at the ith

sensor is proportional to number of bits b;. That is
E; =wb, for1<i<N. (5.22)
With (5.22), the specification of the energy allocated to the ith sensor thus amounts to

determining the number of quantization bits b;.'For a fixed set of measurement noise

variances o; ’s and distances di's between sensors and the FC, the energy
minimization problem subject to an allowable parameter distortion level » (in term

of MSE) can be formulated as

N
Min >'b;,
i=1
| . (5.23)
bject to (% L <y, 020, and1<i<N
subjec <y, b >0, <i<N,

izazi+ G+ (&) |

2
47 \/ & +2&2 33 b .

where B =6+—— and f(g,b)= ! L L_.27% |  orequivalently,

ﬂ| 12 (€| |) [ 3 \/25i 1 q Y

N
Min Z bi ,
= (5.24)

. N 1
subject to >_

>y b >0, and1<i<N.
i:]_C(Zi +ﬂi + f (gi'bi)

We will consider the following optimization problem, in which the equivalent

MSE performance metric in (5.24) is instead averaged with respect to the noise
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variance statistic characterized in (5.2):

N
Min Zbi,
= . (5.25)
subject to | z)dz>y 1, b >0, and1<i<N,
exp(_zj 2>0
( )=1~2xz o (5.26)

0, z<0,

where z=[z,12,,..,zy] with P2 (z) denoting the associated distribution. In
1

(5.25), the constraint that all b; are nonnegative integers are relaxed to be b; >0 so

as to render the problem tractable. The suboptimal b;’s can be obtained through upper

integer rounding. The solution to the problem (5.25) is discussed next.

To solve (5.25), a crucial step.is'to-derive:an analytic expression of the average

MSE performance measure. We have

N 1
JZ,Zaz + 5+ (.5) p(2)dz
_ E:J‘oo 1 e_Z‘/Z dZi

i=1 0 aZ; +ﬁi + f (Ei,bi)' 27Z'Zi

1 N o0 e_zi/z

=——>] dz;. (5.27)

Jor 50 (azi +45+ 1 (gi’bi))\/z

The following lemma, with proof given in Appendix F, provides a closed-form

expression for (5.27).

Lemma5.2: With >0 and x; >0, we have

72/2 272_ eX/20! Q( [ ,/0!)

5.28
o (az; +x)\/7 ax; .28)
_tz/
where X —dt is the Gaussian tail function.
Q(x) = I T2n
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By lemma 5.2 and change of the variable x; =5+ f (&.b;), we have

e—Zi/2

o (ezi+ i+ (e )\/’
or (ﬁ,+fg, /Za Q(\/ﬂ+f (&b, )/a)
\/05 ﬂ,+f ))

With (5.27) and (5.29), the optimization problem (5.25) can be equivalently rewritten

(5.29)

as

N
Min Zbi'
i=1
el T ')/Zﬂ ((ﬂ|+f (&b )/a)
\/ﬁi-l-f Ei, )
b, >0, and 1L<i'<'N.

subject to Z y 1 (5.30)

Exact solutions to problem (5.30) appear intractable since the design constraint is

highly nonlinear in b;. We will thus seek for'suboptimal alternatives which can
otherwise admit simple analytic*expressions. The underlying approach toward this
end is to derive an easy-to-tackle lower bound on the target MSE metric. Then we
replace the MSE constraint in (5.30) by one which forces the lower bound to be above

7—1. Such a procedure will considerably simplify the analysis without incurring any

loss in the desired MSE performance. This is done with the aid of the next lemma

with proof given in Appendix G.

Lemma 5.3 : The following inequality holds:

n elArflam)/2s o ((ﬁ|+f &.by))/a)

Z 1/,[f’,-irf

e )
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{5 + 47 Pmax /12]
exp| ———— ==

2a

2z . .
where d = . Emax 1S the maximum crossover
\/5+J/12+f (€maxBmax )

probability of all links between sensors and the FC, and b, is the allowable

maximum bits length of all sensors.

Lemma 5.3 suggests that we can replace the MSE constraint in (5.30) by the

following one without incurring any loss in the target MSE:

AEE

or equivalently,

b;
SR EeE o

a

since Q(+) is one-to-one and monotone‘decreasing.

We will thus instead focus on-the.optimization problem with a modified MSE

performance constraint:

N
Min Zbi’
i=1

subjecttorzz '+ZJ (&.b; Nf( [dN}/j é} (5.34)

i=1
b, >0, and 1<i<N,

or equivalently,

N
Min Zbi,
i=1

subject to Zzb z ,2 2‘b'<NA, (5.35)
&+

bi20, andlglsN,
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where A=+a|Qt[—1_]- [2 ——Z Gi+2s . The main advantage of the
dNy a 3

alternative design formulation in (5.35) is that the cost function is linear and the
constraints are convex. It is thus a convex optimization problem and will lead to a

simple closed-form solution as shown below.

5.5 Problem Formulation and Suboptimal
Closed-form Solution

The finial optimization problem as follows:

. N
Min Zlbl ,
. (5.36)

3

subject to —22 b z 8' —— LB NA b >0, and1<i<N.

V123 G2
To solve problem (5.36), let us form:the Lagrangian-as:

(bl oA, uUN

Zb m[ zz‘b 2/2 2‘b NAJ %yibi. (5.37)
=1 i=1

The associated set of KKT conditions [14] is followed:

1 3€i3 .
1+ 4 77 V25 1 (-In2)27% -4 =0, 1<i <N, (5.38)
i
—b 38| —b
- 277 —NA|=0, 5.39
[rz gl 7o 11 ] (5.39)
220, 14 >0, b>0, 14b =0, 1<i<N. (5.40)

We first observe that, if A=0, equation (5.38) implies gz =1>0 for all
1<i<N,andhence b, =0 forall 1<i<N. This case should be precluded since all

sensors will remain silent. Accordingly, we must have A >0 which means that the
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MSE constraint in (5.35) is active so that

R N, N 33 b
Sy |28 o A 5.41
25" A\ (5.41)

Solving (5.38) and (5.41) leads to

@ﬂZ—J&fKZ%+&”4n2

b, = log, Al (5.42)
1- 4
where
N
N-2 4
A=—0 = (5.43)
N-A-In2

The by can be obtained finally:

(qu-Jsg?/(zgi+1)) N-—é;ﬂa

A "N-Ng

bi = |092 (544)

By taking into account the constraint' b, =0, the-suboptimal bit length bf”bom is

given by the next Lemma with proof given in Appendix H.

Lemma 5.4 : Assume & <&, <...<gy Without loss of generality, and define the

function:

__(y12-435?/(2gi+1))

Y (i)= n L 1<i<N. (5.45)

Find the maximum K1 such that Y (K1)>1. Then we define the function:
(i)=Y (i)—=, 1<i<N. (5.46)

Find the maximum K2 such that Z (K2)>1. Then we have
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bisubopt _ {IOg Z[Z (i)]’ lsi<kz. (5.47)

0, K2+1<i<N.

5.6 Discussions of Suboptimal Solution

1.

We note that the target distortion level » cannot be set unlimitedly small. It is
lower bounded by the MSE attained by the benchmark estimate based on

un-quantized real-valued sensor measurements. It is the case for
by =0, 1<i<N. By setting b, = in the average MSE formula specified in

(5.32), the minimal allowable y can be immediately determined as

-1
y{d-N -Q(\/g+\/1;%,/5i +325‘2 ﬂ . (5.48)

If this bit-loading optimization problem has the proposed suboptimal solution,

there must be some index rleading to'b; = 0. From (5.42), the constraint b, >0

also implies
A1~ ) <In2- 1|38 . (5.49)
Ve 12 \2g+1
From (5.43), we have
L N
A~ (N—Zyi}:N-A-InZ. (5.50)
i=1
By (5.49) and (5.50), we can derive
N 3
N-A< Ny | 6 (5.51)
12 i=1 28i+l
or equivalently
5 -1
e
<|d-N-Q| —=+,[— : 5.52
relavel ) %



N ' 2 3
where e:i+iz \/g' t25 | 34 . It is the upper bound of the
12 N i=1 3 2€i +1

designed average MSE.

Recall from (5.21) that the bit error rate ¢; is proportional to the path gain d*
(if the same transmission energy is assumed throughout all sensors). Large
values of & correspond to sensors deployed far away from the FC. They are

usually with poor background channel gain. By this point the proposed

suboptimal solution is intuitively attractive. The sensors associated with the

(N —K2—1) th largeste;’s are turned off to conserve energy. We note that a

similar energy conservation strategy via shutting off sensors alone poor channel
links is also found in [19], in*which the scenario with instantaneous noise
variances available to the FC is considered.

From (5.47), we further ‘note that'the assigned message length is inversely
proportional to &; for those active nodes. Fhis is intuitively reasonable since
sensors with better link conditions should be allocated with more bits to realize
the desired MSE performance.

Based on the inequality constraint for average MSE in (5.35), the equal-bit

scheme maintaining the desired MSE can be obtained by solving

N 38, -b _ )
(sz E 7ot 1} =N-A (5.53)

leading to

b =log, {J_ 21 229' 1]/N-A) . (5.54)

Simulation results in the next section show that the proposed suboptimal scheme

(5.47) yields energy saving when compared with (5.54).
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5.7 Numerical Simulation

For a fixed set of distances between sensors and the FC (d;, 1<i<N), the

performance is measured via the percentage of energy saving (PES) [6, 7]:

_N N b
by w, - > wib™ opt
PES ==L 14 %100, (5.55)
by w,
i=1

bisubopt

where and b are defined respectively in (5.47) and (5.54). We assume that

the transmission energy per bit is 1(mW) throughout all sensors. A fixed set of

distances d; for1<i<N induces a fixed set of bit error rate ¢ forl<i<N by

(5.21) with x=3.5 and GO:3.4489><1O‘5 [20]. We simply set d; =5+20Z; (m)

with Z; ~ 7% being i.i.d. Chi-Square distributed random variable. The results are

averaged over 50000 independent trials. The total number of sensors is N=150
under y =0.02.

Figure 5.2(a) shows the PES by fixing 6=0.85 for 0.7<a <1.4 and Figure
5.2(b) depicts the average active sensors. It shows that energy efficiency of the
suboptimal solution improves as « increases (a large « corresponds to a more
inhomogeneous sensing environment). We note that a similar phenomenon has been
observed in the existing works [6, 7] relying on instantaneous noise variance
knowledge and considering the perfect wireless channel. When the sensing condition
becomes more inhomogeneous, it is more likely that a large fraction of sensors suffers
from poor measurement quality and will be shut off. It leads to improved energy
efficiency. Since the proposed solution (5.47) based on statistical noise variance
description would reflect the long-term characteristic of the schemes [6, 7], this

consistency is expected.
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Figure 5.2 : PES for fixed minimal noise variance threshold (6 = 0.85)

We repeat the experiment by fixing e =1.45'and varying the minimal threshold
o . The results are shown in Figure'5.3. Obviously, the PES exhibits a counter
tendency as compared to Figure 5.2. It shows that the energy saving achieved by
proposed suboptimal solution is lower as o increases. This is reasonable because the
large minimal noise variance threshold results in severe noise corruption in all sensor
measurement. More sensor nodes should be turned on to provide a sufficient amount

of information for MSE reduction.
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Figure 5.3 : PES for fixed noise variance-variation (« =1.45)

5.8 Summary

This chapter provides a solution to the minimal-energy decentralized estimation
problem by exploiting a statistical noise variance model and considering the
nonperfect wireless channel between sensors and the FC. The wireless channel is
Rayleigh fading channel with path loss. We use BSC model to characterize this
wireless channel. Based on a closed-form expression of the MSE performance
measure averaged over the noise variance distribution, energy minimization is
reformulated as convex optimization problem. The analytic closed-form solution
reveals the energy saving policy. The proposed solution simply allocates energies to
sensors with large channel gain and shut off those suffering from poor link quality. We

compare the proposed suboptimal solution with the uniform-allocation scheme.
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Numerical simulation shows that the energy saving efficiency is particularly
significant when the minimal measurement noise variance threshold is small or the

variation factor is large.
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Chapter 6

Conclusion

In this thesis, we consider the wireless sensor network (WSN) which is used for
environmental monitoring. A popular WSN architecture consists of a fusion center
and a large number of spatially: distributed. sensors. Each sensor in a WSN is
responsible for local data collegtion and occasional transmission of a summary of its
observations to the FC via a wireless linki“In'a practical WSN, each sensor has only
limited computation and communication ‘capability due to various design
consideration such as small size battery, bandwidth and cost. As a result, it is difficult
for sensor to send their entire real-valued observation to the FC. Instead, a more
practical decentralized estimation scheme is to let each sensor quantize its real-value
local measurement to an appropriate length and send the resulting discrete message to
the FC. The FC combines all the received messages to produce a final estimate of the
unknown parameter. Naturally, the message lengths are determined by the power and
bandwidth limitation, sensor noise characteristics, wireless channel conditions, and
the desired final estimation accuracy.

As energy efficiency is a critical concern for sensor network design [6, 7, 8], the

decentralized estimation is formulated as optimal bit-loading problem. In the practical
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system the probability density function (pdf) of the observation noise is hard to
characterize, especially for a large scale sensor network. The signal processing
algorithms that do not require knowledge of the sensor noise pdf have been proposed
[7,8].

While most of the existing related works require the knowledge of instantaneous
noise variances for energy allocation, the proposed approach instead relies on
long-term noise variance knowledge. In order to improve the estimation performance
against the variation of sensing conditions, repeated update of the noise profile would
be needed. This comes inevitably at the cost of more training overhead and extra
energy consumption. If the sensing environment is harsh, the sensing noise will
change quickly. The proposed signal processing algorithm which relies on an
associated sensing noise variance:-model is needed. Especially when the sensing
environment is harsher or the instantaneous neise variance is hard to know in the FC,
the proposed signal processing algorithm-is-useful.

Chapter 3 of this thesis attempts. to..provide a solution to minimal-energy
decentralized estimation by exploiting long-term noise variance information. A
commonly used statistical model [6, 7] for noise variance is used and the estimation
performance is assessed through an MSE based metric average with respect to the
considered distribution. A closed-form expression of the overall MSE requirement is
derived. The analysis of the energy-minimization problem is formulated in the form of
convex optimization with the average MSE constraint and then the problem is
analytically solved. Chapter 4 of this thesis considers the counterpart problem: how to
find the optimal bit load which minimizes the average MSE distortion under a fixed
total energy budget.

Another key feature common to Chapter 3 and Chapter 4 of this thesis is that we

all assume error-free transmission. We consider the sensors experiencing the perfect
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wireless channel. There is no bit error in the wireless channels between sensors and
the FC. Chapter 5 of this thesis considers the noisy channel between each sensor and
the FC by modeling it as a binary symmetric channel (BSC) model with crossover
probability which is controlled by the transmitted bit energy and it use the long-term
noise variance knowledge to formulate the optimization problem. The BSC models
are used to characterize the wireless multi-path fading channels with path loss. A
closed-form expression of the overall MSE requirement is derived and the
optimization problem is then analytically solved.

The proposed signal processing algorithms share several interesting aspects
pertaining to those based on the instantaneous noise variance information. Sensors
with bad channel quality (specified via the path distance to FC) are shut off to
conserve energy, and for those active nodes the allocated energy is proportional to the
individual channel gain. The simulation results show-that the proposed schemes yield
energy saving against the equal-bit allocation-policy.

Furthermore, if we design the problem with.correlated sensor measurement noise,
the results may be more suited for practical systems. In general environment, the
sensor measurement noises of the adjacent sensors are highly correlated. We can also
consider the wireless time-varying channel between sensors and the FC. The results
may be useful for mobile sensor network. However, it is not easy for us to derive the

closed-form formula of the average MSE.
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Appendix

Appendix A : Proof of Lemma 3.1
By change of variable u=az;+ /3, and hence z; =(u-4)/a, we have

-7;/2 (-u+B)12c Bi|2a —-u/2a
e - € 1 qu=® [P du. (A1)

IO (azi+ﬂi)\/ZT i= g uy(u-24)/a ; Ja Aufu-p,

It thus suffices to check

u/a

a2

(A.2)

Let us define u =3 csc? @, and hence du =—2/3 csc? @cotAd6 . We then have

—u/2a 0 e—ﬂi csc?0)2a , 5
20 @cotd)de
J.ﬂ| u /u ﬂ LZ'/Z ,Biz CSC2 0\/—,B—|COt0( ﬁl cse co )

\/7."77/2 —,6’,/2asm Hde (A3)
We note that the Q(<) function admits the following alternative expression [13,
p-71]:

QU =I5 e/ o (A4)

The assertion (A.2) follows immediately from (A.3) and (A.4).

Appendix B : Proof of Lemma 3.2

We first observe that, since g =0+ R24‘bi/12 and 0<b; <o, we have

efl/2 > g9/2¢ and | [B <\|5+R?/12, leading to

HQ(JAla) [z e
a \/_ \/7\/5+R2/12 o(JA/a)

(A.5)
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_ 2 4-by 2 ,-b by
Also, as [P [0+RPAMA2_[5 /u: [0 ,RZ® 4 o s
a a o 12a a 12«

one-to-one and monotone decreasing, we have

i 5 R
Q(\/ZJZQ[ a+\/12_a]. (A.6)

Inequalities (A.5) and (A.6) then imply

Bi/2a _ N
\/E%e Q(\/ﬂ./a)ZCN Q{ 5 R2 by J an
@i JA g Ve Vi2a
Further, since Q(t) is convex for t>0, it follows
1Y (5 R2™ 1N \/g Ro-b
WEQ[£+@}ZQ[N§( T@D’ (A8)
and hence
N 5 R2® 1 N \/g R2D

and the result thus follows.

Appendix C : Proof of Lemma 3.3

By substituting 4 in (3.23) into (3.22), it is straightforward to see that the

constraint b; >0 is equivalent to

R[i%Wi —/IiJ
VI2aN (Q7H (Y(ON7)) o e ) (W~ 44)

>1, (A.10)

Hence ;>0 must be properly chosen to simultaneously meet (A.10) and the

equality constraint (3.21). The equation (3.23) can be rewritten as

Ty (W - )= Q@ (Y(EN 7))~ T (A11)

i=1
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We observe (3.22). The constraint b, >0 also implies
27 (w; - 44) <R/(V12aN). (A.12)

From (A.11) and (A.12), we have Q‘l(l/cN;/)—,/é/a <R/J12a or

R

V122 (Q7H(Y(eNy)) -6 )

Note that constraint (A.13) is equivalent to

>1, (A.13)

-1
<| Ned/2« \/E R J 27 . A.l4
S (e [0+ RER2) .

Since this upper bound is feasible, we may without loss of generality chose y to be

within this range so that (A.13) holds. Then we must solve z; such that

_Ngl(Wi — 1)
N o (A.15)

If the integer K; exits, it is straightforwand:to-show:that 4; =w;, for 1<i<N-K;
and g4 =0 for N-K;+1<i<N.Form (3.24)-and (A.13), the setof g fulfill

(A.10). The existence of K; is indeed guaranteed by the construction of f (K) in

(3.24): f(1)=%N, f(K) ismonotone increasing with K, and

f(N)z(iNglwij/(N.wK)z N/N =1.
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Appendix D : Proof of Lemma 4.1

-1
ET(1+ P j + % W

a+o =Ky 41

WK+ % \/Wu

|=K1+1

f(Ky+1)=

E-| 1+ + W — W,
T[ g+ i:ZKll Ky+1

= . (A.16)

N
\/WK1+1_Z \/Wu — Wk, +1

|:Kl

ﬂj‘l N

Because of wy, > w1, equation (A.16) will lead to

ﬁ)_l N

+ Wi —W
o Z i Ki+1

i=K;
N
Wk, Z \/Wu =Wk, +

|:K1

Er (1+

f(Ky+1)2 (A.17)

Let us define

Wi, +1

n=——m—
o, 3 o

i=K;

(A.18)

and then we have 0<7 <1.From (A.17) and (A.18), the lower bound of f (K, +1)

can be obtained:

f (K +1)> f(Kl)_”zl_”ﬂ. (A.19)
1-n 1-n

The result of (A.19) is from the assumption f (K;)>1.
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Appendix E : Proof of Lemma 5.1

ﬂ — 28'2 . 2_bi + ﬁ . 4_bi
3 ! 3
_| & +25i2 5 / &; +26‘i2 3 o2 by 3gi4 4y 4gi2 —& 3gi4 4-h
3 3 &+ 2€i2 ! &+ 2€i2 3 &+ 28i2

2
2 3 2 4
_ \/5i+25i _\/ 36’ oo | L |da-a  3& | 4b (A.20)
3 26 +1 3 & +2¢6f

0 < & <0.5, then the useful inequality can be derived:

=

2+ (6-2)° 20
= & (&l —46+4)+(25+3)>0
:gf'—4gi3+65i2+38i >0

= (45i2 - 3)(2‘9i2 + & ) < 95i4

2 4
45, 3 36‘| (A21)
3 25, 57
The inequality (5.16) can be proofed by +(A;20) and (A.21).
Appendix F : Proof of Lemma 5.2
By change of variable u=az; +x;,and hence z; =(u—x)/a, we have
2/2 ( u+x )/ 2a 1 x,/2a e—u/Za
Iy ;=" —du= du. (A.22)
az+x)\/_ X-u/u X)/a a Ja XIu‘/u X;
It thus suffices to check
—u /2
(A.23)

[ N fo(m>

Let us define u=x; csc? @, and hence du =—2x; csc® Ocotd6 . We then have
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" e—u/2a e—xicsc20/2a ) )
—=du —2xcsc“dcotd |do
% U fu—x; LT/zx csc? 0~\/x7icot6?( ' )
J‘ﬂ/z -x;/2asin? 940, (A.24)

We note that the Q(+) function admits the following alternative expression

Q) =L 2 2sin*0g g (A.25)
T

The assertion (A.23) follows immediately from (A.24) and (A.25).

Appendix G : Proof of Lemma 5.3

By the bits length constraint 0<b; <b,,, , we have

4 Pmax 1
5+ <P <S+— A.26
THREEATTY (A.26)
0< f (&,b) £ fi(Emax Pnax ) (A.27)

By (A.26) and (A.27), the following ineguality. holds:

2 3 PR (b))
a = \/,Bi+f (& i)

4. ZQ[ ,6’,+f058,,b)]

b;
Ao [Pt (D) \/5+4 12+ (5,b, \f [47D / (&,
o 12

Q(+) is one-to-one and monotone decreasing, we have

s -

Inequalities (A.28) and (A.29) then imply
1 D (41 () )

Z ey
pixtl (A.30)

o
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(A.28)




Further, since Q(t) is convex for t>0, it follows

b))

d'%Q{\/ng\/ngW]
oY)

and the result thus follows.

(A31)

and hence

(A.32)

Appendix H: Proofof Lemma 5.4

It is straightforward to see that the constraint b= 0 is equivalent to

N
(ylz—m) N_EM 1 (A.33)

A N-Ng

If we choose » within the range which we discuss in section I11-D, the suboptimal

solution exists. It means that inequality (A.33) holds for some index i. Because of

& <&y <....< gy, We find the first K1th sensors leading to

(ylz—w/3g§ /(28 +1))

A

>1 1<i<KI. (A.34)

Then we set g4 =0for1<i<K1 and g =1for K1+1<i<N. By setting g, the

inequality (A.33) becomes

(ylz—,/sg?/(zgi +1)) K1

—=>1. A35
y N (A.35)

Finally we find the first K2th sensor such that the inequality (A.35) holds and the

closed-form suboptimal solution is shown in (5.47).
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