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應用於高速移動正交分頻多工系統分組子載波干擾

消除及資料偵測之研究 
 

    學生：邱麟凱               指導教授：黃家齊 

 

 

國立交通大學電信工程學系 碩士班 

摘 要       

    由移動所造成的頻道變化會使得一個正交分頻多工系統的符元有頻率

選擇性的衰減，這樣的現象使傳統一級等化器的方法不能被利用，且此現

象更進一步的會破壞子載波之間的正交性使得正交分頻多工系統的符元遭

受到內部子載波互相干擾的現象，若是在高速移動的情況下會造成系統效

能嚴重的被降低，為了減輕此現象帶來的問題，這篇文章提出一個運用球

形解碼或列表式球形解碼反覆式的分組子載波干擾消除方法，在接收端子

載波會被分成許多組，並使用球形解碼或列表式球形解碼去產生資訊再將

這些資訊傳送到其它組做子載波干擾消除，分組的方法是用來減輕使用球

形解碼或列表式球形解碼的計算複雜度，而子載波干擾消除的方法是用來

使系統效能更好。 
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A Study on 

Group Based ICI Cancellation and Data Detection for 

High Mobility OFDM Systems 
 

Student：Li-Kai Chiu                   Advisor：Dr. Chia-Chi Huang 

Department of Communication Engineering 
National Chiao Tung University 

ABSTRACT 

The channel variation due to vehicle mobility produces frequency selective fading 

among OFDM symbols which makes the traditional one-tap equalizer can not be utilized. 

Moreover, the orthogonal property of OFDM subcarriers is destroyed and OFDM symbol 

experiences inter-carrier interference (ICI) that severely degrades the performance in high 

vehicle mobility environment. To reduce the problem, an iterative group based ICI 

cancellation method which applies sphere decoding and list sphere decoding (LSD) is 

proposed. At the receiver, subcarriers are partitioned into several groups, each group uses SD 

or LSD to generate the message information and pass it to other groups for ICI cancellation. 

The grouping procedure is used to reduce the computation complexity of the SD and LSD, 

and ICI cancellation procedure is used to make BER performance better. 
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Chapter 1 
 
Introduction 
 

OFDM is widely used in many wireless communication systems for high-bit-rate 

transmission over a frequency-selective fading channel. The concept of Orthogonal Frequency 

Division Multiplexing (OFDM) is initiated from that of multi-carriers systems [1] [2]. Data 

are transmitted through multiple carriers simultaneously to achieve high data rate transmission. 

In OFDM, the computationally efficient fast Fourier transform (FFT) is used to transmit data 

in parallel over a large number of orthogonal subcarriers. A cyclic prefix is inserted before 

each transmitted data block to eliminate the inter symbol interference (ISI). For time-invariant 

multipath channels, a single tap equalizer in frequency domain can be employed to recover 

the transmitted symbol on each subcarrier. However, due to the demand for orthogonality 

between each subcarrier, OFDM systems are sensitive to synchronization.  

In high mobility environment, multipath channel is time varying. Channel variations 

may also arise the presence of an unknown carrier frequency offset, so the orthogonal 

property of OFDM is destroyed and result in the effect of inter-carrier interference among 

subcarriers which makes the performance of OFDM systems degrades severely [3] [4]. To 

reduce the ICI caused by channel variation, many approaches have been proposed, e.g., 
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self-cancellation scheme [5], Sphere Decoding (SD) [6], minimum mean-squared error 

(MMSE) and MMSE with successive detection (MMSED) [7]. In [5], the method proposed 

sharps the signal in frequency domain using the windowing operation in time domain to make 

subcarriers has approximate nulls around the location of others subcarriers and, therefore, 

creates less ICI. In [6], Sphere Decoding which solves the ML criterion is used to reduce the 

effect of ICI. In [7], it introduce a high performance equalization method by using MMSE 

with successive interference cancellation, but the computational complexity is very high. 

According to Cai.et al., [8] shows that ICI effect on a sucarrier comes from neighboring 

subcarrieres, [9] and [10] propose a group based ICI cancellation method to lower the 

complexity and utilize successive ICI cancellation to get better performance. In this thesis, a 

parallel liked group based ICI cancellation method combined with Sphere Decoding or List 

Sphere Decoding is proposed to improve the system performance and lower the complexity of 

method in [6] which uses Sphere Decoding to reduce the ICI effect of OFDM system in high 

vehicle mobility environment. At the receiver, subcarriers are partitioned into several groups, 

each group uses SD or LSD to generate the message information and pass it to other groups 

for ICI cancellation. The operation of solving Sphere Decoding or List Sphere Decoding and 

passing message information for ICI cancellation will repeat iteratively to make performance 

better and better. In our proposed method, we assume that the channel state information are 

perfectly known at receiver. 
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The organization of this thesis is as following. In chapter 2, ICI effect on OFDM in high 

mobility environment, Sphere Decoding and List Sphere Decoding are introduced. In chapter 

3, at first, the system model used in thesis is introduced then the group based ICI cancellation 

method with Sphere Decoding and List Sphere Decoding are introduced. In the end of the 

chapter 3, the parameter setting of Sphere Decoding is introduced. Computer simulation 

results along with some discussions are showed in chapter 4. Finally, in chapter 5, brier 

conclusions are made. 
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Chapter 2 
 
OFDM System in High Mobility 
Environment and Sphere Decoding 

 

2.1 High Mobility Environment 
 

In wireless communication, received signals come from multiple paths due to reflection 

effects. Such environment is called a multipath channel. The equivalent baseband of a 

multipath channel impulse response can be described as [11]  

1

0
( , ) ( ) ( ).

l L

l l
l

h t a t tτ δ τ
= −

=

= −∑                       (2.1) 

Where ( )la t  and lτ  are the time-varying complex fading gain and the path delay of the lth 

path, L is the total number of multipath, and δ  is the delta function. The variation speed of 

path gain ( )la t  depends on maximal Doppler frequency or Doppler spread which is 

proportioned to the vehicle speed and carrier frequency. Maximal Doppler frequency is 

defined as eq. (2.2). The larger the Doppler spread is, the faster variation of the path gains are. 

[12]                                                                                       

c
d

f vf
c

= ,                              (2.2) 

where cf  is the central frequency and v  is the vehicle speed and c  is the speed of light. In 
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OFDM system the parameter d sf T  is used to measure the effect of the ICI where sT  is the 

OFDM symbol period. We can observe that the inversion of sT  is the subchannel bandwidth 

and we can treat Doppler frequency as the frequency offset of a single tone signal after 

passing through the channel, so d sf T  is the fraction between frequency offset and subchannel 

bandwidth. If d sf T  is very small, it means that frequency offset relative to the subchannel 

bandwidth is too small which can be neglect, so the frequency of the signal can be seemed as 

the same as the original one. Otherwise, the mismatch of the frequency will occur at the 

receiver in OFDM systems. For fixed cf  and sT , we can see from eq. (2.2) that df  goes 

larger and larger when the relative velocity v  goes faster and faster and it will cause the ICI 

effect goes severer and severer. 

    In the computer simulation, channel gains ( )la t  are generated by Jakes model, the 

introduction of Jakes model is as following: 

In the multipath Rayleigh fading channel without line of sight (LOS), the angel of the arrival 

signal in a plane is assumed to be uniformly distributed in the interval [0, 2 )π . Jakes modeled 

the Rayleigh fading channel by a bank of oscillators with the maximal Doppler frequency and 

its fractions, as eq. (2.3) showed. 

0

0

1

1

( ) 2 cos cos 2 cos cos

( ) 2 sin cos 2 sin cos

N

I n n d
n

N

Q n n d
n

f t t t

f t t t

β ω α ω

β ω α ω

=

=

= ⋅ + ⋅

= ⋅ + ⋅

∑

∑
         (2.3) 

where  
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0 02(2 1),  8N N N= + ≥       

0cos Doppler shifts, 1, 2,...,n d n n Nω ω α= = =  

0
2 the arrival angel of the n-th arrival signal, 1, 2,...,n

n n N
N
πα = = =  

 0the phase of the n-th arrival signal, 1, 2,...,n n Nβ = =  

In eq. (2.3), 0N  must be large enough to approximate to the central theorem. nβ  are chosen 

properly such that the arrival phases are close to uniform distribution in [0,2 )π . 

 

2.2  ICI on OFDM System 
 

iw

( )i
lh

0X

1X

1NX −

0Y

1Y

1NY −

0y

1y

1Ny −

0x

1x

1Nx −

cpx cpy

 

Fig. 2.1 Base-band OFDM System.  

 

Fig 2.1 is the block diagram of base-band OFDM system. kX , 0,..., 1k N= −  the 

inputs of the Inverse Fast Fourier Transform (IFFT) represent the frequency domain data on 

the k-th subcarrier. kx , 0,..., 1k N= −  the outputs of the IFFT can be represented as 

follows： 
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21

0
 0 1

j ikN
N

i k
k

x X e i N
π−

=

= ≤ ≤ −∑ .                       (2.4) 

cpx  represents the cyclic prefix (CP) with length GN  and is related to time domain sequence, 

x  as follows： 

( )   0 1cp N C i Gi x i N− += ≤ ≤ −x .                       (2.5) 

Let T  be the sampling period. Then ( )i
lh  is the lth channel tap at time instant t i T= × . We 

assume that the maximum delay spread of the channel is always less than or equal to GN . 

Then the channel output y  can be expressed as follows：  

( )
(( ))

0
 0 1

G

N

N
i

i l i l i
l

y h x w i N−
=

= + ≤ ≤ −∑ .                    (2.6) 

In eq. (2.6), ((   ))N  represents a cyclic shift in the base of N and iw  represents a sample of 

additive white Gaussian noise. Then the fast Fourier transform (FFT) of sequence y , will be 

as follows： 

21

0
 0 1

j kiN
N

k i
i

Y y e k N
π− −

=

= ≤ ≤ −∑ .                   (2.7) 

If ( )i
lh  is constant during one OFDM symbol time ( )GN N T+ × , then eq. (2.6) 

becomes  

 (( ))
0

 0 1
G

N

N

i l i l i
l

y h x w i N−
=

= + ≤ ≤ −∑ ,                  (2.8) 

which is the circular convolution of h  and x . By using eq. (2.7), eq. (2.4) and basic DFT 

concept [13], we will find that the relationship between kX  and kY  which is derived as 

follows： 

21

(( ))
0 0

G

N

j kiNN
N

k l i l i
i l

Y h x w e
π− −

−
= =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑  
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( )
2 21 1

(( ))
0 0 0

2 (( )) 21 1

0 0 0

2 (( )) 21 1

0 0 0

   
G

N

NG

NG

j ki j kiN N N
N N

l i l i
l i i

j i l n j kiN N N
N N

l n k
l i n

j i l n j kiN N N
N N

l n k
l n i

h x e w e

h X e e W

h X e e W

π π

π π

π π

− −− −

−
= = =

−− − −

= = =

−− − −

= = =

= +

= +

= +

∑ ∑ ∑

∑ ∑∑

∑ ∑ ∑

                      

2 2 21 1

0 0 0

G j ln j in j kiN N N
N N N

l n k
l n i

h X e e e W
π π π−− − −

= = =

= +∑ ∑ ∑                  (2.9)              

21

0 0
[ ]

G j lnN N
N

l n k
l n

h X e n k W
π

δ
−−

= =

= − +∑ ∑                      (2.10)               

2

0

G j lkN
N

k l k
l

X h e W
π−

=

= +∑                                     

k k kH X W= + .                                   (2.11) 

Because of the orthogonal property of the subcarrier, we can derive eq. (2.9) to eq. (2.10). At 

last, from eq. (2.11) we can see that kY  only depends on kX .  

Unfortunately, impulse response of the channel is not a constant during one OFDM 

symbol time in high mobility environment. In section 2.1, we know that the channel impulse 

response is change in time, and frequency offset occurs due to the Doppler frequency. All the 

thing happened above destroy the orthogonal property of subcarriers. In this case, from eq. 

(2.7) we can find that [14] 

21
( )

(( ))
0 0

2 21 1
( )

(( ))
0 0 0

21
( )

(( ))
0 0

2 2 21 1
( )

0 0 0

   
G

N

G

N

G

N

G

j kiNN
i N

k l i l i
i l

j ki j kiN N N
i N N

l i l i
l i i

j kiN N
i N

l i l k
l i

ln j in j kiNN N ji N N N
l n

i l n

Y h x w e

h x e w e

h x e W

h X e e e

π

π π

π

π π π

− −

−
= =

− −− −

−
= = =

− −

−
= =

− − − −

= = =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

= +

= +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∑ ∑

∑∑ ∑

∑∑

∑∑ ∑
2 ( ) 21 1

( )

0 0 0

G

k

j k n i lnNN N ji N N
n l k

n l i

W

X h e e W
π π−− − − −

= = =

+

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑ ∑
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2 2 ( )1 1
( )

(( ))
0 0 0

2 2 2 ( )1 1 1
( ) ( )

(( ))
0 0 1 0 0

G

N

G G

N

j di l k dNN N ji N N
k d l k

d l i

lk j di l k dN NN N Nj ji iN N N
l k l k d k

l i d l i

ICI

X h e e W

h e X h e e X W

π π

π π π

−− − − −

−
= = =

−− − −− − −

−
= = = = =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑
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2 2 ( )1 1
( )

(( ))
0 0 1 0

( )
G G

N

lk l k dN NN Nj ji N N
l k l k d

l i d l

ICI

h e X F d e X W
π π −− −− −

−
= = = =

⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑∑ ∑ ∑                   

    
1

,0 , (( ))
1

N

N

k k k d k d k
d

ICI

H X H X W
−

−
=

= + +∑ ,                                  (2.12) 

where 

21
( )

0
( )  ,0  &  0 1

j diN
i N

l l G
i

F d h e l N d N
π− −

=

= ≤ ≤ ≤ ≤ −∑ .             (2.13) 

Then ,k dH  can be defined as 

2 ( )

,
0

( )  0 , 1
G l k dN j

N
k d l

l
H F d e k d N

π −
−

=

= ≤ ≤ −∑ .                (2.14) 

The second term of eq. (2.12) represents ICI which is the combination of other subcarriers and 

can’t be neglected as the maximum Doppler frequency increases [15]. These ICI term causes 

the performance of OFDM degraded severely.  

We treat eq. (2.13) as frequency response of the lth path and ,k dH  is the weight 

coefficient from the (( ))Nk d− th subcarrier on the kth one. to the eq. Now, by the notion 

above, we try to explain why eq.(2.6) results in eq. (2.12). We can see from eq. (2.6) that at 

any time instant t i T= × , the received signal iy  is the summation of the result of path 

coefficient multiply with delayed sample of OFDM symbol, so we can expect that subcarrier 

kY  is the result of frequency response eq. (2.13) circular convolute with jX  , 0 1j N≤ ≤ − . 
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We uses the notion above to rederive kY . 

{ }

{ } { }

(( ))
0

( )
(( ))

0

( )
(( ))

0
2

0

2 ( )1

(( ))
0 0

2 ( )1

(
0 0

{ }

( )

( )

( )

G

N

G

N

G

N

G

G

N

G

k i

N

l i l i
l

N
i

l i l k
l

N
i

l i l k
l

lkN j
N

l k k
l

l k dN N j
N

l k d k
l d

l k dNN j
N

l
d l

Y FFT y

FFT h x w

FFT h x W

FFT h FFT x W

F k X e W

F d X e W

F d e X

π

π

π

−
=

−
=

−
=

−

=

−− −

−
= =

−− −

= =

=

⎧ ⎫
= +⎨ ⎬

⎩ ⎭

= +

= ⊗ +

= ⊗ +

= +

=

∑

∑

∑

∑

∑∑

∑∑ ( ))

1

, (( ))
0

N

N

k d k

N

k d k d k
d

W

H X W

−

−

−
=

+

= +∑  

We can find that the result of above equation is the same as eq.(2.12), so time variant channel 

causes frequency response and subcarrier do the circular convolution operation in OFDM 

systems.  

 

2.3  Sphere Decoding 
 

2.3.1  Real Sphere Decoding 

 

 In communication, Sphere Decoding (SD) [16] ,is used to solve the ML problem as 

follows：  
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2ˆ arg minML ∈Λ
= −

X
X Y AX ,                     (2.15) 

where A  is a M-by-N matrix where M N> , Y  is a N-by-1 vector, and X  is a N-by-1 

vector. Λ  is the set which includes all possible X . We can derive from eq. (2.15) as 

follows ：  

( ) ( )

( )( )
( )( )

( )( ) ( )( )

2

1

1

1 1

ˆ arg min

      arg min

arg min

arg min

              

arg min

ML

T

T T T T T T

T T T T T T T T

T T T T

T T T T T T T T T T T

∈Λ

∈Λ

∈Λ

−

∈Λ

−

− −

∈Λ

= −

= − −

= − − +

= − − + +

−

= − − + + −

X

X

X

X

X

X Y AX

Y AX Y AX

Y Y Y AX X A Y X A AX

Y A A A A Y Y AX X A Y X A AX

Y Y Y A A A A Y

Y A A A IA Y Y AIX X IA Y X A AX Y I A A A A Y

( ) ( )( )(
( ) ( ) ( )( ) )

( )( )
( ) ( )( )

( )( )

1 1

1 1

1

† † † †

1

†

arg min

               

                

arg min

                

arg min

T T T T T

T T T T T T T T T

T T T

T TT T T T T T T T

T T T

− −

∈Λ

− −

−

∈Λ

−

∈Λ

= −

− + +

−

= − − + +

−

=

X

X

X

Y A A A A A A A A Y

Y A A A A A X X A A A A A Y X A AX

Y I A A A A Y

Y A A AA Y Y A A AX X A AA Y X A AX

Y I A A A A Y

A A Y( )( ) ( )( ) ( )( )1†T T T T−
− − + −X A A Y X Y I A A A A Y

    ( ) ( )ˆ ˆarg min
T T α

∈Λ
= − − +

X
X X A A X X .                                    (2.16) 

In eq. (2.16), α  is a constant and does not change when different X  is chosen. 

† 1( )T T−=A A A A  is the pseudo inverse of A , so X̂  is the least square solution of 

=AX Y .As the same as [17], to solve eq (2.15) is equivalent to solve as follows： 

( ) ( )ˆ ˆ ˆarg min
T T

ML ∈Λ
= − −

X
X X X A A X X .                 (2.17) 

The easiest way to solve eq. (2.17) is to check all the possible of X  and finds which one of 
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X  causes the minimum. However, the computational complexity of above exhaustive search 

method is really high So sphere decoding is brought up to avoid the exhaustive search and 

searches only over the possible X  which lies in a certain sphere centered at the given vector 

with radius r. In this notion eq. (2.18) can be written as follows in Sphere decoding 

( ) ( ) 2ˆ ˆ ˆarg min
T T

ML r
∈Λ

= − − ≤
X

X X X A A X X .               (2.18) 

It is clear that the closest point inside the sphere will also be the closest point for the whole 

point. However, close scrutiny of this basic ideal leads to two key questions [16]. 

1) How do you choose radius r? Clearly, if radius is too large, we obtain too many points, 

and the search remains exponential in size, whereas if radius too small, we obtain no 

points inside the sphere. 

2) How can we tell which points are inside the sphere? If this requires testing the distance of 

each point from X̂ , then there is no point in sphere decoding, as we will still need an 

exhaustive search. 

Sphere decoding does not really address the first question. However it does propose an 

efficient way to answer the second. The basic observation is the following. Although it is 

difficult to determine the points inside a general N-dimensional sphere, it is trivial to do so in 

the one-dimensional case. The reason is that a one-dimensional sphere reduces to the 

endpoints of an interval, and so, the desired points will be the integer values that lie in this 

interval. We can use this observation to go from dimension k to dimension k+1. Suppose that 
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we have determined all k-dimensional points that lie in a sphere of radius. Then, for any such 

k-dimensional points, the set of admissible values of the (k+1)th dimensional coordinate that 

lie in the higher dimensional sphere of the same radius forms an interval. So we can determine 

all points in a sphere of dimension N and radius r by successively determining all points in 

spheres of lower dimensions 1,..., N  and the same radius r.  

In eq. (2.18), we choose the least square solution as the center of sphere which is the 

optimum unconstrained solution in this problem. As Fig 2.2 we will find the minimal solution 

lies in the sphere with radius r. 

 

 

Fig. 2.2 A sphere of radius r and centered at ˆAX .  

 

To solve this problem efficiently Cholesky factorization is employed to find an upper 

triangular U  with iiu  real and positive such that T T=U U A A . So eq. (2.18) can be written 

as 

( ) ( ) 2ˆ ˆ ˆarg min
T T

ML r
∈Λ

= − − ≤
X

X X X U U X X  
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( )
( )

( ) ( )

2

1

2

2

1 1

ˆarg min      

ˆ                  0,  

ˆ ˆarg min

T

N N

i i ij j j ij
i j i

N N

ii i i ij j j
i j i

where

d where d u X X and u for i j

u X X u X X r

∈Λ

= =

∈Λ
= = +

= = −

= = − = <

⎡ ⎤
= − + − ≤⎢ ⎥

⎣ ⎦

∑ ∑

∑ ∑

X

X

D D D U X X

　  

( )
2

2 2

1 1

ˆ ˆarg min
N N

ij
ii i i j j

i j i ii

u
u X X X X r

u∈Λ
= = +

⎡ ⎤
= − + − ≤⎢ ⎥

⎣ ⎦
∑ ∑X

.              (2.19) 

In eq. (2.19), the sphere decoder establishes bounds on 1,..., NX X  by examining these terms 

in subsets. 

Starting with i N= , and throwing out the terms 1,..., 1i N= − , we obtain from eq. 

(2.19) 

( )22 2ˆ
NN N Nu X X r− ≤  

ˆ ˆ
N N N

NN NN

r rX X X
u u

⎡ ⎤ ⎢ ⎥
⇒ − ≤ ≤ +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦
.                  (2.20) 

( .⎡ ⎤⎢ ⎥  and .⎢ ⎥⎣ ⎦  means the ceiling function and the floor function operators return the smallest 

integer greater than or equal to, and the largest integer less than or equal to their respective 

arguments; these functions are applied in the case which the constellation is a set of 

consecutive integers such as QPSK or QAM.) After computing the lower and upper bounds in 

eq. (2.20), the sphere decoder chooses a candidate value for NX  and computes the 

implication of this choice on 1NX − . To find the influence of the choice of ˆ
NX  and 1

ˆ
NX −  

the sphere decoder looks at the two terms 1i M= −  in eq. (2.19), throws out the remaining 

terms, and obtains the inequality  
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        ( ) ( )
2

21,2 2 2
1, 1 1 1

ˆ ˆ ˆN N
N N N N N N NN N N

NN

u
u X X X X u X X r

u
−

− − − −

⎡ ⎤
− + − + − ≤⎢ ⎥

⎣ ⎦
 

which yields the upper bound 

( ) ( )
22 2

1,
1 1

1, 1

ˆ
ˆ ˆNN N N N N

N N N N
N N NN

r u X X u
X X X X

u u
−

− −
− −

⎢ ⎥
− −⎢ ⎥

≤ + − −⎢ ⎥
⎢ ⎥
⎣ ⎦

 

and the lower bound 

( ) ( )
22 2

1,
1 1

1, 1

ˆ
ˆ ˆNN N N N N

N N N N
N N NN

r u X X u
X X X X

u u
−

− −
− −

⎡ ⎤
− −⎢ ⎥

≥ − − −⎢ ⎥
⎢ ⎥
⎢ ⎥

. 

The sphere decoder now chooses a candidate for 1NX −  within the range given by the upper 

and lower bounds, and proceeds to 2NX − , and so on.  

There are two things happen during the algorithm operating. 

1)  The decoder reaches 1X  and chooses a value within the computed range. 

2)  The decoder finds that no point in the constellation fall within the upper and lower 

bounds obtained for some jX . 

In the first case, the sphere decoder has a candidate solution for the entire vector X , 

computes its radius which cannot exceed r, and starts the search process over, using this new 

smaller radius to find any better candidates. In the second case, the decoder must have made 

at least one bad candidate choice for 1,...,j NX X+ . The decoder revises the choice for 1jX +  

which immediately preceded the attempt for jX  by finding another candidate value within 

its range, and proceeds again to try jX . If no more candidates are available at 1jX + , the 
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decoder backtracks to 2jX + , and so on. 

The algorithm for determining the points in an N-dimensional sphere essentially 

constructs a tree in Sphere Decoding (see Fig 2.3). Let’s use this tree structure to briefly 

explain the operation of Sphere Decoding. 

 
Fig. 2.3 Sample tree generated to determine points in a N-dimensional sphere.  

 

The node at the top of the fig. 2.3 is treated as the start node and others with numbers inside 

represent the point in the set S  where NS  is equal to Λ (take BPSK as an example, 

{ 1,1}S = − ). Choosing different node at layer N makes eq. (2.19) generates different upper 

and lower bound for layer N-1, so the nodes can be chosen at layer N-1 depend on the node 

which is chosen at the layer N. Now, if node choosing order from layer N to N-2 is 1、2、3, 

then we can find that there is no node can be chosen at layer N-3. So the algorithm backs to 

layer N-2 and unfortunately, there is still no node (excluding 3, because it has been chosen) 
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can be chosen. Then the algorithm backs again and goes to layer N-1. At this layer, it remains 

two nodes (excluding 2) can be chosen, so 3 is chosen and algorithm keep going until it 

finishes the choosing operation at layer 1. After finishing the choosing operation at layer 1, a 

feasible solution is generated and this point will be used to generate a new radius. New radius 

replaces the initial radius for generating the upper and lower bound of every layer, so 

algorithm keeps going with new lower and upper bound at layer 1. Under this procedure, the 

tree structure may change again and again that is the sphere becomes smaller and smaller. If 

the algorithm is terminated, the last feasible solution is the best solution. 

 

2.3.2  Complex Sphere Decoding 

 

The Sphere Decoding algorithm described above applies on a real system where X  is 

chosen from a real lattice, but in communication systems we face to deal with complex 

system because of the modulation scheme we used such as QPSK. In this case, eq. (2.18) 

becomes as follows： 

( ) ( ) 2ˆ ˆ ˆarg min
H H

ML r
∈Λ

= − − ≤
X

X X X A A X X                 (2.21) 

where A , X , and X̂  are complex value. Here two kinds of methods are introduced to deal 

with this problem. The first method applies the algorithm on the complex system by 

decoupling the real and imaginary components of X̂ , A , and X  to create a system of real 
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equations with twice the dimension of the original system [18]. For example, eq. (2.21) can be 

transformed into a real equation in matrix form as follows 

( ) ( ) 2arg min
T T

ML LS LS r
∈Λ

= − − ≤
X

X X X A A X X              (2.22) 

where  

{ } { }Re ImT T⎡ ⎤= −⎣ ⎦X X X  

{ } { }ˆ ˆRe ImT T
LS

⎡ ⎤= −⎣ ⎦X X X  

{ } { }
{ } { }

Re Im

Im Re

T T

T T

⎡ ⎤−
⎢ ⎥=
⎢ ⎥
⎣ ⎦

A A
A

A A
 

and { }Re( ), Im( )Λ = Λ Λ . If X  belongs to QPSK then each entry of X  belongs to BPSK. 

Thus eq. (2.22) can be solved via SD which we introduced in section 2.3.1.  

 

Fig. 2.4 Searching disk in 16-QAM.  

 

The second method [19] uses eq. (2.21) directly without decoupling, but the searching domain 

Λ  is not integer set anymore (see Fig 2.4). As the same as eq. (2.19) we can derive from eq. 
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(2.21) as follows 

( ) ( ) 2ˆ ˆ ˆarg min
H H

ML r
∈Λ

= − − ≤
X

X X X U U X X  

( )
2

2 2

1 1

ˆ ˆarg min
N N

ij
ii i i i i

i j i ii

u
u X X X X r

u∈Λ
= = +

⎡ ⎤
= − + − ≤⎢ ⎥

⎣ ⎦
∑ ∑X

      (2.23) 

As the real case, Sphere Decoding algorithm starts at i N=  and lets Ni
N cX r e θ= and 

ˆˆ ˆ Ni
N cX r e θ= , where  

( )2 2 120, ,...,
2 2

c

c c

M

k M M

ππθ
⎧ ⎫−⎪ ⎪∈⎨ ⎬
⎪ ⎪⎩ ⎭

                     (2.24) 

cM  is the number of bits per symbol, for example 2cM =  for QPSK. Then, we get 

2
2 2 2

2
ˆˆ ˆ ˆ| | 2 cos( )N N c c c c N N

NN

rX X r r r r
u

θ θ− = + − − ≤  

2
2 2

2

1ˆ ˆcos( ) :
ˆ2N N c c

c c NN

rr r
r r u

θ θ η
⎡ ⎤

⇒ − ≥ + − =⎢ ⎥
⎣ ⎦

                  (2.25) 

1 12 2 2ˆ ˆ( cos ) ( cos )
2 2 2

c c cM M M

N N Nθ η θ θ η
π π π

− −⎡ ⎤ ⎢ ⎥
⇒ − ≤ ≤ +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦
.        (2.26) 

We can see from eq. (2.26) the searching domain change to eq. (2.24) now. From eq. (2.26), 

if 1η > , then the search disk does not contain any point of the constellation (because the 

range of cosine function is [ 1,1]− , it is impossible to find a value makes ˆcos( ) 1N Nθ θ− > ). If 

1η < − , then the search disk includes the entire constellation ( ˆcos( ) 1N Nθ θ− > − is always 

right no what value is in the cosine function). For M-QAM there are different values of cr , so 

solving for the points within the search disk simply requires solving the inequality eq. (2.25)

for different values of cr , or decoupling the M-QAM to multiple QPSK [20]. To simplify the 
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computing of the algorithm, the recursive equations is develop [19]. Let ˆ
i i iX Xξ = − , 

2
ii iiq u= , /ij ij iiq u u=  and substitute into eq. (2.23) gets 

2

2

1 1

N N

ii i ij i
i j i

q q rξ ξ
= = +

+ ≤∑ ∑ . 

For k l= , 

2 2

2

1 1 1

2 2

2

1 1 1

2
2 2

1 1

     

1

1ˆ

1

K K K

ll l lj l ii i ij i
j l i l j i

K K K

l lj l ii i ij i
j l i l j ill

K K

l l l ii i ij i
i l j ill

l l
ll

q q q q r

q r q q
q

s s S r q q
q

T R
q

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ

= + = + = +

= + = + = +

= + = +

+ + + ≤

⎡ ⎤
⎢ ⎥⇒ + ≤ − +
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⇒ − + ≤ − +
⎢ ⎥⎣ ⎦

≤ =

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

 

where  

2

2

1 1

M M

i ll l lj j
l i j l

T r q qξ ξ
= + = +

= − +∑ ∑  

2

2

1 1

1 M M

i ll l lj j
l i j lii

R r q q
q

ξ ξ
= + = +

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

∑ ∑  

i
i

ii

TR
q

= . 

Let 
'' '

,ˆ ij
i i i c is s S r e θ= + = , 

1

M

i ij j
j i

S q ξ
= +

= ∑ , we can get 

2
1 1, 1 1 1i i i i i iT T q Sξ+ + + + += − + ,                  (2.27) 

and the ith summation term in eq. (2.23) can be written as follows： 

2' 2 '2 ' '
, ,2 cos( )i i c c i c c i i i is s r r r r Rθ θ− = + − − ≤  
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' 2 '2
,'

,

1cos( )
2i i c c i i i

c c i

r r R
r r

θ θ η⎡ ⎤− ≥ + − =⎣ ⎦                  (2.28) 

' 1 ' 12 2 2( cos ) ( cos )
2 2 2

c c cM M M

i i i i iθ η θ θ η
π π π

− −⎡ ⎤ ⎢ ⎥
− ≤ ≤ +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦
.           (2.29) 

The distance between point ˆAX  and obtained point by Sphere Decoding in received signal 

domain can be computed by the formula below：  

22
0 1 11 1 1K Kd T T T T q Sξ= − = − + + .                   (2.30) 

For every stage, eq. (2.27) is used to compute the parameter which is needed in eq. (2.28) and 

eq. (2.29) to calculate the upper and lower bound of next stage. The second method is easy to 

use in computer programming, so it is adopted in this thesis. 

 

2.4  List Sphere Decoding 
 

List Sphere decoding (LSD) is modified from sphere decoding [17]. LSD gives a list 

L  which contains candN  candidates of X  with smaller values in eq. (2.15) for generating 

the soft information. In order to generate L , the sphere decoder needs to be modified in two 

ways. Every time it finds a point inside the initial radius r： 

1) it does not decrease r to correspond to the radius of this new point; 

2) adding this point to L  if the list is not full; or if L  is full, it compares this point with 

the point in L  with the largest radius and replaces this point if the new point has smaller 

radius. 
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By the changes above, List Sphere Decoding searches all the points which are inside of 

the sphere with given initial radius, and gives the candN  best point. Sphere Decoding changes 

to search the point in new sphere (the center of the sphere is still the same) when its find a 

new point whose distance to the center of the sphere is smaller than initial radius (mentioned 

in section 2.3.1). So the points which are inside the old sphere and outside the new sphere will 

not be considered in Sphere Decoding and the searching tree of SD goes smaller and smaller 

(actually, another smaller tree) which is not the case in LSD. The searching tree of LSD is still 

the same and all the branches must be gone through.  

 

 
Fig. 2.5 Sphere of SD or LSD in received signal domain. 

 

Here, we use Fig. 2.5 to explain the different between SD and LSD. In Fig.2.5, the 

circle mark represents the center of the sphere and cross mark means the feasible solution in 

received signal domain where the number beside of them is used to indicate. For SD with 



 23

initial radius 1r , if the cross mark 4 is first found and radius 2r  is used to be the new radius 

of the searching tree then cross mark 1、2 and 3 will not be presented in new searching tree 

with radius 2r . Again, if the cross mark 6 is found in the new searching tree with radius 2r  

then cross mark 5 will not be considered for next searching tree. However, for LSD with 

initial radius 1r , if the cross mark 4 is first found, cross mark 1、2、3、5、6 are still in the 

searching tress with radius 1r  because LSD will not change the radius. Back to fig. 2.3, when 

LSD finishes the searching operation at layer 1 successfully, it puts this point into the list,  

backs to layer 2, and keeps the algorithm going. Then all the feasible points in the sphere will 

be found out successively (the finding order is independent of the distance to the center of the 

sphere).  
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Chapter 3 
 
Grouped Based ICI Cancellation 
Method 
 

3.1 System Model 
 

In section 2.2, we have known the ICI effect on OFDM systems and its mathematic 

representation. Now, we change the mathematic representation in section 2.2 into matrix form 

which is convenient to be used in proposed method. Eq. (2.12) can be rewrote as follows： 

H
N=x F X                                 (3.1) 

where 0 1[ ,..., ]T
Nx x −=x , 0 1[ ,..., ]T

NX X −=X  as showed in Fig. 2.1 and NF  is the N point 

FFT matrix which can be represented as follows： 

2 0 0 2 0 1 2 0 ( 2) 2 0 ( 1)

2 1 0 2 1 ( 1)

2 ( 2) 0 2 ( 2) ( 1)

2 ( 1) 0 2 ( 1) 1 2 ( 1) ( 2) 2 ( 1) ( 1)

N Nj j j j
N N N N

Nj j
N N

N
N N Nj j
N N

N N N N N Nj j j j
N N N N

e e e e

e e

e e

e e e e

π π π π

π π

π π

π π π π

⋅ ⋅ ⋅ − ⋅ −
− − − −

⋅ ⋅ −
− −

− ⋅ − ⋅ −
− −

− ⋅ − ⋅ − ⋅ − − ⋅ −
− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

F          (3.2) 

Assume that the maximum delay spread of the channel always less than or equal to the length 

of cyclic prefix be used, so the received signal 0 1[ ,..., ]T
Ny y −=y  and its FFT becomes： 
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= +y Hx w                            (3.3) 

N=Y F y  

   N= +F Hx W  

= +AX W                 (3.4) 

with w  is an 1N ×  AWGN noise and H
N N=A F HF . The channel impulse response matrix 

H  is defined as follow [21] 

(0) (0) (0)
0 1 1

( 1) ( 1) ( 1)
1 2 0

( 1) ( 1)
1 0

0 0

0 0
0

0
0 0

L

L L L
L L

N N
L

h h h

h h h

h h

−

− − −
− −

− −
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H              (3.5) 

where ( )i
kh  is the k-th channel tap at time instant t i T= ×  and T  is the sampling period. 

Now, we want to find a X̂  such that 

2ˆ arg min
∈Λ

= −
X

X Y AX                        (3.6) 

where Λ  is the set includes all possible of X . Clearly, we can apply Sphere Decoding to 

solve eq. (3.6) [6], but the complexity of this method is very large.   

 

3.2 Group based ICI Cancellation Method 
with Sphere Decoding 

 
From [8], we know that most of the ICI effect on a subcarrier comes from neighboring 
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subcarriers, so we assume the window length of the ICI effect is Q=2q+1 that is iX  causes 

interference to (( )) (( ))~
N Ni q i qY Y− + . Let ( 1) 1[ ,..., ]

x x

T
i i N i NX X⋅ + −=X  be a segment of X  and for 

any i j≠ , {0}i j∩ =X X  where xN  is the size of one segment. Accordingly, iX  will 

induce the interference on (( )) ((( 1) 1 ))[ ,..., ,..., ]
x N x x N

T
i i N q i N i N qY Y Y⋅ − ⋅ + − +=Y . From Fig 3.1, iY  also 

suffers the interference from 1i−X  and 1i+X  or even more segments (depend on how large 

xN  and q are), so performance of solving iX  by iY  directly may not be acceptable.   

 

 
Fig. 3.1 Group Method for ICI with window length Q=2q+1.  

 

The basic ideal of our method is to cancel the component of jX , i j≠  in iY . Again, form 

[8], most of the ICI effect on a subcarrier comes from neighboring subcarriers. We use 

2 1xn q> −  so that iY  is affected by 1i−X , iX  and 1i+X  only. The relationship of iY , 

1i−X , iX  and 1i+X  can be represented as follows： 
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1 1 1 1[ ] [ ] [ ]i i i
i i i i i i iA A A− − + += + +Y X X X                    (3.7) 

where 

(( )) , (( )) ,( 1) 1

((( 1) 1 )) , ((( 1) 1 )) ,( 1) 1

[ ]
x N x x N x

x N x x N x

j n q i n j n q i n

j
i

j n q i n j n q i n

a a

A
a a

⋅ − ⋅ ⋅ − + −

+ − + ⋅ + − + + −

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

               (3.8) 

ija  is the element of A  on i-th row and j-th column in eq. (3.4). First, solving iX , 1i−X  

and 1i+X  individually by iY , 1i−Y  and 1i+Y  by using Sphere Decoding. Eq. (2.21) applied 

here becomes as follow： 

  ( ) ( ) 2
,

ˆ ˆ ˆarg min [ ] [ ]
i

H i H i
i ML i i i i i iA A r

∈Λ
= − − ≤

X
X X X X X        (3.9) 

where ˆ
iX  is the least square solution of [ ]i

i i iA=Y X . After solving the eq. (3.9), we use the 

result 1i−X  and 1i+X  to do ICI cancellation by following equation： 

1 1 1 1[ ] [ ]i i
i i i i i iA A− − + += − −Y Y X X .                     (3.10) 

Then using iY  to do Sphere Decoding, because the ICI effect comes from 1i−X  and 1i+X  

have been cleaned, we expect that the more correct iX  can be obtained. Using the procedure 

as described above iteratively, we expect that the recover performance will be better and better. 

Fig 3.2 is the block diagram of the algorithm for one group iY . At initial state, switch links to 

the path which input a zero vector to do ICI cancellation (i.e. no ICI cancellation). At the 

(j+1)th iteration, switch links to the path which input 1 1
ˆ[ ]( )i

i i jA − −X  and 1 1
ˆ[ ]( )i

i i jA + +X  where 

1
ˆ( )i j−X  represents the output made from the (i-1)th group at the jth iteration for doing ICI 

cancellation. After ICI cancellation, Sphere Decoding generates 1 1
ˆ( )i j− +X  can be used in ICI 
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cancellation for next iteration. 

iY

1
ˆ( )i j−X

1
ˆ( )i j+X

1[ ]i
iA −

1[ ]i
iA +

1
ˆ( )i j+XΣ

×

×

0

0

−

 
Fig. 3.2 Block diagram of group based ICI cancellation method with Sphere Decoding.  

 

3.3  Group based ICI Cancellation Method 
with List Sphere Decoding 

 

Different from section 3.2, we apply List Sphere Decoding to generate some candidates 

of iX  and use these candidates to compute the soft symbols for doing ICI cancellation.  

 

3.3.1 Soft Symbol 

 
For QPSK modulation, soft symbol can be calculated as follows： 
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where ,
ˆ I

k iX  is an expectation of bit corresponding to the real part of the k-th symbol in iX . 
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Q
k i i NP X = + Y  is the probability of ,
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obtained by follows equation： 
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and , , 1
I
k iL +  is the set of all possible iX  that real part of the k-th symbol equal to 1. Here, iX  

is selected form the list generated by List Sphere Decoding [22]. Assume that the prior 

probability of every bit is equal probability and is independent to each other, so we can go 

further from  eq. (3.15) as follows： 

,( | )
x

I
D k i NL X Y , , 1

, , 1

, 0, 0, , 1, 1,

, 0, 0, , 1, 1,

1 ( | ) ( 1) ( , ,..., ,..., , )
( )

ln 1 ( | ) ( 1) ( , ,..., ,......, , )
( )

x x
I

i k i

x x
I

i k i

I I Q Q I Q
i i k i i i k i N i N i

Li

I I Q Q I Q
i i k i i i k i N i N i

Li

p p X p X X X X X
p

p p X p X X X X X
p

+

−

− −
∈

− −
∈

=

=
= −

∑

∑
X

X

Y X
Y

Y X
Y

X

X

 



 30

, , 1

, , 1

( | )
ln

( | )
I

i k i

I
i k i

i i
L

i i
L

p

p
+

−

∈

∈

=
∑

∑
X

X

Y X

Y X
X

X

                      (3.16) 

 

3.3.2  Conditional Probability 

 

From above derivations, if we want to compute the soft symbol then we need to find 

( | )i ip Y X . For every subcarrier iY , we can use equation below to represent  

1

i i

N

i ii i ij j i
j
j i

ICI

ij j ij j i
j J j J

Y a X a X W

a X a X W

=
≠

∈ ∉

= + +
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∑

∑ ∑
 

                        

                        

i i

i ij j ij j i
j J j J

I i Qi

i

Y a X a X W

n jn

n
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⇒ − = +

= +

=

∑ ∑
 

assume I in  and Qin  are independent Gaussian random variable [4], so we need compute the 

mean and variance of in  in order to get ( | )i iP Y X  

[ ] [ ] 0 [ ] [ ] 0
i

i ij j i Ii Qi
j J

E n E a X W E n E n
∉

= + = ⇒ = =∑               (3.17) 

2 2[ ] [| | ]
i

i i ij j i
j J

Var n E a X Wσ
∉

= = +∑                     (3.18) 

because jX  and iW  are independent, eq. (3.18) becomes 

2 2 21[ ] | | [ ] [ ]
2

i

i av ij w Ii Qi i
j J

Var n P a Var n Var nσ σ
∉

= + ⇒ = =∑ .           (3.19) 

The probability ( | )i iP Y X  can be represented as follows： 
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At last, because every jn  in iY  can be seen as independent (the correlation of term 

i

jl l
l J

a X
∉
∑  between each of jn  is small under the assumption that ICI effect comes from 

neighboring subcarrier.), we can get ( | )i ip Y X  as follows： 

( )( )
( ) ( )11( | ) exp [ ] [ ]

det x

Hi i
i i i i i i i i iN

i

P A A
π

−⎡ ⎤= − − Σ −⎢ ⎥⎣ ⎦∑
Y X Y X Y X        (3.21) 

where 2 2
1( ,..., )

xi i i Ndiag σ σ + −∑ = . 

Above is the case of initial state which ICI cancellation has not been done yet. There are some 

changes to be done after ICI cancellation. Fortunately, we only need to change the mean and 

variance of jn . Again, let’s see the subcarrier iY  after ICI cancellation, 
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i i

i i ij j ij j j i
j J j J

n Y a X a X X W
∈ ∉

⇒ = − = − +∑ ∑ .          (3.22) 

By eq. (3.22), we can derive the mean and variance of in  as follows： 
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Apply eq. (3.23) and eq. (3.24) into eq. (3.21) then we can get ( | )i ip Y X  to compute the soft 

symbol after ICI cancellation. 
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Fig. 3.3 Block diagram of group based ICI cancellation with List Sphere Decoding 

 

The block diagram of the group based ICI cancellation with List Sphere Decoding is 

showed in fig. 3.3. The procedure is as the same as the one with Sphere Decoding except that  

Sphere Decoding in fig. 3.2 is replaced by List Sphere Decoding with a soft decision device 
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followed to compute the soft symbol for ICI cancellation here. 

 

3.4 Radius of the Sphere 
 

In chapter 2, there are two key questions of Sphere Decoding are mentioned. The 

second one can be solved by the algorithm of Sphere Decoding, but the first one how to 

choose the radius does not have exactly solution. Here, we use a simple method to decide the 

initial radius for each application of Sphere Decoding in our group based ICI cancellation 

method. From eq. (2.21), we use least square solution to be the center of the sphere. We know 

that least square solution is the best solution to satisfy the ML criterion, but it may not be the 

feasible solution that is, it may not be a point on the signal constellation. Because of the 

channel effect, the hard decision of the least square solution may not be the best solution 

within the all feasible solutions. We can use Fig 3.4 to interpret the problem above. In Fig 3.4, 

left hand side is the feasible point in transmitted signal space and right hand side is the 

transformation of left hand side by the channel matrix. On the left hand side, square is the 

least square solution and the circle is the hard decision of the least square solution. On the 

right hand side, square ˆ
iY  is the transformation of the least square solution and circle is the 

transformation of the hard decision value. Hard decision of the least square is the nearest 

point of the least square solution within the all feasible points (on the left hand side), but after 
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transform hard decision is not the nearest point of least square solution’s transformation. 

 

 
Fig. 3.4 signal space in transmitter and receiver.  

 

If hard decision of least square solution after transformation is not the nearest feasible to the 

center of the sphere ˆ
iY  in the received signal space then the solution which satisfies eq. 

(2.21) must be inside of the sphere with radius which is equal to the distance between ˆ
iY  

and the hard decision of least square solution after transformation. By the notion above, it is 

reasonable to set the initial radius of the sphere to be the distance between ˆ
iY  and the hard 

decision of least square solution after transformation. 
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Chapter 4 
 
Simulation Result 
 
4.1 Simulation Environment 
 

Simulation results are given for the proposed group based ICI cancellation with Sphere 

Decoding and List Sphere Decoding under two kinds of simulation environments.  

For the first one, a 6 taps channel is considered, and each tap of the channel are 

modeled as independently complex Gaussian random process which is generated by the Jakes’ 

Doppler spectrum with 120、240 or 300 km/hr relative velocity. The relative delay of the first 

tap is zero and others are uniformly distributed in the interval [1, ]GN  where GN is the length 

of cyclic prefix we used. The power of the path 2, 3, 4, 5 and 6 is 1dB, 9dB, 10dB, 15dB and 

20dB smaller than the first path. An OFDM system with N=256 subcarriers and quarter phase 

shift keying (QPSK) are simulated. The carrier frequency is 2.5GHz and the bandwidth of the 

system is 5MHz. According to the relative velocity and parameter above, d sf T  equal to 

0.0142、0.0284 and 0.0356. The detail of the parameters can be checked in Table 4.1. 

For the second one, a 6 taps channel which is as the same as the first one is considered, 

but the relatively velocity of the Jakes’ Doppler spectrum changes to be 85、170 or340 km/hr. 
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An OFDM system with N=64 subcarriers and quarter phase shift keying (QPSK) are 

simulated. The carrier frequency is 2GHz and the bandwidth of the system is 200 kHz. 

According to the relative velocity and parameter above, d sf T  equal to 0.05、0.1、0.2. The 

detail of the parameters can be checked in Table 4.2. 

 

Table 4.1 Simulation parameters of the first kind of simulation environment 

Modulation QPSK 

Path  6 

Relative power (dB) 0,-1,-9,-10,-15,-20 

Cyclic prefix length 16 

Carrier frequency 2.5 GHz 

Subcarriers  256 

Bandwidth 5MHz 

Vehicle speed (km/hr) 120 240 300 

d sf T  0.0142 0.0284 0.0356 
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Table 4.2 Simulation parameters of the second kind of simulation environment 

Modulation QPSK 

Path  6 

Relative power (dB) 0,-1,-9,-10,-15,-20 

Cyclic prefix length 16 

Carrier frequency 2GHz 

Subcarriers  64 

Bandwidth 200kHz 

Vehicle speed (km/hr) 85 170 340 

d sf T  0.05 0.1 0.2 
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4.2 Simulation Result Discussions 
 

4.2.1 Simulation in Environment I 

 

Fig. 4.1 shows the bit error rate of the OFDM system which applies group based ICI 

cancellation method with Sphere Decoding, and group size is equal to 8 and Speed is equal to 

120 km/hr. The fist curve we use group based method without ICI cancellation. We can see 

that error floor appear when SNR is high if ICI cancellation is not used, and the curve of 

iteration number equal to 1 and 4 is almost the same as the perfect one which use the correct 

data of one neighboring groups on each side to do ICI cancellation. 

Fig. 4.2 shows the bit error rate of group based ICI cancellation method with Sphere 

Decoding in different speed with iteration number equals to 4. For high speed case, we can 

get the diversity gain from ICI but error floor occurs when SNR is high. The performance 

difference between perfect ICI cancellation and not perfect ICI cancellation is getting larger 

and larger when speed is getting faster and faster. 

Fig. 4.3 shows the bit error rate of group based ICI cancellation method with Sphere 

Decoding in different group size and speed with iteration number equals to 4. We can see that 

a larger size of group implies a better performance, but the error floor problem is still not 

improved by using a larger group size. 
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Fig. 4.4 shows the difference of bit error rate between group based ICI cancellation 

method with Sphere Decoding and List Sphere Decoding. LSD can get better performance 

than SD, but the improvement is not good enough. No matter LSD or SD is applied, the 

performance still has a gap between perfect one. At last, it seems that group based ICI 

cancellation method with LSD need less iteration number than SD to get the same 

performance. 

Fig. 4.5 shows the bit error rate of the group based ICI cancellation method with LSD 

in different group size and speed. Just like the SD case, the performance improvement is not 

very well for using larger group size. Back to the Fig. 4.3 which use SD, the curve with speed 

equal to 300km/hr has worse BER than the one with speed equal to 120km/hr at high SNR, 

but it is different in LSD case the curve with speed equal to 300km/hr still has better BER 

than the one with speed equal to 120km/hr at high SNR.  

Fig. 4.6 and Fig. 4.7 shows the comparison of BER in different group sizes with SD and 

LSD when the speed is 240 km/hr. Both of SD and LSD, the performances become worse and 

worse when group size gets smaller and smaller. 

Fig. 4.8 and Fig. 4.9 are the comparison between group size equal to 2 and 4 in different 

speed with SD and LSD. From these two figures, we can find that the performance of group 

size equals to 2 and 4 are almost the same when speed is equal to 120 km/hr, but the 

performance of group size equals to 4 is better than equals to 2 when speed equals to 240 
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km/hr and 300 km/hr. The phenomenon above shows that if ICI effect becomes severer, then 

we need a larger group.  
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Fig. 4.1 Comparison of BER in different iteration number (I).  
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Fig. 4.2 Comparison of BER in different speed (I).  
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Fig. 4.3 Comparison of BER in different group size (I).  
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Fig. 4.4 Comparison of BER in different method (I).  
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Fig. 4.5 Comparison of BER in different speed and group size (I).  
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Fig. 4.6 Comparison of BER in different group sizes with SD (I).



 47

 

 

 

 

 

 
Fig 4.7 Comparison of BER in different group sizes with LSD. 
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Fig. 4.8 Comparison of BER in different speed and group sizes with SD (I).
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Fig. 4.9 Comparison of BER in different speed and group sizes with LSD (I).
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4.2.2 Simulation in Environment II 

 

Fig 4.10 is bits error rate of the group based ICI cancellation method with Sphere 

Decoding. The sizes of every groups is 8 and we set the window length of ICI is 9. The first 

line only use group based method without ICI cancellation. We can see that performance gets 

a lot of improvement by using ICI cancellation. Performance goes better and better with 

numbers of iteration increasing. Unfortunately, the performance saturates at numbers of 

iteration equal to 3 and the this performance still much worse than the one (the last curve in 

Fig. 4.1) which ICI effect comes from two groups nearby ( i.e. 1i−X  and 1i+X  for iX  ) are 

perfect canceled. By the mention above, the decision made by each groups is not good enough 

to make the performance closes to the last curve in Fig. 4.1.  

In Fig. 4.11, we try different sizes of group. We use 4, 8, 16 three kinds of size and the 

corresponding ICI windows length are 5, 9 and 17. With numbers of iterations equal to 4, the 

larger size of group has better performance and higher diversity gain. However, as mention in 

Fig. 4.1 the error floor still exist because of the accuracy of others group decision. 

In Fig. 4.12, we try different kinds of d sf T . As we know the higher d sf T  causes  

severer ICI effect and Fig. 4.3 show the same result. The performance can be improved by 

using larger size of group, but the improvement still not good enough when d sf T  is equal to 

2 or higher. We also can find that it seems no error floor when d sf T  equal to 0.05 and size of 
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group equal to 16. One more thing to be mentioned is that the method we proposed here can 

get diversity gain form higher d sf T  in low 0/bE N . Compare with the method in [6] which 

use all the subcarriers to do Sphere Decoding. In the case of d sf T  equals to 0.1, although we 

have error floor effect, our method has better performance before 0/bE N  reaches to 32dB. 

However, in the case of d sf T  equals to 0.2, our method has better performance before 

0/bE N  reaches to 22dB.  

In Fig. 4.13, we show the performance comparison of group based ICI cancellation 

method with SD and LSD. As the same as the case of Fig. 4.1, the size of the group is equal to 

8 and d sf T  is equal to 0.1. The solid line represents the method with LSD and dash line 

represents the method with SD. Different marks represent different numbers of iteration. We 

can find that the performance of the method with LSD is better the one with SD in every kind 

of numbers of iteration. We can see that the performance of the method with LSD whose 

number of iteration is equal to 2 is better than the method with SD whose number of iteration 

is equal to 3, so the method with LSD has faster speed of being saturation than the method 

with SD. 

In Fig. 4.14, we show that the error floor effect comes from the accuracy of the decision 

made by groups nearby (we use them to do ICI cancellation) not comes from others group 

which we do not consider the ICI effect comes from them. The group’s size of the solid curve 

in this figure is equal to 8 and 16 for dash curve. The curve with star mark cancels the ICI 
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effect perfectly comes form the nearby groups and the curve with diamond mark cancels all 

the ICI perfectly from other groups expect itself. We can see that the dash curve with star and 

diamond are very close, it means that it does not matter how many groups is taken to do ICI 

cancellation if the size of group is large enough (also see the curves with star mark). Now 

look back to the dash curve with circle mark which use the decision of the nearby groups to 

do ICI cancellation. The different between the dash curve with circle mark and star mark is 

that the decision of nearby groups is correct or not. 
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Fig. 4.10 Comparison of BER in different numbers of iteration (II).  
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Fig. 4.11 Comparison of BER in different sizes of group (II). 
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Fig. 4.12 Comparison of BER in different d sf T  (II). 
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Fig. 4.13 Comparison of BER in LSD and SD (II). 
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Fig. 4.14 BER performance of group based method with perfect ICI cancellation (II).  
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4.3 Computational Complexity  
 

The expected complexity of the sphere decoding algorithm is 3( )O N  when the 

signal-to-noise ratio (SNR) is high [23]. Where the sphere decoding algorithm is applied in a 

subspace of NS , S  is a set corresponding to the modulation scheme and N  corresponding 

to number of subcarrers or group size in group based method. By the notion above, we can get 

a brief computational complexity comparison (Table 4.3) between the method which using all 

subcarriers to do Sphere Decoding and the method we propose. Let N  denotes number of 

subcarrers of OFDM system, xN  denotes group size of group based ICI cancellation method, 

and I  denotes the iteration number in group based ICI cancellation method. As we know 

group based method has / xN N  groups and every group will do Sphere Decoding with xN  

subcarriers. The operation of group based method iterative 1I +  times (include initial state). 

In table 4.3 we use an example to make above notion more clearly. 

Table 4.4 show the numbers of adder and multiplier are used in group based ICI 

cancellation method with different sizes of group and general Sphere Decoding without group 

based method [6] under the second kind of environment which the number of subcarriers N of 

the OFDM systems is equal to 64. This simulation considers the case which 0/bE N  is equal 

to 32dB and for every group based ICI cancellation method the numbers of iteration is equal 

to 4. The same as we expect, as the group size goes larger and larger the complexity goes 
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larger and larger. Although, Sphere Decoding without group based method (group size is 

equal to 64) does not have error floor when 0/bE N  is high, it is the most complexity one. 

Comparing group based ICI cancellation with SD and LSD, LSD has more complexity than 

SD.  

Table 4.3 Brief computational complexity comparison 

 Group based ICI Cancellation method Sphere Decoding with all subcarriers 

( ) 3( 1) / x xI N N N+  3N  

N=256, Nx= 8, I=4 

81920 16777216 

 

Table 4.4 Comparison of computational complexity under the second kind of environment 

 SD LSD 

Group size 8 16 64 8 

Adders 14917 43349 1.6078e8 22465 

Multipliers 20426 58554 2.1503e8 29850 
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Chapter 5 
 
Conclusions 
 

In this thesis, we proposed a group based ICI cancellation method with applying SD 

and LSD to improve the performance of OFDM in high mobility environment. Because we 

apply SD or LSD on group based method, the complexity can be reduced a lot. Due to the 

parallel like ICI cancellation scheme the performance can be improved. 

Compare with the group based method which utilizes the serial ICI cancellation [9]、

[10]. We can see that there are still a lot of improvements on BER. ICI effect dominates the 

performance when SNR is high, and it will cause the error floor. Although, the improvement 

by utilizing the LSD is not very well, it provides a based form for using coding which use soft 

input and soft output algorithm such as BCJR that exchange the extrinsic information between 

demapper and decoder [15]. Because we use SD and LSD as tools to solve the ML problem, 

the complexity can be reduced if the more efficiency SD and LSD is applied even that SD and 

LSD can be replaced by more powerful method which is used to solve the ML problem or fit 

this group based structure. At last, in thesis we assume that the channel state information is 

well known, so the issue combines with channel estimation is needed to be considered. 
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