EHEVPHE RS
Dual Camera Tracking System

By gitE Student : Sing-Wang Yeong

¥ %24 4 Advisor : Dr. Wen-Thong Chang

oo A R 96 =& 8§

P E RS
Dual Camera Tracking System

By arE Student : Sing-Wang Yeong

gy k24 £1 Advisor : Dr. Wen-Thong Chang

A Thesis
Submitted to Department.of Communication Engineering
College of Electrical'‘and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of

Master of Science
in Communication Engineering

August 2007

Hsinchu, Taiwan, Republic of China

s Wl Je o A E T E

R\

S YA

FhE o e R

Pl

Bt 55

i

VO fEEIRES e S S SRR o 25 [(Y
AU o Sl R)53 PR B o DY ES o | UARHEI s) 3 4
RRGRIZVIYCOR] » IREFEVITTRD AP RS - SRR RIS -
(™ ERY ~ A8 53 BT R0 IR0 B RSV B o 25 P02 P s
P (PR S 2P o BT R > e AREE T 2R 7 planar homography
mapping fY1 1 SR i PR B A ARE] PTZ pureds? - 1 R PTZ
LGP 2 SR PR R R SRR i

PO PTZ o -

Dual Camera Tracking System

Student : Sing-Wang Yeong Advisor : Wen-Thong Chang

Department of Communication Engineering

National Chiao Tung University

Abstract

In order to capture a high resolution wview of interested target region, we
implement a dual camera tracking system-that-has'two stages. In the first stage, the
input to a target tracking subsystem is video streams from a single web camera. The
subsystem analyzes the video content by extracting the foreground from the
background, detecting and tracking the objects. The foreground is separated from the
background by using background learning, change detection, change classification
and foreground object segmentation methods. The objects are detected and tracked
by using contouring and blobs tracking techniques. In the second stage, coordinate
transformation subsystem transforms the coordinate of object on webcam coordinate

system to PTZ coordinate system by using planar homography mapping method. In

order to capture a high resolution view of interested target region from PTZ, the

coordinate transformation subsystem adjusts automatically the PTZ parameters

based on the coordinate and size of the object on PTZ coordinate system.

I. Acknowledgement

I would like to express my gratitude to Professor Wen-Thong Chang for his
supervision, encouragement, suggestions and trust throughout the development of
this thesis. Without the support of my colleagues in Wireless Multimedia

Communication Laboratory, this research would not be that much enjoyable for me.

Finally, my biggest gratitude is to my family for their endless love, support and

trust in me. Without them | would never come up to this stage.

11. Table of Contents

ACKNOWIEAGEMENT ... iv
Table OF CONTENTSc.eiiiiiee s %
LISt OF FIQUIES ...cvveeeiecie et vii
INEFOAUCTION ...t 1
110 IMOBIVATION ...t 1
1.2, SYSEM OVEIVIEW ...y o8 anes s veeseeeneesteesaesseessesssessesssesssessesssesssessessees 3
1.3 ThesSiS OULHNE ... 50 it atanes st e eeseneeeeie e 4
Theory of Dual CameraTracking SYStem...........ccvvveveriereiere e 5
2.1, Target Tracking SYSIEIMcccveieiieieeie e ese e e 5

2.1.1. Block-based or Pixel-based Foreground/background

SEOMENTALION.etiiiieie ettt re e e e 7
2.1.2. Simple Foreground/background Segmentation..........c...ccccceevennee. 21
2.1.3. BIODS TraCKingccueveeiieiiie s 23
2.2. Coordinate Transformation SYStemMcccvverieeieiieene e 27

3.1.

3.2.

3.3.

3.4.

6.1.

2.2.1. Coordinate System Changes and Rigid Transformations 27
2.2.2. INtrinSiC Camera ParametersSvcvevverieeieseese e e e e seesee e 30
2.2.3. Homography Derivationccocceeieeninin e 34
2.2.4. Homography Calculationcccceovvieiieiiiieceec e 37
2.2.5. Generation of Pan, Tilt and Zoom Tablesccccooeveiiriinnnnnn. 40
2.2.6. Execution of Coordinate Transformation System........................ 42
EXPerimental RESUILSocmsiiimameeeeereenenienieesiesie e sie e see e seesieeneens 44
Test application ang SYSIEIM ...iv e i eeeeee e se e 44
Result of Target Tracking. SYStemM ...cveteeveii i 46
Module of HOMOGraphyc.cooveiieiieiieie e 49
Result of WOl SYStEM.........c.coviiiiiieeceee e 50
Conclusion and FUtUre WOIKS............ccoiiiiiiiiiescccseses e 53
RETEIEINCES ...t 54
AppendixX of Programmingccceceeeeieeiesieeseeie e seesee s sie e 56
Simple Capturing Video from AWebcam........ccoceviiiiiiinenieniee e 56

Vi

6.2.

6.3.

Simple Capturing Video from A Webcam with OpenCVccccceenee 65

Simple Controlling PTZ Camera through RS232..........ccccoovivvvveinceenee. 70

List of Figures

FIg 1-1 SYSEM OVEIVIEWecvviciieieeeieceecie ettt 3
Fig 2-1 Function block of Target Tracking Systemcccccovvniinieicinnne. 6
Fig 2-2 Comparison of Foreground/background Segmentation methods......6

Fig 2-3 Function block ,.of..Block-based Foreground/background

Segmentation.....al. .. bl al bl R T o eeveeer e 7
Fig 2-4 Characteristic of the-moving-backgroundc.cccceevevevivervsnene. 9
Fig 2-5 Flow chart of Change Classificationcccocceviiiiiinnicnieiienins 17

Fig 2-6 Function block of Simple Foreground/background Segmentation. 21

Fig 2-7 Input, intermediate and output to the contour process.c....... 23
Fig 2-8 Structure 0f DIODccviiieececece e 24
Fig 2-9 Relationship between status and freqUENCYcccoccvveevenieniennns 25
Fig 2-10 Pure translation...........ccooveieeieciie i 28

vii

FIg 2-11 PUIE FOLALION ..cveeeieiieie e 29

Fig 2-12 Rigid Transformationcccocuevveieiieie e 29
Fig 2-13 Perspective projection Modelcccooveiiriiieninie e 30
Fig 2-14 Physical and normalized image coordinate systems. 31
Fig 2-15 The homography matrix, H induced by a plane IIc.cccceen.. 34
Fig 2-16 Plane II with normal orthogonal vector PO—N 35

Fig 2-17 Table of Pan/Tilt degree correspondent to coordinate of the

frame. ..ol A B R M 40
Fig 2-18 Table of Zoom degree correspondent to pixels of the object. 41
Fig 2-19 Lookup Table of Zoom RAtiOccceveiiiiiiiieiccie e 42
Fig 2-20 Function block of Coordinate Transformation System 43
Fig 3-1 CamMera SEL-UPoiueeiiiieiiieiieeie ettt 44
Fig 3-2 Software and hardware system architecture block diagram............ 45

Fig 3-3 Foreground and background segmentation (part I- moving object

ENLEIS the SCENE) ..cviiiiii e e 46

viii

Fig 3-4 Foreground and background segmentation (part I1- moving object

stays temporary) in the SCENE).........coveiieiieie i 47

Fig 3-5 Foreground and background segmentation (part I11- moving object

1€AVES the SCENE)vviieeiiee e 48
Fig 3-6 Tracking the moving ODJECtSc.cocviiiiiiiiee e 49
Fig 3-7 Eight pairs of point selected manuallyc.cccocvevviiiiieiiciienns 50
Fig 3-8 Homography projected reSultscccoeieienieniie e 50
Fig 3-9 Single object tracking With €lose=Upccccvvevveriiienesic e 51
Fig 3-10 Multiple objects tracking-with CloSe-Up.........cccccovereiiieniiinnne 52

Fig 6-1 The block diagram of video capturing from webcam by using

DITECISNOW ..ottt e e e e e e e 56

Fig 6-2 The block diagram of video capturing from webcam by using

DirectShow and OPeNCV ..o 65

1.Introduction

1.1. Motivation

Traditional video surveillance system is labor intensive, low picture resolution
and usually not effective. [Ref- 1] and [Ref- 2] provide good review of latest
techniques of video surveillance system. We can classify those techniques roughly

into:

Background Modeling. Running average is an easy background modeling method.
Kalman-based background updating method [Ref- 1} is more advanced and provides

better quality. Collins proposed amultilayered background model [

Ref- 3]. Stauffer and Grimson [Ref- 4] modeled the recent history of each pixel as a

mixture of k Gaussian distributions.

Change Detection [Ref- 1]. The simple difference method computes for each time
instant t the absolute difference between the pixel intensities of the input image and
background image. The simple difference method is the simplest and fastest, but it is
very sensitive to noise and illumination changes. In order to overcome the problem of
noise sensitivity, the derivative model method considers n x n pixel regions in the two
input images and computes a likelihood ratio L;; by using the means and the variances

of the two regions. The output binary image is obtained as

0 if L <L,
1 otherwise

B(x,Y) ={

Blob Tracking. The blob tracking technique provides frame-by-frame tracking of the
blob position and size. The connected-component tracker provides reliable and fast
tracking results when there is no overlap of two blobs. A Kalman filter [Ref- 5] is used
to predict the position of the blob in the next frame, thus implying that overlap will
occur in the next frame. If overlap is to occur, the particle filter-based tracker [Ref- 6]

is used.

We propose a system that captures a high resolution view of interested target
region. The proposed system consists of target tracking system, followed by a
coordinate transformation system. Target,tracking system includes background
learning, change detection, change; classification, -foreground object segmentation,
contouring and blobs tracking techniques. Coordinate transformation system includes
homography and automatic adjustment'of camera parameters techniques. We propose
three novel techniques which are foreground object detection, blob tracking and
automatic adjustment of camera parameters. Other techniques are referred from books

[Ref- 7, Ref- 8, Ref- 9] and papers.

1.2. System Overview

‘0zIS

Coordinate

Transforma- e
tion

Target

Tracking

v
S9jeUlpIoo))

Fig 1-1 System overview

Fig 1-1 describes an overview of”the pr‘.orposed system that consists of (1) target
tracking system and (2) coordinate transformation system. The input that will be
processed by target tracking system to our main system is video streams from the
webcam. The target tracking system analyzes the video content by separating the
foreground from the background, detecting and tracking the objects, and sending the
coordinate and size of each object to coordinate transformation system. The
coordinate transformation system will give a close-up of each object based on size and

coordinate of the rectangle, and PTZ lookup table.

1.3. Thesis Outline

This thesis is organized as follows. We explain the theory of dual camera tracking
system in chapter 2. Results from our method are shown in chapter 3. We conclude

with a summary of our findings and future research opportunities in chapter 4.

2.Theory of Dual Camera

Tracking System

In this chapter, we introduce the dual camera tracking system including target
tracking system and coordinate transformation system. Section 2.1 describes the
system that analyzes the video content::by_separating the foreground from the
background, detecting and tracking the-objects,.and-generating the coordinate of each
object. The coordinate transformation system which will give a close-up of each blob
based on size and coordinate of the rectangle, and PTZ lookup table is introduced in
section 2.2. The techniques used in section 2.1and 2.2 are Digital Image Processing

and Computer Vision respectively.

2.1. Target Tracking System

The block diagram of the proposed algorithm for target tracking system is shown
in Fig 2-1. Block-based or Pixel-based Foreground/background Segmentation and
Simple Foreground/background Segmentation are described elaborately in section
2.1.1 and 2.1.2 respectively. Section 2.1.3 shows the blocks tracking method. Fig 2-2

shows the comparison of simple, block-based and pixel-based foreground/background

5

segmentation method for quality, speed and complexity.

! Target Tracking System

Foreground/Background

Segmentation

A

y

Blocks Tracking

Fig 2-1 Function block of Target Tracking System

Cuality Complexity | Speed
Wethed
Simple Poori) Low(3) Fastest(3)
EBlock-based Good(2) Highi{1) Fast{2)
Pixel-based Best(3) Mediumi2) | Slow(l)

Fig 2-2 Comparison of Foreground/background Segmentation methods

2.1.1. Block-based or Pixel-based

Foreground/background Segmentation

f 1
i Moving Block + Color Co-Occurrence -+
I g i ‘_,—C‘
1 l} Statistics
Input |
frame :_ Tempotal *_‘
777777777 ' Difference Iloving Block
— >
!_[Classification
¥ _ Foreground Output
- I O
| Station Black Ohject Extraction foreground
. i Color Distribution
Statistics
Background
Difference L
A Station Block
Classification U
Reference ; Fareground/background
Background Image B \f Segmentation

Fig 2-3 Function block of Block-based*Feregrotind/background'Segmentation

It consists of four parts: change ‘detection, change classification, foreground
object segmentation, and background learning and maintenance. The input and output
to foreground/background segmentation are image and binary foreground image
respectively. The block diagram of the proposed algorithm is shown in Fig 2-3. The
light blocks from left to right correspond to the first three steps, and the gray blocks
for the adaptive background learning. In the first step, the current image and
background image are the inputs of the simple background difference method. This
method will assign whether the block (pixel) of the current image is stationary object
or moving object. The inputs to the simple temporal difference method are current and
previous images. This method will assign whether the block (pixel) of the current

image is moving object or stationary object. In the second step, the blocks (pixels)
7

associated with stationary or moving objects are classified as foreground or
background based on the learned statistics by using the Bayes decision rule.
Foreground objects are segmented by using morphological operation in the third step.
In the fourth step, a reference background image is maintained to make the
background difference accurate and adaptive to the changing background. Meanwhile,

features statistics are updated in both gradual and “once-off” condition.

Bayes Classification of Background and Foreground

The background can consist of both stationary and moving objects. Meanwhile,
the background might be undergoing two types of change over the time. There are

gradual changes and sudden “once-off” changes.

The current image and background image are the inputs of the simple
background difference method.:The linputs of .the simple temporal difference method
are current and previous images. Both-methods will decide whether the block (pixel)

of the current image is moving or stationary object.
Let v, be a discrete value feature vector extracted from an image sequence at
the block (pixel) s and time instantt.

In the case of time difference, we consider the situation of the moving

background object, if the color difference between a block (pixel) from current and
previous image in the same place, |v,—v,,||is large. In the same time, the color
difference between a block (pixel) from next and current image in the same

place,

Ve — V| is quite similar with v, —v, .

Fig 2-4 Characteristic of the moving background

Fig 2-4 shows the characteristic of the moving background. The feature vector
V1 is not the same as V2. But V1 and V2 appear alternatively in the moving
background. So, the joint simultaneous appearance of V1 and V2 can be used to
identify whether there is a moving background or not. For this the co-occurrence
feature vector V3 is formed by combining-the adjacent-time feature vector V2 and V1.
The co-occurrence feature vector'indicates the information of two adjacent feature
vectors. As shown in Fig 2-4, the co-occurrence feature vector V3 repeat at time 1, 3,

5and 7.

Based on above observation, the feature vectors, i.e., v, is replaced by
cc,=[r, 9., b, r g hbJ]. The above feature vector is defined as color
co-occurrences of the inter-frame feature vector.

To classify a block (pixel) as background or foreground, we design three feature

distributions as below:

(1) The frequency of block (pixel) that is labeled as background or foreground. This
probability can be seen as the a priori probabilities of a block (pixel) s to belong to

background P(b|s) and foreground P(f |s) respectively.

(2) The frequency of the feature vector of a block (pixel). This probability P(vt | s)

indicate the possibility that a particular feature appeare.

(3) When the block (pixel) is background or foreground, the frequency of each feature
vector of the block (pixel) can be modeled as the conditional probability

P(v,|b,s) and P(v,|f,s) respectively.

By observing features vectors of the block (pixel), if the probability of
background is larger than the probability of foreground then the block (pixel) is

background. In other words, the posterior probability P(b|vt,s) is larger than the
posterior probability P(f |vt,s) then the block (pixel) is background. The posterior
probability can be calculated through above three probabilities. Now, we show the
relationship between above three probabilities-and posterior probability.

Using Bayes rule, P(C |vt,s) Is a probability of event C, given the occurrence
of matched features vectors. It folows that the pasterior probability of v, from the

background b or foreground f is

P(v,|C,s)P(C]|s)

"=)

Eq.2.1.1-1

where C=b or f.

Using the Bayes decision rule, the block (pixel) is classified as background if the

feature vector satisfies
P(b|v,,s)>P(f|v,s) Eq.2.1.1-2
Substituting Eq. 2.1.1-1 into Eq. 2.1.1-2

P(v, |b,s)P(b|s)>P(v,| f,s)P(f|s) Eq.2.1.1-2a

10

The feature vectors associated the block (pixel) s are either from background or from

foreground objects, it follows

P(v, |s)=P(v, |b,s)P(b|s)+P(v,| f,s)P(f|s) Eq.2.1.1-3
Rearrange Eq. 2.1.1-3

P(v,| f,s)P(f|s)=P(v,|s)-P(v,|b,s)P(b]|s) Eq.2.1.1-3a
Substituting Eqg. 2.1.1-3a into Eq. 2.1.1-2a

P(v, |b,s)P(b|s)> P(v,|s)-P(v, | b,s)P(b|s)

2P(v, |b,s)P(b|s)> P(v,]|s) Eq.2.1.1-4

This shows that by learning the conditional probability P(vt |b,s), a prior probability
P(b|s) and the probability P(v;|s) in advance, we may classify a feature v, as

either associated with foreground or with-background.

The above case discusses the‘situation when time difference is large. When the
time difference is small, there are two possible situations. If the color difference
between a block (pixel) from current and background image in the same place is large,
while the color difference between a block (pixel) from current and previous image in
the same place is small, this block is needed to be inspected. If both the time
difference and the background difference are small the block is surely classified as

background.

If the color difference between a block (pixel) from current and background
image in the same place is large, while the color difference between a block (pixel)
from current and previous image in the same place is small, each feature vector is the

same. No adjacent time feature vector is needed. Based on above observation, the

11

stationary feature vectors, i.e., v, is replaced by ¢, =[r. g, h] . The stationary
feature vector is defined as color feature vector. The classification method for
stationary object is similar as classification for moving object.

The P(v,|s) and P(v,|b,s) could be represented by the histograms of features
vectors over the entire feature space because they are unknown in a general cases. For
n dimensional feature vector with L quantization levels, the histogram for P(vt | s)
and P(vt|b,s) contains L' bins. If L or n is large, a good approximation is
desirable to make the computation and storage efficiency.

If the selected features are effective to represent background, at a block (pixel) s,
the feature vectors from foreground object would distribute widely in the feature

space, while the features vectors:from the background would concentrate in a very

small subspace of the feature histogram.

Let P(vflb,s), i=1..,N “be the first N*bins from the histogram sorted
according to the descendent order of P(v,|b,s), ie., PV [b,s)=P(V*[b,s). For
giving percentage values M, and M,,i.e., M, >M,.

> Py |b,s)>M, and 3P| f.5)<M, Eq. 2.1.1°5

i=1 i=1
There exists a small integer N, such that the above conditions are satisfied if
selected features are effective to represent background, at a block (pixel) s.

For each type of feature vectors, a table of feature statistics, denoted as ij" :

i=1..,N,(N, >N,), is maintained at block (pixel) s and time t to record the statistics

for N, most significant values. Each element in the table consists of three components,

12

o =Pl 19
Sat ={p = P(v} Ib_,S) Eq. 2.1.1-6

v =[aia)

The elements in the list are sorted according to the descendent order of p!'. The

probabilities in Eq. 2.1.1-6 are initially set to zero. The vectors in Eg. 2.1.1-6 are also

set as zero vectors initially.

To make the computation and storage efficiency, L =64 quantization levels in
each color component are used for color vector. Meanwhile, N;=30 and N,=50 are
selected. Obviously, 256° bins >> 64% bins >>N, bins > Njbins. For the feature
vectors of color co-occurrences, L=32 with N;=50 and N, =80 are chosen. Similarly,

256° bins >> 32° bins >> N, bins'> Ny hins.

Algorithm Description

In the first step, change detection;.simple background and temporal differencing
filter out blocks (pixels) of insignificant chances. Let I (pixel,t) ={l (pixel,t)} be
the input color image and B(pixel,t) ={B.(pixel,t)} be the reference background
image maintained by the system at time t, and ce<{r,g,b} represents a color

component. A simple picture differencing is done for each color component with
adaptive thresholding, using the method described in [Ref- 10]. Let the absolute

picture difference of each color component at time tas D, (pixel,t). The histogram of

the absolute picture difference of each color component with gray levels in the range

[0,255] is a discrete function His (r,t)=n, ., where r_ is the kth gray level and

n... Isthe number of pixels in the image difference of each color component having

13

gray level r,_ at time t. The normalized histogram of each color component is given
by P.(r.,t)=n../n, where nis the total number pixels in the difference image. The
relative variance of each color component V, . is the ratio of the sample variance to

the sample mean of the normalized histogram of each color component. The kth gray

level of relative variance of each color component V, (r,) is calculated by using

normalized histogram of each color component in the range[r, ,255]. The threshold of

each color component is obtain as

Thres , = {rk | max Vryc(rk)}

0<r, <254

For pixel level,

the background difference of each:-color componentis obtain as

1 |B,(pixel,ty= I (pixelt)|>Thres,, .,

Foo (Pixel,t) :{ 0, otherwise

Background difference F,(pixel,t) is generated by combining the three

components as below

Foa (pixel,t) = F, (pixel,t) OR F, (pixel,t) OR F, (pixelt)
If F,(pixel,t)=0 Iis detected, the pixel is classified as a station pixel.
The temporal difference of each color component is obtain as

L |1, (pixel,t —1)— 1 (pixel,t)| >Thres .,

P c(pixel) = { 0, otherwise

Temporal difference F,(pixel,t) is generated by combining the three components as

below
14

Fq(pixel,t) =F, (pixel,t) OR K, (pixel,t) OR F, (pixelt)

If F,(pixel,t)=1 is detected, the pixel is classified as a motion pixel. Otherwise, it

IS a station pixel.
For block level,
the block-based temporal difference is obtain as

1 Np>BS/2

Py (block.1 :{ 0, otherwise

where Np is the number of motion pixel of temporal difference for each block and

BS is block size.
If F,(block,t)=1 is detected, the block'is classified as a motion block. Otherwise, it
is a station block.

The block-based background difference isobtain as

1, Np>BS/2

Fio (block.) :{ 0, otherwise

where Np is the number of motion pixel of background difference for each block

and BS is block size.

If F,(block,t) =0 is detected, the block is classified as a station block.

In the second step, change classification, the motion and station block (pixel)
are further classified as foreground or background separately. Fig 2-5 shows the flow

chart of the change classification.

If F,(s,t)=0 and F,(s,t)=0, it assigns s as background. If F,(s,t)=1 and

15

moving tables (color co-occurrence statistics) have been trained, it uses Eq. 2.1.1-7

and Eq. 2.1.1-4 to determine whether s is foreground or background. If F,(s,t) =1

and moving tables (color co-occurrence statistics) have not been trained, it assigns s

as foreground. If F,(s,t)=1, F,(s,t)=0 and stationary tables (color statistics)

have been trained, it uses Eq. 2.1.1-7 and Eq. 2.1.1-4 to determine whether s is

foreground or background. If F,(s,t)=1, F,(s,t)=0 and stationary tables (color

statistics) have not been trained, it assigns s as background.

Frals,fi==1
OR Fralsf)1==

Stationary Table

Moving Table

Trained Trained

Assign 5 as

background

A sgign s as

A sgign s as

Foreground background

F&BG

Classification ¥
FG/BG

Clagsification

16

Fig 2-5 Flow chart of Change Classification

The probabilities from Eq. 2.1.1-4 are obtained as

Plbls)=py"
P(v,1b,8)=2" . P Eq.2.1.1- 7

where the matched feature set in ij" is defined as

M) = k:Vmedl...n}a, —ak < 5} Eq.2.1.1-8
256 * dis : :
where & == L is quantization level and dis is maximum distance between

each component of two matched feature vectors.

If no element in the table S;*' matchesmygzboth *P(v, |s) and P(v, |b,s) are setO.

For block-based method, the feature vector,v, of the block is calculated as mean of

pixels’ feature vector in the block for each compenent. Substituting the Eq. 2.1.1-7
into Eq. 2.1.1-4. If the inequality of Eqg. 2.1.1.4 is true, then the block (pixel) is

classified as foreground, otherwise as background.

In the stage of foreground object segmentation, a morphological operation (a
pair of dilation and erosion) is applied to remove the scattered error points and

connect the foreground points.

Let Foreground (pixel,t) = Foreground(x, y,t) . Use of erosion is for eliminating

outer object noise from a binary image. Outer object noise free binary image is

obtained as

Er(X, y,t) =min . yin eemeny FOreground (x + x', y + y',t)

17

where element can be rectangular, cross and ellipse shape structuring element, and

Er(x,y,t) is outer object noise free binary image.

The inner object noise can be cancelled by using dilation process. Noise free

binary image is computed as
Di(X, y,t) =MaX . yyin etemeny EF (X+ X,y +Y',t)
where Di(x, y,t) is the segmented foreground objects and O(pixel,t) = Di(x, y,t).

Finally, the background maintenance includes two parts, updating the tables of
feature statistics and a reference background image. Two tables of color and color

co-occurrence statistics are maintained at each block (pixel). If F,(s,t) =1, then it

updates color co-occurrence statisticss(motion tables). Otherwise, it updates color
statistics (stationary tables). Two different updating. strategies are proposed to adapt

them to both gradual and “once-0ff* background changes.

For updating table to gradual background changes, the statistics table is

gradually updated by

p5’t+l’i — (1_a2)ps,t,i +0{2M\f't'i

v
st+1

Pt =A-ay) Py + My Eq. 2.1.1-9
pi™ = (A=) Py + (MY AMSY)

where i=1..,N, and «, is the learning rate which controls the speed of feature
learning. The Boolean values for matching labels are generated as follows. M "' =1

when v;of S;*' in Eq. 2.1.1-6 matches v, bestand M;"' =0 for the others. The

s,t+Li
A

probability for the matched feature p is increased due to best matching features

vectors (M "' =1). The probability for the un-matched features p>**™*' is slightly

v

18

decreased due to not best matching features vectors (M =0). M =1 when s is
labeled as the background at time t, otherwise, M*'=0. The probability p;** is
increased due to s is a background (M =1) and decreased due to s is a foreground
(MS'=0). Similarly, p3'*™' is increased due to s is a background (M " =1) and
best matching features vectors (M>"' =1). p3**' is decreased due to other conditions.

If the s is labeled as a foreground at time t, p**

s,t+Li

and p,, " are slightly decreased

with M;* =0. However, for the matched element in S>**', p;**' is increased.

If there is no match between v, and the elements in the table ij", the N,th

element in the table is substituted by a new feature vector

prttNe =g, piitN =, V= vy, Eq. 2.1.1-10
The updated elements in the table Svst"”'i are re=sorted on a descendent order for
ps,t+l,i
v

From Eq. 2.1.1-5 and Eq. 2.1.1-3, “once-off background changes” at block

(pixel) s is detected if
P(f |s)i P(v/| f,5)>T Eq. 2.1.1-11
i=1

where T is a percentage value which determines when the new features can be

recognized as new background appearance.

From Eq. 2.1.1-3, Eq. 2.1.1-11 becomes

19

ip(f ISP | f,5)>T

i=1

N1

Z[P(v s)-P(b[s)P(v/ |b,s)]>T

ZP(VIS) bIS) (vt‘lb,S)>T Eq.2.1.1-11a

i=1

From Eq. 2.1.1-6, Eq. 2.1.1-11a becomes

N, _
Z Pt =Pty pyt > T Eq.2.1.1-12
i=1

If Eq.2.1.1-12 is true, then the statistics table is adjusted as follows

s, t+1,i

s,t+1 st
{ (pk;tl _1 p stl)/ s,t+1 Eq 211-13
P =P “Puw) Py

In order make the background difference accurate, a reference background

image is also maintained at each-time Step.

If F,(s,t)=1 or F,(s,t)=1 and "O(pixel,t)=0, it represents a background

change is detected. The reference background image is updated as

B.(pixel,t +1) = 1_(pixel,t), for c=r,qg,b Eqg. 2.1.1-14

If F,(s,t)=0 and F,(s,t)=0 and O(pixel,t)=0 , it represents an

insignificant change. The reference background image is updated as
B, (pixel,t +1) = eI . (pixel,t) + (1 — ;) B, (pixel,t) Eg. 2.1.1-15

where ¢, is update rate which controls the speed of background updating.

20

2.1.2. Simple Foreground/background

O SRS S —
[T T i ! | 3
i Input i - | Difference | ! Threshold Erosion, Dilation ! Output ;
| ! | : . | |
| frame . i e | | foreground |
! fra I i - I 1 foreground .
S — : ! S —
i Change I)etection : ' Connected Component Analysis i
L b i 5
T T T B
| Reference

! Background Image

Fig 2-6 Function block of Simple Foreground/background Segmentation.

It consists of three parts: background modeling, change detection and connected
component analysis. The input and output to foreground/background segmentation are
image and binary foreground image respectively. The block diagram of the proposed

algorithm is shown in Fig 2-6.

The background modeling method we apply in our system is running average

method. The output of running average is obtained as

Bg(x,y,t) =(1-a)xBg(x,y,t =) +axI1(x,y,t) Eqg.2.1.2-1

where I (X, y,t)is current input image, Bg(x,y,t)andBg(x,y,t—1) are current and

previous background image respectively, and « regulates update speed (how fast

accumulator forgets about previous frames).

21

The change detection of foreground/background segmentation is simple
difference method which is the simplest and fastest, but it is very sensitive to noise

and illumination changes. The difference is computed as
D(x,y,t) =[1(x, y,t) = Bg(x, y,1) Eq.2.1.2-2

where D(X,y,t) is absolute difference between pixel intensities of the input and

background images.

Thresholding is used to segment an image. It sets all pixels whose absolute
difference intensity values between background and input image are above a threshold
to a foreground value (1) and all the remaining pixels to a background value (0). The

binary image is obtained as

if D(x,y,t) > Threshold

) Eq.2.1.2-3
0 otherwise

B(x,y.1) ={1

where B(X,y,t) is binary image which pixel 1 represents foreground and pixel 0
represents background.

The foreground we get from the thresholding process is noisy foreground. Noise
can be classified as inner object noise and outer object noise. Inner object noise causes

that an object is broken into multiple fractional object, in the meantime, outer object

noise causes that a non-object is recognized as object by the system.

In order to reduce that noise, morphological operations (dilation and erosion)
are used. Use of erosion is for eliminating outer object noise from a binary image.

Outer object noise free binary image is obtained as

Er(X, y,) =ming . yin etemeny BX+ X,y +Y',1) Eq.2.1.2-4

22

where element can be rectangular, cross and ellipse shape structuring element, and

Er(x,y,t) is outer object noise free binary image.

The inner object noise can be cancelled by using dilation process. Noise free

binary image is computed as
Di(X, y,t) =MaX . yyin etemeny EF (X+ X',y +Y',t) Eq. 2.1.2-5
where Di(x, y,t) is noise free binary image.

In order to get noiseless objects from binary image, the considerations of size

and shape of structuring element, and iteration of erosion and dilation are important.

2.1.3.Blobs Tracking

The blobs tracking system consists of“contouring, blob generation and blob
update processes. This system processes binary foreground image, produces blobs and

keeps update the latest blobs information.

width
«—>

I height

}

(a) (b) (©)

Fig 2-7 Input, intermediate and output to the contour process.

Contouring process consists of boundary representation and bounding rectangle

method. The chain codes are used to represent a boundary of the object by vertices of

23

polygon. This representation is based on 8- connectivity of the segments. Black pixels
represent foreground and white pixels represent background as shown in Fig 2-7(a).
Fig 2-7 (b) shows the result of the chain codes process where black pixels represent
vertices coordinate. Bounding rectangle procedure returns height and width, and

bottom-left coordinate (black pixel) of object as shown in Fig 2-7 (c).

Name Function

Id Represent the blob

Freq Change the blob status depend on Freq

Rect Represent the bottom-left coordinate, width and height of the blob
Status Represent active or candidate blob

Fig 2-8 Structure of blob

Blob generation process is used to assign'each object as a blob. The structure of blob
is shown in Fig 2-8. Each new blob which is assigned as candidate blob has unique ID.
Rect variable represents the offset and size of a blob rectangle. Freq variable is set by
a predetermined value (CANDIDATE_FREQ). CANDIDATE_FREQ is larger than
zero and smaller than ACTIVE_FREQ. The purpose of the freq variable is changing
the blob status. Freq variable will be changed in the Blob update process. When the
freq variable is larger than ACTIVE_FREQ, the blob is assigned as an active blob.
The blob will be deleted when the freq variable is smaller than zero. The blob is

assigned as candidate blob in other situations.

Status CANDIDATE ACTIVE

Freq 0 ACTIVE _FREQ

»
P

24

Fig 2-9 Relationship between status and frequency

Blob update process is used to assign each object whether as a new blob or merged
blob. The object will be merged with memory blob in two situations as follows:

#the object most near the memory blob

#the object overlaps with the memory blob

The object which does not satisfy above situations will be assigned as a new blob. The
frequency of merged memory blob will be increased. The frequency of unmerged
memory blob will be decreased. The detailed blob tracking algorithm is described as

follows:

Blob Tracking Algorithm

Input: Binary Foreground image

Output: list of blob structure

Procedure

Contouring Process

1. for each object, represent boundary by chain codes

2. calculate height, width and bottom-left coordinate from each object

boundary
3. If first-time blob generation, go to step 4. Otherwise go to step 5.
Blob Generation and Update
4. Blob Generation
a~ For each object, create new blob
i. Setunique Id.
ii. Set height, width and bottom-left coordinate in Rect variable.

iii. Set CANDIDATE_FREQ in Freq variable.

25

iv. Set CANDIDATE in Status variable.

v. If last object, return output. Otherwise go to step 4-a

5. Blob Update

a\

b~

Decrease the Freq variable by 1 for each blob.
For each current frame object,

i. If nearest distance of the memory blob < MAXDISTANCE,
go to step 5-b-iii.Otherwise go to step 5-b-ii

ii. If overlap with the blob, go to step 5-b-iii. Otherwise go to
step 5-b-iv

iii. Match the memory blob
l. Increase the Freq variable by 2

1. Modify the;Rect variable depend on height, width and

bottom-left.coordinate of the object.
Il Iflast object, go to step-5-c. Otherwise go to step 5-b.
iv. Create new memory-blob
l. Set unique-ld:

1. Set height, width and bottom-left coordinate in Rect

variable.
Il Set CANDIDATE_FREQ in Freq variable.
V. Set CANDIDATE in Status variable.
V. If last object, go to step 5-c. Otherwise go to step 5-b.
For each memory blob,
i. IfFreq<0, delete blob
i. IfFreqg>ACTIVE_FREQ, set ACTIVE in Status variable.

iii. If O<Freq<ACTIVE_FREQ, set CANDIDATE in Status

variable.

Return output.
26

2.2. Coordinate Transformation

System

We introduce knowledge about the Computer Vision as below

v' Coordinate System Changes and Rigid Transformations described in section

2.2.1 tell about elementary notions of analytical Euclidean geometry.

v Intrinsic camera parameters described in section 2.2.2 that relate the camera

coordinate system to the idealized coordinate system.

v" Homography matrix describe in section 2.2.3 and 2.2.4 that defines a planar

mapping between two overlapping camera views.

Then, we build the pan, tilt and zoom tables in Section 2.2.5. The execution of
coordinate transformation system which will:give a close-up of each blob based on
size and coordinate of the rectangle; ‘and ‘PTZ and homography lookup table is

introduced in section 2.2.6.

2.2.1.Coordinate System Changes and Rigid
Transformations

When several different coordinate systems are considered at the same time, it is

convenient to denote

"P=Q,P=xj,+Yi, +k, Eq. 2.2.1-1

27

where P is the coordinate vector of point P in the frame W .

Let us consider two coordinate systems: W)=y iy, Jw Ky)

and (C1) = (O.,,i¢, Jei,Key) are world and camera 1 coordinate systems respectively.

Fig 2-10 Pure translation

Fig 2-10 shows pure translation that basis vectors-of both coordinate systems are

parallel to each other, but® the origin O, and O, are different. We

have qu = OClQN +Q,, P, thus ClP:WP-I-ClQN : Eqg.2.2.1-2

28

Fig 2-11 Pure rotation

When the origins of the two coordinate systems coincide, then the frames are

separated by a pure rotation shown in Fig 2-11. Let us define the rotation matrix as

iw 'ic1 jw 'ic:1 kw 'i01
c1 : ; : ; ;
wR=W o wida Ko ;then we have

iW ’kc1 jw ’kc1 kW 'kC1

“p= R"P Eq. 2.2.1-3
kyw 4 Iw ke
v
Wy ic1
v
e

Fig 2-12 Rigid Transformation

The frames are separated by a rigid transformation (translation + rotation) when the

origins and basis vectors of the two coordinate systems are different. We have

“pP= R"P+'Q, Eq. 2.2.1-4

29

2.2.2.Intrinsic camera parameters

Fig 2-13 Perspective projection model
Fig 2-13 shows that a camera 1 coordinate system (C1)=(Oc,,ic;, jeoi,Ke,) attached
to a pinhole camera, whose origin 1O, coincides with the pinhole, and vector i, and

Jc, form a basis for a vector plane parallel:to the image plane IT', which is located

at a positive distance f’ from the pinhole along the vector k., . The line perpendicular

to IT' and passing through the pinhole is called the optical axis, and the point C’

where it pierces IT' is called the image center.

Let P denote a scene point with the coordinates (X, y, z) and “P' denote

its images with coordinates (x’, y’, z’). We have z’=f’ because “P' lies in the image

plane. We have QNP =1QNP for some number ﬂ, because the three

e c1 :
points "P', O, and P are collinear. So,

30

X'= AX

. X_y f
y:2y<:>2:;=V=7 Eq. 2.2.2-1
f'=Az
and therefore
X'= f'5
Z 2.2.2-2
Eq. 2.2.2-
y': f'z q
z

Eq. 2.2.2-2 is valid when all distances are measured in the camera’s reference
frame, and image coordinates have their origin at the principal point where the axis of

symmetry of the camera pierces its retina.

Pinhole

. . Normalized image plane
Physical retina

Fig 2-14 Physical and normalized image coordinate systems.
Now, we make an assumption that camera 1 coordinate system
(CD) =(Oy,icys Joi Key) 1s same as world coordinate system (W)= (O, iy, Jy Ky)

as shown in Fig 2-14. Normalized image plane is located at a unit distance from the
pinhole and parallel to its physical retina. Eq. 2.2.2-2 can be rewritten in this

normalized coordinate system as

31

=}
Il

Eq.2.2.2-3

<
[l
N |[< N | x

Fig 2-14 shows that physical retina of the camera is located at a distance f =1
from the pinhole. The image coordinates (u, v) of the images point p are expressed in
pixel units where pixels are rectangular, so the camera has two additional scale

parameters k and |. Eq.2.2.2-2 can be rewritten as

u=ki =X
‘ Eq.2.2.2-4
v=lf Y Ao
Z

where k and | are expressed in pixel/meter.

Fig 2-14 also shows that the center-of CCD matrix does not coincide with the

principal point Co, so Eq.2.2.2-4 can be rewritten'as

X
u=kf —+u,
Z
Eq.2.2.2-5
V:”X+%
Z

where up and vq that define the position of Cy in the retinal coordinate system are

expressed in pixel units.

The angle 6 between the two image axes is not exactly equal to 90 degree due

to some manufacturing error, so Eq.2.2.2-5 transforms into

32

u=kf X —kf cotd +u,
Z Z
Ify Eq.2.2.2-6

EQ.2.2.2-6 can be rewritten into compact form as

1

C1 Cl
I0=;|V|1 P Eq.2.2.2-7a

where ~'P =(u,v, 1)7, P=(x,v,2 1)" and

kf —kfcotd u, O
If T
M,=| 0 —_— v, O0|=(K, 0) where0=(0,0,0
] Sind 0 (K, 0) ()
0 0 1 0

Matrix K; is an intrinsic parameter related matrix.of camera 1 where k and | are
related to size of pixels, up and v, are related to position of the principal point, f is

related to focal length of the lens,sand @ is related to manufacturing skew error.

The depth z in Eq. 16a is not independent of M, and ClF’,then we rewrite

Eq.2.2.2-7aas
- 1
V| ==M,“P
z
1
_m %P
u 1 m; TZClP
vi=Zml PP e fv="2° Eq.2.2.2-7b
z z
1) \mg m] «C1p

33

where m],m],m! denote the three rows of M, . We rewrite again Eq.2.2.2-7a as

1
C C
‘p=—M,"P Eq.2.2.2-7¢

A

T _Cl1
where 4 =M, e"P

2.2.3.Homography Derivation

“P=M"1z%

Image plane of Timage plane of

camera 1 camera 2

Jw Ow .
Iw

Fig 2-15 The homography matrix, H induced by a plane II

The homography matrix being derived here is a matrix which maps pixels in camera 1

to pixels in camera 2. We can use rigid body motion to map points from the world

: : . CL :
coordinate system to camera 1 coordinate system like Eq. 2.2.1-4 , QN (translation

34

vector) is in the same reference coordinate system as “P. we modify Eq. 2.2.1-4 to

be

ClP:\?VlR(WP—W 1) Eqg.2.2.3-1

where Woc1 (translation vector) is in the same reference coordinate system as
Yp.

Similarly for camera 2:

“p="R(VP-"0,,) Eq. 2.2.3-2
We rearrange Eq. 2.2.3-1 as

YP=CRT'P+"0,, Eq. 2.2.33
Inserting Eq. 2.2.3-3 into Eq. 2.2.3-2,'we obtain

CZP:C\;VZR(\C/:VlRT C1P+WOCl_W C2) Eq 223-4

ic i N
O¢y ke

Jei

lw

Jw

D ——

Fig 2-16 Plane I with normal orthogonal vector Po N

PN=Q,N-Q,P="N-"P,

35

ClpMWpny W . :
Let R("N- Po) be unit normal orthogonal vector of the plane Il with respect to

the camera 1 coordinate system, the inner product of any point “P that lie on

., ClpyWp[W)
plane II with WR(N— Po) equals to zero. We can write as

(wR("N="PR,))e(“P-'R,) =0 Eq. 2.2.3-5

Since (ClP_ClPo) = (X_ XY= Yo Z— Zo) and \?VlR(WN_WPo) = (a’ b, C))
Eq. 2.2.3-5 can be written as

a(X_Xo)+b(y_YO)+C(Z_Zo) =0
ax+by+cz =ax, +by, +cz,

ax+by+cz=d Eq. 2.2.3-6

where d = ax, +by0 +CZ,
We write Eq. 2.2.3-5 as

(FR'N-"R))e"P=d

1
E(\(fle(WN—W R)) “'P=1 Eq.2.2.3-7
Inserting Eq. 2.2.3-7 into Eq. 2.2.3-4 we obtain

2P-CR(GRT P +(" 0, cﬁ(@lR(WN—WPO»T“P) £q.2.2.3:8

Factoring 'P out, we have

36

1
“P=RGRT (/05 "0) S(RON-"R))P £q.2239

Refer Eq.2.2.2-7c , we can write

1
Cc2 Cc2
p=—M,"P Eq.2.2.3-10

Z

Rearrange Eq.2.2.2-7c and Eq.2.2.3-10, and substituting into Eq.2.2.3-9, we obtain
1
-1C2 »_ C2p(ClpT , (W w Clp/Wpy Wp \WT -1c1
ﬂzMz p:WR(WR +(001_ CZ)E(WR(N-— Po)))ﬂlMl p

Eq.2.2.3-11

Rearrange Eq.2.2.3-11 to

AP =H%p Eq.2.2.3-12
1 _
where H=M, c\/:\/Zl:\)(\(/:leT +(Woc1_w cz)a(gle(WN_WPo))T)Mll and

P

A

The homography matrix maps pixels on web camera plane (C1) to PTZ camera
plane (C2). Target tracking system sends the size and coordinate of each object on
web camera to coordinate transformation system. Coordinate transformation system

maps the coordinate on web camera to PTZ camera by using homography matrix.

2.2.4. Homography Calculation

The Eqg.2.2.3-12 may be expressed in terms of the vector cross product as

37

0=""px(H"p)
O C2X hiI'Clp
O — CZy % h;’ Clp
O CZZ hT Clp
3

0 Cth;' C1l p_CZZh;' C1 p
0|=| ““zh] “'p-"2xh; “'p Eq.2.2.4-1
0 CZXh;' C1 p_C thlT C1 p

T
where h!,h! h! denote the three rows of H and “p= (CZX “y CZZ) :
The Eg.2.2.4-1 may be written in the form

0 OT _C ZZClpT C2 yClpT h1
0|=| “z°%" 0’ L 1 Eq.2.2.4-2
0 _CZyC1pT CZXC1pT OT h3

Although Eq.2.2.4-2 contains? three -equations, only two of them are linearly

independent. Thus the set of equations.can be written as

hy
0 T _CZ CL.T c2,,C1.T
U:(0 th o Yp Jh Eq.2.2.4-3

C2,C1.T o' _C2,C1.T 2

Zp P
3

Given n points, Eqg.2.2.4-3 can be written in matrix equation as

Lh=0

where h =[th h, h;]T and Lis a2n x 9 matrix. As h is defined up to a

scale factor, the solution is unit singular vector of L associated with the smallest

singular value(or equivalently, the eigenvector of L"L associated with the smallest

eigenvalue).
38

Proof of Lh=0

Find the h that minimizes |Lh| subject to ||=1. The singular value

decomposition is a factorization of Las L=UDV' 6 where U and V are

orthogonal matrices, and D is a diagonal matrix with non-negative entries in

descending order. The problem requires us to minimize HU DV’ hH

However,

Jubv | = ((UDV Th)e (UDV ") - (Ubv ") (Upv Th)ﬁ
- (ovhuT (UDV Th))% ~(ov™JuTu (DVTh)ﬁ

- (ovhTuu (DvlTh))% _{(Bv) (DVTh))%
=((DvTh)e(DV Th)) = DV Th

and similarly, [h|= ”\/Thu .

Thus, we need to minimize HDVThH subject to the condition”\/Thuzl. We write
y=VTh, and the problem is: minimize HD)’H subject to Hyﬂzl. It follow that the

solution to this problem is y=(0,0,...,0,1)T having one non-zero entry. Finally,

h=Vy issimply the last column of V.
Algorithm

. c2 c
Input: n>=4 2D to 2D point correspondences ~ P; <> 1pi

Output: 2D homography matrix H

Procedure

39

. c1
1. For each correspondence ~~ P;<>"P; compute L.
2. Assemble n 2x9 matrices L intoa single 2nx9 matrix L.

3. Obtain SVD of L as UDV' with D diagonal with positive

diagonal entries, arranged in descending order down the diagonal, then

h s last column of V .

4. Determine H fromh.

2.2.5. Generation of Pan, Tilt and Zoom Tables

Coordinate transformation system, adjusts the panning and tilting parameters
based on coordinate information in order to frame the object. After movement of PTZ,
the new coordinate of object is-at center of the PTZ frame. For instance, if the object
is at the bottom of the PTZ frame, we control the'tilt parameter of the camera and
move the frame upwards. Similarly, if the object is at the left of the PTZ frame, we

pan the frame leftward.

T T TR

I C R

BL B BR

Fig 2-17 Table of Pan/Tilt degree correspondent to coordinate of the frame.

Now, we build the pan and tilt tables based on some control

40

points(TL, T,TR,L,C,R,BL,B,BR). We assume TL pixel coordinate as a center of the
object, then we manually adjust PTZ until the new TL pixel coordinate is at the center
frame. We record the pan and tilt degree in the pan and tilt tables respectively. We find

the others control points using similar method.

After getting pan and tilt degree at each control points, we generate dense pan
and tilt tables for all pixels by using interpolation and extrapolation method. The pan
and tilt degree at gray pixels in Fig 2-17 are generated by using interpolation method.
Extrapolation method is used to generate pan and tilt degree at other pixels in Fig

2-17.

After we centrally frame the target object by doing panning and tilting operations,
we give a close-up of target object with appropriate zoom ratio. Appropriate zoom

ratio means that PTZ give a close-uplof whole target-object with large zoom ratio.

We build the zoom table for each zoom level. \We assume that (a) the shape of the
object is square and (b) the object is.at the center of the frame. We set the zoom
parameter as nine, then, we find maxima length of square (20) that PTZ can give a
close-up of whole target object. Similarly, we set the zoom parameter as eight, then,
we find maxima length of square (26). If the length of square is 27, we can’t give a

close-up of whole object with zoom ratio eight.

Pixels | 240 | 152 |89 69 55 36 30 26 20

Zoom |1 2 3 4 5 6 7 8 9

Fig 2-18 Table of Zoom degree correspondent to pixels of the object.

If the shape of the object is rectangle, we find the maxima value of height and

width. For example, if the value is greater than 152, then set the zoom ratio as one.
41

Fig 2-19 shows a lookup table of zoom ratio.

(Input) Pixels (Output) Zoom (Input) Pixels (Output) Zoom
Ratio Ratio

<20 9 55 pixels <69 4

20= pixels <26 8 69= pixels<89 3

26= pixels<<30 7 89= pixels< 152 2

30= pixels <36 6 152> 1

36= pixels<I55 5

Fig 2-19 Lookup Table of Zoom Ratio

2.2.6. Execution of Coordinate Transformation

System

The Coordinate Transformation System Stage gives a close-up of each blob
based on size and coordinate of the blob, and PTZ and homography lookup table as

shown in Fig 2-20.

42

Homography matrix Pan and Tilt Table

. .

Coordinate of blob H b Coordinate of Pan and Tilt
oordinate of blo omography an and Ti]

| T o BElob onPTZ P d Tilt
on camera frame o2 et [= Loockup-table |—_, ane S

Frame
Size of bleb —L.

Parameter

mazx(height,width) Zoom
S Zoom Parameter
Laookup-table —

Zoom Ratio Table

Fig 2-20 Function block of Coordinate Transformation System

The homography function maps coordinate of blob on web camera to PTZ
camera by using homography matrix:" Fhe pan and tilt lookup-table function takes
coordinate of blob on PTZ camera to generate pan-and tilt parameters by using pan
and tilt tables. We find the maxima value of height and width of the blob, then, the
zoom lookup-table function takes maxima value to-generate zoom parameter by using

zoom table.

43

3. Experimental Results

In this chapter we present the test environment and the experimental results of our

algorithms.

3.1. Test application and system

The test application is implemented using Microsoft Visual C++ with DirectShow
and OpenCv library. All of the tests in-next sections are performed by using test
application on Microsoft Windows XP operating system on a computer with an Intel
Pentium® 4 CPU 2.40GHz and 760MB RAM. Upmost MTV video capture card send
the video signal from PTZ camera (Sony EVI-D70) to our computer. Web camera
(Logitech QuickCam IM) send the video signal to computer through USB port. We

can control the PTZ camera through RS 232. Fig 3-1 shows the two camera set-up.

(a) Front wview (b) Side view

Fig 3-1 Camera Set-up
Fig 3-2 shows the software and hardware system architecture block diagram. The

44

webcam and PTZ camera appear as two different video input source filter in
DirectShow. The DirectShow passes the video sources to the OpenCV for image

processing. Serial communication API controls the PTZ through RS232.

Microsoft Foundation Class (MFC) Application =
4

v

Serial Communication

Monitor

Output

.............................

45

3.2. Result of Target Tracking

System

t=27s =20z t=31s

(&) Input

(h)Foreground
Sirple Iethod

(e Background
Sirple Ivlethod

[djForeground
Pixel Ilethod

ie)Background
Pixel hdethod

ifiForegronnd
Black Ilethod

(ziBackground
Block Ivlethod

Fig 3-3 Foreground and background segmentation (part I- moving object enters the scene)

Fig 3-3, Fig 3-4 and Fig 3-5 show the results of foreground and background

segmentation. Row (a) shows the input of the video. Foreground and background

46

images of the simple foreground/background segmentation method are shown in row
(b) and row (c) respectively. Row (d) and row (e) show the results of foreground and
background images of pixel based foreground/background segmentation method. The
images shown in row (f) and row (g) are foreground and background images of the
block-based foreground/background segmentation method respectively.

t=33z t=35s t=37z
1 B (aiInpt

(hForegroand
Siraple Ilethind

(o) Background
Siraple Mlethod

rdiForegronund
Pixel Ilethod

(e1Backearound
Pixel Ivlethod

070724_110533_FG3.jpc 070724_110535_FC3,jpe 070724.110537_FG3.jpe

i fiForeground

, Block Ivlethod
-

(ZBackground
Block Inlethod

Fig 3-4 Foreground and background segmentation (part 1l1- moving object stays temporary) in the

scene)

47

t=53s t=55s t=5Ts

070724_110553_FG1.Jpc OT0724_11 1.jpg 070724_110557_FG1.jpe

=

0724_110555_FG2.jpc 070724_110557_FG2.jpe

3_FG3.jpc 070724_110555_FC3.jpc 070724_110557_FG3.jpe

. A

Fig 3-5 Foreground and background segmentation (part 111- moving object leaves the scene)

The scenario which moving object enters the scene is shown in Fig 3-3. The

result of pixel-based method was more accurate than the two methods. Simple method

shows the poor quality of the detection.

Fig 3-4 shows that moving object moves slowly (or stays temporary) in the scene.
The simple method shows unstable result that missed foreground object temporary.

On the other hand, pixel-based and block-based methods show promising results.

48

[y Trgat

(b Foreground
Straple Ilethod

(o) Backgronnd
Straple Ilethod

(d)Foreground
Pixel Ilethod

(&) Backgronnd
Pixel Ilethod

(fiForegronund
Block Ivlethod

(ZBackground
Block Iethod

Pixel-based method can more accurate to detect the foreground pixels than the

block-based method.

The scenario which moving object leaves the scene is shown in Fig 3-5. All
method wouldn’t misclassify the background points as the foreground when there are

stationary foregrounds leave the scene.

As shown in Fig 3-6, the target tracking system automatically tracks two moving

objects. Each object has unique ID.

(d) t=Ts (e) =05 (h=11s

Fig 3-6 Tracking the moving objects

3.3. Module of Homography

Fig 3-7 shows that eight pairs of point are selected manually. These points are used as
input of homography calculation algorithm described in section 2.2.4. The output of
this algorithm is a homography matrix which maps coordinate of rectangle on source

frame to destination frame as shown in Fig 3-8.

49

(a) source video frame (b) destmation video tframe

Fig 3-7 Eight pairs of point selected manually

(e) destination 1 (1) destination 2 (g) destination 3 (h) destination 4

il 5 s T b

i =
L LR

Fig 3-8 Homography projected results

3.4. Result of Whole System

The whole system tracks the single moving object and gives a close-up as shown in
Fig 3-9. The result shows that this system can smoothly track the moving object and

give a close-up of whole moving object.

50

(a) t=>5s

iy t=Ts

(o) t=Rs

id) t=12s

(e) t=15z

Fig 3-9 Single object tracking with close-up

The whole system can also tracks the multiple moving objects and gives each close-up

51

as shown in Fig 3-10. The result shows that this system assigns time slices to each
moving object in equal portions for tracking and giving a close-up of whole moving

object.

Fig 3-10 Multiple objects tracking with close-up

52

4.Conclusion and Future Works

In this thesis we presented a set of methods for moving object tracking system based

on dual cameras (webcam and PTZ camera).

The block based foreground segmentation method gives the promising results in
terms of detection quality and computational complexity to be used in a real-time

surveillance system.

The proposed blob tracking algorithm successfully tracks objects in consecutive
frames. Nearest neighbor matching scheme used in our application gives promising
results. It is not complicated +methods for whole-body tracking of objects.
Improvement in handling object occlusions.-must-be- done in the future because our

system fails in distinguishing occluding objects:

The homography matrix which maps‘pixels in webcam to pixels in PTZ camera
gives good correspondent relationship between two cameras. The homography matrix
is suitable for planar scenes. The homography matrix gives an acceptable
correspondent relationship result for the scenes with depth variation in our experiment

environment.

Finally, we propose a novel technique which can adjust automatically camera

parameters based on size and coordinate of the object.

53

5.References

Ref-1 Foresti, G.L.; Micheloni, C.; Snidaro, L.; Remagnino, P.; Ellis, T.; “Active
video-based surveillance system: the low-level image and video processing techniques
needed for implementation”, Signal Processing Magazine, IEEE, Volume 22, Issue 2,

Mar 2005 Page(s):25 — 37

Ref-2 Valera, M.; Velastin, S.A.; “Intelligent distributed surveillance systems: a
review”, Vision, Image and Signal Processing, |EE Proceedings-, Volume 152, Issue

2, 8 April 2005 Page(s):192 — 204

Ref-3 R.T. Collins, A.J. Lipton, Hi Fujiyoshi, and' T. Kanade, “A system for video

surveillance and monitoring”, Proc. IEEE, vol. 89, no. 10, pp. 1456-1477, Oct. 2001.

Ref-4 C. Stauffer and E. Grimson, “Learning patterns of activity using real-time
tracking,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no. 8, pp. 747-757,

2000.

Ref-5 D. Comaniciu, V. Ramesh, P. Meer, “Real-time tracking of non-rigid objects
using mean shift,” IEEE International Conference on Pattern Recognition, vol. 2, pp.

142-149, 13-15 June, 2000.

Ref-6 K. Nummiaro, E. Koller-Meier, and L. Van Gool, “A color based particle
filter,” in First International Workshop on Generative-Model-Based Vision, A.E.C.

Pece, Ed., 2002.

54

Ref-7 R. Hartley and A. Zisserman, “Multiple View Geometry in computer

vision”,2" edition, Cambridge University Press, 2004.

Ref-8 O. Faugeras and Q. Luong, “The Geometry of Multiple Images”,1* edition,

The MIT Press, 2001.

Ref-9 R. C. Gonzalez and R. E. Woods, “Digital Image Processing”,2™ edition,

Pearson Education International, 2002.

Ref- 10 P. Rosin. Thresholding for change detection. In Proceedings of IEEE Int’l

Conf. on Computer Vision, pages 274-279, 1998.

55

6. Appendix of Programming

In this chapter, we show two different applications that capture video inputs from a
Logitech webcam, process the image sequence and render it. The first application
process the image sequence by using 1SampleGrabber filter created by Microsoft.
Meanwhile, the second application process the image sequence by using proxy
transform filter created by OpenCv. So, the second application can process the image
sequence by using OpenCV library. Finally, we show a simple PTZ application that

controls PTZ camera through RS232 serial port.

6.1. Simple Capturing Video from A

Webcam

‘ Application ‘
I
Mlethod Call:

J
L 2

‘ Filter Graph Manager ‘

Source Filter [SampleGrabber Filter Renderer
5 .
(webcam) Filter

TSmupleGrablber Inter face

Callback Function

(SaupleCB)

DirectShow

Fig 6-1 The block diagram of video capturing from webcam by using DirectShow

56

This application captures video inputs from a Logitech webcam, processes the image

sequence, and renders it.
1. Create a dialog-based application

This application can easily be created using the MFC application wizard. The name of
the application is DX_CV2. VC++ should create a simple OK/Cancel Dialog for you.
The class with a name ending by DIg will contain the member functions that control

the widget of the dialog.
2. Include header files

Add the following header file to the DX_CV2DlIg.cpp file

FO S A A S S S S S S F S O BF I O B O O O B O O B A O O O A N N O O O S N O O O N N 5 N T O O N N N N N
#include <DShow.hZ /¢ include DirectShow interface
#include <Qedit.hZ // include ISampleGrabber interface

3. Declare global variables and class

Declare the following global variables and‘elass inthe DX_CV2DIg.cpp file

uuuuuuuuuu gL uL L s Froanvauus doumpouul Gorss sosns 1 un
AM_HEDIA_TYPE mt;

class SampleGrabberCallback :public ISampleGrabberCB

1
public: // The interface needed by ISampleGrabber Filter

// fake out any COH ref cuunting
STDMETHODIHP_(ULONG) AddRef{) { return 2; }
STDHETHODIMP_(ULOMG) Release() { return 1; }
/f Fake out any COM QI'ing
STDMETHODIHP QueryInterface{REFIID riid, void == ppu) {
if(riid == IID_ISampleGrabberCBE || riid == IID_IUnknown) {
=ppv = {void =) static_cast<{ISampleGrabberCB=> { this)};
return HOERROR;
b4
return E_NOINTERFACE;
H
/7 The frame callback function called on each frame
/f We can add the processing code in this function
STDHETHODIHF SampleCB{double SampleTime, IMediaSample *pSample){
f{ get current media type
UIDEOINFOHEADER *pui = (UIDEOINFOHEADER *) mt.pbFormat;

BYTE =pData; /7 Pointer to the actual image buffer
long 1Datalen; /7 Holds length of any given sample
int iPixel; /f Used to loop through the image pixels

pSample—)GetPuinter(&pData);
1Datalen = pSample—)GetSize();

57

f/f Get the 1mage propertles trom the BIIMAFINFUHEADEK
int iPixelSize = pvi->bmiHeader.biBitCount /7 8;

int cxImage = pvi->bmiHeader .biWidth;

int cyImage = pvi->bmiHeader .biHeight;

int chImage = cylmage * cxImage * iPixelSize;
int numPixels = cxImage * cylmage;

BYTE =prgb = (BYTE=) pData;

/f convert to grayscale image

for (iPixel=8; iPixel < numPixels; iPixel++, prgb+=iPixelSize) {
*#{prgb + 1) = =(prgb); /f G channel
*{prgh + 2) = *{prgh); /f R channel

H

return 8;

/7 Another callback function. I am not using it now.
STDHETHODIMP BufferCB(double SampleTime, BYTE =pBuffer, long BufferlLen) {
return E_MOTIMPL;

¥
i
IGraphBuilder xpGraph; /¢ Graph builder object
IMediaControl *pControl = HULL; /f HMedia control object
IBaseFilter =pUideoInputFilter = HULL; // Uideo Capture filter
IBaseFilter =pGrabFilter; // Sample Grabber filter
ISampleGrabber *pSampleGrabber ; /f Sample Grabber interface
SampleGrabberCallback g_StillCapCB; /f Sample Grabber Callback class

4. Declare Function Prototype

Declare the following function prototypes inthe DX _CV2DlIg.cpp file

/# Function Prototype

int webcamCap{HWND hund);

int releaseWebcamCap() ;

HRESULT GetUideoInputFilter({IBaseFilter=x gottaFilter, wchar_tx* matchName);

HRESULT GetUnconnectedPin{IBaseFilter =pFilter, PIN_DIRECTIOHN PinDir, IPin ==ppPin);
HRESULT ConnectFilters{IGraphBuilder *pGraph, IBaseFilter =*pSrc, IBaseFilter =pDest);
void HyFreeMediaType{AH _HMEDIA_TYPE& mt);

5. Examining webcamCap function

FEEFEEFEFESETFTEEELEETES TR IFEETETETEFIFIFTETETERIFIFIETETFFIiiididiiiiiiiiiy
int webcamCap{HWHD hwnd)
{

HRESULT hr;

/7 Initialize the COHM library
hr = CoInitialize(MULL)};

/7 Create the Filter Graph Hanager.
hr = CoCreateInstance(CLSID_FilterGraph, 8, CLSCTX_IHPROC_SERVER,
I1ID_IGraphBuilder, {void=x)&pGraph);
if (FAILED({hr}){
AfxHMessageBox ("ERROR- Could not initialize capture graph builder™);
ColUninitialize();
return hr;

/7 Using QueryInterface on the graph builder,

// get the Hedia Control object.

hr = pGraph—)ﬂueryInterFace(IID_IMediaControl, (void =x)&pControl);
if (FAILED(hr))

{
AfxMessageBox("ERROR - Could not create the Hedia Control ohject.");
pGraph->Release();
ColUninitialize();
return hr;
1

58

r

/7 Now create the video input filter from the webcam
/7 and add it to the Filter Graph Hanager
hr = GetUideoInputFilter{&pUideoInputFilter, L"Logitech™);
if (SUCCEEDED(hr}}) {
pGraph->addFilter{pVideoInputFilter, L"Webcam Video Capture™);
relsef
AfxHessageBox{"ERROR - Could not create the video input filter.™);
pControl->Release ();
pGraph->Release{);
ColUninitialize();
return hr;
H

// How create the ISampleGrabber Filter to grab the video frames
hr = CoCreateInstance{CLSID_SampleGrabber, HULL, CLSCTX_INPROC_SERUER,
I11D_IBaseFilter, {void==)&pGrabFilter};
if {(FAILED{hr))
{
AfxHessageBox ("ERROR - Could not create the ISampleGrabber Filter.");
pControl->Release ();
pUideoInputFilter->Release ();
pGraph->Release();
ColUninitialize();
return hr;

H

// How create the ISampleGrabber interface
hr = pGrahFilter—)ﬂueryInterFace(IID_ISampleGrahher, (uuid**)&pSampleGrahher);
if (FAILED(hr})
{
AfxiessageBox ("ERROR - Could not create the SampleGrabber interface.");
pControl->Release ();
pGrabFilter->Release ();
pUideoInputFilter->Release ();
pGraph->Release();
CoUninitialize();
return hr;

b

/7 Now Set the working mode of this ISampleGrabber

/7 Specify what media type to process, to make sure it is connected correctly
Zerolemory{ &nt, sizeuF(nM_MEDIn_T?PE));

mt.majortype = MEDIATYPE_Uideo;

mt .subtype = MEDIASUBTYPE_RGB2Y4;

mt .formattype = FORMAT_UideoInfo;

hr = pSampleGrahher—)SetMediaType(&mt);

// Set working mode as continuous with no buffer
psampleGrabber->SetOnesShot{FALSE);
psampleGrabber->SetBufferSamples{FALSE);

// Add the filter to the graph and connect it
pGraph->addFilter{pGrabFilter, L"Grabber"};

hr= ConnectFilters{pGraph, pVideoInputFilter, pGrabFilter);//
if (FAILED{hr}}

{
AfxlessageBox("ERROR - Could not connect two Filters ");
pControl->Release ();
pSampleGrabber->Release();
pGrabFilter->Release ();
pUideoInputFilter->Release();
pGraph->Release();
CoUninitialize();
return hr;
H

// Set up the callback interface of this grabber
pSampleGrabber->SetCallback{&g_StillCapCB, 8);

// Set the media type (needed to get the bmp header info)
pSampleGrabber->GetConnectedHediaType(&nt);

59

/4 Find an output pin on the pGrabFilter.
#4 and render it
IPin =pOut = 8;
GetUncunnectedPin(pGrahFilter, FINDIR_OUTFUT, &pOut});
hr=pGraph->Render (pOut});
pOut->Release();
if (FAILED{hr}) {
AfzMessageBox{""ERROR - Could not render the sample grabber filter ");
ptontrol->Release (};
pSampleGrabber->Release();
pGrabFilter->Release ();
pVideoInputFilter->Release();
pGraph->Release();
CoUninitialize();
return hr;

H

#/ Send the video to main window

IVideoWindow *pUWidWin = HULL;
pGraph->QueryInterface(IID_IUideoWindow, (void =*)&pUidWin);
puidiin->put_0uwner{ (DAHWND Yhund) ;
pUidWin->put_WindowStyle(WS_CHILD | WS_CLIPSIBLINGS);

RECT rc;

GetClientRect{hwnd,&rc);

pvidWin->SetWindowPosition {0,8,rc.right-188,rc.bottom };

#/ Run the graph
hr = pControl->Run();
return hr;

Before COM can be used within a DirectShow application, the COM facilities

must be initialized.

Now, we create the filter graph manager.-The filter graph manager implements an

interface that enables an application to buildafilter'graph.

Get the media control object by using Querylnterface on the graph builder. This

media control interface enables the graph to be run, paused and stopped.

Create the video input filter from the webcam by using GetVideolnputFilter

function and add it to the filter graph.

60

trtsidiiiiiiitiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiititiiiiiiitiiiiiiiiiiiiitii
// Enumerate all of the video input devices
// Return the filter with a matching friendly name
HRESULT GetUideoInputFilter{IBaseFilter=x gottaFilter, wchar_t= matchMame)
{
BOOL done = false;

// Create the System Device Enumerator.

ICreateDevEnum =pSysDevEnum = HULL;

HRESULT hr = CoCreatelInstance(CLSID_SystemDeviceEnum, NULL, CLSCTX_INPROC_SERVER,
IID_ICreateDevEnum, {void =*)&pSysDevEnum} ;

if (FAILED({hr))

{
return hr;

:

/4 Obtain a class enumerator for the video input category.
IEnumioniker *pEnumCat = HULL;
hr = pSysDevEnum->CreateClassEnumerator{CLS1D_UideoInputDeviceCateqory, &pEnumCat, B);

if (hr == S_OK)
{
// Enumerate the monikers.
IHoniker =pHoniker = HULL;
ULDHG cFetched;
while ((pEnumCat->Hezt(1, &pMoniker, &cFetched) == 3_0K) && (tdone))
{

// Bind the first moniker to an object

IPropertyBag =pPropBag;

hr = pHoniker->BindToStorage{@, 8, 1ID_IPropertyBag,
(uoid ==)&pPropBag);

if (SUCCEEDED{hr})

Fl

{
// To retrieve the filter's friendly name, do the following:
UARIAHT wvarHame;
VariantInit{&varHame);
hr = pPropBag—)Read(L"FriendlyName", &varHame, @);
if (SUCCEEDED{hr})

{
wprintf{L"Testing Video Input Device: %s\n", varMame.bstrUal};
// Do a comparison, find out if it's the right one
if {wcsncmp{varName.bstrUal, matchMame,
wcslen{matchHame)) == @) {
/7 We found it, so send it back to the caller
hr = pHoniker->BindToObject{HULL, MULL, IID_IBaseFilter, (void==) gottaFilter);
done = true;
H
H

VariantClear{&varHame) ;
pPropBag->Release();

pHoniker->Release();
¥
pPEnumCat->Release();

pSysDevEnum->Release();

if {(done} {
return hr; f/ found it, return native error
} else ¢

return UFW_E_NOT_FOUND; // didn*t find it error
¥

This function creates the system device enumerator and obtains a class enumerator for the video input
category. It enumerates all the monikers and binds each moniker to each object. It retrieves the filter’s
friendly name from the each object and does a comparison with friendly filter’s name assigned by user.
If found it, then send it back to the caller. Otherwise, it returns error message.

After adding video input filter to the filter graph, we add 1SampleGrabber filter
to the filter graph. 1SampleGrabber filter would call a function as a callback on every
frame. The ISampleGrabber interface is queried from ISampleGrabber filter. We

61

specify video RGB24 media type and set working mode as continuous with no buffer
through 1SampleGrabber interface. The SampleCB callback function is set through

ISampleGrabber interface.

i
// The frame callback function called on each frame
// We can add the processing code in this function
STDHETHODIMP SampleCB(double SampleTime, IHMediaSample =pSample){
// get current media type
UIDEOINFOHEADER =puvi = (VIDEDINFOHEADER =) mt.pbFormat;

BYTE =pData; // Pointer to the actual image buffer
long 1Datalen; // Holds length of any given sample
int iPixel; // Used to loop through the image pixels

pSample->GetPointer(&pData);

1Datalen = pSample->GetSize(};

/f Get the image properties from the BITHAPINFOHEADER

int iPixelSize = puvi->bmiHeader.biBitCount / 8;

int cxImage pvi->bmiHeader .biWidth;

int cylmage pvi->bmiHeader .biHeight;

int cbImage cylmage = cxImage = iPixelSize;

int numPixels cxImage * cylmage;

BYTE =prgb = (BYTE=) pData;

// convert to grayscale image

for (iPixel=8; iPixel < numPixels; iPixel++, prgb+=iPixelSize) {
=(prgh + 1) = =(prgb); // G channel
=(prgb + 2} *(prgb); // R channel

H

return 8;

This function converts color image to grayscale image and sends it back to caller.

After adding video input filter and“ISampleGrabber filter, we connect both filters

by using ConnectFilters function.

FELFETERTERTELLET T T ERIEITEELEET T ERI T EL LTI T ERIEIIERLEEIEETERIEEITEL T
HRESULT ConnectFilters(

IGraphBuilder =pGraph,

IBaseFilter =pSrc,

IBaseFilter =xpDest)

if ((pGraph == NULL) || {pSrc == NULL) || (pDest == MULL})

return E_POINTER;
H

/f Find an output pin on the first filter.

IPin =pOut = @;

HRESULT hr = GetUncunnectedPin(pSrc, PINDIR_OUTPUT, &pOut);
if (FAILED{hr))

AfxHessageBox("'fail get unconnected pin ");
return hr;

62

/7 Find an input pin on the downstream filter.
IPin =pIn = 8;
hr = GetUnconnectedPin{pDest, PINDIR_INPUT, &pIn);
if (FAILED{hr)})
1
AfxMessageBox("fail get unconnected pin *});
return hr;
b
/7 Try to connect them.
hr = pGraph->Connect{pOut, pIn};

pIn->Release(};
pOut->Release();
return hr;

This function finds a first output pin on the source filter and a first input pin on the downstream filter
by using GetUnconnectedPin function. Finally, we connect two filters by connect method of filter

graph manager.

FIEPEEFEPERIET IR LI I PRI TR AT IR E TR ET IR LR ET PRI TR R I EAHEIETE P IEiE LY
HRESULT GetUnconnectedPin(

IBaseFilter =pFilter, // Pointer to the filter.

PIN DIRECTION PinDir, // Direction of the pin to find.

IPin *=ppPin) /# Receives a pointer to the pin.

=ppPin = B;
IEnumPins *pEnum = @;
IPin =pPin = 8;
HRESULT hr = pFilter->EnumPins(&pEnum);
if {FAILED{hr})
{
return hr;
}
while (pEnum->Hext{1, &pPin, NULL) == S_OK)

PIN_DIRECTION ThisPinDir;
pPin->QueryDirection{&ThisPinDir};
if (ThisPinDir == PinDir)
{
IPin =pTmp = B;
hr = pPin->ConnectedTo{&pTmp};
if (SUCCEEDED(hr)) // Already connected, not the pin we want.
{
pTmp->Release();

else // Unconnected, this is the pin we want.

{
pEnum->Release();
*ppPin = pPin;
return S_OK;

¥

e
pPin->Release();

¥

pEnun->:Release();

/# Did not find a matching pin.
return E_FAIL;

This function finds a first unconnected input/output pin on the filter depended on PinDir’s parameter.

After connecting video input filter and ISampleGrabber filter, we find an output

pin on the ISampleGrabber filter and render it.

63

Finally, we send the video to the main window and run the graph.
6. Examining releaseWebcamCap function

FEFFFFEF AT PR P TP i T EFEFFFFiiiifiiss
int releasellebcamCap(){
HRESULT hr;
hr = pControl->Stop();
pProxyFilter->Release();
pVideoInputFilter->Release();
pControl->Release (};
pGraph->Release (};
Colninitialize()};
return hr;

This function releases all the things and cleans up.

7. Examining OnOK and OnCancel functions

void CDX_CU2D1g::0n0K()
{
HRESULT hr;
ff Start the webcam
hr=webcamCap(this->m_hUnd);
if (FAILED{hr})) CDialog::0OnCancel{};
¥

void CDX_CU2D1g::0OnCancel()
{
/7 Release the webcam
releaseWebcamCap() ;
Chialog::0OnCancel();

The OnOK function calls the webcamCap function to implement the webcam

capture operation. The OnCancel function calls the releaseWebcamCap function to

release all global variables and exit the main program.

64

6.2. Simple Capturing Video from A

Webcam with OpenCV

‘ Application ‘
I
Method Calls
Filter Graph Manager
Source Filter Proxy Transform Filter Renderer
(webcam) Filter

. Proxy Transform Interface
DirectShow

A

h 4

A) Callback Function
OpenCV

Fig 6-2 The block diagram of video capturing from:webcam by using DirectShow and OpenCV

This application captures video inputs from a Logitech webcam, processes the image

sequence by using OpenCV, and renders it.
1. Create a dialog-based application

This application can easily be created using the MFC application wizard. The name of
the application is DX_CV2. VC++ should create a simple OK/Cancel Dialog for you.
The class with a name ending by DIg will contain the member functions that control

the widget of the dialog.
2. Include header files

Add the following header file to the DX_CV2DlIg.cpp file

65

LN NN NN NN NN NN EN Ny EN N

#tinclude <DShow.h> // include DirectShow interface

#include "cw.h" // include core library interface

#include <{initquid.h> /4 include it for using ProxyTransform filter
#include "iProxyTrans.h" /4 include ProxyTransform filter interface

#include “ProxyTransuids.h” // include ProxyTransform filter GUID

3. Declare global variables

Declare the following global variables in the DX_CV2DlIg.cpp file

IGraphBuilder =pGraph; // Graph builder object
IMediaControl =pControl = HULL; /f Hedia control object
IBaseFilter =pUideoInputFilter = MNULL; // Uideo Capture filter
IBaseFilter* pProxyFilter = HULL; /f Proxy Transfornm filter

4. Declare Function Prototype

Declare the following function prototypes in the DX_CV2DlIg.cpp file

// Function Prototype

int webcamCap(HWHD hund);

int releaselebcamCap(};

HRESULT GetUideoInputFilter(IBaseFilter== gottaFilter, wchar_t= matchHame};

HRESULT GetUnconnectedPin{IBaseFilter =pFilter, PIN_DIRECTIOH PinDir, IPin ==ppPin);
HRESULT ConnectFilters{IGraphBuilder =pGraph, IBaseFilter xpSrc, IBaseFilter =pDest);
void process{void* img);

5. Examining webcamCap function

FEELETFEF IR EFTE T F R IR FE i EEFdF i i i i F i i i i i Fi i i iiiiidirididiiifiiiisiiiy
int webcamCap{HWHD hund)

{
HRESULT hr;

/f Initialize the COM library
hr = CoInitialize(MULL};

// Create the Filter Graph Hanager.
hr = CoCreateInstance{CLSID_FilterGraph, @, CLSCTX_INPROC_SERUVER,
IID_IGraphBuilder, (void==*}&pGraph);
if (FAILED{hr)}){
AfzMessageBox{"ERROR- Could not initialize capture graph builder™);
return hr;

/f Using QuerylInterface on the graph builder,

/f get the Hedia Gontrol object.

hr = pGraph—)QueryInterFace(IID_IMediaBuntrol, (void =x)&pControl);
if (FAILED{hr})

{
AfzHessageBox(“ERROR - Could not create the Media Control object.™);
pGraph->Release();
Colninitialize();
return hr;
¥

66

// Houw create the video input filter from the webcam

/f and add it to the Filter Graph Hanager

hr = GetVideoInputFilter(&pVideoInputFilter, L"Logitech™);
if (SUCCEEDED{hr}) {

pGraph->AddFilter {pUideoInputFilter, L"Webcam Uideo Capture®™);

yelse{

H

AfzHessageBox (“ERROR - Could not create the video input filter.");
pControl->Release ();

pGraph->Release();

CoUninitialize();

return hr;

/¢ CGreate a proxy transform filter

/f and add it to the Filter Graph Hanager

IProxyTransforn=* pProxyTrans = MULL;
if{(FAILED{CoCreateInstance(CLSID_ProxyTransform, HULL,CLSCTX_IHMPROC_SERVER,

|
{

b

P
p

!

p
p

IID_IProxyTransform, (void=x)&pProxyTrans))
| tpProxyTrans)

AfxHessageBox ("ERROR - Could not create the proxy transform filter.");
pVideoInputFilter->Release();

pControl->Release ();

pGraph->Release();

CoUninitialize();

return E_NOINTERFACE;

ProxyTrans->Querylnterface(11D_IBaseFilter, (void==)&pProxyFilter);
Graph->AddFilter (pProxyFilter ,L"Proxy Filter"});

/ Set the proxy callback
ProxyTrans->set_transform{process, @};
ProxyTrans->Release();

£/ Connect video input filter and proxy transform filter
hr= ConnectFilters({pGraph, pVideoInputFilter, pProxyFilter);7/
if (FAILED(hr}) {
AfxHMessageBox("ERROR - Could not connect two filters "');
pPruxyFilter—)Helease {):
pUideoInputFilter->Release();
pControl->Release ();
pGraph->Release(};
Colninitialize();
return hr;
e

£/ Find an output pin on the proxy filter.
/f and render it
IPin *pOut = @;
GetUncunnectedPin(pPruxyFilter, PINDIR_OUTPUT, &pOut);
hr=pGraph->Rende+ (pOut});
pOut->Release();
if (FAILED{hr}) {
AfxMessageBox("ERROR - Could not render the proxy filter ");
pPruxyFilter—)Relea5e ();
pVideoInputFilter->Release();
pControl->Release ();
pGraph->Release();
CoUninitialize{);
return hr;

¥

f/f Send the video to main windouw

IVideoWindow =pUidWin = HULL;
pGraph->QueryInterface(IID_IVideoWindow, {void *x*)&pUidWin);
pYidWin->put_0Owner { (OAHWHD)hwnd) ;
pUidwin->put_WindowStyle(WS_CHILD | WS_CLIPSIBLINGS);

RECT rcC;

GetClientRect{hwnd,&rc);

pVidWin->SetWindowPosition (8,08,rc.right-188,rc.bottom);
pYidWin->Release ();

67

/7 Run the graph
hr = pControl-—>Run(};
return hr;

;;;

Before COM can be used within a DirectShow application, the COM facilities

must be initialized.

Now, we create the filter graph manager. The filter graph manager implements an

interface that enables an application to build a filter graph.

Get the media control object by using Querylnterface on the graph builder. This

media control interface enables the graph to be run, paused and stopped.

Create the video input filter from the webcam by using GetVideolnputFilter

function and add it to the filter graph.,

After adding video input filter tothe filter graph, we add proxy transform filter
created by OpenCV group to the filter“graph. Proxy transform filter would call a
function as a callback on every frame: The IProxyTransform interface is queried from
proxy transform filter. The process callback function is set through IProxyTransform

interface.

FEEFITTTTIIFEFFFFFFFITITFIITEFFRI IR IIIIIII I IR IR FEF877077 70877 F7
void process{void* img) {

IplImage* image = reinterpret_cast<IplImage=>{img);

cvErode{ image, image, 8, 2);
¥

This function changes non-Iplimage into Iplimage data type. Iplimage data type is an image data type

supported by OpenCV group. Finally, it erodes image and sends it back to caller.

After adding video input filter and proxy transform filter, we connect both filters

by using ConnectFilters function.

68

After connecting video input filter and proxy transform filter, we find an output

pin on the proxy transform filter and render it.
Finally, we send the video to the main window and run the graph.
6. Examining releaseWebcamCap function

FEFFFFEF AT PR P TP i T EFEFFFFiiiifiiss
int releasellebcamCap(){
HRESULT hr;
hr = pControl->Stop();
pProxyFilter->Release();
pVideoInputFilter->Release();
pControl->Release (};
pGraph->Release (};
Colninitialize()};
return hr;

This function releases all the things and cleans up.

7. Examining OnOK and OnCangcel-functions

void CDX_CU2D1g::0n0K()
{
HRESULT hr;
ff Start the webcam
hr=webcamCap(this->m_hUnd);
if (FAILED{hr})) CDialog::0OnCancel{};
¥

void CDX_CU2D1g::0OnCancel()
{

/7 Release the webcam
releaseWebcamCap() ;
Chialog::0OnCancel();

The OnOK function calls the webcamCap function to implement the webcam
capture operation. The OnCancel function calls the releaseWebcamCap function to

release all global variables and exit the main program.

69

6.3. Simple Controlling PTZ Camera

through RS232

This application controls Sony EVI D-70 PTZ camera through RS 232 by using

VISCA protocol that developed by Sony.
1. Create a win32 console application

This application can easily be created using the Win32 Console application wizard.
The name of the application is RS232_PTZ. VC++ should create a simple “Hello

World” console application for you..
2. Include header files
Add the following header file to'the RS232 PTZ.cppfile
#include <windows._.h> fffor serial communications device
3. Declare Function Prototype

Declare the following function prototypes in the RS232_PTZ.cpp file

void CameraOn{HANDLE= port);

void CameraOff{HANDLE* port};

void Home (HANDLE* port};

void ADDRESS_SET(HAMDLE= port};

void IF_CLEAR{HANDLE* port);

void sendCommand{HANDLE = port,BYTE =command};
int getCom{HANDLE=* port};

void getAckAck(HANDLE* port});

4. Examining main function

70

int main({int argc, char= argu[])

{
HAHDLE comPort;
DCB comPortSettings;
COMMTIMEOUTS comPortTimeouts;
/7 Open COM1 serial port with read and write access.
// Access to the object cannot be shared
/7 If the port was opened successfully the function returns
/7 the handle comPort descriptor to work with further on.
// If the port wasn't opened successfully the function wil return INUALID_HANDLE_UALUE.
comPort = CreateFile({"COM1:", GEHMERIC_READ | GEMERIC_WRITE,
8, NULL, OPEH_EXISTING, @, NULL);
if {comPort == INUALID_HANDLE_UALUE) {
printf{"ERROR - Could not open com portin™);
return 8;
H
// To set the size of the receiving and transmitting buffers.
/7 Transmit buffer > 16
// Receive buffer > ?
if (*SetupComm{comPort, 48, 28)) {
printf{“ERROR - Could not set com port buffer sizesin™);
return 8;
H
// set com port parameters
if (!GetComnState{comPort, &comPortSettings)) {
printf("ERROR - Could not get com port statewn”);
return 8;
}
conPortSettings.BaudRate = CBR_9688; // 96088 bps or 38480 bps
conPortSettings.ByteSize = 8; //The number of bits in the bytes transmitted and received.
conPortSettings.Parity = NOPARITY; // Mo parity scheme to be used
comPortSettings . StopBits = OMESTOPBIT;
comPortSettings.fAbortOnError = TRUE;// terminates all read and write operations
// with an error status if an error occurs.
if (*SetCommState{comPort, &comPortSettings)) {
printf("ERROR - Could not set com port statewn”);
return 8;
H
// Clear the command buffer of the camera using broadcast function
IF_CLEAR{&comPort) ;
#/ VISCA can support a daisy chain of up to seven attached cameras.
// Comfirm the address for first time conection using broadcast function
ADDRESS_SET{&comPort);
£/ Turn on PTZ camera
Cameraln{&comPort) ;
/7 Set the PTZ camera in home position
Home {&comPort};
Sleep(10080);
£/ Turn off PTZ camera
Cameralff{&comPort};
// close the port.
CloseHandle{comPort);
return 8;
H

First, we open COML1 serial port with read and write access. The access to the

object cannot be shared by other applications. If the port was opened successfully the
function returns the handle comPort descriptor to work with further on. Otherwise,

returns INVALID_HANDLE_VALUE.

Next, we set the size of the receiving and transmitting buffers. The maximum

transmit packet size is 16 bytes and the maximum receive packet size is unknown. We

71

assume that maximum receive packet size is 38 bytes. In order to guarantee the

communication between two devices, the buffer size is larger than packet size.

After setting the buffer size of the com port, we set the baud rate as 9600 bps and
the number of bits in the bytes transmitted and received as 8. No parity scheme to be
used. The application terminates all read and write operation when error occurs. The

number of stop bits to be used is one.

We clear the command buffer of the camera using IF_CLEAR function

r

void IF_CLEAR(HAMDLE* port)

{
BYTE buf[] = {6=88, 0=z01, 8z608, 0x61, OxFF};
sendCommand (port,buf};

This function sends the {0x88, 0x01, 0x00, 0x01,-0xFF}:command to sendCommand function.

/7 Send a command and wait ACK or completion message from camera
void sendCommand{HANDLE * port ,BYTE =*command})
{
DWORD dummy ;
UriteFile(*port, command, sizeof{command), &dummy, HULL);
FlushFileBuffers({*port);
getAckAck{port);

Sleep(188);

This function sends the {0x88, 0x01, 0x00, 0x01, OxFF} command to the PTZ by using WriteFile
function. Then the transmit buffer will be flushed. Finally, the function waits ACK message and
completion message from the PTZ through getAckAck function.

/f Gets ACK message and Completion message
void getAckAck{HANDLE= port}

{
int packet = getCom{port);
while {{packet ?= OxFF) && (packet t*= -1})
packet = getCom{port);
H

This function reads a byte of data from camera through getCom function. This function leaves until get

the ACK message, completion message, or fail to read data from the camera.

72

// Get a byte of data from the camera
int getCom{HANDLE= port}
{

DWORD dummy ;

BYTE value;

int rv;

ru = ReadFile(=*port, &walue, 1, &dummy, HULL);
if {rv == B8)

return -1;
else

return (intjualue;

This function reads a byte of data from camera through ReadFile function. If the ReadFile function

successfully read a byte of data it returns value. Otherwise, returns -1.

void ADDRESS_SET({HAHDLE=* port)

4
BYTE buf[] = {8x88, Bx30, Bx01, BxFF};
sendCommand{port,buf});

}
void Home{HAHDLEx port)

4
BYTE buf[] = {8x81, 8z91, 6x06, Bx04, OxFF};
sendCommand{port,buf});

}

void CameraOff (HANDLE* port)

{
BYTE buf[] = {6x81, 8z81, 8x04, 0z080, BxA3, O2FF};
sendCommand{port,buf);

H

void CameraOn{HANDLE* port)

4
BYTE buf[] = {8x81, 8x81, Bx04, 0x80, Bx82, OxFF};
sendCommand{port ,buf};

}

If the ADDRESS SET, CameraOn, Home and CameraOff functions are

compared with IF_CLEAR function, the difference is the command only.

The ADDRESS_SET function finds the address of the camera for the first time

connection by using broadcast method.

The PTZ camera can be turned on by using CameraOn function. The Home

function sets the PTZ camera in home position.

Finally, the PTZ camera can be turned off by using CameraOff function and the

port is closed by using CloseHandle function.

73

	封面.pdf
	Thesis of Dual Camera Tracking System V29_書名頁_watermark.pdf
	書名頁.pdf
	Thesis of Dual Camera Tracking System V29.pdf
	1. Introduction
	1.1. Motivation
	1.2. System Overview
	
	1.3. Thesis Outline

	2. Theory of Dual Camera Tracking System
	2.1. Target Tracking System
	2.1.1. Block-based or Pixel-based Foreground/background Segmentation
	2.1.2. Simple Foreground/background Segmentation
	2.1.3. Blobs Tracking

	2.2. Coordinate Transformation System
	2.2.1. Coordinate System Changes and Rigid Transformations
	2.2.2. Intrinsic camera parameters
	2.2.3. Homography Derivation
	2.2.4. Homography Calculation
	2.2.5. Generation of Pan, Tilt and Zoom Tables
	2.2.6. Execution of Coordinate Transformation System

	3. Experimental Results
	3.1. Test application and system
	3.2. Result of Target Tracking System
	3.3. Module of Homography
	3.4. Result of Whole System

	4. Conclusion and Future Works
	5. References
	6. Appendix of Programming
	6.1. Simple Capturing Video from A Webcam
	6.2. Simple Capturing Video from A Webcam with OpenCV
	6.3. Simple Controlling PTZ Camera through RS232

