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Abstract

This thesis is concerned with a dynamic radio resource allocation problem. Given
the availability of multiple orthogonal chiannels and transmission rate requirements from
various wireless network users, we are interested in a joint channel, power and rate assign-
ment scheme that satisfies the multimedia multi-rate requirements with the minimum
total power.

For the mono-rate cases, we présentsa=simple approach that gives a closed-form
expression for the optimal solution. Based on this closed-form solution, we present two
iterative algorithms that enable a transmitter to determine respectively a near-optimal
and the optimal joint assignment scheme using the channel state information.

Earlier resource allocation schemes often require computational intensive and time-
consuming procedures to find the optimum solution, if exists, or suboptimal ones that
makes them not very practical for mobile devices to implement. In contrast, our pro-
posals are very efficient in terms of computing load and convergence rate. Furthermore,
our approaches can also be used to solve a dual problem: that of maximizing the sum

rate while satisfying the total power or energy constraint.
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Chapter 1

Introduction

As the demand for higher data rate multi-media wireless communications increases,
it also becomes more and more important that one takes into account the energy-
efficiency factor in designing an anti-fading transmission scheme for mobile terminals.
Resource allocation such as dynamic power control has long been regarded as an effective
means to reduce the average power Gonsumption, ¢o-channel interferences and maintain
the link quality in a wireless nétwork. In ‘some applications such as wireless sensor
networks, in which terminals are powered: by batteries, efficient power management is
essential in meeting the network’s life expectancy.

By using an optimal dynamic power and rate allocation strategy, Goldsmith et al.
[1] derived the ergodic (Shannon) capacity of a single-user wideband fading channel
when channel state information (CSI) is available at both the transmit and the receive
sides. The ergodic capacity is the maximum long-term achievable rate averaged over all
states of a time-varying channel. The corresponding optimal power allocation strategy is
obtained via a water-filling procedure over time or, equivalently, over the fading states.
For a fading multiple-access channel (MAC) with perfect CSI at both sides of the MA
link, Knopp and Humblet [2] derived the optimal power control policy that maximizes
the total ergodic rates of all users.

This thesis is concerned with efficient channel, power and rate assignment schemes

that fulfill either a mono-rate or multi-rate requirements with minimum total transmitted



power. We generalize the conventional problem setting by defining virtual orthogonal
channels (VOCs) and present very efficient iterative algorithms that is guaranteed to
yield the optimal solution for mono-rate transmissions. For multiple rate applications,
we suggest two efficient procedures that give optimal and near-optimal solutions of the
problem.

The proposed iterative algorithms are then applied to two operation scenarios. The
first scenario is a single cell downlink Orthogonal Frequency Division Multiple Access
(OFDMA) system in which the base station needs to meet multiple rate requirements
simultaneously. The second application example we considered is an MA uplink with
locally cooperative communication links. This scenario occurs when dual-mode (e.g.,
WLAN/WCDMA or WLAN/GPRS) user terminals located within a small neighbor-
hood form an opportunistic local network so that active users can forward their mes-
sages to neighboring idle terminals«for cooperative transmissions. It is reasonable to
assume that the inter-user distamce within:the local network is far smaller than the
terminal-to-base-station distance; hence an active mebile terminal uses the local trans-
mission (e.g., WLAN) mode for inter-useér communication, which is almost error-free and
consumes negligible power, and the cellular (e.g., WCDMA or GPRS) mode for uplink
transmissions.

Note that such a cooperative communication scheme is a special case of the oppor-
tunistic diversity first introduced by Tse and Hanly [3] and [4]. Many later investigations
focus on the transmission and protocol issues related to cooperative space diversity and
relays. Sendonaris et al. [5] [6] proposed a Code Division Multiple Access (CDMA)-
based two-user cooperative communication scheme that allows two users to act as relays
to retransmit the estimated data of their partner’s information at the highest possible
uplink transmission rate. This simple relay technique was extended by [7] and [8] to a
variety of cooperative strategies. Maric and Yates [9] considered a cooperative broadcast

strategy with an objective to maximize the network lifetime.



Most of previous works on cooperative communications focus on the improvement of
the peer-to-peer link quality and present some scheduling schemes without considering
the implementation complexity. Zhu et al. [10] proposed a method to solve the prob-
lems about who should help whom and how to cooperate over a multiuser Orthogonal
Frequency Division Multiplexing (OFDM) network. Although their algorithm leads to
optimal performance, the associated computing complexity is relatively high for a mobile
device. Water-filling-like algorithms for optimal power allocation with prescribed error
tolerance for various systems have been proposed [10]-[13]. These algorithms are basi-
cally greedy (exhaustive) searches and there is no guarantee that the optimal solution
is to be found. By contrast, our proposals are much simpler and the optimal allocation
is obtainable.

The rest of this thesis is organized as follows. The ensuing chapter describes potential
operation scenarios for radio resource allocation needs and gives an abstract problem
statement. In Chapter 3, we review the general.problem of tree searches and discuss
possible solutions based on dynamic programming ahd branch-and-bound algorithms.
Chapter 4 presents an efficient iterative algorithm that is guaranteed to yield the optimal
solution for mono-rate transmissions. In the following chapter, we propose two efficient
algorithms to find suboptimal and the optimal channel assignment matrices for multiple
rate applications. Finally, we provide numerical performance of these algorithms when

they are used in the two application scenarios discussed in Chapter 2.



Chapter 2

Scenario and Problem Formulation

2.1 Downlink Scenario and Assumptions

A base station in a cellular system needs to transmit multiple data streams to mobile
stations simultaneously. To eliminate or suppress mutual interference, these data streams
are often transmitted through channels that are orthogonal in time, frequency, code or
hybrid domains. For example, the IEEE 802.16e adapts an OFDMA scheme so that a
user data stream can be allocated 1n a.fixed number of orthogonal subcarriers and time
slots. Multiple orthogonal channels are also available in the 3G-Cdma2000 system via
Walsh-Hardamard coding. If multiple antennas are installed at one side or both sides
of the link and if the channel state is known to both sides, the resulting multiple-input
multiple-output (MIMO) channel can be decomposed into parallel orthogonal channels.
Hence, without loss of generality, we shall consider a general scenario under which N
virtual orthogonal channels (VOCs) are available for multirate downlink transmission
and the instantaneous channel conditions of all VOCs are available to the transmitter(s).
Therefore, the number of VOCs includes the number of the orthogonal subcarriers [10],
time-slots which are unused or any other forms of orthogonal channels like the number
of eigen-channels in a MIMO wireless link [15].

It is assumed that each VOC is independently and frequency non-selectively Rayleigh-



faded and the bandwidth of the ith channel is W; during a fixed transmission interval.
The candidate data types might include voice, image, video, data, etc., each has a

distinct rate requirement, and the number of the requested data types is given by

Ky
d=> n (2.1)
j=1

where K, is the number of active destination terminals and n; is the number of the
jth user’s request data types. For convenience, the same data type, like voices, from
different users will be regarded as different types.

The maximum transmission rate (capacity) C;; offered by the ith channel to serve

the jth data type with transmitted power p;; is

Cijzwilog2<1+]”j—i”j>,1§igjv,1§j§d (2.2)
]

where h;; and afj denote the channel'gain and noise power of the ith VOC which serves
the jth data type. For simplicity, it is assumed that the noise power (afj) and bandwidths
(W;) are the same for all VOCs and are given by (0%,V). Further, each channel’s gain-
to-noise ratio (GNR) (h;;/0?) is kilewn to the bage'station and the normalized capacity
(rate) r;; for the ith channel to serve the jth data type is

Tij = WTjgze =1In (1 + #) = In (1 + aypij) , (2.3)

where a;; = hy; /0.
2.2 Uplink Scenario and Assumptions

Another scenario we are interested in is a locally cooperative uplink system in
which a group of neighboring dual-mode mobile terminals forms a local area network.
We assume that the mobile terminals are located within a small neighborhood so that
the inter-user distance is far smaller than the uplink (terminal-to-base-station) distance.

The users who are willing to share their resources form a cooperative communication



network. When a user terminal decides to solicit for transmission aid, it broadcasts its
requirement to its peers in the network. Upon receiving the request for cooperation,
other network users will send their replies to inform the requester(s) of the resources
to be offered and their conditions (gain-to-noise ratios). For such a locally cooperative
network, the available uplink channels are converted into VOCs which might include
various multiple access channels such as FDMA, TDMA, CDMA or SDMA system and
other equivalent orthogonal or near-orthogonal channels for accessing the base station
of interest.

As in the downlink case, we assume that each VOC is independently Rayleigh-faded
and the ith VOC has bandwidth W; Hz during a fixed transmission interval. Conse-
quently, the number of VOCs is given by

No= Z m;,
i=1
where m; denotes the number of-VOCs effered by the ith user and K, represents the
number of active users in the c@operative network. = The number of the transmission
rates (data types) d is simply
Ky
d= Z n;,
j=1
where n; is the number of data types requested by the jth user and K, is the number
of users (help-seekers) who have announced their transmission cooperation requests.
Obviously, K, < K,. It is assumed that the mobiles who join the locally cooperative
communication network can perfectly obtain the related rates and data types information
through local area network (LAN) communications, e.g., IEEE 802.11.

Note that for the downlink case, each physical channel has different GNR values
when assigned to transmitting to different receive terminals. By contrast, for the uplink
transmission example considered here, each data type is carried by the source terminal

itself or by a mobile station who offers unused VOCs, a channel’s GNR remains un-

changed no matter whose message is transmitted. Thus the maximum transmission rate



ri; supplied by the ¢th VOC with transmitted power p;; is

C hipij hi
= Wiagge = (14 15) = ang), w= 24

2.3 Problem Formulation

Given the multiple rate requirements and channel state information (i.e., a;’s), one
would like to find the channel assignment and power allocation that minimize the total
transmitted power. We first consider the downlink case and define the N x d channel
assignment matrix Anxa = [Aj;] by A;; = 1 if the ith VOC is used to transmit the jth
data type; otherwise, A;; = 0. Assuming a VOC can only serve one data type at a given
time interval, then A;; is either 1 or 0 and a legitimate channel assignment matrix Anxq
must satisfy

d N
YA <L Y APFIMS i< N, 1< <d (2.5)
j=1 i=1

For the downlink case, all signals are transmitted from the same base station, hence only
the total transmitter power will be congidered.

Mathematically, the problem of ¢oncern is [10]

N d
w3 n,
T i=1 =1
N N d
s.t. ZAZ‘]‘TZ']‘:R]‘, Z pijSPca 1§j§d, 1§Z§N (26)
i=1 i=1 j=1

where A is the channel assignment matrix defined above and P denotes the power
allocation matrix whose (7, 7)th entry p;; represents the ith VOC’s transmitted power
for sending the jth data type and 7;; is the corresponding transmission rate. R; is the
required rate of the jth data type and P, is the total transmitter power constraint.
Although in reality there is a peak total power constraint Zf\; Z?Zl pij < P., we
shall not consider this constraint to begin with. Solving the problem with the total power
constraint follows a two-step procedure. In the first step we solve the unconstrained

problem to obtain the required optimal total power and then check if the solution meets

7



the peak power constraint. The problem is solved if the constraint is satisfied; otherwise
the problem does not have an admissible solution and one is forced to go to Step 2.
In the second step we can modify (decrease) the rate requirements, deny some data
types, or settle with a suboptimal channel/power allocation to accommodate the peak
total power constraint. Which of these three options is chosen depends on other system
design considerations and the final solution is likely to be obtained by an outer iterative
process. As far as this thesis is concerned, however, the total transmit power constraint
shall not be discussed henceforth.

Recall that for the uplink scenario, the GNR associated with a VOC is independent
of the channel assignment. Furthermore, as each VOC may belong to different users
in the LAN; it will have its own peak power constraint, and the problem of the locally

cooperative uplink scenario becomes

N d
BEDID
=1 =1
N
=1

where P, A, p;;, 7;; and R; are the same as those of (2.6) and p; is the power constraint of
the ith VOC. This constraint can be transformed into the rate constraint 7; = In(1+a;p;).
In other words, the constraint 0 < p;; < p; is equivalent to 0 < r;; <75,
. . d
By removing the constraint Y7 > j=1Pij < Pe, the two problems (2.6) and (2.7)

can be unified as

N d
win ) > vy
=1 j=1
N
StZAZ]TZ]:R], Ogrmgm,lgjgd,lélgjv (28)
i=1

where 7 = In(1 + a;;p;).

It will become clear after our discourse in the following chapters that the dual problem



of maximizing the data throughput subject to a total power constraint
N d

max E E T
P.A K

)

i=1 j=1

N d
st. Y Y Aypy=P, 0<p;<p, 1<j<d,1<i<N (2.9)
i=1 j=1

can be solved by the algorithms proposed in ensuing two chapters. As a result, for

brevity, we shall not deal with (2.9) in this thesis.



Chapter 3

General Tree Searching

Tree representations are used in statistical inference, database structures and many
other scientific applications. We are more interested in the special scenario that relates
the tree searching to an optimal problem. This chapter introduces two techniques we
used, namely dynamic programming (DP) and branch-and-bound. In a more general
sense, all tree searching strategies including greedy methods, the divide-and-conquer
strategy, prune-and-search, ... et¢., are subclasses of DP algorithms for they all involve

sequences of decisions.

3.1 Algorithm Based omDynamic Programming

The dynamic programming was coined by Bellman [14] to describe the techniques
which he brought together to study a class optimization problems involving sequences
of decisions. There have been many applications and further developments since that

time. In this paper, we focus on the situations where decisions are made in stages.

3.1.1 The basic problem

We now formulate a general problem of decision under stochastic uncertainty over
a finite number of stages. This problem, which we call basic. The basic problem is very
general. In particular, we will not require that the state, control, or random parameter

take a finite number of values or belong to a space of n-dimensional vectors. A surprising

10



aspect of dynamic programming is that its applicability depends very little on the nature
of the state, control, and random parameter spaces. For this reason, it is convenient to
proceed without any assumptions on the structure of these spaces.

We are given a discrete-time dynamic system

Try1 = fe(Tp, up,wy), k=0,1,--+ N—1 (3.1)
where
k = the discrete time index,
xr = the state of the system and summarized past information that is relevant for

future optimization, z, € S,

ur, = the control or decision variable to be selected at time k, uy € Cy,

wr = a random perturbation parameten

N = the horizon or number of fimes-the control is applied,

fr = a function that describes the systent and in particular the mechanism by which

the state is updated.

The control uy, is constrained to take values in a given nonempty subset U(zy) C Cy,
which depends on the current state xy; that is, uy € Uy(zk) for all z; € Sy and k.
We consider the class of policies (also called control laws) that consist of a sequence of
functions
T = {0,y AN-1} (3.2)
where 1, maps states xy, into controls py, = ug(xy) and is such that u(xy) € Ug(xy) for
all x, € Si. Such policies will be called admissible.
Given an initial state zo and an admissible policy @ = {uo,..., un—_1}, the states
{zx} and disturbances {wy} are random variables with distributions defined through

the system equation

Tk+1 = fk(l’kaﬂk(fﬂk)awk), k=0,1,.,.N -1 (3~3)
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Thus, for given functions g, k=0, 1, ..., N, the expected cost of 7 starting at z¢ is
N-1
Jr(w9) = E {gzv(xN) + > gil(@, (), wk)} (3.4)
k=0
where the expectation is taken over the random variables wy and x,. An optimal policy

7* is one that minimizes the cost; that is,

o (x0) = 17{1611111 I (x0) (3.5)
where II is the set of all admissible policies.

3.1.2 The dynamic programming algorithm

The dynamic programming technique rests on a very simple idea, the principle of
optimality, which we described below.
Principle of Optimality
Let 7 = {ug, i, ..., uy_1 } be an optimal policy for the basic problem, and assume that
when using 7*, a given state x; decurs at titne ¢ with-positive probability. Consider the
subproblem whereby we are at x; at time ¢ and wish to minimize the “cost-to-go” from

time 7 to time N

E {gN(:L‘N) + Z_ G (T, pr (), wk)}

k=i

Then the truncated policy {u}, 1}, 1, ..., y_1} is optimal for this subproblem. |

The principle of optimality suggests that an optimal policy can be constructed in
piecemeal fashion, first constructing an optimal policy for the “tail problem” involving
the last stage, then extending the optimal policy to the “tail problem” involving the last
two stages, and continuing in this manner until an optimal policy for entire problem is
constructed. The dynamic programming algorithm is based on this idea: it proceeds
sequentially, by solving all the tail subproblems of a given time length.

We now state the dynamic programming algorithm for the basic problem.
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The Dynamic Programming Algorithm
For every initial state x¢, the optimal cost J(z) of the basic problem is equal to Jy(x),
given by the first step of the following algorithm, which proceeds forward in time from

period 1 to period N:
Jo(zo) = go(o),

Jp(zg) = min  E{gi(xr, uk, wp) + Jeo1 (fo(zp, ug, wi))}, k=1,...,N  (3.6)

up €U (1), wi

where the expectation is taken with respect to the probability distribution of wy, which
depends on z, and wuy. Furthermore, if uj = p (z)) minimizes the right side of (3.6) for

each z;, and k, the policy 7* = {ug, uf, ..., wi_1} is optimal. |

3.2 Algorithm Based on Branch and Bound

Solving NP-hard discrete and combinatorial eptimization problems is often an
immense job requiring very efficient algorithms; and the Branch and Bound (B&B)
paradigm, first proposed by A. H=Land and A."G. Doig in 1960 for linear programming,
is one of the main tools in the construction-of these. The B&B method is basically an
enumeration approach; it searches for the best solution in the complete space of solutions
associated a given problem. However, explicit enumeration is normally impossible due
to the exponentially increasing number of potential solutions. The use of bounds for the
function to be optimized combined with the value of the current best solution enables
the algorithm to prune the non-promising search space and search parts of the solution
space only.

At any point during the course of search for the solution, the status of the solution
with respect to the search of the solution space is described by a pool of yet unexplored
subset of this and the best solution found so far. Initially only one subset exists, namely
the complete solution space, and the best solution found so far is co. The unexplored

subspaces are represented as nodes in a dynamically generated search tree, which initially

13



only contains the root, and each iteration of a classical B&B algorithm processes one
such node. The iteration has three main components: selection of the node to process,
bound calculation, and branching. In Fig. 3.1, the initial situation and the first step of
the process are illustrated.

The sequence of these may vary according to the strategy chosen for selecting the
next node to process. If the selection of next subproblem is based on the bound value
of the subproblems, then the first operation of an iteration after choosing the node is
branching. For each of these, it is checked whether the subspace consists of a single
solution, in which case it is compared to the current best solution keeping the best of
these. Otherwise the bounding function for the subspace is calculated and compared
to the current best solution. If the subspace cannot contain the optimal solution, the
whole subspace is discarded. The search terminates when there are no unexplored parts
of the solution space left, and the optimal solution_is then the one recorded as ”current

best”

3.2.1 Terminology and general description

In the following subsection, we consider minimization problems - the case of maxi-
mization problems can be dealt with similarly. The problem is to minimize a function

f(z) of variables (x1...x,) over a region of feasible solutions, S:

min f(x)

T€S

The function f is called the objective function and may be of any type. The set of
feasible solutions is usually determined by general conditions on the variables, e.g. that
these must be non-negative integers or binary, and special constraints determining the
structure of the feasible set. In many cases, a set of potential solutions, G, containing
S, for which f is still well defined. A function g(x) often defined on G (or S) with the

property that g(x) < f(x) for all z in S arises naturally. Both S and G are very useful
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311 812 821 822 * = Doesn’'t contain optimal solution

Figure 3.1: Hlustration of the search space of B&B.

in the B&B context. Fig. 3.2 illustrates the situation where S and G are intervals of

real numbers.

3.2.2 Bounding function

The bounding function is the key component of any B&B algorithm in the sense
that a low quality bounding function cannot be compensated for through good choices
of branching and selection strategies. Ideally the value of a bounding function for a
given subproblem should equal the value of the best feasible solution to the problem,
but on account of obtaining this value is usually in itself NP-hard, the goal is to come
as close as possible using only a limited amount of computational effort. A bounding
function is called strong, if it in general gives values close to the optimal value for the
subproblem bounded, and weak if the values produced are far from the optimum. One

often experiences a trade off between quality and time when dealing with bounding
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v

Figure 3.2: The relation between the bounding function g and the objective function f
on the sets S and G of feasible and potential solutions of a problem.

functions: The more time spent on calculating the bound, the better the bound value
usually is. It is normally considered beneficial to use as strong a bounding function as
possible in order to keep the size of the search tree as small as possible.

Bounding functions naturally‘arise in connectionwith the set of potential solutions
G and the function g mentioned in aboveé: Due to: the fact that S C G, and that

g(x) < f(z) on G, the following is.easily ‘seen to hold:

min g(c) s{ minzec "/ {7) }<minf<x> (3.7)

zeq minges ¢(z) | ~ zes

If both of G and g exist there are now choices between three optimization problems,
for each of which the optimal solution will provide a lower bound for the given objective
function. The ”skill” here is of course to chose G and/or g so that one of these is easy

to solve and provides tight bounds.

3.2.3 Branching rule

All branching rules in the context of B&B can be seen as subdivision of a part of the
search space through the addition of constraints, often in the form of assigning values
to variables. Convergence of B&B is ensured if the size of each generated subproblem is

smaller than the original problem, and the number of feasible solutions to the original
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problem is finite. Normally, the subproblems generated are disjoint - in this way the
problem of the same feasible solution appearing in different subspaces of the search tree

is avoided.

3.2.4 Strategy for selecting next subproblem

The strategy for selecting the next live subproblem to investigate usually reflects
a trade off between keeping the number of explored nodes in the search tree low, and
staying within the memory capacity of the computer used.

If one always selects among the live subproblems one of those with the lowest bound,
called the best first search strategy, BeFS. Fig. 3.3 shows a small search tree -the numbers
in each node corresponds to the sequence. A subproblem P is called critical if the given
bounding function when applied to P results in a value strictly less than the optimal
solution of the problem in question. ;Nodes in the search tree corresponding to critical
subproblems have to be partitioned by the-B&Bialgorithm no matter when the optimal
solution is identified - they can never be discarded by means of the bounding function.
Since the lower bound of any subspaceé ¢ontaining an-optimal solution must be less than
or equal to the optimum value, only nodes of the search tree with lower bound less than
or equal to this will be explored.

Even though the choice of the subproblem with the current lowest lower bound makes
good sense also regarding the possibility of producing a good feasible solution, memory
problems arise if the number of critical subproblems of a given problem becomes too
large. The situation more or less corresponds to a breath first search strategy, BFS, in
which all nodes at one level of the search tree are processed before any node at a higher
level. Fig. 3.4 shows the search tree with the numbers in each node corresponding to the
BFS processing sequence. The number of nodes at each level of the search tree grows
exponentially with the level making it infeasible to do breadth first search for larger

problems.
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f=3,0=15 f=4,g=2

f=55,g=3 f=50=25

Figure 3.3: Search strategies in B&B: the Best First Search.

The alternative used is a depth first search strategy, DFS. Here a live node with
largest level in the search tree is chosenfor, exploration. Fig. 3.5 shows the DFS
processing sequence number of themodes.sThedmemory requirement in terms of number
of subproblems to store at the saine time is new bounded above by the number of levels
in the search tree multiplied by the maximum-number of children of any node, which
is usually a quite manageable number.. An advantage from the programming point of
view is the use of recursion to search the tree - this enables one to store the information
about the current subproblem in an incremental way, so only the constraints added in
connection with the creation of each subproblem need to be stored. The drawback is
that if the incumbent is far from the optimal solution, large amounts of unnecessary
bounding computations may take place. In order to avoid this, DFS is often combined
with a selection strategy which is that exploring the node with the small lower bound

first hopefully leads to a good feasible solution.
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f=3,0=15 f=4,g=2

f=5.5,9=3 =5 g=25

Figure 3.4: Search strategies in B&B: the Breath First Search.

f=3,0=15 f=4,g=2

f=55,g=3 f=5,g=2.5

Figure 3.5: Search strategies in B&B: the Depth First Search.
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Chapter 4

Mono-Rate Wireless Resource
Allocation

We begin with the simplest case that there is only one rate (user) requirement.
Although the mono-rate problem seems easy, the solution we obtained for this case
will be used for the more complex and realistic situation when there are multiple rate
requests.

Since there is only one request,yall channels are tised to carry the same data type

and the channel allocation matrix A is-fixed-and (2.8) is reduced to

N N
' i S.t. i = R0<p, <Pp;, 1 <1< N. .
Irgngpz s.t er Ri0O<p <p;j, 1<i<N (4.1)

As mentioned before, the peak power constraint 0 < p; < p;, 1 <7 < N can be replaced
by the peak rate constraint 0 < r; <7;, 1 <7 < N. Moreover, as there is only one data
type, the GNR (a;;) can be replaced by a simpler notation (a;) for obvious reason. Two
algorithms are introduced in this chapter. One is the conventional greedy approach and

the second one is a new iterative optimization algorithm.

4.1 Conventional Greedy Algorithm

Finding the minimum required transmitted power for transmitting a single specific
rate request over multiple orthogonal channels is a nonlinear programming problem. For

a solution in nonlinear programming to be optimal, it must satisfy the Karush-Kuhn-
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Tucker (KKT) conditions which can be regarded as a generalization of the method of

Lagrange multipliers.

Theorem 4.1.1. Karush-Kuhn-Tucker (KKT) Theorem Let x* be a reqular point
and a local minimizer for the problem of minimizing f subject to h(x) = 0, g(z) < 0.
Then, there exist \* € ™ and p* € R™ such that

(a) p* > 0;

(b) Df(xz*) + NTDh(z*) + T Dg(z*) = 07;

(c) wTg(x*) = 0. o
Note that 7 > 0 (by (a)) and g;(z*) < 0, thus the condition

Tg(x) = pigi(x*) + ...+ pigp(x*) =0 (4.2)

implies that if g;(z*) < 0, y5 must-be zero. Then, the KKT conditions of the mono-rate

problem are
N N
f) = Y pi—AX (Z (1 + aip;)s R) — i+ pf (i — )
i=1 i=1

N
hip) = Y In(l+ap)—R
i=1
g(pi)) = —pi
92(pi) = pi—Di (4.3)
From the KKT Theorem, we arrive at the following equivalent necessary conditions

forall1 <i <N,

Condition 1:

of 5 [ N
o, = 9. [Zpl - (Z In(1+ a;p;) — R> — i+ (pi =) | =0 (4.4)

i=1 =1

Condition 2:
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Condition 3:
pl(pi—p7) =0, if (p; — ;) =0, u >0; otherwise (p; —7;) <0, ' =0 (4.6

Condition 4:

N N

> ori=> W(l+ap)=R (4.7)

i=1 =1

Obviously, there is no closed-form expressions for the optimal power allocation p; of the
1th VOC and the Lagrange multipliers A, u;, except for the degenerate case. However,
one can use some numerical methods, ex. Newton method, Gradient method to search
for A and compute the optimal power distribution, both of which are subject to the
same set of constraints. As the range of A is a continuous region any of conventional

numerical approach requires high computing complexity.

4.2 An Iterative Optimization Algorithm

Even with an exhaustive search, the true optimal)\ is hard to come by. We propose
an iterative Lagrange-type algorithm.*Unlike-earlier-proposals in which the channels to
be excluded (i.e., those i with p; = 0) are found only after the optimal level X is known,
our approach first selects some “bad” channels to be excluded and then perform power
allocation on the remaining channels. The optimal solution can be easily found within
a few iterations.

We sort all available channels in descending order of channel GNR, i.e., the channel
indexing is such that a; > as > -+ > ay and assume that 0 < p; < p; for all 2. The
later assumption, by Conditions 2 and 3, then imply that ) = 0 and u!” = 0 for all .
Suppose we use the first  channels and denote by p;(z), r;(z) the allocated transmission
power and normalized rate for the ith channel, then p;(z) = r;(z) =0, forz <i < N

and, furthermore, Condition 1 (4.4) becomes

[Zpi - A (Z In(1+ a;p;) — R)

22

f'(p(z)) = =0 (4.8)
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déf(

where p(z) = (p1(x), p2(x), ... ,p.(z)), we obtain

)\ai
1+ aip;

Multiplying (4.9) for 1 < < x, we obtain

x

=1

i=1

zln [/\(H ai)i] = In [H(l + a;p;)

=1 1=1

- 1/x
= A = . a(z) d:ef[ ai] (4.10)
and

rl(w) = ln(l + azpz) = ln()\al) a— h’l |:€R/x . i:|

a; 3
_ R4 B .. 411
x n<d(az))> ¢ { - ( )

It is clear that, for a fixed z, r;(z) is a'deereasing function of 7, and the above equation

is the unconstraint solution r(z; N) o (), 01x(N—2)) to the problem

N N
m;n;pi s.t. ;Ti =R (4.12)
One of these unconstrained solutions r(z; N),z = N, N — 1,--- 1 is the solution to

(4.1). The first step to establish this conclusion is
Lemma 4.2.1. The sequence {r,(z),x =1,2,--- N} is monotonically decreasing. M

Proof. Lemma follows directly from the relation

R a
T = 1 -
) = 3]
rz—1
= E — 1 Ina; + Ina,
T T T
xXr — 1 (o
= [m_l(af —1)+1In (%1)} (4.13)



and the fact that a; > ay > -+ > ay. O
We also need the definition

Definition 4.2.1. An unconstrained solution r(x, N) is said to be admissible if r,(z) >
0. The admissible active channel number sets for the problem defined by (4.1) is defined

by F = {z|r,(z) > 0,1 <z < N}, where rp(x) is given by (4.11). |
With this definition we can show that

Lemma 4.2.2. The total transmitted power associated with the admissible unconstrained
optimal rate assignment (4.11) is also a decreasing function of the number of channels

used. In other words, N; < Ny —> vazll pi(Ny) > vajl pi(Ny), for Ny, Ny € F. [ ]

Proof. To begin with, let us assume that Ny = N and N, = N +1. If the above Lemma

is true in this case, it will also be true for the other case No — N; > 1.

erda) B ,
pi(z) 3 SESAAE B, (4.14)

The minimum power of the case z=V"is given by

i=1

1
where a(N) = [Hfil al} " . The minimum power of the case z = N + 1 can be described
as the function of ry, ;.

N ()

~ ~ e —
Py = Py+pyy = Z; T + PN+1
- i TN 1)
2 a(N) . PN+1
(R—rN+1(N+1))/N N 1 rN+1(N+1) g
_ NS P S (4.15)
a(N) — a AN+1

24



The difference between ]5N and ISNH can be expressed as the function of 7y (N + 1)

f(TN—i—l(N"' 1)) = PN — PN—}—l
67’1\]+1(N+1) _ 1

= _— R/N — (R_TN+1(N+1))/N _ 416
a7 ) 419
8f(r (N + 1)) e(R_TNH(N""l))/N eT’N+1(N+1)
Fllrnan (N +1)) = 2220 — - (4.17)
87’]\[+1(N —+ 1) d(N) CLN+1

Therefore, the solution of f'(ry11(N +1)) =0, ry (N + 1), is given by

R N AN+1
Ny1 Ny1 " [a(zv)}

AN+1
— T 4 qp |
N+1+n[&(N+1)}

TN +1) =

(4.18)

The second derivative for f(ryy1(N + 1)) reads
8f’(rN 1(N + 1))
@ N £1))= L
f (TN-H( b )) (97"N+1(N A0 1)

B AN+ [R—ria(N+1)]/Na | TN 1(N+1)}
_ _ e + a N e + 419
a(N)aN+1 { N ‘ ( ) ( )

which implies that f® (ryy1(N +1))<60, for 07y 1 (N +1) < R. Since f'(ry, (N +

1)) = 0 and f(0) = 0, we have f'(ry41(N +1)) >0, for 0 < ry41(N +1) < R and
frya (N +1)) > 0.
Hence, the minimum power for the case x = N is larger than that for the case

x = N + 1, which can be achieved with ry; (N 4+ 1) = ry (N +1). O

Based on the above Lemma and the fact that the optimal z* is such that .« (z*) > 0
and ry-41(z* + 1) < 0, we conclude that the optimal solution to (4.1) can be obtained

by repeating the following steps

T = maxy
yeF

R i .
7"1(33*) = E+ln [%1, 1<i<z*

rr = (P(I*),le(N_$*)) (4.20)
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and modifying the number of channels involved x until r; > 0, for 1 < ¢ < N. This
algorithm obtains the optimal rate allocation vector(r*) with the rate constraint 0 < r;
for all 7.

However, there is still the rate constraint, r; < 7;, for all 7, to be met. We redefine

the set for the rate requirements and the components of the rate allocation vector (4.20)

C- = {i|1<i<N, r>7}
C* - C*U )
C, = {i|1<i<N, i¢gcC,

r, = 14 1€ Cr (4.21)
and modify the constraint rates

R s3I ="3% (4.22)
1€CH

The optimal solution with the additional rate constraint—r; < 7, for all 7—can be found

by repeatedly applying the abové.iterativeralgorithm: (4.20) to solve

1 . L E = / . )
min sz s.t. Z ri=R, 0<p;, i€eC, (4.23)
i€Cyr ieChr
until C- = {@}. Combining the two searching phases, we obtain the optimal rate

allocation vector that satisfies the rate constraint 0 < r; < 7, for all . The flow chart

of this iterative algorithm is illustrated in Fig. 4.1.

Example 4.1. We wish to minimize the required power to achieve a desired normalized
data rate of 3 over five channels. The GNR’s and power constraints of these channels are
(1.0,0.8,0.6,0.4,0.2) and (2w, 2w, 2w, 2w, 2w), respectively. Applying the proposed
algorithm, we obtain the corresponding numerical results and the final solution as shown

in Fig. 4.2.
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Read dll data
R,N,a :iz for 1<i<N
g
v
Sort al a; by decreasing order
a=a,>--2a,
v

Set  x=N, C ={g,
C, ={i|1<i<N}
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x=|C |,
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Figure 4.1: The iterative optimization algorithm for fixed mono-data rate
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O

x=5k=0,R=3,
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C: ={12345,C" ={g
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;< 0
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x =3,k =0,R=0.94588,
4=0.36342, r, = 0.81665 r, =0.41119 r, =-0.2819%

C; ={345.C" ={1.3

rs<0

x =2,k =1,R=0.94588,
4=0.48990, r, = 0.67567 r,=0.27021
C ={34.C’={13

A

r’ =(1.09861, 0.95511, 0.67567, 0.27021, 0),
P’ =(2, 2, 160892, 0.77559, 0)

Figure 4.2: Numerical results obtained in the course of applying the algorithm of Fig.
4.1 to solve Example 4.1.
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4.2.1 Computational complexity

To analyze the complexity of the proposed iterative optimization algorithm, the
complexity for computing the closed-form formula
R a;

re(x) = o +In {%} (4.24)

is used as a reference. (4.20) shows that for finding the z* the binary search can be

applied to reduce the computing time of (4.24). After z* is obtained one still needs to

compute the remaining candidate rates r;(z*), 1 < i < 2*, the overall complexity for

(4.20) is thus given by O(log, N + 2*) < O(logy, N + N).

Next, if some VOCs have allocated power exceeding their respective constraints, the
formulas (4.21) and (4.22) have to be considered. However, we cannot perfectly predict
how many times the formula (4.20) will be.repeated. For this reason, some cases are
simulated in Fig. 4.3 to show the eomplexity-of thé: mono-rate iterative algorithm.

In this simulation, the data rate;and the néise power are assumed to be 4 and 0.01.
To avoid the capacity of the transmittied power-increases with the number of VOCs, the
total power constraint is assumed in Fig. 4.3. Thus, the power constraint of each VOC
is equal to the total power constraint divided by the number of VOCs.

Fig. 4.3 reveals that the required computing times of the closed-form based approach
is an increasing function of the number of VOCs. The tighter the total power constraint
becomes, the more VOCs will reach their power constraints. For this reason, the com-
puting load for (4.20) increases accordingly which is shown in Fig. 4.3. Finally, we
notice that when the total power constraint equals I w, the power constraint on each
VOC is seldom to be violated, so the complexity given by Fig. 4.3 is approximately
O(logy N +z*) < O(logy N + N).
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Figure 4.3: Average complexities of the proposed iterative power allocation algorithm
for mono-rate transmission with different total transmit power constraints
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Chapter 5

Multi-Rate Wireless Resource
Allocation

Based on the mono-rate algorithm of Fig. 4.1, the following algorithm is designed
for multi-rate applications. The first algorithm is a conventional greedy approach that
conducts an exhaustive search over all possible channel assignment matrices Anxaq-
Although this algorithm is guaranteed to yield.the optimal Anxq, the searching process
is both complicated and time-coisuming, espeéially if-the numbers of data rates (types)
and/or VOCs are large. We apply the DP-technique to derive a simple and practical
solution which requires much reduced eomplexity at the cost of minor performance loss.
To recover the potential performance loss, we further present a solution based on the
B&B principle which entails modest computing complexity but gives the optimal solution

with certainty.

5.1 A Greedy Algorithm

The optimal solution can be obtained by a conventional two-step procedure like
that described in [10]. One first finds the optimal P for a fixed Anxq by using the
iterative water-filling procedure of Fig. 4.1 and then conducting an exhaustive search
for the optimal Anyq that gives the minimum total transmitted power while meeting all

constraints. For a given Anxq, the problem of computing the optimal power allocation
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vector can be divided into d simple optimization subproblems defined by

CU)={i|1<i<N, Aj; =1}

N d
min» Y py, st Y ry=R;, 0<p; <P, 1<i<N, 1<j<d (51

i=1 j=1 i€C(j)

A fully search is performed to find the optimal assignment matrix Anyxqg. We com-
pute the minimum transmitted power for each desired rate by running the above itera-
tive water-filling method within d subproblems and calculate their sum as the minimum
total power with respect to a given Anxq. To acquire this solution, we have to com-
pute the optimal channel assignment matrix and power allocation matrix. However, the
exhaustive-searching process is too much complicated and time-consuming to be imple-
mented, especially if the numbers of data rates (types) and virtual channels are large. In
the next section, we propose a simple and practical algorithm by exploring the dynamic
programming method which can réduce alot of computed complexity with only minor

performance loss.

5.2 Dynamic Programming Based Resource Alloca-
tion Algorithm

5.2.1 Dynamic programming formulation

For introducing the dynamic programming optimization algorithm to simplify search-
ing the assignment matrix Anxq, we must modify the problem formulation (2.8) into
the dynamic programming format (3.6).

First, for the initial problem of each data type subset, in opposition to the intuitional
idea that each data type subset is initialized as an empty subset and VOCs are assigned
at each stage, we propose an innovative thought which all VOCs are initialized to each

data type and VOCs are deleted at each stage. There are two advantages for this method:
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e Fasy to have initial values:
Since each data type subset has already been allocated all VOCs, we can easily
to calculate the transmitted power of each data type subset. However, for the
common idea, there is an empty subset of each data type, so the initial value is

hard to set.

e Simple to apply power constraints of the VOCs:
The number of VOCs in each data type subset is decreasing stage by stage, so
simultaneously, the transmitted power of each data type is increasing. Thus, if the
deleted VOC will cause this data type subset cannot afford its desired rate, this
VOC will be chosen to stay in this data type and the implement of power constraint
can be achieved easily. Nevertheless, if the VOC is added at each stage, we cannot

guarantee if the final channel allocation can satisfy all power constraints.

Next, as the assumption that gach VOE can serve only one data type, so which data
type should be served by this VOC has to be determined stage by stage. Additionally,
to save the cost of memory and reduce the computational complexity, only the state
with the minimum sum of all data types’ transmitted power is survived at each stage.
Therefore, the data type corresponding to the state with the minimum power will keep
the VOC which is allocated at this stage and the VOC will be removed from all other
data type subsets.

Third, the order of VOC to be determined also affects the performance of DP al-
gorithm much. By the intuition, the VOC with better channel response needs to be
allocated carefully to avoid large performance loss from the optimal solution. For this
reason, we choose the maximum channel response of the VOC to each data type to stand
for this VOC and the order of VOC to be allocated depends on this maximum value.
This method is shown as the following formula,

Sort] maz(a;) |, 1 <i< N, 1<j<d (5.2)
i j
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Finally, the stage by stage searching trellis with the DP format is illustrated below

Stagei =1, 2, ..., N

v

=1 i=2 i=3 i

.d

=1, 2, ..

State k

.k:d [ [ ]

Figure 5.1: The problem formulation modified to DP format

5.2.2 A dynamic programming.apptoach

To apply the DP technique-to solve (5.1) stage by stage, we have to define the

following subsets and functions,

Gy

Ci ()

9(R,C)

fe(C7(5))

the survived VOC’s subset vector at the t stage, where C} = (C/ (1),
- CI()),

the survived VOC’s subset of the jth data type at the t stage,

the total consuming power by the iterative optimization algorithm of
Fig. 4.1 with the require normalize rate R and the VOC’s subset C,

a function that describes the subset by which the state is updated,

where f(C7(j)) = { ggjgg \ ¢ : ;;Z

The VOC’s subset of each data type is initialized as CJ(j) = {i | 1 <i < N}, 1 <

J <d. Then, the cost formula,

Ji(Cf) = min {Zg( R;, fi(C7(5)) )}, I<t<N (5-3)

k, 1<k<d
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and the VOC’s subset of each data type are updated each stage to implement DP method
for solving the problem of searching a near optimal channel assignment matrix Anxgq

and this algorithm will be referred as DPRA algorithm in the following chapter.

5.2.3 Numerical behavior

As we describe above, the solution provided by DPRA approach is not always
optimal. The following simulated results show the performance of DPRA method. To
avoid the sum of the normalized rates increases with the number of data types, we
define the normalized sum rate = Z?Zl R;. Various numbers of data types with the
same normalized sum rate are simulated and the normalized rate of each data type is
randomly assigned. For simplicity, the normalized noise power (¢?) is assumed to be
0.01. The results are the average of the 100000 simulated times.

From Fig. 5.2, the simulated results have shown the probability of DPRA algorithm
achieving the optimal solution. Goempared 64 VOCs-with 128 VOCs, since the number
of better VOCs in each data type subset increases and fewer VOCs are better in more
than one data type subset, the correct probability of the decision at each stage by
DPRA method will raise. On the oppesite, if the number of data types increases, it
means selections at each stage become more, so the probability of reaching the optimal
solution should degrade as the results.

As for the uplink scenario in Fig. 5.4, since the GNR of the VOC is the same to
each data type, VOCs are contended by every data type. Better VOCs are important
to all data types, so it becomes hard to decide these VOCs belong to which data type.
For this reason, the probability of achieving the optimum among the uplink scenario
decades much fast than it among the downlink scenario. Opposite to the downlink,
more number of VOCs means more VOCs used in every data type in the initial state,
so more probability of wrong decision occurring.

Except for the probability of achieving the optimal solution, the average performance
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loss is an useful evaluation to a sub-optimal algorithm, so Fig. 5.3 illustrates the average
performance loss from the optimal solution by DPRA approach. With fewer VOCs, a
wrong decision will introduce more performance loss than it with more VOCs. Addi-
tionally, the probability of achieving the optimum with fewer VOCs is lower than more
VOCs, so the average performance with fewer VOCs is obviously worst than it with
more VOCs.

From Figs. 5.4 and 5.5, the probability among the uplink scenario decreases much
fast than it among the downlink scenario. In addition, if one good VOC is assigned to
some data type, it means other data types all lose this good VOC. Thus, the performance
loss of the uplink scenario is obviously worse than the downlink scenario. Beyond that,
compared N = 10 with N = 15, since there are more useful VOCs among 15 VOCs than
10 VOCs, wrong decision by DPRA method will introduce less performance loss. As for
the effect from the number of data types, the uplink scenario appears like the downlink
scenario. The more number of data types, the more performance loss.

Consequently, even though the probability of achiéving the optimum solution is not
very high when the normalized sum rate is high; the average performance loss is still
kept within a tolerable range. In other words, 1t indicates that the performance DPRA

algorithm is very close to the optimal.
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Figure 5.2: Probabilities of DPRA algorithim achieving the optimum solution in a down-
link scenario. :
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Figure 5.3: Average performance loss (with respect to the optimum solution) of DPRA
algorithm in a downlink scenario.
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algorithm in an uplink scenario.
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Example 5.1. Consider the situation where there are 5 VOCs available for serving 3

different data types with the required rates given by
[dl do d3]=[1 3 2}

and the GNRs given by

ay; Q12 Aa13 0.3 20 1.5
a1 Q22 0423 0.7 02 04
aszy Qasz 4ass = 04 05 0.9
a4q1 Q42 A43 1.5 1.0 0.7
51 a2 Ajz3 0.1 0.7 1.0

The trellis and the associated parameters’ values of the DPRA algorithm are given in

Figs. 5.6 and 5.1.

87284 | =1 : 13.9752

10.7482

13.3979

Figure 5.6: Trellis associated with the DPRA algorithm and the corresponding numerical
values in solving Example 5.1.

39



Table 5.1: Numerical results obtained in solving Example 5.1.

Initial value (t=0) and (R =1L R, =3 R, =2)

G | 9R.C® | C2 | 9R.C)| Cd | 9(R.C3)
{1,2,3,4,5} 112274 | {1,2345} 4.3292 {1,2,3,4,5} 2.48247
t=1 t=2 t=3 t=4 =5
f,(C/ (D) {1,2,3,4,5} {2,3,4,5) {2,345} {2,3,4} {24
g(R, f,(C/ (D)) 1.1227 1.1227 1.1227 1.1227 1.1227
‘ﬁ' £,(C'(2) (2345} {1235} (123} (12} (13)
X 9(R,, f.(C/ (2)) 7.1430 5.2558 6.4634 8.6724 6.4634
—
% f,(C/ (3) {2,345} {2,3,5} {23} {25} {5}
[4p) g(R,, f,(C/(3))) 3.2764 3.6028 5.4498 5.0960 6.3891
i g(R;, 1.(C () 11,5422 9.9813 13.0359 14.8910 13.9752
£,(C/ (D) {2,345} {2335} {2,3,4} {24} {4
g(R, f,(C/ (V) 1.1227 2.3030 11227 1.1227 1.1455
cnl f,(C/ (2) {1,2,3,4,5} {172,345 {1,2,3,5} {123} {123}
X a(R,, f,(C! (2))) 4.3292 4.3292 5.2558 6.4634 6.4634
o\
% f,(C/ (3) {2,345} {235 {23} {25} {5}
[0p) g(R,, f,(C/ (3))) 3.2764 3.6028 5.4498 5.0960 6.3891
i 9(R;, ,(C () 8.7284 10.2350 11.8284 12.6821 13.9980
f,(C/ (D) {2,345} {2,3,5} {234} {24 {4
g(R, f4(C/ (1)) 1.1227 2.3030 1.1227 1.1227 1.1455
TI’ f.(C/ (2) {2,345} {1,2,35} {1,2,3} {12} {13}
X a(R,, f5(C/ (2))) 7.1430 5.2558 6.4634 8.6724 6.4634
™
% f,(C (3) {1,2,3,4,5} {2,345} {2,3,5} {2,3,5} {25}
0] g(R,, ,(C/ (3))) 2.4825 3.2764 3.6028 3.6028 5.0960
i a(R;, f5(C{ (1)) 10.7482 10.8353 11.1889 13.3979 12.7049
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5.3 A Branch and Bound Approach for Resource
Allocation

5.3.1 Bounding function

The bounding function is the most important component of the B&B algorithm.
A weak bounding function is not able to reduce much complexity from the exhaustive-
searching algorithm in finding the optimal channel assignment matrix. Since the pro-
posed DPRA algorithm, as shown in Figs. 5.3 and 5.5, is very efficient in finding a
near-optimal solution (i.e., channel assignment matrix), it can be used to obtain a very

strong bounding function.

5.3.2 Branching rule

We need to build a searching treejthat ¢ontains all possible channel assignments,
to begin with. Since each VOC serves one data type only, the corresponding tree must
have N levels and each parent niode should have d child nodes to include all feasible
solutions; see Fig. 5.7.

To start our searching process, we have-te-determine which channels will serve which
data type initially. For the same reasons as those mentioned in the previous chapter, we
shall assume that all VOCs are serving all data types initially. VOCs are deleted as we
proceed along the tree and arrive at higher levels, i.e., at the kth level in the searching
tree, we decide which data type is to be served by the m;th VOC. Therefore, a decision
sequence {mq,mo,--- ,my} has to given before our tree-searching. In addition to two
advantages discussed before, such an initialization assumption makes it more convenient
for us to construct the searching tree for the B&B algorithm.

In using a B&B method to solve a minimized problem, an upper bound which close
to the optimum solution is needed to block as much as possible the search of paths
which does not lead to the optimal solution. If the power consumed by child nodes

can be guaranteed to be equal or larger than its parent one, there can be no optimal
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solution in the following child nodes when their parents’ transmitted power is greater
than the upper bound. The proposed innovative initialized method is consistent with
this criterion and thus, it is very convenient to build the tree for the B&B algorithm
with such an initialization.

As we assume that each data type can be served by all VOCs initially, i.e., it has all

VOCs as the set of its potential solution, G, we have
A;=11<i<N, 1<j<d

With such an Anwgq, one then use the iterative algorithm (Fig. 4.1) for each data type to
compute the virtual minimum consuming power g(z). As each VOC is allowed to serve
only one data type, at the ¢th level, every path from a parent node to the jth child node
means the ith VOC will serve the jth data type. Note that the VOC subset C'(j) of the
child node j is a part of the parent node’s VOC subset, the virtual minimum power of
the child node must be equal or larger tham that.of the parent node which is proved in
Lemma 4.2.2. Thus, if the virtual minimum power of-the parent is not smaller than the

bounding value, we are sure that there'is no optimal solution in its child nodes.

5.3.3 Strategy for selecting next subproblem

Since the path of a channel assignment search has to arrive at a child node in the
final level in order that the corresponding solution, f(x), is feasible, the depth first search
(DFS) strategy is suitable for this criterion. Initially, the bounding value is calculated
by the bounding function derived from the DPRA approach. A DFS-based searching
procedure then tries to continuously separate the parent space into the subproblem
(child) space. If the virtual minimum consuming power of a child node is not smaller
than the bounding value, there is no need to search the remaining subtree and one
proceeds to search other candidate child nodes. If the searching reaches the final level
and the feasible solution f(x) is less than the bounding value, the bounding value will

be updated to f(x). The complete searching tree of the B&B algorithm for solving
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the problem of multi-rate wireless resource allocation is illustrated in Fig. 5.7. For

convenience, this algorithm is called the BBR A algorithm henceforth.

5.3.4 Complexity reduction techniques for the B&B based al-
gorithm

(1) The VOC order allocation of the tree’s level

The order of the decision sequence D = (my, ma, - ,my) that decides which data
type is served by the m;th VOC at the kth level is a prominent factor that affects the
searching speed. If a bad VOC, which is not even used in the final optimal solution, is in
the early part of the decision sequence, the virtual consuming power of the corresponding
level’s child nodes will not be altered and we will waste much more time searching in
its subtree. Intuitively, the decision sequence D should be arranged according to the
VOC’s GNR. But for the downlink+seenario, the*GNR of a VOC is a function of the
data type (user terminal) it serves. Hence; \we suggest the following systematic method

to determine the decision sequence.
1. Apply the mono-rate channel /tate assignment algorithm for each data type.

2. Compute the sum rate of each VOC and denote by 74(i) and D(7) the sum rate and
the set of data types (as was determined by running the water-filling algorithm d

times for the d data types) to be served by the ith VOC.
3. my = arg max{rs(j)|j € In\{ma, -+ ,mg_1}}, where Iy ={1,2,--- | N}.

Recall that the jth child node in the ith level, no matter to which parent node it
belongs, represents the decision that the ith VOC is to serve the jth data type. Once
the 1th VOC is assigned to serve a data type, it must be released the duty of serving
other data types in D(i). These data types will have to seek the services of other VOCs
that will demand larger power to satisfy the required transmission service. With such

an ordering of the decision sequence, as we proceed from one level to the next, the
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Figure 5.7: The B&B format complied searching tree for multiuser channel assignment.
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corresponding required total power will increase more rapidly, making it more likely
to terminate an incorrect path. Thus the proposed decision sequence has the desired
property of blocking the wrong path in the earliest possible stages.

Initially, we define some subsets of VOCs,

CG) = {i|1<i<N},1<j<d (5.4)
Crpo(i) = {Jjl1<j<d r; #0}, 1<i<N (5.5)
Cattocated = {9} (5.6)

Csy = {i|1Zi<N, |Crro(i)] =2, @ € Caitiocated ) (5.7)

Coo = {i|1<i<N, |Crxo(i)] <2, i & Cannocated} (5.8)

For the VOCs in the subset (Cuyocatea), it means that the order of the VOCs have been
already determined in the tree’s level,«TheVOCs in the subset (C>y) are important
VOCs in at least two data type subsets.-For the reason that the more total data rate of
the VOC supporting to all data types, the more power-raising after the VOC is decided
to one data type, so we place the VOC with-the largest summation serving data rate
to the first level. After that, this VOC is virtually assigned to the data type which it
supports the highest data rate, since this assignment increases the least power and has
the highest probability to obtain the optimal path. Next, this VOC will be moved into
the subset (Cuyocated). The data types which lose this specific VOC need to run the
iterative algorithm to calculate a new power allocation and modify the subset (Css).
Finally, continue the same action to arrange VOCs on the tree’s level until the subset
(Cs9) is empty.

Second, as for the VOCs in the subset (C2), we cannot make a clear difference from
them, so a simple method is proposed based on exploring the importance of them to
each data type. Concerning the VOCs in the subset (Cuyocated), the VOCs with the

greatest channel gain in each subset (C(j)) for 1 < j < d are deleted and each data type

runs the mono-rate iterative algorithm under its rate constraint again. The transmitted
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rate will be transferred from the greatest VOCs to other VOCs, so there may be some
new VOCs in the subset (C2). It means these new VOCs are more important in all
VOCs whose order have not been determined. Lastly, run the first step again until all
VOCs are placed into the tree’s level. However, if the subset (Cs3) is still empty, the
rest VOCs will be sorted by their maximum channel response to all data types.

To describe the detailed procedure, the following parameters are needed to be defined.

C(j)  the subset of the jth data type.
Clilocated the subset of VOCs which has been allocated in the tree’s level.
Clunallocated the subset of VOCs which has not been allocated in the tree’s
level and the order of the subset is sorted by the maximum
channel response in the VOC to all data types.
MaxSumRateIndexr  the index of VOC that has the maximum summation rate of
all datatype.
MaxRateIndex  the index of data-type-which the MaxSumRatelndex supports
the highest transmitted rate.
MazVOCIndex(j)  the index of VOC that serves the most transmitted rate to jth
data type.
It{ C(j) }  the consuming power of the iterative algorithm in Fig. 4.1 with

the jth data type subset.

With the above definitions, the complete procedure is described in the table given below,
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Table 5.2: The procedure of allocating the order of tree’s level.

Step 1: Define
C(Hl={i|1<i<N} 1<j<d,
Crzo(i) ={j|1<5<d, r5 #0}, 1<i<N,
Catocated = {9}, Cso={1i|1<i <N, |Crzo(?)| > 2, i € Catiocated }

Step 2: while |Cs3] #0
MaxSumRateIndex = { i | max(zg 1 Tij), 1€ Csa}

MazRateIndex = { j | max(r;;), ¢ = MaxSumRatelndex, 1 < j <d}
J

for j=1:d
if j # MaxRatelndex
C(j) =C(j) \ MaxSumRatelndex
It{ C() }
end
end
Callocated = C(allocat‘ed UMazrSumRatelndex
Redefine Csy = {0 | 1 <A<, |C,20(7)| > 2, @ &€ Castocated}
end
if ’Callocated‘ == N
Exit Program
end

Step 3: for j=1:d

MaxVOCIndex(j) ={ 1 | miaac(rij), i € Cuttocated, 1 <i < N}
C(j) =C(j) \ MaxVOCIndex(j)
I C(j) }

end

Redefine Cso ={ i | 1 <i <N, |Cr20(2)| > 2, i € Catiocated}

if [Csa] # 0
go to Step 2

end

Step 4: Define Cunallocated = { l | Sort(ma:c(am)), [ ¢ Callocateab 1 S ,] S d7 1 S l S N}
? J

Callocated = Oallocated U Cunallocated
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(2) Select the node with the least increasing power first

As we know B&B method before, the bounding value will affect the searching per-
formance a lot, because the tight bounding value can stop the path which does not have
the optimal solution earlier. Hence, the earlier a searching path can achieve the optimal
solution, the less computational cost is needed. For this reason, there is a technique to
increase the speed for searching the optimal solution.

Every parent node has d child nodes and can choose any one of them as the next
node. However, if the worse node is chosen to be the next node, the consuming power
at this level is increasing and the probability of this path having the optimal solution
is decreasing. Thus, we sort the d child nodes according to their increasing consuming
power and search forward from the node with the least raising power first. After applying
this action to each level, the probabilityiof finding the optimal solution in first several

paths raises a lot.

(3) Early termination in tree-searching

Due to our having already placed impertant: VOCs in the front of the tree’s level,
there may be a lot of weak VOCs which are not used if the number of VOCs is large.
Thus, we can apply a simple technique to reduce this useless calculation.

At the ith level, the ith VOC will be decided to transmit the jth data type. However,
if the ¢th VOC does not support any rates for all data types, it means the ith VOC is
weaker than other VOCs in each data type subset. In addition, most of the VOCs which
will be determined after the ith level are weaker than the ith VOC, so we can start the
checking procedure to verify if all VOCs decided after the ith level do not transmit any
rates for all data types. If so, it implies those VOCs are weaker in each data type subset
and the virtual consuming power will not increase even if those VOCs are all deleted
from each data type subset. The expansion of the following tree from this parent node

is useless and this parent node can be a feasible solution, so we can terminate the search
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of this path at this parent node and check if its virtual minimum consuming power is

smaller than the bounding value.
(4) Reuse the results of repetitious calculations in the same level

The resource allocation of the first level is taken as an example in Fig. 5.8 to il-
lustrate this technique. There are d child nodes from the initial parent node and the
first VOC needs to be decided which data type it should serve. For every child node,
there is one subset which is the same as the initial node and the other subsets which
exclude from the first VOC. For this reason, the transmitted power of each data type
at the initial node is stored into the memory and each data type subset which loses the
first VOC is also calculated and stored. Therefore, the total consuming power of the jth
child node is summed up the transmitted power of the jth data type at the initial node
and the other data types which exclude from fhe‘ﬁrst VOC. In addition, if the first VOC
does not transmit any rates for the jth da,fcg type, we can delete the first VOC from the

Jth data type subset directly and do not need to run-the iterative algorithm.

Level =1 ji=1 ji=2 j=3 j=d

Pchildl N N1 N N1
[12]s]. [n] [2[3].. [N] [2]3[.. [N] [2[3] .. [N]

Chid2 N1 N N N1

! Child3 N-1 N-1 N N-1

______________________________________________________________________________________________________

Oy RN RN RN - Gz

______________________________________________________________________________________________________

Figure 5.8: Illustration for subsets of all child nodes from the initial node
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The following part is to define some parameters to express the detail procedure in

Table 5.3.
C(j)  the subset of the jth data type.
Poarent(J) the virtual consuming power of the parent node’s jth data type subset.
Pieretea(J) the virtual consuming power of the parent node’s jth data type subset
excluding ith VOC.
P (7)) the virtual consuming power of the kth child node’s jth data type subset.
It{ C(j)\i }  the consuming power of the iterative algorithm in Fig. 4.1 with the jth

data type subset excluding the ith VOC.

Table 5.3: The procedure of reusing the results of repetitious calculations.

Step 1: Read all data €(1),..mC(d) aid Pourent(1), ..., Poarent(d)
Step 2: for j=1:d
if the ith-VOC serves data rate in C(j)
Pdeleted(j) B ]t{ C(j) \Z }
else
Pdeleted(j) F Pparent (])
end
end
Step 3: for k=1:d
for j=1:d
if k==
P ckhild(j ) = BPparent (j )
else
Pk 1a(7) = Pactetea(J)
end
end
end

Lastly, the cost for this method is that it needs 2 x d x N memory to store the value
of the Ppgrent and Pyeeteq. However, calculational times of the iterative algorithm can

decrease from d? times to at most d times in each level.
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(5) Efficiencies of various complexity reduction techniques

To assess the improvements brought about by various complexity reduction tech-
niques for the BBRA method, we resort to computer simulation and conduct 100000
runs for each technique to examine its average effect. The numbers of data types and
VOCs are 5 and 128, and the normalized rate of each data type is uniformly distributed
in [0, 3]. The results are summarized in Table 5.4 and the number in this table means the
calling times of the mono-rate iterative algorithm. From our simulation, we know that
the first technique affects the searching times of BBRA approach very much. Without
this technique, the searching times are usually more than 1000000 times, so the first
technique is always applied in Table 5.4 to compare the effects of other techniques.

The purpose of the second technique is to find the optimal solution as early as
possible, so during the searching process, this.method can provide a better bounding
value to block useless paths at a_earlierglevel: Henee, BBRA algorithm can avoid the
tree expanding too much and reduce the probability 6f unusually high searching times.
From the simulation results in Table 5.4, thissméthod obviously works well.

For the third technique, the final part.of useless level can be early terminated, so
within most of large N cases, the early-terminating method can save a lot of useless
computations. In the simulation results, we can know this method can reduce the
average calculational times, but it is not able to avoid the deep searching when the
bounding value is not close enough in some special cases.

The final technique uses the additional memory to save the repetitious calculations
at each level, and in this way, the computational times can decrease much in all kinds of
cases. From the results, this technique reduces much calculational complexity. However,
it still cannot prevent the occurrence of the deep searching as the third technique, either.

Compared with the complexity associated with the VOC sorting, if all the above
techniques are used in the BBRA scheme, the computational complexity is approximately

reduced by 30 times. With these complexity-reduction techniques, the BBRA algorithm
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becomes a practical algorithm when the number of required data types is not too large.

Table 5.4: Effects of different techniques on the performance of the BBRA approach.

d=5, N=128 DPRA 1) D)+(2) (1)+(3) W+@) | (D++(3)+()
Mean 446147 | 258720 | 773981 | 5780975 | 116.1923 88.3233
Mean (<200000) | 44.6147 | 1717.80 | 773981 | 5499142 | 93.7858 88.3233
Prob. (> 200000) 0 0.0012 0 0.00005 0.00004 0
Max Times 81 21622894 | 180132 1800602 981053 587
Additional Cost *1 *14%2 *14%3 *14%4 | *14*24%34%4

Cost for each technique :
*1. Additional calculation before starting BBRA.

*2. Additional Nxd memory to store the order of the next child node.

*3. Additional checking process to determineif the early termination is needed.
*4. Additional 2xNxd memory to store the Ppaent and Pugeted -
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Example 5.2. Consider the same data types and VOCs as Example 5.1 and take the
result of it as an initial bounding value. First, Fig. 5.5 illustrates how the first technique
works. For this example, on account of the number of VOCs being much fewer, the
step 8 and step 4 of the first technique are not executed. For the same reason, the third
technique is not, either. Finally, the searching tree and the detail computation of each

node are shown in Figs. 5.9 and 5.6.

Table 5.5: A greedy search procedure for solving Example 5.2

&epl Deﬂne C(J) :{12131415}7 15 J < 3’ sz :{1'3’4’5} and Callocaled :{@

D) = (12345 ;] [ 0 15323 0.9196] (] [24519] | MaxSumRateindex =1
(1) ={1,2345} r,| (0118 0 0 || 01180 MaxRetelndex = 2
Step2 | C(2) ={1,2,3,4,5} r;|=| 0 01460 0.4088 >l rs |=]0.5548 ~
C(3)={12345} r,| |08811 0.8392 0.1575 P, | |Ler77 Catooes ={3
['s;] | O 04825 05141 |Ts; | [0.9966 | C., ={345
.1 T 7 e 1 T 5 MaxSumRatel ndex = 4
C(1) = {2,34,5} r,;] [01189 0 0 r,] [0.1189
Sen? | C(2)=112345 ry |_| 20 01460 07153 i rs | _| 0.8613 MaxRatelndex =1
€ (2)={1.234.5} r,; | [0.8811 0.8392 0.4640 i, | | 21842 Cuone ={1.4}
C(3) ={2,34,5} Irs; | | 0 04825 08207 ] [13082] | o _oag
C(1)={2345 o o . MaxSumRatelndex =5
(1) ={2,3/4,5} r,] [01189 “0  0.0909 G| [02099] | e s
Step2 | C(2) ={1,2,3,5} r; |=| 0 “. 0425709019 >l |=]1.3276 B
C(3) ={23,5} | [ 0 07622 10072 Pr, | [17604) Cuocated =11:4.5}
C..={23
MaxSumRatelndex = 3
C(1)={2,3,4} o .
Sen? | C(2)=1123 r,] _[01189 0  0.0909 i r, ] _[0.2099 MaxRatelndex =3
® (2)={123) ry] | 0 08069 09019 S|, || 17087 Cotocmes ={145.3
CB)={235 N
(3) ={2.35} c. =2
MaxSumRatel ndex = 2
ci)={24 g MaxRatelndex = 2
Step2 | C(2) ={1,2} [r,1=[0.1189 0.3487 0.0909] 2.Ir,,1=[05586] (14532
= allocated — L1y
CR)={235
(3) ={235} c (g
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Figure 5.9: The searching tree associated with Example 5.2.
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Table 5.6: The step-by-step searching procedure for solving Example 5.2.

Index Cc() Power of C(1) C(2) Power of C(2) C(3) Power of C(3) | Total Power | Upper Bound]
0 {1,2,3,4,5} 1.1227 {1,2,3,4,5} 4.3292 {1,2,3,4,5} 2.4825 7.9344 12.7049
1 {2,3,4,5 1.1227 {12345} | 43292 {2,3,4,5 3.2764 8.7284 12.7049
2 {2,3,4,5} 1.1227 {1,2,3,5} 5.2558 {2,3,5} 3.6028 9.9813 12.7049
3 {2,3,4} 1.1227 {1,2,3} 6.4634 {2,3,5} 3.6028 11.1889 12.7049
4 (2,4} 1.1227 {1,233} 6.4634 {2,5} 5.0960 12.6821 12.7049
5 {4 1.1455 {1,3} 6.4634 {2,5} 5.0960 12.7049 12.7049
6 {24} 1.1227 {13} 6.4634 {5} 6.3801 13.9752 12.7049
7 {4} 1.1455 {1,2,3} 6.4634 {5} 6.3891 13.9980 12.7049
8 {2,4} 1.1227 {1,2} 8.6724 {2,3,5} 3.6028 13.3979 12.7049
9 {2,3.4} 1.1227 {1,2 8.6724 {2,5 5.0960 14.8910 12.7049

10 {2,3.4 1.1227 {1,2,35} 5.2558 {2,3} 5.4498 11.8284 12.7049
11 {24} 1.1227 {1,2,5} 5.6469 {2,3} 5.4498 12.2194 12.7049
12 {4} 1.1455 {1,5} 5.6469 {2,3} 5.4498 12.2422 12.7049
13 {2,4} 1.1227 {1,5} 5.6469 {3} 7.0990 13.8686 12.2422
14 {4} 1.1455 {1,2,5} 5.6469 {3} 7.0990 13.8913 12.2422
15 (2,4} 1.1227 {1,2,3,5 5.2558 {2} 15.9726 22.3512 12.2422
16 {2,3.4 1.1227 {1,2,5} 56469 2 15.9726 22.7422 12.2422
17 {2,3,4,5} 1.1227 {1,2,3} 6.4634 {2,3} 5.4498 13.0359 12.2422
18 {2,3,5} 2.3030 {1,2,34,5} 4.3292 {2,3,5} 3.6028 10.2350 12.2422
19 {2,3} 2.3030 {1,2,3,4} 4,6549 {2,3,5} 3.6028 10.5607 12.2422
20 {2 2.4547 {124 4.8381 {235} 3.6028 10.8956 12.2422
21 {2} 2.4547 {14} 4.8381 {3,5} 3.6195 10.9123 12.2422
22 {3 Inf {1,4} 4.8381 {2,3,5} 3.6028 Inf 10.9123
23 {3 Inf {1,2,4} 4.8381 {3,5} 3.6195 Inf 10.9123
24 {2} 2.4547 {1,2,3,4} 4.6549 {2,5} 5.0960 12.2055 10.9123
25 {2,3} 2.3030 {1.2.4 4.8381 {2,5} 5.0960 12.2370 10.9123
26 {2,3} 2.3030 {1,2,3,4,5} 4.3292 {2,3} 5.4498 12.0820 10.9123
27 {2,3,5} 2.3030 {1,2,3,4} 4.6549 {2,3} 5.4498 12.4077 10.9123
28 {2,3,5} 2.3030 {1,2,3,5} 5.2558 {2,3,4,5} 3.2764 10.8353 10.9123
29 {2,3} 2.3030 {1,2,3,5} 5.2558 {2,3,4} 42112 11.7700 10.9123
30 {2,3} 2.3030 {1,2,3} 6.4634 {2,3.4,5 3.2764 12.0428 10.9123
31 {2,3,5 2.3030 {1,2,3 6.4634 {2,3,4} 42112 12.9776 10.9123
32 {2,3,4,5} 1.1227 {2,3,4,5} 7.1430 {1,2,3,4,5} 2.4825 10.7482 10.9123
33 {2,3,5} 2.3030 {2,3,4,5} 7.1430 {1,2,3,5} 2.5092 11.9552 10.9123
34 {2,3,4,5} 1.1227 {2,3,5} 11.3586 {1,2,3,5} 2.5092 14.9905 10.9123
35 {2,3,5} 2.3030 {2,3,5} 11.3586 {1,2,3,4,5} 2.4825 16.1440 10.9123
36 {1,2,3,4,5} 1.1227 {2,3,4,5} 7.1430 {2,3,4,5} 3.2764 11.5422 10.9123

25



5.4 Complexity Consideration

For the conventional exhaustive-searching optimization algorithm, it has to try all
possible channel allocations and runs the iterative optimization algorithm in Fig. 4.1 in
each channel allocation. If there are N VOCs and d requested data types, the exhaustive-
searching optimization algorithm will have d”¥ possible channel allocations. In addition,
in each channel allocation, it has to run the iterative optimization algorithm once for
each data type. Thus, the conventional exhaustive-searching optimization algorithm is
an O(d x d) computational procedure.

The computational complexity of the DPRA approach is a function of the number
of stages and states. For the DPRA algorithm, there are N stages and d states in each
stage. Since the ith VOC will be excluded from each data type subset at the ith stage, we
can use the idea discussed in the fourthicomplexity-reduction technique of the BBRA
scheme to reduce the repetitious .Galculationsin each state at the ¢th stage. For this
reason, DPRA method requires to run the iterative optimization algorithm for at most
d times at each stage and d x N times towards the whole algorithm, so O(d x N) is the
upper bound of its computational procedure.

The complexity of the BBRA method is hard to estimate directly. It is highly
dependent on the bounding value and techniques. We use computer simulations to
estimate the approximate complexity.

Fig. 4.1 compares the complexities of DPRA and BBRA schemes with the computa-
tional complexity evaluated by their processing times. The normalized noise power level
o2 is assumed to be (.01 and different numbers of data types with the same normalized
sum rate are compared.

For the downlink scenario, Figs. 5.10 and 5.11 indicate that the complexity of the
DPRA scheme increases with the number of VOCs, as has been expected. The com-
plexity, however, is much lower than the upper bound. Besides, these results reveal an

interesting fact that the average complexity of the case with 64 VOCs is higher than
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that of the case with 128 VOCs. This is because there are much more VOCs with high
GNRs in the 128-VOC case. A better VOC can support larger data rate, so less VOCs
are needed.

Figs. 5.10 and 5.11 indicate that the complexities of both DPRA and BBRA schemes
increase with the number of data types. For the DPRA algorithm, the degradation with
respect to the optimal performance is an increasing function of the number of data
types as is shown in Fig. 5.3. Using the DPRA solution as its bounding function, the
complexity of BBRA algorithm thus increases very rapidly when the number of data
types increases.

With regard to the uplink scenario, the complexities of DPRA and BBRA schemes
in Figs. 5.12 and 5.13 increase with the number of data types as the downlink scenario.
The major difference is that for the uplink scenario, the complexity of BBRA approach
with more VOCs is higher than it with fewer VOGs. The cause of it is that the GNR of
the VOC is the same to each data type. When there-are more important VOCs in each
data type subset, the more compare is needed to be calculated.

From the results, DPRA method has much reduced the computational complexity
compared to the full-searching algorithm ‘and guarantees that the complexity is not over
the upper bound. Thus, DPRA algorithm is very suitable to be a practical algorithm
for its low computational and hardware requirements. Moreover, BBRA approach also
shows an acceptable computational complexity to find the optimal solution within less

normalized sum rate.
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Figure 5.10: Average complexities of BBRA and DPRA schemes in a 64-VOCs downlink
scenario. :
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Figure 5.11: Average complexities of BBRA and DPRA schemes in a 128-VOCs downlink
scenario.
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Figure 5.12: Average complexities of BBRAand DPRA schemes in a 10-VOCs uplink
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scenario.
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Chapter 6

Simulation Results

In this chapter we revisit the two application scenarios discussed in Chapter 2 and
examine the numerical performance of our algorithms when applied to solve the radio
resource allocation problems arisen in these two operation scenarios. To demonstrate
the usefulness of the proposed algorithms and see how they perform with realistic QoS

constraints, we consider four distinet services whese rate requirements are given by

Table 6.1: Transmission rate requirements for video, audio, voice and data services

Sarvice Datarate
Video 128 kbps
Audio 56 kbps
Voice 9.6 kbps
Data No specific

Two independent multimedia sources whose respective probabilities of generating

different services are listed in the following table are assumed in our simulation.

Table 6.2: Statistical characterizations of two independent multimedia sources.

Video Audio Voice Data

Source 1 0.25 0.25 0.25 0.25
Source 2 0.125 0.125 0.5 0.25
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6.1 Resource Allocation for an OFDMA Downlink
System

The first application example we consider is an OFDMA system which has N = 64
or 128 VOCs. A similar system can be found in IEEE 802.16e. The normalized required
rates for video, audio and voice are calculated by dividing the required data rates of
Table 6.1 by the sub-carrier frequency spacing. As for the data service, since there is
no specific QoS constraint, the normalized rate for data is assumed to be uniformly
distributed in [0,5]. The system parameters used in simulation are given in Table 6.3

below. We first examine the performance of DPRA approach which gives suboptimal

Table 6.3: Simulation parameters of the OFDMA system

Sub-carrier frequency spacing (W) 10.94 kHz
Number of sub-carriers (N') 64, 128
Number of datatypes.(d) 3,58,10
Noise power level (6%) 0.01
Normalized required rate for video 0.872
Normalized required rate for-audio 5.09
Normalized requiredrate for.voice 11.64
Normalized required rate for data 0~5

performance. Since the probabilities of generating video and audio services in Source 1
are higher than those of Source 2, the expected normalized sum rate for Source 1 should
be higher than that of Source 2. Thus, in Figs. 6.1 and 6.2, the probability of achieving
the optimum allocation and the performance loss for Source 1 are inferior to those of
Source 2.

Figs. 5.2 and 5.3 indicate that the performance loss increases with the number of data
types or the normalized sum rate. In this case, the normalized sum rate is proportional
to the number of data types, so the performance loss in Fig. 6.2 degrade much fast than

that in Fig. 5.3, when the number of data types increases. Note that the performance
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loss of the DPRA method is very low: even if the number of data types is as large as
10, the performance loss is still maintained to within 1%.

On the other hand, Fig. 6.3 shows that the BBRA approach requires very high
computational complexity when the number of data types becomes larger than 5. By
contrast, the complexity of the DPRA scheme increases very slowly; it is still reasonably
affordable even when the number of data types is 10. We conclude that for the downlink
OFDMA system, the DPRA algorithm provides a simple and efficient solution that offer

near optimum solution (< 1%) with very little complexity.

T T
—A— DPRA scheme (Casel,N=64)
—©— DPRA scheme (Casel,N=128)
0.9k e *- DPRA scheme (Case2,N=64) ||
4 T O DPRA scheme (Case2,N=128)

0.8

0.5

0.4

Probability of achieving the optimum

0.3

01 | | | | | |
3 4 5 6 7 8 9 10

The number of data types

Figure 6.1: The probability that the DPRA method yields the optimum performance in
an OFDMA downlink system.
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Figure 6.2: The average performance degradation (with respect to the optimum perfor-
mance) of the DPRA algorithm in an OFDMA downlink system.
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Figure 6.3: The average complexity of the BBRA and DPRA schemes when used in an
OFDMA downlink system.
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6.2 Resource Allocation for a Locally Cooperative
Uplink System

A locally cooperative uplink communication scenario in which the user terminals
are located within a small neighborhood is considered. We assume that all uplink users
possess a dual-mode capability with the same local radio interface. The local terminals
might be WLAN/WCDMA or WLAN/GPRS mobile stations. We also assume that
the inter-user distance is far smaller than the uplink (terminal-to-base-station) distance,
and the inter-user link has a much higher capacity and QoS than the uplink. Hence,
the latency, transmitted errors and power consumed within the local area network are
negligibly small. The normalized required rates for video, audio, voice and data are the
same as the downlink scenario discussed before. Table 6.4 lists the simulation parameters
used for such a system.

Table 6.4: System parameters of the locally:cooperative uplink system under consider-
ation.

Chiprate 3.84 Mcps
Spreading factor 128
Channd bit rate (W) 30 kbps
Number of cooperative VOCs (N ) 10, 15
Number of data types (d) 3,4,5
Noise power level (6?) 0.01
Normalized required rate for video 0.32
Normalized required rate for audio 1.87
Normalized required rate for voice 4.27
Normalized required rate for data 0~-5

As the mean normalized sum rate for Source 1 is higher than that of Source 2, the
performance of Source 1 is worse than that of Source 2 which is evident from Figs. 6.4
and 6.5. As mentioned before, good (high GNR) VOCs are important to all data types,

the probability of the wrong decision at each state increases a lot. Thus, the perfor-
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mance loss among the downlink scenario is obviously much superior to it among the
uplink scenario. Moreover, the complexity of BBRA approach for the uplink scenario

increases much because of worse initial bounding value.

0.9 T T
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0 | | 1 | |
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Thenumber-ofdata types

Figure 6.4: The probability of the DPRA method‘achieving the optimum in a locally
cooperative uplink scenario
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Chapter 7

Conclusion

We have presented efficient solutions for constrained optimization problems arisen
in radio resource allocation in wireless multiuser multimedia communication networks.
The applications of our algorithms, however, go far beyond the original problems.

For many cases, the best radio resource allocation strategy is a water-filling-like
solution and the search of such an opfimal strategyis accomplished by a greedy approach,
which is not only time-consuming but also takes large memory space. The computational
complexities for existing suboptimal algorithms. are still relatively high.

We first present an efficient itérative algorithm:-based on an analytical closed form
to solve the optimal resource allocation for the mono-rate case. Using the mono-rate
solution, we then extend our investigation to multi-rate cases. We suggest efficient
procedures for obtaining optimal and near-optimal solutions. A DP-based algorithm
called DPRA algorithm is proposed to obtain near-optimal solution. This algorithm
has much reduced complexity and suffers only minor performance degradation within
the range of interest. Optimal multi-rate solution is obtained by a B&B-based approach
called BBRA approach which incurs only minor complexity increase from DPRA method
but guarantees zero performance loss. Finally, we provide two application examples to
validate our claims on the performance and effectiveness of both DPRA and BBRA
schemes.

There are many issues remain to explored and require further investigations. For
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example, it would be interesting to look into the scenario when the channels are not or-
thogonal and inter-channel interference has to be taken into account. The fairness issue is
not touched upon in this thesis, a possible candidate objective function that incorporates
the concept of fairness is to maximize product rate instead of sum rate. The proposed
methods can also be applied to problems in scheduling and admission/congestion con-
trol. Finally, a static channel condition is assumed in our work, a worthy extension

would be the assessment on the impact of channels’ time-varying nature.
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