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中文摘要 

 

因為可以準確判斷，因此字串比對在一般入侵偵測系統中扮演著相當重要

的角色，被廣泛應用到網路安全設備來偵測攻擊或病毒。在現今有許多知名的字

串比對演算法中，因為 AC 演算法可以同時比對多個字串並保證在最壞情況的效

能，因此被廣泛使用。然而，原始的 AC 演算法有兩項缺點需要改進，其中一項

是記憶體需求量，另一項是工作輸出量。因為原始的 AC 演算法在一個運算週期

只能處理一個字元，無法滿足現在高速網路，所以本研究延伸 AC 演算法，使其

可以處理多的字元，以達到工作輸出量的改進。在演算法裡，全部的字樣及欲比

對之字串都分成 K份，有 K組比對引擎同時做比對，一個運算週期共處理 K個字

元，所以工作輸出量增加至 K倍。我們實作在 Xilinx FPGA 上，當 K=4 的時候可

以達到 4.5Gbps 的工作輸出量。然而考慮實作的情況，因為每個運算週期都必須

讀取相當多的位元並不理想，所以根據所提的演算法，將字樣依規則分成幾個組

別，使用編號方式做延伸改進。除此之外，考量記憶體的資源，我們可以複製較

少份的查表資料，使其在多個運算週期內計算完 K組比對結果。換言之，我們可

以達到一個運算週期處理多個字元，並且使用較少的記憶體，根據任何硬體考量

可以做修正，適用於各種的字樣的字串比對演算法。 
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Abstract 
 

Because of its accuracy, pattern matching technique has recently been applied to 

Internet security applications such as intrusion detection/prevention, anti-virus, and 

anti-malware.  Among the various pattern matching algorithms, the Aho-Corasick 

(AC) can match multiple pattern strings simultaneously with worst-case performance 

guarantee and thus is widely adopted.  However, the throughput performance of the 

original AC may not be satisfactory for high speed environments because only one 

symbol is processed in an operation cycle.  In this paper we present an extension of 

the AC algorithm where multiple symbols are processed in an operation cycle to 

improve throughput performance.  In our proposed scheme, all pattern strings, and 

the input text string as well, are divided into K substrings, if K symbols are processed 

in an operation cycle.  Moreover, K pattern search engines are employed to scan the 

text substrings in parallel.  As a result, the throughput performance can be improved 

by K times.  We implemented our proposed pattern matching scheme with Xilinx 

FPGA and achieved more than 4.5Gbps throughput for K = 4.  As we need to access 

so many bits for PMV per cycle, we have presented an extension of our algorithm 

with output index.  We separate patterns into several groups and PMV can be 

replaced by index.  Considering the memory resource of hardware, we can duplicate 

fewer tables by processing it in several cycles.  As a result it’s flexible to deal with 

any given rule set in all situations. 
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Chapter 1 

Introduction 

                                                             

1.1 Background  

 

The progress of network speed and technology makes network security to be an 

important issue in network application.  Because Internet is accessible to everyone, 

more and more users highly rely on the correct operation of networks.  There are 

many security incidents such as eavesdropping, intrusion, and virus/worms that 

caused great damage and economic loss to our society.  Nowadays, we do some 

protection in host, and furthermore adding more efficient mechanism in network edge 

devices has attracted much attention in recent years. 

 

Now we have two kinds of technologies of detection for intrusions and virus.  

The first one is behavior anomaly.  The concept of behavior anomaly is to establish a 

profile of normal behavior and identify a host to be abnormal if its behavior does not 

conform to the profile.  It may result in a high false positive rate because the normal 

behavior profile is difficult to specify.  The second one is based on packet content, 

and it checks if there is something abnormal by pattern matching.  Those attacks are 

usually represented by simple strings or regular expressions.  It is possible to detect 

any malware as long as its signature is available. 

 

Pattern matching has been an important technique in information retrieval and 

text editing for many years.  Recently, it has been applied to Internet security for 

signature matching to detect virus, worms, intrusion, etc.  The function of pattern 
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matching is to search for predefined patterns in packet payloads.  Since pattern 

occurrence may happen at any position of the payload, it is very time consuming.  

Because of the rapid advances of computer and network technologies, it becomes 

increasingly desirable for a high-performance pattern matching module that achieves 

at least 10Gbps throughput. 

 

There are some well-known pattern matching algorithms such as 

Knuth-Morris-Pratt (KMP) [2], Boyer-Moore (BM) [3], and Aho-Corasick (AC) [4].  

The KMP and BM algorithms are efficient for single pattern matching but are not 

scalable for multiple patterns.  The AC algorithm pre-processes the patterns and 

builds a finite automaton which can match multiple patterns simultaneously.  

Another advantage of the AC algorithm is that it guarantees deterministic 

performance under all circumstances.  As a consequence, the AC algorithm is widely 

adopted in various systems, especially when worst-case performance is an important 

design factor.   

 

1.2 Motivation 

 

Unfortunately, the original AC algorithm processes only one symbol per 

operation cycle which limits the maximum throughput to LC bps where L and C are, 

respectively, the size of a symbol and the clock rate for processing each symbol.  In 

most Internet security applications each symbol is a byte and thus L = 8.  

Consequently, the maximum achievable throughput is only 1.6Gbps if C = 200 MHz.  

This is obviously not enough for high speed networks.  To achieve high throughput 

performance, a variant of the AC algorithm, suffix based traversing (SBT) algorithm, 

2 
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where multiple symbols are processed in every operation cycle was proposed in [5].  

The basic idea is to collect all possible k-step transitions for 1≤ k≤w from every state, 

where w is the number of symbols processed in an operation cycle.   Assuming that 

w = , the number of table lookups for the longest path is equal to n.  According to 

the evaluation, it has to satisfy w 64 bytes in order to achieve 10 Gbps throughput. 

2n

≥

 

Another problem of the AC algorithm is the potential huge amount of memory 

space requirement.  If every symbol is a byte, then the number of possible input is 

=256 which means an array of 256 entries is required for every state.  In other 

words, with the straightforward implementation for 1M states, the required memory 

space is about 1G bytes if every state is represented by 4 bytes.  There are various 

compression techniques to reduce the space requirement.  A clever bit-splitting idea 

which can largely reduce the space requirement was proposed in [6].  In this scheme, 

an L-bit symbol is divided into L/m equal-size sub-symbols.  For example, if L = 8 

and m = 2, then every symbol is divided into 4 sub-symbols and each sub-symbol is 

composed of 2 bits.  The sub-symbols derived from the same positions of the 

symbols in all pattern strings form a group.  As a result, there are L/m groups of 

sub-symbols.  A sub-trie is built for each group of sub-symbols.  It is clear that the 

number of possible inputs reduces from 

82

2L  for the original trie to  for each 

sub-trie.  Consequently, the space requirement reduces from O(

2m

2L ) to O( L/m ), 

which is significant because in most applications L = 8 and one can choose m = 2.  

Since we adopt the bit-splitting idea in our implementation, details of this scheme is 

described in Section II. 

2m

 

In this paper, we present a generalization of the AC algorithm where multiple 

symbols are processed in each operation cycle.  Different from the solution proposed 
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in [5], our approach divides every pattern string into K sub-strings and construct tries 

for sub-strings, where K is the number of symbols processed in each operation cycle.  

The text string is also divided into K sub-strings.  Besides, we use K search engines 

to scan text sub-strings in parallel.  Experimental results show that our scheme can 

achieve more than 4.5Gbps throughput for K = 4 and in general requires less space 

than the scheme proposed in [5]. 

 

The rest of this paper is organized as follows.  We introduce two well-known 

network intrusion detection systems, snort and ClamAV in chapter 2.  Chapter 3 

contains a review of the original AC algorithm, the bit-split AC algorithm and suffix 

based traversing algorithm.  In chapter 4, we present our generalization of the 

high-performance AC algorithm.  Experimental results are discussed in chapter 5.  

Finally, we draw conclusion in chapter 6. 

 

4 



                                         Chapter 2 Network Intrusion Detection Systems 

Chapter 2 

Network Intrusion Detection Systems 

                                                            

 

 Network Intrusion Detection Systems (NIDS) have become widely recognized as 

powerful tools for identifying, deterring and deflecting malicious attacks over the 

network.  This chapter includes the brief of two well-known software-based network 

intrusion detection systems, snort and ClamAV. 

 

2.1 Introduction 

 

Network intrusion detection system plays an important role in network security 

architecture.  It provides a layer of defense which monitors network traffic for 

suspicious predefined activity or patterns, and alert system administrators when 

potential hostile traffic is detected.  At the core of most NIDS is a computationally 

challenging problem because it requires deep packet inspection.  Every byte of every 

packet must be examined which means gigabytes of data must be scanned per second.  

Intrusion detection systems and intrusion prevention systems (IPS) have emerged as 

two of the most promising ways to protect the network, and predictions show the 

market for such systems growing to $918.9 million by the end of 2007.  And then we 

introduce two well-known software-based network intrusion detection systems, snort 

and ClamAV briefly. 
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2.2  Snort 

 

Snort is a libpcap-based packet sniffer and logger that can be used as a 

lightweight network intrusion detection system.  It features rules based logging to 

perform content pattern matching and detect a variety of attacks and probes, such as 

buffer overflows, stealth port scans, CGI attacks, SMB probes, and much more.  

Snort has real-time alerting capability, with alerts being sent to syslog, Server 

Message Block (SMB) "WinPopup" messages, or a separate "alert" file.  Snort's 

architecture is focused on performance, simplicity, and flexibility.  There are three 

primary subsystems that make up Snort: the packet decoder, the detection engine, and 

the logging and alerting subsystem. 

 

The packet decoder engine is organized around the layers of the protocol stack 

present in the supported data-link and TCP/IP protocol definitions.  Each subroutine 

in the decoder imposes order on the packet data by overlaying data structures on the 

raw network traffic.  These decoding routines are called in order through the 

protocol stack, from the data link layer up through the transport layer, finally ending 

at the application layer.  Snort provides decoding capabilities for Ethernet, SLIP, and 

raw (PPP) data-link protocols. 

 

In the detection engine, Snort maintains its detection rules in a two dimensional 

linked list of what are termed Chain Headers and Chain Options as in Figure 2-1.  

These are lists of rules that have been condensed down to a list of common attributes 

in the Chain Headers, with the detection modifier options contained in the Chain 

Options.  These rule chains are searched recursively for each packet. 

 6
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Figure 2-1 : Rule Chain logical structure 

 

There are currently three logging and five alerting options in The 

logging/alerting Subsystem.  The logging options can be set to log packets in their 

decoded, human readable format to an IP-based directory structure, or in tcpdump 

binary format to a single log file.  Alerts may either be sent to syslog, logged to an 

alert text file in two different formats, or sent as WinPopup messages using the Samba 

smbclient program. 

 

2.3 ClamAV 

 

Clam AntiVirus is a GPL anti-virus toolkit for UNIX.  The main purpose of this 

software is the integration with mail servers for attachment scanning.  The package 

 7
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provides a flexible and scalable multi-threaded daemon, a command line scanner, and 

a tool for automatic updating via Internet.  The programs are based on a shared 

library distributed with the Clam AntiVirus package, which you can use with your 

own software.  Most importantly, the virus database is kept up to date.  It is the 

most widely used open-source anti-virus scanner available. Currently, it can detect 

over 35000 viruses, worms, and trojans, including Microsoft Office and Mac Office 

macro viruses.  Then it also built-in supports for many kinds of compressed files, 

mail files, and compressed portable executable files. 

 

 

Figure 2-2 : A fragment of the ClamAV trie structure. Solid lines show success 

transitions; dashed lines show failure ransitions. 

 

ClamAV uses a variation of the Aho Corasick pattern matching algorithm.  To 

quickly look up each character read from the input, ClamAV constructs a 256-way 

trie structure as shown in Figure 2-2.  The memory usage of ClamAV depends on 

how deep the trie is.  The deeper the trie, the more nodes are created.  Since the 

Aho Corasick algorithm builds an automaton with a depth equal to the longest pattern, 

the memory usage would be unacceptably large because some patterns are over 2KB.  

 8
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ClamAV modifies the Aho-Corasick algorithm so that the trie is constructed only to 

some maximum height, and all patterns beginning with the same prefix are stored in a 

linked list under the appropriate leaf node.  The maximum trie height is restricted by 

the length of the shortest pattern, which is currently two bytes.  ClamAV’s 

performance suffers whenever a node with a large number of patterns with the same 

prefix is encountered during input matching.   

 

 9
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Chapter 3  

Pattern Matching 

                                                            

 

According to some report [11], the pattern matching module can consume up to 

70% of CPU computation power in an intrusion detection system.  But it is still 

applied in network security devices to detect attacks or virus because of its accuracy.  

Patterns are like fingerprints so we can check if it has something wrong.  We can cut 

out a segment from the virus program that is unique to represent the virus.  A 

number of algorithms have been proposed for pattern matching in network security.  

We choose AC algorithm for our basic idea because it can guarantee the worst-case 

performance that protect attacker to crash the system using weakness of the algorithm.  

In this chapter, we introduce the AC algorithm and some of its improvements. 

 

3.1  Aho Corasick Algorithm 

 

Aho Corasick Algorithm pre-processes the patterns and builds a finite automaton 

which can match multiple patterns simultaneously.  Every state of the trie represents 

that the suffix of input matches the longest prefix of some pattern up to this time.  

Figure 3-1 shows an example of the trie that we have four patterns he, she, his and 

hers.  In AC algorithm, we look up table for next state according to a current state 

and the input symbol.  The same process is repeated.  It reports a match in final 

state when it matches a pattern.  AC algorithm has to build three tables in advance: 

goto function, g(state,t); failure function, f(state); output function, output(state).  The 

behavior of the pattern matching state machine is dictated by these three functions. 

 10
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Figure 3-1 : The state machine is original AC trie constructed from 4-string rule set, 

{he,she,his,hers} 

 

The goto function maps a pair consisting of a state and an input symbol into a 

state or the failure message.  The current symbol is received by goto function, and 

the current state is transferred to next state.  The state machine starts with an empty 

root node which is the default non-matching state, state 0.   

 

If it fails in state transition, it will look up failure function.  It continues to 

process from the return state of failure function.  The failure function maps a state 

into a state.  If failure happens, the failure function points current state to the longest 

prefix of that state which also leads to a valid state in the trie.  We can see that it can 

 11
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also eliminate all failure transitions by pre-computing the next state for every 

character from every state in the machine.  We can use a next function to replace the 

original goto function and failure function, and it is applied in bit-split AC algorithm 

and SBT algorithm.   

 

In the course of processing, output function outputs all strings that has been 

matched.  The output function formalizes this concept by associating a set of 

keywords (possibly empty) with every state.  The same process repeats until all 

symbols of text string are processed. 

 

For example, the patterns are he, she, his, and hers, and the text string is ushers.  

Figure 3-2 shows the sequences of state transition for this example.  At the 

beginning, the state is root node 0, and it is transferred to state 3 and 4 according to 

goto function.  Consider the operation cycle when state is 4 and input symbol is e.  

Since g(4,e)=5 , output(5) indicates that it has found the keywords she and he at the 

end of position four in the text string.  In state 5 on input symbol r, the machine 

makes two state transitions in its operating cycle.  Since g(5, r) =fail, it lookup again 

for g(2,r) according to f(5)=2, and the next state is 8.  At the end, it is transferred to 

state 9 and output hers because of output(9). 

 

input  u s h e r s  

state 0  0 3 4 5 8 9 

f(state)   2  

Figure 3-2: Sequences of state transition for input string=ushers 

 

In processing an input of length n makes exactly n goto transitions.  And the 

 12
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total number of failure transitions must be at least one less than the total number of 

goto transitions.  Therefore, the total number of state transitions is less than 2n.  In 

addition, next function combining goto function and failure function makes it need 

exactly n state transitions for text string of n symbols.  As we mentioned, it can 

guarantee the worst-case performance.   

 

3.2  The Bit-Split Aho-Corasick Algorithm 

 

In this section, we review the bit-split AC algorithm which was proposed in [6].  

As mentioned before, the bit-split AC algorithm can largely reduce the memory 

requirement. 

 

The basic idea of the bit-split AC algorithm is to divide an L-bit symbol into L/m 

equal-size sub-symbols.  For ease of description, we assume that each symbol is a 

byte, i.e., L = 8, which is true in most Internet Security applications.  As a result, the 

 sub-symbol consists of the , …, and the  bits 

of the symbol for all i, 1 L/m.  For example, if m = 4, then there are two 

sub-symbols and the first sub-symbol consists of the first four bits of the symbol and 

the second sub-symbols consists of the last four bits of the symbol.  As another 

example, for m = 1, there are eight sub-symbols and the sub-symbol is nothing 

but the bit of the symbol.  The sub-symbols derived from the same positions of 

the symbols in all pattern strings form a group.  As a result, there are L/m groups of 

sub-symbols.  A sub-trie is constructed for each group of sub-symbols.  It is not 

hard to see that the number of states in each sub-trie is upper bounded by that of the 

original tire.  Figure 3-3 illustrates the fourth sub-trie and output function for pattern 

thi (( 1) 1)thi m− + (( 1) 2)thi m− + ( )thim

≤ i≤

thi  

thi  
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strings {he, she, his, hers} with m = 2. 

 

                              Output Function 

 

Figure 3-3 : The fourth sub-trie with m=2 from the group of sub-symbol, {00 01, 11 

00 01, 00 01 11, 00 01 10 11}. 

i Output(i) 

2 he 

5 she, he 

6 his 

8 hers 

 

To maintain the same throughput performance as the original AC algorithm, the 

bit-split scheme uses L/m search engines to scan the input text concurrently.  Let T = 

 be the input text.  Moreover, let 1 2 3...t t t j
it  denote the  sub-symbol of .  In 

the bit-split scheme, tile j takes 

thj it

1 2 3 ...j j jt t t  as its input and processes sub-symbol j
it  in 

the  operation cycle.  We say tile j finds a match of pattern string S =  in 

operation cycle i if 

thi 1 2... ns s s

1 2 ...j j
ns s s j  = 1 2...j j

i n i n it t t− + − +
j .  It is obvious that pattern string S is 

matched by the original AC algorithm in operation cycle i if and only if (iff) tile j 

finds a match of S in operation cycle i for all j, 1≤ j≤L/m.  To check whether or not 

all tiles find matches of the same pattern string in the same operation cycle, the 

pattern strings are numbered and a partial match vector (PMV) is associated to every 

state of each sub-trie.  The length of the PMV is f bits if there are f pattern strings.  

Consider any particular  sub-trie.  The  bit of the PMV associated to state x 

is a 1 iff pattern string k is matched in state x.  See Figure 3-4 for examples of 

PMVs. 

thj thk
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00 01 10 11 PMV 

0 1 0 0 3 0000 
1 1 2 0 3 0000 

2 1 0 7 6 1000 

3 4 0 0 3 0000 

4 1 5 0 3 0000 

5 1 0 7 6 1100 

6 4 0 0 3 0010 

7 1 0 0 8 0000 

8 4 0 0 3 0001 

＼2 

＼8 

Tile 1 Tile 4Tile 2 Tile 3  

＼2 ＼2 

 

＼2 ＼2 
 

 

 

 

 

 

 

Figure 3-4 : The left side is a search engine with 4 tiles.  The right side shows the 

structure of a tile.  Each row in the table is a state and each state has 4 

possible next state and a PMV.  It transits state according to 2-bit input 

sub-symbol, and output PMV of current state. 

  

Since every symbol is divided into L/m sub-symbols, the number of possible 

inputs reduces from  for the original trie to  for each sub-trie.  Consequently, 

the space requirement reduces significantly from O( ) to O( L/m ).  The bit-split 

idea is adopted in our implementation. 

2L 2m

2L 2m

 

3.3 Suffix Based Traversing Algorithm 

 

Suffix Based Traversing (SBT) algorithm was introduced in 2004 that multiple 

symbols are processed in an operation cycle.  To achieve high performance, it 

processes w symbols concurrently with pipeline where w = .  At first, it encodes 

all useful strings by index numbers.  Lookup table, C

2n

2, C4… are used to calculate the 
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longest suffix.  C2 returns the index number of the longest suffix of a 2-byte string.  

With two index numbers of C2, it can encode the index number of a 4-byte string.  It 

will be encoded into‘0’when the symbols are useless for these patterns.  It uses index 

numbers instead of symbols to avoid too many possible inputs while matching. 

 

For all possible positions in which it may match a pattern, it collects all possible 

k-step transitions for 1 k w from every state.  It reports a match if any one of the 

k-step states is a final state.  Figure 3-5 shows an example with w=4.  The left side 

of the figure is responsible for indexing the input symbols.  The right side looks up 

the table, NS

≤ ≤

1, NS2, NS4,…, by index number.  And it adopt pipeline to calculate 

states for 1 to 4 steps transitions. 

 

 

Figure 3-5 : SBT architecture 

 

As we mentioned before, every state needs 256 entries for table lookup while we 

process an 8-bit symbol at a time.  But for 2 or more bytes are processed, it needs 

65536 entries or more.  So if we index the useful ones, we can save much 

unnecessary entries for table lookup.  Moreover, according to the characteristic of 

the table, it can be reduced by storing a default transition because many entries are the 

same for every useful index. 

 

Table size can be reduced using indirect pointers as shown in Figure 3-6.  The 
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2D-table is decomposed into rows, and then packed into the linear array.  Each entry 

of the linear array has a row number to identify the owner row of the entry.  When 

the 2D-table lookup fails, the default value of each column is returned.  Note that 

unused elements may exist in the linear array because of fragmentation of the free 

area.   

 

 

Figure 3-6 : Reducing table size using indirect pointers 
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Chapter 4 

A High-Performance and Memory-Efficient Pattern 

Matching Algorithm 

                                                            

 

In this section, we present our proposed high-performance and memory-efficient 

pattern matching algorithm.  In our proposed algorithm, K symbols are processed at 

a time.  It is clear that the original AC algorithm corresponds to K = 1.  For 

simplicity, we assume that every symbol is a byte throughout this paper.   

 

4.1 Conception  

 

Take a pattern string, abcdef, for example. How do we find it out quickly in such 

a long text string with AC algorithm?  It’s straightforward to use more than one 

symbol for table lookup per operation cycle.  But however the table size will grow 

increasingly while we have much more possible inputs.  In order to solve this 

problem, the table should be compressed properly.  The memory requirement is a 

problem in original AC algorithm furthermore we have larger lookup table so we have 

to deal with it pretty well.  The basic idea we thought is that not to add any more 

possible inputs for table lookup.  But it can process more than one byte every cycle 

with original table size in AC.  And we can adopt so many table compression 

researches to solve the problem of memory requirement easily. 

 

We let many scan engines work in parallel, and each one is responsible for one 

 18



          Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm 

part of text string according to the position of every byte in text string.  It finds a 

match of a string when all engines find every part of a string.  After that, we can try 

to reassemble all information of every engine’s report.  For example, the first engine 

finds “ace” and “bdf” is found by the second engine.  The two strings can be 

reassembled and then we can find it may be a full string “abcdef”.  But we can not 

make sure if we only know finding all parts of a string.  Figure 4-1 shows the 

problem that we should check if the text string is matched.  How to tell that the 

string is “abcdef” or “badcfe” is the issue that we’ll discuss in detail later.  But we 

approach our goal that every engine processes only one byte every cycle for less table 

size.  And the functionality is equivalent to a huge state machine of processing more 

than one byte per operation cycle. 

 

 

 

 

 

 

a c e

 d

E1 

b E2 f

fedcba(a) 

a c e

 db f

E1 

efcdab(b) 

E2 

Figure 4-1 : Example of reassembling two parts of a string. 

 

4.2 Our Proposed Algorithm 

 

4.2.1 Pre-process 

 

To achieve high performance, we need to pre-process every pattern string.  Let 

P represent the set of all pattern strings.  For every pattern string S∈P, we divide S 

 19



          Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm 

into K substrings as follows.  Assume that S = and n = qK + r, where q is 

the quotient and r is the remainder of n divided by K.  String S is divided into K 

substrings so that the  string, denoted by , is given by 

1 2... ns s s

thi iS ...i K i qK is s s+ +  if i≤ r or 

if i> r.  Let  be the set of all substrings derived from the strings in 

set P.  The AC trie, denoted by , is constructed for all the substrings in . 

( 1)...i K i q K is s s+ − +
*P

*P
G *P

 

Let's see some example with K = 2 and patterns are he, she, his and hers.  But 

right now, he is divided into h and e, two substrings.  And these two states 

constructed by h and e are both final states.  She is divided into se and h and so on.  

Figure 4-2 shows the AC trie Gp* and the PMV.  Each bit of PMV means one 

substring is matched or not. 

 

                                               

 

Figure 4-2 : Example of trie Gp* for {he, she, his, hers} with k = 2. 

state PMV 
1 10010000 
2 01000000 
3 00000000 
4 00100000 
5 00001000 
6 00000100 
7 00000010 
8 00000001 

 

Let T =  denote the text string to be scanned and m = K + , where 

 and are, respectively, the quotient and the remainder of m divided by K.  The 

text string T is also divided into K substrings , , …, and 

1 2... mt t t q′ r′

q′ r′  

1T 2T KT  so that the  text thi

 20
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substring  = i  if iT ...i K i q Kt t t ′+ + i ≤ r′  o )K ir ...i K i qt t t ′( 1+ − f +  i i> r′ .  There are K 

parallel pattern search engines, deno  1E , 2E , …, and ted by KE , each with its own 

AC trie that is the s  as *P
G .  Search iE  scans text substring ame .   

example, for r = 0, search engine finds a m tch of substring at the end of 

operation cycle C for all i K another example, 

c

engine iT

 

4.2.2 Match Conditions 

 

There are various conditions for the pattern string S to be matched.  As an 

for r = 1, pattern string S is mat hed if search engine E  finds a match of substring 

1iS −  at the end of operation cycle C for all i, 3

iE  iS  a

, 1≤ i , is one possible condition.  As ≤

i

≤ i≤K, and search engines 1E  and 2E  

 matches of substrings find KS  and 1S , respectively, at the end of operation cycle 

and thus is omitted. 

 

Table 4-1.  Conditions f

C+1.  The complete conditions for pattern string S to be matched are summarized in 

Table 4-1.  The proof of the correctness of the listed cond  is straightforward 

or pattern string S to be matched. 

Cases Conditions 

itions

q = 0, r > 0 (a) ∃ l, 1≤ l≤K-r+1, l iE +  finds a match of , 0 -1, at 

C 

1iS + ≤ i≤ r

the end of operation cycle 

Or 

(b) ∃ l, K-r+2≤ l≤K, l iE +  finds a match of , 0 K-l, at 

 of ope  c C and 

1iS + ≤ i≤

the end ration ycle jE  finds a match of 1K l jS − + + , 

1 1≤ j r-K+l-1, at the end of operation cycle C+≤
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(a) iE  finds a match of iS , 1≤ i≤K, at the end of operation 

cycle C 

Or 

(b) , 2∃ l ≤ l≤K, l iE +  finds a match of 1iS + , 0 K-l, at the 

end of operation cycle C and 

≤ i≤

jE  finds a match of 1K l jS − + + , 

l-1, at the end of operation cycle C+1 1≤ j≤

q > 0, r = 0 

q > 0, r > 0 (a)  finds a match of iE r iS +  if 1 ≤ i ≤ K-r or  if 

r

,

i K rS − +

K-r+1≤ i≤K at the end of operation cycle C 

O  

(b)  r+1∃ l ≤ l≤K, l iE +  finds a match f 1i ro S + + , 0≤ i  at 

the end of operation cycle C and 

≤K-l,

jE finds a match of 

1K l r j+ + +  ifS −  1≤ j≤ l-r-1 or 1j l rS − + +  if l-r≤ j≤ l-1 at the end of 

a l  C

(c) , 2

oper tion cyc e +1 

Or 

∃ l ≤ l≤ r, l iE +  finds a match of 1i rS + +  if 0 K-r-1 or 

 if K-

≤ i≤

1i K rS − + + r≤ i≤K-l, at the end of operation cycle C and jE

finds a match of 1r l jS + − + , 1≤ j≤ l-1, at the end of operation cycle 

 C+1

 

Figure 4-3 illustrates an example of all the matches for S = abcdefghij and K = 6.  

In this example, w = .  

According to the position of S in text string, there are totally six possible situations for 

attern string S to be matched. 

 

e have 1S = ag, bh, = ci, 4S = dj, 5S = e and 6S = f 2S 3S

p
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Figure 4-3 : Example of all the matches for S = abcdefghij and K = 6. 

 

Note that the conditions for pattern string S to be matched for the case q > 0 and 

r > 0 are complicated.  Fortunately, it can be simplified if the substrings are 

renumbe ter the 

enumbering, the conditions for pattern string S to be ma q > 0 and r 

> 0 

red as follows.  Given n = qK + r, define '
iS = ( )modi r KS + .  Af

r tched for the case 

become (a) iE  finds a match of '
iS , 1≤ i≤K, at the end of operation cycle C or 

'(b) , 2 K finds a matc∃ l ≤ l≤ , l iE +  h of 1iS + , 0≤ i≤K-l, at the end of operation cycle 

C and jE  finds a match of '
1K l jS − + + , 1≤ j≤ l-1, at the end of operation cycle C+1, the 

same as those for the case q > 0 and  = 0.  It operates well as we rotate the 

substrings’ numbers.  As for the case q = 0 and r > 0, it m ans that pattern length is 

K The n b p

 a tring +

r

e

smaller than .   same conditions ca e a plied as long as every search engine 

reports match for null subs i , r 1S ≤ i≤K, unconditionally at the end of every 

operation cycle.  As a consequence, we have unified conditions for pattern string S to 

be matched. 
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4.2.3 Architecture 

 

Figure 4-4 shows the architecture of our implementation.  To process K 

bols every operation cycle, we have K search engines and each one is received 

er operation cycle.  The bit-split idea is adopted to reduce memory 

 are 8/m state machines (i.e., m = 2) for every search engine in 

plementation.  Each state machine scans m-bit sub-symbols of text string with 

its own sub-trie. 

ociated to state x is a 1 iff the sub-string of pattern string i is 

matched in state x.  As well as that in bit-split AC, sub-string S is matched in a 

search eng

sym

one byte p

requirement.  So there

our im

 

Note that since each pattern string is divided into K sub-strings, it is necessary to 

distinguish which sub-string is found when a search engine reports a match.  As a 

result, the length of every PMV is Kf bits if there are f pattern strings.  The (4 )i k+  

bit of a PMV ass

th

thk  

ine if and only if tile j finds a match of S for all j, 1≤ j≤8/m in that search 

engine.  According to all search engines’ outputs, we can verify match conditions as 

 

 

 

 

 

we mentioned in section 4.2.2. 

 

Figure 4-4 : The String Matching Mach c

 
Check Conditions 

Search  

 K-1 … 
Engine FSM1 FSM4FSM2 FSM3

Search  

K 

＼8 ＼8 ＼8 

＼Kf 

Engine 
 

＼Kf ＼Kf 

＼Kf 

ine Archite ture 
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4.3 Extension of Our Proposed Algorithm 

 Problem of PMV 

To implem  

atched or not.  However, we have K search engines and each 

s 8K2f/m bits in every 

peration cycle.  It’s not a good solution especially when K is large.  First it 

cess so many bits every operation cycle.  Moreover it 

eeds much wire and logic circuit to verify match conditions.  If implementing 

thou

n the sub-trie usually represents two or more strings 

atched partially.  Using PMV is the straightforward and simplest answer.  To 

avoid

 

4.3.1

 

ent our proposed algorithm, we need Kf-bit PMV to indicate every

part of every string m

one consist of 8/m finite state machines.  We have to acces

o

consumes much power to ac

n

sands of patterns, we should stored lookup table in external memory as it may be 

very large.  But the width of bus is not enough completely.  It has some problem for 

implementation in practice. 

 

The simplest way that we can solve the problem is to use index number in stead 

of PMV.  But it has some necessary reasons to use so many bits PMV.  As we let 

the AC trie divided into many sub-tire, each match in one sub-trie is just a part of a 

string.  We have to use all the match information to check so we can not discard any 

one.  However the state i

m

 using too many bits in PMV, we group the pattern strings into several sets.  We 

need as many matching machines as the number of sets and every matching machine 

is responsible for a set of pattern strings. 
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4.3.2 Output Index 

 

 First, we construct our AC trie Gp* as we mentioned before.  From the result of 

first construction, we decide every pattern string to be in which set.  If one state 

dicates more than one string matched partially, we should separate these strings into 

ifferent sets.  To make sure that every pattern string is not in the set of which some 

ne represents itself and other strings, we can list all mutual 

xclusion pattern strings for a pattern string S in exc(S) while pre-processing.  

 

Figure 4-5(a) : The trie and output index for {he, his, hers} and 4-5(b) : The trie and 

output index for {she} 

in

d

state of the state machi

e

According to the exclusion list, we can separate all patterns easily.  Roughly, if there 

are not more than g bits 1 in PMV of a state, the number of sets is g or a little more 

than g.  After grouping the patterns, we can construct a trie for each set.   

 

 

 

 

 

 

state index (a) 

(b) 

1 1 
2 2 
3 3 
4 4 
5 5 
6 6 

 

 

state index 
1 0 
2 1 
3 2 
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For example, we can record exc(he)=she and exc(she)=h use state 1 

dicates one substring of he and one substring of she concurrently in Figure 4-2.  

ith the exc function listed, he, his, and hers are grouped in the first set and she is 

g  

Figure 4-5(b) is for the second o te can be replaced by a simple 

dex number.  We just consider a complete AC trie Gp* for taking a simple example.  

But 

 

 amount of memory requirement for some large FSM.  For 

xample, we can group he and hers for the first set, and group she and his for the 

the trie is the same as that when patterns are not grouped.  But we use 

e beca

in

W

rouped in another one.  Figure 4-5(a) is the trie constructed for the first set and

ne.  PMV for every sta

in

adopting bit-split idea, we should list all exclusion correlations depending on all 

sub-trie.  And for simplicity, we ignore the special case that one state indicates more 

than one part of a string. 

 

 No state indicates more than one string is the only rule that we should conform to. 

We have many workable solutions, but which one we should take is difficult to decide.  

The basic concept is to let as more states to be reused as possible such that it requires 

fewer states.  Furthermore we let every machine have about the same number of 

states that will avoid huge

e

second one.  And it requires less memory than that we group in Figure 4-5.  

Actually g and table size depend on pattern strings and K.  The best separating 

method is not established yet with complex analysis.  This problem constitutes a 

future work.  

  

 When K increases, the number of groups increases too.  Thus we have so many 

matching machines.  To keep all matching machines active at the same time, we 

have to access so many bits for next state lookup.  To save the number of bits 

accessed and simplify the architecture, we can combine all the matching machines.  

In Figure 4-6, 
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two index numbers instead of PMV by concatenating the index numbers in Figure 

 

 

Fig 4-6 : Example of combining all groups with m e inde ers 

4-5(a) and Figure 4-5(b).  This problem is just like how we can encode the PMV. 

Although every state has more bits for index number, the number of total states is less 

than that of separating the trie.  It needs fewer bits of index number than that of 

PMV whatever g is.  However the larger K is, the larger g is, and the more 

verification circuit we need.  We think it’s tradeoff between K and g. 

 

 

 

 

 

 

state index 
1 {1,2} 
2 {2,0} 
3 {0,0} 
4 {0,1} 
5 {3,0} 
6 {4,0} 
7 {5,0} 
8 {6,0} 

 

 

or x numb
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Chapter 5 

Comparison and Experimental Results 

                                                     

 

We generated HDL files of our proposed multi-symbol AC pattern matching 

algorithm for FPGA with given rules.  The tables, next function and PMV, are 

implemented using on-chip 18Kbit Block RAM.  We implemented our algorithm 

with a Xilinx Virtex2 Pro-30 FPGA, and it is evaluated using timing analyzer of 

Xilinx ISE6.1i.  We compare our result with [5] for two rule sets, set 1 of about 1000 

characters and set 2 of about 2200 characters.  Section 5.1 shows the result of our 

proposed algorithm with PMV, and section 5.2 is for algorithm with output index. 

 

5.1 Experimental Results  

 

We randomly select 64 pattern strings of length 14-16 bytes from ClamAV [1] 

virus signatures.  Different values of m are tried to compare the memory space 

requirement.  Figure 5-1 compares the memory requirements of our proposed 

algorithm with the one presented in [5].  It can be seen that our proposed algorithm 

with m = 1 or 2 in general requires less memory space than the scheme proposed in [5] 

as long as K≥8.  Moreover, the amount of memory requirement is the least when K = 

16. 

 

From Figure 5-1, we can see the amount of memory requirement is least when K 

= 16.  It is mainly because we choose virus signatures of length 14-16 bytes.  When 
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a pattern string is divided into 16 substrings, every substring is of length 0 or 1.  As a 

result, the depth of each sub-trie is only one and many states are reused by different 

substrings.  Therefore, K = 16 requires the least amount of memory space since it is 

proportional to the number of states. 
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Figure 5-2 : Nu erent m and K 

 

As we have twice K, we have twice PMV bits and twice search engines.  The 

table should be about 4 times the size.  However, the state is also reduced because 

mber of state with diff
K symbol (byte/cycle) 

N
um

be
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each state indicates more number of prefix of rules while the depth of the trie is half.  

Roughly, the table will be reduced if the number of state becomes less than one fourth.  

Figure 5-2 shows the number of state with different K and m.  In Figure 5-2, we have 

a curve, square, for comparison. 

 

When K = 32, the number of state is reduced no more.  The table should grow 

to 4 times while the half of 32-bit PMV is redundant.  We use 16-bit PMV instead of 

32-bit PMV as we have known each rule is not longer than 16 bytes at first.  So the 

table grows in proportion to K.  Table size is half of that in [5] when K≧16 although 

we duplicate tables for each search engine. 

 

The clock rate of our synthesized logic can be operated higher than 140 MHz.  

In other words, our proposed algorithm can easily achieve more than 4.5Gbps 

throughput with K = 4.  Obviously, the throughput can be further improved as long 

as we increase the value of K.  The tradeoff is larger space requirement and more 

complicated verification logic.  We believe that K = 8 can be implemented with 

state-of-art FPGA development platform to achieve throughput higher than 10Gbps.   

 

5.2 Result with Output Index 

 

We have four rule sets for experiment, and each one is consist of 16-byte, 

32-byte, 64-byte, 128-byte pattern strings.  We randomly select about 2200-byte 

pattern strings for each rule set from ClamAV virus signatures.  Different values of K 

and pattern length are tried to compare the memory space requirements and g.  Table 

5-1 shows the complete result for all situations.  It can be seen that it needs the least 
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memory in 16-byte rule set with K = 4, 32-byte rule set with K = 8, and 64-byte rule 

set with K = 16.  The results of 16-byte rule set with K = 8 and 16 and 32-byte rule 

set with K = 16 are not shown in table because g is too large.  The exclusion 

correlations are complicated such that it’s difficult to separate the strings because of 

large g.  Furthermore it needs much more verification circuit so we skip the cases. 

 

Table 5-1.  The result of our proposed algorithm with output index 

 Pattern Length 16 32 64 128 

Number of state 414 1225 1610 1743 

Memory 
requirement(Kbit) 

278 666 759 697 K=4 

g 8 3 4 1 

Number of state x 304 1157 1493 

Memory 
requirement(Kbit) 

x 408 1277 1337 K=8 

g x 8 5 2 

Number of state x x 282 948 

Memory 
requirement(Kbit) 

x x 776 1759 K=16 

g x x 10 3 

 

Figure 15 compares the memory requirement of our proposed algorithm with the 

one presented in [5].  It can be seen that our proposed algorithm with output index 

needs less memory than that proposed in [5] for 16-byte rules with K = 4, 32-byte 

rules with K = 8, 64-byte rules with K = 16.  The curve arises rapidly in [5] as it 

needs much more tables when K increases. Table size is reduced by decomposing 

2D-table into rows, and packing into the linear array.  The number of index increases 
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with K such that there are much more possible inputs and table is more difficult to be 

reduced.  But for our result, the curve will decrease in some value of K according to 

the pattern length. Although the performance of result seems case by case, it is quite 

good if we use proper K value. In this case, we use less K for less verification circuit 

such that many states are not reused.  Without consideration of verification circuit, 

we can use larger K, and the number of states will be reduced much more. 
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Figure 5-3 : Comparison of total memory requirement 

 

We can optimize for a given rule set according to its pattern length.  But for 

long pattern, we need use large K for optimization and we have to duplicate K lookup 

tables.  Considering the memory resource, the memory requirement may be too large.  

To solve this problem, we can process K/t bytes per operation cycle with duplicating 

K/t tables.  We can register the results and the after t cycles we can get the same 

result as we process K byte in an operation cycle.  Each table can be reduced well by 

proper K value, but we don’t have to duplicate so many tables.  As a result it’s 

flexible to deal with any given rule set in all situations. 
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Chapter 6 

Conclusions 

                                                            

 

In this paper, we have presented an extension of the Aho-Corasick pattern 

matching algorithm where multiple symbols are processed in an operation cycle.  In 

our proposed scheme, K search engines are employed to scan the input text substrings 

in parallel to improve system performance.  Since every pattern string is divided into 

K substrings, it is possible for each individual search engine to output a false positive.  

Thus some verification logic is needed to eliminate false positives.  We showed that 

the match conditions and the verification logic can be simplified if the substrings are 

appropriately renumbered (if needed).  Experiments with Xilinx FPGA development 

platform reveal that one can achieve more than 4.5Gbps throughput performance with 

K = 4.  Compared with a related scheme, our proposed algorithm achieves slightly 

better throughput performance and requires less memory space.   

 

To implement our proposed algorithm, we need Kf-bit PMV to indicate every 

part of every string matched or not.  We have presented in this paper an extension of 

our pattern matching algorithm with output index.  We group the pattern strings into 

g sets and we need g matching machines of which each is responsible for a set of 

pattern strings.  We show how to separate pattern strings well and combine all the 

matching machines for simpler architecture and fewer bits of next state for table 

lookup.  For our experiment result, we show the relations with pattern length, 

memory requirement, K and g.  We get quite good performance in some value of K 

depending on pattern length which is much better than the one in the related scheme.  
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Considering the memory resource of hardware, we can duplicate fewer tables by 

processing it in several cycles.  As a result it’s flexible to deal with any given rule set 

in all situations. 

 

At last, we got our goal, not adding any more possible inputs for each table 

lookup and processing multi bytes every cycle.  Dividing a string into many 

sub-strings makes it possible to process multi bytes per cycle.  However it’s the top 

level to improve the structure of AC trie.  As we mentioned before, we can adopt any 

table compression researches to solve the problem of memory requirement.   
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