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中文摘要 
 

本文旨在探討如何分配現有的無線電資源(傳輸功率、能量及通道

數目)來滿足不同用戶之不同傳輸率之要求。我們考慮各通道之增益

雜訊比(channel gain-to-noise ratio)之不同，推導出其功率、傳輸速率

之最佳分配。這種分配可以最少功率或能量滿足各種多媒體不同傳輸

速率的需求。我們也探討在固定總輸出能量或功率的限制下如何讓總

傳輸率和(sum rate)最大。 

在單一傳輸率要求的環境下，我們推導出最佳的公式解，根據這

個公式我們提出兩種簡單的遞迴求解法來解決多種傳輸率的問題，第

一種解法可得到近似最佳解，另一種則可保證得到最佳解。 

在多傳輸率的情況，先前多媒體通訊資源分配的方法通常需要大

量運算時間因此使得其在手持裝置上求最佳分配解變得不可行。我們

的方法卻只要透過幾次迴圈就可以決定通道分配的矩陣，這個解法同

時可用於單一和多重傳輸速率的多媒體傳輸應用上。除了運算簡單之

外，更重要的是，這個演算法之性能和最佳解只有微小的誤差，使得

此演算法深具吸引力。第二種解法稍為複雜，但可以保證找到最佳

解。這兩種方法其複雜度皆遠低於現有求最佳解的方法，因此實用性

極高。 

我們並舉兩個應用的例子，第一個例子考慮了類似 IEEE 802.16e
的 OFDMA 下傳鏈，第二個應用例子則是區域合作式的上傳鏈。 
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Abstract

This thesis is concerned with a dynamic radio resource allocation problem. Given

the availability of multiple orthogonal channels and transmission rate requirements from

various wireless network users, we are interested in a joint channel, power and rate assign-

ment scheme that satisfies the multimedia multi-rate requirements with the minimum

total power.

For the mono-rate cases, we present a simple approach that gives a closed-form

expression for the optimal solution. Based on this closed-form solution, we present two

iterative algorithms that enable a transmitter to determine respectively a near-optimal

and the optimal joint assignment scheme using the channel state information.

Earlier resource allocation schemes often require computational intensive and time-

consuming procedures to find the optimum solution, if exists, or suboptimal ones that

makes them not very practical for mobile devices to implement. In contrast, our pro-

posals are very efficient in terms of computing load and convergence rate. Furthermore,

our approaches can also be used to solve a dual problem: that of maximizing the sum

rate while satisfying the total power or energy constraint.
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Chapter 1

Introduction

As the demand for higher data rate multi-media wireless communications increases,

it also becomes more and more important that one takes into account the energy-

efficiency factor in designing an anti-fading transmission scheme for mobile terminals.

Resource allocation such as dynamic power control has long been regarded as an effective

means to reduce the average power consumption, co-channel interferences and maintain

the link quality in a wireless network. In some applications such as wireless sensor

networks, in which terminals are powered by batteries, efficient power management is

essential in meeting the network’s life expectancy.

By using an optimal dynamic power and rate allocation strategy, Goldsmith et al.

[1] derived the ergodic (Shannon) capacity of a single-user wideband fading channel

when channel state information (CSI) is available at both the transmit and the receive

sides. The ergodic capacity is the maximum long-term achievable rate averaged over all

states of a time-varying channel. The corresponding optimal power allocation strategy is

obtained via a water-filling procedure over time or, equivalently, over the fading states.

For a fading multiple-access channel (MAC) with perfect CSI at both sides of the MA

link, Knopp and Humblet [2] derived the optimal power control policy that maximizes

the total ergodic rates of all users.

This thesis is concerned with efficient channel, power and rate assignment schemes

that fulfill either a mono-rate or multi-rate requirements with minimum total transmitted
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power. We generalize the conventional problem setting by defining virtual orthogonal

channels (VOCs) and present very efficient iterative algorithms that is guaranteed to

yield the optimal solution for mono-rate transmissions. For multiple rate applications,

we suggest two efficient procedures that give optimal and near-optimal solutions of the

problem.

The proposed iterative algorithms are then applied to two operation scenarios. The

first scenario is a single cell downlink Orthogonal Frequency Division Multiple Access

(OFDMA) system in which the base station needs to meet multiple rate requirements

simultaneously. The second application example we considered is an MA uplink with

locally cooperative communication links. This scenario occurs when dual-mode (e.g.,

WLAN/WCDMA or WLAN/GPRS) user terminals located within a small neighbor-

hood form an opportunistic local network so that active users can forward their mes-

sages to neighboring idle terminals for cooperative transmissions. It is reasonable to

assume that the inter-user distance within the local network is far smaller than the

terminal-to-base-station distance, hence an active mobile terminal uses the local trans-

mission (e.g., WLAN) mode for inter-user communication, which is almost error-free and

consumes negligible power, and the cellular (e.g., WCDMA or GPRS) mode for uplink

transmissions.

Note that such a cooperative communication scheme is a special case of the oppor-

tunistic diversity first introduced by Tse and Hanly [3] and [4]. Many later investigations

focus on the transmission and protocol issues related to cooperative space diversity and

relays. Sendonaris et al. [5] [6] proposed a Code Division Multiple Access (CDMA)-

based two-user cooperative communication scheme that allows two users to act as relays

to retransmit the estimated data of their partner’s information at the highest possible

uplink transmission rate. This simple relay technique was extended by [7] and [8] to a

variety of cooperative strategies. Maric and Yates [9] considered a cooperative broadcast

strategy with an objective to maximize the network lifetime.
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Most of previous works on cooperative communications focus on the improvement of

the peer-to-peer link quality and present some scheduling schemes without considering

the implementation complexity. Zhu et al. [10] proposed a method to solve the prob-

lems about who should help whom and how to cooperate over a multiuser Orthogonal

Frequency Division Multiplexing (OFDM) network. Although their algorithm leads to

optimal performance, the associated computing complexity is relatively high for a mobile

device. Water-filling-like algorithms for optimal power allocation with prescribed error

tolerance for various systems have been proposed [10]-[13]. These algorithms are basi-

cally greedy (exhaustive) searches and there is no guarantee that the optimal solution

is to be found. By contrast, our proposals are much simpler and the optimal allocation

is obtainable.

The rest of this thesis is organized as follows. The ensuing chapter describes potential

operation scenarios for radio resource allocation needs and gives an abstract problem

statement. In Chapter 3, we review the general problem of tree searches and discuss

possible solutions based on dynamic programming and branch-and-bound algorithms.

Chapter 4 presents an efficient iterative algorithm that is guaranteed to yield the optimal

solution for mono-rate transmissions. In the following chapter, we propose two efficient

algorithms to find suboptimal and the optimal channel assignment matrices for multiple

rate applications. Finally, we provide numerical performance of these algorithms when

they are used in the two application scenarios discussed in Chapter 2.
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Chapter 2

Scenario and Problem Formulation

2.1 Downlink Scenario and Assumptions

A base station in a cellular system needs to transmit multiple data streams to mobile

stations simultaneously. To eliminate or suppress mutual interference, these data streams

are often transmitted through channels that are orthogonal in time, frequency, code or

hybrid domains. For example, the IEEE 802.16e adapts an OFDMA scheme so that a

user data stream can be allocated in a fixed number of orthogonal subcarriers and time

slots. Multiple orthogonal channels are also available in the 3G-Cdma2000 system via

Walsh-Hardamard coding. If multiple antennas are installed at one side or both sides

of the link and if the channel state is known to both sides, the resulting multiple-input

multiple-output (MIMO) channel can be decomposed into parallel orthogonal channels.

Hence, without loss of generality, we shall consider a general scenario under which N

virtual orthogonal channels (VOCs) are available for multirate downlink transmission

and the instantaneous channel conditions of all VOCs are available to the transmitter(s).

Therefore, the number of VOCs includes the number of the orthogonal subcarriers [10],

time-slots which are unused or any other forms of orthogonal channels like the number

of eigen-channels in a MIMO wireless link [15].

It is assumed that each VOC is independently and frequency non-selectively Rayleigh-
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faded and the bandwidth of the ith channel is Wi during a fixed transmission interval.

The candidate data types might include voice, image, video, data, etc., each has a

distinct rate requirement, and the number of the requested data types is given by

d =

Kd∑
j=1

nj (2.1)

where Kd is the number of active destination terminals and nj is the number of the

jth user’s request data types. For convenience, the same data type, like voices, from

different users will be regarded as different types.

The maximum transmission rate (capacity) Cij offered by the ith channel to serve

the jth data type with transmitted power pij is

Cij = Wi log2

(
1 +

pijhij

σ2
ij

)
, 1 ≤ i ≤ N, 1 ≤ j ≤ d (2.2)

where hij and σ2
ij denote the channel gain and noise power of the ith VOC which serves

the jth data type. For simplicity, it is assumed that the noise power (σ2
ij) and bandwidths

(Wi) are the same for all VOCs and are given by (σ2, W ). Further, each channel’s gain-

to-noise ratio (GNR) (hij/σ
2) is known to the base station and the normalized capacity

(rate) rij for the ith channel to serve the jth data type is

rij =
Cij

W log2 e
= ln

(
1 +

hijpij

σ2

)
= ln (1 + aijpij) , (2.3)

where aij = hij/σ
2.

2.2 Uplink Scenario and Assumptions

Another scenario we are interested in is a locally cooperative uplink system in

which a group of neighboring dual-mode mobile terminals forms a local area network.

We assume that the mobile terminals are located within a small neighborhood so that

the inter-user distance is far smaller than the uplink (terminal-to-base-station) distance.

The users who are willing to share their resources form a cooperative communication
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network. When a user terminal decides to solicit for transmission aid, it broadcasts its

requirement to its peers in the network. Upon receiving the request for cooperation,

other network users will send their replies to inform the requester(s) of the resources

to be offered and their conditions (gain-to-noise ratios). For such a locally cooperative

network, the available uplink channels are converted into VOCs which might include

various multiple access channels such as FDMA, TDMA, CDMA or SDMA system and

other equivalent orthogonal or near-orthogonal channels for accessing the base station

of interest.

As in the downlink case, we assume that each VOC is independently Rayleigh-faded

and the ith VOC has bandwidth Wi Hz during a fixed transmission interval. Conse-

quently, the number of VOCs is given by

N =
Ku∑
i=1

mi,

where mi denotes the number of VOCs offered by the ith user and Ku represents the

number of active users in the cooperative network. The number of the transmission

rates (data types) d is simply

d =
K̂u∑
j=1

nj,

where nj is the number of data types requested by the jth user and K̂u is the number

of users (help-seekers) who have announced their transmission cooperation requests.

Obviously, K̂u ≤ Ku. It is assumed that the mobiles who join the locally cooperative

communication network can perfectly obtain the related rates and data types information

through local area network (LAN) communications, e.g., IEEE 802.11.

Note that for the downlink case, each physical channel has different GNR values

when assigned to transmitting to different receive terminals. By contrast, for the uplink

transmission example considered here, each data type is carried by the source terminal

itself or by a mobile station who offers unused VOCs, a channel’s GNR remains un-

changed no matter whose message is transmitted. Thus the maximum transmission rate

6



rij supplied by the ith VOC with transmitted power pij is

rij =
Cij

W log2 e
= ln

(
1 +

hipij

σ2

)
= ln (1 + aipij) , ai =

hi

σ2
. (2.4)

2.3 Problem Formulation

Given the multiple rate requirements and channel state information (i.e., ai’s), one

would like to find the channel assignment and power allocation that minimize the total

transmitted power. We first consider the downlink case and define the N × d channel

assignment matrix AN×d = [Aij] by Aij = 1 if the ith VOC is used to transmit the jth

data type; otherwise, Aij = 0. Assuming a VOC can only serve one data type at a given

time interval, then Aij is either 1 or 0 and a legitimate channel assignment matrix AN×d

must satisfy
d∑

j=1

Aij ≤ 1,
N∑

i=1

Aij ≥ 1, 1 ≤ i ≤ N, 1 ≤ j ≤ d (2.5)

For the downlink case, all signals are transmitted from the same base station, hence only

the total transmitter power will be considered.

Mathematically, the problem of concern is [10]

min
P,A

N∑
i=1

d∑
j=1

pij

s.t.

N∑
i=1

Aijrij = Rj,

N∑
i=1

d∑
j=1

pij ≤ Pc, 1 ≤ j ≤ d , 1 ≤ i ≤ N (2.6)

where A is the channel assignment matrix defined above and P denotes the power

allocation matrix whose (i, j)th entry pij represents the ith VOC’s transmitted power

for sending the jth data type and rij is the corresponding transmission rate. Rj is the

required rate of the jth data type and Pc is the total transmitter power constraint.

Although in reality there is a peak total power constraint
∑N

i=1

∑d
j=1 pij ≤ Pc, we

shall not consider this constraint to begin with. Solving the problem with the total power

constraint follows a two-step procedure. In the first step we solve the unconstrained

problem to obtain the required optimal total power and then check if the solution meets

7



the peak power constraint. The problem is solved if the constraint is satisfied; otherwise

the problem does not have an admissible solution and one is forced to go to Step 2.

In the second step we can modify (decrease) the rate requirements, deny some data

types, or settle with a suboptimal channel/power allocation to accommodate the peak

total power constraint. Which of these three options is chosen depends on other system

design considerations and the final solution is likely to be obtained by an outer iterative

process. As far as this thesis is concerned, however, the total transmit power constraint

shall not be discussed henceforth.

Recall that for the uplink scenario, the GNR associated with a VOC is independent

of the channel assignment. Furthermore, as each VOC may belong to different users

in the LAN, it will have its own peak power constraint, and the problem of the locally

cooperative uplink scenario becomes

min
P,A

N∑
i=1

d∑
j=1

pij

s.t.

N∑
i=1

Aijrij = Rj, 0 ≤ pij ≤ pi, 1 ≤ j ≤ d , 1 ≤ i ≤ N (2.7)

where P, A, pij, rij and Rj are the same as those of (2.6) and pi is the power constraint of

the ith VOC. This constraint can be transformed into the rate constraint ri = ln(1+aipi).

In other words, the constraint 0 ≤ pij ≤ pi is equivalent to 0 ≤ rij ≤ ri.

By removing the constraint
∑N

i=1

∑d
j=1 pij ≤ Pc, the two problems (2.6) and (2.7)

can be unified as

min
P,A

N∑
i=1

d∑
j=1

pij

s.t.

N∑
i=1

Aijrij = Rj, 0 ≤ rij ≤ rij, 1 ≤ j ≤ d , 1 ≤ i ≤ N (2.8)

where rij = ln(1 + aijpi).

It will become clear after our discourse in the following chapters that the dual problem

8



of maximizing the data throughput subject to a total power constraint

max
P,A

N∑
i=1

d∑
j=1

rij

s.t.

N∑
i=1

d∑
j=1

Aijpij = Pc, 0 ≤ pij ≤ pi, 1 ≤ j ≤ d , 1 ≤ i ≤ N (2.9)

can be solved by the algorithms proposed in ensuing two chapters. As a result, for

brevity, we shall not deal with (2.9) in this thesis.
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Chapter 3

General Tree Searching

Tree representations are used in statistical inference, database structures and many

other scientific applications. We are more interested in the special scenario that relates

the tree searching to an optimal problem. This chapter introduces two techniques we

used, namely dynamic programming (DP) and branch-and-bound. In a more general

sense, all tree searching strategies, including greedy methods, the divide-and-conquer

strategy, prune-and-search, ... etc., are subclasses of DP algorithms for they all involve

sequences of decisions.

3.1 Algorithm Based on Dynamic Programming

The dynamic programming was coined by Bellman [14] to describe the techniques

which he brought together to study a class optimization problems involving sequences

of decisions. There have been many applications and further developments since that

time. In this paper, we focus on the situations where decisions are made in stages.

3.1.1 The basic problem

We now formulate a general problem of decision under stochastic uncertainty over

a finite number of stages. This problem, which we call basic. The basic problem is very

general. In particular, we will not require that the state, control, or random parameter

take a finite number of values or belong to a space of n-dimensional vectors. A surprising
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aspect of dynamic programming is that its applicability depends very little on the nature

of the state, control, and random parameter spaces. For this reason, it is convenient to

proceed without any assumptions on the structure of these spaces.

We are given a discrete-time dynamic system

xk+1 = fk(xk, uk, wk), k = 0, 1, · · · , N − 1 (3.1)

where

k = the discrete time index,

xk = the state of the system and summarized past information that is relevant for

future optimization, xk ∈ Sk,

uk = the control or decision variable to be selected at time k, uk ∈ Ck,

wk = a random perturbation parameter,

N = the horizon or number of times the control is applied,

fk = a function that describes the system and in particular the mechanism by which

the state is updated.

The control uk is constrained to take values in a given nonempty subset U(xk) ⊂ Ck,

which depends on the current state xk; that is, uk ∈ Uk(xK) for all xk ∈ Sk and k.

We consider the class of policies (also called control laws) that consist of a sequence of

functions

π = {µ0, ..., µN−1} (3.2)

where µk maps states xk into controls µk = µk(xk) and is such that µk(xk) ∈ Uk(xk) for

all xk ∈ Sk. Such policies will be called admissible.

Given an initial state x0 and an admissible policy π = {µ0, ..., µN−1}, the states

{xk} and disturbances {wk} are random variables with distributions defined through

the system equation

xk+1 = fk(xk, µk(xk), wk), k = 0, 1, ..., N − 1 (3.3)
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Thus, for given functions gk, k = 0, 1, ..., N , the expected cost of π starting at x0 is

Jπ(x0) = E

{
gN(xN) +

N−1∑

k=0

gk(xk, µk(xk), wk)

}
(3.4)

where the expectation is taken over the random variables wk and xk. An optimal policy

π∗ is one that minimizes the cost; that is,

Jπ∗(x0) = min
π∈Π

Jπ(x0) (3.5)

where Π is the set of all admissible policies.

3.1.2 The dynamic programming algorithm

The dynamic programming technique rests on a very simple idea, the principle of

optimality, which we described below.

Principle of Optimality

Let π∗ = {µ∗0, µ∗1, ..., µ∗N−1} be an optimal policy for the basic problem, and assume that

when using π∗, a given state xi occurs at time i with positive probability. Consider the

subproblem whereby we are at xi at time i and wish to minimize the “cost-to-go” from

time i to time N

E

{
gN(xN) +

N−1∑

k=i

gk(xk, µk(xk), wk)

}

Then the truncated policy {µ∗i , µ∗i+1, ..., µ
∗
N−1} is optimal for this subproblem. ¥

The principle of optimality suggests that an optimal policy can be constructed in

piecemeal fashion, first constructing an optimal policy for the “tail problem” involving

the last stage, then extending the optimal policy to the “tail problem” involving the last

two stages, and continuing in this manner until an optimal policy for entire problem is

constructed. The dynamic programming algorithm is based on this idea: it proceeds

sequentially, by solving all the tail subproblems of a given time length.

We now state the dynamic programming algorithm for the basic problem.
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The Dynamic Programming Algorithm

For every initial state x0, the optimal cost J∗π(x0) of the basic problem is equal to J0(x0),

given by the first step of the following algorithm, which proceeds forward in time from

period 1 to period N :

J0(x0) = g0(x0),

Jk(xk) = min
uk∈Uk(xk), wk

E{gk(xk, uk, wk) + Jk−1(fx(xk, uk, wk))}, k = 1, ..., N (3.6)

where the expectation is taken with respect to the probability distribution of wk, which

depends on xk and uk. Furthermore, if u∗k = µ∗k(xk) minimizes the right side of (3.6) for

each xk and k, the policy π∗ = {µ∗0, µ∗1, ..., µ∗N−1} is optimal. ¥

3.2 Algorithm Based on Branch and Bound

Solving NP-hard discrete and combinatorial optimization problems is often an

immense job requiring very efficient algorithms, and the Branch and Bound (B&B)

paradigm, first proposed by A. H. Land and A. G. Doig in 1960 for linear programming,

is one of the main tools in the construction of these. The B&B method is basically an

enumeration approach; it searches for the best solution in the complete space of solutions

associated a given problem. However, explicit enumeration is normally impossible due

to the exponentially increasing number of potential solutions. The use of bounds for the

function to be optimized combined with the value of the current best solution enables

the algorithm to prune the non-promising search space and search parts of the solution

space only.

At any point during the course of search for the solution, the status of the solution

with respect to the search of the solution space is described by a pool of yet unexplored

subset of this and the best solution found so far. Initially only one subset exists, namely

the complete solution space, and the best solution found so far is ∞. The unexplored

subspaces are represented as nodes in a dynamically generated search tree, which initially
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only contains the root, and each iteration of a classical B&B algorithm processes one

such node. The iteration has three main components: selection of the node to process,

bound calculation, and branching. In Fig. 3.1, the initial situation and the first step of

the process are illustrated.

The sequence of these may vary according to the strategy chosen for selecting the

next node to process. If the selection of next subproblem is based on the bound value

of the subproblems, then the first operation of an iteration after choosing the node is

branching. For each of these, it is checked whether the subspace consists of a single

solution, in which case it is compared to the current best solution keeping the best of

these. Otherwise the bounding function for the subspace is calculated and compared

to the current best solution. If the subspace cannot contain the optimal solution, the

whole subspace is discarded. The search terminates when there are no unexplored parts

of the solution space left, and the optimal solution is then the one recorded as ”current

best”

3.2.1 Terminology and general description

In the following subsection, we consider minimization problems - the case of maxi-

mization problems can be dealt with similarly. The problem is to minimize a function

f(x) of variables (x1 . . . xn) over a region of feasible solutions, S :

min
x∈S

f(x)

The function f is called the objective function and may be of any type. The set of

feasible solutions is usually determined by general conditions on the variables, e.g. that

these must be non-negative integers or binary, and special constraints determining the

structure of the feasible set. In many cases, a set of potential solutions, G, containing

S, for which f is still well defined. A function g(x) often defined on G (or S) with the

property that g(x) ≤ f(x) for all x in S arises naturally. Both S and G are very useful
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Figure 3.1: Illustration of the search space of B&B.

in the B&B context. Fig. 3.2 illustrates the situation where S and G are intervals of

real numbers.

3.2.2 Bounding function

The bounding function is the key component of any B&B algorithm in the sense

that a low quality bounding function cannot be compensated for through good choices

of branching and selection strategies. Ideally the value of a bounding function for a

given subproblem should equal the value of the best feasible solution to the problem,

but on account of obtaining this value is usually in itself NP-hard, the goal is to come

as close as possible using only a limited amount of computational effort. A bounding

function is called strong, if it in general gives values close to the optimal value for the

subproblem bounded, and weak if the values produced are far from the optimum. One

often experiences a trade off between quality and time when dealing with bounding
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Figure 3.2: The relation between the bounding function g and the objective function f
on the sets S and G of feasible and potential solutions of a problem.

functions: The more time spent on calculating the bound, the better the bound value

usually is. It is normally considered beneficial to use as strong a bounding function as

possible in order to keep the size of the search tree as small as possible.

Bounding functions naturally arise in connection with the set of potential solutions

G and the function g mentioned in above. Due to the fact that S ⊆ G, and that

g(x) ≤ f(x) on G, the following is easily seen to hold:

min
x∈G

g(x) ≤
{

minx∈G f(x)
minx∈S g(x)

}
≤ min

x∈S
f(x) (3.7)

If both of G and g exist there are now choices between three optimization problems,

for each of which the optimal solution will provide a lower bound for the given objective

function. The ”skill” here is of course to chose G and/or g so that one of these is easy

to solve and provides tight bounds.

3.2.3 Branching rule

All branching rules in the context of B&B can be seen as subdivision of a part of the

search space through the addition of constraints, often in the form of assigning values

to variables. Convergence of B&B is ensured if the size of each generated subproblem is

smaller than the original problem, and the number of feasible solutions to the original
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problem is finite. Normally, the subproblems generated are disjoint - in this way the

problem of the same feasible solution appearing in different subspaces of the search tree

is avoided.

3.2.4 Strategy for selecting next subproblem

The strategy for selecting the next live subproblem to investigate usually reflects

a trade off between keeping the number of explored nodes in the search tree low, and

staying within the memory capacity of the computer used.

If one always selects among the live subproblems one of those with the lowest bound,

called the best first search strategy, BeFS. Fig. 3.3 shows a small search tree -the numbers

in each node corresponds to the sequence. A subproblem P is called critical if the given

bounding function when applied to P results in a value strictly less than the optimal

solution of the problem in question. Nodes in the search tree corresponding to critical

subproblems have to be partitioned by the B&B algorithm no matter when the optimal

solution is identified - they can never be discarded by means of the bounding function.

Since the lower bound of any subspace containing an optimal solution must be less than

or equal to the optimum value, only nodes of the search tree with lower bound less than

or equal to this will be explored.

Even though the choice of the subproblem with the current lowest lower bound makes

good sense also regarding the possibility of producing a good feasible solution, memory

problems arise if the number of critical subproblems of a given problem becomes too

large. The situation more or less corresponds to a breath first search strategy, BFS, in

which all nodes at one level of the search tree are processed before any node at a higher

level. Fig. 3.4 shows the search tree with the numbers in each node corresponding to the

BFS processing sequence. The number of nodes at each level of the search tree grows

exponentially with the level making it infeasible to do breadth first search for larger

problems.
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Figure 3.3: Search strategies in B&B: the Best First Search.

The alternative used is a depth first search strategy, DFS. Here a live node with

largest level in the search tree is chosen for exploration. Fig. 3.5 shows the DFS

processing sequence number of the nodes. The memory requirement in terms of number

of subproblems to store at the same time is now bounded above by the number of levels

in the search tree multiplied by the maximum number of children of any node, which

is usually a quite manageable number. An advantage from the programming point of

view is the use of recursion to search the tree - this enables one to store the information

about the current subproblem in an incremental way, so only the constraints added in

connection with the creation of each subproblem need to be stored. The drawback is

that if the incumbent is far from the optimal solution, large amounts of unnecessary

bounding computations may take place. In order to avoid this, DFS is often combined

with a selection strategy which is that exploring the node with the small lower bound

first hopefully leads to a good feasible solution.
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Figure 3.4: Search strategies in B&B: the Breath First Search.
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Figure 3.5: Search strategies in B&B: the Depth First Search.

19



Chapter 4

Mono-Rate Wireless Resource
Allocation

We begin with the simplest case that there is only one rate (user) requirement.

Although the mono-rate problem seems easy, the solution we obtained for this case

will be used for the more complex and realistic situation when there are multiple rate

requests.

Since there is only one request, all channels are used to carry the same data type

and the channel allocation matrix A is fixed and (2.8) is reduced to

min
P

N∑
i=1

pi s.t.

N∑
i=1

ri = R, 0 ≤ pi ≤ pi, 1 ≤ i ≤ N. (4.1)

As mentioned before, the peak power constraint 0 ≤ pi ≤ pi, 1 ≤ i ≤ N can be replaced

by the peak rate constraint 0 ≤ ri ≤ ri, 1 ≤ i ≤ N . Moreover, as there is only one data

type, the GNR (aij) can be replaced by a simpler notation (ai) for obvious reason. Two

algorithms are introduced in this chapter. One is the conventional greedy approach and

the second one is a new iterative optimization algorithm.

4.1 Conventional Greedy Algorithm

Finding the minimum required transmitted power for transmitting a single specific

rate request over multiple orthogonal channels is a nonlinear programming problem. For

a solution in nonlinear programming to be optimal, it must satisfy the Karush-Kuhn-
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Tucker (KKT) conditions which can be regarded as a generalization of the method of

Lagrange multipliers.

Theorem 4.1.1. Karush-Kuhn-Tucker (KKT) Theorem Let x∗ be a regular point

and a local minimizer for the problem of minimizing f subject to h(x) = 0, g(x) ≤ 0.

Then, there exist λ∗ ∈ <m and µ∗ ∈ <m such that

(a) µ∗ ≥ 0;

(b) Df(x∗) + λ∗T Dh(x∗) + µ∗T Dg(x∗) = 0T ;

(c) µ∗T g(x∗) = 0. ¥

Note that µ∗j ≥ 0 (by (a)) and gj(x
∗) ≤ 0, thus the condition

µ∗Tg(x∗) = µ∗1g1(x
∗) + ... + µ∗pgp(x∗) = 0 (4.2)

implies that if gj(x
∗) < 0, µ∗j must be zero. Then, the KKT conditions of the mono-rate

problem are

f(pi) =
N∑

i=1

pi − λ

(
N∑

i=1

ln(1 + aipi)−R

)
− µ0

i pi + µP
i (pi − pi)

h(pi) =
N∑

i=1

ln(1 + aipi)−R

g1(pi) = −pi

g2(pi) = pi − pi (4.3)

From the KKT Theorem, we arrive at the following equivalent necessary conditions

for all 1 ≤ i ≤ N ,

Condition 1:

∂f

∂pi

=
∂

∂pi

[
N∑

i=1

pi − λ

(
N∑

i=1

ln(1 + aipi)−R

)
− µ0

i pi + µP
i (pi − pi)

]
= 0 (4.4)

Condition 2:

−(µ0
i pi) = 0, if pi = 0, µ0

i ≥ 0; otherwise − pi < 0, µ0
i = 0 (4.5)
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Condition 3:

µP
i (pi − pi) = 0, if (pi − pi) = 0, µP

i ≥ 0; otherwise (pi − pi) < 0, µP
i = 0 (4.6)

Condition 4:

N∑
i=1

ri =
N∑

i=1

ln(1 + aipi) = R (4.7)

Obviously, there is no closed-form expressions for the optimal power allocation pi of the

ith VOC and the Lagrange multipliers λ, µi, except for the degenerate case. However,

one can use some numerical methods, ex. Newton method, Gradient method to search

for λ and compute the optimal power distribution, both of which are subject to the

same set of constraints. As the range of λ is a continuous region any of conventional

numerical approach requires high computing complexity.

4.2 An Iterative Optimization Algorithm

Even with an exhaustive search, the true optimal λ is hard to come by. We propose

an iterative Lagrange-type algorithm. Unlike earlier proposals in which the channels to

be excluded (i.e., those i with pi = 0) are found only after the optimal level λ is known,

our approach first selects some “bad” channels to be excluded and then perform power

allocation on the remaining channels. The optimal solution can be easily found within

a few iterations.

We sort all available channels in descending order of channel GNR, i.e., the channel

indexing is such that a1 ≥ a2 ≥ · · · ≥ aN and assume that 0 < pi < pi for all i. The

later assumption, by Conditions 2 and 3, then imply that µ0
i = 0 and µP

i = 0 for all i.

Suppose we use the first x channels and denote by pi(x), ri(x) the allocated transmission

power and normalized rate for the ith channel, then pi(x) = ri(x) = 0, for x < i ≤ N

and, furthermore, Condition 1 (4.4) becomes

f ′(p(x)) =
∂

∂pi

[
N∑

i=1

pi − λ

(
N∑

i=1

ln(1 + aipi)−R

)]
= 0 (4.8)
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where p(x)
def
= (p1(x), p2(x), ... , px(x)), we obtain

1− λai

1 + aipi

= 0 =⇒ λai = (1 + aipi) (4.9)

Multiplying (4.9) for 1 ≤ i ≤ x, we obtain

λx

x∏
i=1

ai =
x∏

i=1

(1 + aipi)

x ln

[
λ(

x∏
i=1

ai)
1
x

]
= ln

[
x∏

i=1

(1 + aipi)

]

=
x∑

i=1

ln(1 + aipi)

= R

⇒ λ =
eR/x

â(x)
, â(x)

def
=

[
x∏

i=1

ai

]1/x

(4.10)

and

ri(x) = ln(1 + aipi) = ln(λai) = ln

[
eR/x · ai

â(x)

]

=
R

x
+ ln

(
ai

â(x)

)
, i = 1, 2, · · · , x (4.11)

It is clear that, for a fixed x, ri(x) is a decreasing function of i, and the above equation

is the unconstraint solution r(x; N)
def
= (r(x), 01×(N−x)) to the problem

min
P

N∑
i=1

pi s.t.

N∑
i=1

ri = R (4.12)

One of these unconstrained solutions r(x; N), x = N, N − 1, · · · , 1 is the solution to

(4.1). The first step to establish this conclusion is

Lemma 4.2.1. The sequence {rx(x), x = 1, 2, · · · , N} is monotonically decreasing. ¥

Proof. Lemma follows directly from the relation

rx(x) =
R

x
+ ln

[
ax

â(x)

]

=
R

x
− 1

x

x−1∑
i=1

ln ai +
x− 1

x
ln ax

=
x− 1

x

[
rx−1(x− 1) + ln

(
ax

ax−1

)]
(4.13)
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and the fact that a1 ≥ a2 ≥ · · · ≥ aN .

We also need the definition

Definition 4.2.1. An unconstrained solution r(x,N) is said to be admissible if rx(x) >

0. The admissible active channel number sets for the problem defined by (4.1) is defined

by F = {x|rx(x) > 0, 1 ≤ x ≤ N}, where rx(x) is given by (4.11). ¥

With this definition we can show that

Lemma 4.2.2. The total transmitted power associated with the admissible unconstrained

optimal rate assignment (4.11) is also a decreasing function of the number of channels

used. In other words, N1 < N2 =⇒ ∑N1

i=1 pi(N1) >
∑N2

i=1 pi(N2), for N1, N2 ∈ F. ¥

Proof. To begin with, let us assume that N1 = N and N2 = N +1. If the above Lemma

is true in this case, it will also be true for the other case N2 −N1 > 1.

pi(x) =
eri(x) − 1

ai

, 1 ≤ i ≤ x, (4.14)

The minimum power of the case x = N is given by

P̃N =
N∑

i=1

eri(N) − 1

ai

=
N∑

i=1

[
eR/N

â(N)
− 1

ai

]

= N · eR/N

â(N)
−

N∑
i=1

1

ai

where â(N) =
[∏N

i=1 ai

] 1
N

. The minimum power of the case x = N +1 can be described

as the function of rN+1.

P̃N+1 = P̃ ′
N + pN+1 =

N∑
i=1

er′i(N) − 1

ai

+ pN+1

=
N∑

i=1

[
e(R−rN+1(N+1))/N

â(N)
− 1

ai

]
+ pN+1

= N · e(R−rN+1(N+1))/N

â(N)
−

N∑
i=1

1

ai

+
erN+1(N+1) − 1

aN+1

(4.15)
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The difference between P̃N and P̃N+1 can be expressed as the function of rN+1(N + 1)

f(rN+1(N + 1)) = P̃N − P̃N+1

=
N

â(N)

(
eR/N − e(R−rN+1(N+1))/N

)− erN+1(N+1) − 1

aN+1

(4.16)

f ′(rN+1(N + 1)) =
∂f(rN+1(N + 1))

∂rN+1(N + 1)
=

e(R−rN+1(N+1))/N

â(N)
− erN+1(N+1)

aN+1

(4.17)

Therefore, the solution of f ′(rN+1(N + 1)) = 0, r∗N+1(N + 1), is given by

r∗N+1(N + 1) =
R

N + 1
+

N

N + 1
· ln

[
aN+1

â(N)

]

=
R

N + 1
+ ln

[
aN+1

â(N + 1)

]
(4.18)

The second derivative for f(rN+1(N + 1)) reads

f (2)(rN+1(N + 1)) =
∂f ′(rN+1(N + 1))

∂rN+1(N + 1)

=
−1

â(N)aN+1

{aN+1

N
e[R−rN+1(N+1)]/N + â(N)erN+1(N+1)

}
(4.19)

which implies that f (2)(rN+1(N +1)) < 0, for 0 ≤ rN+1(N +1) < R. Since f ′(r∗N+1(N +

1)) = 0 and f(0) = 0, we have f ′(rN+1(N + 1)) > 0, for 0 ≤ rN+1(N + 1) < R and

f(r∗N+1(N + 1)) > 0.

Hence, the minimum power for the case x = N is larger than that for the case

x = N + 1, which can be achieved with rN+1(N + 1) = r∗N+1(N + 1).

Based on the above Lemma and the fact that the optimal x∗ is such that rx∗(x
∗) > 0

and rx∗+1(x
∗ + 1) < 0, we conclude that the optimal solution to (4.1) can be obtained

by repeating the following steps

x∗ = max
y∈F

y

ri(x
∗) =

R

x∗
+ ln

[
ai

â(x∗)

]
, 1 ≤ i ≤ x∗

r∗ = (r(x∗),01×(N−x∗)) (4.20)
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and modifying the number of channels involved x until ri ≥ 0, for 1 ≤ i ≤ N . This

algorithm obtains the optimal rate allocation vector(r∗) with the rate constraint 0 ≤ ri

for all i.

However, there is still the rate constraint, ri ≤ ri, for all i, to be met. We redefine

the set for the rate requirements and the components of the rate allocation vector (4.20)

Cr = { i | 1 ≤ i ≤ N, ri ≥ ri},

C∗ = C∗ ∪ Cr ,

Cr = {i | 1 ≤ i ≤ N, i 6∈ C∗},

ri = ri, i ∈ Cr (4.21)

and modify the constraint rates

R′ = R−
∑
i∈Cr

ri (4.22)

The optimal solution with the additional rate constraint–ri ≤ ri, for all i–can be found

by repeatedly applying the above iterative algorithm (4.20) to solve

min
P

∑
i∈Cr

pi s.t.
∑
i∈Cr

ri = R′, 0 ≤ pi, i ∈ Cr (4.23)

until Cr = {Ø}. Combining the two searching phases, we obtain the optimal rate

allocation vector that satisfies the rate constraint 0 ≤ ri ≤ ri, for all i. The flow chart

of this iterative algorithm is illustrated in Fig. 4.1.

Example 4.1. We wish to minimize the required power to achieve a desired normalized

data rate of 3 over five channels. The GNR’s and power constraints of these channels are

(1.0,0.8,0.6,0.4,0.2) and (2w,2w,2w,2w,2w), respectively. Applying the proposed

algorithm, we obtain the corresponding numerical results and the final solution as shown

in Fig. 4.2.
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4.2.1 Computational complexity

To analyze the complexity of the proposed iterative optimization algorithm, the

complexity for computing the closed-form formula

rx(x) =
R

x
+ ln

[
ai

â(x)

]
(4.24)

is used as a reference. (4.20) shows that for finding the x∗ the binary search can be

applied to reduce the computing time of (4.24). After x∗ is obtained one still needs to

compute the remaining candidate rates ri(x
∗), 1 ≤ i ≤ x∗, the overall complexity for

(4.20) is thus given by O(log2 N + x∗) ≤ O(log2 N + N).

Next, if some VOCs have allocated power exceeding their respective constraints, the

formulas (4.21) and (4.22) have to be considered. However, we cannot perfectly predict

how many times the formula (4.20) will be repeated. For this reason, some cases are

simulated in Fig. 4.3 to show the complexity of the mono-rate iterative algorithm.

In this simulation, the data rate and the noise power are assumed to be 5 and 0.01.

To avoid the capacity of the transmitted power increases with the number of VOCs, the

total power constraint is assumed in Fig. 4.3. Thus, the power constraint of each VOC

is equal to the total power constraint divided by the number of VOCs.

Fig. 4.3 reveals that the required computing times of the closed-form based approach

is an increasing function of the number of VOCs. The tighter the total power constraint

becomes, the more VOCs will reach their power constraints. For this reason, the com-

puting load for (4.20) increases accordingly which is shown in Fig. 4.3. Finally, we

notice that when the total power constraint equals 1 w, the power constraint on each

VOC is seldom to be violated, so the complexity given by Fig. 4.3 is approximately

O(log2 N + x∗) ≤ O(log2 N + N).
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Chapter 5

Multi-Rate Wireless Resource
Allocation

Based on the mono-rate algorithm of Fig. 4.1, the following algorithm is designed

for multi-rate applications. The first algorithm is a conventional greedy approach that

conducts an exhaustive search over all possible channel assignment matrices AN×d.

Although this algorithm is guaranteed to yield the optimal AN×d, the searching process

is both complicated and time-consuming, especially if the numbers of data rates (types)

and/or VOCs are large. We apply the DP technique to derive a simple and practical

solution which requires much reduced complexity at the cost of minor performance loss.

To recover the potential performance loss, we further present a solution based on the

B&B principle which entails modest computing complexity but gives the optimal solution

with certainty.

5.1 A Greedy Algorithm

The optimal solution can be obtained by a conventional two-step procedure like

that described in [10]. One first finds the optimal P for a fixed AN×d by using the

iterative water-filling procedure of Fig. 4.1 and then conducting an exhaustive search

for the optimal AN×d that gives the minimum total transmitted power while meeting all

constraints. For a given AN×d, the problem of computing the optimal power allocation
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vector can be divided into d simple optimization subproblems defined by

C(j) = { i | 1 ≤ i ≤ N, Aij = 1}

min
N∑

i=1

d∑
j=1

pij, s.t.
∑

i∈C(j)

rij = Rj, 0 ≤ pij ≤ pi, 1 ≤ i ≤ N, 1 ≤ j ≤ d (5.1)

A fully search is performed to find the optimal assignment matrix AN×d. We com-

pute the minimum transmitted power for each desired rate by running the above itera-

tive water-filling method within d subproblems and calculate their sum as the minimum

total power with respect to a given AN×d. To acquire this solution, we have to com-

pute the optimal channel assignment matrix and power allocation matrix. However, the

exhaustive-searching process is too much complicated and time-consuming to be imple-

mented, especially if the numbers of data rates (types) and virtual channels are large. In

the next section, we propose a simple and practical algorithm by exploring the dynamic

programming method which can reduce a lot of computed complexity with only minor

performance loss.

5.2 Dynamic Programming Based Resource Alloca-

tion Algorithm

5.2.1 Dynamic programming formulation

For introducing the dynamic programming optimization algorithm to simplify search-

ing the assignment matrix AN×d, we must modify the problem formulation (2.8) into

the dynamic programming format (3.6).

First, for the initial problem of each data type subset, in opposition to the intuitional

idea that each data type subset is initialized as an empty subset and VOCs are assigned

at each stage, we propose an innovative thought which all VOCs are initialized to each

data type and VOCs are deleted at each stage. There are two advantages for this method:
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• Easy to have initial values:

Since each data type subset has already been allocated all VOCs, we can easily

to calculate the transmitted power of each data type subset. However, for the

common idea, there is an empty subset of each data type, so the initial value is

hard to set.

• Simple to apply power constraints of the VOCs:

The number of VOCs in each data type subset is decreasing stage by stage, so

simultaneously, the transmitted power of each data type is increasing. Thus, if the

deleted VOC will cause this data type subset cannot afford its desired rate, this

VOC will be chosen to stay in this data type and the implement of power constraint

can be achieved easily. Nevertheless, if the VOC is added at each stage, we cannot

guarantee if the final channel allocation can satisfy all power constraints.

Next, as the assumption that each VOC can serve only one data type, so which data

type should be served by this VOC has to be determined stage by stage. Additionally,

to save the cost of memory and reduce the computational complexity, only the state

with the minimum sum of all data types’ transmitted power is survived at each stage.

Therefore, the data type corresponding to the state with the minimum power will keep

the VOC which is allocated at this stage and the VOC will be removed from all other

data type subsets.

Third, the order of VOC to be determined also affects the performance of DP al-

gorithm much. By the intuition, the VOC with better channel response needs to be

allocated carefully to avoid large performance loss from the optimal solution. For this

reason, we choose the maximum channel response of the VOC to each data type to stand

for this VOC and the order of VOC to be allocated depends on this maximum value.

This method is shown as the following formula,

Sort
i

[ max
j

(aij) ], 1 ≤ i ≤ N, 1 ≤ j ≤ d (5.2)
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Finally, the stage by stage searching trellis with the DP format is illustrated below
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Figure 5.1: The problem formulation modified to DP format

5.2.2 A dynamic programming approach

To apply the DP technique to solve (5.1) stage by stage, we have to define the

following subsets and functions,

Cr
t the survived VOC’s subset vector at the t stage, where Cr

t = (Cr
t (1),

. . . , Cr
t (d)),

Cr
t (j) the survived VOC’s subset of the j th data type at the t stage,

g(R,C) the total consuming power by the iterative optimization algorithm of

Fig. 4.1 with the require normalize rate R and the VOC’s subset C,

fk(C
r
t (j)) a function that describes the subset by which the state is updated,

where fk(C
r
t (j)) =

{
Cr

t−1(j) , j = k
Cr

t−1(j) \ t , j 6= k

The VOC’s subset of each data type is initialized as Cr
0(j) = {i | 1 ≤ i ≤ N}, 1 ≤

j ≤ d. Then, the cost formula,

Jt(C
r
t ) = min

k, 1≤k≤d

{
d∑

j=1

g( Rj , fk(C
r
t (j)) )

}
, 1 ≤ t ≤ N (5.3)
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and the VOC’s subset of each data type are updated each stage to implement DP method

for solving the problem of searching a near optimal channel assignment matrix AN×d

and this algorithm will be referred as DPRA algorithm in the following chapter.

5.2.3 Numerical behavior

As we describe above, the solution provided by DPRA approach is not always

optimal. The following simulated results show the performance of DPRA method. To

avoid the sum of the normalized rates increases with the number of data types, we

define the normalized sum rate =
∑d

j=1 Rj. Various numbers of data types with the

same normalized sum rate are simulated and the normalized rate of each data type is

randomly assigned. For simplicity, the normalized noise power (σ2) is assumed to be

0.01. The results are the average of the 100000 simulated times.

From Fig. 5.2, the simulated results have shown the probability of DPRA algorithm

achieving the optimal solution. Compared 64 VOCs with 128 VOCs, since the number

of better VOCs in each data type subset increases and fewer VOCs are better in more

than one data type subset, the correct probability of the decision at each stage by

DPRA method will raise. On the opposite, if the number of data types increases, it

means selections at each stage become more, so the probability of reaching the optimal

solution should degrade as the results.

As for the uplink scenario in Fig. 5.4, since the GNR of the VOC is the same to

each data type, VOCs are contended by every data type. Better VOCs are important

to all data types, so it becomes hard to decide these VOCs belong to which data type.

For this reason, the probability of achieving the optimum among the uplink scenario

decades much fast than it among the downlink scenario. Opposite to the downlink,

more number of VOCs means more VOCs used in every data type in the initial state,

so more probability of wrong decision occurring.

Except for the probability of achieving the optimal solution, the average performance
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loss is an useful evaluation to a sub-optimal algorithm, so Fig. 5.3 illustrates the average

performance loss from the optimal solution by DPRA approach. With fewer VOCs, a

wrong decision will introduce more performance loss than it with more VOCs. Addi-

tionally, the probability of achieving the optimum with fewer VOCs is lower than more

VOCs, so the average performance with fewer VOCs is obviously worst than it with

more VOCs.

From Figs. 5.4 and 5.5, the probability among the uplink scenario decreases much

fast than it among the downlink scenario. In addition, if one good VOC is assigned to

some data type, it means other data types all lose this good VOC. Thus, the performance

loss of the uplink scenario is obviously worse than the downlink scenario. Beyond that,

compared N = 10 with N = 15, since there are more useful VOCs among 15 VOCs than

10 VOCs, wrong decision by DPRA method will introduce less performance loss. As for

the effect from the number of data types, the uplink scenario appears like the downlink

scenario. The more number of data types, the more performance loss.

Consequently, even though the probability of achieving the optimum solution is not

very high when the normalized sum rate is high, the average performance loss is still

kept within a tolerable range. In other words, it indicates that the performance DPRA

algorithm is very close to the optimal.
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Example 5.1. Consider the situation where there are 5 VOCs available for serving 3

different data types with the required rates given by

[
d1 d2 d3

]
=

[
1 3 2

]

and the GNRs given by




a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

a51 a52 a53




=




0.3 2.0 1.5
0.7 0.2 0.4
0.4 0.5 0.9
1.5 1.0 0.7
0.1 0.7 1.0




The trellis and the associated parameters’ values of the DPRA algorithm are given in

Figs. 5.6 and 5.1.
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Table 5.1: Numerical results obtained in solving Example 5.1. 
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5.3 A Branch and Bound Approach for Resource

Allocation

5.3.1 Bounding function

The bounding function is the most important component of the B&B algorithm.

A weak bounding function is not able to reduce much complexity from the exhaustive-

searching algorithm in finding the optimal channel assignment matrix. Since the pro-

posed DPRA algorithm, as shown in Figs. 5.3 and 5.5, is very efficient in finding a

near-optimal solution (i.e., channel assignment matrix), it can be used to obtain a very

strong bounding function.

5.3.2 Branching rule

We need to build a searching tree that contains all possible channel assignments,

to begin with. Since each VOC serves one data type only, the corresponding tree must

have N levels and each parent node should have d child nodes to include all feasible

solutions; see Fig. 5.7.

To start our searching process, we have to determine which channels will serve which

data type initially. For the same reasons as those mentioned in the previous chapter, we

shall assume that all VOCs are serving all data types initially. VOCs are deleted as we

proceed along the tree and arrive at higher levels, i.e., at the kth level in the searching

tree, we decide which data type is to be served by the mkth VOC. Therefore, a decision

sequence {m1,m2, · · · ,mN} has to given before our tree-searching. In addition to two

advantages discussed before, such an initialization assumption makes it more convenient

for us to construct the searching tree for the B&B algorithm.

In using a B&B method to solve a minimized problem, an upper bound which close

to the optimum solution is needed to block as much as possible the search of paths

which does not lead to the optimal solution. If the power consumed by child nodes

can be guaranteed to be equal or larger than its parent one, there can be no optimal
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solution in the following child nodes when their parents’ transmitted power is greater

than the upper bound. The proposed innovative initialized method is consistent with

this criterion and thus, it is very convenient to build the tree for the B&B algorithm

with such an initialization.

As we assume that each data type can be served by all VOCs initially, i.e., it has all

VOCs as the set of its potential solution, G, we have

Aij = 1, 1 ≤ i ≤ N, 1 ≤ j ≤ d

With such an AN×d, one then use the iterative algorithm (Fig. 4.1) for each data type to

compute the virtual minimum consuming power g(x). As each VOC is allowed to serve

only one data type, at the ith level, every path from a parent node to the jth child node

means the ith VOC will serve the jth data type. Note that the VOC subset C(j) of the

child node j is a part of the parent node’s VOC subset, the virtual minimum power of

the child node must be equal or larger than that of the parent node which is proved in

Lemma 4.2.2. Thus, if the virtual minimum power of the parent is not smaller than the

bounding value, we are sure that there is no optimal solution in its child nodes.

5.3.3 Strategy for selecting next subproblem

Since the path of a channel assignment search has to arrive at a child node in the

final level in order that the corresponding solution, f(x), is feasible, the depth first search

(DFS) strategy is suitable for this criterion. Initially, the bounding value is calculated

by the bounding function derived from the DPRA approach. A DFS-based searching

procedure then tries to continuously separate the parent space into the subproblem

(child) space. If the virtual minimum consuming power of a child node is not smaller

than the bounding value, there is no need to search the remaining subtree and one

proceeds to search other candidate child nodes. If the searching reaches the final level

and the feasible solution f(x) is less than the bounding value, the bounding value will

be updated to f(x). The complete searching tree of the B&B algorithm for solving
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the problem of multi-rate wireless resource allocation is illustrated in Fig. 5.7. For

convenience, this algorithm is called the BBRA algorithm henceforth.

5.3.4 Complexity reduction techniques for the B&B based al-
gorithm

(1) The VOC order allocation of the tree’s level

The order of the decision sequence D = (m1, m2, · · · ,mN) that decides which data

type is served by the mkth VOC at the kth level is a prominent factor that affects the

searching speed. If a bad VOC, which is not even used in the final optimal solution, is in

the early part of the decision sequence, the virtual consuming power of the corresponding

level’s child nodes will not be altered and we will waste much more time searching in

its subtree. Intuitively, the decision sequence D should be arranged according to the

VOC’s GNR. But for the downlink scenario, the GNR of a VOC is a function of the

data type (user terminal) it serves. Hence, we suggest the following systematic method

to determine the decision sequence.

1. Apply the mono-rate channel/rate assignment algorithm for each data type.

2. Compute the sum rate of each VOC and denote by rs(i) and D(i) the sum rate and

the set of data types (as was determined by running the water-filling algorithm d

times for the d data types) to be served by the ith VOC.

3. mk = arg max{rs(j)|j ∈ IN\{m1, · · · ,mk−1}}, where IN = {1, 2, · · · , N}.

Recall that the jth child node in the ith level, no matter to which parent node it

belongs, represents the decision that the ith VOC is to serve the jth data type. Once

the ith VOC is assigned to serve a data type, it must be released the duty of serving

other data types in D(i). These data types will have to seek the services of other VOCs

that will demand larger power to satisfy the required transmission service. With such

an ordering of the decision sequence, as we proceed from one level to the next, the

43



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Level   i = 0, 1, 2, … , N 
Total L

eaves =
 1, 2, …

 , d
N 

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

11111�S

12111�S

13111�S

14111�S

�

�

41444�S

42444�S

43444�S

44444�S

dddddS
�

)1( −dddddS
�

)2( −dddddS
�

)3( −dddddS
�

�

�

1=i

2=i

3=i

Ni =4=i

�

�

�

�

�

�

�

�

1S

2S

3S

4S

dS

1−dS

2−dS

0=i

Figure 5.7: The B&B format complied searching tree for multiuser channel assignment.
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corresponding required total power will increase more rapidly, making it more likely

to terminate an incorrect path. Thus the proposed decision sequence has the desired

property of blocking the wrong path in the earliest possible stages.

Initially, we define some subsets of VOCs,

C(j) = { i | 1 ≤ i ≤ N}, 1 ≤ j ≤ d (5.4)

Cr 6=0(i) = { j | 1 ≤ j ≤ d, rij 6= 0}, 1 ≤ i ≤ N (5.5)

Callocated = {∅} (5.6)

C≥2 = { i | 1 ≤ i ≤ N, |Cr 6=0(i)| ≥ 2, i 6∈ Callocated} (5.7)

C<2 = { i | 1 ≤ i ≤ N, |Cr 6=0(i)| < 2, i 6∈ Callocated} (5.8)

For the VOCs in the subset (Callocated), it means that the order of the VOCs have been

already determined in the tree’s level. The VOCs in the subset (C≥2) are important

VOCs in at least two data type subsets. For the reason that the more total data rate of

the VOC supporting to all data types, the more power-raising after the VOC is decided

to one data type, so we place the VOC with the largest summation serving data rate

to the first level. After that, this VOC is virtually assigned to the data type which it

supports the highest data rate, since this assignment increases the least power and has

the highest probability to obtain the optimal path. Next, this VOC will be moved into

the subset (Callocated). The data types which lose this specific VOC need to run the

iterative algorithm to calculate a new power allocation and modify the subset (C≥2).

Finally, continue the same action to arrange VOCs on the tree’s level until the subset

(C≥2) is empty.

Second, as for the VOCs in the subset (C<2), we cannot make a clear difference from

them, so a simple method is proposed based on exploring the importance of them to

each data type. Concerning the VOCs in the subset (Callocated), the VOCs with the

greatest channel gain in each subset (C(j)) for 1 ≤ j ≤ d are deleted and each data type

runs the mono-rate iterative algorithm under its rate constraint again. The transmitted
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rate will be transferred from the greatest VOCs to other VOCs, so there may be some

new VOCs in the subset (C<2). It means these new VOCs are more important in all

VOCs whose order have not been determined. Lastly, run the first step again until all

VOCs are placed into the tree’s level. However, if the subset (C≥2) is still empty, the

rest VOCs will be sorted by their maximum channel response to all data types.

To describe the detailed procedure, the following parameters are needed to be defined.

C(j) the subset of the jth data type.

Callocated the subset of VOCs which has been allocated in the tree’s level.

Cunallocated the subset of VOCs which has not been allocated in the tree’s

level and the order of the subset is sorted by the maximum

channel response in the VOC to all data types.

MaxSumRateIndex the index of VOC that has the maximum summation rate of

all data type.

MaxRateIndex the index of data type which the MaxSumRateIndex supports

the highest transmitted rate.

MaxV OCIndex(j) the index of VOC that serves the most transmitted rate to jth

data type.

It{ C(j) } the consuming power of the iterative algorithm in Fig. 4.1 with

the jth data type subset.

With the above definitions, the complete procedure is described in the table given below,
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Table 5.2: The procedure of allocating the order of tree’s level.

Step 1: Define
C(j) = { i | 1 ≤ i ≤ N}, 1 ≤ j ≤ d,
Cr 6=0(i) = { j | 1 ≤ j ≤ d, rij 6= 0}, 1 ≤ i ≤ N ,
Callocated = {∅}, C≥2 = { i | 1 ≤ i ≤ N, |Cr 6=0(i)| ≥ 2, i 6∈ Callocated}

Step 2: while |C≥2| 6= 0

MaxSumRateIndex = { i | max
i

(
∑d

j=1 rij), i ∈ C≥2}
MaxRateIndex = { j | max

j
(rij), i = MaxSumRateIndex, 1 ≤ j ≤ d}

for j = 1 : d
if j 6= MaxRateIndex

C(j) = C(j) \MaxSumRateIndex
It{ C(j) }

end
end
Callocated = Callocated ∪MaxSumRateIndex
Redefine C≥2 = { i | 1 ≤ i ≤ N, |Cr 6=0(i)| ≥ 2, i 6∈ Callocated}

end
if |Callocated| == N

Exit Program
end

Step 3: for j = 1 : d
MaxV OCIndex(j) = { i | max

i
(rij), i ∈ Callocated, 1 ≤ i ≤ N}

C(j) = C(j) \MaxV OCIndex(j)
It{ C(j) }

end
Redefine C≥2 = { i | 1 ≤ i ≤ N, |Cr 6=0(i)| ≥ 2, i 6∈ Callocated}
if |C≥2| 6= 0

go to Step 2
end

Step 4: Define Cunallocated = { i | Sort
i

(max
j

(aij)), i 6∈ Callocated, 1 ≤ j ≤ d, 1 ≤ i ≤ N}
Callocated = Callocated ∪ Cunallocated
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(2) Select the node with the least increasing power first

As we know B&B method before, the bounding value will affect the searching per-

formance a lot, because the tight bounding value can stop the path which does not have

the optimal solution earlier. Hence, the earlier a searching path can achieve the optimal

solution, the less computational cost is needed. For this reason, there is a technique to

increase the speed for searching the optimal solution.

Every parent node has d child nodes and can choose any one of them as the next

node. However, if the worse node is chosen to be the next node, the consuming power

at this level is increasing and the probability of this path having the optimal solution

is decreasing. Thus, we sort the d child nodes according to their increasing consuming

power and search forward from the node with the least raising power first. After applying

this action to each level, the probability of finding the optimal solution in first several

paths raises a lot.

(3) Early termination in tree-searching

Due to our having already placed important VOCs in the front of the tree’s level,

there may be a lot of weak VOCs which are not used if the number of VOCs is large.

Thus, we can apply a simple technique to reduce this useless calculation.

At the ith level, the ith VOC will be decided to transmit the jth data type. However,

if the ith VOC does not support any rates for all data types, it means the ith VOC is

weaker than other VOCs in each data type subset. In addition, most of the VOCs which

will be determined after the ith level are weaker than the ith VOC, so we can start the

checking procedure to verify if all VOCs decided after the ith level do not transmit any

rates for all data types. If so, it implies those VOCs are weaker in each data type subset

and the virtual consuming power will not increase even if those VOCs are all deleted

from each data type subset. The expansion of the following tree from this parent node

is useless and this parent node can be a feasible solution, so we can terminate the search
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of this path at this parent node and check if its virtual minimum consuming power is

smaller than the bounding value.

(4) Reuse the results of repetitious calculations in the same level

The resource allocation of the first level is taken as an example in Fig. 5.8 to il-

lustrate this technique. There are d child nodes from the initial parent node and the

first VOC needs to be decided which data type it should serve. For every child node,

there is one subset which is the same as the initial node and the other subsets which

exclude from the first VOC. For this reason, the transmitted power of each data type

at the initial node is stored into the memory and each data type subset which loses the

first VOC is also calculated and stored. Therefore, the total consuming power of the jth

child node is summed up the transmitted power of the jth data type at the initial node

and the other data types which exclude from the first VOC. In addition, if the first VOC

does not transmit any rates for the jth data type, we can delete the first VOC from the

jth data type subset directly and do not need to run the iterative algorithm.
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The following part is to define some parameters to express the detail procedure in

Table 5.3.

C(j) the subset of the jth data type.

Pparent(j) the virtual consuming power of the parent node’s jth data type subset.

Pdeleted(j) the virtual consuming power of the parent node’s jth data type subset

excluding ith VOC.

P k
child(j) the virtual consuming power of the kth child node’s jth data type subset.

It{ C(j) \ i } the consuming power of the iterative algorithm in Fig. 4.1 with the jth

data type subset excluding the ith VOC.

Table 5.3: The procedure of reusing the results of repetitious calculations.

Step 1: Read all data C(1), . . . , C(d) and Pparent(1), . . . , Pparent(d)
Step 2: for j = 1 : d

if the ith VOC serves data rate in C(j)
Pdeleted(j) = It{ C(j) \ i }

else
Pdeleted(j) = Pparent(j)

end
end

Step 3: for k = 1 : d
for j = 1 : d

if k == j
P k

child(j) = Pparent(j)
else

P k
child(j) = Pdeleted(j)

end
end

end

Lastly, the cost for this method is that it needs 2× d×N memory to store the value

of the Pparent and Pdeleted. However, calculational times of the iterative algorithm can

decrease from d2 times to at most d times in each level.
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(5) Efficiencies of various complexity reduction techniques

To assess the improvements brought about by various complexity reduction tech-

niques for the BBRA method, we resort to computer simulation and conduct 100000

runs for each technique to examine its average effect. The numbers of data types and

VOCs are 5 and 128, and the normalized rate of each data type is uniformly distributed

in [0, 3]. The results are summarized in Table 5.4 and the number in this table means the

calling times of the mono-rate iterative algorithm. From our simulation, we know that

the first technique affects the searching times of BBRA approach very much. Without

this technique, the searching times are usually more than 1000000 times, so the first

technique is always applied in Table 5.4 to compare the effects of other techniques.

The purpose of the second technique is to find the optimal solution as early as

possible, so during the searching process, this method can provide a better bounding

value to block useless paths at a earlier level. Hence, BBRA algorithm can avoid the

tree expanding too much and reduce the probability of unusually high searching times.

From the simulation results in Table 5.4, this method obviously works well.

For the third technique, the final part of useless level can be early terminated, so

within most of large N cases, the early-terminating method can save a lot of useless

computations. In the simulation results, we can know this method can reduce the

average calculational times, but it is not able to avoid the deep searching when the

bounding value is not close enough in some special cases.

The final technique uses the additional memory to save the repetitious calculations

at each level, and in this way, the computational times can decrease much in all kinds of

cases. From the results, this technique reduces much calculational complexity. However,

it still cannot prevent the occurrence of the deep searching as the third technique, either.

Compared with the complexity associated with the VOC sorting, if all the above

techniques are used in the BBRA scheme, the computational complexity is approximately

reduced by 30 times. With these complexity-reduction techniques, the BBRA algorithm
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becomes a practical algorithm when the number of required data types is not too large.

Table 5.4: Effects of different techniques on the performance of the BBRA approach.

d=5, N=128 DPRA (1) (1)+(2) (1)+(3) (1)+(4) (1)+(2)+(3)+(4) 

Mean 44.6147 2587.20 773.981 578.0975 116.1923 88.3233 

Mean ( < 200000 ) 44.6147 1717.80 773.981 549.9142 93.7858 88.3233 

Prob. ( > 200000 ) 0 0.0012 0 0.00005 0.00004 0 

Max Times 81 21622894 180132 1800602 981053 587 

Additional Cost  *1 *1
�

*2 *1
�

*3 *1
�

*4 *1
�

*2
�

*3
�

*4 

Cost for each technique : 

*1. Additional calculation before starting BBRA. 

*2. Additional N×d memory to store the order of the next child node. 

*3. Additional checking process to determine if the early termination is needed. 

*4. Additional 2×N×d memory to store the Pparent and Pdeleted . 
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Example 5.2. Consider the same data types and VOCs as Example 5.1 and take the

result of it as an initial bounding value. First, Fig. 5.5 illustrates how the first technique

works. For this example, on account of the number of VOCs being much fewer, the

step 3 and step 4 of the first technique are not executed. For the same reason, the third

technique is not, either. Finally, the searching tree and the detail computation of each

node are shown in Figs. 5.9 and 5.6.

Table 5.5: A greedy search procedure for solving Example 5.2
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Figure 5.9: The searching tree associated with Example 5.2.

54



Table 5.6: The step-by-step searching procedure for solving Example 5.2.

Index C(1) Power of C(1) C(2) Power of C(2) C(3) Power of C(3) Total Power Upper Bound

0 {1,2,3,4,5} 1.1227 {1,2,3,4,5} 4.3292 {1,2,3,4,5} 2.4825 7.9344 12.7049

1 {2,3,4,5} 1.1227 {1,2,3,4,5} 4.3292 {2,3,4,5} 3.2764 8.7284 12.7049

2 {2,3,4,5} 1.1227 {1,2,3,5} 5.2558 {2,3,5} 3.6028 9.9813 12.7049

3 {2,3,4} 1.1227 {1,2,3} 6.4634 {2,3,5} 3.6028 11.1889 12.7049

4 {2,4} 1.1227 {1,2,3} 6.4634 {2,5} 5.0960 12.6821 12.7049

5 {4} 1.1455 {1,3} 6.4634 {2,5} 5.0960 12.7049 12.7049

6 {2,4} 1.1227 {1,3} 6.4634 {5} 6.3891 13.9752 12.7049

7 {4} 1.1455 {1,2,3} 6.4634 {5} 6.3891 13.9980 12.7049

8 {2,4} 1.1227 {1,2} 8.6724 {2,3,5} 3.6028 13.3979 12.7049

9 {2,3,4} 1.1227 {1,2} 8.6724 {2,5} 5.0960 14.8910 12.7049

10 {2,3,4} 1.1227 {1,2,3,5} 5.2558 {2,3} 5.4498 11.8284 12.7049

11 {2,4} 1.1227 {1,2,5} 5.6469 {2,3} 5.4498 12.2194 12.7049

12 {4} 1.1455 {1,5} 5.6469 {2,3} 5.4498 12.2422 12.7049

13 {2,4} 1.1227 {1,5} 5.6469 {3} 7.0990 13.8686 12.2422

14 {4} 1.1455 {1,2,5} 5.6469 {3} 7.0990 13.8913 12.2422

15 {2,4} 1.1227 {1,2,3,5} 5.2558 {2} 15.9726 22.3512 12.2422

16 {2,3,4} 1.1227 {1,2,5} 5.6469 {2} 15.9726 22.7422 12.2422

17 {2,3,4,5} 1.1227 {1,2,3} 6.4634 {2,3} 5.4498 13.0359 12.2422

18 {2,3,5} 2.3030 {1,2,3,4,5} 4.3292 {2,3,5} 3.6028 10.2350 12.2422

19 {2,3} 2.3030 {1,2,3,4} 4.6549 {2,3,5} 3.6028 10.5607 12.2422

20 {2} 2.4547 {1,2,4} 4.8381 {2,3,5} 3.6028 10.8956 12.2422

21 {2} 2.4547 {1,4} 4.8381 {3,5} 3.6195 10.9123 12.2422

22 {} Inf {1,4} 4.8381 {2,3,5} 3.6028 Inf 10.9123

23 {} Inf {1,2,4} 4.8381 {3,5} 3.6195 Inf 10.9123

24 {2} 2.4547 {1,2,3,4} 4.6549 {2,5} 5.0960 12.2055 10.9123

25 {2,3} 2.3030 {1,2,4} 4.8381 {2,5} 5.0960 12.2370 10.9123

26 {2,3} 2.3030 {1,2,3,4,5} 4.3292 {2,3} 5.4498 12.0820 10.9123

27 {2,3,5} 2.3030 {1,2,3,4} 4.6549 {2,3} 5.4498 12.4077 10.9123

28 {2,3,5} 2.3030 {1,2,3,5} 5.2558 {2,3,4,5} 3.2764 10.8353 10.9123

29 {2,3} 2.3030 {1,2,3,5} 5.2558 {2,3,4} 4.2112 11.7700 10.9123

30 {2,3} 2.3030 {1,2,3} 6.4634 {2,3,4,5} 3.2764 12.0428 10.9123

31 {2,3,5} 2.3030 {1,2,3} 6.4634 {2,3,4} 4.2112 12.9776 10.9123

32 {2,3,4,5} 1.1227 {2,3,4,5} 7.1430 {1,2,3,4,5} 2.4825 10.7482 10.9123

33 {2,3,5} 2.3030 {2,3,4,5} 7.1430 {1,2,3,5} 2.5092 11.9552 10.9123

34 {2,3,4,5} 1.1227 {2,3,5} 11.3586 {1,2,3,5} 2.5092 14.9905 10.9123

35 {2,3,5} 2.3030 {2,3,5} 11.3586 {1,2,3,4,5} 2.4825 16.1440 10.9123

36 {1,2,3,4,5} 1.1227 {2,3,4,5} 7.1430 {2,3,4,5} 3.2764 11.5422 10.9123
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5.4 Complexity Consideration

For the conventional exhaustive-searching optimization algorithm, it has to try all

possible channel allocations and runs the iterative optimization algorithm in Fig. 4.1 in

each channel allocation. If there are N VOCs and d requested data types, the exhaustive-

searching optimization algorithm will have dN possible channel allocations. In addition,

in each channel allocation, it has to run the iterative optimization algorithm once for

each data type. Thus, the conventional exhaustive-searching optimization algorithm is

an O(d× dN) computational procedure.

The computational complexity of the DPRA approach is a function of the number

of stages and states. For the DPRA algorithm, there are N stages and d states in each

stage. Since the ith VOC will be excluded from each data type subset at the ith stage, we

can use the idea discussed in the fourth complexity-reduction technique of the BBRA

scheme to reduce the repetitious calculations in each state at the ith stage. For this

reason, DPRA method requires to run the iterative optimization algorithm for at most

d times at each stage and d×N times towards the whole algorithm, so O(d×N) is the

upper bound of its computational procedure.

The complexity of the BBRA method is hard to estimate directly. It is highly

dependent on the bounding value and techniques. We use computer simulations to

estimate the approximate complexity.

Fig. 4.1 compares the complexities of DPRA and BBRA schemes with the computa-

tional complexity evaluated by their processing times. The normalized noise power level

σ2 is assumed to be 0.01 and different numbers of data types with the same normalized

sum rate are compared.

For the downlink scenario, Figs. 5.10 and 5.11 indicate that the complexity of the

DPRA scheme increases with the number of VOCs, as has been expected. The com-

plexity, however, is much lower than the upper bound. Besides, these results reveal an

interesting fact that the average complexity of the case with 64 VOCs is higher than
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that of the case with 128 VOCs. This is because there are much more VOCs with high

GNRs in the 128-VOC case. A better VOC can support larger data rate, so less VOCs

are needed.

Figs. 5.10 and 5.11 indicate that the complexities of both DPRA and BBRA schemes

increase with the number of data types. For the DPRA algorithm, the degradation with

respect to the optimal performance is an increasing function of the number of data

types as is shown in Fig. 5.3. Using the DPRA solution as its bounding function, the

complexity of BBRA algorithm thus increases very rapidly when the number of data

types increases.

With regard to the uplink scenario, the complexities of DPRA and BBRA schemes

in Figs. 5.12 and 5.13 increase with the number of data types as the downlink scenario.

The major difference is that for the uplink scenario, the complexity of BBRA approach

with more VOCs is higher than it with fewer VOCs. The cause of it is that the GNR of

the VOC is the same to each data type. When there are more important VOCs in each

data type subset, the more compare is needed to be calculated.

From the results, DPRA method has much reduced the computational complexity

compared to the full-searching algorithm and guarantees that the complexity is not over

the upper bound. Thus, DPRA algorithm is very suitable to be a practical algorithm

for its low computational and hardware requirements. Moreover, BBRA approach also

shows an acceptable computational complexity to find the optimal solution within less

normalized sum rate.
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Figure 5.10: Average complexities of BBRA and DPRA schemes in a 64-VOCs downlink
scenario.
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Figure 5.11: Average complexities of BBRA and DPRA schemes in a 128-VOCs downlink
scenario.
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Figure 5.12: Average complexities of BBRA and DPRA schemes in a 10-VOCs uplink
scenario.
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Figure 5.13: Average complexities of BBRA and DPRA schemes in a 15-VOCs uplink
scenario.
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Chapter 6

Simulation Results

In this chapter we revisit the two application scenarios discussed in Chapter 2 and

examine the numerical performance of our algorithms when applied to solve the radio

resource allocation problems arisen in these two operation scenarios. To demonstrate

the usefulness of the proposed algorithms and see how they perform with realistic QoS

constraints, we consider four distinct services whose rate requirements are given by

Table 6.1: Transmission rate requirements for video, audio, voice and data services
 

Service Data rate 

Video 128 kbps 

Audio 56 kbps 

Voice 9.6 kbps 

Data No specific 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two independent multimedia sources whose respective probabilities of generating

different services are listed in the following table are assumed in our simulation.

Table 6.2: Statistical characterizations of two independent multimedia sources.

 

 

 

 Video Audio Voice Data 

Source 1 0.25 0.25 0.25 0.25 

Source 2 0.125 0.125 0.5 0.25 
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6.1 Resource Allocation for an OFDMA Downlink

System

The first application example we consider is an OFDMA system which has N = 64

or 128 VOCs. A similar system can be found in IEEE 802.16e. The normalized required

rates for video, audio and voice are calculated by dividing the required data rates of

Table 6.1 by the sub-carrier frequency spacing. As for the data service, since there is

no specific QoS constraint, the normalized rate for data is assumed to be uniformly

distributed in [0, 5]. The system parameters used in simulation are given in Table 6.3

below. We first examine the performance of DPRA approach which gives suboptimal

Table 6.3: Simulation parameters of the OFDMA system

Sub-carrier frequency spacing (W ) 10.94 kHz 

Number of sub-carriers (N ) 64, 128 

Number of data types (d ) 3, 5, 8, 10 

Noise power level 
� � 2 �  0.01 

Normalized required rate for video  0.872 

Normalized required rate for audio  5.09 

Normalized required rate for voice 11.64 

Normalized required rate for data 0~5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

performance. Since the probabilities of generating video and audio services in Source 1

are higher than those of Source 2, the expected normalized sum rate for Source 1 should

be higher than that of Source 2. Thus, in Figs. 6.1 and 6.2, the probability of achieving

the optimum allocation and the performance loss for Source 1 are inferior to those of

Source 2.

Figs. 5.2 and 5.3 indicate that the performance loss increases with the number of data

types or the normalized sum rate. In this case, the normalized sum rate is proportional

to the number of data types, so the performance loss in Fig. 6.2 degrade much fast than

that in Fig. 5.3, when the number of data types increases. Note that the performance

61



loss of the DPRA method is very low: even if the number of data types is as large as

10, the performance loss is still maintained to within 1%.

On the other hand, Fig. 6.3 shows that the BBRA approach requires very high

computational complexity when the number of data types becomes larger than 5. By

contrast, the complexity of the DPRA scheme increases very slowly; it is still reasonably

affordable even when the number of data types is 10. We conclude that for the downlink

OFDMA system, the DPRA algorithm provides a simple and efficient solution that offer

near optimum solution (< 1%) with very little complexity.
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Figure 6.1: The probability that the DPRA method yields the optimum performance in
an OFDMA downlink system.
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Figure 6.2: The average performance degradation (with respect to the optimum perfor-
mance) of the DPRA algorithm in an OFDMA downlink system.
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Figure 6.3: The average complexity of the BBRA and DPRA schemes when used in an
OFDMA downlink system.

63



6.2 Resource Allocation for a Locally Cooperative

Uplink System

A locally cooperative uplink communication scenario in which the user terminals

are located within a small neighborhood is considered. We assume that all uplink users

possess a dual-mode capability with the same local radio interface. The local terminals

might be WLAN/WCDMA or WLAN/GPRS mobile stations. We also assume that

the inter-user distance is far smaller than the uplink (terminal-to-base-station) distance,

and the inter-user link has a much higher capacity and QoS than the uplink. Hence,

the latency, transmitted errors and power consumed within the local area network are

negligibly small. The normalized required rates for video, audio, voice and data are the

same as the downlink scenario discussed before. Table 6.4 lists the simulation parameters

used for such a system.

Table 6.4: System parameters of the locally cooperative uplink system under consider-
ation.

 

 

Chip rate 3.84 Mcps 

Spreading factor 128 

Channel bit rate (W ) 30 kbps 

Number of cooperative VOCs (N ) 10, 15 

Number of data types (d ) 3, 4, 5 

Noise power level 
� � 2 �  0.01 

Normalized required rate for video  0.32 

Normalized required rate for audio  1.87 

Normalized required rate for voice 4.27 

Normalized required rate for data 0~5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the mean normalized sum rate for Source 1 is higher than that of Source 2, the

performance of Source 1 is worse than that of Source 2 which is evident from Figs. 6.4

and 6.5. As mentioned before, good (high GNR) VOCs are important to all data types,

the probability of the wrong decision at each state increases a lot. Thus, the perfor-
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mance loss among the downlink scenario is obviously much superior to it among the

uplink scenario. Moreover, the complexity of BBRA approach for the uplink scenario

increases much because of worse initial bounding value.
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Figure 6.4: The probability of the DPRA method achieving the optimum in a locally
cooperative uplink scenario
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Figure 6.5: The average performance loss from the optimum by the DPRA algorithm in
a locally cooperative uplink scenario
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Figure 6.6: The average complexity of the BBRA and DPRA schemes in a locally coop-
erative uplink scenario
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Chapter 7

Conclusion

We have presented efficient solutions for constrained optimization problems arisen

in radio resource allocation in wireless multiuser multimedia communication networks.

The applications of our algorithms, however, go far beyond the original problems.

For many cases, the best radio resource allocation strategy is a water-filling-like

solution and the search of such an optimal strategy is accomplished by a greedy approach,

which is not only time-consuming but also takes large memory space. The computational

complexities for existing suboptimal algorithms are still relatively high.

We first present an efficient iterative algorithm based on an analytical closed form

to solve the optimal resource allocation for the mono-rate case. Using the mono-rate

solution, we then extend our investigation to multi-rate cases. We suggest efficient

procedures for obtaining optimal and near-optimal solutions. A DP-based algorithm

called DPRA algorithm is proposed to obtain near-optimal solution. This algorithm

has much reduced complexity and suffers only minor performance degradation within

the range of interest. Optimal multi-rate solution is obtained by a B&B-based approach

called BBRA approach which incurs only minor complexity increase from DPRA method

but guarantees zero performance loss. Finally, we provide two application examples to

validate our claims on the performance and effectiveness of both DPRA and BBRA

schemes.

There are many issues remain to explored and require further investigations. For
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example, it would be interesting to look into the scenario when the channels are not or-

thogonal and inter-channel interference has to be taken into account. The fairness issue is

not touched upon in this thesis, a possible candidate objective function that incorporates

the concept of fairness is to maximize product rate instead of sum rate. The proposed

methods can also be applied to problems in scheduling and admission/congestion con-

trol. Finally, a static channel condition is assumed in our work, a worthy extension

would be the assessment on the impact of channels’ time-varying nature.
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