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ABSTRACT

The channel variation due to vehicle mobility: produces frequency selective fading
among OFDM symbols which makes:the ‘traditional ‘one-tap equalizer can not be utilized.
Moreover, the orthogonal property of: OFDM“subearriersis destroyed and OFDM symbol
experiences inter-carrier interference (ICI) that severely degrades the performance in high
vehicle mobility environment. To reduce the problem, an iterative group based ICI
cancellation method which applies sphere decoding and list sphere decoding (LSD) is
proposed. At the receiver, subcarriers are partitioned into several groups, each group uses SD
or LSD to generate the message information and pass it to other groups for ICI cancellation.
The grouping procedure is used to reduce the computation complexity of the SD and LSD,

and ICI cancellation procedure is used to make BER performance better.
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Chapter 1

Introduction

OFDM is widely used in many wireless communication systems for high-bit-rate
transmission over a frequency-selective fading channel. The concept of Orthogonal Frequency
Division Multiplexing (OFDM) is initiated from that of multi-carriers systems [1] [2]. Data
are transmitted through multiple carriers simultaneously to achieve high data rate transmission.
In OFDM, the computationally efficient fast Fourier transform (FFT) is used to transmit data
in parallel over a large number -of ‘orthogonal® subcarriers. A cyclic prefix is inserted before
each transmitted data block to eliminate‘the inter symbol interference (1SI). For time-invariant
multipath channels, a single tap equalizer in frequency domain can be employed to recover
the transmitted symbol on each subcarrier. However, due to the demand for orthogonality
between each subcarrier, OFDM systems are sensitive to synchronization.

In high mobility environment, multipath channel is time varying. Channel variations
may also arise the presence of an unknown carrier frequency offset, so the orthogonal
property of OFDM is destroyed and result in the effect of inter-carrier interference among
subcarriers which makes the performance of OFDM systems degrades severely [3] [4]. To

reduce the ICI caused by channel variation, many approaches have been proposed, e.g.,



self-cancellation scheme [5], Sphere Decoding (SD) [6], minimum mean-squared error

(MMSE) and MMSE with successive detection (MMSED) [7]. In [5], the method proposed

sharps the signal in frequency domain using the windowing operation in time domain to make

subcarriers has approximate nulls around the location of others subcarriers and, therefore,

creates less ICI. In [6], Sphere Decoding which solves the ML criterion is used to reduce the

effect of ICI. In [7], it introduce a high performance equalization method by using MMSE

with successive interference cancellation, but the computational complexity is very high.

According to Cai.et al., [8] shows that ICI effect on a sucarrier comes from neighboring

subcarrieres, [9] and [10] propose a group based ICl cancellation method to lower the

complexity and utilize successive I1Cl-cancellation to get better performance. In this thesis, a

parallel liked group based ICI cancellation method combined with Sphere Decoding or List

Sphere Decoding is proposed to improve the system performance and lower the complexity of

method in [6] which uses Sphere Decoding to reduce the ICI effect of OFDM system in high

vehicle mobility environment. At the receiver, subcarriers are partitioned into several groups,

each group uses SD or LSD to generate the message information and pass it to other groups

for ICI cancellation. The operation of solving Sphere Decoding or List Sphere Decoding and

passing message information for ICI cancellation will repeat iteratively to make performance

better and better. In our proposed method, we assume that the channel state information are

perfectly known at receiver.



The organization of this thesis is as following. In chapter 2, ICI effect on OFDM in high

mobility environment, Sphere Decoding and List Sphere Decoding are introduced. In chapter

3, at first, the system model used in thesis is introduced then the group based ICI cancellation

method with Sphere Decoding and List Sphere Decoding are introduced. In the end of the

chapter 3, the parameter setting of Sphere Decoding is introduced. Computer simulation

results along with some discussions are showed in chapter 4. Finally, in chapter 5, brier

conclusions are made.



Chapter 2

OFDM System in High Mobility
Environment and Sphere Decoding

2.1 High Mobility Environment

In wireless communication, received signals come from multiple paths due to reflection
effects. Such environment is called a multipath channel. The equivalent baseband of a
multipath channel impulse response can be described as [11]

I=L-1

ht2) =Y a®st-r). 2.1)

=0
Where a,(t) and 7, are the time-varying complex fading gain and the path delay of the Ith
path, L is the total number of multipath, and & is the delta function. The variation speed of
path gain a,(t) depends on maximal Doppler frequency or Doppler spread which is
proportioned to the vehicle speed and carrier frequency. Maximal Doppler frequency is
defined as eq. (2.2). The larger the Doppler spread is, the faster variation of the path gains are.
[12]

fy =—=, (2.2)

where f_ is the central frequency and v is the vehicle speed and ¢ is the speed of light. In



OFDM system the parameter f,T, is used to measure the effect of the ICI where T, is the
OFDM symbol period. We can observe that the inversion of T, is the subchannel bandwidth
and we can treat Doppler frequency as the frequency offset of a single tone signal after
passing through the channel, so f,T is the fraction between frequency offset and subchannel
bandwidth. If f,T, is very small, it means that frequency offset relative to the subchannel
bandwidth is too small which can be neglect, so the frequency of the signal can be seemed as
the same as the original one. Otherwise, the mismatch of the frequency will occur at the
receiver in OFDM systems. For fixed f, and T, we can see from eq. (2.2) that f, goes
larger and larger when the relative velocity v ‘goes faster and faster and it will cause the ICI
effect goes severer and severer.
In the computer simulation;. channel gains .&,(t) are generated by Jakes model, the

introduction of Jakes model is as following:
In the multipath Rayleigh fading channel without line of sight (LOS), the angel of the arrival
signal in a plane is assumed to be uniformly distributed in the interval [0,27). Jakes modeled
the Rayleigh fading channel by a bank of oscillators with the maximal Doppler frequency and
its fractions, as eq. (2.3) showed.

No

f,(t) =2 cos B, -cosam,t +~/2 cosa - cos oyt
. (23)
fo (1) =2 sin B, -cosm,t ++/2sina -cos m,t
]

where



N =2(2N,+1), N, >8
o, = w, cosa, = Doppler shifts, n=1,2,..., N,

a =@ = the arrival angel of the n-th arrival signal, n=1,2,..., N,

p, =the phase of the n-th arrival signal, n=1,2,..., N,

Ineq. (2.3), N, must be large enough to approximate to the central theorem. g, are chosen

properly such that the arrival phases are close to uniform distribution in [0,27).

22 1Cl on OFDM System

ch ycp
X, Xo = W, Yo Y,
Xl X1 - ] l Y1 Yl
7 - () 3 "
> hI e
XN—l XN—l= yN—lV YN—l

Fig. 2.1 Base-band OFDM System.

Fig 2.1 is the block diagram of base-band OFDM system. X,, k=0,..,N -1 the

inputs of the Inverse Fast Fourier Transform (IFFT) represent the frequency domain data on

the k-th subcarrier. x,, k=0,..,N-1 the outputs of the IFFT can be represented as

follows :



x =y XeN 0<i<N-L1. (2.4)

X, represents the cyclic prefix (CP) with length N and is related to time domain sequence,

x as follows :
Xop (1) = Xy_ci 0<T<Ng -1, (2.5)
Let T be the sampling period. Then h® is the Ith channel tap at time instant t=ixT . We
assume that the maximum delay spread of the channel is always less than or equal to N;.
Then the channel output y can be expressed as follows :
Ng
Yi = 2 %y, +W 0<i<N-1. (2.6)
0
Ineq. (2.6), (( )), represents a cyclic shift'inthe base of N and w, represents a sample of
additive white Gaussian noise. Thentthe fast Fourier transform (FFT) of sequence vy, will be

as follows :

Yo=Y ye ¥ 0<k<N-1. (2.7)
If h® is constant during one OFDM symbol time (N+Ng)xT, then eq. (2.6)
becomes
Ng
Yi =D Xy, +W 0<i<N-1, (2.8)
1=0
which is the circular convolution of h and x. By using eq. (2.7), eq. (2.4) and basic DFT
concept [13], we will find that the relationship between X, and Y, which is derived as

follows :

Z
._\

Ng _jexki
Yk (z | ((l Din j §

i 1=0

N
o



Ng N-1 Cjerki o N joski
N N
(x«H»N )e + Zolwie
i=

i=0
Ng  N-1N-1 j2z((i-)nn _j2xki
— N N
=>h> > Xe e N o+W,
1=0 i=0 n=0
Ng N-1 N1 j2z((-)yn j2rki
=Y hY X De Noe N o4w,
I=0 n=0 i=0
Ng N-1 —j2zin N1 j2zin  j2zki
=Y hY Xe N deNe N 4w, (2.9)
1=0 n=0 i=0
Ng N-1 —j2zxin
=ShY Xe N S[n—k]+W, (2.10)
1=0 n=0

=H, X, +W, . (2.11)
Because of the orthogonal property of the subcarrier, we can derive eq. (2.9) toeq. (2.10). At
last, fromeq. (2.11) we can see that Y, only dependson X,.

Unfortunately, impulse response of ‘the channel Is net a constant during one OFDM
symbol time in high mobility environment. Tn*section 2.1,-we know that the channel impulse
response is change in time, and frequency offset occurs due to the Doppler frequency. All the
thing happened above destroy the orthogonal property of subcarriers. In this case, from eq.

(2.7) we can find that [14]

JETa i
_ (i) N
Yo =20 20 Xy, W |
=0

Ng N-1 Cj2xki N1 j2ski
_ (i) N
=2 2 W%, € + 2 We
1=0 i=0 i=0
Ng N-1 _j2nki
_ (i) N
=2 2 W%, € +W,
1=0 i=0
N-1 Ng N-1 _jZMn j27in j2rki
_ (i) N a N N
= h X,.e e +W,
i=0 1=0 n=0
N-1 Ng [ N-1 _j2n(k—n)i —jEZﬂE
_ (1) N N
=) X, h'e e +W,
n=0 1=0 \_i=0



1 j2ndi 2l (k=d)
_ (1) N N
= X«k 0 4 Zh € e +W,
2rlk N

Ng N-1 0 2rlk N-1 s [ N-1 " j2ndi _J.27r|(k—d)
— ! N [ N N
= 22N eV |X, + 1> hi% e Xy, + Wi

i=0

ICI

Ne N-1 ;27 N-1( Ng _jerk=d)
=[ hVe * N jxk+ (ZF,(d)e N Jx«kdm +W

ICI

N-1
=H, X, +2Hk,dx«kfd»N +W,, (2.12)
d=1
ICI
where
j2xdi
F(d)= Zh(')e N 0<I<N, & 0<d<N-1. (2.13)

Then H,, can be defined as

2k )

Hyo = Z‘,F(Ol)e 0k, d<N-1, (2.14)

The second term of eq. (2.12) represents* [CI'which:is the combination of other subcarriers and
can’t be neglected as the maximum Doppler frequency increases [15]. These ICI term causes

the performance of OFDM degraded severely.

We treat eq. (2.13) as frequency response of the Ith path and H, , is the weight
coefficient from the ((k—d)), th subcarrier on the kth one. to the eq. Now, by the notion

above, we try to explain why eq.(2.6) results in eq. (2.12). We can see from eq. (2.6) that at

any time instant t=ixT, the received signal y, is the summation of the result of path

coefficient multiply with delayed sample of OFDM symbol, so we can expect that subcarrier

Y, is the result of frequency response eq. (2.13) circular convolute with X; ,0< j<N-1.



We uses the notion above to rederive Y, .
Y= FFT{y.}
NG
= FFT {Z M Xy, + wi}
1=0

FFT {hx

Il
Mz

Y }+Wk

I
o

FRT {h} @ FFT {X iy, | +W,

27lk

_ 2k
NCO+W,

(¢]

k

=z
LN

_27l(k=d)

j
Fl(d)x((k—d))Ne N +Wk

Il

[Me IDMF 2D
FiME
=
®
pasd

Il
o

271 (k—d)

F@e N X

z
AN

I
]

-ayy T W

o
- o
Il
o

Zz o

Hy o X oy £ W

o
Il
o

We can find that the result of above equation is the same“as €q.(2.12), so time variant channel
causes frequency response and subcarrier. do the circular convolution operation in OFDM

systems.

2.3 Sphere Decoding

2.3.1 Real Sphere Decoding

In communication, Sphere Decoding (SD) [16] ,is used to solve the ML problem as

follows :

10



XML =

(2.15)
where A is a M-by-N matrix where M >N, Y is a N-by-1 vector, and X is a N-by-1
vector. A is the set which includes all possible X. We can derive from eq. (2.15) as

follows

XML -

=argmin(Y - AX)’ (Y -AX)
=argmin Y'Y - YT AX- XTATY + X ATAX
=argr)r(1in(YTA(ATA)_lATY—YTAX—XTATY+XTATAX)+
(YTY YTA(ATAY ATY)
_argr>r(1€|/(1(YTA A)IATY - YT ALX XTIATY+XTATAX)+YT(I—A(ATA)1AT)Y
_argr;]elp(YTA A)”(ATA)(ATA) ALY <
YTA(ATA) " (ATA)X = XT(ATA)(ATA)_lATY+XTATAX)+
YT(I ~A(ATA) AT)Y
_argrQJP(YT (A ATAATY - YT (AT) ATAx—xTATAATY+xTATAx)+
YT(I—A(ATA)lAT)Y
_argmm(A(ATY—x))T(A(ATY—X))+YT(|—A(ATA)lAT)Y

XeA

=argmin(X-X)' ATA(X-X)+a. (2.16)

XeA

In eq. (2.16), o is a constant and does not change when different X is chosen.
A'=(ATA)TAT is the pseudo inverse of A, so X is the least square solution of

AX =Y .As the same as [17], to solve eq (2.15) is equivalent to solve as follows :

~

X, =argmin(X-X)" ATA(X-X). 2.17)

XeA
The easiest way to solve eq. (2.17) is to check all the possible of X and finds which one of

11



X causes the minimum. However, the computational complexity of above exhaustive search
method is really high So sphere decoding is brought up to avoid the exhaustive search and
searches only over the possible X which lies in a certain sphere centered at the given vector
with radius r. In this notion eq. (2.18) can be written as follows in Sphere decoding

X, =arg Téip()“(—x)T ATA(X-X)<r?, (2.18)

It is clear that the closest point inside the sphere will also be the closest point for the whole

point. However, close scrutiny of this basic ideal leads to two key questions [16].

1) How do you choose radius r? Clearly, if radius is too large, we obtain too many points,
and the search remains exponential in’'size, whereas if radius too small, we obtain no
points inside the sphere.

2) How can we tell which points are inside the sphere?.If:this requires testing the distance of
each point from X, then there is no point in sphere decoding, as we will still need an
exhaustive search.

Sphere decoding does not really address the first question. However it does propose an

efficient way to answer the second. The basic observation is the following. Although it is

difficult to determine the points inside a general N-dimensional sphere, it is trivial to do so in
the one-dimensional case. The reason is that a one-dimensional sphere reduces to the

endpoints of an interval, and so, the desired points will be the integer values that lie in this

interval. We can use this observation to go from dimension k to dimension k+1. Suppose that

12



we have determined all k-dimensional points that lie in a sphere of radius. Then, for any such
k-dimensional points, the set of admissible values of the (k+1)th dimensional coordinate that
lie in the higher dimensional sphere of the same radius forms an interval. So we can determine
all points in a sphere of dimension N and radius r by successively determining all points in
spheres of lower dimensions 1,...,N and the same radiusr.

In eq. (2.18), we choose the least square solution as the center of sphere which is the
optimum unconstrained solution in this problem. As Fig 2.2 we will find the minimal solution

lies in the sphere with radius r.

i ) .
r “

! a "'II
y AX
o o o o
n )
° o\o °
o o o o

Fig. 2.2 A sphere of radius r and centered at AX.

To solve this problem efficiently Cholesky factorization is employed to find an upper
triangular U with u, real and positive such that U'U =A"A . So eq. (2.18) can be written

as

X,, =arg min()ﬂ(—X)T UTU()A(—X)S r?

XeA

13



=argmin D'D where D:U(X—X)
=>d? whered;iuij(xj—)zj)and u; =0, fori<j
i=1 j=i

N

2
ﬂrg@'ﬂi{”“(xi_ii) i “ij(xi_ii)} <r’

i=1

+

N ~ N u. ~ 2
:argrQiPZuﬁ{Xi—XﬁZJ(XJ.—XJ.)} <r?. (2.19)
ia

j=iet Uji
In eq. (2.19), the sphere decoder establishes bounds on X,,..., X\, by examining these terms
in subsets.

Starting with i=N, and throwing out the terms i=1,..,N -1, we obtain from eq.

(2.19)

:{XN—LFXN{X“LJ. (2.20)

uNN uNN
([.] and |.| means the ceiling function and the floor function operators return the smallest
integer greater than or equal to, and the largest integer less than or equal to their respective
arguments; these functions are applied in the case which the constellation is a set of
consecutive integers such as QPSK or QAM.) After computing the lower and upper bounds in
eg. (2.20), the sphere decoder chooses a candidate value for X, and computes the
implication of this choice on X, ,. To find the influence of the choice of )ZN and XN_l
the sphere decoder looks at the two terms i=M -1 ineq. (2.19), throws out the remaining

terms, and obtains the inequality

14



2
Uril,N1|:XN1_)2N1+ UN_LN (XN _XN):| +U§JN (XN _)2;\1)2 < I’2

which yields the upper bound

and the lower bound

22 Y 2
Xna2 XAN—l_\/r UNN(XN XN) o (XN_XN) '

uN—l,N—l uNN

The sphere decoder now chooses a candidate for X, , within the range given by the upper
and lower bounds, and proceeds to. X, 5 and So.on.
There are two things happen during-the algorithm operating.
1) The decoder reaches X, and chooses-avalue within the computed range.
2) The decoder finds that no point in the constellation fall within the upper and lower
bounds obtained for some X;.

In the first case, the sphere decoder has a candidate solution for the entire vector X,
computes its radius which cannot exceed r, and starts the search process over, using this new
smaller radius to find any better candidates. In the second case, the decoder must have made
at least one bad candidate choice for X, ,,..., X, . The decoder revises the choice for X,
which immediately preceded the attempt for X, by finding another candidate value within

its range, and proceeds again to try X;. If no more candidates are available at X, the

15



decoder backtracks to X. ., and so on.

j+2
The algorithm for determining the points in an N-dimensional sphere essentially

constructs a tree in Sphere Decoding (see Fig 2.3). Let’s use this tree structure to briefly

explain the operation of Sphere Decoding.

k=N
1
k=HN1
2) (3
k= N2
3
k= N3

Fig. 2.3 Sample tree generated to determine points in a N-dimensional sphere.

The node at the top of the fig. 2.3 is treated as the start node and others with numbers inside
represent the point in the set S where S" is equal to A (take BPSK as an example,
S ={-1,1}). Choosing different node at layer N makes eq. (2.19) generates different upper
and lower bound for layer N-1, so the nodes can be chosen at layer N-1 depend on the node
which is chosen at the layer N. Now, if node choosing order from layer Nto N-2is1 -2~ 3,
then we can find that there is no node can be chosen at layer N-3. So the algorithm backs to

layer N-2 and unfortunately, there is still no node (excluding 3, because it has been chosen)

16



can be chosen. Then the algorithm backs again and goes to layer N-1. At this layer, it remains
two nodes (excluding 2) can be chosen, so 3 is chosen and algorithm keep going until it
finishes the choosing operation at layer 1. After finishing the choosing operation at layer 1, a
feasible solution is generated and this point will be used to generate a new radius. New radius
replaces the initial radius for generating the upper and lower bound of every layer, so
algorithm keeps going with new lower and upper bound at layer 1. Under this procedure, the
tree structure may change again and again that is the sphere becomes smaller and smaller. If

the algorithm is terminated, the last feasible solution is the best solution.

2.3.2 Complex Sphere Decoding

The Sphere Decoding algorithm described above applies on a real system where X is
chosen from a real lattice, but in communication systems we face to deal with complex
system because of the modulation scheme we used such as QPSK. In this case, eq. (2.18)
becomes as follows :

Y Y Ho\H 9 2
X,, =arg rgeup(X—x) A A(X—x)sr (2.21)

where A, X,and X are complex value. Here two kinds of methods are introduced to deal

with this problem. The first method applies the algorithm on the complex system by

decoupling the real and imaginary components of X, A,and X tocreatea system of real
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equations with twice the dimension of the original system [18]. For example, eq. (2.21) can be

transformed into a real equation in matrix form as follows

Xy =argmin (X, ~X) ATA(X, - X)<r? (2.22)

XeA

where
X=|Re{X"} —Im{X"}]

XLS:[Re{f(T} —Im{)A(T}}
Re{A"| —Im{AT|

A= Im{AT}  Re{AT|

and A ={Re(A),Im(A)}. If X belongs to QPSK then each entry of X belongs to BPSK.

Thus eq. (2.22) can be solved via SD which-we introduced.in section 2.3.1.

Fig. 2.4 Searching disk in 16-QAM.

The second method [19] uses eq. (2.21) directly without decoupling, but the searching domain

A is not integer set anymore (see Fig 2.4). As the same as eq. (2.19) we can derive from eq.
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(2.21) as follows

X :argmin(X—X)H UHU(X—X)S r?

XeA

N ~ N u. ~ 2
:argr)rgipZuif{Xi—XﬁZJ(Xi—Xi)} <r? (2.23)
N ia

j=iet Uji
As the real case, Sphere Decoding algorithm starts at i=N and lets X, =re™ and

X, =Fe™ , where

) e{o 22” ,2”(2 Cl)} (2.24)

M. is the number of bits per symbol, for example M_ =2 for QPSK. Then, we get

c

2

X £ o A r

| X = X, P2EP T2 220 cos(d, —6,) < ——
l"INN

2
NN

I 2
= c0s(6, —HN)Z%{QZ +ﬁ2—r—} =n (2.25)

C C

2MC -~ Ly 2MC ZMC - -1
= (6, —cos ) 1< 6, < (6, +cos™n) |. (2.26)
27 2 27
We can see from eq. (2.26) the searching domain change to eq. (2.24) now. From eg. (2.26),
if 7>1, then the search disk does not contain any point of the constellation (because the
range of cosine function is [-1,1], it is impossible to find a value makes cos(6, —éN) >1). If

n<-1, then the search disk includes the entire constellation (cos(6, —éN)>—1is always

right no what value is in the cosine function). For M-QAM there are different values of ., so

solving for the points within the search disk simply requires solving the inequality eq. (2.25)

for different values of r., or decoupling the M-QAM to multiple QPSK [20]. To simplify the
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computing of the algorithm, the recursive equations is develop [19]. Let ¢ :)Zi—xi,

q, =uZ, g; =U; /u; and substitute into eq. (2.23) gets

un é:|+zqu§ <r
j=i+l
For k=1,
K 2 K K 2
0y ‘ézl + Z ;| + Z Qi & + Z 05| <
j=1+1 i=l+1 j=i+l
2
§I+quj‘§l = !rzqu i Z u
j=1+1 Qy i=I+1 j=i+l
=5-5 +S| <—[r —Zq“ §+un
i=l+1 j=i+l
<lg_Rr
I}
where

T :rz_zq” ‘§| + Z 05

=i+l j=1+1
ZJ
S|

&+ Z 0

q" [ z ay

I=i+1 j=l+1
7
Qi
. M
Let s, =§+S =r.", S=> g, wecanget
j=i+l
T = q|+l|+l|§|+l + S|+l|

and the ith summation term in eq. (2.23) can be written as follows :

s—s| =r?+r2_orr cos(d,—0)<R
i il — ¢ c,i clc,i i i/7—="N

20

N

(2.27)



cos(d, ~6) =

[r +13-R|=n, (2.28)

2'\/|c . o 2'\/|c 2'\/|C ) .,
) — )< 6 <|—(6 +cos™n.) |. (2.29)
27 27 27

The distance between point AX and obtained point by Sphere Decoding in received signal

domain can be computed by the formula below :

d2 =T, Ty =T~ T+ |& +S,[ - (2.30)
For every stage, eq. (2.27) is used to compute the parameter which is needed in eq. (2.28) and
eq. (2.29) to calculate the upper and lower bound of next stage. The second method is easy to

use in computer programming, so it is adopted in this thesis.

2.4 List Sphere Decoding

List Sphere decoding (LSD) is modified from sphere decoding [17]. LSD gives a list
L which contains N, candidates of X with smaller values in eq. (2.15) for generating
the soft information. In order to generate L, the sphere decoder needs to be modified in two
ways. Every time it finds a point inside the initial radius r :
1) it does not decrease r to correspond to the radius of this new point;
2) adding this point to L if the list is not full; or if L is full, it compares this point with
the point in L with the largest radius and replaces this point if the new point has smaller

radius.
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By the changes above, List Sphere Decoding searches all the points which are inside of

the sphere with given initial radius, and gives the N best point. Sphere Decoding changes

cand
to search the point in new sphere (the center of the sphere is still the same) when its find a
new point whose distance to the center of the sphere is smaller than initial radius (mentioned
in section 2.3.1). So the points which are inside the old sphere and outside the new sphere will
not be considered in Sphere Decoding and the searching tree of SD goes smaller and smaller

(actually, another smaller tree) which is not the case in LSD. The searching tree of LSD is still

the same and all the branches must be gone through.

Fig. 2.5 Sphere of SD or LSD in received signal domain.

Here, we use Fig. 2.5 to explain the different between SD and LSD. In Fig.2.5, the

circle mark represents the center of the sphere and cross mark means the feasible solution in

received signal domain where the number beside of them is used to indicate. For SD with
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initial radius r,, if the cross mark 4 is first found and radius r, is used to be the new radius
of the searching tree then cross mark 1 ~ 2 and 3 will not be presented in new searching tree
with radius r,. Again, if the cross mark 6 is found in the new searching tree with radius r,
then cross mark 5 will not be considered for next searching tree. However, for LSD with
initial radius r, if the cross mark 4 is first found, cross mark 1 ~ 2 ~ 3 ~ 5 ~ 6 are still in the
searching tress with radius r, because LSD will not change the radius. Back to fig. 2.3, when
LSD finishes the searching operation at layer 1 successfully, it puts this point into the list,
backs to layer 2, and keeps the algorithm going. Then all the feasible points in the sphere will
be found out successively (the finding order is independent of the distance to the center of the

sphere).
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Chapter 3

Grouped Based ICI Cancellation
Method

3.1 System Model

In section 2.2, we have known the ICI effect on OFDM systems and its mathematic
representation. Now, we change the mathematic representation in section 2.2 into matrix form
which is convenient to be used in proposed method.-Eq. (2.12) can be rewrote as follows :

x=FHX (3.1)
where X =[Xy,..., Xy, 1", X=[Xq,s X,]' as showed in Fig. 2.1 and F, is the N point

FFT matrix which can be represented as follows :

2700 _.2701 ~.270(N-2) _.270-(N-1)
e ! N e ! N - e ! N e ! N
_.2710 . 2x1(N-1)
e N e N
Fy = : " : (3.2)
_2x(N-2)0 . 2x(N-2)(N-1)
e N e N
_.2z(N-1)0 _2z(N-1)1 . 2x(N-1)-(N-2) 2z (N-1)-(N-1)
e ! N e ! N ... @ ! N e ! N

Assume that the maximum delay spread of the channel always less than or equal to the length

of cyclic prefix be used, so the received signal y =[y,,...,y,_,]' and its FFT becomes :
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= F HX+W

=AX+W

(3.3)

(3.4)

with w isan Nx1 AWGN noise and A =F,HF. . The channel impulse response matrix

H is defined as follow [21]
(h® 0

(L-1) (L-1)
hL—l hL—2
0 .

0

0

(L-1)
ho

0

(0)
hL—l

0

(N-1)
hL—l

0
0
hO(Nfl)

o ]

(3.5)

where h{" is the k-th channel tap at time‘instant t=ixT and T is the sampling period.

Now, we want to find a X such that

X =argmin
XeA

Y - AX|

(3.6)

where A is the set includes all possible of X. Clearly, we can apply Sphere Decoding to

solve eq. (3.6) [6], but the complexity of this method is very large.

3.2 Group based ICI Cancellation Method
with Sphere Decoding

From [8], we know that most of the ICI effect on a subcarrier comes from neighboring
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subcarriers, so we assume the window length of the ICI effect is Q=2g+1 that is X, causes

~Y,

interference to Y G+

(e, . Let X =[Xy ,.., Xy o]’ b€ @ segment of X and for

any i=j, X;nX;={0} where N, is the size of one segment. Accordingly, X; will

induce the interference on Y, :[Y((iNx—q))N""’Yi~Nx""’Y(((i+1)Nx—l+q))N]T' From Fig 3.1, Y, also

suffers the interference from X, , and X,

i+l

or even more segments (depend on how large

N, and g are), so performance of solving X, by Y, directly may not be acceptable.

X XXy
¥ o T
ol S H P e Pt I A O
e
X
| |
Y,
Y — N, +2
Y,

Fig. 3.1 Group Method for ICI with window length Q=2qg+1.

The basic ideal of our method is to cancel the component of X;, i=j in Y. Again, form

[8], most of the ICI effect on a subcarrier comes from neighboring subcarriers. We use

n,>2q-1 so that Y; is affected by X, ,, X, and X

i i+1

only. The relationship of Y,,

X,,, X, and X, can be represented as follows :

i+1
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Y =[ALIX AT +[A X, (3.7)
where

a a

((ne=a))n o0y ((Ine=a))n (i+1)n, -1
[A]= % g s (38)

a a

(((F+D)n=1+))y -0y (((G+D)n =L+ q))y  (i+1)ny -1

a; Iis the element of A on i-th row and j-th column in eq. (3.4). First, solving X,, X,

ij

and X.

i+l

individually by Y;, Y,, and Y,

i+1

by using Sphere Decoding. Eg. (2.21) applied

here becomes as follow :

A

X, =argmin(X, ;) [AT'[A](X, - X, ) <r? (3.9)
i,ML XiEA 1 1 1 [ *
where 5(i is the least square solutioriof Y, =[A']X. . After solving the eq. (3.9), we use the

result X, and X, to do ICIcancellation by following equation :

i1

Y=Y <AL A[A LK (3.10)
Then using Y, to do Sphere Decoding, because the ICI effect comes from X, , and X,
have been cleaned, we expect that the more correct X; can be obtained. Using the procedure
as described above iteratively, we expect that the recover performance will be better and better.
Fig 3.2 is the block diagram of the algorithm for one group ;. At initial state, switch links to
the path which input a zero vector to do ICI cancellation (i.e. no ICI cancellation). At the
(j*+1)th iteration, switch links to the path which input [A{_l](f(i_l)j and [A1‘+1](>A(i+1)j where
(5(i_1) ; represents the output made from the (i-1)th group at the jth iteration for doing ICI

cancellation. After ICI cancellation, Sphere Decoding generates (5(i_1) can be used in ICI

j+l
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cancellation for next iteration.

[AL]— 0

> (>A<i)j+l

(Al iteration initial

(X.y),

Fig. 3.2 Block diagram of group based ICI cancellation method with Sphere Decoding.

3.3 Group based ICHCancellation Method
with List Sphere Decoding

Different from section 3.2, we apply List Sphere Decoding to generate some candidates

of X, and use these candidates to compute the soft symbols for doing ICI cancellation.

1teration nitial

3.3.1 Soft Symbol

For QPSK modulation, soft symbol can be calculated as follows :
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- 1 - A
X :ﬁ(xkl,i +JX3) (3.11)
Xei = PIXy, =+1 Y 1-PX, =-1] Y] (3.12)
XQ =P[XQ =+1|Y,]-P[XQ =-1] Y] (3.13)

where >Zk"i is an expectation of bit corresponding to the real part of the k-th symbol in X;.
P[XQ =+1|Y,, ] is the probability of X equals to 1 when ¢ is given and can be

obtained by follows equation :

eLD<xk',i|Yi>
PIXy; =+ Y= =
1+e™ (3.14)
1
I - -
P[kai_ 1|Y'] l+eLD(XIi,i|Yi)
where
PEX, =+1]Y,
O 1Y) =t oo b=
: P[Xk,i =-1]Y]
> p(X 1Y) (3.15)
il In X|€Lk,|‘+1
> p(X 1Y)
xiEL:(,i,—l

and L., isthesetofall possible X; that real part of the k-th symbol equal to 1. Here, X,
is selected form the list generated by List Sphere Decoding [22]. Assume that the prior
probability of every bit is equal probability and is independent to each other, so we can go

further from eq. (3.15) as follows :

1
p(Y)x; PCY, [X)POXE =D POXG s XS X X i XS 1)

1
VTN Z p(Yilxi)p(Xkl,i :_l)p(X(:,i'X(?,i’“"XI?i' ------ 7Xll\lx—l,i’Xl(\lgx—1,i)

p(Y|) Xielyi 4

LD(XkI |Yi,NX) =1In
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> p(Yi1X)

g Xl
NS (319

Xiely i1

3.3.2 Conditional Probability

From above derivations, if we want to compute the soft symbol then we need to find

p(Y, | X;). For every subcarrier Y,, we can use equation below to represent

N

Yo=a, X+ ay X, +W,
=
J=i

ICH

=D aiX, + Ay +W,

jed; 1233

=Y, - X, =Y X, +W,

jed; i#d;
=N, + )Ny

:ni

assume n; and ny are independent Gaussian random variable [4], so we need compute the

mean and variance of n, inorder to get P(Y,|X;)

E[n1=E[D> a,X, +W,]1=0= E[n,]1=E[n,]1=0 (3.17)

jed;

of =Var[n]1=E[| > a;X; +W, ['] (3.18)

jed;

because X; and W, are independent, eq. (3.18) becomes
var[n]=P, > |a; [ + o2 = Var[n;]=Var[n,] = %aﬁ : (3.19)
jed;

The probability P(Y; |X;) can be represented as follows :
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=

P(Yi |Xi) = c 1 exp{_n_i:|- L exp{_n_ég:|
(7Z'O'i2 )E 9 (7Z'O'i2 )E i

1 o | nf+n]
(7Z'O'i2) p_ o’
A
2 T2
(7Z'O'i )exp o, }
_ -
. Yi—;aijx j
=@exp - G'iz . (3.20)

At last, because every n; in Y, can be seen as independent (the correlation of term

Zaj,xl between each of n; is small under the assumption that ICI effect comes from

leJ;

neighboring subcarrier.), we can get p(Y, [ X;) as follows :

POY,1X,) = ————+ kg~ ~[ATIX, ) 5, (Y, ~[A1X,) (3.21)

(7 det(3))
where ¥, =diag(o?,....00y ).
Above is the case of initial state which ICI cancellation has not been done yet. There are some

changes to be done after ICI cancellation. Fortunately, we only need to change the mean and

variance of n;. Again, let’s see the subcarrier Y, after ICI cancellation,

Yo=Y - a X, +W,
jed;

= a X+ 2y ( X - X, )+W,

jed; ied;

(3.22)

==Y — > a,X; =2 a;(X; - X )+ W,.

jed; ied;

By eq. (3.22), we can derive the mean and variance of fi, as follows :
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E[ﬁi]=E{za”(xj—imwi}:— a;X, (3.23)

Felp

=, +P, Z| a; > (3.24)

jed;

D a X, +W,

i#d;

Zaij(xj—kj)+wi—5[ﬁi]

jed;

Var[ﬁi]=E[

Apply eq. (3.23) and eq. (3.24) into eq. (3.21) then we can get p(Y;|X,) to compute the soft

symbol after ICI cancellation.

(i),

[AL]—

> —»()A(l)

j+1

[ Ai+l ] O

(X0),

Fig. 3.3 Block diagram of group based ICI cancellation with List Sphere Decoding

The block diagram of the group based ICI cancellation with List Sphere Decoding is
showed in fig. 3.3. The procedure is as the same as the one with Sphere Decoding except that

Sphere Decoding in fig. 3.2 is replaced by List Sphere Decoding with a soft decision device
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followed to compute the soft symbol for ICI cancellation here.

3.4 Radius of the Sphere

In chapter 2, there are two key questions of Sphere Decoding are mentioned. The
second one can be solved by the algorithm of Sphere Decoding, but the first one how to
choose the radius does not have exactly solution. Here, we use a simple method to decide the
initial radius for each application of Sphere Decoding in our group based ICI cancellation
method. From eq. (2.21), we use least square solution to be the center of the sphere. We know
that least square solution is the best'solution to satisfy-the ML criterion, but it may not be the
feasible solution that is, it may not be*a point on:the signal constellation. Because of the
channel effect, the hard decision of the least square solution may not be the best solution
within the all feasible solutions. We can use Fig 3.4 to interpret the problem above. In Fig 3.4,
left hand side is the feasible point in transmitted signal space and right hand side is the
transformation of left hand side by the channel matrix. On the left hand side, square is the
least square solution and the circle is the hard decision of the least square solution. On the
right hand side, square \?, is the transformation of the least square solution and circle is the

transformation of the hard decision value. Hard decision of the least square is the nearest

point of the least square solution within the all feasible points (on the left hand side), but after
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transform hard decision is not the nearest point of least square solution’s transformation.

A A
X X

— S
X X . X

.. \?ﬂ - \\
x x| ¥ / < X
XX x ><  X
X X X

Fig. 3.4 signal space in transmitter and receiver.

If hard decision of least square solution after transformation is not the nearest feasible to the
center of the sphere \?i in the received signal space then the solution which satisfies eq.
(2.21) must be inside of the sphere with radius which.is-equal to the distance between \A(I
and the hard decision of least square solution after transformation. By the notion above, it is
reasonable to set the initial radius of the sphere to be the distance between Y. and the hard

decision of least square solution after transformation.
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Chapter 4
Simulation Result

4.1 Simulation Environment

Simulation results are given for the proposed group based ICI cancellation with Sphere
Decoding and List Sphere Decoding under two kinds of simulation environments.

For the first one, a 6 taps channel is considered, and each tap of the channel are
modeled as independently complex'Gaussian random process which is generated by the Jakes’
Doppler spectrum with 120 ~ 240°0r 300 km/hr relative velocity. The relative delay of the first
tap is zero and others are uniformly distributed in the interval [1,N;] where N is the length
of cyclic prefix we used. The power of the path 2, 3, 4, 5 and 6 is 1dB, 9dB, 10dB, 15dB and
20dB smaller than the first path. An OFDM system with N=256 subcarriers and quarter phase
shift keying (QPSK) are simulated. The carrier frequency is 2.5GHz and the bandwidth of the
system is 5MHz. According to the relative velocity and parameter above, f,T, equal to
0.0142 ~ 0.0284 and 0.0356. The detail of the parameters can be checked in Table 4.1.

For the second one, a 6 taps channel which is as the same as the first one is considered,

but the relatively velocity of the Jakes’ Doppler spectrum changes to be 85 ~ 170 or340 km/hr.
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An OFDM system with N=64 subcarriers and quarter phase shift keying (QPSK) are
simulated. The carrier frequency is 2GHz and the bandwidth of the system is 200 kHz.

According to the relative velocity and parameter above, f,T, equal to 0.05 - 0.1 -~ 0.2. The

S

detail of the parameters can be checked in Table 4.2.

Table 4.1 Simulation parameters of the first kind of simulation environment

Modulation QPSK

Path 6

Relative power (dB) 0,-1,:9,-10,-15,-20

Cyclic prefix length 16

Carrier frequency 2.5 GHz

Subcarriers 256

Bandwidth 5MHz

Vehicle speed (km/hr) 120 240 300
fT, 0.0142 0.0284 0.0356
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Table 4.2 Simulation parameters of the second kind of simulation environment

Modulation

QPSK

Path

Relative power (dB)

0,-1,-9,-10,-15,-20

Cyclic prefix length 16

Carrier frequency 2GHz

Subcarriers 64

Bandwidth 200kHz

Vehicle speed (km/hr) 85 170 340
fiT, 0.05 0.1 0.2
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4.2 Simulation Result Discussions

4.2.1 Simulation in Environment |

Fig. 4.1 shows the bit error rate of the OFDM system which applies group based ICI
cancellation method with Sphere Decoding, and group size is equal to 8 and Speed is equal to
120 km/hr. The fist curve we use group based method without ICI cancellation. We can see
that error floor appear when SNR is high if ICI cancellation is not used, and the curve of
iteration number equal to 1 and 4 is almost the same as the perfect one which use the correct
data of one neighboring groups on each side to do I€l-cancellation.

Fig. 4.2 shows the bit error rate ‘of group based ICI cancellation method with Sphere
Decoding in different speed with iteration number equals to 4. For high speed case, we can
get the diversity gain from ICI but error floor occurs when SNR is high. The performance
difference between perfect ICI cancellation and not perfect ICI cancellation is getting larger
and larger when speed is getting faster and faster.

Fig. 4.3 shows the bit error rate of group based ICI cancellation method with Sphere
Decoding in different group size and speed with iteration number equals to 4. We can see that
a larger size of group implies a better performance, but the error floor problem is still not

improved by using a larger group size.
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Fig. 4.4 shows the difference of bit error rate between group based ICI cancellation

method with Sphere Decoding and List Sphere Decoding. LSD can get better performance

than SD, but the improvement is not good enough. No matter LSD or SD is applied, the

performance still has a gap between perfect one. At last, it seems that group based ICI

cancellation method with LSD need less iteration number than SD to get the same

performance.

Fig. 4.5 shows the bit error rate of the group based ICI cancellation method with LSD

in different group size and speed. Just like the SD case, the performance improvement is not

very well for using larger group size.sBack to the Fig. 4.3 which use SD, the curve with speed

equal to 300km/hr has worse BER'than the one with-speed equal to 120km/hr at high SNR,

but it is different in LSD case the curve with speed equal to 300km/hr still has better BER

than the one with speed equal to 120km/hr at high SNR.

Fig. 4.6 and Fig. 4.7 shows the comparison of BER in different group sizes with SD and

LSD when the speed is 240 km/hr. Both of SD and LSD, the performances become worse and

worse when group size gets smaller and smaller.

Fig. 4.8 and Fig. 4.9 are the comparison between group size equal to 2 and 4 in different

speed with SD and LSD. From these two figures, we can find that the performance of group

size equals to 2 and 4 are almost the same when speed is equal to 120 km/hr, but the

performance of group size equals to 4 is better than equals to 2 when speed equals to 240

39



km/hr and 300 km/hr. The phenomenon above shows that if ICI effect becomes severer, then

we need a larger group.
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Fig. 4.1 Comparison of BER in different iteration number (1).
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Fig. 4.2 Comparison of BER in different speed (1).
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4.2.2 Simulation in Environment |11

Fig 4.10 is bits error rate of the group based ICI cancellation method with Sphere
Decoding. The sizes of every groups is 8 and we set the window length of ICI is 9. The first
line only use group based method without ICI cancellation. We can see that performance gets
a lot of improvement by using ICI cancellation. Performance goes better and better with
numbers of iteration increasing. Unfortunately, the performance saturates at numbers of
iteration equal to 3 and the this performance still much worse than the one (the last curve in

Fig. 4.1) which ICI effect comes from twoygroups nearby (i.e. X, , and X,, for X, )are

i+1
perfect canceled. By the mention above, the decision'made by each groups is not good enough
to make the performance closes to the last curve in Fig. 4.1.

In Fig. 4.11, we try different sizes of group. We use 4, 8, 16 three kinds of size and the
corresponding ICI windows length are 5, 9 and 17. With numbers of iterations equal to 4, the
larger size of group has better performance and higher diversity gain. However, as mention in

Fig. 4.1 the error floor still exist because of the accuracy of others group decision.

In Fig. 4.12, we try different kinds of f,T,. As we know the higher f,T, causes

S

severer ICI effect and Fig. 4.3 show the same result. The performance can be improved by

using larger size of group, but the improvement still not good enough when f,T, is equal to

2 or higher. We also can find that it seems no error floor when f,T, equal to 0.05 and size of
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group equal to 16. One more thing to be mentioned is that the method we proposed here can
get diversity gain form higher f,T, inlow E,/N,. Compare with the method in [6] which
use all the subcarriers to do Sphere Decoding. In the case of f,T, equals to 0.1, although we
have error floor effect, our method has better performance before E, /N, reaches to 32dB.
However, in the case of f,T, equals to 0.2, our method has better performance before
E, /N, reachesto 22dB.

In Fig. 4.13, we show the performance comparison of group based ICI cancellation
method with SD and LSD. As the same as the case of Fig. 4.1, the size of the group is equal to
8 and f,T, is equal to 0.1. The solid line represents the method with LSD and dash line
represents the method with SD. Different marks represent different numbers of iteration. We
can find that the performance of the method with LSD is better the one with SD in every kind
of numbers of iteration. We can see that the performance of the method with LSD whose
number of iteration is equal to 2 is better than the method with SD whose number of iteration
is equal to 3, so the method with LSD has faster speed of being saturation than the method
with SD.

In Fig. 4.14, we show that the error floor effect comes from the accuracy of the decision
made by groups nearby (we use them to do ICI cancellation) not comes from others group
which we do not consider the ICI effect comes from them. The group’s size of the solid curve

in this figure is equal to 8 and 16 for dash curve. The curve with star mark cancels the ICI
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effect perfectly comes form the nearby groups and the curve with diamond mark cancels all

the ICI perfectly from other groups expect itself. We can see that the dash curve with star and

diamond are very close, it means that it does not matter how many groups is taken to do ICI

cancellation if the size of group is large enough (also see the curves with star mark). Now

look back to the dash curve with circle mark which use the decision of the nearby groups to

do ICI cancellation. The different between the dash curve with circle mark and star mark is

that the decision of nearby groups is correct or not.
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4.3 Computational Complexity

The expected complexity of the sphere decoding algorithm is O(N®) when the
signal-to-noise ratio (SNR) is high [23]. Where the sphere decoding algorithm is applied in a
subspace of S", S is a set corresponding to the modulation scheme and N corresponding
to number of subcarrers or group size in group based method. By the notion above, we can get
a brief computational complexity comparison (Table 4.3) between the method which using all
subcarriers to do Sphere Decoding and the method we propose. Let N denotes number of
subcarrers of OFDM system, N, denotesigroup size ¢f group based ICI cancellation method,
and | denotes the iteration number in group based ICI cancellation method. As we know
group based method has N /N, groups and-every group will do Sphere Decoding with N,
subcarriers. The operation of group based method iterative 1+1 times (include initial state).
In table 4.3 we use an example to make above notion more clearly.

Table 4.4 show the numbers of adder and multiplier are used in group based ICI
cancellation method with different sizes of group and general Sphere Decoding without group
based method [6] under the second kind of environment which the number of subcarriers N of
the OFDM systems is equal to 64. This simulation considers the case which E, /N, is equal
to 32dB and for every group based ICI cancellation method the numbers of iteration is equal

to 4. The same as we expect, as the group size goes larger and larger the complexity goes
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larger and larger. Although, Sphere Decoding without group based method (group size is

equal to 64) does not have error floor when E_ /N, is high, it is the most complexity one.
Comparing group based ICI cancellation with SD and LSD, LSD has more complexity than

SD.

Table 4.3 Brief computational complexity comparison

Group based ICI Cancellation method Sphere Decoding with all subcarriers

(1 +D)(N/N,)N? N

N=256, Nx= 8, 1=4

81920 16777216

Table 4.4 Comparison of computational’complexity under the second kind of environment

SD LSD
Group size 8 16 64 8
Adders 14917 43349 1.6078e8 22465
Multipliers 20426 58554 2.1503e8 29850
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Chapter 5

Conclusions

In this thesis, we proposed a group based ICI cancellation method with applying SD
and LSD to improve the performance of OFDM in high mobility environment. Because we
apply SD or LSD on group based method, the complexity can be reduced a lot. Due to the
parallel like ICI cancellation scheme the performance can be improved.

Compare with the group based method which utilizes the serial 1CI cancellation [9] -
[10]. We can see that there are still a lotiof improvements on BER. ICI effect dominates the
performance when SNR is high, and it ‘will cause the error floor. Although, the improvement
by utilizing the LSD is not very well, it provides a based form for using coding which use soft
input and soft output algorithm such as BCJR that exchange the extrinsic information between
demapper and decoder [15]. Because we use SD and LSD as tools to solve the ML problem,
the complexity can be reduced if the more efficiency SD and LSD is applied even that SD and
LSD can be replaced by more powerful method which is used to solve the ML problem or fit
this group based structure. At last, in thesis we assume that the channel state information is

well known, so the issue combines with channel estimation is needed to be considered.
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