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摘要 

 
新一代無線通訊中，空間多工（Spatial Multiplexing）和傳送多樣（Transmit 

Diversity）為廣受矚目的技術。在本論文中，吾人考慮空間多工系統搭配基於 QR

分解逐級偵測技術，提出一種最小錯誤率之功率分配法。吾人設計的方法是利用

空間多工下 QR 分解的機率分布，針對降低整體通道的平均錯誤率做功率分配，

可在中高訊號雜訊比的情況下改善系統的效能表現。此外透過雙重空時傳送多樣

（Double Space-Time Transmit Diversity）下 QR 分解的機率分布，吾人提出的功率

分配法亦可適用於雙重空間傳送多樣系統。儘管雙重空間傳送多樣系統中部份機

率分布為估計得來，其平均錯誤率之公式仍相當準確。模擬結果顯示，吾人提出

的方法應用在雙重空間傳送多樣系統時，亦可在中高訊號與雜訊比的環境中改善

無線通訊系統效能。此外，電腦模擬顯示，吾人設計的功率分配法可延伸用在多

重空間傳送多樣系統中。 
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Abstract 
 

It is well known that spatial multiplexing and transmit diversity are popular 

techniques in modern wireless communications. In this thesis, we first propose a 

BER-minimized power allocation strategy for spatial multiplexing systems over i.i.d. 

Rayleigh fading channels based on the QR-based successive detection scheme. With 

the knowledge of distribution of QR decomposition in spatial multiplexing, the design 

criterion for power loading is the overall BER averaged with respect to the channel 

distribution. Based on the closed-form solution, the optimal power allocation scheme is 

proposed, which aims to minimize the overall average BER performance of spatial 

multiplexing systems at medium-to-high SNR. Afterwards, with the distribution of the 

R matrix of QR decomposition for DSTTD systems, the design procedure of the power 

allocation scheme proposed for spatial multiplexing systems can be applied to DSTTD 

systems. Although parts of the distribution of the R matrix in DSTTD are merely 

approximations, the estimated average BERs are quite accurate. The power allocation 

scheme adapted for DSTTD systems are shown to be also effective at the high SNR 

regime by numerical simulations. Moreover, the proposed scheme can be further 

extended to multiple STTD systems. 
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Chapter 1  
 
Introduction 
 
 
 

Multiple-input multiple-output (MIMO) systems, employing several transmit and 

receive antennas at both ends, are capable of providing a significant increase in 

capacity compared to traditional single-input single-output (SISO) systems [1], [2]. The 

spatial multiplexing technique was proposed to increase system capacity. On the other 

hand, orthogonal space-time code designs [3], [4] generally yield good bit error rate 

(BER) performance. Space-time transmit diversity (STTD) as well as Alamouti 

space-time block codes (STBCs) was introduced to provide transmit diversity gain. 

One main limitation of these schemes providing transmit diversity is that they do not 

achieve full rate, which, for a single channel, means that each transmitter antenna 

transmits one symbol per second per Hertz. To exploit these two advantages at the same 

time, double space-time transmit diversity (DSTTD) with four antennas was suggested 

in [5], [6]. In this system, two STTD encoders are used at the transmitter and 

interference cancellation based detector is employed at the receiver. 

When the transmitter has acquired some knowledge of the channel state 

information (CSI), a precoder can be applied at the transmitter to improve the 

performance of the system. With full knowledge of CSI, a minimum mean-square error 

(MMSE) precoder has been designed in [8]. To reduce the requirement of CSI feedback, 

a diagonal precoder was suggested in [9] for Vertical Bell Laboratories Layered 
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Space-Time (V-BLAST) detection [16]. The design adjusts the power and rate of each 

antenna to minimize either the maximum BER of all sub-streams or the total 

transmission power. However, when the transmission rates in the antennas are equal, 

this may lead to the result of equal power allocation. 

This thesis addresses the symbol detection problem of spatial multiplexing MIMO 

systems and DSTTD systems over i.i.d. Rayleigh fading channels. To achieve the BER 

performance balance between linear receivers and joint maximum likelihood (ML) 

detection, a QR-based successive symbol detection scheme with proper symbol power 

allocation is proposed. There have been many performance measures for successive 

symbol recovery in spatial multiplexing systems and DSTTD systems discussed in 

[9]-[15]. The average BER with error free front-layer decision feedback, though just a 

lower bound of the exact mean error rate, is simple to characterize and, furthermore, is 

closely related to the upper bound of the block error rate when error propagation occurs 

[15]. Thus, it becomes an efficient and meaningful performance metric accounting for 

the actual BER performance analysis. Motivated by this fact and to also guarantee the 

performance improvements regardless of the instantaneous channel conditions, a power 

allocation scheme aiming to minimizing the overall BER averaged with respect to the 

channel distribution is proposed. Specific contributions of this thesis include: 

1. By exploiting the distinctive channel matrix structure induced by DSTTD, we 

derive an explicit formula for the associated QR decomposition. 

2. With the approved statistical property of the R matrix in QR decomposition for 

spatial multiplexing systems and DSTTD systems, the closed-form upper bounds 

for the BER metric are obtained. 

3. By minimizing the upper bounds, an optimal power allocation scheme is proposed, 

and is obtained through numerical search. 

Although performance improvement of the QR receiver via symbol power loading 
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has been addressed in many previous researches [9]-[16], all of them are based on a 

given fixed channel realization known to the transmitter. The strategy proposed in this 

thesis is grounded on the overall BER averaged over the channel distribution; that is, it 

is independent of the instantaneous channel condition, and thus requires fewer feedback 

messages from the receiver. Furthermore, the distribution of QR decomposition for 

DSTTD is discovered. This makes it possible to apply the design criterion to DSTTD 

systems, and even multiple STTD systems. 

 This thesis is organized as follows. In Chapter 2, the review of spatial 

multiplexing MIMO systems and DSTTD systems is introduced, and the statistical 

property and particular matrix structure of QR decompositions for spatial multiplexing 

and DSTTD are stated. Additionally, the system models of spatial multiplexing and 

DSTTD with QR-based successive detection are also built. In Chapter 3, with 

knowledge of distribution of the R matrix for spatial multiplexing, a power allocation 

scheme which aims to minimize the overall average BER performance of spatial 

multiplexing systems is proposed. In Chapter 4, the probability density functions (pdfs) 

of the matrix for DSTTD systems are calculated and estimated. With the exact and 

approximated pdfs, the power loading factors proposed for DSTTD systems are 

obtained. Computer simulations of BER performances of the proposed scheme are then 

illustrated. Finally, we conclude this thesis and describe some potential future works in 

Chapter 5. 
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Chapter 2  
 
Model of MIMO Wireless 
Communication Systems 
Equation Section 2 
 
 

This chapter first presents the review of spatial multiplexing (SM) and double 

space-time transmit diversity (DSTTD). Spatial multiplexing scheme is a promising 

technique to enhance data rate, and it can only be implemented in multiple-input 

multiple-output (MIMO) systems. Before the review of DSTTD systems, we will give 

an introduction to Alamouti space-time transmit diversity. DSTTD system is basically a 

simple combination of spatial multiplexing and space-time transmit diversity such that 

both capacity and reliability can be achieved simultaneously. Afterwards, we will 

review the QR decomposition and introduce the QR decompositions of spatial 

multiplexing systems and DSTTD systems. We detect the received symbols by 

exploiting these special structures and compare their performances with the 

conventional detection methods. 

 
 

2.1 Review of Spatial Multiplexing 
Spatial multiplexing is capable of offering a linear increase in the transmission rate 

(or capacity) for the same bandwidth and without additional power consumption. The 

improvement is proportional to the number of transmit-receive antenna pairs or the 
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minimum of number of transmit antennas and that of receive antennas. The bit stream 

to be transmitted is divided into multiple sub-streams, modulated and transmitted 

simultaneously from each transmit antenna [1]. Under favorable channel conditions, the 

spatial signatures of these signals induced at the receive antennas can be well separated. 

The receiver, having knowledge of the channels, is able to differentiate among the 

co-channel signals and extract all signals, after which demodulation yields the original 

sub-streams that can now be combined to give the original bit stream. Spatial 

multiplexing can also be applied in a multi-user format (MIMO-MU, also known as 

space division multiple access or SDMA). 

We assume that in spatial multiplexing MIMO systems there are  transmit 

antennas at transmitter and  receive antennas at receiver. The channel response 

from transmit antenna  to receive antenna i , , is assumed flat and can be 

modeled as an i.i.d. complex zero-mean Gaussian variable with unit variance. Let  

be the symbol to be transmitted from antenna , and the received signal on receive 

antenna , 

Tn

Rn

j ijh

ix

i

j jy , is given by 

 1 1 2 2 .
T Tj j j n jy h x h x h x= + + +" n  (2.1) 

Accordingly, we can express the spatial multiplexing MIMO systems in matrix form: 

 

11 12 11 11

2 21 22 2 22

1 2

,

T

T

R RTR R R T

n

n

n nnn n n n

h h hy nx

y h h h nx

y nxh h h

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = + = +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣⎣ ⎦

y H

"

"
# ### # % #

" ⎦

x n

)R

 (2.2) 

where  are i.i.d. complex Gaussian random variables with zero 

mean and variance 1. 

 =1, 2, ..., (in i n

A simple block diagram is shown in Figure 2.1. The data stream to be transmitted 
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is demultiplexed into  sub-streams which are transmitted simultaneously. At 

receiver, the received data stream is obtained by combining the detected received 

signals. Although spatial multiplexing technique is capable of providing a boost in 

transmission data rate, it can not induce diversity gain to improve the reliability of 

wireless communication systems. Therefore, we will discuss transmit diversity 

technique in the next section and give a simple transmission scheme to enhance the 

reliability of wireless communication systems. 

Tn

 

x x̂
H

 
Figure 2.1: Block diagram of a spatial multiplexing system with nT transmit antennas 
and nR receive antennas 
 
 

2.2 Review of Double Space-Time Transmit 

Diversity 
Recently space-time transmit diversity (STTD) has been studied extensively as a 

method of combating detrimental effects in wireless fading channels because of its 

relative simplicity of implementation and feasibility of having multiple antennas at the 

base station. The first bandwidth efficient transmit diversity scheme was proposed by 

Wittneben [17], and it includes the delay diversity scheme of Seshadri and Winters [18] 

as a special case. More recently, space-time trellis coding has been proposed [3] which 
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combines signal processing at the receiver with coding techniques appropriate to 

multiple transmit antennas and provides significant gain over [17] and [18]. In 

addressing the issue of decoding complexity, Alamouti discovered a remarkable 

transmission scheme which can provide full rate and full diversity gain with two 

transmit antennas [4]. 

 
 

2.2.1 Alamouti Space-Time Transmit Diversity 
In the Alamouti space-time transmit diversity scheme, we consider two antennas at 

the transmitter and a single receive antenna. Assume that an M-ary modulation is used 

and each group of m information bits is modulated, where . The symbols 

to be space-time encoded are divided into groups of two symbols in each encoding 

operation. Two different symbols  and  in each group are transmitted 

simultaneously from antennas 1 and 2 respectively during the first symbol period. 

During the next symbol period,  is transmitted form antenna 1 and  is 

transmitted from antenna 2. Superscripts ( ) , , and ( )  denote transpose, 

complex conjugate, and Hermitian operation, respectively. 

2logm = M

⎤⎥⎦

1x 2x

*
2x

*
1x−

Ti *( )i Hi

We assume that the channel remains constant over the two symbol periods, and is 

frequency flat. Let  and  be the fading channel coefficients from antenna 1 and 

antenna 2. The real part and imaginary part of channel coefficients are modeled as 

Gaussian random variables with zero mean and variance 0.5. Consequently, 

 and the signals  and  received over the two symbol periods are 

given by 

1h 2h

 1 2

T
h h⎡= ⎢⎣h 1y 2y
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  (2.3) 1 1 1 2 2 ,y h x h x n= + + 1

2  (2.4) * *
2 1 2 2 1 ,y h x h x n= − +

where  and  are i.i.d. complex Gaussian random variables with zero mean. The 

real part and imaginary part of noise have the same variance 

1n 2n

(2 )Tn SNR , where SNR 

stands for the average signal-to-noise ratio. The received signals can be written as 

 1 21 1
* *

2 22 1

,
x xy h

y hx x
1

2

n

n

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+
⎣ ⎦

 (2.5) 

and we can obtain a rearranged signal vector  as follows: y

 1 1 2 11
* * * *

22 2 1 2

.
y h h nx

xy h h n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= = + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
y Hx n  (2.6) 

The channel matrix  is orthogonal (i.e., H
2

2
H

F
=H H h I ). If , we can 

get 

H=z H y

 
2

2 ,H H
F

= + = +z H Hx H n h I x n�  (2.7) 

where  and 
2

2,1 0 2{ } { }H
F

E E= =n 0 nn h I� �� N . Hence, the effective channel for 

symbols  becomes  ( 1, 2)ix i =

 1, 2,
2

,i i iF
z x n i= + =h �  (2.8) 

and the receive SNR, , per symbol is given by η

 

2

,
2
F
ρ

η =
h

 (2.9) 

where 0sE Nρ �  is the average signal-to-noise ratio (SNR). 

The block diagram that includes modulator, serial to parallel structure and 

Alamouti space-time encoder is shown in Figure 2.2. The data stream is demultiplexed 
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into two sub-streams which are converted from serial to parallel and mapped to an 

Alamouti encoder. The Alamouti scheme extracts a diversity order of 2 (full  

diversity), even in the absence of channel knowledge at the transmitter. 

Tn

 

x 1 2[ ]x x

*
1 2

*
2 1

x x

x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

1h

2h
y

x̂

 
Figure 2.2: Block diagram of an Alamouti space-time coded system for two transmit 
antennas and single receive antenna 
 
 

2.2.2 Double Space-Time Transmit Diversity Systems 
After the review of Alamouti space-time transmit diversity, combining spatial 

multiplexing technique with it, we then introduce the concept of double space-time 

transmit diversity (DSTTD) systems. The DSTTD system is an open-loop 

multiple-input multiple-output system with four transmit antennas and two receive 

antennas. It has two Alamouti space-time encoders at transmitter and obtains high data 

rate as well as transmit diversity. 

In DSTTD system, four symbols  are transmitted during two 

symbol periods. The symbols are first arranged into two groups  and 

, and they are then mapped into two Alamouti space-time encoders 

respectively. Let  be the channel coefficient from transmit antenna  to receive 

antenna , and it is complex Gaussian with zero mean and unit variance. At receiver 

  1 2 3 4{ , , , }x x x x

 1 2{ , }x x

 3 4{ , }x x

ijh j

i
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antenna 1, the received signals  during two symbol periods can therefore be 

written in matrix form as 

 1,1 1,2[ Ty y ]

n

n
 

11

1 2 3 41,1 12 1,1
* * * *

1,2 13 1,22 1 4 3

14

,

h
x x x xy h

y hx x x x
h

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥
⎢ ⎥

+

⎣ ⎦

 (2.10) 

where  is noise on receive antenna i  at symbol period t , which is assumed 

complex zero-mean Gaussian with variance 1. We can express  with 

similar formulation: 

,i tn

 2,1 2,2[ Ty y ]

n

n
 

21

1 2 3 42,1 22 2,1
* * * *

2,2 23 2,22 1 4 3

24

.

h
x x x xy h

y hx x x x
h

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥
⎢ ⎥

+

⎣ ⎦

 (2.11) 

Combining (2.10) and (2.11), we can rearrange the received signals as follows: 

 

1,1 11 12 13 14 1,11
* * * * * *

1 1,2 12 11 14 13 2 1,2

2 2,1 21 22 23 24 3 2,1
* * * * * *

42,2 22 21 24 23 2,2

y h h h h nx

y h h h h x n

y h h h h x n

xy h h h h n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎡ ⎤ − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥= = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− − ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦

y
y

y
.= +

⎥

Hx n�  (2.12) 

The block diagram of a DSTTD system with four transmit antennas and two 

receive antennas is shown in Figure 2.3. The data stream is demultiplexed into four 

sub-streams which are divided into two groups. Each group of two sub-streams is 

encoded by an Alamouti space-time encoder. 
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1y

2y

H
x

 1 2[ ]x x

 3 4[ ]x x

*
1 2

*
2 1

x x

x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

*
3 4

*
4 3

x x

x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

x̂

 

Figure 2.3: Block diagram of a DSTTD system with four transmit antennas and two 
receive antennas 
 
 

2.3 QR Decomposition of Channel Matrix 
In this section, we will introduce the QR decompositions of spatial multiplexing 

MIMO systems and double space-time transmit diversity systems. The diagonal entries 

of  for spatial multiplexing systems are related to chi-square distribution, and this 

let us be able to find a performance bound of spatial multiplexing systems. For QR 

decomposition of DSTTD systems  has a special structure, and the diagonal entries 

of it are found to be associated with the entries of the DSTTD channel matrix. 

R

R

 
 

2.3.1 Review of QR Decomposition 
QR decomposition is one of the well-known decompositions, and can be obtained 

by the Gram-Schmidt process straightforwardly. We know that the formulation of 

Gram-Schmidt procedure is to find an orthonormal basis for the space spanned by the 

original linearly independent basis. The Gram-Schmidt process frequently appears in 

the matrix form, and it is equivalent to QR decomposition. Let us show the lemma of 

QR decomposition and apply it to spatial multiplexing MIMO systems and double 

11 



space-time transmit diversity systems. 

Lemma 2.1: Every matrix  with linearly independent columns can be uniquely 

factored as  in which the columns of  are an orthonormal basis for 

 and  is an upper triangular matrix with positive diagonal entries. 

m n×H

=H QR m n×Q

( )R H m n×R

Based on Lemma 2.1, we are going to apply QR decomposition to spatial 

multiplexing MIMO systems and DSTTD systems respectively in the next two 

sections. 

 
 

2.3.2 QR Decomposition of Channel Matrix in Spatial 

Multiplexing MIMO Systems 
In spatial multiplexing MIMO systems, the channel matrix is defined as a standard 

complex Gaussian  matrix  which has i.i.d. complex zero-mean Gaussian 

entries with identical variance 1. Though the QR decomposition of i.i.d. MIMO channel 

matrix has no special structure, there is still a lemma in random matrix theory worth 

mentioning. 

Rn n× T

iiR i m∈

j

H

Lemma 2.2: Let  be an m  standard complex Gaussian matrix with . 

Denote its QR decomposition by . The upper triangular matrix  is 

independent of Q . The entries of  are independent and its diagonal entries, 

, are such that  are chi-square random variables with 

 degrees of freedom while the off-diagonal entries, , are 

independent zero-mean complex Gaussian with variance 1. 

H n× n m≥

=H QR R

R

 for {1,..., } 22 iiR

2( 1)n i− +  for ijR i <

This lemma makes us able to develop an overall average BER criterion to 

construct a power allocation scheme for spatial multiplexing MIMO communication. 
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We will discuss it later in Chapter 3. 

 
 

2.3.3 QR Decomposition of Channel Matrix in Double 

Space-Time Transmit Diversity Systems 
First, the properties of Alamouti block are introduced. They are important in 

deriving the QR decomposition of DSTTD systems. We list some fundamental 

properties as follows: 

1. The sum of two Alamouti matrices is also an Alamouti matrix. 

2. The product of two Alamouti matrices is also an Alamouti matrix. 

3. The inverse of an Alamouti matrix is also an Alamouti matrix. 

It is easy to derive the above results and the proofs are omitted here. From the above 

properties, it is obvious that the Alamouti structure for block matrices is preserved if 

the matrix operation is performed. We arrange them and show Lemma 2.3 and Lemma 

2.4 [19]. 

Lemma 2.3: For a square matrix  constructed by Alamouti blocks, the inverse of 

 is also constructed by Alamouti blocks. That is, it is a block matrix with 

Alamouti sub-blocks. 

n n×H

n n×H

Here is a simple example to explain the above lemma. Consider a matrix  

with four Alamouti sub-blocks given by 

4 4×H

 1 2
4 4

3 4
,×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

H H
H

H H
 (2.13) 

where , , , and  are all Alamouti block matrices, e.g., 1H 2H 3H 4H

13 



   and 11 12 13 14
* * * *1 2
12 11 14 13

, ,
h h h h

h h h h

⎡ ⎤ ⎡
⎢ ⎥ ⎢= =⎢ ⎥ ⎢− −⎢ ⎥ ⎢⎣ ⎦ ⎣

H H
⎤
⎥
⎥
⎥⎦

.
⎤
⎥
⎥
⎥⎦

×

and 

  (2.14)  and 21 22 23 24
* * * *3 4
22 21 24 23

,
h h h h

h h h h

⎡ ⎤ ⎡
⎢ ⎥ ⎢= =⎢ ⎥ ⎢− −⎢ ⎥ ⎢⎣ ⎦ ⎣

H H

Under some manipulations, it can be shown that all the sub-blocks in  are also 

Alamouti block matrices by using the fundamental properties of Alamouti structure. By 

this example, we can know that the inverse of channel matrix in DSTTD systems has 

the same structure. 

1
4 4
−
×H

Lemma 2.4: For a square matrix  which is constructed by Alamouti sub-blocks, 

assume  is factored as , where the columns of  are 

an orthonormal basis and  is a square unitary matrix.  is an upper 

triangular matrix with positive diagonal entries. Then,  is also constructed by 

Alamouti sub-blocks.  has a special structure which is a block matrix with 

multiples of  along its diagonal and with Alamouti sub-blocks in its upper triangular 

part. Continue with the previous example 

n n×H

n n×H n n n n n n× ×=H Q R n n×Q

n n×Q n n×R

n n×Q

n n×R

2I

 

11 12 13 14
* * * *
12 11 14 13

21 22 23 24
* * * *
22 21 24 23

.

h h h h

h h h h

h h h h

h h h h

⎡ ⎤
⎢ ⎥
⎢ ⎥− −⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

H  (2.15) 

The QR decomposition of  can be expressed as H
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  and 

11 12 13 14 11 13 14
* * * * * *
12 11 14 13 22 14 13

21 22 23 24 33
* * * *

4422 21 24 23

0

0
, ,

0 0 0

0 0 0

q q q q R R

q q q q R R R
q q q q R

Rq q q q

R⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦⎣ ⎦

Q R  (2.16) 

where all  sub-blocks are all Alamouti block matrices. 2 2×

The proof is given in Appendix A. From the proof we can discover that the 

 and  for diagonal entries of , and they can be written in 

terms of determinants of channel matrix  and its partitioned matrices (Alamouti 

sub-blocks). Finally, we can arrange the above derivations and conclude this section 

with the following properties: 

11 22R R= 33 44R R= R

H

1. The channel matrix of DSTTD systems is given by 

 

11 12 13 14
* * * *

1 2 12 11 14 13

3 4 21 22 23 24
* * * *
22 21 24 23

.

h h h h

h h h h

h h h h

h h h h

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ − −⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

H H
H

H H
 (2.17) 

It can be factorized as 

 

11 12 13 14 11 13 14
* * * * * *
12 11 14 13 22 14 13

21 22 23 24 33
* * * *

4422 21 24 23

0

0
.

0 0 0

0 0 0

q q q q R R

q q q q R R R
q q q q R

Rq q q q

⎡ ⎤ R⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦⎣ ⎦

H QR  (2.18) 

2. The diagonal entries of  can be expressed as R

 11 22 1 3det( ) det( ),R R= = +H H  (2.19) 

and 

 33 44
1 3

det( )
,

det( ) det( )
R R= =

+
H

H H
 (2.20) 

where , , , and  are Alamouti sub-block in (2.17), and the 

determinants of them are given by 

1H 2H 3H 4H
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2 2 2

1 11 12 2 13 14det( ) , det( ) ,h h h h= + = +H H
2

 

  and 
2 2 2

3 21 22 4 23 24det( ) , det( ) .h h h h= + = +H H
2

 (2.21) 

 
 

2.4 Model of MIMO Wireless Communication 

Systems with QR-Based Successive Detection 
From the above discussions, in this section we will introduce the models of the 

two wireless communication systems. The symbol detection of QR-based receiver is 

based on unordered successive interference cancellation (SIC). In spatial multiplexing 

MIMO systems, symbol detection in one stage depends on the decisions made in the 

previous stages. Detection in DSTTD systems experiences the same effect, but in a 

group-wise manner; that is, symbols encoded by the same Alamouti space-time encoder 

will not interfere with each other. 

 
 

2.4.1 Model of Spatial Multiplexing MIMO systems 
We consider a  spatial multiplexing MIMO systems whose channel matrix 

is given by 

4 4×

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

,

h h h h

h h h h

h h h h

h h h h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H  (2.22) 

which can be factorized as 

  (2.23) 

11 12 13 14 11 12 13 14

21 22 23 24 22 23 24

31 32 33 34 33 34

41 42 43 44 44

0
.

0 0

0 0 0

q q q q R R R R

q q q q R R R

q q q q R R

q q q q R

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢= = ⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

H QR

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
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Since  is upper triangular, successive symbol detection through canceling the 

contributions of the previously detected components can be performed, as in 

R

[15], [16]. 

From Equations (2.2) and (2.23), the received signals are multiplied by the unitary 

matrix  to yield HQ

  (2.24) 

1 11 12 13 14 1 1

2 22 23 24 2 2

3 33 34 3 3

4 44 4 4

0
,

0 0

0 0 0

y R R R R x n

y R R R x n

y R R x n

y R x n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

y R

� �
� �

� �
� �
� �

x n

   

j i
y R

= +
= − ∑� 4,

where  and . It is noted that  and  have an identical 

distribution since  is unitary. Equation (2.24) can be expressed as follows: 

H=y Q y� H=n Q n� n� n

HQ

  (2.25) 
4

1
, 1, 2, 3, 4.i ii i ij j i

j i
y R x R x n i

= +
= + + =∑� �

Then we can get the modified received signals 

  (2.26) îy
4

1
ˆi ij jx    

4

1
ˆ( ) , 1, 2, 3,ii i ij j j i

j i
R x R x x n i

= +
= + − + =∑ �

where ˆjx  is the symbols detected in the previous detection stages. Therefore, to detect 

symbol , we will need to know the detected symbols ix (    ˆ 1, 2, ..., 4)jx j i i= + + . 

The detection procedure can be described by the following expressions: 

 for      .
4

1 ˆ
ˆ Quant 1, 2, 3, 4i j i ij j
i

ii

y R x
x

R
= +

⎡ ⎤−⎢ ⎥
= ⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

∑�
i =

b

 (2.27) 

The function  sets a  to the element of signal constellations that is 

closet to . Assuming that these decisions are correct (

Quanta ⎡ ⎤= ⎢ ⎥⎣ ⎦

b ˆj jx x= ), Equation (2.26) is 

simplified to , and the decision turns out to be î ii iy R x n= + �i îx ˆQuant i iiy R⎡ ⎤= ⎢ ⎥⎣ ⎦ . 

This makes it convenient for us to detect the received signals. 
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2.4.2 Model of Double Space-Time Transmit Diversity 

Systems 
 In DSTTD systems, for its special channel matrix structure, the symbols grouped 

together will not affect each other. The channel matrix is given by 

 

11 12 13 14
* * * *
12 11 14 13

21 22 23 24
* * * *
22 21 24 23

,

h h h h

h h h h

h h h h

h h h h

⎡ ⎤
⎢ ⎥
⎢ ⎥− −⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

H  (2.28) 

and its QR decomposition is obtained as follows: 

  and 

11 12 13 14 11 13 14
* * * * * *
12 11 14 13 11 14 13

21 22 23 24 33
* * * *

3322 21 24 23

0

0
, .

0 0 0

0 0 0

q q q q R R

q q q q R R R
q q q q R

Rq q q q

R⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦⎣ ⎦

Q R  (2.29) 

Similar to the expressions in the previous section, from Equations (2.12) and (2.29), the 

received signals can be written as 

  (2.30) 

11 13 141 1
* *

2 211 14 13

3 333

4 433

0

0
,

0 0 0

0 0 0

R R Ry x

y xR R R
y xR
y xR

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = + = +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

y R

� �
� �

� �
� �
� �

1

2

3

4

n

n

n

n

x n

4

and this equation is equivalent to 

  (2.31) 

1 11 1 13 3 14
* *

2 11 2 14 13 4

3 33 3

4 33 4

,

,

,

.

x

y R x R x R x

y R x R x R x

y R x

y R x

= + +

= − +
=
=

�

�
�
�

Thus, the detection procedure can be described by the following formulas: 

 4
4

33

ˆ Quant ,
y

x
R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

�
 3
3

33

ˆ Quant ,
y

x
R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

�
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* *

2 14 3 13 4
2

11

ˆ Quant ,
y R x R x

x
R

⎡ ⎤+ −⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

�
 

 and 1 13 3 14 4
1

11

ˆ Quant .
y R x R x

x
R

⎡ ⎤+ −⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

�
 (2.32) 

As we can see in Equation (2.32),  and  can be detected individually, and then 

 and  can be decided with the decisions made for  and . The simulations 

are provided and compared with the MMSE detector. 

3x 4x

1x 2x 3x 4x

 
 

2.5 Computer Simulations 
In the simulation results, we first examine the performances of spatial 

multiplexing MIMO systems. Assume that QPSK modulation is adopted and the fading 

channels are flat. The channel coefficients are i.i.d. complex Gaussian random variables 

with zero mean and unit variance. The noise is complex zero-mean Gaussian random 

variable with unit variance. In Figure 2.4, the performances of spatial multiplexing 

MIMO systems with different numbers of transmit-receive antenna pairs and with 

different detection schemes are presented. As we can see in Figure 2.4, in spatial 

multiplexing systems with ML detection at the receiver, ML receiver is capable of 

extracting four-order spatial diversity because the ML detecting process outputs the 

most likely transmitted signal vector, so that the receiver spatial diversity can be fully 

obtained. The linear receivers like QR receiver and MMSE receiver can only extract 

one-order spatial diversity for all degrees of freedom of the transmission systems are 

exploited to increase the capacity. In  spatial multiplexing systems, MMSE 

receiver performs better than QR receiver. Further, for QR receiver, when the number 

of parallel channels increases, the performances degrade slightly. One reason for this is 

4 4×
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power sharing among the transmit antennas; since the normalization keeps the total 

transmit energy constant, in spatial multiplexing the power per stream is reduced by a 

factor of . Another reason is that when the number of data streams increases, in QR 

detection the average performances will become poorer due to cross-stage error 

propagation. 

Rn

In DSTTD systems, the simulation results for different receivers are shown in 

Figure 2.5. The performances of DSTTD systems with QR receiver and MMSE 

receiver are quite comparable. That is, we can provide similar average BER 

performances with QR-based successive detection compared with the MMSE detection. 

Because of the transmit diversity provided by Alamouti space-time encoder, compared 

with the performance in  spatial multiplexing for the same transmission rate, 

DSTTD systems have a two-order spatial diversity which is higher than unordered 

spatial multiplexing schemes. With ML receiver, a four-order spatial diversity can be 

achieved since ML receiver is able to extract the two-order receive spatial diversity in 

DSTTD systems. 

2 2×
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Figure 2.4: Average BER performances of spatial multiplexing MIMO systems with 
different receivers with QPSK modulation 

 
Figure 2.5: Average BER performances of DSTTD systems with different receivers 
with QPSK modulation 
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2.6 Summary 
In wireless communication systems, spatial multiplexing techniques are widely 

used to exploit the characteristics of multipath channels and to improve the capacity of 

transmission without allocating extra bandwidth. On the aspect of diversity techniques, 

which is implemented to reduce the effects of multipath fading and to enhance the 

reliability of transmission without increasing the transmit power or sacrificing the 

bandwidth, it is popular to make use of space diversity which can be classified into two 

categories, transmit diversity and receive diversity. In this chapter, we focus on two 

high-rate wireless communication systems, simple spatial multiplexing and double 

space-time transmit diversity. Spatial multiplexing systems can provide a high date rate 

but no diversity gain can be obtained. Thus, a compromised transmission scheme, 

double space-time transmit diversity, is introduced. Compared to conventional SISO 

systems, DSTTD can provide a double rate and double diversity at the same time. 

The QR decompositions of spatial multiplexing and DSTTD systems are 

characterized in Section 2.3. Based on the results of QR decomposition, the structures 

of the upper triangular matrix are shown in Equation (2.23) and (2.29). It is useful for 

us to detect the received signals and provide better performance. Furthermore, in 

DSTTD systems, we derive the diagonal entries of the upper triangular matrix and 

express them in terms of the determinants of the channel matrix and its partitioned 

matrices. Then, some performance comparisons are illustrated in Section 2.5. Since QR 

detector is an unordered SIC detector, its performance is slightly poorer than the 

performance of MMSE detector. In the next two chapters, we will exploit the precoding 

matrix to allocate the transmit power and reduce the average bit error rate (BER). That 

is, we focus on the power allocation scheme by using the statistical properties of with 

QR-based SIC detection in spatial multiplexing and DSTTD systems. 
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Chapter 3  
 
Power Allocation for Minimum BER 
in Spatial Multiplexing Systems 
Equation Section 3 
 
 

In this chapter, we will discuss the power allocation scheme with QR-based 

successive detection for spatial multiplexing MIMO systems over flat fading channels. 

Our consideration is confined to uncoded quadrature phase-shift keying (QPSK) signals 

and the channels are independent and identically distributed Rayleigh fading. Given 

that the channel state information (CSI) is perfectly available at the receiver and only 

signal-to-noise ratio (SNR) is known at the transmitter, we design a precoding matrix to 

allocate transmit power at the transmitter under average channel realizations. 

Furthermore, at the receiver, the received signals are detected with a QR-based 

successive symbol detecting scheme which is described in the previous chapter. For 

simplicity, the precoding matrix is restricted to be a diagonal power loading matrix so 

as to reduce the computational complexity. The optimization criterion is determined 

based on minimizing the overall average bit error rate (BER) of this transmission 

scheme. From the theory in [15], the design of the precoding matrix is based on the 

minimization of the lower bound for average BER. It can be proved that minimizing the 

lower bound for average BER will lead to minimizing the upper bound for the block 

error rate simultaneously. Following that, we exploit the power loading factors derived 
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from the closed-form solutions which we obtain by averaging the lower bound for BER 

over the channel realizations. Finally, some performance comparisons and discussions 

will be illustrated in the end of this chapter. 

 
 

3.1 Bound for BER of QR-Based Successive 

Detection 
 Power loading schemes allocate the transmit power across symbols under the 

constraint of constant power per block. At the transmitter, for four symbols 

 transmitted at the same time, we denote the transmit power 

allocated to the th symbol as  and define the power loading matrix as 

   , 1, 2, 3,ix i =  4

0

i 2
ip

 

1

2

3

4

0 0 0

0 0
,

0 0 0

0 0 0

p

p

p

p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P  (3.1) 

where  is the power loading factor ,and the block transmit power constraint 

must be normalized as 

0ip >

  (3.2) 
4

2

1
trace{ } 4.H

i
i
p

=
= =∑P P

Assuming that the channels are flat fading, we insert the power loading matrix into the 

system model in Equation (2.24). If the receiver replies the channel state information 

(CSI) to the transmitter, the transmitter can determine the power loading factors by the 

CSI. The block diagram with the transmit power allocation scheme is shown in Figure 

3.1. 
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x x̂
H

 
Figure 3.1: Block diagram of a  spatial multiplexing MIMO system with the QR 
receiver with the transmit power allocation scheme 

4 4×

 
 

The received signals are multiplied from the left by the unitary matrix  from 

QR decomposition, and they can be written as 

HQ

1 11 12 13 14 1 1 1
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 (3.3) 

where  and . The i th element of modified received signals is 

detected as follows: 

H=y Q y� H=n Q n�

  (3.4) îy
4

1
ˆi ij j jp x

4

1
ˆ( )ii i i ij j j j i

j i
R p x R p x x n

= +
= + − +∑ �

Assume that there is no error in the previous symbol detection, and then we can 

obtain . It is obvious that the i th modified received signal is 

determined by the th transmitted symbol and the transformed channel noise. As long 

as the symbol in each stage is correctly detected and, hence, there is no layer-wise error 

propagation, the space-time model decouples into four independent transmission links. 

î ii i iy R p x n= + �

i
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The power loading factor  represents the transmit power allocated to the i th 

sub-channel and  is the i th sub-channel gain. The average energy of the symbols 

transmitted from each antenna is normalized to be one. Therefore, the total symbol 

energy  is equal to , so that the average power of received signal at each 

receive antenna is also . The real part and imaginary part of noise have the same 

variance 

2
ip

iiR

sE Tn

Tn

(2 )Tn SNR . The average signal-to-noise ratio (SNR) is defined by 

0sE Nρ � , where the total symbol energy and noise variance are defined as 

 and , respectively. At some ρ , the 

instantaneous BER under the th sub-channel is given by 

4{ } 4
T

H
s nE E= =xx I I 0 4{ }HE =nn I�� N

i

 (ei i iiP Q p Rρ= ),  (3.5) 

where 
2 21

( )
2

y
Q x e

ππ
∞ −

∫� dy  and QPSK modulation is adopted. Thus, the average 

instantaneous BER of the symbol block given a fixed channel realization is expressed 

as 

 
4 4

1 1

1 1
(

4 4e ei i
i i

P P Q p Rρ
= =

= =∑ ∑ ).ii  (3.6) 

It is noted that the above discussion is under the error propagation free case; that is, 

error propagation is not taken into account. In this case, Equation (3.6) is merely a 

lower bound for average BER, and we rewrite it as 

 
4 4

1 1

1 1
(

4 4eL eLi i ii
i i

P P Q pρ
= =

= =∑ ∑ ),R  (3.7) 

where the subscript  indicates the lower bound for BER. This is a lower bound with 

QR-based successive symbol detection without considering the error propagation. 

Ignoring the error propagation is an reasonable approximation at moderate-to-high 

L
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SNR regime because the error propagation is small enough to be neglected when SNR 

is high. If the error propagation occurs, the detection error of previous symbol decisions 

will affect the detection of the present symbol. This effect causes that the average BER 

with the error propagation is slightly higher than the average BER in the error 

propagation free case. 

After the lower bound for average BER is presented, we will introduce the upper 

bound for average block error rate, which is of our major concern. First, let us define 

the detection error in the th symbol  when there may be errors in the detection of 

previous symbols. We denote the received signal vector which would have been 

detected before  by , and the transmitted signal vector which 

will be detected before  by 

i ix

ix ˆeix 1ˆ[ , , 4̂ ]
Txix += "

ix 1 4, ,
T

ei ix x+
⎡ ⎤= ⎢ ⎥⎣ ⎦x " , respectively. For the detection of 

the th symbol , based on Bayes’ rule, we can get i ix

  ˆ{ }i iP x x≠ ˆ{ i iP x x= ≠ ˆ| }ei ei=x x ˆ{ }ei eiP =x x

            . (3.8) ˆ{ i iP x x+ ≠ ˆ| }ei ei≠x x ˆ{ ei eiP ≠x x }

}

1 1

}

P x x= − =

ˆ{ i iP x x≠ ˆ| ei ei=x x  is equivalent to Equation (3.5) for the error propagation free 

case so that Equation (3.8) can be written as 

  ˆ{ }i iP x x≠ ˆ{ }eLi ei eiP P= =x x ˆ{ i iP x x+ ≠ ˆ| }ei ei≠x x ˆ{ }ei eiP ≠x x

  (3.9)                                    ˆ{ }.eLi ei eiP P≤ + ≠x x

In the above equation, the last inequality is due to the fact that 

 and  for high SNR. Furthermore, ˆ{ i iP x x≠ ˆ| }ei ei≠ ≤x x ˆ{ }ei eiP = ≅x x

ˆ{ }ei eiP ≠x x ˆ1 { ei eiP= − =x x  

  4 4̂1 { } 3 3̂{P x x= 4 4̂| }x x= 1 1ˆ{ i iP x x+ +=" 1 1ˆ| }ei ei+ +=x x
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  (3.10)                                                       44
1 11 (1 ) .j i eLj j i eLjP P= + = += − − ≤∑∏

Because  is written as  

, the last equality is obtained which can be easily derived by some 

manipulations. Combining (3.9) and (3.10), the result is shown as 

1 1ˆ{ i iP x x+ += 1 ˆ| ei ei+ +=x x 1}

P

ˆ1 { i iP x x− ≠ ˆ| )ei ei=x x

1 eLjP= −

  (3.11) 
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eLi ei ei

eLi eLj eLj eUi
j i j i

P P

P P P
= + =

≤ + ≠

≤ + = =∑ ∑

x x

where the subscript  indicates the upper bound for BER. Equation (3.11) represents 

the upper bound for the BER based on the consideration that there may be detection 

errors in the previous detected symbols. The upper bound for the average BER of four 

symbols is given by 

U

 

4 4 4
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}

 (3.12) 

The last equality is achieved because the detection order follows the upper triangular 

structure of the matrix. In view of the block error rate, let  in (3.11), we have 0i =

  (3.13) ˆ{ }P ≠x x
4

0 0
1

ˆ{ } 4e e eLi e
i

P P
=

= ≠ ≤ =∑x x

It is obvious that the block error rate  is upper bounded by four times the 

lower bound for the average BER . This is an important result for us to determine 

the power allocation factors. If a power allocation matrix is designed to minimize the 

lower bound for the average BER, it simultaneously minimizes the upper bound for the 

block error rate as well. From the above derivations, the minimization of lower bound 

for the average BER is reasonable because we can minimize the upper bound for the 

block error rate at the same time. It implies that the decision performance can be 

ˆ{P ≠x x

eLP
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potentially improved even in the presence of cross-layer error propagation. In the next 

section, we will propose a power allocation scheme to minimize the overall average 

BER over average channel realizations with this lower bound for BER. 

 
 

3.2 Optimal Power Allocation for Minimum 

Upper Bound of Overall Average BER 
 In the previous section, it has been shown that, given a fixed channel realization, 

the design criterion for power allocation to minimize the average BER can be modified 

to minimize the lower bound for average BER 

 
4

|
1

1
(

4eL i ii
i

P Q pρ
=

= ∑H ),R

R

 (3.14) 

instead of minimization of the upper bound for the block error rate. Now we would like 

to consider the channel probability density function (pdf) in deriving the error 

probability. We consider the general case assuming ; i.e., there are  

parallel transmission links in the spatial multiplexing MIMO systems, and the lower 

bound in (3.14) is expressed as 

TM n n= = M

 |
1

1
(

M

eL i ii
i

P Q p
M

ρ
=

= ∑H ).R  (3.15) 

First of all, we have to determine the distribution of iiR . From Lemma 2.2, we have 

known that  is a chi-square random variable with 2(  degrees of 

freedom; that is, 

22 iiR 1)M i− +
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R e
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 (3.16) 
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Let ir R= ii  for convenience, and with some variable transformations, it is shown 

[20] that the pdf of iiR  can be expressed as 

 
2

2( ) 12
( ) .

( )!

irM i
i
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r e
p r

M i

−− +

=
−

 (3.17) 

Hence, the lower bound for the overall detection error rate of  is given by ix
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The lower bound for the overall average BER for the data block is given by 
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It is very difficult to calculate (3.19) if we use the definition of Q-function directly, 

and there will be no closed-form solution for it. Thus, we substitute Q-function with its 

Chernoff bound 

  for 
2

21
( ) , 0,

2

x

Q x e x
−

≤ ≥  (3.20) 

and obtain an upper bound of (3.19) given by 
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After some rearrangements, we can rewrite this bound as 
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In order to calculate the above integrand, we use a known integration formula shown as 

follows: 

 for  and    
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In the above equation, let , ix r=
2

1 2ip pρ= + , and , the upper 

bound in Equation (3.22) can be expressed as 

n M= − i
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where  is the number of transmission links. Based on the above result, we can find 

a set of  to minimize this upper bound, and, hence, minimize 

M

ip eLP . 

To find the set of  to minimize the upper bound with the power constraint on 

the elements , we can formulate an optimization problem as follows: 

ip

ip
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which can be solved by the Lagrange multipliers technique. First, we define 
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By Lagrange multipliers, the optimization problem is transformed into 

  (3.27) 0.F∇ =

Assuming 
2

i ia p= , we can get 
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We substitute  for ia
2

ip  in the power constraint 
2

1
M
i ip= =∑ M , and we can 

obtain the constraint with an unknown variable  as follows: λ
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From the above derivations, a method of determining the power loading factors by 

minimizing the average BER upper bound in (3.24) subject to the power normalization 

constraint is proposed. We propose to determine the power loading factors by 

minimizing the upper bound of the error probability averaged with respect to the 

channel distribution. As long as  is determined, each power loading factor  will 

be determined as well. However, it is very difficult to calculate an explicit solution for 

, though it is possible to find a suitable solution  for a set of . Since we have 

already derived a closed-form expression for the upper bound of 

λ ip

λ λ ip

eLP  in (3.24) as 
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the optimization problem can be solved via numerical search instead (e.g. by using 

fmincon function in Optimization Toolbox in MATLAB). Some average BER 

performances are shown in the next section followed by a brief summary. 

 
 
 
 

3.3 Computer Simulations 
We use fmincon function in MATLAB [10] which employs sequential quadratic 

programming to find the optimal power loading factors that minimize the upper bound 

for the overall average BER. We, for example, consider a  spatial multiplexing 

MIMO wireless communication systems with QPSK modulation scheme. First, we 

compare the evaluations of the upper bound for the lower bound for overall average 

BER without and with the transmit power allocation scheme proposed. The evaluation 

results are shown in 

4 4×

Figure 3.2. It can be seen that in theory, the lower bound for the 

overall average BER has a 5-dB improvement at the high SNR regime when the power 

loading scheme is applied. However, this is just the theoretical result, and the computer 

simulations are shown in Figure 3.3. In Figure 3.3, it can be seen that at medium-high 

SNR the BER performance with power loading is improved by about 2 dB compared 

with that without power loading. The performance of QR receiver with power loading 

closely approaches that of ZF-VBLAST receiver, whose detecting procedure is more 

complex. In Figure 3.4, the performances with different modulation orders for QR 

receiver with and without power loading are shown. Since in the above derivation, for 

different modulation orders, the design criterion can be modified with different BER 

performance bounds [21], it can be seen that the performances are improved as long as 

the power loading factors for different modulation orders are determined. However, for 

higher modulation orders, the improvements in BER performances are less significant; 
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for example, the improvement with 16QAM becomes around 1 dB. This is because that 

the number of nearest neighbors in the modulation constellation increases when the 

constellation size gets larger. 

 
Figure 3.2: Evaluations of upper bounds for the lower bound of overall average BER in 

 spatial multiplexing systems with the QR receiver with QPSK modulation 4 4×
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Figure 3.3: Average BER performances of  spatial multiplexing systems with 
different receivers with QPSK modulation 

4 4×

 
Figure 3.4: Average BER performances of  spatial multiplexing systems with the 
QR receivers with different modulation orders 

4 4×
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3.4 Summary 
In Section 3.1, a BER performance analysis based on spatial multiplexing MIMO 

systems with QR-based successive symbol detection is introduced. For simplicity, we 

consider the error propagation free case and derive the lower bound for the average 

BER. Following that, it is proved that minimization of this lower minimizes the upper 

bound for the block error rate, and thus essentially minimizes the average BER. 

Nevertheless, in the above discussion, we focus on the design criterion under a fixed 

channel realization. With the probability distribution based on QR decomposition over 

channel realizations shown in Chapter 2, we can obtain the lower bound for the overall 

average BER. An upper bound for the expression of this lower bound is obtained by 

using Chernoff bound of Q-function, and then this upper bound can be expressed in 

closed form. In the proposed power allocation scheme, the transmit power is allocated 

based on the power loading factors which minimize this closed-form expression. Due to 

that the power loading factors are derived from the performance bound over random 

channel realizations, and there is no need to calculate them for each given channel 

realization, the computational complexity is quite low. Furthermore, from Equation 

(3.30), the bound is only affected by the number of transmission links  and SNR . 

This simplicity makes it possible to construct a precoding table based on different SNR 

for a given spatial multiplexing MIMO system. In simulations, the results show that 

this power allocation scheme can enhance the performances of spatial multiplexing 

MIMO systems by 1-2 dB, and it can adapted according to different modulation orders. 

M ρ
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Chapter 4  
 
Power Allocation for Minimum BER 
in Double Space-Time Transmit 
Diversity Systems 
Equation Section 4 
 
 

In the previous chapter, the performance analysis of spatial multiplexing MIMO 

systems with the QR-based successive detection is given and a transmit power 

allocation scheme based on it is proposed. Now, we focus on the double space-time 

transmit diversity (DSTTD) systems which combines the advantages of higher data 

rates and transmit diversity. Since DSTTD systems can be considered as involving two 

parallel links in wireless transmission, with each link being space-time encoded by an 

Alamouti encoder, a DSTTD system can be analyzed as a  spatial multiplexing 

MIMO system with transmit diversity provided at the transmitter. In Chapter 2, the R 

matrix of QR decomposition in DSTTD systems is shown to have a special structure; 

we will examine the distribution of each diagonal entry of the R matrix in this chapter. 

Although the exact probability density functions (pdf) of the diagonal entries of the R 

matrix may not be easily determined, they can still be estimated and approximated 

reasonably to be chi-square distributed. Therefore, this result makes it possible for us to 

derive the design criterion of the power allocation scheme for DSTTD systems in a way 

similar to the derivations in Chapter 2. 

2 2×

37 



4.1 Distribution of Diagonal Elements of R 

Matrix in QR Decomposition 
The QR decomposition of channel matrix in DSTTD systems is shown below: 
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H QR  (4.1) 

Since  and , only the pdfs of  and  need to be 

determined. First, we examine the value of . From Appendix A, it can be shown 

that 

11 22R R= 33 44R R= 11R 33R

11R

 11 1 3det( ) det( ).R = +H H  (4.2) 

Because  and  are Alamouti block matrices, their determinants are given by 1H 3H
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Thus,  can be expressed as 11R
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 (4.4) 

In the model of DSTTD systems, we assume that  is a complex zero-mean 

Gaussian random variable and the variances of the real part and the imaginary part of it 

are 0.5. It can be readily proved that 

ijh

2
2 ijh  has a chi-square distribution with two 

degrees of freedom. As a result, we can write Equation (4.4) as 
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2
.
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According to the fact that the sum of chi-square random variables is still a chi-square 

random variable, and its degrees of freedom is the sum of the degrees of freedom of the 

summands, 
2

112 R  is also a chi-square random variable with eight degrees of freedom. 

Compared with the result of spatial multiplexing systems, the pdf of 
2

112 R  is 

expressed as 

 

2
11
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11 4
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(2 ) ,

2 (4)
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R e
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Γ

 (4.6) 

which is identical to the pdf of 
2

112 R  in spatial multiplexing systems. Therefore, let 

1 1r R= 1 , and the pdf of 11R  is given by 
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 (4.7) 

Afterwards, we examine the distribution of 33R . From Appendix A, it is given 

that 

 33
1 3
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det( ) det( )
R =

+
H
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 (4.8) 

For the convenience for the derivations below, we denote , and thus we 

rewrite Equation (4.8) as 

det( )id = Hi

 33
1 3
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.R

d d
=

+
H  (4.9) 

In order to express de  in terms of , , , and , we introduce the 

theorem of the determinant of partitioned matrices: 

t( )H 1d 2d 3d 4d
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Theorem 4.1: Let  be a square matrix partitioned as M
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It is very easy to prove this theorem. When  exists, it is easy to verify that 1−A

 ,
1

,

.m m n

n n m
−

⎡ ⎤ ⎡

1−

⎤⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥ =⎢ ⎥ ⎢⎢ ⎥− −⎢ ⎥ ⎢

⎥
⎥
⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣

I 0 A BA B
C DCA I 0 D CA B⎦

 (4.12) 

By taking determinants for both sides, we have 

 1
,

1

det( )

det( )det( ).
n m

−

−

=
−

= −

A B
M

0 D CA B

A D CA B

 (4.13) 

Applying Theorem 4.1 in (4.9), we can obtain 
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 (4.14) 

In the above equation, after some calculations, it can be shown that 
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where 

  
   * * * * * * * *

23 21 11 13 21 14 12 22 12 13 22 14 11
* * * * * * * *

24 21 14 11 22 11 13 22 14 12 21 12 13

Re{ ( )

( )

C h h h h h h h h h h h h h

h h h h h h h h h h h h h

= + + −

+ + + − }.

Consequently, Equation (4.14) can be expressed as 
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To keep the consistency, we want to determine the distribution of 
2

332 R , which is 

written as follows: 

 
2 1 4 2 3

33
1 3

2
2 2

d d d d C
R

d d

+ −
= ⋅

+
.  (4.17) 

Although, based on the derivations for 11R , it can be shown that  

are chi-square-distributed with four degrees of freedom, there is no particular 

distribution suitable for this random variable. However, it can be observed that 

   2 , 1, 2, 3, 4id i =  

2

332 R  

consists of four i.i.d. chi-square random variables and a zero-mean variable with an 

unknown distribution. Based on this observation, we use the gamma distribution to 

approximate 
2

332 R  because the chi-square distribution can be considered as a special 

case of the gamma distribution. The pdf of gamma distribution  is given 

by 

( , )Gamma k θ

 
1

( | , ) ,
( )

xk

k

x
p x k e

k
θθ

θ

− −
=

Γ
 (4.18) 

where  and  are the parameters which affect the shape and the scale of gamma 

distribution respectively. Here, we use dfittool in MATLAB to adjust the parameters of 

the gamma pdf and find the fit pdf which approaches the distribution of 

k θ

2

332 R  

closely. In Figure 4.1, when  and  in (4.18), we can see that the curve of 

the gamma pdf is quite close to the sampled data of 

2k = 2θ =

2

332 R . 
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Figure 4.1: Comparison between the sampled data of 
2

332 R  and the gamma pdf with 

 and  2k = 2θ =

 
 

Therefore, this approximation makes it reasonable and accurate to assume that 
2

332 R  

is a random variable following the gamma distribution with  and , and its 

pdf is given by 

2k = 2θ =

 

2 2
33 33

2 2 2 1
2 33 33

33 2 2

2 (2 )
(2 ) .

2 (2) 2 (2)

R R
R e R e

p R

− −−

= =
Γ Γ

 (4.19) 

It is obvious that (4.19) is the pdf of a chi-square distribution with four degrees of 

freedom as well. With some derivations similar to Chapter 3, denoting 3 3r R= 3 , the 

estimated pdf of 33R  can be expressed as 
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−

 (4.20) 

Thus, since the pdfs of 11R  and 33R  are obtained, the bound for the overall 

average BER can be calculated. 

 
 

4.2 Optimal Power Allocation for Minimum 

Upper Bound of Overall Average BER 
Consider a  DSTTD system with QR successive detection at the receiver. 

Assume that the channels are flat fading, and the noises are complex Gaussian random 

variables with zero mean and unit variance. At the transmitter, the transmit power, 

which is determined by the CSI, is allocated to each transmit symbols before being 

encoded by the Alamouti space-time encoders. The received signals are detected by the 

QR receiver, and thus the modified received symbol vectors can be written as 

4 2×
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 (4.21) 

The block diagram of a DSTTD system with the QR receiver with the transmit power 

allocation scheme is shown in Figure 4.2. 
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Figure 4.2: Block diagram of a DSTTD system with the QR receiver with transmit 
power allocation scheme 
 
 

With the pdfs of 11R  and 33R , the lower bound for average BER we derived 

in Section 3.2 can be adopted as the criterion for us to design the power allocation 

scheme for DSTTD systems. Assuming QPSK modulation is adopted, the lower bound 

for average BER in DSTTD systems is given by 

 
4

|
1

1
(

4eL i ii
i

P Q pρ
=

= ∑H ).R  (4.22) 

According to the results of QR decomposition in DSTTD systems, it is known that 

 and . Further, the pdf of  is given by 11 22R R= 33 44R R= 11 22R R=

 
2
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1 11 22
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−

 (4.23) 

and the estimated pdf of  is given by 33 44R R=

 
2
32(2 1) 1

3
3 33 44

2
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 (4.24) 
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Therefore, the lower bound for average BER can be written as 
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With the Chernoff bound of Q-function (3.20), we can obtain an upper bound for the 

above equation which is written as 
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Using the integration formula in (3.23), we can calculate the integrands in Equation 

(4.26) as follows: 
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Equation (4.27) is similar to the results in Chapter 3, but, however, the summands in 
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(4.27) are arranged into two groups. The reason for this is that the transmit symbols are 

divided into two groups, and the two symbols in each group are coupled by the 

Alamouti encoders, respectively. 

 Based on the result, the optimization problem to find the set of  can be 

formulated as follows: 

ip
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By the Lagrange multipliers technique, similar to the calculation in Chapter 3, the 

optimization can be solved. Let 
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and we will solve the equation 
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 (4.31) 

Therefore, as long as we find the suitable , the power loading factors are determined. 

By substituting  for 

λ

ia
2

ip  in the power constraint 
24

1 4i ip= =∑ , we can get the 

constraint in terms of the unknown variable  as follows: λ
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By solving Equation (4.32), we can get λ  and then the optimal set of  can be 

obtained. 

ip

Compared with the result in spatial multiplexing systems in Chapter 3, we have 

some notable observations in the results for DSTTD systems. From Equation (4.31), it 

can be seen that the power loading factors for  and  are identical and so are 

those for  and . The reason for this is that  is encoded by one 

Alamouti encoder, and  is encoded by another one. Because of the 

characteristic of Alamouti encoder, the transmit symbols encoded by the same Alamouti 

encoder will experience identical channel effects. Therefore, the power loading factors 

that we obtain will reflect this property which results in  and . 

Besides, from Equation (4.31), it can also be observed that, for any positive , the 

power loading factors have the result that . This is because of the 

statistical properties of diagonal entries of the R matrix. The mean of 

1x 2x

3x 4x 1 2{ , }x x

3 4{ , }x x

1p p= 3 4p p=

λ

1 2 3 4,a a a a<

11R  is smaller 

than that of 33R  so that the power allocation scheme will allocate more power on the 

symbols which will be transmitted via the channel 11R . 
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4.3 Extension of Proposed Optimal Power 

Allocation Scheme 
Since the power loading factors for DSTTD systems with QR receiver is proposed 

in the previous section, we consider further whether the proposed power allocation 

scheme can be applied to the multiple space-time transmit diversity (STTD) systems 

with the QR receiver. We consider a  triple STTD system with QR successive 

detection, and the equivalent channel matrix can be expressed as follows: 

6 3×

  (4.33) 
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* * * * * *
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After QR decomposition, the R matrix is given by 
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which has a similar structure to the R matrix of QR decomposition of the channel 

matrix in DSTTD systems. Based on the derivations in Section 4.1, it can be shown that 

2

112 R  has a chi-square distribution with twelve degrees of freedom, and thus the pdf 

of 11R  is given by 
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 (4.35) 

Although the pdfs of 33R  and 55R  are very difficult to determined directly from 
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the derivations, we can follow similar approximations in Section 4.1. By means of 

dfittool in MATLAB, the approximations of 
2

332 R  and 
2

552 R  is shown in Figure 

4.3. 

 

Figure 4.3: Comparisons between 
2

332 R , 
2

552 R  and the gamma pdfs with , 

, and , , respectively 

4k =

2θ = 2k = 2θ =

 
 

Based on the result of the statistical analysis, following the derivations in Section 4.1, 

the estimated pdfs of 33R  and 55R  can be given by 
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 (4.36) 

and 

 
2
52(6 5) 1

5
5

2
( ) .

(2)

rr e
p r

−− +

=
Γ

 (4.37) 
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Therefore, the design procedure of the proposed power allocation scheme can be 

applied for triple STTD systems. Omitting the details of calculation, we can obtain the 

upper bound for the BER performance without error propagation as follows: 
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 (4.38) 

By solving the bound in the above equation, the power loading factors for triple STTD 

systems can be obtained. It is obvious that the power loading factors for triple STTD 

systems have similar properties to those for DSTTD systems because of the properties 

of Alamouti spact-time transmit diversity; that is, , , and , 

and further . Some simulation results are shown and discussed 

in the next section, and a summary is stated in the end of this chapter. 

1 2p p= 3p p= 5 6p p=

1 2 3 4 5 6, ,p p p p p p< <

 
 

4.4 Computer Simulations 
In the simulations, because the explicit value of  in Equation (4.32) is difficult 

to calculate, fmincon function in MATLAB is used to find the optimal power loading 

factors in DSTTD systems. First, considering a  DSTTD system with QPSK 

modulation, the evaluations of the upper bound in Equation (4.27) are compared in 

λ

4 2×

Figure 4.4. In Figure 4.4, we can see that the upper bound of the lower bound for 
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overall average BER in DSTTD systems with the proposed power allocation scheme is 

theoretically improved by about 2 dB at medium-high SNR. To evaluate the real 

performance of the power allocation scheme, the computer simulation of DSTTD 

systems with QPSK modulation is shown in Figure 4.5. Although, with power 

allocation, the BER performances of DSTTD systems with QR receiver is improved, 

the improvement is around 1 dB which is less than the theoretical result shown in 

Figure 4.4. Compared with the improvements of power allocation for spatial 

multiplexing systems in the previous chapter, the gain for DSTTD systems is less than 

2dB. This is because that a DSTTD system can be considered as having two parallel 

transmission links which is equivalent to a  spatial multiplexing MIMO system. 

For QR successive detection, the enhancement in the average BER of  spatial 

multiplexing systems is less significant than that of  spatial multiplexing systems. 

The BER performance comparison of DSTTD systems with different modulation orders 

are shown in 

2 2×

2 2×

4 4×

Figure 4.6. It can be seen that when the modulation order increases, the 

BER performance degrades slightly, and the amount of the improvements by the 

proposed power allocation schemes decreases as well. The reason is that when the 

modulation constellation size increases, there will be more nearest neighbors in the 

constellation. This result is consistent with that for spatial multiplexing MIMO systems. 

Figure 4.7 shows the BER performances of triple DSTTD systems with QR receiver 

without and with the power allocation scheme incorporated. It can be seen that the 

performance is improved by about 1.5 dB at high SNR. This result implies that when 

the number of transmission links increases, the enhancement induced by the suggested 

power allocation scheme will be increased. 
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Figure 4.4: Evaluations of upper bounds for the lower bound of average overall BER in 
DSTTD systems with QPSK modulation 

 
Figure 4.5: Average BER performances of DSTTD systems with different receivers 
with QPSK modulation 
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Figure 4.6: Average BER performances of DSTTD systems with the QR receiver with 
different modulation orders 

 
Figure 4.7: Average BER performances of triple STTD systems with the QR receiver 
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4.5 Summary 
In this chapter, we examine the statistical properties of R matrix in QR 

decomposition for DSTTD systems which is a 2  spatial multiplexing MIMO 

systems combined with Alamouti space-time transmit diversity technique. Although the 

pdf of  is easily determined, the exact probability distribution of 

 is very difficult to determine. In this case, we model  as a 

gamma distribution for  is related to chi-square random variables, and 

verify this conjecture with numerical examples. Since the approximated pdf is quite 

close to the statistic of , it is possible for us to follow the derivations for 

spatial multiplexing systems in the previous chapter. The design criterion of the power 

allocation scheme proposed for DSTTD systems is similar to that for spatial 

multiplexing systems. Due to the properties of Alamouti space-time transmit diversity, 

the power loading factors for the transmitted symbols space-time encoded together are 

identical. From computer simulations, it is shown that the BER performances of 

DSTTD systems are improved when the power allocation scheme is employed. 

Furthermore, the proposed power allocation scheme can be extended to multiple STTD 

systems, since multiple STTD systems can be considered as spatial multiplexing 

systems with space-time transmit diversity adopted to each sub-stream. The 

improvements are more significant when the number of transmitted sub-streams 

increases. 

2×

11 22R R=

33 44R R= 33 44R R=

33 44R R=

33 44R R=
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Chapter 5  
 
Conclusion 
Equation Section 5 
 
 

In this thesis, we consider spatial multiplexing MIMO systems and DSTTD 

systems over i.i.d. Rayleigh fading channels, and propose a symbol power allocation 

scheme to minimize the overall average BER performance. In order to achieve a BER 

performance compromise between linear equalization and joint maximum likelihood 

(ML) receiver, we propose to adopt QR-based successive detection with proper symbol 

power allocation. In Chapter 2, we introduce the models of spatial multiplexing 

systems and DSTTD systems. The QR decompositions of the channel matrices for 

spatial multiplexing systems and DSTTD systems are given in Section 2.3. The 

statistical property of diagonal entries of R matrix for spatial multiplexing systems and 

the special structure of R matrix for DSTTD systems are described. Following that, the 

detecting procedures for spatial multiplexing systems and DSTTD systems with the QR 

receiver are demonstrated. 

In Chapter 3, the analysis of BER performance of spatial multiplexing systems is 

given. It is shown that the lower bound for the average BER, although obtained through 

considering the error propagation free case, is very simple to characterize, and is 

closely related to the upper bound of the block error rate even when error propagation 

occurs. Based on this fact and the given statistical property for spatial multiplexing 

systems stated in Section 2.3.2, considering the robustness to channel variations, an 
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optimal power allocation scheme for spatial multiplexing systems is proposed to 

minimize the overall BER averaged with respect to the channel distribution. The 

simulation results show that the BER performance of spatial multiplexing systems is 

improved with the proposed power allocation scheme adopted. In Chapter 4, although 

the distribution of the first entry of the R matrix for DSTTD is determined, the exact 

distribution of the other entry is very difficult to verify. Observing that the latter mainly 

consists of chi-square random variables, a natural conjecture is to use the gamma 

function to estimate its pdf; the result shows that the approximation is quite close. 

Therefore, the power allocation scheme proposed for spatial multiplexing systems can 

be extended to DSTTD systems. Computer simulations confirm that the proposed 

power loading factors can improve the overall average BER performance of DSTTD 

systems. 

The study presented in this thesis has developed a power allocation scheme for 

spatial multiplexing systems and DSTTD systems by minimizing the overall average 

BER. We derive the closed-form upper bound of the overall BER averaged with respect 

to the channel distribution of spatial multiplexing systems. Instead of considering the 

channel realization, we only need to know the receive SNR to decide which set of 

power loading factors to adopt. Furthermore, the channel distribution of DSTTD 

systems or even multiple STTD systems is also approximated so that the design 

procedure can be applied to multiple STTD systems. As a remark, the proposed power 

allocation scheme is designed under uncorrelated channels. The distribution of the R 

matrix may change under correlated channels, and thus the upper bound may have 

different forms. On the other hand, the space-time code used in DSTTD systems is 

Alamouti code. It is of interest to see if it is possible to design the power allocation 

scheme in spatial multiplexing systems with transmitted symbols encoded by more 

advanced OSTBCs with the QR receiver in a similar way. 
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Appendix A 
 
Proof of Lemma 2.4 
Equation Chapter 2 Section 1 
 
 

From [19], we follow the proof and revise the error. First, let us define the 

Hermitian of the channel matrix as follows: 

 1 3 5 6

7 82 4

.
H H

H
H H

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

H H H H
H

H HH H
�  (A.1) 

We introduce the following two observations which are useful to complete this proof. 

1. A unitary matrix  with 2  Alamouti sub-blocks is shown by 1Q 2×

 

5 6

5 6
1 1

6 6 5 6

1
,

H

Hd d −

⎡ ⎤−⎢ ⎥= ⎢ ⎥
⎢ ⎥+ ⎣ ⎦H H

H H
Q

H H H H
 (A.2) 

and it satisfies that 
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5 6 2 21
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d d

d d −
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 (A.3) 

2. A unitary matrix  with 2  Alamouti sub-blocks is shown by 2Q 2×
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2 2
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,
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and it satisfies that 
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In the above expressions, 
5

2 2

11 12d h h= +H , 
6

2 2

21 22d h h= +H , 

7

2 2

13 14d h h= +H , and 
8

2

23 24d h h= +H
2

8H

6 ⎥
⎥

. It is noted that they are determinants 

of , , , and , respectively. That is, 5H 6H 7H 8H

  (A.6)    and 
5 6 7 85 6 7det( ), det( ), det( ), det( ).d d d d= = = =H H H HH H H

Now we start to derive the proof and assume that there is a matrix with Alamouti 

sub-blocks, e.g., . With the observations, we first select 5

7 8

H
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H H
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H H
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and the first step is given by 
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where  is a positive constant defined by γ
5 6

d dγ = +H H . After that, let us define 

the matrix , and the result will be reduced to 1
9 7 6 8 6 5

−= − +H H H H H H 6H

 ( ) ( )
2 2
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Then, we choose 
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and the second step is given by 
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According to the fundamental properties of Alamouti structure,  is also an 

Alamouti block; i.e., . Therefore, Equation (6.11) can be 

written as 

9H

99 9 9 2 2det( )H d= = HH H H I I

 
( ) 9

2 2

7 5 8 6 2

.1 H H
d

γ

γ γ

⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥+⎢ ⎥
⎣ ⎦

H

I 0

H H H H I

⎥
⎥  (A.12) 

We arrange the above two processes as follows: 
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Let us combine  and  as 1Q 2Q
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and define the lower triangular matrix 
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The result (6.13) can thus be translated into . We rewrite  as 

 and obtain  equivalently, where 

H =H Q L H =H Q L

( )H H H H= = =H Q Q H L R =H QR
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and 
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The proof is completed and it is easy to check that  preserves the structure of  

Alamout’s sub-blocks and the right upper part of  is an Alamouti block as well. 

Q 2 2×

R

It is obvious that the diagonal entries of  are related to the determinants of the 

partitioned matrices. Because  is a unitary matrix, the determinant of  is equal to 

one. It is easy to see that the determinant of  is equal to the determinant of , 

which is the product of the diagonal entries of  since  is an upper triangular 

matrix. Then we calculate the determinant of , and find the following relationship 

R

Q Q

H R

R R

R
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between  and : R 9H
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From the definition of (6.1), we have the relations as follows: 
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Finally, we can rewrite  as R
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