
國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

高效能字串比對演算法及其實現

An Efficient Pattern Matching Algorithm and Its

Implementation

研究生 ：梁嘉旂

指導教授：李程輝 教授

中 華 民 國 九 十 六 年 一 月

高效能字串比對演算法及其實現

An Efficient Pattern Matching Algorithm and Its

Implementation

研 究 生： 梁嘉旂 Student: Chia-Chi Liang
指導教授： 李程輝 教授 Advisor: Prof. Tsern-Huei Lee

國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

A Thesis
Submitted to Institute of Communication Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in
Communication Engineering

January 2007
Hsinchu, Taiwan, Republic of China.

中 華 民 國 九 十 六 年 一 月

高效能字串比對演算法及其實現

學生: 梁嘉旂 指導教授: 李程輝 教授

國立交通大學電信工程學系碩士班

中文摘要

因為可以準確判斷，因此字串比對在一般入侵偵測系統中扮演著相當重要

的角色，被廣泛應用到網路安全設備來偵測攻擊或病毒。在現今有許多知名的字

串比對演算法中，因為 AC 演算法可以同時比對多個字串並保證在最壞情況的效

能，因此被廣泛使用。然而，原始的 AC 演算法有兩項缺點需要改進，其中一項

是記憶體需求量，另一項是工作輸出量。因為原始的 AC 演算法在一個運算週期

只能處理一個字元，無法滿足現在高速網路，所以本研究延伸 AC 演算法，使其

可以處理多的字元，以達到工作輸出量的改進。在演算法裡，全部的字樣及欲比

對之字串都分成 K份，有 K組比對引擎同時做比對，一個運算週期共處理 K個字

元，所以工作輸出量增加至 K倍。我們實作在 Xilinx FPGA 上，當 K=4 的時候可

以達到 4.5Gbps 的工作輸出量。然而考慮實作的情況，因為每個運算週期都必須

讀取相當多的位元並不理想，所以根據所提的演算法，將字樣依規則分成幾個組

別，使用編號方式做延伸改進。除此之外，考量記憶體的資源，我們可以複製較

少份的查表資料，使其在多個運算週期內計算完 K組比對結果。換言之，我們可

以達到一個運算週期處理多個字元，並且使用較少的記憶體，根據任何硬體考量

可以做修正，適用於各種的字樣的字串比對演算法。

i

An Efficient Pattern Matching Algorithm and Its

Implementation
Student: Chia-Chi Liang Advisor: Prof. Tsern-Huei Lee

Institute of Communication Engineering

National Chiao Tung University

Abstract

Because of its accuracy, pattern matching technique has recently been applied to

Internet security applications such as intrusion detection/prevention, anti-virus, and

anti-malware. Among the various pattern matching algorithms, the Aho-Corasick

(AC) can match multiple pattern strings simultaneously with worst-case performance

guarantee and thus is widely adopted. However, the throughput performance of the

original AC may not be satisfactory for high speed environments because only one

symbol is processed in an operation cycle. In this paper we present an extension of

the AC algorithm where multiple symbols are processed in an operation cycle to

improve throughput performance. In our proposed scheme, all pattern strings, and

the input text string as well, are divided into K substrings, if K symbols are processed

in an operation cycle. Moreover, K pattern search engines are employed to scan the

text substrings in parallel. As a result, the throughput performance can be improved

by K times. We implemented our proposed pattern matching scheme with Xilinx

FPGA and achieved more than 4.5Gbps throughput for K = 4. As we need to access

so many bits for PMV per cycle, we have presented an extension of our algorithm

with output index. We separate patterns into several groups and PMV can be

replaced by index. Considering the memory resource of hardware, we can duplicate

fewer tables by processing it in several cycles. As a result it’s flexible to deal with

any given rule set in all situations.

ii

誌謝

首先，感謝我的指導教授─李程輝教授。從大三做專題到研究所的這段時

間，在教授的引領之下，讓我接觸感興趣的題目著手研究，並且給予充分的信任

和鼓勵，以及每一次詳細的討論和中肯的建議。在教授的教誨下，不論是做研究

的正確態度或方法，都讓我獲益良多。

感謝網路技術實驗室的謝景融學長、黃迺倫學姐和黃郁文學長，實驗室不

管大小事情都可以找你們解決，並且帶著大家研究的熱情，有這些帶領的學長姐

真的很幸福。也要感謝一起奮鬥的同學們：建成、登煌和柏庚，每次趕進度的時

候都是你們在旁邊加油打氣，有你們的支持陪伴，在實驗室的生活更充實。

最後，我要特別感謝我的父親與母親，在您們的無微不至的照顧下，讓我

毫無後顧之憂做任何事情，從小的諄諄教誨才造就今日的我，您們的關心和信任

給我最大動力。

謹將此論文獻給我最愛的親友。

iii

 Contents

Contents

中文摘要 i

English Abstract ii

誌謝 iii

Contents iv

List of Tables vi

List of Figures vii

Chapter 1 Introduction 1

 1.1 Background 1

 1.2 Motivation 2

Chapter 2 Network Intrusion Detection Systems 5

2.1 Introduction 5

 2.2 Snort 6

 2.2 ClamAV 7

Chapter 3 Pattern Matching 10

3.1 Aho Corasick Algorithm 10

 3.2 The Bit-Split Aho Corasick Algorithm 13

 3.2 Suffix Based Traversing Algorithm 15

iv

 Contents

Chapter 4 A High-Performance and Memory-Efficient Pattern Matching

Algorithm 18

4.1 Conception 18

 4.2 Our Proposed Algorithm 19

 4.2 Extension of Our Proposed Algorithm 25

Chapter 5 Comparison and Experimental Results 29

5.1 Experimental Results 29

 5.2 Results with Output Index 31

Chapter 6 Conclusions 34

Bibliographies 36

v

 List of Tables

List of Tables

Table 4-1. Conditions for pattern string S to be matched 21

Table 5-1. The result of our proposed algorithm with output index 32

vi

 List of Figures

List of Figures

Figure 2-1. Rule Chain logical structure 7

Figure 2-2. A fragment of the ClamAV trie structure 8

Figure 3-1. AC trie constructed from {he,she,his,hers} 11

Figure 3-2. Sequences of state transition for input string=ushers 12

Figure 3-3. The fourth sub-trie with m=2 14

Figure 3-4. Bit-split search engine with 4 tiles 15

Figure 3-5. SBT architecture 16

Figure 3-6. Reducing table size using indirect pointers 17

Figure 4-1. Example of reassembling two parts of a string 19

Figure 4-2. Example of trie Gp* for {he, she, his, hers} with k = 2 20

Figure 4-3. Example of all the matches for S = abcdefghij and K = 6. 23

Figure 4-4. The String Matching Machine Architecture 24

Figure 4-5. The trie with output index 26

Figure 4-6. Example of combining all groups with more index numbers 28

Figure 5-1. Comparison of total memory requirement 30

Figure 5-2. Number of state with different m and K 30

Figure 5-3. Comparison of total memory requirement 33

vii

 Chapter 1 Introduction

Chapter 1

Introduction

1.1 Background

The progress of network speed and technology makes network security to be an

important issue in network application. Because Internet is accessible to everyone,

more and more users highly rely on the correct operation of networks. There are

many security incidents such as eavesdropping, intrusion, and virus/worms that

caused great damage and economic loss to our society. Nowadays, we do some

protection in host, and furthermore adding more efficient mechanism in network edge

devices has attracted much attention in recent years.

Now we have two kinds of technologies of detection for intrusions and virus.

The first one is behavior anomaly. The concept of behavior anomaly is to establish a

profile of normal behavior and identify a host to be abnormal if its behavior does not

conform to the profile. It may result in a high false positive rate because the normal

behavior profile is difficult to specify. The second one is based on packet content,

and it checks if there is something abnormal by pattern matching. Those attacks are

usually represented by simple strings or regular expressions. It is possible to detect

any malware as long as its signature is available.

Pattern matching has been an important technique in information retrieval and

text editing for many years. Recently, it has been applied to Internet security for

signature matching to detect virus, worms, intrusion, etc. The function of pattern

1

 Chapter 1 Introduction

matching is to search for predefined patterns in packet payloads. Since pattern

occurrence may happen at any position of the payload, it is very time consuming.

Because of the rapid advances of computer and network technologies, it becomes

increasingly desirable for a high-performance pattern matching module that achieves

at least 10Gbps throughput.

There are some well-known pattern matching algorithms such as

Knuth-Morris-Pratt (KMP) [2], Boyer-Moore (BM) [3], and Aho-Corasick (AC) [4].

The KMP and BM algorithms are efficient for single pattern matching but are not

scalable for multiple patterns. The AC algorithm pre-processes the patterns and

builds a finite automaton which can match multiple patterns simultaneously.

Another advantage of the AC algorithm is that it guarantees deterministic

performance under all circumstances. As a consequence, the AC algorithm is widely

adopted in various systems, especially when worst-case performance is an important

design factor.

1.2 Motivation

Unfortunately, the original AC algorithm processes only one symbol per

operation cycle which limits the maximum throughput to LC bps where L and C are,

respectively, the size of a symbol and the clock rate for processing each symbol. In

most Internet security applications each symbol is a byte and thus L = 8.

Consequently, the maximum achievable throughput is only 1.6Gbps if C = 200 MHz.

This is obviously not enough for high speed networks. To achieve high throughput

performance, a variant of the AC algorithm, suffix based traversing (SBT) algorithm,

2

 Chapter 1 Introduction

where multiple symbols are processed in every operation cycle was proposed in [5].

The basic idea is to collect all possible k-step transitions for 1≤ k≤w from every state,

where w is the number of symbols processed in an operation cycle. Assuming that

w = , the number of table lookups for the longest path is equal to n. According to

the evaluation, it has to satisfy w 64 bytes in order to achieve 10 Gbps throughput.

2n

≥

Another problem of the AC algorithm is the potential huge amount of memory

space requirement. If every symbol is a byte, then the number of possible input is

=256 which means an array of 256 entries is required for every state. In other

words, with the straightforward implementation for 1M states, the required memory

space is about 1G bytes if every state is represented by 4 bytes. There are various

compression techniques to reduce the space requirement. A clever bit-splitting idea

which can largely reduce the space requirement was proposed in [6]. In this scheme,

an L-bit symbol is divided into L/m equal-size sub-symbols. For example, if L = 8

and m = 2, then every symbol is divided into 4 sub-symbols and each sub-symbol is

composed of 2 bits. The sub-symbols derived from the same positions of the

symbols in all pattern strings form a group. As a result, there are L/m groups of

sub-symbols. A sub-trie is built for each group of sub-symbols. It is clear that the

number of possible inputs reduces from

82

2L for the original trie to for each

sub-trie. Consequently, the space requirement reduces from O(

2m

2L) to O(L/m),

which is significant because in most applications L = 8 and one can choose m = 2.

Since we adopt the bit-splitting idea in our implementation, details of this scheme is

described in Section II.

2m

In this paper, we present a generalization of the AC algorithm where multiple

symbols are processed in each operation cycle. Different from the solution proposed

3

 Chapter 1 Introduction

in [5], our approach divides every pattern string into K sub-strings and construct tries

for sub-strings, where K is the number of symbols processed in each operation cycle.

The text string is also divided into K sub-strings. Besides, we use K search engines

to scan text sub-strings in parallel. Experimental results show that our scheme can

achieve more than 4.5Gbps throughput for K = 4 and in general requires less space

than the scheme proposed in [5].

The rest of this paper is organized as follows. We introduce two well-known

network intrusion detection systems, snort and ClamAV in chapter 2. Chapter 3

contains a review of the original AC algorithm, the bit-split AC algorithm and suffix

based traversing algorithm. In chapter 4, we present our generalization of the

high-performance AC algorithm. Experimental results are discussed in chapter 5.

Finally, we draw conclusion in chapter 6.

4

 Chapter 2 Network Intrusion Detection Systems

Chapter 2

Network Intrusion Detection Systems

 Network Intrusion Detection Systems (NIDS) have become widely recognized as

powerful tools for identifying, deterring and deflecting malicious attacks over the

network. This chapter includes the brief of two well-known software-based network

intrusion detection systems, snort and ClamAV.

2.1 Introduction

Network intrusion detection system plays an important role in network security

architecture. It provides a layer of defense which monitors network traffic for

suspicious predefined activity or patterns, and alert system administrators when

potential hostile traffic is detected. At the core of most NIDS is a computationally

challenging problem because it requires deep packet inspection. Every byte of every

packet must be examined which means gigabytes of data must be scanned per second.

Intrusion detection systems and intrusion prevention systems (IPS) have emerged as

two of the most promising ways to protect the network, and predictions show the

market for such systems growing to $918.9 million by the end of 2007. And then we

introduce two well-known software-based network intrusion detection systems, snort

and ClamAV briefly.

 5

 Chapter 2 Network Intrusion Detection Systems

2.2 Snort

Snort is a libpcap-based packet sniffer and logger that can be used as a

lightweight network intrusion detection system. It features rules based logging to

perform content pattern matching and detect a variety of attacks and probes, such as

buffer overflows, stealth port scans, CGI attacks, SMB probes, and much more.

Snort has real-time alerting capability, with alerts being sent to syslog, Server

Message Block (SMB) "WinPopup" messages, or a separate "alert" file. Snort's

architecture is focused on performance, simplicity, and flexibility. There are three

primary subsystems that make up Snort: the packet decoder, the detection engine, and

the logging and alerting subsystem.

The packet decoder engine is organized around the layers of the protocol stack

present in the supported data-link and TCP/IP protocol definitions. Each subroutine

in the decoder imposes order on the packet data by overlaying data structures on the

raw network traffic. These decoding routines are called in order through the

protocol stack, from the data link layer up through the transport layer, finally ending

at the application layer. Snort provides decoding capabilities for Ethernet, SLIP, and

raw (PPP) data-link protocols.

In the detection engine, Snort maintains its detection rules in a two dimensional

linked list of what are termed Chain Headers and Chain Options as in Figure 2-1.

These are lists of rules that have been condensed down to a list of common attributes

in the Chain Headers, with the detection modifier options contained in the Chain

Options. These rule chains are searched recursively for each packet.

 6

 Chapter 2 Network Intrusion Detection Systems

Figure 2-1 : Rule Chain logical structure

There are currently three logging and five alerting options in The

logging/alerting Subsystem. The logging options can be set to log packets in their

decoded, human readable format to an IP-based directory structure, or in tcpdump

binary format to a single log file. Alerts may either be sent to syslog, logged to an

alert text file in two different formats, or sent as WinPopup messages using the Samba

smbclient program.

2.3 ClamAV

Clam AntiVirus is a GPL anti-virus toolkit for UNIX. The main purpose of this

software is the integration with mail servers for attachment scanning. The package

 7

 Chapter 2 Network Intrusion Detection Systems

provides a flexible and scalable multi-threaded daemon, a command line scanner, and

a tool for automatic updating via Internet. The programs are based on a shared

library distributed with the Clam AntiVirus package, which you can use with your

own software. Most importantly, the virus database is kept up to date. It is the

most widely used open-source anti-virus scanner available. Currently, it can detect

over 35000 viruses, worms, and trojans, including Microsoft Office and Mac Office

macro viruses. Then it also built-in supports for many kinds of compressed files,

mail files, and compressed portable executable files.

Figure 2-2 : A fragment of the ClamAV trie structure. Solid lines show success

transitions; dashed lines show failure ransitions.

ClamAV uses a variation of the Aho Corasick pattern matching algorithm. To

quickly look up each character read from the input, ClamAV constructs a 256-way

trie structure as shown in Figure 2-2. The memory usage of ClamAV depends on

how deep the trie is. The deeper the trie, the more nodes are created. Since the

Aho Corasick algorithm builds an automaton with a depth equal to the longest pattern,

the memory usage would be unacceptably large because some patterns are over 2KB.

 8

 Chapter 2 Network Intrusion Detection Systems

ClamAV modifies the Aho-Corasick algorithm so that the trie is constructed only to

some maximum height, and all patterns beginning with the same prefix are stored in a

linked list under the appropriate leaf node. The maximum trie height is restricted by

the length of the shortest pattern, which is currently two bytes. ClamAV’s

performance suffers whenever a node with a large number of patterns with the same

prefix is encountered during input matching.

 9

 Chapter 3 Pattern Matching

Chapter 3

Pattern Matching

According to some report [11], the pattern matching module can consume up to

70% of CPU computation power in an intrusion detection system. But it is still

applied in network security devices to detect attacks or virus because of its accuracy.

Patterns are like fingerprints so we can check if it has something wrong. We can cut

out a segment from the virus program that is unique to represent the virus. A

number of algorithms have been proposed for pattern matching in network security.

We choose AC algorithm for our basic idea because it can guarantee the worst-case

performance that protect attacker to crash the system using weakness of the algorithm.

In this chapter, we introduce the AC algorithm and some of its improvements.

3.1 Aho Corasick Algorithm

Aho Corasick Algorithm pre-processes the patterns and builds a finite automaton

which can match multiple patterns simultaneously. Every state of the trie represents

that the suffix of input matches the longest prefix of some pattern up to this time.

Figure 3-1 shows an example of the trie that we have four patterns he, she, his and

hers. In AC algorithm, we look up table for next state according to a current state

and the input symbol. The same process is repeated. It reports a match in final

state when it matches a pattern. AC algorithm has to build three tables in advance:

goto function, g(state,t); failure function, f(state); output function, output(state). The

behavior of the pattern matching state machine is dictated by these three functions.

 10

 Chapter 3 Pattern Matching

Figure 3-1 : The state machine is original AC trie constructed from 4-string rule set,

{he,she,his,hers}

The goto function maps a pair consisting of a state and an input symbol into a

state or the failure message. The current symbol is received by goto function, and

the current state is transferred to next state. The state machine starts with an empty

root node which is the default non-matching state, state 0.

If it fails in state transition, it will look up failure function. It continues to

process from the return state of failure function. The failure function maps a state

into a state. If failure happens, the failure function points current state to the longest

prefix of that state which also leads to a valid state in the trie. We can see that it can

 11

 Chapter 3 Pattern Matching

also eliminate all failure transitions by pre-computing the next state for every

character from every state in the machine. We can use a next function to replace the

original goto function and failure function, and it is applied in bit-split AC algorithm

and SBT algorithm.

In the course of processing, output function outputs all strings that has been

matched. The output function formalizes this concept by associating a set of

keywords (possibly empty) with every state. The same process repeats until all

symbols of text string are processed.

For example, the patterns are he, she, his, and hers, and the text string is ushers.

Figure 3-2 shows the sequences of state transition for this example. At the

beginning, the state is root node 0, and it is transferred to state 3 and 4 according to

goto function. Consider the operation cycle when state is 4 and input symbol is e.

Since g(4,e)=5 , output(5) indicates that it has found the keywords she and he at the

end of position four in the text string. In state 5 on input symbol r, the machine

makes two state transitions in its operating cycle. Since g(5, r) =fail, it lookup again

for g(2,r) according to f(5)=2, and the next state is 8. At the end, it is transferred to

state 9 and output hers because of output(9).

input u s h e r s

state 0 0 3 4 5 8 9

f(state) 2

Figure 3-2: Sequences of state transition for input string=ushers

In processing an input of length n makes exactly n goto transitions. And the

 12

 Chapter 3 Pattern Matching

total number of failure transitions must be at least one less than the total number of

goto transitions. Therefore, the total number of state transitions is less than 2n. In

addition, next function combining goto function and failure function makes it need

exactly n state transitions for text string of n symbols. As we mentioned, it can

guarantee the worst-case performance.

3.2 The Bit-Split Aho-Corasick Algorithm

In this section, we review the bit-split AC algorithm which was proposed in [6].

As mentioned before, the bit-split AC algorithm can largely reduce the memory

requirement.

The basic idea of the bit-split AC algorithm is to divide an L-bit symbol into L/m

equal-size sub-symbols. For ease of description, we assume that each symbol is a

byte, i.e., L = 8, which is true in most Internet Security applications. As a result, the

 sub-symbol consists of the , …, and the bits

of the symbol for all i, 1 L/m. For example, if m = 4, then there are two

sub-symbols and the first sub-symbol consists of the first four bits of the symbol and

the second sub-symbols consists of the last four bits of the symbol. As another

example, for m = 1, there are eight sub-symbols and the sub-symbol is nothing

but the bit of the symbol. The sub-symbols derived from the same positions of

the symbols in all pattern strings form a group. As a result, there are L/m groups of

sub-symbols. A sub-trie is constructed for each group of sub-symbols. It is not

hard to see that the number of states in each sub-trie is upper bounded by that of the

original tire. Figure 3-3 illustrates the fourth sub-trie and output function for pattern

thi ((1) 1)thi m− + ((1) 2)thi m− + ()thim

≤ i≤

thi

thi

 13

 Chapter 3 Pattern Matching

strings {he, she, his, hers} with m = 2.

 Output Function

Figure 3-3 : The fourth sub-trie with m=2 from the group of sub-symbol, {00 01, 11

00 01, 00 01 11, 00 01 10 11}.

i Output(i)

2 he

5 she, he

6 his

8 hers

To maintain the same throughput performance as the original AC algorithm, the

bit-split scheme uses L/m search engines to scan the input text concurrently. Let T =

 be the input text. Moreover, let 1 2 3...t t t j
it denote the sub-symbol of . In

the bit-split scheme, tile j takes

thj it

1 2 3 ...j j jt t t as its input and processes sub-symbol j
it in

the operation cycle. We say tile j finds a match of pattern string S = in

operation cycle i if

thi 1 2... ns s s

1 2 ...j j
ns s s j = 1 2...j j

i n i n it t t− + − +
j . It is obvious that pattern string S is

matched by the original AC algorithm in operation cycle i if and only if (iff) tile j

finds a match of S in operation cycle i for all j, 1≤ j≤L/m. To check whether or not

all tiles find matches of the same pattern string in the same operation cycle, the

pattern strings are numbered and a partial match vector (PMV) is associated to every

state of each sub-trie. The length of the PMV is f bits if there are f pattern strings.

Consider any particular sub-trie. The bit of the PMV associated to state x

is a 1 iff pattern string k is matched in state x. See Figure 3-4 for examples of

PMVs.

thj thk

 14

 Chapter 3 Pattern Matching

00 01 10 11 PMV

0 1 0 0 3 0000
1 1 2 0 3 0000

2 1 0 7 6 1000

3 4 0 0 3 0000

4 1 5 0 3 0000

5 1 0 7 6 1100

6 4 0 0 3 0010

7 1 0 0 8 0000

8 4 0 0 3 0001

＼2

＼8

Tile 1 Tile 4Tile 2 Tile 3

＼2 ＼2

＼2 ＼2

Figure 3-4 : The left side is a search engine with 4 tiles. The right side shows the

structure of a tile. Each row in the table is a state and each state has 4

possible next state and a PMV. It transits state according to 2-bit input

sub-symbol, and output PMV of current state.

Since every symbol is divided into L/m sub-symbols, the number of possible

inputs reduces from for the original trie to for each sub-trie. Consequently,

the space requirement reduces significantly from O() to O(L/m). The bit-split

idea is adopted in our implementation.

2L 2m

2L 2m

3.3 Suffix Based Traversing Algorithm

Suffix Based Traversing (SBT) algorithm was introduced in 2004 that multiple

symbols are processed in an operation cycle. To achieve high performance, it

processes w symbols concurrently with pipeline where w = . At first, it encodes

all useful strings by index numbers. Lookup table, C

2n

2, C4… are used to calculate the

 15

 Chapter 3 Pattern Matching

longest suffix. C2 returns the index number of the longest suffix of a 2-byte string.

With two index numbers of C2, it can encode the index number of a 4-byte string. It

will be encoded into‘0’when the symbols are useless for these patterns. It uses index

numbers instead of symbols to avoid too many possible inputs while matching.

For all possible positions in which it may match a pattern, it collects all possible

k-step transitions for 1 k w from every state. It reports a match if any one of the

k-step states is a final state. Figure 3-5 shows an example with w=4. The left side

of the figure is responsible for indexing the input symbols. The right side looks up

the table, NS

≤ ≤

1, NS2, NS4,…, by index number. And it adopt pipeline to calculate

states for 1 to 4 steps transitions.

Figure 3-5 : SBT architecture

As we mentioned before, every state needs 256 entries for table lookup while we

process an 8-bit symbol at a time. But for 2 or more bytes are processed, it needs

65536 entries or more. So if we index the useful ones, we can save much

unnecessary entries for table lookup. Moreover, according to the characteristic of

the table, it can be reduced by storing a default transition because many entries are the

same for every useful index.

Table size can be reduced using indirect pointers as shown in Figure 3-6. The

 16

 Chapter 3 Pattern Matching

2D-table is decomposed into rows, and then packed into the linear array. Each entry

of the linear array has a row number to identify the owner row of the entry. When

the 2D-table lookup fails, the default value of each column is returned. Note that

unused elements may exist in the linear array because of fragmentation of the free

area.

Figure 3-6 : Reducing table size using indirect pointers

 17

 Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm

Chapter 4

A High-Performance and Memory-Efficient Pattern

Matching Algorithm

In this section, we present our proposed high-performance and memory-efficient

pattern matching algorithm. In our proposed algorithm, K symbols are processed at

a time. It is clear that the original AC algorithm corresponds to K = 1. For

simplicity, we assume that every symbol is a byte throughout this paper.

4.1 Conception

Take a pattern string, abcdef, for example. How do we find it out quickly in such

a long text string with AC algorithm? It’s straightforward to use more than one

symbol for table lookup per operation cycle. But however the table size will grow

increasingly while we have much more possible inputs. In order to solve this

problem, the table should be compressed properly. The memory requirement is a

problem in original AC algorithm furthermore we have larger lookup table so we have

to deal with it pretty well. The basic idea we thought is that not to add any more

possible inputs for table lookup. But it can process more than one byte every cycle

with original table size in AC. And we can adopt so many table compression

researches to solve the problem of memory requirement easily.

We let many scan engines work in parallel, and each one is responsible for one

 18

 Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm

part of text string according to the position of every byte in text string. It finds a

match of a string when all engines find every part of a string. After that, we can try

to reassemble all information of every engine’s report. For example, the first engine

finds “ace” and “bdf” is found by the second engine. The two strings can be

reassembled and then we can find it may be a full string “abcdef”. But we can not

make sure if we only know finding all parts of a string. Figure 4-1 shows the

problem that we should check if the text string is matched. How to tell that the

string is “abcdef” or “badcfe” is the issue that we’ll discuss in detail later. But we

approach our goal that every engine processes only one byte every cycle for less table

size. And the functionality is equivalent to a huge state machine of processing more

than one byte per operation cycle.

a c e

 d

E1

b E2 f

fedcba(a)

a c e

 db f

E1

efcdab(b)

E2

Figure 4-1 : Example of reassembling two parts of a string.

4.2 Our Proposed Algorithm

4.2.1 Pre-process

To achieve high performance, we need to pre-process every pattern string. Let

P represent the set of all pattern strings. For every pattern string S∈P, we divide S

 19

 Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm

into K substrings as follows. Assume that S = and n = qK + r, where q is

the quotient and r is the remainder of n divided by K. String S is divided into K

substrings so that the string, denoted by , is given by

1 2... ns s s

thi iS ...i K i qK is s s+ + if i≤ r or

if i> r. Let be the set of all substrings derived from the strings in

set P. The AC trie, denoted by , is constructed for all the substrings in .

(1)...i K i q K is s s+ − +
*P

*P
G *P

Let's see some example with K = 2 and patterns are he, she, his and hers. But

right now, he is divided into h and e, two substrings. And these two states

constructed by h and e are both final states. She is divided into se and h and so on.

Figure 4-2 shows the AC trie Gp* and the PMV. Each bit of PMV means one

substring is matched or not.

Figure 4-2 : Example of trie Gp* for {he, she, his, hers} with k = 2.

state PMV
1 10010000
2 01000000
3 00000000
4 00100000
5 00001000
6 00000100
7 00000010
8 00000001

Let T = denote the text string to be scanned and m = K + , where

 and are, respectively, the quotient and the remainder of m divided by K. The

text string T is also divided into K substrings , , …, and

1 2... mt t t q′ r′

q′ r′

1T 2T KT so that the text thi

 20

 Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm

substring = i if iT ...i K i q Kt t t ′+ + i ≤ r′ o)K ir ...i K i qt t t ′(1+ − f + i i> r′ . There are K

parallel pattern search engines, deno 1E , 2E , …, and ted by KE , each with its own

AC trie that is the s as *P
G . Search iE scans text substring ame .

example, for r = 0, search engine finds a m tch of substring at the end of

operation cycle C for all i K another example,

c

engine iT

4.2.2 Match Conditions

There are various conditions for the pattern string S to be matched. As an

for r = 1, pattern string S is mat hed if search engine E finds a match of substring

1iS − at the end of operation cycle C for all i, 3

iE iS a

, 1≤ i , is one possible condition. As ≤

i

≤ i≤K, and search engines 1E and 2E

 matches of substrings find KS and 1S , respectively, at the end of operation cycle

and thus is omitted.

Table 4-1. Conditions f

C+1. The complete conditions for pattern string S to be matched are summarized in

Table 4-1. The proof of the correctness of the listed cond is straightforward

or pattern string S to be matched.

Cases Conditions

itions

q = 0, r > 0 (a) ∃ l, 1≤ l≤K-r+1, l iE + finds a match of , 0 -1, at

C

1iS + ≤ i≤ r

the end of operation cycle

Or

(b) ∃ l, K-r+2≤ l≤K, l iE + finds a match of , 0 K-l, at

 of ope c C and

1iS + ≤ i≤

the end ration ycle jE finds a match of 1K l jS − + + ,

1 1≤ j r-K+l-1, at the end of operation cycle C+≤

 21

 Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm

(a) iE finds a match of iS , 1≤ i≤K, at the end of operation

cycle C

Or

(b) , 2∃ l ≤ l≤K, l iE + finds a match of 1iS + , 0 K-l, at the

end of operation cycle C and

≤ i≤

jE finds a match of 1K l jS − + + ,

l-1, at the end of operation cycle C+1 1≤ j≤

q > 0, r = 0

q > 0, r > 0 (a) finds a match of iE r iS + if 1 ≤ i ≤ K-r or if

r

,

i K rS − +

K-r+1≤ i≤K at the end of operation cycle C

O

(b) r+1∃ l ≤ l≤K, l iE + finds a match f 1i ro S + + , 0≤ i at

the end of operation cycle C and

≤K-l,

jE finds a match of

1K l r j+ + + ifS − 1≤ j≤ l-r-1 or 1j l rS − + + if l-r≤ j≤ l-1 at the end of

a l C

(c) , 2

oper tion cyc e +1

Or

∃ l ≤ l≤ r, l iE + finds a match of 1i rS + + if 0 K-r-1 or

 if K-

≤ i≤

1i K rS − + + r≤ i≤K-l, at the end of operation cycle C and jE

finds a match of 1r l jS + − + , 1≤ j≤ l-1, at the end of operation cycle

 C+1

Figure 4-3 illustrates an example of all the matches for S = abcdefghij and K = 6.

In this example, w = .

According to the position of S in text string, there are totally six possible situations for

attern string S to be matched.

e have 1S = ag, bh, = ci, 4S = dj, 5S = e and 6S = f 2S 3S

p

 22

 Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm

Figure 4-3 : Example of all the matches for S = abcdefghij and K = 6.

Note that the conditions for pattern string S to be matched for the case q > 0 and

r > 0 are complicated. Fortunately, it can be simplified if the substrings are

renumbe ter the

enumbering, the conditions for pattern string S to be ma q > 0 and r

> 0

red as follows. Given n = qK + r, define '
iS = ()modi r KS + . Af

r tched for the case

become (a) iE finds a match of '
iS , 1≤ i≤K, at the end of operation cycle C or

'(b) , 2 K finds a matc∃ l ≤ l≤ , l iE + h of 1iS + , 0≤ i≤K-l, at the end of operation cycle

C and jE finds a match of '
1K l jS − + + , 1≤ j≤ l-1, at the end of operation cycle C+1, the

same as those for the case q > 0 and = 0. It operates well as we rotate the

substrings’ numbers. As for the case q = 0 and r > 0, it m ans that pattern length is

K The n b p

 a tring +

r

e

smaller than . same conditions ca e a plied as long as every search engine

reports match for null subs i , r 1S ≤ i≤K, unconditionally at the end of every

operation cycle. As a consequence, we have unified conditions for pattern string S to

be matched.

 23

 Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm

4.2.3 Architecture

Figure 4-4 shows the architecture of our implementation. To process K

bols every operation cycle, we have K search engines and each one is received

er operation cycle. The bit-split idea is adopted to reduce memory

 are 8/m state machines (i.e., m = 2) for every search engine in

plementation. Each state machine scans m-bit sub-symbols of text string with

its own sub-trie.

ociated to state x is a 1 iff the sub-string of pattern string i is

matched in state x. As well as that in bit-split AC, sub-string S is matched in a

search eng

sym

one byte p

requirement. So there

our im

Note that since each pattern string is divided into K sub-strings, it is necessary to

distinguish which sub-string is found when a search engine reports a match. As a

result, the length of every PMV is Kf bits if there are f pattern strings. The (4)i k+

bit of a PMV ass

th

thk

ine if and only if tile j finds a match of S for all j, 1≤ j≤8/m in that search

engine. According to all search engines’ outputs, we can verify match conditions as

we mentioned in section 4.2.2.

Figure 4-4 : The String Matching Mach c

Check Conditions

Search

 K-1 …
Engine FSM1 FSM4FSM2 FSM3

Search

K

＼8 ＼8 ＼8

＼Kf

Engine

＼Kf ＼Kf

＼Kf

ine Archite ture

 24

 Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm

4.3 Extension of Our Proposed Algorithm

 Problem of PMV

To implem

atched or not. However, we have K search engines and each

s 8K2f/m bits in every

peration cycle. It’s not a good solution especially when K is large. First it

cess so many bits every operation cycle. Moreover it

eeds much wire and logic circuit to verify match conditions. If implementing

thou

n the sub-trie usually represents two or more strings

atched partially. Using PMV is the straightforward and simplest answer. To

avoid

4.3.1

ent our proposed algorithm, we need Kf-bit PMV to indicate every

part of every string m

one consist of 8/m finite state machines. We have to acces

o

consumes much power to ac

n

sands of patterns, we should stored lookup table in external memory as it may be

very large. But the width of bus is not enough completely. It has some problem for

implementation in practice.

The simplest way that we can solve the problem is to use index number in stead

of PMV. But it has some necessary reasons to use so many bits PMV. As we let

the AC trie divided into many sub-tire, each match in one sub-trie is just a part of a

string. We have to use all the match information to check so we can not discard any

one. However the state i

m

 using too many bits in PMV, we group the pattern strings into several sets. We

need as many matching machines as the number of sets and every matching machine

is responsible for a set of pattern strings.

 25

 Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm

 26

4.3.2 Output Index

 First, we construct our AC trie Gp* as we mentioned before. From the result of

first construction, we decide every pattern string to be in which set. If one state

dicates more than one string matched partially, we should separate these strings into

ifferent sets. To make sure that every pattern string is not in the set of which some

ne represents itself and other strings, we can list all mutual

xclusion pattern strings for a pattern string S in exc(S) while pre-processing.

Figure 4-5(a) : The trie and output index for {he, his, hers} and 4-5(b) : The trie and

output index for {she}

in

d

state of the state machi

e

According to the exclusion list, we can separate all patterns easily. Roughly, if there

are not more than g bits 1 in PMV of a state, the number of sets is g or a little more

than g. After grouping the patterns, we can construct a trie for each set.

state index (a)

(b)

1 1
2 2
3 3
4 4
5 5
6 6

state index
1 0
2 1
3 2

 Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm

For example, we can record exc(he)=she and exc(she)=h use state 1

dicates one substring of he and one substring of she concurrently in Figure 4-2.

ith the exc function listed, he, his, and hers are grouped in the first set and she is

g

Figure 4-5(b) is for the second o te can be replaced by a simple

dex number. We just consider a complete AC trie Gp* for taking a simple example.

But

 amount of memory requirement for some large FSM. For

xample, we can group he and hers for the first set, and group she and his for the

the trie is the same as that when patterns are not grouped. But we use

e beca

in

W

rouped in another one. Figure 4-5(a) is the trie constructed for the first set and

ne. PMV for every sta

in

adopting bit-split idea, we should list all exclusion correlations depending on all

sub-trie. And for simplicity, we ignore the special case that one state indicates more

than one part of a string.

 No state indicates more than one string is the only rule that we should conform to.

We have many workable solutions, but which one we should take is difficult to decide.

The basic concept is to let as more states to be reused as possible such that it requires

fewer states. Furthermore we let every machine have about the same number of

states that will avoid huge

e

second one. And it requires less memory than that we group in Figure 4-5.

Actually g and table size depend on pattern strings and K. The best separating

method is not established yet with complex analysis. This problem constitutes a

future work.

 When K increases, the number of groups increases too. Thus we have so many

matching machines. To keep all matching machines active at the same time, we

have to access so many bits for next state lookup. To save the number of bits

accessed and simplify the architecture, we can combine all the matching machines.

In Figure 4-6,

 27

 Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm

two index numbers instead of PMV by concatenating the index numbers in Figure

Fig 4-6 : Example of combining all groups with m e inde ers

4-5(a) and Figure 4-5(b). This problem is just like how we can encode the PMV.

Although every state has more bits for index number, the number of total states is less

than that of separating the trie. It needs fewer bits of index number than that of

PMV whatever g is. However the larger K is, the larger g is, and the more

verification circuit we need. We think it’s tradeoff between K and g.

state index
1 {1,2}
2 {2,0}
3 {0,0}
4 {0,1}
5 {3,0}
6 {4,0}
7 {5,0}
8 {6,0}

or x numb

 28

 ______________ _ Chapter 5 Comparison and Experimental Results

Chapter 5

Comparison and Experimental Results

We generated HDL files of our proposed multi-symbol AC pattern matching

algorithm for FPGA with given rules. The tables, next function and PMV, are

implemented using on-chip 18Kbit Block RAM. We implemented our algorithm

with a Xilinx Virtex2 Pro-30 FPGA, and it is evaluated using timing analyzer of

Xilinx ISE6.1i. We compare our result with [5] for two rule sets, set 1 of about 1000

characters and set 2 of about 2200 characters. Section 5.1 shows the result of our

proposed algorithm with PMV, and section 5.2 is for algorithm with output index.

5.1 Experimental Results

We randomly select 64 pattern strings of length 14-16 bytes from ClamAV [1]

virus signatures. Different values of m are tried to compare the memory space

requirement. Figure 5-1 compares the memory requirements of our proposed

algorithm with the one presented in [5]. It can be seen that our proposed algorithm

with m = 1 or 2 in general requires less memory space than the scheme proposed in [5]

as long as K≥8. Moreover, the amount of memory requirement is the least when K =

16.

From Figure 5-1, we can see the amount of memory requirement is least when K

= 16. It is mainly because we choose virus signatures of length 14-16 bytes. When

 29

 ______________ _ Chapter 5 Comparison and Experimental Results

0

500

1000

1500

2000

2500

2 4 8 16 32

m=1

m=2

m=4

[5]

To
ta

l S
iz

e
(K

bi
t)

a pattern string is divided into 16 substrings, every substring is of length 0 or 1. As a

result, the depth of each sub-trie is only one and many states are reused by different

substrings. Therefore, K = 16 requires the least amount of memory space since it is

proportional to the number of states.

-1

K symbol (byte/cycle)

Figure 5-1 : Comparison of emory requirement total m

Figure 5-2 : Nu erent m and K

As we have twice K, we have twice PMV bits and twice search engines. The

table should be about 4 times the size. However, the state is also reduced because

mber of state with diff
K symbol (byte/cycle)

N
um

be
r o

f s
ta

te

 30

 ______________ _ Chapter 5 Comparison and Experimental Results

each state indicates more number of prefix of rules while the depth of the trie is half.

Roughly, the table will be reduced if the number of state becomes less than one fourth.

Figure 5-2 shows the number of state with different K and m. In Figure 5-2, we have

a curve, square, for comparison.

When K = 32, the number of state is reduced no more. The table should grow

to 4 times while the half of 32-bit PMV is redundant. We use 16-bit PMV instead of

32-bit PMV as we have known each rule is not longer than 16 bytes at first. So the

table grows in proportion to K. Table size is half of that in [5] when K≧16 although

we duplicate tables for each search engine.

The clock rate of our synthesized logic can be operated higher than 140 MHz.

In other words, our proposed algorithm can easily achieve more than 4.5Gbps

throughput with K = 4. Obviously, the throughput can be further improved as long

as we increase the value of K. The tradeoff is larger space requirement and more

complicated verification logic. We believe that K = 8 can be implemented with

state-of-art FPGA development platform to achieve throughput higher than 10Gbps.

5.2 Result with Output Index

We have four rule sets for experiment, and each one is consist of 16-byte,

32-byte, 64-byte, 128-byte pattern strings. We randomly select about 2200-byte

pattern strings for each rule set from ClamAV virus signatures. Different values of K

and pattern length are tried to compare the memory space requirements and g. Table

5-1 shows the complete result for all situations. It can be seen that it needs the least

 31

 ______________ _ Chapter 5 Comparison and Experimental Results

memory in 16-byte rule set with K = 4, 32-byte rule set with K = 8, and 64-byte rule

set with K = 16. The results of 16-byte rule set with K = 8 and 16 and 32-byte rule

set with K = 16 are not shown in table because g is too large. The exclusion

correlations are complicated such that it’s difficult to separate the strings because of

large g. Furthermore it needs much more verification circuit so we skip the cases.

Table 5-1. The result of our proposed algorithm with output index

 Pattern Length 16 32 64 128

Number of state 414 1225 1610 1743

Memory
requirement(Kbit)

278 666 759 697 K=4

g 8 3 4 1

Number of state x 304 1157 1493

Memory
requirement(Kbit)

x 408 1277 1337 K=8

g x 8 5 2

Number of state x x 282 948

Memory
requirement(Kbit)

x x 776 1759 K=16

g x x 10 3

Figure 15 compares the memory requirement of our proposed algorithm with the

one presented in [5]. It can be seen that our proposed algorithm with output index

needs less memory than that proposed in [5] for 16-byte rules with K = 4, 32-byte

rules with K = 8, 64-byte rules with K = 16. The curve arises rapidly in [5] as it

needs much more tables when K increases. Table size is reduced by decomposing

2D-table into rows, and packing into the linear array. The number of index increases

 32

 ______________ _ Chapter 5 Comparison and Experimental Results

with K such that there are much more possible inputs and table is more difficult to be

reduced. But for our result, the curve will decrease in some value of K according to

the pattern length. Although the performance of result seems case by case, it is quite

good if we use proper K value. In this case, we use less K for less verification circuit

such that many states are not reused. Without consideration of verification circuit,

we can use larger K, and the number of states will be reduced much more.

0

500

1000

1500

2000

4 8 16

L=16

L=32

L=64

L=128

[5]-2

To
ta

l S
iz

e
(K

bi
t)

K symbol (byte/cycle)

Figure 5-3 : Comparison of total memory requirement

We can optimize for a given rule set according to its pattern length. But for

long pattern, we need use large K for optimization and we have to duplicate K lookup

tables. Considering the memory resource, the memory requirement may be too large.

To solve this problem, we can process K/t bytes per operation cycle with duplicating

K/t tables. We can register the results and the after t cycles we can get the same

result as we process K byte in an operation cycle. Each table can be reduced well by

proper K value, but we don’t have to duplicate so many tables. As a result it’s

flexible to deal with any given rule set in all situations.

 33

 Chapter6 Conclusions

Chapter 6

Conclusions

In this paper, we have presented an extension of the Aho-Corasick pattern

matching algorithm where multiple symbols are processed in an operation cycle. In

our proposed scheme, K search engines are employed to scan the input text substrings

in parallel to improve system performance. Since every pattern string is divided into

K substrings, it is possible for each individual search engine to output a false positive.

Thus some verification logic is needed to eliminate false positives. We showed that

the match conditions and the verification logic can be simplified if the substrings are

appropriately renumbered (if needed). Experiments with Xilinx FPGA development

platform reveal that one can achieve more than 4.5Gbps throughput performance with

K = 4. Compared with a related scheme, our proposed algorithm achieves slightly

better throughput performance and requires less memory space.

To implement our proposed algorithm, we need Kf-bit PMV to indicate every

part of every string matched or not. We have presented in this paper an extension of

our pattern matching algorithm with output index. We group the pattern strings into

g sets and we need g matching machines of which each is responsible for a set of

pattern strings. We show how to separate pattern strings well and combine all the

matching machines for simpler architecture and fewer bits of next state for table

lookup. For our experiment result, we show the relations with pattern length,

memory requirement, K and g. We get quite good performance in some value of K

depending on pattern length which is much better than the one in the related scheme.

 34

 Chapter6 Conclusions

Considering the memory resource of hardware, we can duplicate fewer tables by

processing it in several cycles. As a result it’s flexible to deal with any given rule set

in all situations.

At last, we got our goal, not adding any more possible inputs for each table

lookup and processing multi bytes every cycle. Dividing a string into many

sub-strings makes it possible to process multi bytes per cycle. However it’s the top

level to improve the structure of AC trie. As we mentioned before, we can adopt any

table compression researches to solve the problem of memory requirement.

 35

 Bibliography

Bibliography

[1] Clam anti virus signature database, www.clamav.net.

[2] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in strings,” TR

CS-74-440, Stanford University, Stanford, California, 1974.

[3] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”

Communications of the ACM, Vol. 20, October 1977, pp. 762-772.

[4] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic

search,” Communications of the ACM, Vol. 18, June 1975, pp. 333-340.

[5] Y. Sugawara, M. Inaba and K. Hiraki, “Over 10Gbps string matching

mechanism for multi-stream packet scanning systems,” Field Programmable

Logic and Application, Vol. 3203, Sep. 2004, pp. 484-493.

[6] L. Tan and T. Sherwood, “A high throughput string matching architecture for

intrusion detection and prevention,” 32nd Annual International Symposium on

Computer Architecture, pp. 112-122, 2005

[7] L. Tan and T. Sherwood, “Architectures for Bit-Split String Scanning in

Intrusion Detection,” IEEE Micro, Vol.26, pp. 110-117, 2006

[8] M. Roesch, “Snort – lightweight intrusion detection for networks,” Proceedings

of LISA’99, 13th Administration Conference, Seattle Washington, USA, 1999

[9] Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok, “Avfs: An On-Access

Anti-Virus File System,” proceedings of the 13th USENIX Security Symposium,

2004

 36

 Bibliography

[10] open source IDS/IPS snort, www.snort.org

[11] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic

memory-efficient string matching algorithms for intrusion detection,” IEEE

Infocom 2004, pp. 333-340.

[12] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood, “Deep

packet inspection using parallel bloom filters,” Symposium on

High-Performance Interconnect (HotI), Stanford, CA, pp. 44-51, Aug. 2003.

[13] T. H. Lee and J. C. Liang, “A high-performance memory-efficient pattern

matching algorithm and its implementation,” IEEE Tencon, Hong-Kong, 2006.

 37

