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Student: Chia-Chi Liang Advisor: Prof. Tsern-Huei Lee

Institute of Communication Engineering

National Chiao Tung University

Abstract

Because of its accuracy, pattern matching technique has recently been applied to
Internet security applications such as intrusion detection/prevention, anti-virus, and
anti-malware. Among the various pattern matching algorithms, the Aho-Corasick
(AC) can match multiple pattern strings simultaneously with worst-case performance
guarantee and thus is widely adopted. However, the throughput performance of the
original AC may not be satisfactory-for high-speed environments because only one
symbol is processed in an operation cyele.—In this paper we present an extension of
the AC algorithm where multiple symbols are processed in an operation cycle to
improve throughput performance. In our proposed scheme, all pattern strings, and
the input text string as well, are divided into K substrings, if K symbols are processed
in an operation cycle. Moreover, K pattern search engines are employed to scan the
text substrings in parallel. As a result, the throughput performance can be improved
by K times. We implemented our proposed pattern matching scheme with Xilinx
FPGA and achieved more than 4.5Gbps throughput for K =4. As we need to access
so many bits for PMV per cycle, we have presented an extension of our algorithm
with output index. We separate patterns into several groups and PMV can be
replaced by index. Considering the memory resource of hardware, we can duplicate
fewer tables by processing it in several cycles. As a result it’s flexible to deal with

any given rule set in all situations.
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Chapter 1 Introduction

Chapter 1

Introduction

1.1 Background

The progress of network speed and technology makes network security to be an
important issue in network application. Because Internet is accessible to everyone,
more and more users highly rely on the correct operation of networks. There are
many security incidents such as eavesdropping, intrusion, and virus/worms that
caused great damage and economic loss to our society. Nowadays, we do some
protection in host, and furthermoretadding more efficient mechanism in network edge

devices has attracted much attention.in recent.years.

Now we have two kinds of technologies of detection for intrusions and virus.
The first one is behavior anomaly. The concept of behavior anomaly is to establish a
profile of normal behavior and identify a host to be abnormal if its behavior does not
conform to the profile. It may result in a high false positive rate because the normal
behavior profile is difficult to specify. The second one is based on packet content,
and it checks if there is something abnormal by pattern matching. Those attacks are
usually represented by simple strings or regular expressions. It is possible to detect

any malware as long as its signature is available.

Pattern matching has been an important technique in information retrieval and
text editing for many years. Recently, it has been applied to Internet security for

signature matching to detect virus, worms, intrusion, etc. The function of pattern

1



Chapter 1 Introduction

matching is to search for predefined patterns in packet payloads. Since pattern
occurrence may happen at any position of the payload, it is very time consuming.
Because of the rapid advances of computer and network technologies, it becomes
increasingly desirable for a high-performance pattern matching module that achieves

at least 10Gbps throughput.

There are some well-known pattern matching algorithms such as
Knuth-Morris-Pratt (KMP) [2], Boyer-Moore (BM) [3], and Aho-Corasick (AC) [4].
The KMP and BM algorithms are efficient for single pattern matching but are not
scalable for multiple patterns. The AC algorithm pre-processes the patterns and
builds a finite automaton which can match multiple patterns simultaneously.
Another advantage of the AC.algorithm “is-.that it guarantees deterministic
performance under all circumstances.  As a consequence, the AC algorithm is widely
adopted in various systems, especially ‘when-worst-case performance is an important

design factor.

1.2 Motivation

Unfortunately, the original AC algorithm processes only one symbol per
operation cycle which limits the maximum throughput to LC bps where L and C are,
respectively, the size of a symbol and the clock rate for processing each symbol. In
most Internet security applications each symbol is a byte and thus L = 8.
Consequently, the maximum achievable throughput is only 1.6Gbps if C = 200 MHz.
This is obviously not enough for high speed networks. To achieve high throughput

performance, a variant of the AC algorithm, suffix based traversing (SBT) algorithm,
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where multiple symbols are processed in every operation cycle was proposed in [5].
The basic idea is to collect all possible k-step transitions for 1 <k<w from every state,
where w is the number of symbols processed in an operation cycle.  Assuming that
w =2", the number of table lookups for the longest path is equal to n. According to

the evaluation, it has to satisfy w> 64 bytes in order to achieve 10 Gbps throughput.

Another problem of the AC algorithm is the potential huge amount of memory
space requirement. If every symbol is a byte, then the number of possible input is
2%=256 which means an array of 256 entries is required for every state. In other
words, with the straightforward implementation for 1M states, the required memory
space is about 1G bytes if every state is represented by 4 bytes. There are various
compression techniques to reduce.the space requirement. A clever bit-splitting idea
which can largely reduce the space.requirement was proposed in [6]. In this scheme,
an L-bit symbol is divided into-L/m iequal-size-sub-symbols. For example, if L = 8
and m = 2, then every symbol is divided into-4 sub-symbols and each sub-symbol is
composed of 2 bits. The sub-symbols derived from the same positions of the
symbols in all pattern strings form a group. As a result, there are L/m groups of
sub-symbols. A sub-trie is built for each group of sub-symbols. It is clear that the
number of possible inputs reduces from 2" for the original trie to 2™ for each
sub-trie.  Consequently, the space requirement reduces from O(2"%) to O(2"L/m ),
which is significant because in most applications L = 8 and one can choose m = 2.
Since we adopt the bit-splitting idea in our implementation, details of this scheme is

described in Section 1.

In this paper, we present a generalization of the AC algorithm where multiple

symbols are processed in each operation cycle. Different from the solution proposed

3



Chapter 1 Introduction

in [5], our approach divides every pattern string into K sub-strings and construct tries
for sub-strings, where K is the number of symbols processed in each operation cycle.
The text string is also divided into K sub-strings. Besides, we use K search engines
to scan text sub-strings in parallel. Experimental results show that our scheme can
achieve more than 4.5Gbps throughput for K = 4 and in general requires less space

than the scheme proposed in [5].

The rest of this paper is organized as follows. We introduce two well-known
network intrusion detection systems, snort and ClamAV in chapter 2. Chapter 3
contains a review of the original AC algorithm, the bit-split AC algorithm and suffix
based traversing algorithm. In chapter 4, we present our generalization of the
high-performance AC algorithm. . Experimental:results are discussed in chapter 5.

Finally, we draw conclusion in ¢hapter 6.
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Chapter 2

Network Intrusion Detection Systems

Network Intrusion Detection Systems (NIDS) have become widely recognized as
powerful tools for identifying, deterring and deflecting malicious attacks over the
network. This chapter includes the brief of two well-known software-based network

intrusion detection systems, snort and ClamAV.

2.1 Introduction

Network intrusion detection system plays-an important role in network security
architecture. It provides a layer of defense-which monitors network traffic for
suspicious predefined activity or patterns, and alert system administrators when
potential hostile traffic is detected. At the core of most NIDS is a computationally
challenging problem because it requires deep packet inspection. Every byte of every
packet must be examined which means gigabytes of data must be scanned per second.
Intrusion detection systems and intrusion prevention systems (IPS) have emerged as
two of the most promising ways to protect the network, and predictions show the
market for such systems growing to $918.9 million by the end of 2007. And then we
introduce two well-known software-based network intrusion detection systems, snort

and ClamAV briefly.
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2.2 Snort

Snort is a libpcap-based packet sniffer and logger that can be used as a
lightweight network intrusion detection system. It features rules based logging to
perform content pattern matching and detect a variety of attacks and probes, such as
buffer overflows, stealth port scans, CGI attacks, SMB probes, and much more.
Snort has real-time alerting capability, with alerts being sent to syslog, Server
Message Block (SMB) "WinPopup” messages, or a separate "alert" file. Snort's
architecture is focused on performance, simplicity, and flexibility. There are three
primary subsystems that make up Snort: the packet decoder, the detection engine, and

the logging and alerting subsystem.

The packet decoder engine is organized around-the layers of the protocol stack
present in the supported data-link and TCP/IP-protocol definitions. Each subroutine
in the decoder imposes order on the packet data by overlaying data structures on the
raw network traffic. These decoding routines are called in order through the
protocol stack, from the data link layer up through the transport layer, finally ending
at the application layer. Snort provides decoding capabilities for Ethernet, SLIP, and

raw (PPP) data-link protocols.

In the detection engine, Snort maintains its detection rules in a two dimensional
linked list of what are termed Chain Headers and Chain Options as in Figure 2-1.
These are lists of rules that have been condensed down to a list of common attributes
in the Chain Headers, with the detection modifier options contained in the Chain

Options. These rule chains are searched recursively for each packet.
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Figure 2-1 :"Rule Chain logical structure

There are currently three logging:‘and five alerting options in The
logging/alerting Subsystem. The logging options can be set to log packets in their
decoded, human readable format to an IP-based directory structure, or in tcpdump
binary format to a single log file. Alerts may either be sent to syslog, logged to an
alert text file in two different formats, or sent as WinPopup messages using the Samba

smbclient program.

2.3 ClamAV

Clam AntiVirus is a GPL anti-virus toolkit for UNIX. The main purpose of this

software is the integration with mail servers for attachment scanning. The package
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provides a flexible and scalable multi-threaded daemon, a command line scanner, and
a tool for automatic updating via Internet. The programs are based on a shared
library distributed with the Clam AntiVirus package, which you can use with your
own software. Most importantly, the virus database is kept up to date. It is the
most widely used open-source anti-virus scanner available. Currently, it can detect
over 35000 viruses, worms, and trojans, including Microsoft Office and Mac Office
macro viruses. Then it also built-in supports for many kinds of compressed files,

mail files, and compressed portable executable files.
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Figure 2-2 : A fragment of the ClamAV trie structure. Solid lines show success

transitions; dashed lines show failure ransitions.

ClamAYV uses a variation of the Aho Corasick pattern matching algorithm. To
quickly look up each character read from the input, ClamAV constructs a 256-way
trie structure as shown in Figure 2-2.  The memory usage of ClamAV depends on
how deep the trie is.  The deeper the trie, the more nodes are created. Since the
Aho Corasick algorithm builds an automaton with a depth equal to the longest pattern,

the memory usage would be unacceptably large because some patterns are over 2KB.
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ClamAV modifies the Aho-Corasick algorithm so that the trie is constructed only to
some maximum height, and all patterns beginning with the same prefix are stored in a
linked list under the appropriate leaf node. The maximum trie height is restricted by
the length of the shortest pattern, which is currently two bytes. ClamAV’s
performance suffers whenever a node with a large number of patterns with the same

prefix is encountered during input matching.
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Chapter 3

Pattern Matching

According to some report [11], the pattern matching module can consume up to
70% of CPU computation power in an intrusion detection system. But it is still
applied in network security devices to detect attacks or virus because of its accuracy.
Patterns are like fingerprints so we can check if it has something wrong. We can cut
out a segment from the virus program that is unique to represent the virus. A
number of algorithms have been proposed for pattern matching in network security.
We choose AC algorithm for our basic idea because it can guarantee the worst-case
performance that protect attacker to crash:the systemusing weakness of the algorithm.

In this chapter, we introduce the:AC algorithm and some of its improvements.

3.1 Aho Corasick Algorithm

Aho Corasick Algorithm pre-processes the patterns and builds a finite automaton
which can match multiple patterns simultaneously. Every state of the trie represents
that the suffix of input matches the longest prefix of some pattern up to this time.
Figure 3-1 shows an example of the trie that we have four patterns he, she, his and
hers. In AC algorithm, we look up table for next state according to a current state
and the input symbol. The same process is repeated. It reports a match in final
state when it matches a pattern.  AC algorithm has to build three tables in advance:
goto function, g(state,t); failure function, f(state); output function, output(state). The

behavior of the pattern matching state machine is dictated by these three functions.

10
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RO 0= 0

{a) Goto function.

[ IR ]

6 7 8 9
0 3 03

(b} Failure function,

i output (i)
2 {hel

5 |she, he}
7 {his}

9 [hers)

() Output function.

Figure 3-1 : The state machine is-original AC trie-constructed from 4-string rule set,

{he,she,his,hers}

The goto function maps a pair consisting of a state and an input symbol into a
state or the failure message. The current symbol is received by goto function, and
the current state is transferred to next state. The state machine starts with an empty

root node which is the default non-matching state, state 0.

If it fails in state transition, it will look up failure function. It continues to
process from the return state of failure function. The failure function maps a state
into a state.  If failure happens, the failure function points current state to the longest

prefix of that state which also leads to a valid state in the trie. We can see that it can

11
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also eliminate all failure transitions by pre-computing the next state for every
character from every state in the machine. We can use a next function to replace the
original goto function and failure function, and it is applied in bit-split AC algorithm

and SBT algorithm.

In the course of processing, output function outputs all strings that has been
matched. The output function formalizes this concept by associating a set of
keywords (possibly empty) with every state. The same process repeats until all

symbols of text string are processed.

For example, the patterns are he, she, his, and hers, and the text string is ushers.
Figure 3-2 shows the sequences of.state transition for this example. At the
beginning, the state is root node-0,.and it Is transferred to state 3 and 4 according to
goto function. Consider the operationcycle-when state is 4 and input symbol is e.
Since g(4,e)=5, output(5) indicates that.it has-found the keywords she and he at the
end of position four in the text string.  In state 5 on input symbol r, the machine
makes two state transitions in its operating cycle. Since g(5, r) =fail, it lookup again
for g(2,r) according to f(5)=2, and the next state is 8. At the end, it is transferred to

state 9 and output hers because of output(9).

input u S h e r S
state 0 0 3 4 5 8 9
f(state) 2

Figure 3-2: Sequences of state transition for input string=ushers

In processing an input of length n makes exactly n goto transitions. And the

12
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total number of failure transitions must be at least one less than the total number of
goto transitions. Therefore, the total number of state transitions is less than 2n. In
addition, next function combining goto function and failure function makes it need
exactly n state transitions for text string of n symbols. As we mentioned, it can

guarantee the worst-case performance.

3.2 The Bit-Split Aho-Corasick Algorithm

In this section, we review the bit-split AC algorithm which was proposed in [6].
As mentioned before, the bit-split AC algorithm can largely reduce the memory

requirement.

The basic idea of the bit-split’/AC algorithm is to divide an L-bit symbol into L/m
equal-size sub-symbols. For ease of description; we assume that each symbol is a
byte, i.e., L = 8, which is true in most'Internet Security applications. As a result, the
i" sub-symbol consists of the ((i—-Dm+1)", ((i-)m+2)"..., and the (im)™ bits
of the symbol for all i, 1<i<L/m. For example, if m = 4, then there are two
sub-symbols and the first sub-symbol consists of the first four bits of the symbol and
the second sub-symbols consists of the last four bits of the symbol. As another
example, for m = 1, there are eight sub-symbols and the i" sub-symbol is nothing
but the i™ bit of the symbol. The sub-symbols derived from the same positions of
the symbols in all pattern strings form a group. As a result, there are L/m groups of
sub-symbols. A sub-trie is constructed for each group of sub-symbols. It is not
hard to see that the number of states in each sub-trie is upper bounded by that of the

original tire.  Figure 3-3 illustrates the fourth sub-trie and output function for pattern

13
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strings {he, she, his, hers} with m = 2.

Output Function
i Output(i)
2 | he
5 | she, he
6 | his

8 | hers

Figure 3-3 : The fourth sub-trie with m=2 from the group of sub-symbol, {00 01, 11

00 01,0001 11, 00 01 10 11}.

To maintain the same throughput performance as the original AC algorithm, the

bit-split scheme uses L/m search engines:to-scan the input text concurrently. LetT =

ttt,... be the input text. Moreover, let t' denote-the " sub-symbol of t. In
the bit-split scheme, tile j takes t't)t.... as its input and processes sub-symbol t/ in
the i" operation cycle. We say tile j finds a match of pattern string S =s;s,...s, in

operation cycle i if s's)..s) =t/ .t} .t} Itis obvious that pattern string S is

i—n+1ti-n+2""""i
matched by the original AC algorithm in operation cycle i if and only if (iff) tile j
finds a match of S in operation cycle i for all j, 1<j<L/m. To check whether or not
all tiles find matches of the same pattern string in the same operation cycle, the
pattern strings are numbered and a partial match vector (PMV) is associated to every
state of each sub-trie. The length of the PMV is f bits if there are f pattern strings.
Consider any particular j™ sub-trie. The k™ bit of the PMV associated to state x
is a 1 iff pattern string k is matched in state x. See Figure 3-4 for examples of

PMVs.

14
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Figure 3-4 : The left side is a search engine with 4 tiles. The right side shows the

structure of a tile. Each row in the table is a state and each state has 4
possible next state and-a PMV. It transits state according to 2-bit input

sub-symbol, and output.PMV of current state.

Since every symbol is divided into_L/msub-symbols, the number of possible
inputs reduces from 2% for the original trie to 2™ for each sub-trie. Consequently,
the space requirement reduces significantly from O(2%) to O(2"L/m). The bit-split

idea is adopted in our implementation.

3.3 Suffix Based Traversing Algorithm

Suffix Based Traversing (SBT) algorithm was introduced in 2004 that multiple
symbols are processed in an operation cycle. To achieve high performance, it
processes w symbols concurrently with pipeline where w =2". At first, it encodes

all useful strings by index numbers. Lookup table, C,, C,... are used to calculate the

15
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longest suffix. C, returns the index number of the longest suffix of a 2-byte string.
With two index numbers of C,, it can encode the index number of a 4-byte string. It
will be encoded into0’when the symbols are useless for these patterns. It uses index

numbers instead of symbols to avoid too many possible inputs while matching.

For all possible positions in which it may match a pattern, it collects all possible
k-step transitions for 1<k<w from every state. It reports a match if any one of the
k-step states is a final state. Figure 3-5 shows an example with w=4. The left side
of the figure is responsible for indexing the input symbols. The right side looks up
the table, NS1, NS;, NS4,..., by index number.  And it adopt pipeline to calculate

states for 1 to 4 steps transitions.

pin[3] ] C2 [m(Z.2] Tm{.qt{}] NS4 5 f(3]
o d ' - NS1 R o
pin[2] ' [2) mi(2) match
- HNS?
PIn[11 = G2 [m(2,0) ] Ol =7 flags
oin[0] 4 —INS1] ()]

suffix calcuiatorktare manager r{0) match numbers

Figure 3-5 : SBT architecture

As we mentioned before, every state needs 256 entries for table lookup while we
process an 8-bit symbol at a time.  But for 2 or more bytes are processed, it needs
65536 entries or more.  So if we index the useful ones, we can save much
unnecessary entries for table lookup. Moreover, according to the characteristic of
the table, it can be reduced by storing a default transition because many entries are the

same for every useful index.

Table size can be reduced using indirect pointers as shown in Figure 3-6. The

16
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2D-table is decomposed into rows, and then packed into the linear array. Each entry
of the linear array has a row number to identify the owner row of the entry. When
the 2D-table lookup fails, the default value of each column is returned. Note that

unused elements may exist in the linear array because of fragmentation of the free

area.

. b of"f 1'a 2r'aa)  3(ab’  40'bb)
oy - - . s :
iay - - 4aaa) - 5(abb’y
2laa’ - - 4fama)) - Ei'abb’
lab?y - - - &('abbb’)
4oy - - -

daraultl of") 178)  efaa)  afab) o

Figure 3-6 : Reducingtable size.using indirect pointers
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Chapter 4
A High-Performance and Memory-Efficient Pattern

Matching Algorithm

In this section, we present our proposed high-performance and memory-efficient
pattern matching algorithm. In our proposed algorithm, K symbols are processed at
a time. It is clear that the original AC algorithm corresponds to K = 1. For

simplicity, we assume that every symbol is a byte throughout this paper.

4.1 Conception

Take a pattern string, abcdef, for example: How do we find it out quickly in such
a long text string with AC algorithm? ©It’s" straightforward to use more than one
symbol for table lookup per operation cycle. But however the table size will grow
increasingly while we have much more possible inputs. In order to solve this
problem, the table should be compressed properly. The memory requirement is a
problem in original AC algorithm furthermore we have larger lookup table so we have
to deal with it pretty well. The basic idea we thought is that not to add any more
possible inputs for table lookup. But it can process more than one byte every cycle
with original table size in AC. And we can adopt so many table compression

researches to solve the problem of memory requirement easily.

We let many scan engines work in parallel, and each one is responsible for one

18
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part of text string according to the position of every byte in text string. It finds a
match of a string when all engines find every part of a string.  After that, we can try
to reassemble all information of every engine’s report. For example, the first engine
finds “ace” and “bdf” is found by the second engine. The two strings can be
reassembled and then we can find it may be a full string “abcdef”. But we can not
make sure if we only know finding all parts of a string. Figure 4-1 shows the
problem that we should check if the text string is matched. How to tell that the
string is “abcdef” or “badcfe” is the issue that we’ll discuss in detail later. But we
approach our goal that every engine processes only one byte every cycle for less table
size. And the functionality is equivalent to a huge state machine of processing more

than one byte per operation cycle.

El | a C e

(a)/// I::>abcdef

E2 | b d f

El| a C

(b) \\\:>badcfe

E2 | b d f

Figure 4-1 : Example of reassembling two parts of a string.

4.2 Our Proposed Algorithm

4.2.1 Pre-process

To achieve high performance, we need to pre-process every pattern string. Let

P represent the set of all pattern strings. For every pattern string Se P, we divide S
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into K substrings as follows. Assume that S = ss,..s, and n =gK + r, where q is

n

the quotient and r is the remainder of n divided by K. String S is divided into K

substrings so that the i" string, denoted by S;, is given by ss,,;...S if i<r or

oK+

SiSk.iSqyk. IfI>T. Let P” be the set of all substrings derived from the strings in

set P.  The AC trie, denoted by G_., is constructed for all the substrings in P".

Let's see some example with K = 2 and patterns are he, she, his and hers. But
right now, he is divided into h and e, two substrings. And these two states
constructed by h and e are both final states. She is divided into se and h and so on.
Figure 4-2 shows the AC trie Gp* and the PMV. Each bit of PMV means one

substring is matched or not.

state | PMV

10010000
01000000
00000000
00100000
00001000
00000100
00000010
00000001

O N OO P W|IN|F

Figure 4-2 : Example of trie Gp* for {he, she, his, hers} with k = 2.

Let T = tt,..t, denote the text string to be scanned and m = q'K + r’, where

q" and r' are, respectively, the quotient and the remainder of m divided by K. The

text string T is also divided into K substrings T,, T,,...,and T, sothatthe i" text
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substring T, = tt. .t if i<r oor tt .t. . if i>r". There are K

parallel pattern search engines, denoted by E,, E,, ..., and E,, each with its own

AC trie that is the same as G_.. Searchengine E; scans text substring T;.

4.2.2 Match Conditions

There are various conditions for the pattern string S to be matched. As an
example, for r = 0, search engine E; finds a match of substring S, at the end of
operation cycle C for all i, 1<i<K, is one possible condition. As another example,
for r = 1, pattern string S is matched if search engine E; finds a match of substring
S,, atthe end of operation cycle C for‘all'i; 3<i<K, and search engines E, and E,
find matches of substrings S, =and S, ,-respectively, at the end of operation cycle
C+1. The complete conditions for pattern string S'to be matched are summarized in
Table 4-1. The proof of the correctness of the listed conditions is straightforward

and thus is omitted.

Table 4-1. Conditions for pattern string S to be matched.

Cases Conditions

finds a match of S

q=0,r>0 (@) 3, 1<I<K-r+l, E L1, 0<i<r-1, at

1+i
the end of operation cycle C
Or

(b) 31, K-r+2<I<K, E,,; finds a match of S,,, 0<i<K-l, at

the end of operation cycle Cand E; finds a match of S, ,.;,

1<j<r-K+I-1, at the end of operation cycle C+1
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q>0,r=0 (@ E, finds a match of S;, 1<i<K, at the end of operation
cycle C

Or

(b) 31, 2<I<K, E,,; finds a match of S ,, 0<i<K-I, at the

I+i i+1?

end of operation cycle C and E; finds a match of S,

—l+1+j?

1<j<I-1, at the end of operation cycle C+1

q>0,r>0 (@ E, finds a match of S, if 1<i<K-r or S, ., Iif
K-r+1<i<K at the end of operation cycle C
Or
(b) 31, r+1<I<K, E,,; finds a match of S, , 0<i<K-l, at

the end of operation:eycle C and E; finds a match of

S it 1<j<l-r-L-or S if I-r<j<I-1 at the end of

K=l+1+r+j J—l+rt+1

operation cycle C+1

Or

(c) 31, 2<I<r, E,; finds a match of S, if 0<i<K-r-1 or

i+1+r

S if K-r<i<K-I, at the end of operation cycle C and E,

i—K+1+r

finds a match of S 1<j<I-1, at the end of operation cycle

r+l-1+j?

C+1l

Figure 4-3 illustrates an example of all the matches for S = abcdefghij and K = 6.
In this example, we have S = ag, S,= bh,S;=ci, S,= dj, S;= e and S;= 1.
According to the position of S in text string, there are totally six possible situations for

pattern string S to be matched.

22



Chapter 4 A High-Performance and Memory-Efficient Pattern Matching Algorithm

1) (2> 3y B (3 (&)

E]aF ixf ixe iEdj ixci iEbh
E: FH | FE | (| FEE | FEE | REE
- B 8 65 6 A
= P | FH | FE | FER | ¥ | FEH
=B E | O R

Es [E]] [BF] ¢ EER ¢ PRk

Figure 4-3 : Example of all the matches for S = abcdefghij and K = 6.

B

Note that the conditions for pattern string S to be matched for the case g > 0 and

r > 0 are complicated. Fortunately, it can:be simplified if the substrings are

renumbered as follows. Given n/= gK # 1, define S;= S, , .. After the

renumbering, the conditions for-pattern string.-S-to be:matched for the case ¢ >0 and r

> 0 become (a) E, finds a match of "S;4+4<i<K, at the end of operation cycle C or

(b) 31, 2<I<K, E,,; finds a match of S,,, 0<i<K-I, at the end of operation cycle

K—l+1+j !

Cand E; findsamatch of S 1<j<I-1, at the end of operation cycle C+1, the

same as those for the case q > 0 and r = 0. It operates well as we rotate the
substrings’ numbers.  As for the case q = 0 and r > 0, it means that pattern length is
smaller than K. The same conditions can be applied as long as every search engine
reports a match for null substring S;, r+1<i<K, unconditionally at the end of every
operation cycle. As a consequence, we have unified conditions for pattern string S to

be matched.
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4.2.3 Architecture

Figure 4-4 shows the architecture of our implementation. To process K
symbols every operation cycle, we have K search engines and each one is received
one byte per operation cycle. The bit-split idea is adopted to reduce memory
requirement.  So there are 8/m state machines (i.e., m = 2) for every search engine in
our implementation. Each state machine scans m-bit sub-symbols of text string with

its own sub-trie.

Note that since each pattern string is divided into K sub-strings, it is necessary to
distinguish which sub-string is found when a search engine reports a match. As a
result, the length of every PMV is Kf bits if there'are f pattern strings. The (4i+k)"
bit of a PMV associated to state x.is a 1 iff.the k™ sub-string of pattern string i is
matched in state x. As well as that-in-bit-split. AC, sub-string S is matched in a
search engine if and only if tile j finds.a.match of S for all j, 1<j<8/m in that search
engine. According to all search engines’ outputs, we can verify match conditions as

we mentioned in section 4.2.2.

8 $s $a

| | | | Search Search

FSM1 | | FSM2 FSM3 FSM4 Engine Engine
| | | [ K-1 K
Kf Kf Kf
Y
Check Conditions

$Kf

Figure 4-4 : The String Matching Machine Architecture
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4.3 Extension of Our Proposed Algorithm

4.3.1 Problem of PMV

To implement our proposed algorithm, we need Kf-bit PMV to indicate every
part of every string matched or not. However, we have K search engines and each
one consist of 8/m finite state machines. We have to access 8K*f/m bits in every
operation cycle. It’s not a good solution especially when K is large. First it
consumes much power to access so many bits every operation cycle. Moreover it
needs much wire and logic circuit to verify match conditions. If implementing
thousands of patterns, we should stored lookup table in external memory as it may be
very large. But the width of bus'is not,enough.completely. It has some problem for

implementation in practice.

The simplest way that we can solve the problem is to use index number in stead
of PMV. But it has some necessary reasons to use so many bits PMV. As we let
the AC trie divided into many sub-tire, each match in one sub-trie is just a part of a
string. We have to use all the match information to check so we can not discard any
one. However the state in the sub-trie usually represents two or more strings
matched partially. Using PMV is the straightforward and simplest answer. To
avoid using too many bits in PMV, we group the pattern strings into several sets. We
need as many matching machines as the number of sets and every matching machine

is responsible for a set of pattern strings.
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4.3.2 Output Index

First, we construct our AC trie Gp* as we mentioned before. From the result of
first construction, we decide every pattern string to be in which set. If one state
indicates more than one string matched partially, we should separate these strings into
different sets. To make sure that every pattern string is not in the set of which some
state of the state machine represents itself and other strings, we can list all mutual
exclusion pattern strings for a pattern string S in exc(S) while pre-processing.
According to the exclusion list, we can separate all patterns easily. Roughly, if there
are not more than g bits 1 in PMV of a state, the number of sets is g or a little more

than g. After grouping the patterns, we can construct a trie for each set.

state index

OO |, WIN|F
OO |~ W IN |-

® ( -{hs) 0 itate :)ndex
2 1
} S <1> e 3 5

Figure 4-5(a) : The trie and output index for {he, his, hers} and 4-5(b) : The trie and

output index for {she}
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For example, we can record exc(he)=she and exc(she)=he because state 1
indicates one substring of he and one substring of she concurrently in Figure 4-2.
With the exc function listed, he, his, and hers are grouped in the first set and she is
grouped in another one. Figure 4-5(a) is the trie constructed for the first set and
Figure 4-5(b) is for the second one. PMV for every state can be replaced by a simple
index number. We just consider a complete AC trie Gp* for taking a simple example.
But adopting bit-split idea, we should list all exclusion correlations depending on all
sub-trie.  And for simplicity, we ignore the special case that one state indicates more

than one part of a string.

No state indicates more than one string is the only rule that we should conform to.
We have many workable solutions,‘but which one:we should take is difficult to decide.
The basic concept is to let as more.states to be reused as possible such that it requires
fewer states. Furthermore we-let every-machine have about the same number of
states that will avoid huge amount of memory-requirement for some large FSM. For
example, we can group he and hers for the first set, and group she and his for the
second one. And it requires less memory than that we group in Figure 4-5.
Actually g and table size depend on pattern strings and K. The best separating
method is not established yet with complex analysis. This problem constitutes a

future work.

When K increases, the number of groups increases too. Thus we have so many
matching machines. To keep all matching machines active at the same time, we
have to access so many bits for next state lookup. To save the number of bits
accessed and simplify the architecture, we can combine all the matching machines.

In Figure 4-6, the trie is the same as that when patterns are not grouped. But we use
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two index numbers instead of PMV by concatenating the index numbers in Figure
4-5(a) and Figure 4-5(b). This problem is just like how we can encode the PMV.
Although every state has more bits for index number, the number of total states is less
than that of separating the trie. It needs fewer bits of index number than that of
PMV whatever g is. However the larger K is, the larger g is, and the more

verification circuit we need. We think it’s tradeoff between K and g.

state | index
{12}
{2,0}
{0,0}
{0.1}
{3.0}
{4,0}
{5.0}
{6.0}

O N OO || W|IN|FP

Fig 4-6 : Example of combining all groups with more index numbers
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Chapter 5

Comparison and Experimental Results

We generated HDL files of our proposed multi-symbol AC pattern matching
algorithm for FPGA with given rules. The tables, next function and PMYV, are
implemented using on-chip 18Kbit Block RAM. We implemented our algorithm
with a Xilinx Virtex2 Pro-30 FPGA, and it is evaluated using timing analyzer of
Xilinx ISE6.1i.  We compare our result with [5] for two rule sets, set 1 of about 1000
characters and set 2 of about 2200 characters. Section 5.1 shows the result of our

proposed algorithm with PMV, and'section 5.2 is for algorithm with output index.

5.1 Experimental Results

We randomly select 64 pattern strings of length 14-16 bytes from ClamAV [1]
virus signatures.  Different values of m are tried to compare the memory space
requirement. Figure 5-1 compares the memory requirements of our proposed
algorithm with the one presented in [5]. It can be seen that our proposed algorithm
with m =1 or 2 in general requires less memory space than the scheme proposed in [5]
as long as K>8. Moreover, the amount of memory requirement is the least when K =

16.

From Figure 5-1, we can see the amount of memory requirement is least when K

=16. Itis mainly because we choose virus signatures of length 14-16 bytes. When
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a pattern string is divided into 16 substrings, every substring is of lengthOor 1. Asa
result, the depth of each sub-trie is only one and many states are reused by different
substrings. Therefore, K = 16 requires the least amount of memory space since it is

proportional to the number of states.

2500
—— -]
2000 - m=
feur) m=4
S 1500 | —x—5] -1
2
@ 1000 | '-/.\
8
(@)
2 s S ~ ;X/x/l
O L L L L
2 4 8 16 32
K symbol-(byte/cycle)
Figure 5-1 : Comparison of total memiory requirement
L1000
"\ —4+—m=1
‘\ - —— =2
@
S 100 s
s Sk
g
E
3 10 =
—u
]_ T T T T
Z q B lé 37

K symbol (byte/cycle)
Figure 5-2 : Number of state with different m and K

As we have twice K, we have twice PMV bits and twice search engines. The

table should be about 4 times the size. However, the state is also reduced because
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each state indicates more number of prefix of rules while the depth of the trie is half.
Roughly, the table will be reduced if the number of state becomes less than one fourth.
Figure 5-2 shows the number of state with different K and m.  In Figure 5-2, we have

a curve, square, for comparison.

When K = 32, the number of state is reduced no more. The table should grow
to 4 times while the half of 32-bit PMV is redundant. We use 16-bit PMV instead of
32-bit PMV as we have known each rule is not longer than 16 bytes at first. So the
table grows in proportion to K.  Table size is half of that in [5] when K= 16 although

we duplicate tables for each search engine.

The clock rate of our synthesized logic can:be operated higher than 140 MHz.
In other words, our proposed- algorithm can easly achieve more than 4.5Gbps
throughput with K = 4. Obviously,:the-throughput-can be further improved as long
as we increase the value of K. The: tradeoff is larger space requirement and more
complicated verification logic. We believe that K = 8 can be implemented with

state-of-art FPGA development platform to achieve throughput higher than 10Gbps.

5.2 Result with Output Index

We have four rule sets for experiment, and each one is consist of 16-byte,
32-byte, 64-byte, 128-byte pattern strings. We randomly select about 2200-byte
pattern strings for each rule set from ClamAV virus signatures. Different values of K
and pattern length are tried to compare the memory space requirements and g. Table

5-1 shows the complete result for all situations. It can be seen that it needs the least
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memory in 16-byte rule set with K = 4, 32-byte rule set with K = 8, and 64-byte rule
set with K =16. The results of 16-byte rule set with K = 8 and 16 and 32-byte rule
set with K = 16 are not shown in table because g is too large. The exclusion

correlations are complicated such that it’s difficult to separate the strings because of

large g. Furthermore it needs much more verification circuit so we skip the cases.

Table 5-1.  The result of our proposed algorithm with output index

Pattern Length 16 32 64 128
Number of state 414 1225 1610 1743
Memor

K=4 ory _ 278| 666| 759| 697
requirement(Kbit)
g 8 3 4 1
Number of stdte X 304 1157 1493
Memor

K=8 o1y _ x| 408| 1277| 1337
requirement(Kbit)
g X 8 5 2
Number of state X X 282 948
Memor

K=16 ory _ X x| 776| 1759
requirement(Kbit)
g X X 10 3

Figure 15 compares the memory requirement of our proposed algorithm with the
one presented in [5]. It can be seen that our proposed algorithm with output index
needs less memory than that proposed in [5] for 16-byte rules with K = 4, 32-byte
rules with K = 8, 64-byte rules with K = 16. The curve arises rapidly in [5] as it
needs much more tables when K increases. Table size is reduced by decomposing

2D-table into rows, and packing into the linear array. The number of index increases
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with K such that there are much more possible inputs and table is more difficult to be
reduced. But for our result, the curve will decrease in some value of K according to
the pattern length. Although the performance of result seems case by case, it is quite
good if we use proper K value. In this case, we use less K for less verification circuit
such that many states are not reused. Without consideration of verification circuit,

we can use larger K, and the number of states will be reduced much more.

2000 =
—-1-32
1500 L=64
5 L=128
< —¥—[5]-2
N 1000
(V)]
2 P({
kS
500 —
L 2
O 1 1 1
4 8 16

K symbol (byte/cycle)

Figure 5-3 : Comparison of total memory requirement

We can optimize for a given rule set according to its pattern length. But for
long pattern, we need use large K for optimization and we have to duplicate K lookup
tables. Considering the memory resource, the memory requirement may be too large.
To solve this problem, we can process K/t bytes per operation cycle with duplicating
K/t tables. We can register the results and the after t cycles we can get the same
result as we process K byte in an operation cycle. Each table can be reduced well by
proper K value, but we don’t have to duplicate so many tables. As a result it’s

flexible to deal with any given rule set in all situations.
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Chapter 6

Conclusions

In this paper, we have presented an extension of the Aho-Corasick pattern
matching algorithm where multiple symbols are processed in an operation cycle. In
our proposed scheme, K search engines are employed to scan the input text substrings
in parallel to improve system performance. Since every pattern string is divided into
K substrings, it is possible for each individual search engine to output a false positive.
Thus some verification logic is needed to eliminate false positives. We showed that
the match conditions and the verificationlogic.can be simplified if the substrings are
appropriately renumbered (if needed).  Experiments with Xilinx FPGA development
platform reveal that one can achieve more than 4.5Gbps throughput performance with
K = 4. Compared with a related scheme, our proposed algorithm achieves slightly

better throughput performance and requires less memory space.

To implement our proposed algorithm, we need Kf-bit PMV to indicate every
part of every string matched or not. We have presented in this paper an extension of
our pattern matching algorithm with output index. We group the pattern strings into
g sets and we need g matching machines of which each is responsible for a set of
pattern strings. We show how to separate pattern strings well and combine all the
matching machines for simpler architecture and fewer bits of next state for table
lookup. For our experiment result, we show the relations with pattern length,
memory requirement, K and g. We get quite good performance in some value of K

depending on pattern length which is much better than the one in the related scheme.
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Considering the memory resource of hardware, we can duplicate fewer tables by
processing it in several cycles. As a result it’s flexible to deal with any given rule set

in all situations.

At last, we got our goal, not adding any more possible inputs for each table
lookup and processing multi bytes every cycle. Dividing a string into many
sub-strings makes it possible to process multi bytes per cycle. However it’s the top
level to improve the structure of AC trie.  As we mentioned before, we can adopt any

table compression researches to solve the problem of memory requirement.
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