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中文摘要 
 
 
本文提出兩種新型的心電圖訊號壓縮技術。第一種方式是採取可調式取樣方

法，而第二種方式則透過二維離散餘弦轉換(DCT)法。後者可提供較佳的壓縮比

但前者的複雜度較低。 
 
  由於心電圖波形並不是每個地方變化都很快，因此我們根據其波形的變化率來

決定它的取樣速率，在我們的演算法裡採取兩種取樣頻率，當波形變化快時，則

取樣頻率高；反之，則取樣頻率低。透過可調式取樣方法不僅使得記憶體的需要

量減少，並且演算複雜度也大大降低。 
 
  除此之外，我們也利用心電圖每個心跳之間的相關性來增加壓縮比。首先，先

將一維的心電圖轉換成二維矩陣之後，接著做二維離散餘弦轉換法，則可得到稀

疏矩陣，其中非零項的部分已非常少，我們可以只量化其中非零的部分項，所以

其壓縮比大約是一維方法壓縮比的兩倍。 
 
  由於心電圖波形的重要部份在於 QRS 這個位置，我們為了讓醫生可以更精確

的偵測此病人是否有心臟毛病，我們想出了一套方法來強調這個重要部份的精確

性。首先，我們先將心電圖分成兩個部分，一個是 QRS 的部分，這個部分我們

在量化其頻譜的值時，採用較多的位元去量化，如此一來這個部分的失真率則大

為減少。反之，比較不重要的部分，我們則採取較少的位元來去作量化，透過此

方法，我們的壓縮比率超過 22，而在均方跟誤差百分比則達到 3%以下。 
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Abstract

The electrocardiogram (ECG) is an important biomedical signal for the diagnosis

of heart diseases. Efficient ECG waveform coding for long-term recording and effec-

tive real-time transmission have received constant intensive attention in modern clinical

applications. In this thesis, we propose two new ECG waveform coding methods that

require reduced memory and provide high compression ratio (CR) performance. The

first approach uses a variable sampling rate analog-to-digital converter that adapts to

the waveform variation rate. It reduces not only the computational complexity but also

the memory requirement for subsequent discrete cosine transform as well. The second

approach is based on the observation that ECG signals often exhibit a near-periodic

behavior. We first convert the one-dimensional ECG waveform into a two dimensional

(2D) array by the Average Magnitude Difference Function (AMDF) method then apply

a two dimension time/frequency transform to increase CR as much as possible. The

resulting CR is about 21.87 and the percent-root-mean-square (PRD) is 3.25% which

is much better than that of the 1-D approach based on adaptive sampling. In order

to further improve the performance of the 2-D approach and capture the important

part of ECG signals (QRS wave), we employ a sample-dependent multi-rate quatization

approach which gives an improved CR of 22.05 and PRD of 2.88%.
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Chapter 1

Introduction

Depending on the sampling rate, quantization precisions and number of sensors, the

amount of electrocardiogram (ECG) data that has to be stored and transmitted grows at

the rate of 7.5-540 kB per minute per patient. Compression of ECG signals is thus needed

not only for archival purposes but for real-time transmission for remote interpretation.

A variety of techniques for ECG data compression have been proposed during the last

four decades and the subject continues to attract research attention. These techniques

have been pivotal in reducing the digital ECG data volume and are essential to a wide

spectrum of applications ranging from diagnostic to ambulatory ECG’s.

The ECG compression techniques can in general be categorized into the classes of

lossless, lossy and hybrid compressions. The lossless approaches like differencing, run-

length coding, diatomic coding, null suppression, pattern substitution, Huffmann, and

LZ family, do not have satisfactory compression ratio (CR). As long all clinically sig-

nificant features including P-wave, QRS complex and the T-wave are retained, ECG

waveform coding allows a certainty degree of distortion, therefore the lossy methods like

polynomial predictors and interpolators, orthogonal transforms, AZTEC, CORTES, TP,

subband and wavelet coding, probabilistic neural networks and adaptive Fourier coeffi-

cient techniques, are often preferred. There are also proposals that combine the lossy

and lossless techniques (ALZ77).

In this thesis, we propose several new ECG waveform coding methods that require

1



reduced memory and provide high CR performance. The first approach uses a variable

sampling rate analog-to-digital converter that adapts to the waveform variation rate.

This is motivated by the fact that an ECG signal exhibits significant variations only

during the QRS part and it is wasteful to apply a constant sampling rate over the entire

observation interval.

The second approach is based on the observation that ECG signals, though of non-

stationary nature, often render quasi-periodic behaviors. We first convert the one-

dimensional ECG waveform into a two dimensional (2D) array by the Average Magni-

tude Difference Function (AMDF) method then apply a two dimension time/frequency

transform to obtain a sparse matrix representation.

In order to capture the important part of ECG signals (QRS wave), we suggest a

sample-dependent multi-rate quantization approach which do gives an improved perfor-

mance. Because the 2D method’s computing complexity and memory size are higher

than those of the 1D method, we incorporate the adaptive sampling concept for com-

plexity reduction.

The rest of this thesis is organized as follows. In Chapter 2, we review some of

the popular ECG compression methods, including direct and transformation domain

schemes and discuss the basic concept of ECG signals. The adaptive sampling and

quantization approach is presented in Chapter 3. In Chapter 4, we propose a method

based on 2D discrete cosine transform (DCT) and multirate sampling. We also compare

the performance, memory requirements and computational complexities of all proposed

methods with those of some existing algorithms.

2



Chapter 2

Electrocardiogram Data
Compression Methods

2.1 Background

The main target of compression methods is to achieve maximum data volume reduc-

tion while preserving the significant signal morphology features upon reconstruction. A

broad spectrum of techniques for electrocardiogram (ECG) data compression have been

proposed during the last four decades. Such techniques have been vital in reducing the

digital ECG data volume for storage and transmission. These techniques are essential to

a wide variety of applications ranging from diagnostic to ambulatory ECG’s. Due to the

diverse procedures that have been employed, comparison of ECG compression meth-

ods is a major problem. Present evaluation methods preclude any direct comparison

among existing ECG compression techniques. ECG data compression schemes are pre-

sented in two major groups: direct data compression and transformation methods. The

direct data compression techniques are: ECG differential pulse code modulation and

entropy coding, AZTEC, Turning-point, CORTES, Fan and SAPA algorithms, peak-

picking, and cycle-to-cycle compression methods. The transformation methods briefly

presented, include: Fourier, Walsh, and K-L transforms. The theoretical basis behind

the direct ECG data compression schemes are presented and classified into three cate-

gories: tolerance-comparison compression, differential pulse code modulation (DPCM),

3



and entropy coding methods.

Existing ECG data compression techniques have been developed and evaluated under

different conditions and constraints. Independent databases, with ECG’s sampled and

digitized at different sampling frequencies ( 100− 1000 Hz) and precisions (8− 12 bits),

have been mainly employed. The reported CRs have been strictly based on comparing

the number of samples in the original data with the resulting compression parameters

without taking into account factors such as bandwidth, sampling frequency, precision of

the original data, wordlength of compression parameters, reconstruction error threshold,

database size, lead selection, and noise level.

Each compression scheme is presented in accordance to the following five issues: a)

a brief description of the structure and the methodology behind each ECG compression

scheme is presented along with any reported unique advantages and disadvantages. b)

The issue of processing time requirement for each scheme has been excluded. In light of

the current technology, all ECG compression techniques can be implemented in real-time

environments due to the relatively slow varying nature of ECG signals. c) The sampling

rate and precision of the ECG signals originally employed in evaluating each compression

scheme are presented along with the reported compression ratio. d) Since most of the

databases utilized in evaluating ECG compression schemes are nonstandard, database

comparison has been excluded. We believe such information does not provide additional

clarity and at times may be misleading. However, every effort has been made to include

comments on how well each compression scheme has performed. The intent is to give

a feeling for the relative value of each compression technique. e) Finally, the fidelity

measure of the reconstructed signal compared to the original ECG has been primarily

based on visual inspection.

Besides the visual comparison, many compression schemes have employed the percent

4



root-mean-square difference (PRD) defined below as a performance measure.

PRD =

√√√√√√√√√

n∑
i=1

[xorg(i) − xrec(i)]
2

n∑
i=1

x2
org(i)

∗ 100 (2.1)

where {xorg} and {xrec} are samples of the original and reconstructed data sequences.

2.2 Electrocardiogram Signals

An electrocardiogram (ECG or EKG, abbreviated from the German Elektrokardio-

gramm) is a graphic representation produced by an electrocardiograph, which records

the electrical voltage in the heart in the form of a continuous strip graph. It is the prime

tool in cardiac electrophysiology, and has a prime function in screening and diagnosis

of cardiovascular diseases. An ECG is constructed by measuring electrical potential be-

tween various points of the body using a galvanometer. Leads I, II and III are measured

over the limbs: I is from the right to the left arm, II is from the right arm to the left

leg and III is from the left arm to the left leg. From this, the imaginary point V is

constructed, which is located centrally in the chest above the heart. The other nine

leads are derived from potential between this point and the three limb leads (aVR, aVL

and aVF) and the six precordial leads (V1−6).

Therefore, there are twelve leads in total. Each, by their nature, record information

from particular parts of the heart:

• The inferior leads (leads II, III and aVF) look at electrical activity from the vantage

point of the inferior region (wall) of the heart. This is the apex of the left ventricle.

• The lateral leads (I, aVL, V5 and V6) look at the electrical activity from the vantage

point of the lateral wall of the heart, which is the lateral wall of the left ventricle.

• The anterior leads, V1 through V6, and represent the anterior wall of the heart, or

the frontal wall of the left ventricle.
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• aVR is rarely used for diagnostic information, but indicates if the ECG leads were

placed correctly on the patient.

Understanding the usual and abnormal directions, or vectors, of depolarization and

repolarization yields important diagnostic information. The right ventricle has very

little muscle mass. It leaves only a small imprint on the ECG, making it more difficult

to diagnose than changes in the left ventricle.

The leads measure the average electrical activity generated by the summation of

the action potentials of the heart at a particular moment in time. For instance, during

normal atrial systole, the summation of the electrical activity produces an electrical

vector that is directed from the SA node towards the AV node, and spreads from the

right atrium to the left atrium (since the SA node resides in the right atrium). This

turns into the P wave on the EKG, which is upright in II, III, and aVF (since the general

electrical activity is going towards those leads), and inverted in aVR (since it is going

away from that lead).

A typical ECG tracing of a normal heartbeat consists of a P wave, a QRS complex

and a T wave, is shown in Fig. 2.1. A small U wave is not normally visible.

1. Axis

The axis is the general direction of the electrical impulse through the heart. It is

usually directed to the bottom left (normal axis: −30o to +90o), although it can

deviate to the right in very tall people and to the left in obesity.

• Extreme deviation is abnormal and indicates a bundle branch block, ventric-

ular hypertrophy or (if to the right) pulmonary embolism.

• It also can diagnose dextrocardia or a reversal of the direction in which the

heart faces, but this condition is very rare and often has already been diag-

nosed by something else (such as a chest X-ray).
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Figure 2.1: Schematic representation of normal ECG trace (sinus rhythm), with waves,
segments, and intervals labeled

2. P wave

The P wave is the electrical signature of the current that causes atrial contraction.

Both the left and right atria contract simultaneously. Its relationship to QRS

complexes determines the presence of a heart block.

• Irregular or absent P waves may indicate arrhythmia.

• The shape of the P waves may indicate atrial problems.

3. QRS

The QRS complex corresponds to the current that causes contraction of the left

and right ventricles, which is much more forceful than that of the atria and involves
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more muscle mass, thus resulting in a greater ECG deflection. The duration of

the QRS complex is normally less than or equal to 0.10 second. The Q wave,

when present, represents the small horizontal (left to right) current as the action

potential travels through the interventricular septum.

• Very wide and deep Q waves do not have a septal origin, but indicate my-

ocardial infarction that involves the full depth of the myocardium and has

left a scar.

The R and S waves indicate contraction of the myocardium itself.

• Abnormalities in the QRS complex may indicate bundle branch block (when

wide), ventricular origin of tachycardia, ventricular hypertrophy or other ven-

tricular abnormalities.

• The complexes are often small in pericarditis or pericardial effusion.

4. T wave

The T wave represents the repolarization of the ventricles. The QRS complex

usually obscures the atrial repolarization wave so that it is not usually seen. Elec-

trically, the cardiac muscle cells are like loaded springs. A small impulse sets them

off, they depolarize and contract. Setting the spring up again is repolarization

(more at action potential). In most leads, the T wave is positive.

• Inverted (also described as negative) T waves can be a sign of disease, al-

though an inverted T wave is normal in V1 (and V2-V3 in African-Americans/Afro-

Caribbeans).

• T wave abnormalities may indicate electrolyte disturbance, such as hyper-

kalemia or hypokalemia.

The ST segment connects the QRS complex and the T wave.

8



• This segment ordinarily lasts about 0.08 second and is usually level with the

PR segment. Upward or downward displacement may indicate damage to the

cardiac muscle or strain on the ventricles. It can be depressed in ischemia

and elevated in myocardial infarction, and upslopes in digoxin use.

5. U Wave

The U wave is not always seen. It is quite small, and follows the T wave by

definition. It is thought to represent re-polarization of the papillary muscles or

Purkinje fibers. Prominent U waves are most often seen in hypokalemia, but may

be present in hypercalcemia, thyrotoxicosis, or exposure to digitalis, epinephrine,

and Class 1A and 3 anti-arrhythmics, as well as in congenital long QT syndrome

and in the setting of intracranial hemorrhage. An inverted U wave may represent

myocardial ischemia or left ventricular volume overload.

6. QT interval

The QT interval is measured from the beginning of the QRS complex to the end

of the T wave. A normal QT interval is usually about 0.40 seconds. The QT

interval as well as the corrected QT interval are important in the diagnosis of

long QT syndrome and short QT syndrome. The QT interval varies based on the

heart rate, and various correction factors have been developed to correct the QT

interval for the heart rate. The most commonly used method for correcting the QT

interval for rate is the one formulated by Bazett and published in 1920. Bazett’s

formula is QTc = QT√
RR

, where QTc is the QT interval corrected for rate, and RR

is the interval from the onset of one QRS complex to the onset of the next QRS

complex, measured in seconds. However, this formula tends to not be accurate,

and over-corrects at high heart rates and under-corrects at low heart rates.

7. PR interval

The PR interval is measured from the beginning of the P wave to the beginning

9



of the QRS complex. It is usually 0.12 to 0.20 seconds. A prolonged PR indicates

a first degree heart block, while a shorting may indicate an accessory bundle that

depolarizes the ventricle early, such as seen in Wolff-Parkinson-White syndrome.

2.3 Direct ECG Data Compression Schemes

This section presents the direct data compression schemes developed specifically

for ECG data compression, namely, the AZTEC, Fan/SAPA, TP, and CORTES ECG

compression schemes.

1. The AZTEC Technique: The amplitude zone - time epoch coding (AZTEC) algo-

rithm originally developed by Cox et al. [1] for preprocessing real-time ECGs for

rhythm analysis. It has become a popular data reduction algorithm for ECG mon-

itors and databases with an achieved compression ratio of 10: 1 (500 Hz sampled

ECG with 12 b resolution). However, the reconstructed signal demonstrates sig-

nificant discontinuities and distortion. In particular, most of the signals distortion

occurs in the reconstruction of the P and T waves due to their slow varying slopes.

The AZTEC algorithm converts raw ECG sample points into plateaus and slopes.

The AZTEC plateaus (horizontal lines) are produced by utilizing the zero-order

interpolation (ZOI). The stored values for each plateau are the amplitude value of

the line and its length (the number of samples with which the line can be inter-

polated within aperture ε). The production of an AZTEC slope starts when the

number of samples needed to form a plateau is less than three. The slope is saved

whenever a plateau of three samples or more can be formed. The stored values for

the slope are the duration (number of samples of the slope) and the final elevation

(amplitude of last sample point). Signal reconstruction is achieved by expanding

the AZTEC plateaus and slopes into a discrete sequence of data points.

Even though the AZTEC provides a high data reduction ratio, the fidelity of the

reconstructed signal is not acceptable to the cardiologist because of the discon-
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tinuity (step-like quantization) that occurs in the reconstructed ECG waveform.

A significant reduction of such discontinuities is usually achieved by utilizing a

smoothing parabolic filter. The disadvantage of utilizing the smoothing process is

the introduction of amplitude distortion to the ECG waveform.

2. The Turning Point Technique: The turning point (TP) data reduction algorithm

[2] was developed for the purpose of reducing the sampling frequency of an ECG

signal from 200 to 100 Hz without diminishing the elevation of large amplitude

QRS’s. The algorithm processes three data points at a time; a reference point

(X0) and two consecutive data points (X1 and X2). Either X1 or X2 is to be

retained. This depends on which point preserves the slope of the original three

points. The TP algorithm produces a fixed compression ratio of 2 : 1 whereby

the reconstructed signal resembles the original signal with some distortion. A

disadvantage of the TP method is that the saved points do not represent equally

spaced time intervals.

3. The CORTES Scheme: The coordinate reduction time encoding system (CORTES)

algorithm [3] is a hybrid of the AZTEC and TP algorithms. CORTES applies the

TP algorithm to the high frequency regions (QRS complexes ), whereas it applies

the AZTEC algorithm to the isoelectric regions of the ECG signal. The AZTEC

and TP algorithms are applied in parallel to the incoming sampled ECG data.

Whenever an AZTEC line is produced, a decision based on the length of the line is

used to determine whether the AZTEC data or the TP data is to be saved. If the

line is longer than an empirically determined threshold, the AZTEC line is saved,

otherwise the TP data are saved. Only AZTEC plateaus (lines) are generated;

no slopes are produced. The CORTES signal reconstruction is achieved by ex-

panding the AZTEC plateaus into discrete data points and interpolating between

each pair of the TP data. Parabolic smoothing is applied to AZTEC portions
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of the reconstructed CORTES signal to reduce distortion. Detailed description

of the CORTES implementation and reconstruction procedures are discussed in

Tompkins and Webster [4]

4. Fun and SAPA Techniques: Fan and scan-along polygonal approximation (SAPA)

algorithms, developed for ECG data compression, are based on the first-order

interpolation with two degrees of freedom (FOI-2DF) technique. A recent report

[5] claimed that the SAPA-2 algorithm is equivalent to an older algorithm, the

Fan.

2.4 Transformation Domain ECG Data Compres-

sion Schemes

Unlike direct data compression, most of the transformation domain compression

techniques have been employed in ECG or multilead ECG compression and require

ECG wave detection. In general, transformation domain techniques involve prepro-

cessing the input signal by means of a linear orthogonal transformation and properly

encoding the transformed output (expansion coefficients) and reducing the amount of

data needed to adequately represent the original signal. Upon signal reconstruction, an

inverse transformation is performed and the original signal is recovered with a certain

degree of error. However, the rationale is to efficiently represent a given data sequence

by a set of transformation coefficients utilizing a series expansion (transform) technique.

Many discrete orthogonal transforms have been employed in digital signal represen-

tation such as Karhunen-Loeve transform (KLT)[6], Fourier (FT), Cosine (CT), Walsh

(WT), Haar (HT), etc. The optimal transform is the KLT (also known as the principal

components transform or the eignevector transform) in the sense that the least number

of orthonormal functions is needed to represent the input signal for a given rms error.

Moreover, the KLT results in decorrelated transform coefficients (diagonal covariance

matrix) and minimizes the total entropy compared to any other transform. However,
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the computational time needed to calculate the KLT basis vectors (functions) is very

intensive. This is due to the fact that the KLT basis vectors are based on determining

the eigenvalues and corresponding eigenvectors of the covariance matrix of the original

data, which can be a large symmetric matrix. The lengthy processing requirement of

the KLT has led to the use of suboptimum transforms with fast algorithms (i.e., FT,

WT, CT, HT, etc). Unlike the KLT, the basis vectors of these suboptimum transforms

are input-independent (predetermined). For instance, the basis vectors in the FT are

simply sines and cosines (fundamental frequency and multiples thereafter), whereas the

WT basis vectors are square waves of different sequences. It should be pointed out that

the performance of these suboptimal transforms is usually upper-bounded by the one of

the KLT.

Orthogonal transforms provide alternate signal representations that can be useful for

ECG data compression. The goal is to select as small a subset of the transform coeffi-

cients as possible which contain the most information about the signal, with introducing

objectionable error after reconstruction. A more adaptive method is to calculate the

upper bound in the spectrum and keep the coefficients that contain a predetermined

fraction of this power. The method is attractive because it can adapt to store more or

less coefficients as necessary. This is a particularly useful feature for ambulatory systems

where good compression under a variety of ECG rhythms is desirable.

2.5 Transform Domain Representations

Orthogonal transforms provide alternate signal representations that can be useful

for ECG data compression. Fig. 2.2 show an input signal with a sampling rate of 977

points/second and in Fig. 2.3 the DCT of an ECG signal is given; it is clear from this

diagram that the majority of the power in the transform is generally contained within

the first 100 of the 1024 coefficients. Although a compression ratio of 10 : 1 with very

little distortion might seem possible, this is not the case. The compression algorithm
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must also select a threshold to decide how many coefficients are to be stored at their

original accuracy. There are two methods to do this, the first and simpler one is to fix

the number of data points kept, e.g., the first 20% of coefficients retained at original

accuracy. The vast majority of the power in the transform will be contained in these

coefficients. A more adaptive method we proposed is to determine the upper bound in

the spectrum and use it as the threshold for retaining the coefficients that contain the

vast majority of the power.
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Figure 2.2: input signal
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Figure 2.3: ECG Signals Spectrum after Discrete Cosine Transform.
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Chapter 3

Adaptive Sampling Approach for
ECG Compression

The importance of body sensors networks [7] used to monitor patients over a pro-

longed period of time has advanced in home health care applications. Sensor nodes

need to operate with very low-power consumption and under the constraint of limited

memory capacity.

The low power consumption and limited memory space requirements bring to our

attention the issue of sampling rate. For the general ECG data compression method,

signals are usually sampled in time domain at a constant rate. However, although

Shannon’s Sampling Theorem [8] says “If a function f(t) contains no frequencies higher

than W , it is completely determined by giving its ordinates at a series of points spaced 1
2W

apart.” Later in his article Shannon also stated, ”Any function limited to the bandwidth

W and the time interval T can be specified by giving 2TW numbers. The 2TW numbers

need not be equally spaced.” Thus, Shannon’s results did not require that a function

has to sample at a regular rate. Considering the fact that ECG waveforms contain some

segments of rapid and slow changes, it becomes obvious that the constant sampling rate is

not an efficient approach in terms of implementation complexity and power consumption.
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3.1 Variation-Dependent Non-uniform Sampling

Large variations are encountered at the QRS spikes, whereas the P wave and the

period between pulses show only little variation in signal amplitude and contribute the

lower frequency components of the ECG spectrum. It is therefore undesirable and waste-

ful to operate the converter at a constant high sampling rate during the periods of slow

signal variation. Ideally, one would like to have an adaptive sampling rate that is con-

sistent with the instantaneous frequency of the signal to be converted. However, the

information of the time-varying sampling rate would have to be recorded in order to re-

constructed from the digitized sample sequence. An optimal tradeoff for our application

that reduces the average sampling rate (thus the memory requirement) and requires the

minimum amount of the time stamps associated with rate-changing positions is using

a simple dual-rate analog to digital (A/D) converter; see Fig. 3.1. Let S1 denotes the

S1 type

S2 type

Figure 3.1: A dual sampling rate (S1 and S2) solution based on signal’s short-term
variation rate.

sampling rate of the A/D converter at the slow-varying part of an ECG waveform and
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S2 be that used at the fast-varying part. Then our algorithm is described as follows.

The sampler uses rate S1 if the short-term (total) variation

[|x(2) − x(1)| + |x(3) − x(2)| + ... + |x(B) − x(B − 1)|] < Vth

and it uses rate S2 when

[|x(2) − x(1)| + |x(3) − x(2)| + ... + |x(B) − x(B − 1)|] > Vth

where B is the local observation interval (LOI) used for determining the short-term

variation. We choose B = 4 in our algorithm. Vth is the threshold for decidung the

sampling rate. If the short-term variation in a LOI is smaller than the threshold Vth,

the A/D converter samples with rate S1. On the other hand, if the variation rate within

this period is higher than the threshold Vth, rate S2 is used instead. Fig. 3.2 depicts a

simulated sample waveform where we find that high rate S2 for sampling the QRS waves

and lower rate S1 is used in other segments.

In order to inform the receiver the sampling rate associated with a LOI we need to

send one redundant bit per interval. We call this redundant bit the rate classification

bit (RCB). 1 and 0 are used to denote rate S1 and S2, respectively. These RCBs are

placed in the header part of a transmission frame (or packet).

3.2 Non-uniform Quantization

The discrete cosine transform (DCT) based compression algorithms have become

industry standards (JPEG, MPEG) for still and video image compression systems. It

can also be used in ECG compression as is evidenced from Fig. 3.3, which is obtained

by applying one dimensional DCT on the sampled ECG sequence. The spectrum shows

that a very high percentage of signal power lies in the low frequency band.

Based on the above observation, we divide the spectrum into three groups.

Region 1. consists of Subcarrier 1 to Subcarrier 10
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Figure 3.2: A typical ECG signal and its sampling positions when the proposed dual-rate
adaptive sampling approach is applied. High sampling rate S2 is in place for the QRS
wave.

Region 2. consists of Subcarrier 11 to Subcarrier 40

Region 3. consists of Subcarrier 41 to Subcarrier 100

The majority of the signal power lies in the first two regions, especially Region 1, hence

the spectral components are represented by longer words, i.e., more bits are used to

represent the quantized spectral coefficients. On the other hand, the spectral coefficients

in the third region are very close to zero so fewer bits are used for quantization.

We have discuss the main ingredients of our algorithms, e.g., adaptive sampling

and adaptive (nonuniform) quantization. The complete algorithm is presented in the

following section

19



0 50 100 150 200 250 300 350 400
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Frequency

C
oe

ff
ic

ie
nt

A
m

pl
itu

de

Figure 3.3: ECG signal spectrum obtained by using the 1D DCT.

3.3 Dual-rate adaptive sampling and quantization

The algorithm that is based on the concepts of adaptive sampling and quantization is

referred to as Method 1 and the corresponding compression and de-compression systems

are shown in Fig. 3.4. Because there are two quantization precisions for the DCT

A/D
Segmentation

with time
stamps

Adaptive
Decimation

DCT
Non-uniform
Quantization

IDCT

Tx

Rx RCB Removal

Redudant
Classification Bits

(RCB)

Frequency
Domain Block and

Coefficient
Synchronization

TS Removal
and Adaptive
Upsampling

D/A

Figure 3.4: Block diagram of an ECG compression/de-compression system that incor-
porating the concepts of adaptive sampling and nonuniform quantization.

coefficients, the receiver must be able to separate frequency domain segments and the

two coefficient groups of bits in every segment. We call these operations as Frequency
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Domain Block and Coefficient Synchronization. After taking inverse DCT, we check

time stamps in each time domain segment to separate the high rate and low rate blocks.

For the rate S1 block, we can either perform up-sampling or use the linear interpolation

to recover the signal.

d(i) ∈ S1, x̂(t + j) = d(i) +
d(i + 1) − d(i)

B
∗ j, 0 ≤ j ≤ B − 1

where x̂(t) represents the recovery signal.

For the rate S2 block, we simply pass the samples

d(i) ∈ S2, x̂(t) = d(i)

to the digital-to-analog (D/A) converter. Fig. 3.5 depicts a typical performance example

with the original, the reconstructed waveform and the corresponding error signal shown

on the top, middle and bottom parts of the figure. Method 1 can achieves a compression
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Figure 3.5: Performance of Method 1: A typical ECG waveform, the reconstructed and
compression error sequences.

ratio (CR) of 10.03 to 1 with PRD = 3.71%. In contrast, the AZTEC algorithm yields
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a compression ratio of 6.8 and PRD = 10%, the Fan algorithm provides a compression

ratio of 7.4 and PRD = 8.7% while the symmetric wavelet transform method has a

compression ratio of 8 and PRD = 3.9%.

3.4 Further Improvement Techniques

There are several techniques that can be used to improve the performance of Method 1.

3.4.1 DCT block length

DCT block length is an important issue that affects the system complexity. One can

choose the block length to be equal to one or several beat periods. The minimum block

length must be more than one normal beat period (about 790 to 840 samples) if we use

a constant sampling rate. As a DCT needs O(T logT ) multiplication operations for a

block of T samples, one should have a block length as small as possible. Method 1 uses

a non-uniform sampling approach and T is reduced to about 360 to 380 samples. The

DCT operation complexity is reduced and PRD is acceptable.

3.4.2 Redundancy

The disadvantage of the Method 1 is that there are many redundant bits are needed to

carry the time stamps thus decreases the CR performance. Increasing the small block

size B, it will reduce the redundant bits but PRD will increase. We cannot recover the

bits in the small block size if B is large and it will cause the distortion rate is higher.

Maybe we need to find other method to detect the location of QRS waves.

3.5 QRS Waves Detection Method

In the last section the redundant bits are large and this section will introduce the

method [9] to detect the QRS waves location.
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The complex continuous wavelet transform is calculated such as the inner product,

or the convolution of the analyzed signal f(t) with the complex conjugate version of the

wavelet function ψ(t):

CWTf (a, b) =< f(t), ψ(t) >=

∫ ∞

−∞
f(t)ψ∗

a,b(t)dt. (3.1)

After comparative analysis with several types of complex valued wavelets the fre-

quency B-spline wavelet was chosen as a function-prototype for the QRS detection,

because of its good temporal localization properties. The complex frequency B-spline

wavelet is defined as:

ψ(t) =
√

fb(sinc(
fbt

m
))m.e2iπfct. (3.2)

depending on three parameters:

fb is the bandwidth parameter (fb = 1 is chosen);

fc is the wavelet central frequency (fc = 1.5 is chosen);

m is an integer order parameter (m � 1);

For computational reduction the wavelet used for the analysis is of the first order

(m = 1). Frequency B-spline wavelets of the higher order do not improve the detection

ratio. By varying the parameters fb and fc optimal for the QRS detection values are

determined. The real part and the imaginary part of the analytical wavelet can be seen

in Fig.3.6.

The result of QRS wave detection is shown in Fig.3.7.

In Fig.3.7, we find that we can exactly detect the location of QRS waves. Here, we

propose another method. The Method 2 is shown in Fig.3.8.

If we find the location of QRS waves is at time μ, how can we determine that this

small block is the S1 or S2 type?

For μ−duration � t � μ+daration , we choose the S2 type to send the fast-changing

x(t) into the DCT block. QRS waves in time domain are shown in Fig.3.9. Besides, we
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Figure 3.6: Complex frequency B-spline wavelet

choose the S1 type to send this small block’s data into the DCT block. The performance

for the Method 2 is shown in Fig.3.10.

The compression ratio in the Method 2 is 14.76 which is higher than that in the

Method 1. The reason is that we only transmit 10 bits to represent the location of QRS

waves. According to those 10 bits, we can know the timing range for S1 type and S2

type and don’t need to send many redundant bits as Method 1. However, the Method

2 reduces the complexity in DCT , but it needs some extra computations to find the

location of QRS waves.

3.6 Adaptive Sampling

In the previous section, we use the sampled data collected from the hospital to

reduce the DCT complexity. It is shown that the performance is acceptable when we

decrease the number of slowly-changing datas. In this section, we put this concept into

the real sampling circuit.

There are two sampling rates to sample the ECG data. S1 means that the circuit

samples the slowly-changing ECG and its sampling rate is R1= 330 samples/sec and S2
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Figure 3.7: QRS detection result.

means that the circuit samples the fast-changing ECG and its sampling rate is R2= 990

samples/sec. R2 = B ∗ R1. In our algorithm, B = 3 and Vth is the threshold to choose

S1 or S2 type. Initially, the circuit chooses S1 sampling type. The detailed process is

shown as follows:

Case 1. When the current state is S1 and the A/D converter detects an instantaneous slope

greater than Vth, then the A/D circuit switches to state S2 and remains so for the

next 2 × duration + 1 samples; otherwise, the circuit remains at the same state.

Case 2. When the current state is S2 and the A/D converter finds that the instantaneous

slope is below the threshold Vth then the circuit switches back to state S1; otherwise

the circuit stays at the same state.

Case 3. If the ECG wave stays at either state for a prolonged period, an alarm will be

activated, indicating that the patient may have some heart problems.

The adaptive sampling ECG compression block is shown in Fig. 3.11.
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Figure 3.8: Block diagram of ECG compression for the Method 2. Non-uniform sampling
to reduce the DCT Transform complexity.

durationduration +− μμμ

Figure 3.9: It’s the time domain range of QRS waves

We have to only transmit the quantization bits in DCT domain and 10 redundant

bits. The redundant bits are represented as the location of the starting fast-changing

ECG data. We use μ to express that location. If the receiver receives μ, it knows that

it chooses S2 type from μ to μ + 2 ∗ duration. The redundant bits in the Method 3 are

fewer than those in the Method 1. If it chooses the S1 type, we use the interpolation

method as before. The Method 3 performance is shown in Fig.3.12.

We reduce the DCT complexity as the Method 1 and the block size T is reduced to

T
D

where D is the sampling rate reduction ratio and it is about 2.2 in our algorithm.

The memory size is reduced to T
D

. Compression rate of the Method 3 is 12.58 and PRD

is 3.59 %. The Method 3 also decreases the sampling rate and its advantage is that the

hardware does not require to sample the data so fast.
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Chapter 4

A 2D Transform Domain Approach

The discrete cosine transform (DCT) [10] has been widely used in many video

coding applications, the best known example being the family of ISO/IEC MPEG audio

coding standards [11]. Classical one-dimension approach does not use the beat to beat

correlation and it results in lower compression rate. In our algorithm, we make use of

2D time/frequency transform to take advantage of the correlations.

The 2D DCT transform y(p, q) of the input 2D signal x(m,n) 0 ≤ m ≤ M, 0 ≤ n ≤ N

is defined by

y(p, q) = αpαq

M−1∑
m=0

N−1∑
n=0

x(m,n)ampbnq (4.1)

where

amp = cos(
π(2m + 1)p

2M
) (4.2)

bnq = cos(
π(2n + 1)q

2N
) (4.3)

p = 0, ..., M − 1 and q = 0, ..., N − 1. αp, αq are the normalization factors. It can

be easily seen that the 2D DCT is equivalent to a 1D DCT performed along a single

dimension followed by another 1D DCT in the other dimension.

4.1 Converting 1D ECG Sequence

To apply the 2D DCT on an ECG signal we have to transform the original 1D

waveform into a 2D array. This can be done by arranging the array such that each

29



period is placed in a row. The ECG waveforms are not periodic in general, hence we

have to determine an average period first. We use the Average Magnitude Difference

Function (AMDF) algorithm for estimating the ECG signal period.

AMDF (j) =
1

T

T∑
i=1

|xn(i) − xn(i + j)| (4.4)

where minperiod < j < maxperiod

period = min
j

AMDF (j) (4.5)

where x(n) is the input ECG sample sequence and the range of ECG period is [minperiod, maxperiod].

Given the fundamental period T of the sample sequence, determined by AMDF

method, the signal is rearranged as an N ×T matrix xm, N being the number of periods

included in one frame; see Fig. 4.1. Since ECG signal is only quasi-periodic, it is not
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Figure 4.1: 1D-to-2D conversion on an ECG signal.

possible that AMF gives identical period estimation. We choose the maximum period

within a frame as the fundamental period T . In so doing, we have to “compensate” for
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the tail parts of those rows in the array whose periods that are less than T . A simple

approach is zero-padding, i.e., adding zeros to the tail parts. another approach is copy

the beginning part of the next period or the current period. The first approach tends to

produce extra high frequency components while the second one does not have such an

undesired effect.

With the quasi-periodicity characteristic of ECG signals, the transformed array based

on the above arrangement contains similar rows. Hence the 2D DCT array has only a

small number of nonzero coefficients. The resulting sparse matrix leads to efficient

quantization; see Fig. 4.2 for a typical 2D ECG frequency domain representation. The

resulting algorithm is referred to as Method 4 and is described in Fig. 4.3. Fig. 4.4

gives a performance example.
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Figure 4.2: 2D transform domain representation of a typical ECG signal.

This method achieves a compression ratio of 21.87 and PRD = 3.25% with compu-

tational complexity of order O(Llog2(L)), L = N × T . For a period of ECG signals,

the computational complexity of the 2D method is O(T log2(NT )) higher than that of
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Figure 4.3: Block diagram of the proposed 2D ECG compression system (Method 4).

the general 1D method with O(T log2(T )) and the increasing amount with O(T log2(N))

is acceptable. Memory usage of the 2D method with N × T is higher than that of the

1D method with T . Nevertheless, the compression ratio in the 2D method is about two

times of that in the 1D method and PRD in the 2D method is lower than that of the

1D method.

4.2 Complexity Reduction Techniques

The complexity and memory of the 2D approach are higher than those of the 1D

method. There are, however, a few techniques that can be used for reducing the com-

plexity and memory requirements. In particular, the adaptive sampling and nonuniform

quantization methods can also be applied in the 2D scenario. The computational com-

plexity of the 2D DCT is decreased from O(NTlog2(NT )) to O(NT
D

log2(
NT
D

)) while

memory size is reduced from N × T to NT
D

.

Combining the complexity-reduction techniques with the proposed 2D approach, we

obtain the algorithm shown in Fig. 4.5, which we refer to as Method 5. A typical

performance of Method 5 given in Fig. 4.5 is shown in Fig. 4.6.

The CR of Method 5 is 19.48 which is a little bit lower than that of Method 4 while

PRD = 3.61% is acceptable. Using adaptive sampling, the number of the input samples
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Figure 4.4: ECG data compression, reconstruction and error performance of Method 4

is reduced at the cost of increased high frequency component number. It also results

in a larger period variation within an array whence increase the “overhead”, those sub-

fundamental-periods used to compensate for their tail parts; see Fig. 4.7.

Fig. 4.8 shows the above description. The strength in the Method 5 is its reduction

of the memory size and the computational complexity.

4.3 Multi-Rate Quantization Based on Signal Im-

portance

The QRS wave is the most critical part of an ECG signal for it reveals the important

critical cardiological information. Therefore, the QRS wave needs to be reconstructed

as precise as possible. So we divide each ECG period into two parts, the first (impor-

tant) part includes the QRS wave and the remaining part forms the second (and less

important) part of the period. Different quantization precisions are specified for these

two parts: more bits are used to quantize the important QRS part. Fig. 4.9 depicts the

concept of multi-rate quantization. By AMDF, every period of ECG signals is obtained
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Figure 4.5: Block diagram of 2D transform domain ECG compression with adaptive
sampling and multirate quantization.

and it is supposed this period of ECG signals is {x(i + 1), x(i + 2), ..., x(i + period)}.
The procedure to divide this period of signals into two sub-blocks is as follows:

map = max
1≤j≤period

|x(i + j| (4.6)

where map is the approximation of the QRS location.

{x(i + map− duration), x(i + map− duration + 1)..., x(i + map + duration)} is chosen

as the important part and the other part is chosen as the less important part. In the

less important part, its signal is adjusted as follows:

{x(i+1), x(i+2), ...x(i+map−duration−1), p(1), p(2), ..., p(2duration+1), x(i+map+

duration + 1), x(i + map + duration + 2), ...x(i + period)}
where p(j) = x(i+map−duration−1)+ x(i+map+duration+1)−x(i+map−duration−1)

2duration+1
∗j , 1 ≤

j ≤ 2duration + 1.

Adding p(j) prevents from the fasting changing amplitude that results in the increas-

ing of high frequency components. The adjusted less important part for the 2D ECG

signals is shown in Fig.4.10 and the important part in shown in Fig.4.11 . We use more

bits to quantize the important part and fewer bits to quantize the less important part.

The performance of the Method 6 is shown in Fig.4.12. Its CR is 22.05 and PRD=2.88%.

The advantage of the Method 6 is that the significant part of ECG signals (QRS wave)
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Figure 4.6: Original, reconstructed ECG signal based on Method 5 and the corresponding
error sequence.

has less distortion than that of the algorithm proposed before so doctors detect precisely

whether this patient has sickness.

Finally, Method 7 shown in Fig.4.13. combines three ideas (Adaptive sampling,

2D DCT and Multi-rate method). This gives CR of 20.5 and PRD of 3.285% shown

in Fig.4.14 . The advantage of the Method 7 is that the important part is precise,

compression ratio is high and computational complexity is reduced.

4.4 Simulation Result

We want to implement our algorithm by using less memory size and reducing com-

putational complexity. For A/D, we want to sample the ECG data by fewer bits but this

process would not cause high PRD. Then, we try to find the proper bits to sample ECG

signals. Fig.4.15 shows the comparison PRD and Fig.4.16 shows CR of all methods with

different digitized bits for A/D. It is shown that it will hardly enhance PRD if 12 bits
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Figure 4.7: A 2D time domain ECG signal representation with adaptive sampling.

are used to digitize each sample, so we choose 12 bits to digitize each sample. Table

4.1 lists the CR and PRD values for some other compression methods. 2D method use

the beat to beat correlation and CR is about 20 which is about two times higher than

that of the 1D method. 2D method’s PRD is lower than that of the 1D method and

the Method 6 is presented to be precise and have less distortion in the important part

(QRS wave). PRD in the Method 6 is lower than that of the other methods presented.

Complexity : Table 4.1 shows the complexity of all methods where D is the sampling

rate reduction ratio and S is the duration of QRA part. Adaptive sampling method’s

computational complexity is reduced but 2D method’s computational complexity is much

higher. Therefore we try to combine these two methods.

Memory : For the general 1D method, its memory size is LT where L is the digitized

bits for each sample. The memory size of the Method 3 is reduced to LT
D

and the

memory size of the 2D method is increased to NLT . The memory size of the Method
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Figure 4.8: 2D ECG representation with adaptive sampling and 2D DCT.

5 combining 2D with adaptive sampling method is reduced to NLT/D. Besides, the

adaptive sampling method reduced the hardware complexity and A/D does not have to

sample so fast.
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Figure 4.9: Block diagram of ECG compression; the Method 6.
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Figure 4.10: Components of the less important part
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Figure 4.11: Components of the important part
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Figure 4.12: Method 6 simulation result
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Figure 4.13: Block diagram of ECG compression for the Method 7.
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Figure 4.14: Method 7 simulation result.
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Figure 4.15: Comparison PRD of all methods with different digitized bits for A/D
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Compression method CR PRD(%) Memory Complexity (per

period)

AZTEC 6.8 10.0% LT O(T)

TP 2.0 5.3% LT O(T)

CORTES 4.8 7.0% LT O(T)

LPC 11.6 5.3% LT O(T2)

Method1 (1-D and

different sampling

judged by its

changing rate)

10.03 3.71% LT O(T/D log (T/D))

Method2 (1-D and

different sampling

judged by the

location of QRS

detection)

14.76 3.49% LT O(T/D log(T/D))

Method3 ( 1-D and

adaptive sampling)

12.58 3.59% LT/D O(T/D log (T/D))

Method4 (2-D ) 21.87 3.25% NLT O(T log (NT))

Method5 (2-D and

adaptive sampling)

19.48 3.61% NLT/D O(T/D log (NT/D))

Method6 (2-D and

add importance)

22.05 2.88% NLT+NLS O(T log NT +S log

NS)

Method7 (2-D,

adaptive and add

importance)

20.5 3.28% [NLT+NLS]/D O(T/D log (NT/D)

+S/D log (NS/D))

Table 4.1: Compression performance for ECG signals database with different compres-
sion methods

42



Bibliography

[1] J.R.Cox, F.M.Nolle, H.A.Fozzard, and G.C.Oliver, ”AZTEC, a preprocessing pro-

gram for real-time ECG rhythm analysis,” IEEE Trans. Biomed. Eng., vol.BME-15,

pp.128-129, Apr.1968.

[2] W.C.Mueller, ”Arrhythmia detection program for an ambulatory ECG monitor,”

Biomed. Sci. Instrument”.,vol.14,pp.81-85,1978.

[3] J.P.Abenstein and W.J.Tompkins, ”New data-reduction algorithm for real-time

ECG anlysis,” IEEE Trans. Biomed. Eng., vol. BME-29, pp.43-48, Jan.1982.

[4] W.J.Tompkins and J.G. Webster, Design of microcompurer-based medical Instru-

mentation, Englewood Cliffs, NJ:Prentice-Hall,1981.

[5] R.C.Barr, S. M. Blanchard, and D. A. Dipersio, ”SAPA-2 is the Fan,” IEEE Trans.

Biomed. Eng., vol.BME-32, p.337, May 1985.

[6] Jyh-Jong Wei, ”ECG Data Compression Using Truncated Singular Value Decom-

position,” IEEE Trans. Biomed, vol.5, No.4, December.2001.

[7] Robert Rieger, Shinyu Chen,”A Signal Based Clocking Scheme for A/D Converters

in Body Sensor Networks,” 2006

[8] C.E.Shannon,”Communication in the presence of noise,” Proc.IRE, vol.37, pp.10-

21, Jan.1949.

43



[9] Vladimir Johneff,”Complex Valued Wavelet Analysis for QRS Detection in ECG

signals,”Technical University - Sofia, 2001.

[10] H.S.Malvar, Signal Processing with Lapped Transforms. Norwood, MA:Artech

House, 1992.

[11] Information technology - Generic Coding of Moving Pictures and Associated Audio

Information, Part7: Advanced Audio Coding (AAC), ISO/IEC MPEG Interna-

tional Standard 13818-7, 1997.

44


	01_Cover.pdf
	Binder2.pdf
	利用可調式取樣.pdf
	ea.pdf
	誌謝.pdf
	main2.pdf


