

 國 立 交 通 大 學

電信工程學系

碩 士 論 文

低密度校驗碼之信度傳播排程及其性能分析

Belief Propagation Based Decoding Schedules for

Low-Density Parity Check Codes and their
Behavior Analysis

研究生：王詩堯

指導教授：蘇育德教授

中 華 民 國 96 年 7 月

低密度校驗碼之信度傳播排程及其性能分析

Belief Propagation Based Decoding Schedules for Low-Density

Parity Check Codes and their Behavior Analysis

研究生：王詩堯 Student: Shihyao Wang

指導教授：蘇育德 教授 Advisor: Prof. Yu T. Su

國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

A Thesis
Submitted to Department of Communication Engineering

Collage of Electrical and Computer Engineering
National Chiao Tung University

in Partial Fulfillment of Requirements
for the Degree of
Master of Science

in Communication Engineering
July 2007

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 六 年 七 月

i

Belief Propagation Based Decoding Schedules for
Low-Density Parity Check Codes and their Behavior

Analysis

Student: Shihyao Wang Advisor: Yu T. Su

Department of Communications Engineering
National Chiao Tung University

Abstract

Low density parity check (LDPC) codes form a class of sparse graph codes that offer
powerful error-correcting capability. For decoding LDPC codes, the belief propagation
(BP) or sum-product algorithm (SPA) is usually used. However, implementation of
a BP-based LDPC decoder often requires large memory space and very high degree
of parallelism using many component soft-in soft-output (SISO) decoding units and
complex interconnect network to perform message passing from variable nodes to check
nodes or vice versa. An obvious solution for a relatively long code is to divide a decoding
iteration into several serial sub-iterations in which a sub-iteration performs only part of
the complete parallel message-passing operation.

There are several architectures and decoding schedules for serial implementation
of LDPC decoders. We are interested in two of the more popular ones, namely, the
horizontal shuffled BP (HSBP) and the vertical shuffled BP (VSBP) algorithms. It
has been shown that, with a proper architecture and scheduling, such parallel-serial
decoding methods not only require less storage space but also give faster convergence
and, sometimes, better performance. A shortcoming of these existing schedules is that
they are more concerned with reduction of memory and interconnect complexities and
do not consider the short cycle effect which is the dominant factor limiting a BP-based
algorithm’s bit error rate (BER) performance.

We propose a simple scheduling approach for reducing the short-cycle effect in a BP-
based decoding algorithm. The impact of a short cycle can be lessened if one alternates
the decoding schedule so that the cycle length can be effectively extended. The HSBP
and VSBP algorithms partition the check or variable nodes into several groups where
a group consists of (almost) the same number of consecutive nodes according to the
natural order of the parity-check matrix and carry out the BP process group-by-group.
Our algorithm groups the check nodes according to the number of short cycles a node
is involved. Message-passing to a group with more short cycles is given lower priority in
our decoding schedule. The resulting decoding algorithm is referred to as the cycle-based
HSBP (or VSHP) algorithm

Another major contribution of this thesis is the development of a convenient and
effective method to explain and predict both the performance and the convergence be-
havior of a candidate LDPC code and the corresponding decoding algorithm/schedule.

ii

We define a function called message profile that describes the composition of the ex-
trinsic information associated with a bit node. This function measures how much each
bit node has contributed to the extrinsic information of a bit from the beginning of the
decoding process up to the end of a given iteration. The normalized correlation spread
(NCS) of a bit, defined as the mean-to-root-mean-squared ratio of its message profile, is
then used to evaluate the degree of local flooding uniformity of a bit node in a particular
iteration. The NCS of a bit node usually converge in just a few iterations and more
importantly, all NCS’ converge to the same steady-state value though not uniformly.
Numerical results indicate that a BP-based algorithm converges when the NCSs of all
bits converge, i.e., the convergence of the message-profile functions is consistent with
convergence of the decoder. Furthermore, it is found that the decoder performance is
directly related to the common steady state value–the larger it is, the better the BER
performance becomes.

iii

2007 7

iv

Contents

Chinese Abstract i

English Abstract ii

Acknowledgements iv

Contents v

List of Figures vii

1 Introduction 1

2 Low-Density Parity Check Codes 5

2.1 Factor Graphs . 5

2.2 The Belief Propagation Algorithm . 7

3 Shuffled Iterative Decoding of LDPC Codes 9

3.1 Multi-stage Factor Graphs of LDPC codes 9

3.2 Shuffled Iterative Decoding Algorithms 10

3.2.1 Vertical Shuffled Belief Propagation Algorithm 11

3.2.2 Horizontal Shuffled Belief Propagation Algorithm [11] 12

4 A Novel Scheduling Method for the HSBP Algorithm 15

4.1 A Decoding Schedule for Reducing Short Cycle Effects 15

4.2 Searching for Length-4 Cycles . 17

v

5 Message Flow Distribution and Decoder Behaviors 21

5.1 Profile of the Conventional BP Algorithm 21

5.2 Profile of the VSBP Algorithm . 23

5.3 Profile for the HSBP Algorithm . 24

6 Numerical Results and Discussion 28

6.1 Error Rate Performance Comparison . 28

6.2 Profile Comparison . 31

6.3 Comparison between LDPC Codes in 802.11n and 802.16e 39

7 Conclusions 49

Bibliography 49

Appendix 51

A Specification of IEEE 802.11n [15] 52

B Specification of IEEE 802.16e [17] 54

vi

List of Figures

2.1 Two classes of factor nodes. 6

2.2 A typical factor graph. 6

2.3 A factor graph of a (7,3) code. 7

3.1 A MSFG that describes a conventional BP decoding (schedule) of a (7,3)

code. 10

3.2 The MSFG representation of a VSBP decoding schedule of a (7,3) code. . 12

3.3 A MSFG that describes the HSBP decoding schedule of a (7,3) code. The

dash lines represent the (message) flooding that are by-passed. 14

4.1 Flow chart of the proposed searching algorithm that computes the number

of length-2k cycles. 18

4.2 MSFG representations of a cycle-factor based (a) and conventional (b)

HSBP algorithms for an LDPC code with G=2. 20

5.1 Message flow of bit node V1 at the first iteration. 27

6.1 Package error rate performance of the (240, 120) QC-LDPC code with

Imax = 5, 10, G=2 and different decoding schedules. 29

6.2 Package error rate performance the (480, 240) QC-LDPC code with Imax =

5, 10 and G=2. 30

6.3 Package error rate performance of the (1080, 540) QC-LDPC code with

Imax = 5, 10 and G=2. 30

vii

6.4 Package error rate performance of the (480,240) QC-LDPC code with

Imax = 5, 10 and G=4. 31

6.5 Package error rate performance of the (1080, 480) QC-LDPC code with

Imax = 5, 10 and G=4. 32

6.6 Profile NCR behavior of the C-BP schedule for the (480,240) QC-LDPC

code. 33

6.7 Profile NCR behavior of the C-HSBP algorithm with G=2 in decoding

the (480,240) QC-LDPC code. 33

6.8 Profile NCR behavior of the CB-HSBP algorithm with G=2 in decoding

the (480,240) QC-LDPC code. 34

6.9 Profile NCR behavior of the C-VSBP algorithm with G=2 for the (480,240)

QC-LDPC code. 34

6.10 Profile mean of the C-BP algorithm in decoding the (480,240) QC-LDPC

code. 35

6.11 Profile mean of the C-HSBP algorithm with G=2 in decoding the (480,240)

QC-LDPC code. 35

6.12 Profile mean of the CB-HSBP schedule with G=2in decoding the (480,240)

QC-LDPC code. 36

6.13 Profile spread (standard deviation) of the C-BP algorithm in decoding

the (480,240) QC-LDPC code. 36

6.14 Profile spread (standard deviation) of the C-HSBP algorithm with G=2

in decoding the (480,240) QC-LDPC code. 37

6.15 Profile spread (standard deviation) behavior of the CB-HSBP algorithm

with G=2 for the (480,240) QC-LDPC code. 37

6.16 Profile mean and spread behaviors of the C-HSBP algorithm with G=2

in decoding the (480,240) QC-LDPC code. 38

viii

6.17 Profile mean and spread behaviors of the C-HSBP algorithm with G=2

in decoding the (480,240) QC-LDPC code. 38

6.18 Profile mean and spread behaviors of the CB-HSBP algorithm with G=2

for the (480,240) QC-LDPC code. 39

6.19 Profile NCR behavior of the C-HSBP algorithm with G=4 for the (480,240)

QC-LDPC code. 40

6.20 Profile NCR behavior of the CB-HSBP algorithm with G=4 for the (480, 240)

QC-LDPC code. 40

6.21 Profile NCR behavior of the C-VSBP algorithm with G=4 for the (480, 240)

QC-LDPC code. 41

6.22 Profile mean of the C-HSBP algorithm with G=4 for decoding the (480,240)

QC-LDPC code. 41

6.23 Profile mean of the CB-HSBP algorithm with G=4 for the (480, 240) QC-

LDPC code. 42

6.24 Profile spread of the C-HSBP algorithm with G=4 for the (480, 240) QC-

LDPC code. 42

6.25 Profile spread of the CB-HSBP algorithm with G=4 for the (480, 240)

QC-LDPC code. 43

6.26 Profile mean and spread behaviors of the C-HSBP algorithm with G=4

for the (480, 240) QC-LDPC code. 43

6.27 Profile mean and spread behaviors of the CB-HSBP algorithm with G=4

for the (480, 240) QC-LDPC code. 44

6.28 Profile NCR behavior of the code derived from the base model matrix of

IEEE 802.11n. 45

6.29 Profile NCR behavior of the code derived from the base model matrix of

IEEE 802.16e. 45

ix

6.30 The PER performance of the (480,240) QC-LDPC code with the C-BP

decoder. 46

6.31 Profile NCR behavior of the BP algorithm for the (480, 240) QC-LDPC

code in 802.16e. 46

6.32 Profile mean of the BP algorithm for the (480, 240) QC-LDPC code in

802.16e. 47

6.33 Profile spread of the BP algorithm for the (480, 240) QC-LDPC code in

802.16e. 47

6.34 Profile mean and spread behaviors of the conventional BP algorithm for

the (480, 240) QC-LDPC code in 802.16e. 48

x

Chapter 1

Introduction

Belief propagation (BP) [5] is an efficient iterative algorithm for computing marginals

of multivariate functions on a graphical model most commonly used in communication

theory and artificial intelligence. The algorithm is supposed to solve inference problems

that require the evaluation of some marginal (density) functions and/or find their ex-

tremes. Pearl [1] formulated this algorithm on trees in 1982, and Kim and Pearl (in 1983)

[2] on polytrees. Pearl [3] has suggested this algorithm as an approximation for general

(loopy) networks. Since then it had been shown that many known algorithms like the

forward-backward algorithm, the Viterbi algorithm, Kalman filter, Gallager’s algorithm

for decoding low density parity check (LDPC) codes, etc., are all special instances of the

BP algorithm (now also known as the sum-product algorithm).

The BP algorithm is an efficient inference algorithm on trees and has demonstrated

empirical success in numerous applications that involve loopy networks including LDPC

codes, turbo codes, free energy approximation, and satisfiability. It is commonly used

in pairwise Markov random fields (MRFs with a maximum clique size of 2), Bayesian

networks, and factor graphs.

We are interested in the application of the BP algorithm, regarded as a distributive

algorithm, for decoding LDPC codes [6]. There are two kinds of functions, check node

and bit node functions, in the bipartite factor graph associated with an LDPC code.

Both functions generally apply maximum a posteriori (MAP) rule to provide extrinsic

1

information. At each decoding round, all bit nodes generate and flood the extrinsic

information to check nodes. Then all check nodes use the incoming information as a

priori information and update extrinsic information and flood the information for all bit

nodes as a priori information in the next iteration. In general, the more iterations (or

decoding rounds) processed, the more information gathered and thus the less error rate

achieved.

BP decoding on the bipartite graph representing an LDPC code is naturally suited

for parallel processing. However, except for short codes, hardware implementation of a

parallel decoder requires large memory, high computational complexity and very compli-

cated interconnection. A practical alternative would be to serialize the decoding process

so that an iteration is divided into many cascaded sub-iterations. The vertical shuf-

fled BP (VSBP) algorithm [9, 13] proposed in 2004 divides, at each iteration, all bit

nodes into multiple groups and then sequentially processes these groups. Because the

decoder passes the updated bit-to-check messages from the former groups, it can obtain

more reliable information and thus reduce the required number of iterations compared

with the BP algorithm at the fixed maximum number of iterations (Imax). Moreover, it

sends the updated information right to the corresponding nodes, eliminating the need

of temporary storage.

Another serial iterative decoding algorithm is called the horizontal shuffled BP (HSBP)

algorithm [10]. The HSBP algorithm decouples the computation of check node functions

into multiple groups and performs BP on each group sequentially. The extrinsic infor-

mation just updated in a group is then forwarded to the corresponding nodes in the

immediate neighboring groups so that more reliable information is used to compute the

new log-likelihood ratio. As a result, the required number of iterations is reduced and,

given a moderate Imax, the HSBP algorithm outperforms the BP algorithm.

For the above two SBP algorithms, the partition of bit or check nodes in the factor

2

graph of an LDPC code is carried out according to the original natural order determined

by the parity-check matrix. The resulting decoding schedules do not make any effort to

lessen the impact of short cycles which makes the BP algorithm sends highly correlated

message back to a node in just a few (2 or 3) iterations. Since the less correlated the

messages used in updating a node’s extrinsic information the more reliable the updated

information becomes, short cycles are obviously undesirable. We propose a new decoding

schedule that suppresses the detrimental effect of short cycles. The schedule is based

on a node partition criterion that counts the number of short cycles a node is involved,

assigns those nodes with the same cycle number to the same group and prioritizes the

decoding of those groups with the smallest cycle number.

To understand and predict both the performance and the convergence behavior of the

proposed decoding schedule, we develop an analytic framework based on a function which

describes the composition of the extrinsic information associated with a bit at a given

time. This function, which we call the message profile, measures how much each bit node

has contributed to the extrinsic information of a bit. The contribution is traced through

a given schedule (decoding path) that starts with the initial message computation at

the contribution node and ends with the receiving node at a given iteration. Hence the

profile is a function of both time and constituent nodes. At a given time we define the

normalized correlation spread (NCS) of a bit as the mean-to-root-mean-squared ratio of

its message profile. This parameter is then used to evaluate the degree of local flooding

uniformity of a bit node up to a particular iteration. The NCS regarded a function

of time (iteration) has the surprising but desired properties that it converges fast and

the family of NCS’ associated with all constituent nodes converge to the same steady-

state value though not uniformly. Numerical results indicate that a BP-based algorithm

converges when all NCS’ converge, i.e., the decoder will not converge until all message

profiles converge. Hence the convergence of the decoder is consistent with that of the

NCS family. We further found that the decoder performance is directly related to the

3

common steady state value–the larger it is, the better the BER performance becomes.

We also apply the proposed analytic tool to predict the transient and steady state

behavior of established LDPC codes and decoding schedules. The simulation results

verify the correctness of our prediction and indicate that it can applied to any LDPC

code and the corresponding decoding algorithm/schedule.

The rest of this thesis is organized as follows. Chapter 2 gives a brief overview of

the LDPC code, its factor graph representation and the associated BP algorithm. In

Chapter 3 we first introduce a graph representation called multi-stage factor graphs

(MSFGs) for describing the time evolution of a decoding algorithm’s message-passing

process. We then review two SBP algorithms and construct their MSFGs to trace the

decoding paths and message-passing flows. Different decoding schedules can thus be

easily visualized and their effects assessed. The new scheduling approach is presented in

following chapter and the proposed analytic method for predicting the convergence and

performance of an LDPC decoder is detailed in Chapter 5. We provide some numerical

examples and discuss the behavior trends in Chapter 6. The last chapter contains some

concluding remarks and suggests some topics for future research.

4

Chapter 2

Low-Density Parity Check Codes

LDPC codes belong to the class of linear block codes and were invented by Gallager in

1960 [6]. The name of the code was derived from the characteristic of the corresponding

parity check matrix H because the number of 1’s is much smaller than that 0’s in H or

equivalently, the percentage (density) of 1’s in H is low. An iterative decoding algorithm

that gives near-maximum-likelihood performance was also proposed by Gallager.

For an LDPC code to have effective error-correcting capability, it must have a large

minimum distance which, as Gallager had shown, implies the code length must be long

enough. But even with Gallager’s algorithm, decoding of long LDPC codes was imprac-

tical in the early 1960’s. Hence, LDPC codes are almost totally forgotten until they were

rediscovered by MacKay and Neal [7] in 1996. By that time Gallager’s algorithm had

become implementable and the code had since became a subject of intensive research as

well as commercial interest.

2.1 Factor Graphs

Nowadays, the structure and decoding of an LDPC code are usually described and ana-

lyzed by a graphic representation called factor graphs. Factor graphs are generalization

of the so-called Tanner graphs which were proposed by Michael Tanner to create larger

codes from smaller ones using recursive techniques. Tanner’s approach, in turn, was a

generalization of a technique Elias developed for product codes.

5

A factor graph is a bipartite graphic representation [8] that expresses the structure

of factorization g(x1, · · · , xn) =
∏

j fj(Xj), where fj has the subset of all variables

(x1, · · · , xn) in g. A factor graph can be divided into two groups. One is inclusive of

variable nodes for variable x and the other contains of factor nodes for local functions

f . Any two nodes from different groups are connected by a edge if xi is an argument

of fj. In Fig. 2.1, there are two classes of factor nodes. The factor node in Fig. 2.1

= +

E q u a l c o n s t r a i n t Z e r o - s u m c o n s t r a i n t
 (a) (b)

x1 x2 x1 x2

x3

Figure 2.1: Two classes of factor nodes.

(a) has the equal constraint and its local function is δ(x1 − x2). The other in Fig. 2.1

(b) has the zero-sum constraint and its local function is δ(x1 + x2 + x3). Then we give

an example which factor graph is showed in Fig. 2.2. The function g is represented by

g(x1, · · · , x6) = δ(x1 + x2 + x5)δ(x2 + x3 + x6)δ(x1 + x3 + x4)
∏j=6

j=1 f(yj|xj).

+ ++

X 1 1 X 2 X 6 X 5 X 4 X 3

f(y 1 | x 1) f(y 2 | x 2) f(y 6 | x 6)f(y 5 | x 5)f(y 4 | x 4)f(y 3 | x 3)

Figure 2.2: A typical factor graph.

6

V1 V2 V3 V4 V5 V6 V7

C1 C3C2 C4

Figure 2.3: A factor graph of a (7,3) code.

2.2 The Belief Propagation Algorithm

LDPC codes are often decoded by using the belief propagation (BP) or Gallager

algorithm [5, 8] and, for some long codes with large number of decoding iterations, the

error rate performance can be very close to that predicted by Shannon. The operation

of the BP algorithm used in the decoding of a LDPC codes is conveniently described by

the corresponding factor graph. A factor graph of an LDPC code can be partitioned into

two sparse bipartite subgraphs. The upper subgraph contains N nodes, (V1, V2,, VN),

called bit nodes and the lower subgraph contains M nodes, (C1, C2,, CM), called

check nodes. The function in the check nodes have to satisfy the relation HT V = 0. The

function of the bit nodes in a BP decoder is to combine the information sent from the

check nodes. We depict the factor graph of a (7,3) code in Fig. 2.3.

For convenience of reference, we use the same notations as those used in [5, 8]. For

an M ×N parity check matrix H = [Hmn], we denote the set of all bit nodes connecting

to check node m by N (m) = {n : Hmn = 1} and the set of all check nodes connecting

to bit node n by M(n) = {m : Hmn = 1}. Assume a codeword {wn} is sent by using

binary phase shift keying (BPSK) signals over an additive white Gaussian noise (AWGN)

channel with zero mean and variance N0/2 and then let {yn} be the received signals.

Let Fn be the log-likelihood ratio (LLR) of bit node n and {εi
mn} be the message

which is sent from check node m to bit node n, {zi
mn} the message passed from bit node

7

n to check node m at the ith iteration. We also denote by {zi
n} the a posteriori LLR of

bit node n.

For the conventional BP algorithm, all values of check-to-bit messages εi
mn at the

ith iteration are updated by using the values of bit-to-check messages zi−1
mn at the (i −

1)th iteration. Furthermore, all new values of bit-to-check messages zi
mn are updated

by passing the values of newly updated check-to-bit messages εi
mn. The detailed BP

algorithm is described below.

1. Initialization: set i = 1 and the maximum number of iterations=Imax. Initialize

Fn = 4yn/N0. For each m, n, set z0
mn = Fn.

2. • At check nodes: ∀ m, 1 ≤ m ≤ M , and each n ∈ M(m), compute

τ i
mn

=
∏

n′∈N (m)\n
tanh

(
zi−1

mn′

2

)
(2.1)

εi
mn

= log
1 + τ i

mn

1 − τ i
mn

(2.2)

• At bit nodes: ∀ n, 1 ≤ n ≤ N , and each m ∈ M(n), calculate

zi
mn

= Fn +
∑

m′∈M(n)\m
εi

m′n
(2.3)

zi
n = Fn +

∑
m′∈M(n)

εi

m′n
(2.4)

3. Make hard decision on {zi
n} to obtain a tentative decoded codeword {Di

n}, i.e. if

zi
n > 0, Di

n = 0, otherwise Di
n = 1. If HDiT = 0, i.e. all syndromes equal to zero,

or the maximum number of iterations Imax is reached, stop operation and {Di
n} is

the decoded codeword. Otherwise, set i = i + 1 and go to Step 2.

8

Chapter 3

Shuffled Iterative Decoding of
LDPC Codes

3.1 Multi-stage Factor Graphs of LDPC codes

Multi-stage factor graphs (MSFG) [10] is a useful trellis-like graph for representing

message-passing process of an iterative decoder. Such a graphic representation is used

to investigate the effect of various decoding algorithms/schedules. One can easily dis-

tinguish a decoding procedure (path) in an MSFG from other paths or find candidate

paths of different lengths from bit node Vi to bit node Vj. We also use the MSFG for

search cycles of a code and determine its girth (the length of the shortest cycle).

Example 1 For the code with the parity check matrix H given below, the MSFG repre-

sentation of the BP decoder is shown in Fig. 3.1.

H=

⎡
⎢⎢⎣

1 1 0 0 1 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
1 0 0 1 1 1 1

⎤
⎥⎥⎦

In Fig. 3.1, the message originated from bit node V1, after travelling through C4, V5, C4,

will return to V1 again. Hence the message generated at bit node V1 goes back to itself

after only 2 (time) stages and the corresponding path forms a short cycle of length 4,

which is the girth of the LDPC code.

9

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3 V4 V5 V6 V7

C1 C3C2 C4

C1 C2 C3 C4

Figure 3.1: A MSFG that describes a conventional BP decoding (schedule) of a (7,3)
code.

3.2 Shuffled Iterative Decoding Algorithms

The BP algorithm, as described by its MSFG or factor graph representation, can be

processed in fully parallelism with no memory contention concern. However, such a

fully parallel implementation requires large number of processing units, high computing

complexity, large memory space and very complicate routing network connecting the

processors and memory banks [16]. The codeword length of the LDPC code used is

generally large and it is very difficult and costly if not impractical to realize a fully

parallel decoder for any LDPC code longer than, say, 500. It is natural to have a serial

architecture that serializes the decoding process by dividing a single iteration into several

sub-iterations such that a reasonable number of processing units can perform the message

computing and passing over a limited number nodes in each sub-iteration. BP within a

group of nodes is performed in parallel but groups are processes serially. The parallel-

10

serial architecture is often referred to as shuffled decoding. Depending on whether bit

nodes or check nodes are partitioned, we have the vertical shuffled BP algorithm or the

horizontal shuffled BP algorithm. In the ensuing discussion we use the same notations

as those defined in Chapter 2.

3.2.1 Vertical Shuffled Belief Propagation Algorithm

The vertical shuffled belief propagation (VSBP) algorithm [6, 9, 13] divides all bit

nodes into several groups and decoding is carried out in group-by-group manner. The

conventional BP algorithm uses all bit-to-check messages zi−1
mn obtained at the (i − 1)th

iteration to update the values of check-to-bit messages εi
mn at the ith iteration. It then

use the newly updated εi
mn to produce zi

mn. However, for the VSBP algorithm, after

a sub-iteration is performed on a group, some bit-to-check messages become available

and can be sent to the neighboring group for subsequent decoding sub-iteration. hence,

instead of zi−1
mn , all latest updated bit-to-check messages zi

mn can be used [6].

More specifically, in each group, the VSBP algorithm applies the newly updated

bit-to-check messages zi
mn (obtained in the previous group) to generate for the nodes

within the group new values of the check-to-bit messages in parallel as the conventional

BP algorithm does. We summarize the VSBP algorithm as follows and depict the

corresponding MSFG in Fig. 3.2.

1. Initialization: Set i = 1 and the maximum number of iterations=Imax. Initialize

∀ m,n, set z0
mn = Fn = 4yn/N0.

2. For 1 ≤ g ≤ G,

• At check nodes: ∀ n, 1 ≤ n ≤ N , and each m ∈ M(n), calculate

τ i
mn =

∏
n′∈N (m)\n

n′≤g·NG

tanh

(
zi

mn′

2

) ∏
n′∈N (m)\n

n′>g·NG

tanh

(
zi−1

mn′

2

)
(3.1)

εi
mn = log

1 + τ
mn

1 − τ
mn

(3.2)

11

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3 V4 V5 V6 V7

C1 C3C2 C4

C1 C2 C3 C4

Figure 3.2: The MSFG representation of a VSBP decoding schedule of a (7,3) code.

• At bit nodes: ∀ n, (g−1) ·NG+1 ≤ n ≤ g ·NG, and each m ∈ M(n), calculate

zi
mn

= Fn +
∑

m′∈M(n)\m
εi

m′n
(3.3)

3. At bit nodes: ∀ n, 1 ≤ n ≤ N , and each m ∈ M(n), calculate

zi
n = Fn +

∑
m′∈M(n)

εi

m′n
(3.4)

4. Make hard decisions on {Z i
n} to obtain a tentative decoded codeword {Di

n}. If

HDiT = 0, or the maximum number of iterations Imax is reached, stop decoding

and output {Di
n}. Otherwise, set i = i + 1 and go to Step 2.

3.2.2 Horizontal Shuffled Belief Propagation Algorithm [11]

In contrast to the VSBP algorithm, the horizontal shuffled belief propagation (HSBP)

algorithm partitions the check nodes into several groups and serialize the belief updates

12

in a group-by-group manner. The check node processors can use some bit-to-check

messages that are produced in the previous sub-iteration to generate more updated

LLR estimates. Before starting to update certain check-to-bit messages εi
mn at the ith

iteration, we update all values of bit-to-check messages zi
mn

′ for all bit nodes n
′
which

are connected to check node m but exclusive of bit node n. The newly updated messages

for bit node n are used to generate updated bit-to-check node messages, replacing zi
mn

by zmn. We summarize the HSBP algorithm in followings. The corresponding MSFG is

shown in Fig. 3.3.

1. Initialization: set i = 1 and the maximum number of iterations=IMAX . Initialize

Fn = 4yn/N0. For each m, n, set zmn = Fn.

2. Let G be the number of groups and MG be the number of check nodes in a group.

For 1 ≤ g ≤ G,

• At check nodes: ∀ m, (g − 1) · MG + 1 ≤ m ≤ g · MG and each n ∈ N (m),

calculate

τ i
mn

=
∏

n′∈N (m)\n
tanh

(
z

mn′

2

)
(3.5)

εi
mn

= log
1 + τ i

mn

1 − τ i
mn

(3.6)

• At bit nodes: ∀ n, 1 ≤ n ≤ N , and each m ∈ M(n), calculate

z
mn

= Fn +
∑

m
′∈M(n)\m

m′≤g·MG

εi

m
′
n

+
∑

m
′∈M(n)\m

m′>g·MG

εi−1

m
′
n

(3.7)

3. At bit nodes: ∀ n, 1 ≤ n ≤ N , and each m ∈ M(n), calculate

zi
n = Fn +

∑
m∈M(n)

εi
mn

(3.8)

4. Make hard decisions on {zi
n} to render a temporary decoded codeword {Di

n}. If

HDiT = 0 or the maximum number of iterations Imax is reached, stop decoding

and output {Di
n}. Otherwise, set i = i + 1 and go to Step 2.

13

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3 V4 V5 V6 V7

C1 C3C2 C4

C1 C2 C3 C4

Figure 3.3: A MSFG that describes the HSBP decoding schedule of a (7,3) code. The
dash lines represent the (message) flooding that are by-passed.

14

Chapter 4

A Novel Scheduling Method for the
HSBP Algorithm

The HSBP algorithm directly groups check nodes by the row ordinal. Obviously this

grouping method does not consider the short cycle effects. [13] points out the cycle effect

and weights the effect by the shortest cycle and girth to measure its effect. We follow

a similar line of thinking to develop a new decoding schedule and apply it to the HSBP

algorithm to reduce the influence of the short cycles. Since the basic HSBP structure

remains intact, the proposed decoding schedule is in fact equivalent to a new partition

of the check nodes or simply a rearrangement of the check nodes.

4.1 A Decoding Schedule for Reducing Short Cycle

Effects

A cycle (loop) in a graph is a closed path which can be represented by a finite-length

sequence of vertices (nodes) in the graph. Expressing the finite-sequence as a vector,

then a cycle is equivalent to a vector whose first and last entries are identical. A cycle

(loop) of length 2k is thus of the form � = (Vn1 , Cm1 , Vn2 , Cm2 , · · · , Cmk
, Vnk+1

), where

ni �= nj unless i = 1 and j = k + 1, and mi �= mj for all i �= j.

We are concerned about the number and the length of cycles a check node is involved.

Each cycle passes through several check nodes. The more cycles a check node is involved,

the more correlated extrinsic information it will send back to its neighboring bit nodes.

15

The length of a cycle determines the time elapsed for a bit node to receive a message

in which the information originated from itself is embedded. The correlation between

the original message and the returning message is in inverse proportion to the length

of the path through which the original message has traveled for the BP (sum-product)

algorithm treats all incoming messages equally, i.e., it does not give special weight to

any incoming message in producing a outgoing message.

The length of a cycle � is denoted by |�| and the set of all length-2(k + 1) cycles is

denoted by Lk. Let γi(j) be the number of length-2(j + 1) cycles which pass through

check node i, i.e., γi(j) = |{�|i ∈ �, |�| = 2(j + 1)}|. Define the cycle factor of node i as

wi =
L∑

j=1

f

(
1

j + 1

)
γi(j)

where L < Lmax and Lmax is the maximum cycle length for the code of concern. For a

block with M parity-check bits (i.e., M check nodes) the maximum cycle length Lmax is

upper-bounded by 2M . f(·) is a linear or nonlinear weighting function and the argument

1/(j + 1) reflects the fact that the degree of correlation is in reverse proportion to the

cycle length. The cycle factor wi thus represents the average degree of correlation of

node i with its neighboring bit nodes.

We summarize our cycle-factor-based HSBP algorithm in the following.

1. Initialization: 1 ≤ i ≤ M , 1 ≤ j ≤ L, γi(j) = 0.

2. Calculate γi(j): ∀ j, search all cycles with length 2(j + 1). If there are k length-

2(j + 1) cycles including check node i, γi(j) = k.

3. Reorder the parity check matrix: rearrange the rows of the parity check matrix in

increasing order of wi.

4. Perform the HSBP decoding algorithm on bipartite factor graph generated by the

the rearranged parity check matrix.

16

The issue of selecting appropriate L and f(·) is beyond the scope of this thesis. For

simplicity, we choose L to be such that 2(L+1) is the girth (length of the shortest cycle)

of the code. Hence L = 1 or 2 when the girth is 4 or 6.

4.2 Searching for Length-4 Cycles

The proposed algorithm requires that all cycles of the same length be found. This

section describe an efficient algorithm to search for all length-2k cycles. To begin with,

we define an M × L matrix ΓM×L = [γi(j)] and an M × 1 matrix Δ = [δi], where M

is the number of check nodes and L indicates that the maximum length of a cycle is

2(L + 1). As searching all cycles requires enormous computing complexity we develop

an algorithm for finding all length-2k cycles. Only length-4 and length-6 cycles are

considered in subsequent discourse; effects of longer cycles are not considered.

A length-4 cycle on the factor graph of an LDPC code corresponds to four non-

zero entries which constitutes a rectangular on the associated parity check matrix. An

exemplary placement is ⎡
⎣∗ 1 ∗ 1 ∗
∗ ∗ ∗ ∗ ∗
∗ 1 ∗ 1 ∗

⎤
⎦

We exploit this and similar properties to check if there exists any length-4 cycle. The

flow chart shown in Fig. 4.1 uses the above fact (and its extensions) to search for all

length-2k cycles. For an M × N parity check matrix, the complexity of our algorithm

is at most O
(
C

dc,max

2 × C
dv,max

2

)
, where dc,max and dv,max are the maximum degrees

corresponding to all check nodes and bit nodes. For a (dc, dv) regular LDPC code, the

searching complexity becomes O
(
Cdc

2 × Cdv
2

)
.

Example 2 Consider the LDPC code with the following parity check matrix

17

p = p + 1

Y e s

I n i t i a l i z a t i o n
i = 1 , j = 2
k = 1 , p = 2

p = M ?
Y e s

p = k + 2 ,
k = k + 1 ,

i = 1 , a n d j = 2

 p = k + 1

Y e s

S t o p !

Y e s

 j = i + 2 ,
i = i + 1 ,
 p = k + 1

N o

Y e s N o

N o

H p i = 1
a n d H p j = 1 ?

 δ k , 1 = δ k , 1 + 1
δ p , 1 = δ p , 1 + 1

 j = N ?

 k = M - 1 ?

H k i = 1 ?

H k j = 1 ?

Y e s

N o

N o

Y e s
N o

 j = j + 1
 i = N - 1 ?

N o

Figure 4.1: Flow chart of the proposed searching algorithm that computes the number
of length-2k cycles.

18

H=

⎡
⎢⎢⎣

1 1 0 0 1 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
1 0 0 1 1 1 1

⎤
⎥⎥⎦

It is straightforward to show that all possible length-4 cycles are given by

1. (V1, C1, V5, C4, V1),

2. (V2, C1, V5, C2, V2),

3. (V5, C2, V7, C4, V5),

4. (V6, C3, V7, C4, V6).

Since Γ4×1=
[
2 2 1 3

]T
and Δ4×1=

[
1 1 0.5 1.5

]T
. we obtain the reordered parity

check matrix as

H̃=

⎡
⎢⎢⎣

0 0 1 0 0 1 1
1 1 0 0 1 0 0
0 1 0 0 1 0 1
1 0 0 1 1 1 1

⎤
⎥⎥⎦

The corresponding MSFG is shown in the left part of Fig. 4.2. In the first stage, C1

and C3 receive information from {V1, V2, V5} and {V3, V6, V7}, meaning the information

these two check nodes receive is uncorrelated if information from different bit nodes

are uncorrelated. On the contrary, for the original HSBP algorithm whose MSFG is

shown in the right part of Fig. 4.2, C1 and C2 receive information from {V1, V2, V5} and

{V2, V5, V7} so that both of them are influenced by messages from nodes {V2, V5}. This

simple example shows that the proposed method is capable of extending the cycle length

and reduces the dependence among different message flows in the course of an iterative

decoding process.

19

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3 V4 V5 V6 V7

C1C3 C2 C4

C1 C2C3 C4

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3 V4 V5 V6 V7

C1 C3C2 C4

C1 C2 C3 C4

(a) (b)

Figure 4.2: MSFG representations of a cycle-factor based (a) and conventional (b) HSBP
algorithms for an LDPC code with G=2.

20

Chapter 5

Message Flow Distribution and
Decoder Behaviors

An iterative decoder’s convergence behavior can be conveniently analyzed by comput-

ing the corresponding EXIT chart. The EXIT chart, however, is based on the assump-

tions of long codes and Gaussian distribution of the output extrinsic information. For a

serial decoding schedule with small number of outputs per sub-iteration, the prediction

by EXIT chart may not be accurate. We propose an alternative analytic tool to predict

the convergence behavior and the high SNR error rate performance of iteratively decoded

LDPC codes. Regarding the MSFG of the code as a time-evolving network, we trace

each and very message flows over the network along their designated paths (schedules).

We assume that the pipes (branches) connecting nodes to their neighbors have unlimited

capacity so that the flow size within any pipe can be any positive number. We analyze

the composition of the flow in a branch, compute its size at each stage (iteration), eval-

uate the time(iteration)-dependent flow distribution. Finally we use a critical statistical

parameter associated with the distribution to describe the convergence and steady state

behavior of the code.

5.1 Profile of the Conventional BP Algorithm

For a parity check matrix H = [Hmn], we denote, as was defined before, the set of

all bit nodes connecting to check node m by N (m) = {n : Hmn = 1} and the set of all

21

check nodes connecting to bit node n by M(n) = {m : Hmn = 1}. We also need the

following definitions.

1. cmn(j; i) = the amount of contribution bit node Vj has made and is embedded in

the message passed from check node m to bit node n at the ith iteration.

= the average amount of flow within the message flow passed from Cm to Vn at

the ith iteration that was originated from Vj at earlier iterations.

2. bnm(j; i) = the amount of contribution bit node Vj has made and is embedded in

the massage passed from bit node n to check node m at the ith iteration.

=the average amount of flow within the message flow passed from Vm to Cn at the

ith iteration that was originated from Vj at earlier iterations.

3. pn(j; i) = the bit node message flow profile of Vn at the ith iteration.

pn(j; i), regarded as a function of the bit node parameter j, quantifies the composition of

the contributions of various bit node inputs up to the ith iteration. These contributions

are embedded in all check-to-bit messages passed to Vn at the ith iteration.

We further define the average message flow size that is incident to Vn, μ(n, i), and

the average total flow size, mi, at iteration i as

μ(n, i) =
1

N

∑
j

pn(j, i) (5.1)

mi =
∑

n

μ(n, i) (5.2)

To quantify the contributions, we need to trace the information generated by a given

input bit at various stages through the message path it has travelled. As the channel

values associated with the bit nodes are independent and identically distributed (i.i.d.),

we assign equal (contribution) capacity to all initial messages generated by bit nodes.

The above definitions are thus defined and computed in an iterative manner as follows.

1. Initialization: Set i=1 and bnm(j; 0) = δ(j − n), 1 ≤ j ≤ N , where

δ(n) =

{
1 n = 0
0 n �= 0

. (5.3)

22

2. • At check nodes: ∀ n, 1 ≤ n ≤ N , and each m ∈ M(n), compute

cmn(j; i) =

∑
n′∈N (m)\n

bn′m(j; i − 1)

deg(m) − 1
, 1 ≤ j ≤ N, (5.4)

where deg(m)= the degree of check node m, and the normalization factor is

used to satisfy the flow conservation principle.

• At bit nodes: ∀ n, 1 ≤ n ≤ N , and each m ∈ M(n), compute

bnm(j; i) = δ(j − n) +
∑

j,m′∈M(n)\m
cm′n(j, i) (5.5)

pn(j; i) = δ(j − n) +
∑

j,m∈M(n)

cmn(j; i) (5.6)

3. ∀ n, 1 ≤ j ≤ N , compute the profile mean and variance

μ(n, i) =

∑
j pn(j; i)

N
(5.7)

σ2(n, i) =

∑
j

[
bn(j; i) − μ(n, i)

]2

N
(5.8)

5.2 Profile of the VSBP Algorithm

The weight distribution obtained by using the VSBP algorithm is modified from that

by using the conventional BP algorithm. The iterative procedure for computing the

corresponding flow densities and related statistics is summarized below.

1. Initialization: Set i=1 and bmn(j; 0) = δ(j − n), 1 ≤ j ≤ N .

2. Let G be the number of groups and NG be the number of bit nodes in a group.

• For 1 ≤ g ≤ G,

– At check nodes: ∀ n, (g − 1)NG ≤ n ≤ gNG, and each m ∈ M(n),

compute

cmn(j; i) =
ci
mn(j) + ci−1

mn (j)

deg(m) − 1
, (5.9)

23

where

ci
mn(j) =

∑
n′∈N (m)\n

n′≤g·NG

bmn′(j; i) (5.10)

ci−1
mn (j) =

∑
n′∈N (m)\n

n′>g·NG

bmn′(j; i − 1) (5.11)

– At bit nodes: ∀ n, (g − 1) · NG + 1 ≤ n ≤ g · NG, and each m ∈ M(n) ,

calculate

bmn(j; i) = δ(j − n) +
∑

m′∈M(n)\m
cm′n(j; i − 1) (5.12)

• At bit nodes: ∀ n, 1 ≤ n ≤ N and each m ∈ M(n), calculate

pn(j; i) = δ(j − n) +
∑

m∈M(n)

cmn(j; i) (5.13)

3. ∀ n, 1 ≤ j ≤ N , compute the profiles’s mean and variance

μn(i) =

∑
j pn(j; i)

N
(5.14)

σ2
n(i) =

∑
j [pn(j; i) − μn(i)]2

N
(5.15)

5.3 Profile for the HSBP Algorithm

The flow profiles of the HSBP algorithm are obtained by a iterative algorithm similar

to that for the VSBP algorithm.

1. Initialization: Set i=1 and bmn(j, 0) = δ(j − n), 1 ≤ j ≤ N .

2. Let G be the number of groups and MG = |G|.

• For 1 ≤ g ≤ G,

– At check nodes: ∀ m, (g − 1)MG + 1 ≤ m ≤ gMG, and each n ∈ N (m),

calculate

cmn(j, i) =

∑
n′∈N (m)\n

bmn′(j, i)

deg(m) − 1
(5.16)

24

– At bit nodes: ∀ m, (g − 1)MG + 1 ≤ m ≤ gMG, and each n ∈ N (m),

calculate

bmn(j, i) = δ(j − n) +
∑

m′∈M(n)\m

m′≤gMG

cm′n(j; i)

+
∑

m′∈M(n)\m

m′>gMG

cm′n(j; i − 1) (5.17)

• At bit nodes: ∀ n, 1 ≤ n ≤ N , and each m ∈ M(n), calculate

pn(j; i) = δ(j − n) +
∑

m∈M(n)

cmn(j; i) (5.18)

3. ∀ n, 1 ≤ j ≤ N , calculate

μ(n, i) =

∑
j pn(j; i)

N
(5.19)

σ2(n, i) =

∑
j [pn(j; i) − μ(n, i)]2

N
(5.20)

Example 3 Consider an LDPC code with the parity matrix H

H=

⎡
⎢⎢⎣

1 1 0 0 1 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
1 0 0 1 1 1 1

⎤
⎥⎥⎦

The first two stages of the corresponding MSFG is shown in 3.1. The following

two matrices show the message flow at the first two iterations when conventional BP

algorithm is used. The value at the (Va, Vb) position, (the row Va and the column Vb),

equals to {bwi
a,b}, the times which the bit node Vb passes through the bit node Va. The

value at the (Va, μ) position equals to μi
a, the mean of the message flow profile from all

bit nodes for the bit node Va. Moreover, the value at the (Va, σ
2) position equals to σa

2,

the variance of the profile mean from all bit nodes for the bit node Va. We take the

value of μi
a/σ

i
a to analyze the profile for the bit node Va. If the values of μi

a/σ
i
a for all a

are average distributed at the ith iteration, it means that the decoding algorithm starts

to be balanced. The less the value i is, the high the convergent speed of the error rate

25

performance becomes. For example, according to the value at the (V4, V5) in the first

matrix, the bit node V5 from the first stage to the second stage will totally pass through

the bit node V4 0.25 times. As the values of μi
a/σ

i
a are unevenly distributed across a, the

corresponding decoding process has not reached its steady state yet.

Iteration 1:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1 V2 V3 V4 V5 V6 V7 μ σ2 μ/σ
V1 1 0.5 0 0.25 0.75 0.25 0.25 0.428571 0.102041 1.34164
V2 0.5 1 0 0 1 0 0.5 0.428571 0.173469 1.02899
V3 0 0 1 0 0 0.5 0.5 0.285714 0.132653 0.784465
V4 0.25 0 0 1 0.25 0.25 0.25 0.285714 0.0969388 0.917663
V5 0.75 1 0 0.25 1 0.25 0.75 0.571429 0.137755 1.5396
V6 0.25 0 0.5 0.25 0.25 1 0.75 0.428571 0.102041 1.34164
V7 0.25 0.5 0.5 0.25 0.75 0.75 1 0.571429 0.0663265 2.2188

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Iteration 2:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1 V2 V3 V4 V5 V6 V7 μ σ2 μ/σ
V1 1.25 1.125 0.25 0.375 1.125 0.5 1.125 0.82143 0.15561 2.0823
V2 1.125 1.5 0.25 0.5 1.25 0.75 1.125 0.92857 0.16901 2.2587
V3 0.25 0.25 1 0.25 0.5 0.625 0.625 0.5 0.06696 1.9322
V4 0.375 0.5 0.25 1 0.5 0.375 0.5 0.5 0.04911 2.2563
V5 1.125 1.25 0.5 0.5 2 0.875 1.25 1.0714 0.23151 2.2268
V6 0.5 0.75 0.625 0.375 0.875 1.25 0.875 0.75 0.07143 2.8062
V7 1.125 1.125 0.625 0.5 1.25 0.875 1.5 1 0.10714 3.0551

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

26

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3 V4 V5 V6 V7

C1 C3C2 C4

 V 2 - > C 1 V 4- > C 4 V 6- > C 4

[0 1 0 0 0 0 0] [0 0 0 1 0 0 0] [0 0 0 0 0 1 0]

[0 , 0 . 5 , 0 , 0 , 0 . 5 , 0 , 0] [0 , 0 , 0 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5]

[1, 0 . 5 , 0 , 0 . 2 5 , 0 . 7 5 , 0 . 2 5 , 0 . 2 5]

C4 - - > V 1C1 - - > V 1

 [0 0 0 0 1 0 0] [0 0 0 0 0 0 1]

V5- > C 1 & C 4 V 7- > C 4

V- - > V 1

Figure 5.1: Message flow of bit node V1 at the first iteration.

27

Chapter 6

Numerical Results and Discussion

We report some numerical results derived from computer simulation in this chap-

ter. Cycle-based and conventional decoding schedules for HSBP and VSBP decoders

with G = 2, 4 are considered as well as conventional BP decoders. For notational

brevity, we use the abbreviations, C-BP C-HSBP, C-VSBP for conventional BP, HSBP,

and VSBP algorithms (schedules), and CB-HSBP, CB-VSBP for cycle-based HSBP and

VSBP algorithms (schedules). We first check the error rate performance and examine

the corresponding profile behaviors. A relation between the error rate performance to

the evolution of profiles is then firmly established. Finally, we use our analytic tool to

predict the performance of the codes derived from expanding the base model matrix

defined in the IEEE 802.11n specification [15] and those from the base model given in

the IEEE 802.16e specification [17]. Computer simulations are performed do validate

our prediction. Only L = 2 for the CB- HSBP algorithm is discussed in this thesis.

6.1 Error Rate Performance Comparison

The base model matrix in the IEEE 802.11n specification is used to create rate 1/2

quasi-cyclic LDPC (QC-LDOC) codes with different code length. In Fig. 6.1, the

decoder’s packet error rate (PER) performance of (240, 120) QC-LDPC code with Imax =

5, 10 and G = 2 is presented. The cycle-based HSBP schedule outperforms the other

schedules when Imax = 5. For Imax = 10, cycle-based and conventional HSBP schedules

28

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No

P
E

R

codelength=240, code rate=1/2, G=2

BP,Imax=5
non−scheduled HSBP
scheduled HSBP
non−scheduled VSBP
BP,Imax=10
non−scheduled HSBP
scheduled HSBP
non−scheduled VSBP

Figure 6.1: Package error rate performance of the (240, 120) QC-LDPC code with Imax =
5, 10, G=2 and different decoding schedules.

give similar performance but still outperform the conventional BP algorithm.

If the (480, 240) QC-LDPC code is used, Fig. 6.2 indicates that the PER performance

of the cycle-based schedules surpass all others for Imax = 5 and 10 with the conventional

BP schedule yields the worst PER. Similar performance trend can be noticed for the

(1080, 540) QC-LDPC code with Imax = 5, 10 and G = 2; see Fig. 6.3,

The (240, 120) code has a short code length and requires less iterations to reach

convergence. Therefore, at Imax = 10, the PER performance for both HSBP schedules

are about the same. In contrast, the (480, 240) and (1080, 540) codes have longer code

length and the proposed schedule enjoys the edge of having a faster convergence rate.

The effect of the node partition can be found in Figs. 6.4 and 6.5 where the perfor-

mance of various schedules with Imax = 5, 10 and G = 4 for decoding the (480, 240) and

(1080, 540) QC-LDPC codes are shown. The simulation results show that the proposed

29

1 1.5 2 2.5 3 3.5 4 4.5
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No

P
E

R

codelength=480, code rate=1/2, G=2

BP,Imax=5
non−scheduled HSBP
scheduled HSBP
non−scheduled VSBP
BP,Imax=10
non−scheduled HSBP
scheduled HSBP
non−scheduled VSBP

Figure 6.2: Package error rate performance the (480, 240) QC-LDPC code with Imax =
5, 10 and G=2.

1 1.5 2 2.5 3 3.5 4 4.5
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No

P
E

R

codelength=1080, code rate=1/2, G=2

BP,Imax=5
non−scheduled HSBP
scheduled HSBP
non−scheduled VSBP
BP,Imax=10
non−scheduled HSBP
scheduled HSBP
non−scheduled VSBP

Figure 6.3: Package error rate performance of the (1080, 540) QC-LDPC code with
Imax = 5, 10 and G=2.

30

1 1.5 2 2.5 3 3.5 4
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No

P
E

R

codelength=480, code rate=1/2, G=4

BP,Imax=5
non−scheduled HSBP
scheduled HSBP
non−scheduled VSBP
BP,Imax=10
non−scheduled HSBP
scheduled HSBP
non−scheduled VSBP

Figure 6.4: Package error rate performance of the (480,240) QC-LDPC code with Imax =
5, 10 and G=4.

CB-HSBP schedule outperforms the others. Besides, the PER performance of the C-

VSBP schedule is still better than that of the C-BP schedule. It is clear that although

with a larger G the cycle effects might become more severe, the proposed schedule still

maintain its effectiveness in combating the short cycle effect. From Figs. 6.1-6.5, we find

that, for code length 480 and 1080, G = 4 always offer a better PER performance and

there is a 0.1-0.3 dB gain at PER = 10−3. These results show that a larger number of

node groups benefits the CB-HSBP schedules in both PER and convergence behaviors.

6.2 Profile Comparison

To investigate the convergence behavior of various schedules based on the corre-

sponding profile behaviors, we define the normalized concentration ratio (NCR) by

γc = (σn(i)/μn(i))−1 which measures the variation of the profile, i.e., whether the com-

position of an incoming message is widely spread across all nodes or it is concentrated

31

1 1.5 2 2.5 3 3.5 4
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No

P
E

R

codelength=1080, code rate=1/2, G=4

BP,Imax=5
non−scheduled HSBP
scheduled HSBP
non−scheduled VSBP
BP,Imax=10
non−scheduled HSBP
scheduled HSBP
non−scheduled VSBP

Figure 6.5: Package error rate performance of the (1080, 480) QC-LDPC code with
Imax = 5, 10 and G=4.

within a few nodes only. Shown in Figs. 6.6, 6.7, 6.8 and 6.9 are the NCR behaviors

of various BP schedules in decoding the (480, 240) QC-LDPC code. We compare Figs.

6.7, 6.8 and 6.9 with Fig. 6.6 and notice that the C-BP and C-VSBP schedules has

slower convergence rates but their steady state values are larger than those of various

serial schedules with G = 2 except for the C-VSBP schedule. Therefore, the CB-HSBP

schedule would outperform the other schedules when the number of iteration is small.

Similarly, the NCR analysis indicates that C-VSBP schedule is better than the C-HSBP

schedule and the C-BP gives the worst PER performance.

Figs. 6.19, 6.20 and 6.21 show the profile NCR behaviors of the C- and CB-HSBP,

and the C-VSBP algorithms with G = 4 for decoding the same code. These results show

that the NCR of the C-HSBP and C-VSBP schedules with G = 4 converge at the same

iteration. Then, we observe the convergent values of the profiles of these two decoding

algorithms. The smaller convergent value is that of the C-HSBP algorithm and the other

32

0 40 80 120 160 200 240 280 320 360 400 440 480
0

0.4

0.8

1.2

1.6

2

2.2

Ordinal of bit nodes

m
ea

n/
sq

rt
(V

ar
)

codelength=480,G=1 (BP)

Figure 6.6: Profile NCR behavior of the C-BP schedule for the (480,240) QC-LDPC
code.

−3 −2 −1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

4

5

6

log(mean)

lo
g(

 s
td

. d
ev

ia
tio

n
)

codelength=480,num.of iterations=15, BP

Figure 6.7: Profile NCR behavior of the C-HSBP algorithm with G=2 in decoding the
(480,240) QC-LDPC code.

33

0 40 80 120 160 200 240 280 320 360 400 440 480
0

0.4

0.8

1.2

1.6

2

2.2

Ordinal of bit nodes

m
ea

n/
sq

rt
(V

ar
)

codelength=480,G=2
(scheduled H−Shuffled BP)

Figure 6.8: Profile NCR behavior of the CB-HSBP algorithm with G=2 in decoding the
(480,240) QC-LDPC code.

0 40 80 120 160 200 240 280 320 360 400 440 480
0

0.4

0.8

1.2

1.6

2

2.2

Ordinal of bit nodes

m
ea

n/
sq

rt
(V

ar
)

codelength=480,G=2
(V−Shuffled BP)

Figure 6.9: Profile NCR behavior of the C-VSBP algorithm with G=2 for the (480,240)
QC-LDPC code.

34

0 40 80 120 160 200 240 280 320 360 400 440 480
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ordinal of bit nodes

lo
g

(m
ea

n)

codelength=480,code rate=1/2, BP (11n)

Figure 6.10: Profile mean of the C-BP algorithm in decoding the (480,240) QC-LDPC
code.

0 40 80 120 160 200 240 280 320 360 400 440 480
−3

−2

−1

0

1

2

3

4

5

ordinal of bit nodes

lo
g

(m
ea

n)

codelength=480,code rate=1/2, G=2
non−scheduled HSBP (11n)

Figure 6.11: Profile mean of the C-HSBP algorithm with G=2 in decoding the (480,240)
QC-LDPC code.

35

0 40 80 120 160 200 240 280 320 360 400 440 480
−3

−2

−1

0

1

2

3

4

5

6

ordinal of bit nodes

lo
g

(m
ea

n)

codelength=480,code rate=1/2, G=2
scheduled HSBP (11n)

Figure 6.12: Profile mean of the CB-HSBP schedule with G=2in decoding the (480,240)
QC-LDPC code.

0 40 80 120 160 200 240 280 320 360 400 440 480
−1.5

−1

−0.5

0

0.5

1

1.5

ordinal of bit nodes

lo
g

(s
td

. d
ev

ia
tio

n)

codelength=480,code rate=1/2, BP (11n)

Figure 6.13: Profile spread (standard deviation) of the C-BP algorithm in decoding the
(480,240) QC-LDPC code.

36

0 40 80 120 160 200 240 280 320 360 400 440 480
−2

−1

0

1

2

3

4

5

ordinal of bit nodes

lo
g

(s
td

. d
ev

ia
tio

n)

codelength=480,code rate=1/2, G=2
non−scheduled HSBP (11n)

Figure 6.14: Profile spread (standard deviation) of the C-HSBP algorithm with G=2 in
decoding the (480,240) QC-LDPC code.

0 40 80 120 160 200 240 280 320 360 400 440 480
−2

−1

0

1

2

3

4

5

ordinal of bit nodes

lo
g

(s
td

. d
ev

ia
tio

n)

codelength=480,code rate=1/2, G=2
scheduled HSBP (11n)

Figure 6.15: Profile spread (standard deviation) behavior of the CB-HSBP algorithm
with G=2 for the (480,240) QC-LDPC code.

37

−3 −2 −1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

4

5

6

log(mean)

lo
g(

 s
td

. d
ev

ia
tio

n
)

codelength=480,num.of iterations=15, BP

Figure 6.16: Profile mean and spread behaviors of the C-HSBP algorithm with G=2 in
decoding the (480,240) QC-LDPC code.

−4 −2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

10

log(mean)

lo
g(

 s
td

. d
ev

ia
tio

n
)

codelength=480,num.of iterations=15,G=2
non−scheduled HSBP

Figure 6.17: Profile mean and spread behaviors of the C-HSBP algorithm with G=2 in
decoding the (480,240) QC-LDPC code.

38

−3 −1 1 3 5 7 9 11
−3

−1

1

3

5

7

9

11

log(mean)

lo
g(

 s
td

. d
ev

ia
tio

n
)

codelength=480,num.of iterations=15,G=2
scheduled HSBP

Figure 6.18: Profile mean and spread behaviors of the CB-HSBP algorithm with G=2
for the (480,240) QC-LDPC code.

is that of the C-VSBP algorithm. In our opinion, we regard that the convergent speed of

the error rate performance for the C-VSBP algorithm is faster than that for the C-HSBP

algorithm. Moreover, the CB-HSBP algorithm requires the fewest number of iterations,

so the CB-HSBP algorithm outperforms others. Actually, the simulation results about

the error rate performance correlate to those about the profiles of the three decoding

schedules.

6.3 Comparison between LDPC Codes in 802.11n

and 802.16e

We now apply the above NCR analysis to check the performance of two LDPC codes

used in two IEEE standards. The two (24,12) QC-LDPC codes are derived from the base

model matrices in IEEE 802.11n and IEEE 802.16e, respectively. Since the numerical

NCR behaviors of these two LDPC codes indicate that the 16e code has larger steady

state value, we predict the code derived from 802.16e outperforms that derived from

39

0 40 80 120 160 200 240 280 320 360 400 440 480
0

0.4

0.8

1.2

1.6

2

2.2

Ordinal of bit nodes

m
ea

n/
sq

rt
(V

ar
)

codelength=480,G=4
(non−scheduled H−Shuffled BP)

Figure 6.19: Profile NCR behavior of the C-HSBP algorithm with G=4 for the (480,240)
QC-LDPC code.

0 40 80 120 160 200 240 280 320 360 400 440 480
0

0.4

0.8

1.2

1.6

2

2.2

Ordinal of bit nodes

m
ea

n/
sq

rt
(V

ar
)

codelength=480,G=4
(scheduled H−Shuffled BP)

Figure 6.20: Profile NCR behavior of the CB-HSBP algorithm with G=4 for the
(480, 240) QC-LDPC code.

40

0 40 80 120 160 200 240 280 320 360 400 440 480
0

0.4

0.8

1.2

1.6

2

2.2

Ordinal of bit nodes

m
ea

n/
sq

rt
(V

ar
)

codelength=480,G=4
(V−Shuffled BP)

Figure 6.21: Profile NCR behavior of the C-VSBP algorithm with G=4 for the (480, 240)
QC-LDPC code.

0 40 80 120 160 200 240 280 320 360 400 440 480
−3

−2

−1

0

1

2

3

4

5

ordinal of bit nodes

lo
g

(m
ea

n)

codelength=480,code rate=1/2, G=4
non−scheduled HSBP (11n)

Figure 6.22: Profile mean of the C-HSBP algorithm with G=4 for decoding the (480,240)
QC-LDPC code.

41

0 40 80 120 160 200 240 280 320 360 400 440 480
−3

−2

−1

0

1

2

3

4

5

6

ordinal of bit nodes

lo
g

(m
ea

n)

codelength=480,code rate=1/2, G=4
scheduled HSBP (11n)

Figure 6.23: Profile mean of the CB-HSBP algorithm with G=4 for the (480, 240) QC-
LDPC code.

0 40 80 120 160 200 240 280 320 360 400 440 480
−2

−1

0

1

2

3

4

5

ordinal of bit nodes

lo
g

(s
td

. d
ev

ia
tio

n)

codelength=480,code rate=1/2, G=4
non−scheduled HSBP (11n)

Figure 6.24: Profile spread of the C-HSBP algorithm with G=4 for the (480, 240) QC-
LDPC code.

42

0 40 80 120 160 200 240 280 320 360 400 440 480
−2

−1

0

1

2

3

4

5

ordinal of bit nodes

lo
g

(s
td

. d
ev

ia
tio

n)

codelength=480,code rate=1/2, G=4
scheduled HSBP (11n)

Figure 6.25: Profile spread of the CB-HSBP algorithm with G=4 for the (480, 240)
QC-LDPC code.

−4 −2 0 2 4 6 8 10 12 14
−4

−2

0

2

4

6

8

10

12

14

log(mean)

lo
g(

 s
td

. d
ev

ia
tio

n
)

codelength=480,num.of iterations=15,G=4
non−scheduled HSBP

Figure 6.26: Profile mean and spread behaviors of the C-HSBP algorithm with G=4 for
the (480, 240) QC-LDPC code.

43

−2 0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14

log(mean)

lo
g(

 s
td

. d
ev

ia
tio

n
)

codelength=480,num.of iterations=15,G=4
scheduled HSBP

Figure 6.27: Profile mean and spread behaviors of the CB-HSBP algorithm with G=4
for the (480, 240) QC-LDPC code.

802.11n. This prediction is confirmed by Figs. 6.28 and 6.29.

In Fig. 6.30, we examine the performance of two (480,240) QC-LDPC codes derived

from expanding the base model matrices in 802.11n and 802.16e, respectively. The

results show that the 802.16e code outperforms the 802.11n code. Figs. 6.6 and 6.31

show the profile NCR of the two (480,240) QC-LDPC codes. The steady state value of

the former code is smaller than that of the later code. As a result, we predict that the 16e

code would surpass the 11n code. This prediction is validated by Fig. 6.30. The above

discussion leads us to conclude that one can find a good base model matrix by using the

proposed NCR analysis and then expand the base matrix to obtain a QC-LDPC code

with the desired code length.

44

0 4 8 12 16 20 24

0.4

0.8

1.2

1.6

2

2.4

2.8

3

Ordinal of bit nodes

m
ea

n/
sq

rt
(v

ar
)

base matrix (24,12) for 802.11n

Figure 6.28: Profile NCR behavior of the code derived from the base model matrix of
IEEE 802.11n.

0 4 8 12 16 20 24
0

0.4

0.8

1.2

1.6

2

2.4

2.8

3

Ordinal of bit nodes

m
ea

n/
sq

rt
(v

ar
)

base matrix (24,12) for 802.16e

Figure 6.29: Profile NCR behavior of the code derived from the base model matrix of
IEEE 802.16e.

45

1 1.5 2 2.5 3 3.5 4 4.5
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No

P
E

R

codelength=480, code rate=1/2, BP

BP for 11n,Imax=5
BP for 16e,Imax=5
BP for 11n,Imax=10
BP for 16e,Imax=10

Figure 6.30: The PER performance of the (480,240) QC-LDPC code with the C-BP
decoder.

0 40 80 120 160 200 240 280 320 360 400 440 480
0

0.4

0.8

1.2

1.6

2

2.4

2.8

Ordinal of bit nodes

m
ea

n/
sq

rt
(v

ar
)

codelength = 480, code rate = 1/2, BP (16e)

Figure 6.31: Profile NCR behavior of the BP algorithm for the (480, 240) QC-LDPC
code in 802.16e.

46

0 40 80 120 160 200 240 280 320 360 400 440 480
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ordinal of bit nodes

lo
g

(m
ea

n)

codelength=480,code rate=1/2, BP (16e)

Figure 6.32: Profile mean of the BP algorithm for the (480, 240) QC-LDPC code in
802.16e.

0 40 80 120 160 200 240 280 320 360 400 440 480
−1.5

−1

−0.5

0

0.5

1

1.5

ordinal of bit nodes

lo
g

(s
td

. d
ev

ia
tio

n)

codelength=480,code rate=1/2, BP (16e)

Figure 6.33: Profile spread of the BP algorithm for the (480, 240) QC-LDPC code in
802.16e.

47

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

log(mean)

lo
g(

 s
td

. d
ev

ia
tio

n
)

codelength=480,num.of iterations=15, BP for 16e

Figure 6.34: Profile mean and spread behaviors of the conventional BP algorithm for
the (480, 240) QC-LDPC code in 802.16e.

48

Chapter 7

Conclusions

We propose a simple and systematic method to modify the conventional HSBP and

VSBP schedules so that short cycles effect can be minimized. The new schedules are very

effective in combating the cycle effects. They achieve improved PER performance with

a more rapid convergence rate and reduced computation complexity. We also present a

computational efficient framework to analyze the convergence and steady state behaviors

of various LDPC decoding schedules. We establish consistent relations between the

profile NCR behavior and the PER performance trend. The convergence rate of the

NCR is similar to that of the corresponding decoding schedule and the steady state NCR

value is a useful indicator for the PER performance. Since the evaluation of a profile

NCR is far simpler than error rate performance estimation by computer simulation,

the proposed analytic tool can be used to construct good LDPC codes and decoding

schedules.

49

Bibliography

[1] J. Pearl, “Reverend Bayes on inference engines: A distributed hierarchical approach,”

Proc. American Association of Artificial Intelligence National Conference on AI,

Pittsburgh, PA, 133–136, 1982.

[2] J. H. Kim, and J. Pearl, “A computational model for combined causal and diagnostic

reasoning in inference systems,” Proceedings IJCAI-83, Karlsruhe, Germany, 190–

193, 1983.

[3] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence, (Revised Second Printing) San Francisco, CA: Morgan Kaufmann.

[4] Y. Weiss, “Correctness of Local Probability Propagation in Graphical Models with

Loops,” Neural Computation, 2000.

[5] R. J. McEliece, D. J. C. MacKay, J.-F. Cheng, ”Turbo decoding as an instance of

Pearl’s ”belief propagation” algorithm”, IEEE JSAC, vol. 16, no. 2, pp. 140-152,

Feb. 1998.

[6] R. G. Gallager, Low-density parity-check codes, Cambridge, MA: MIT Press, 1963.

[7] D. J.C. MacKay and R. M. Neal, “Near Shannon limit performance of low density

parity check codes,” Electronics Letters, vol. 33, no. 6, pp. 457-458, Mar. 1997

[8] F. R. Kschischang, B. J. Frey, H.-A. Loeliger, ”Factor graphs and the sum-product

algorithm,” IEEE Trans. on Inform. Theory, vol. 47, no. 2, pp. 498-519, Feb. 2001.

50

[9] J. Zhang, M. P. C. Fossorier, ”Shuffled Iterative Decoding,” IEEE Trans. Commun.

vol. 53, no. 2, pp. 209-213, Feb. 2005.

[10] Y.-X. Zheng, Y. T. Su, ”Decoding inter-block permuted turbo codes based on multi-

stage factor graphs,” in Proc. 4th Intern’l Symp. Turbo Codes &Related Topics, Mu-

nich, German, Apr. 2006.

[11] M. M. Mansour and N. R. Shanbhag, ”High throughput LDPC decoders,” IEEE

Trans. VLSI Systems, vol. 11, pp. 976-996, Dec. 2003.

[12] Hua Xiao and Amir H. Banihashemi, ”Graph-Based Message-Passing Schedules for

Decoding LDPC Codes”, n IEEE Trans. Commun.VOL. 52, NO. 12, pp. 454-458,

Sep. 2005.

[13] M. M. Mansour and N. R. Shanbhag, ”Turbo decoder architecture forlow-density

parity-check codes,” in Proc. Global Telecommun. Conf.,Nov. 2002, pp. 1383-1388.

[14] J. Zhang, Y. Wang, M. P. C. Fossorier, J.S. Yedidia, ”Replica shuffled iterative

decoding,” in Proceedings. ISIT 2005,pp. 454-458, Sep. 2005.

[15] ”11-04-0889-04-000n-tgnsync-proposal-technical-specification” IEEE 802.11n Con-

tribution, Mar. 2005

[16] E. Sharon, S. Litsyn, and J. Goldberger, ”An efficient message-passing schedule for

LDPC decoding,” in Electrical and Electronics Engineers in Israel, 2004. Proceedings,

pp. 223-226, Sept. 2004.

[17] IEEE 802.16e-04/78:Optional B-LDPC coding for OFDMA PHY.

51

Appendix A

Specification of IEEE 802.11n [15]

The parity check matrices H of the encoding procedure are derived from one of the

base parity check matrices Hb. In 802.11n specification, specified below. One base

model matrix is defined per code rate. Size of a base parity check matrix is denoted as

Mb×Nb. Nb, the number of columns in the base model matrix, is fixed for all code rates,

Nb = 24. Mb, the number of rows in the base model matrix, depends on the code rate

as follows: Mb = Nb × (1 − R). Parity check matrix H of size M × N is generated by

expanding the base model matrix for the selected rate, Hb, z-times: z = N/Nb = M/Mb.

The expansion operation is defined by element values of the base model matrix. Each

non-negative base model matrix element, s, is replaced by a z × z identity matrix, Iz,

cyclically shifted to the right s
′

= smod(z) times. Each negative number (-1) in the

base model matrix is replaced by a z × z zero matrix, 0z×z. For the codeword of size

576 bits, z = 24 and for the codeword of size 1728 bits, z = 72.

We use the following base model matrix for code rate = 1/2 to derive each LDPC

code used in our research.

• base model matrix specification:

Code rate 1/2: Mb × Nb = 12 × 24

52

0 0 −1 0 −1 0 −1 −1 −1 0 −1 −1 1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
29 −1 0 26 −1 −1 0 −1 0 −1 −1 −1 −1 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 21 0 −1 17 −1 −1 38 −1 0 −1 −1 0 0 −1 −1 −1 −1 −1 −1 −1 −1
43 −1 −1 30 −1 −1 −1 0 −1 41 0 −1 −1 −1 −1 0 0 −1 −1 −1 −1 −1 −1 −1
5 −1 1 −1 −1 20 35 −1 −1 2 −1 −1 −1 −1 −1 −1 0 0 −1 −1 −1 −1 −1 −1
−1 46 −1 −1 −1 −1 22 −1 40 8 −1 −1 0 −1 −1 −1 −1 0 0 −1 −1 −1 −1 −1
−1 −1 −1 9 −1 −1 18 13 −1 35 −1 27 −1 −1 −1 −1 −1 −1 0 0 −1 −1 −1 −1
2 −1 44 −1 −1 −1 27 −1 −1 25 18 −1 −1 −1 −1 −1 −1 −1 −1 0 0 −1 −1 −1
33 35 −1 29 −1 −1 16 −1 −1 −1 −1 30 −1 −1 −1 −1 −1 −1 −1 −1 0 0 −1 −1
−1 −1 −1 4 4 −1 −1 −1 15 17 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 −1
5 −1 −1 19 −1 14 −1 −1 −1 −1 11 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0
10 −1 −1 −1 21 −1 18 8 −1 −1 −1 −1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0

53

Appendix B

Specification of IEEE 802.16e [17]

The LDPC code is based on a set of one or more fundamental LDPC codes. Each of

the fundamental codes is a systematic linear block code. Using the described methods

in section 8.4.9.2.5.3 [17] Code Rate and Block Size Adjustment, the fundamental codes

can accommodate various code rates and packet sizes. Each LDPC code in the set of

LDPC codes is defined by a matrix H of size m − by − n, where n is the length of the

code and m is the number of parity check bits in the code. The number of systematic

bits is k = n − m. The matrix H is defined as:

H =

⎛
⎜⎜⎜⎜⎝

P0,0 P0,1 P0,2 P0,nb−2 P0,nb−1

P1,0 P1,1 P1,2 P1,nb−2 P1,nb−1

P2,0 P2,1 P2,2 P2,nb−2 P2,nb−1

...
Pmb−1,0 Pmb−1,1 Pmb−1,2 Pmb−1,nb−2 Pmb−1,nb−1

⎞
⎟⎟⎟⎟⎠

where Pi,j is one of a set of z − by − z permutation matrices or a z − by − z zero matrix.

The matrix H is expanded from a binary base model matrix Hb of size mb − by − nb,

where and ,with z an integer 1. The base model matrix is expanded by replacing each

1 in the base model matrix with a z − by − z permutation matrix, and each 0 with a

z − by − z zero matrix. The base model matrix size nb is an integer equal to 24.

The permutations used are circular right shifts, and the set of permutation matrices

contains the z × z identity matrix and circular right shifted versions of the identity

matrix. Because each permutation matrix is specified by a single circular right shift, the

54

binary base model matrix information and permutation replacement information can be

combined into a single compact model matrix Hbm. The model matrix Hbm is the same

size as the binary base model matrix Hb, with each binary entry(i,j) of the base model

matrix Hb replaced to create the model matrix Hbm. Each 0 in Hb is replaced by a blank

or negative value (e.g., by −1) to denote a z × z all-zero matrix, and each 1 in Hb is

replaced by a circular shift size p(i, j) ≥ 0. The model matrix Hbm can then be directly

expanded to H.

Hb is partitioned into two sections, where Hb1 corresponds to the systematic bits and

Hb2 corresponds to the parity-check bits, such that Hb = �(Hb1)mb×kb
| (Hb2)mb×mb

	.

Section Hb2 is further partitioned into two sections, where vector hb has odd weight,

and H b2 has a dualdiagonal structure with matrix elements at row i, column j equal to

1 for i = j, 1 for i = j + 1, and 0 elsewhere:

Hb2 = [hb|H b2]=

⎛
⎜⎜⎜⎜⎜⎜⎝

hb(0) | 1
hb(1) | 1 1 . . 0

. | . 1 1 . .

. |

. | . 0 . 1 1
hb(mb − 1) | 1

⎞
⎟⎟⎟⎟⎟⎟⎠

The base model matrix has hb(0) = 1, hb(mb − 1) = 1, and a third value hb(j),

0 < j < (mb − 1) equal to 1. The base model matrix structure avoids having multiple

weight −1 columns in the expanded matrix.

In particular, the non-zero sub-matrices are circularly right shifted by a particular

circular shift value. Each 1 in H b2 is assigned a shift size of 0, and is replaced by a z× z

identity matrix when expanding to H. The two located at the top and the bottom of hb

are assigned equal shift sizes, and the third 1 in the middle of hb is given an unpaired

shift size.

55

A base model matrix is defined for the largest code length (n = 2304) of each code

rate. The set of shifts {p(i,j)} in the base model matrix are used to determine the shift

sizes for all other code lengths of the same code rate. Each base model matrix has

nb = 24 columns, and the expansion factor zf is equal to n/24 for code length n. Here

f is the index of the code lengths for a given code rate, f = 0, 1, 2, ..., 18.

For code length n = 2304 the expansion factor is designated z0 = 96. For code rates

1/2, 3/4 A and B code, 2/3 B code, and 5/6 code, the shift sizes {p(f, i, j)} for a

code size corresponding to expansion factor zf are derived from {p(i,j)} by scaling p(i,j)

proportionally,

p(f, i, j)=

{
p(i, j), p(i, j) ≤ 0,

�p(i,j)×zf

z0
	, p(i, j) > 0,

where denotes the flooring function that gives the nearest integer towards ∞.

For code rate 2/3 A code, the shift sizes {p(f, i, j)} for a code size corresponding to

expansion factor zf are derived from {p(i,j)} by using a modulo function.

p(f, i, j)=

{
p(i, j), p(i, j) ≤ 0,
mod(p(i, j), zf), p(i, j) > 0,

• base model matrix specification:

Code rate 1/2: Mb × Nb = 12 × 24

−1 94 73 −1 −1 −1 −1 −1 55 83 −1 −1 7 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 27 −1 −1 −1 22 79 9 −1 −1 −1 12 −1 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 24 22 81 −1 33 −1 −1 −1 0 −1 −1 0 0 −1 −1 −1 −1 −1 −1 −1 −1
61 −1 47 −1 −1 −1 −1 −1 65 25 −1 −1 −1 −1 −1 0 0 −1 −1 −1 −1 −1 −1 −1
−1 −1 39 −1 −1 −1 84 −1 −1 41 72 −1 −1 −1 −1 −1 0 0 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 46 40 −1 82 −1 −1 −1 79 0 −1 −1 −1 −1 0 0 −1 −1 −1 −1 −1
−1 −1 95 53 −1 −1 −1 −1 −1 14 18 −1 −1 −1 −1 −1 −1 −1 0 0 −1 −1 −1 −1
−1 11 73 −1 −1 −1 2 −1 −1 47 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 −1 −1 −1
12 −1 −1 −1 83 24 −1 43 −1 −1 −1 51 −1 −1 −1 −1 −1 −1 −1 −1 0 0 −1 −1
−1 −1 −1 −1 −1 94 −1 59 −1 −1 70 72 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 −1
−1 −1 76 5 −1 −1 −1 −1 39 49 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0
43 −1 −1 −1 −1 66 −1 41 −1 −1 −1 26 7 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0

56

	封面.pdf
	書名頁.pdf
	Shihyao.pdf

