

國 立 交 通 大 學

電子工程學系電子研究所

博 士 論 文

適用於功率受限視訊編碼系統之運動估測演算法

與積體電路架構設計

Algorithm and Architecture Design of Motion

Estimation for Power Constrained Video Coding

Systems

 研 究 生 ：王 士 豪

 指導教授 ：蔣 迪 豪

中華民國 九十六 年 九 月

適用於功率受限視訊編碼系統之運動估測演算法與積體

電路架構設計

Algorithm and Architecture Design of Motion Estimation

for Power Constrained Video Coding System

研 究 生：王 士 豪 Student：Shih-Hao Wang

指導教授：蔣 迪 豪 博士 Advisor：Dr. Tihao Chiang

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所

博 士 論 文

A Dissertation

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in

Electronics Engineering

September 2007

Hsinchu, Taiwan, Republic of China

中華民國 九十六 年 九 月

推 薦 函

主旨：推薦電子工程學系博士班學生王士豪，舉行博士班學位口試。

說明：本人所指導之博士班學生王士豪，業已通過資格考試，並完成本校電子工程學系

電子研究所博士班規定之學科課程及論文研究訓練。王君主要從事視訊編、解碼

演算法與積體電路架構設計之研究工作，其論文「適用於功率受限視訊編碼系統

之運動估測演算法與積體電路架構設計」（Algorithm and Architecture Design of
Motion Estimation for Power Constrained Video Coding System）主要包含兩項應用

於功率受限編碼系統上的運動估測技術。其中第一項技術『低功率、低頻寬需求

之二元化運動估測』 (Low power and bandwidth efficient binary motion
estimation) ，利用二元化的影像作為運動估測準則，並提出其最佳化的硬體架構

設計，此技術可達到低於 1 mW 的功率消耗需求，並節省 I/O 頻寬存取需求達

54.3%以上。第二項技術為『具功率感知之功率可調適性之疊代二元化運動估測』

(Power adaptive motion estimation using iterative binary searches)，此技術為一套新

穎的疊代二元化運動估測，基於第一項二元化搜尋技術，發展出可自我感知、自

我調節之功率可調適運動估測。相較於其他可調適運動估測技術，所提出的方法

具有較佳的功率可調適能力、低頻寬需求，與較佳的功率-失真(Power-Distortion)
特性曲線。這兩項技術業已發表或投稿於著名國際期刊及會議論文。其中，第二

項技術並完成晶片中心(CIC)的晶片下線與測試。
 王君在視訊編、解碼演算法與架構設計之研究工作並有多項貢獻與論文發

表。在 H.264/AVC 解碼器系統設計方面，其提出一套最佳化的 H.264/AVC 解碼

器參考軟體，架構於以 ARM RISC 為核心的硬體平台上，實現軟、硬體共設計

之 QCIF 即時解碼器系統設計。此方面的研究，在 Google 學術搜尋，兩篇論文

被引用共 21 次。在視訊轉碼器設計方面，其提出一套『低複雜度碼率-失真最佳

化之多層位元流技術』，應用於異質轉碼(heterogeneous transcoding)系統上，可達

到 1.4-8.6 dB PSNR 改善。在數位浮水印技術方面，王君提出一個新的數位浮水

印嵌入技術，作為數位影像版權的保護。此方法的貢獻在於利用統計性的能量差

異法，在面對各種不同的幾何與非幾何攻擊時，仍能有效維持其統計上能量差

異，以保存所嵌入的數位浮水印，且不需要原始影像作為解出數位浮水印的憑

據。此部分研究，刊登於著名期刊 IEEE Trans. Image Processing，並於 Google
學術搜尋，被引用達 21 次。王君另於 2001-2003 期間，積極參與 MPEG 國際標

準會議的參照軟體(Optimized MPEG-4 Simple Profile reference software)撰寫與維

護工作，提出多項 MPEG 貢獻文件，並獲 MPEG 會議的書面表揚。
總體而言，王君論文有相當之學術貢獻與重要性，且其積極而深入的參與國

際標準會議之參照軟體撰寫，使其貢獻成為標準的一部份，兼具實用之價值。以

下詳列其所發表之論文（依代表性排序）：

期刊論文

1. S.-H. Wang, W.-H. Peng, Y.-W. He, G.-Y. Lin, C.-Y. Lin, S.-C. Chang, C.-N. Wang, and
T. Chiang, “A software-hardware co-implementation of MPEG-4 advanced video coding
decoder with block level pipelining,” Journal of VLSI Signal Processing Systems, vol.

41, no. 1, pp. 93-110, Jan. 2005. [Google Citation: 7]
2. S.-H. Wang, W.-L. Chen, and Tihao Chiang, “An efficient FGS to MPEG-1/2/4 single

layer transcoder with R-D optimized multi-layer streaming technique for video quality

improvement,” Journal of the Chinese Institute of Engineers, vol. 31, 2008. (to be
appeared)

3. S.-C. Chang, W.-H. Peng, S.-H. Wang, and T. Chiang, “A Platform based
Bus-interleaved Architecture for Deblocking Filter in H.264/MPEG-4 AVC,” IEEE
Trans. Consumer Electronics, vol. 51, no. 1, pp. 249-255, Feb. 2005.

4. S.-H. Wang, and Y.-P. Lin, “Wavelet tree quantization for copyright protection
watermarking,” IEEE Trans. Image Processing, vol. 13, no. 2, pp. 154-165, Feb. 2004.

[Google Citation: 21]

審查中國際期刊

1. S.-H. Wang, and T. Chiang, “A power adaptive motion estimation IP core design using
iterative binary search,” IEEE Trans. Circuits and Systems for Video Technology, 2006.

2. S.-H. Wang, S. -H. Tai, and T. Chiang, “A low power and bandwidth efficient motion
estimation IP core design using binary search,” IEEE Trans. Circuits and Systems for
Video Technology, 2006.

國際會議論文

1. S.-H. Wang, W.-L. Tao, W.-H. Peng, C.-N. Wang, and T. Chiang, “Platform based
design of all binary motion estimation (ABME) with bus interleaved architecture,” Proc.
IEEE International Symposium on VLSI Technology, System and Applications, Hsinchu,
April 2005.

2. S.-H. Wang, C.-N. Wang, and T. Chiang, “A complexity aware variable-bit-depth
motion estimation,” Proc. IEEE International Conference on Consumer Electronics, Las
Vegas, Jan. 2005.

3. S.-C. Chang, W.-H. Peng, S.-H. Wang, and T. Chiang, “A platform-based de-blocking
filter design with bus interleaved architecture for H.264,” Proc. IEEE International

Conference on Consumer Electronics, Las Vegas, Jan. 2005. [Google Citation: 17]
4. S.-H. Wang, W.-H. Peng, Y. He, G.-Y. Lin, C.-Y. Lin, S.-C. Chang, C.-N. Wang, and T.

Chiang, “A Platform Based MPEG-4 Advanced Video Coding Decoder with Block
Level Pipelining,” Proc. IEEE ICICS-PCM, Singapore, Nov. 2003.

5. S.-H. Wang, and Y.-P. Lin, “Blind watermarking using wavelet tree quantization,” Proc.
IEEE International Conference on Multimedia and Expo, Lausanne, August, 2002.

MPEG 視訊標準會議文件

1. S.-H. Wang, C.-N. Wang, Yi-Shin Tung, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC
29/WG 11 M9951: AHG report on editorial convergence of MPEG-4 reference
software,” Oct. 2003.

2. S.-H. Wang, C.-N. Wang, Y.-S. Tung, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC
29/WG 11 M9632: AHG report on editorial convergence of MPEG-4 reference
software,” July 2003.

3. S.-H. Wang, C.-N. Wang, Y.-S. Tung, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC
29/WG 11 M9355: AHG report on editorial convergence of MPEG-4 reference
software,” March 2003.

4. S.-H. Wang, C.-N. Wang, G.-Y. Lin, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC 29/WG
11 M9073: AHG report on editorial convergence of MPEG-4 reference software,” Dec.
2002.

5. S.-H. Wang, C.-N. Wang, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC 29/WG 11 M8886:
Proposed text of proposed draft technical reports of ISO/IEC PDTR 14496-7 for
optimized simple profile reference software, ” Oct. 2002.

6. S.-H. Wang, C.-N. Wang, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC 29/WG 11 M8884:
AHG report on editorial convergence of MPEG-4 reference software,” Oct. 2002.

7. S.-H. Wang, C.-N. Wang, Tihao Chiang, and H.F. Sun, “ISO/IEC JTC1/SC 29/WG 11
M8603: AHG report on editorial convergence of MPEG-4 reference software,” July
2002.

8. S.-H. Wang, Y.-C. Lin, C.-N. Wang, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC 29/WG
11 M8408: AHG report on editorial convergence of MPEG-4 reference software,” May
2002.

9. S.-H. Wang, C.-N. Wang, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC 29/WG 11 M8041:
AHG report on editorial convergence of MPEG-4 reference software,” March 2002.

專利

1. M.-Y. Huang, T.-L. Su, S.-H. Wang, C.-N. Wang and T. Chiang, “MPEG-4 streaming
system with adaptive error concealment,” 美國專利，專利號 20060104366.

審查中專利

1. S.-H. Wang, L. Kohn, and T. Chiang, “Mode decision using approximate 1/2 pel
interpolation,” 美國專利. (Filed on Nov. 23, 2005)

2. S.-C. Chang, W.-H. Peng, S.-H. Wang, and T. Chiang, “A Platform Based

適用於功率受限視訊編碼系統之運動估測演算法與積體電路

架構設計

研究生: 王士豪 指導教授： 蔣迪豪 博士

國立交通大學
電子工程學系暨電子研究所

摘要

受限於可攜式行動設備之有限的電池容量，功率受限之視訊編碼系統設計逐漸受

到了重視，在此之中，以低功率和功率可調適設計為最熱門的研究主題，本論文

將以此兩主題為研究中心，以二元化搜尋技術為中心，逐步發展出兩項適用於低

功率與功率可調適視訊編碼系統之運動估測技術，這兩項技術皆包含了演算法與

積體電路架構設計。

本論文第一部份為提出一個具低功率與低頻寬需求之低功率全二元化搜尋之

運動估測(Low Power-All Binary Motion Estimation, LP-ABME)積體電路設計。低功

率與低頻寬需求為應用於行動視訊編碼應用上的兩大重要設計因素。為達到低功

率與低頻寬需求，本技術架構於一個全二元化的運動估測(ABME)演算法上，藉由

使用二元化的影像來完成運動估測，並將二元化的搜尋技術實現於金字塔式搜尋

架構(pyramid search)下，以大量地降低了運動估測運算複雜度，且二元化的影像也

降低了在 I/O 頻寬上的存取需求。為達成全二元化的運動估測(ABME)於積體電路

實現，我們提出了一個基於原二元化的運動估測(ABME)之新的低功率全二元化搜

尋之運動估測(LP-ABME)演算法與硬體架構設計。此設計具有四項重要的特色：

(1)基於 MB 管狀設計的前處理器設計，(2)高硬體運算效率的二元化搜尋架構，(3)

平行化的 8x8 與 16x16 搜尋架構，(4)可平行處理雙向預測搜尋架構。第一項技術

降低了對 I/O 存取頻寬上的需求，另三項則降地了運算複雜度與運算功率消耗。此

積體電路架構設計在 I/O 存取頻寬、效能、與功率消耗上表現出很好的效能。功率

消耗方面，執行 IPPPP CIF 30fps ，功率消耗為 763 微瓦(uW)，IPBPB CIF 30fps

則為 896 微瓦。I/O 存取頻寬方面，則可節省 54.3 至 67.1%.

本論文第二部份為提出一個具功率感知能力的功率可調適疊代二元化搜尋

(Power Adaptive Iterative Binary Search, PA-IBS)技術，目的在改善: (1)功率可調適

能力，(2)高硬體閒置，與(3)功率-失真(Power-Distortion)效能。舊有功率可調適運

動估測設計，使用了硬體遮罩的方式實現功率可調適性，卻也延伸出許多問題，

如:多餘的 I/O 存取頻寬浪費，多餘的記憶體頻寬浪費，與高硬體閒置等問題，導

致功率可調適能力降低，與不好的功率-失真效能。為解決這些問題，本論文延伸

了二元化搜尋技術的應用，發展出一套具功率可調適能力的演算法與積體電路架

構。此演算法稱之為功率可調適疊代二元化搜尋(PA-IBS)，其包含了: (1)疊代二元

化搜尋技術，與(2)內容感知之疊代迴圈控制器。疊代二元化搜尋技術使用了最多

八個迴圈的二元化搜尋，藉由疊代迴圈的應用，達到不同層次的預測品質與運算

複雜度。內容感知之疊代迴圈控制器，則藉由運動向量(motion vector)來偵測視訊

影像的運動複雜層度，以調整疊代迴圈數，並達到利用最少的迴圈達到最佳的預

測品質與運算複雜度。積體電路設計方面，則使用頻率延展(frequency scaling)技

術，將疊代迴圈數與功率消耗作一連結，藉由調整疊代迴圈數，來控制功率消耗

與功率可調適能力，並解決高硬體閒置問題。實驗結果證明，相較於既有的功率

可調適設計，PA-IBS 可改善功率可調適能力達 19-125%，I/O 存取頻寬需求最高則

可降低 87.5%，同時具有較佳的功率-失真曲線。

總結，本論文提出兩個適用於低功率與功率可調適視訊編碼系統之運動估測

技術。第一個技術達成了低於 1 毫瓦(mW)的功率消耗，和高於 50%的 I/O 存取頻

寬節省。第二個技術則改善了現有功率可調適設計在功率可調適能力、高硬體閒

置，與不好的功率-失真(Power-Distortion)效能等方面的問題。在功率受限視訊編

碼系統上面的應用，提供了顯著的改善與更大的應用空間。

Algorithm and Architecture Design of Motion Estimation for
Power Constrained Video Coding Systems

Student: Shih-Hao Wang Advisor: Dr. Tihao Chiang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

The design of power constrained video coding systems has drawn attentions in mobile

devices or portable terminals due to the limited battery energy. Among the power

constrained video coding applications, low power and power adaptive designs are two

of the most attractive design topics. Inside the video coding system, motion estimation

(ME) takes most of computation powers, and becomes the design bottleneck of the low

power and power adaptive video coding systems. This thesis contains 2 major parts to

address the design issues of low power and power adaptive motion estimation.

 The first part is to propose a new Low Power-All Binary Motion Estimation

(LP-AMBE) hardware design for motion estimation to achieve low power and bus

bandwidth efficiency. Low power and high bus bandwidth efficiency are the two key

issues for portable video applications. To address such issues, we first study an efficient

algorithm called all binary motion estimation (ABME), and analyze its architecture

issues in operational flow and bus access. Then, we propose an hardware architecture

for ABME with four new features (1) macroblock level pre-processing (2) efficient

binary pyramid search structure (3) parallel processing of 8x8 and 16x16 block searches

(4) parallel processing of bi-directional search. Such architecture leads to a superior

performance in bus access, speed and power. The experiments show that the power

consumption is as low as 763uW for IPPPP CIF 30fps and 896uW for IPBPB CIF 30fps.

The bus bandwidth savings are 54.3% for P-frame search and 67.1% for B-frame

search.

The second part is to propose a new Power Adaptive Iterative Binary Search

(PA-IBS) design for motion estimation to improve the power adaptation performance.

In the prior power adaptive ME designs that use the hardware masking approach, there

exist design overheads such as redundant bus access, unnecessary on-chip memory

access, and poor hardware utilization that lead to poor power adaptation performance.

Our proposed power adaptive solution addresses these issues with a new ME algorithm

called Iterative Binary Search (IBS) and the associated hardware architecture called

PA-IBS. The IBS uses eight binary searches where each search can be either an

independent search or one of the eight joint searches. Hence, redundant bus and on-chip

memory access are eliminated. A Content Adaptive Mechanism (CAM) is used to

dynamically select the number of iterations on a macroblock basis. The PA-IBS uses the

frequency scaling technique to provide a link between the number of iterations and the

power consumption level. Therefore, it reduces hardware idling and enhances hardware

utilization. Experiments show that the PA-IBS delivers lower peak power consumption,

better power adaptation performance and lower bus bandwidth requirement as

compared to the prior hardware masking based designs such as sub-sampling or least

significant bits truncation methods. As compared to those approaches, the power

adaptation performance is improved up to 19-125% and bus bandwidth is saved up to

87.5%.

In conclusion, we have presented two algorithm and architecture designs of motion

estimation for different power constrained video coding applications, and showed the

advantages in low power consumption and bus bandwidth requirements as compared to

prior works. The proposed power adaptive design is also shown to have better power

adaptation ability and better power-distortion performance. Moreover, the proposed low

power and power adaptive ME designs can be applied to upcoming Scalable Video

Coding (SVC) standard for further complexity and power reduction.

誌 謝

從博士班入學到現在拿到學位，回想這幾年的點點滴滴，彷彿又回到這些記憶的

時光隧道‧一開始為了從事多媒體視訊方面的研究，轉換了研究領域，在蔣教授

的指導與俊能學長的帶領下，開始了我的博士班研究。接著，進入了 commlab

這個大家庭，認識了很多厲害的學長姐、學弟妹，大家一起作研究、討論功課、

游泳、烤肉、參加電子週的比賽..等等。還有那超強的 commlab 影音資料庫，提

供了在無數研究作不下去的夜晚時，有打發時間的娛樂。在文孝學長的幫助下，

慢慢走向了作 IC design 這個領域。在那無數的週末，跟自己帶的碩士班學弟們，

討論如何作研究，同時也學習了自己帶 project 的經驗。

能完成博士學位，首先必須要感謝蔣迪豪教授。從收我進 group 開始，蔣老師就

提供了我無數的機會去擴展自己的研究領域與國際視野，同時也提供了我無數的

學習機會與成長。從參加國際會議、到園區公司去作計畫結案報告、自己帶學弟

作計畫等等，這些都會是很寶貴的經驗。而在學校的研究之外，工作的選擇上也

給我許多建議。非常謝謝蔣老師這幾年來在各方面的幫助及鼓勵。

其次，我要謝謝 commlab 的各位成員們，特別是俊能與文孝兩位學長。俊能學長

從我進入蔣老師 group 開始，不論是在做研究或者參與計畫，都給了我很多的幫

忙與建議。從完全不懂什麼是 MPEG 到可以在上面發展演算法、作研究，俊能學

長給了我最大的幫助。在博士班後期，開始從事 IC design 這個領域，文孝學長

則是從帶領我們作 H.264/AVC 解碼器計畫開始，給了我很多的意見與想法，提醒

我很多忽略的細節。此外，項群、俊毅、鑑明、志鴻、以及所有 commlab 學長姐、

同學們，大家在學業上的討論、生活上的幫忙，都給了我對 commlab 最好的回憶。

另外，我也要謝謝我的口試委員: 交大電子系的杭學鳴教授、任建葳教授、王聖

智教授、交大電信系的張文鐘教授、清大資工系的張隆紋教授、電機系的黃仲陵

教授、中央電機系蔡宗漢教授。感謝您們在百忙之中能抽空給予我指導，也因你

們的寶貴建議使得論文能更加完備。

最後，我要感謝我的家人，包括了我們父母親以及未婚妻秋女英。感謝你們在這

幾年來的照顧、協助與包容。

謹以此論文獻給所有愛我與我所愛的人。

王士豪 2007/10/01

Contents

Table of Contents . 1
List of Figures . 4
List of Tables . 7

1 Introduction 1
1.1 Motivations . 1

1.1.1 Importance of Low Power Designs 2
1.1.2 Importance of Power Adaptive Designs 6

1.2 Power Constrained Motion Estimation Designs 7
1.2.1 Low Power Motion Estimation . 8
1.2.2 Power Adaptive Motion Estimation 11

1.3 Organization and Contribution . 14

2 Review of Power Constrained Motion Estimation Designs 16
2.1 Block Motion Estimation . 16

2.1.1 Block Matching Criterion . 16
2.1.2 Design Metrics Evaluation . 17
2.1.3 Motion Estimation Hardware Design 22
2.1.4 Memory Hierarchy . 23

2.2 Low Power Motion Estimation Designs 27
2.2.1 Low Power by Fast ME Algorithms 28
2.2.2 Low Power by Simplified Block Matching Criteria 29
2.2.3 Low Power by Efficient Hardware Architecture 30

2.3 Power Adaptive Motion Estimation Designs 31
2.3.1 Power Adaptive by Fast Algorithms 31
2.3.2 Power Adaptive by Pixel Number for Block Matching 38
2.3.3 Power Adaptive by Pixel Bit Precision 39
2.3.4 Summary of Power Adaptive Design Schemes 40

3 Bi-directional Binary Motion Estimation (BBME) 41
3.1 Introduction . 41

1

2 Contents

3.2 Problem Statement . 44
3.2.1 Review of ABME Algorithm . 44

A. Frame Level of Pre-processing 44
B. Three Levels of Binary Pyramid Search 45

3.2.2 Design Issues of ABME Algorithm 46
A. Pre-processing for Binary Images Generation 48
B. Sequential LV2 Binary Pyramid Search Structure 49
C. Support of B-frame and 8x8 Block Search 50

3.3 BBME Algorithm . 50
3.3.1 Macroblock Pre-processing Unit (MBPPU) 53
3.3.2 Efficient LV2 Search . 54
3.3.3 Parallel Processing of 8× 8 and 16× 16 Block Searches 54

3.4 Hardware Architecture . 58
3.4.1 System Architecture . 58
3.4.2 Macroblock Pre-processing Unit (MBPPU) 61
3.4.3 Three Levels of Binary Search . 62

3.5 Experimental Results and Analysis . 62
3.5.1 Rate-Distortion (R-D) Performance Evaluation 62
3.5.2 Hardware Design Performance . 66
3.5.3 Bus Bandwidth Analysis . 77
3.5.4 Comparison of ABME and BBME 81

3.6 Summary . 85

4 Power Adaptive Iterative Binary Search (PA-IBS) 86
4.1 Introduction . 86
4.2 Power Adaptation Performance . 89
4.3 Power Adaptive Iterative Binary Search (PA-IBS) Algorithm 91

4.3.1 BInary Image Preprocessor (BIP) 92
4.3.2 Iterative Binary Search (IBS) . 92
4.3.3 Content Adaptive Mechanism (CAM) 95

4.4 Hardware Design Issues . 96
4.4.1 Power Adaptation . 96
4.4.2 SOD Accumulation . 97
4.4.3 Binary Image Preprocessor . 99

4.5 PA-IBS Hardware Architecture . 102
4.5.1 System Architecture . 102
4.5.2 8×1 Line Search . 103
4.5.3 Pipelined Buffers . 104

4.6 Experimental Results and Analysis . 107
4.6.1 Evaluation of Algorithmic Performance 107

A. R-D Performance for PA-IBS without CAM 107
B. R-D Performance for PA-IBS with CAM 108

Contents 3

4.6.2 Evaluation of Hardware Performance 109
A. Chip Specification . 109
B. Evaluation on Bus Bandwidth 113
C. Evaluation on Power Adaptation Performance 114
D. Evaluation on Peak Power Consumption 114
E. Evaluation on Power-Distortion Performance 115

4.7 Summary . 122

5 Conclusions and Future Work 126
5.1 Conclusions . 126
5.2 Future Work . 128

Bibliography 130

List of Figures

1.1 Power consumption of encoder modules [7]. 4
1.2 Estimated ME power consumption for different video resolutions. 5
1.3 I/O bandwidth for different video resolutions. 5
1.4 Battery discharging curve [13]. 7
1.5 Lifetime improvement by power adaptive designs. 8
1.6 Block diagram of portable multimedia player based on TI DaVinci platform

[14]. 9
1.7 Power management IC for DaVinci technology based portable electronics

[15]. 9

2.1 Block motion estimation. 18
2.2 Video encoder hardware architecture with ME module. 23
2.3 Motion estimation hardware architecture. 24
2.4 Search window data reuse. (a)Level C (b)Level D. 26
2.5 Hexagonal plot of 6 design metrics for different ME hardware architectures

evaluation. (a) Miyama’s work [36] (b) Chao’s work [30]. 34
2.6 Hexagonal plot of 6 design metrics for different ME hardware architectures

evaluation. (a) Chen’s work [26] (b) Huang’s work [37]. 35
2.7 Hexagonal plot of 6 design metrics for different ME hardware architectures

evaluation. (a) Wang’s work [35] (b) Shen’s work [39]. 36
2.8 Hexagonal plot of 6 design metrics for different ME hardware architectures

evaluation. (a) Yap’s work [40] (b) Ou’s work [67]. 37

3.1 Motion predictors for LV2 search. 47
3.2 Functional block diagram of a generic video encoder by adopting ABME

algorithm. 51
3.3 The processing flow of pre-processing module in ABME algorithm. 51
3.4 The processing procedure for ABME and BBME flow. (a) ABME flow

[41] (b) BBME flow. 52
3.5 The pre-processing flow in macroblock pre-processing unit. (a) K=30 (b)

K=18. (The shadow area is padding pixels) 56

4

List of Figures 5

3.6 The LV2 processing flow. (a) original LV2 flow in ABME (b) new LV2
flow in BBME. The number represents the processing order. 57

3.7 System architecture for the BBME design. 63
3.8 Architecture of macroblock based pre-processing unit. 64
3.9 Shared processing unit for three levels of binary pyramid searches. 65
3.10 R-D curves for full search (FS), ABME [?], and BBME designs with Fore-

man sequence. (a) IPPP (M=1) (b) IBPBP (M=2). 68
3.11 R-D curves for full search (FS), ABME [?], and BBME designs with Mo-

bile sequence. (a) IPPP (M=1) (b) IBPBP (M=2). 69
3.12 Visual quality comparison for full search and BBME with Foreman 32th

frame. (Left: 34.73dB for full search, Right: 34.39dB for BBME.) 70
3.13 Visual quality comparison for full search and BBME with Foreman 99th

frame. (Left: 34.74dB for full search, Right: 34.36dB for BBME.) 70
3.14 Visual quality comparison for full search and BBME with Foreman 148th

frame. (Left: 34.99dB for full search, Right: 34.63dB for BBME.) 71
3.15 Hexagonal plot of 6 design metrics for different ME hardware architectures

evaluation. (a) Miyama’s work [36] (b) Chao’s work [30]. 73
3.16 Hexagonal plot of 6 design metrics for different ME hardware architectures

evaluation. (a) Chen’s work [26] (b) Huang’s work [37]. 74
3.17 Hexagonal plot of 6 design metrics for the propose BBME design. 75
3.18 Hexagonal plot of 6 design metrics for different ME hardware architectures

evaluation. (a) Yap’s work [40] (b) Ou’s work [67]. 76
3.19 Pipeline timing of data movement and motion search. 82

4.1 Power adaptation curves for prior arts [56, 57, 58]. 91
4.2 Functional block diagram of a generic video encoder with power adaptive-

iterative binary search (PA-IBS). 94
4.3 Processing procedure of the power adaptive-iterative binary search (PA-

IBS) algorithm. 94
4.4 Partitioned 8×8 regions for z-th binary search window under search range

of ±16. 99
4.5 Block diagram of PA-IBS architecture. 105
4.6 Architecture of line based search engine. 106
4.7 Output data timing from line based search engine to the pipelined buffers

for φ iterations of binary searches. 106
4.8 Temporal distribution of the target number of iterations (φ) for the PA-IBS

algorithm. (a) Foreman with 300 fames (b) Flower&Garden with 250 frames.109
4.9 Temporal distribution of PSNR and coding bits for the PA-IBS algorithm

with and without the CAM on Foreman sequence. 110
4.10 Chip photo. 115
4.11 Comparison of bus bandwidth for the PA-IBS and conventional power adap-

tive designs with the hardware masking approach. 116

6 List of Figures

4.12 Comparison of the power adaptation performance for the PA-IBS and prior
power adaptive designs. 117

4.13 Hexagonal plot of 6 design metrics for different ME hardware architectures
evaluation. (a) Yap’s work [40] (b) Ou’s work [67]. 120

4.14 Hexagonal plot of 6 design metrics for different ME hardware architectures
evaluation. (a) PA-IBS (CAR=1/8) (b) Chen’s work [26]. 121

4.15 Power-Distortion curves for power adaptive designs. 123

List of Tables

1.1 Analysis on the power consumption for the state-of-the-art video encoder
chip designs. 3

1.2 Data access bandwidth in one macroblock (MB) for full search. (SR=search
range). 4

1.3 I/O access bandwidth for different image resolutions. 4

2.1 Required memory size and data reuse ratio for data reuse schemes of Level
C and Level D. 27

2.2 Evaluation of low power designs using design metrics. 28
2.3 Evaluation of design metrics for low power designs (Group 1 and 2). 32
2.4 Evaluation of design metrics for low power designs (Group 3). 33
2.5 Summary of three groups of complexity adaptive ME works. 40

3.1 Evaluation of the pre-processing unit design schemes for pyramid based
search. 49

3.2 Comparison of different K values for macroblock based pre-processing unit. 53
3.3 Evaluation of the ABME and BBME flow for block 8×8 and 16×16 searches

in LV3. 55
3.4 Comparison for serial and parallel architecture. 61
3.5 R-D performance for full search (FS), ABME algorithm (ABME)[35] and

the BBME algorithm at the bitrate of 256 kilo bps (N=300). 66
3.6 R-D performance for full search (FS), ABME algorithm [35] and the BBME

algorithm at the bitrate of 512 kilo bps (N=300). 67
3.7 R-D performance for full search (FS), ABME algorithm [35] and the BBME

algorithm at the bitrate of 1024 kilo bps (N=300). 67
3.8 Gate count and execution cycles for each module of our design. 72
3.9 Summary of cycles of data movement for P-frame and B-frame searches. . . 77
3.10 Performance comparison with state-of-the-art designs. 78
3.11 Design metrics evaluation for the state-of-the-art low power designs. 79
3.12 Design metrics evaluation for the state-of-the-art low power designs. 80

7

8 List of Tables

3.13 Bus bandwidth analysis for conventional 8-bit ME scheme and the pro-
posed design (Search range = [-16, +15]). 83

3.14 Comparison of prior ABME design [35] and the proposed BBME design. . 84

4.1 A summary of power adaptive motion estimation designs. 88
4.2 Filters used to generate binary images. 95
4.3 Analysis of hardware requirement for four region sizes. 100
4.4 Memory index for the partitioned regions in search range of ±16 (z = iter-

ation index from 0 to 7). Each word is 64 bits. 100
4.5 Evaluation of the pre-processing unit design schemes for PA-IBS. 101
4.6 R-D performance for three power adaptive algorithms as compared to full

search (LSB = LSB truncation, SUB = sub-sampling, IBS = iterative binary
search). 111

4.7 Complexity reduction for PA-IBS algorithm with CAM as compared to
PA-IBS without CAM. 112

4.8 Chip design specification of PA-IBS. 116
4.9 Comparison of the power adaptive designs. 117
4.10 Comparison of H.264/AVC ME hardware designs. 118
4.11 Evaluation of design metrics for low power designs (Group 3). 119
4.12 Power-Distortion performance for power adaptive designs. 124

Chapter 1

Introduction

1.1 Motivations

With the rapid development of communication techniques and the popularity of mobile

devices, vendors are providing more and more content services for end users. These con-

tent services include Digital TeleVision (DTV), Multimedia Messaging Services (MMS),

mobile TV programs, MP4 movie/MP3 music playing, and video recording applications

on Digital Still Camera (DSC), etc. Among these applications, video encoding/decoding

applications are boosting the demands since the mobile devices are more powerful now

than ever before to process heavier duty tasks such as video recording and compression.

However, these devices are still powered by batteries and the battery power is still limited.

Hence, developing the video coding application under power constraints to have efficient

power usage for longer battery life is becoming important.

1

2 Chapter 1: Introduction

1.1.1 Importance of Low Power Designs

The video coding applications for mobile devices draw attentions in designing the video

coding system in a more power efficient way. The most popular applications are to design a

video coding system by minimizing its power for longer battery life. This design approach

for power minimization is referred to as low power designs[34, 35, 36, 37, 38, 39, 40].

When the power consumption is reduced, the battery life can be lifted.

We survey the MPEG-related encoder chip designs in the academic or industrial areas

[19, 7, 8, 9, 10, 11, 12] and summarize their design information in Table 1.1. The power

consumption for the encoder chips is in the range of 600 milli-Watt (mW) to 4.2 Watt(W).

Inside the encoder, the power consumption for the ME module will also increase to 1 2 W

when the video resolutions increase to HDTV 720P (1280×720) or 1080I (1920× 1080).

This shows the importance of low power ME designs, especially for the high resolutions of

video coding applications.

Kumaki et al. [7] further analyze the power consumption of each module in their en-

coder chip design. The power consumption for motion estimation (ME), DCT/Q/IQ/IDCT,

VLC, video in/out, SDRAM interface, and clock distribution are 39, 15, 5, 3, 8, and 22%,

respectively, in which ME and the DRAM access take around 50% of the total encoder

power (i.e. 750mW for D1 720x480 30fps under 0.35µm process). Fig. 1.1 shows the

distribution of power consumption for each of the modules in [7]. After scaling it image

resolution from D1 (720×480) to CIF, the power consumption for the ME is around 15

mW.

When image resolution and search range become larger, the power consumption for

the ME becomes unacceptable. Fig. 1.2 plots the estimated power consumption of ME for

Chapter 1: Introduction 3

Table 1.1: Analysis on the power consumption for the state-of-the-art video encoder chip
designs.

Mizuno [19] Kumaki [7] Huang [46]
Video standard MPEG-2 MPEG-2 H.264/AVC
Resolution 720×480 720×480 720×480 and 1280×720
Encoder power 1.5W/0.35µm 0.7W/0.13µm 581mW/0.18µm (D1

with 4 references), and
785mW/0.18um (720P with
1 reference)

Fujitsu [9] Zoran [10] Sanyo [11] TI [12]
Video standard H.264/AVC H.264/AVC H.264/AVC H.264/AVC
Resolution 1080I 720P 1080P 720×480
Encoder power 750mW/0.09µm n.a. 1 4.2W/n.a. n.a.

1not available

different search ranges and image resolutions. From this Figure, when image resolution

increases from CIF to HDTV 1080I60, the power consumption will increase from 15 mW

to 19.6 W, which is a huge power consumption.

When image resolution and search range become larger, the I/O bandwidth also in-

creases very quickly. Table 1.2 analyzes the I/O access bandwidth in one macroblock.

Table 1.3 lists the I/O bandwidth for different search range and image resolution, and the

I/O bandwidth is plotted in Fig. 1.3. From this Figure, when image resolution increases

from CIF to HDTV 1080I60, the I/O bandwidth will increase from 13.2 mega bytes/sec

to 642.5 mega bytes/sec. The huge I/O bandwidth cause more power consumption and

become another ME design issue.

The issues of high power consumption and high I/O bandwidth shows the motivations

for the low power ME designs.

4 Chapter 1: Introduction

Table 1.2: Data access bandwidth in one macroblock (MB) for full search. (SR=search
range).

Scheme In/out data Full search
P-frame current block 16×16

reference block 16× (16 + (SR + 2)× 2)
Motion vectors 4 (bytes/MV) × 5 (MVs)
Total (bytes/MB) 596+32×SR

B-frame current block 16×16
reference block (16× (16 + (SR + 2)× 2))× 2
Motion vectors 4 (bytes/MV) × 5 (MVs)
Total (bytes/MB) 936+64×SR

Table 1.3: I/O access bandwidth for different image resolutions.

I/O bandwidth
(Mbytes/s)

CIF 30fps,
SR=±16

CIF 30fps,
SR=±32

D1 30fps,
SR=±32

HDTV
720P 30fps,
SR=±32

HDTV
1080I 60fps,
SR=±64

Full search 13.2 19.3 65.6 175.0 642.5

Figure 1.1: Power consumption of encoder modules [7].

Chapter 1: Introduction 5

Figure 1.2: Estimated ME power consumption for different video resolutions.

Figure 1.3: I/O bandwidth for different video resolutions.

6 Chapter 1: Introduction

1.1.2 Importance of Power Adaptive Designs

Another approach for power constrained video applications is to design with config-

urable power modes for different demands from low power to high quality applications.

Such a design approach is referred to as power adaptive designs [45, 46, 47] or power

aware designs [59, 5, 56]. The power adaptive designs can adapt the configuration to a

suitable battery status manually or automatically considering the video content variations,

and the power and video quality tradeoff [5]. That means the power adaptive designs have

wider application range to adapt the power consumption and video coding quality to dif-

ferent application scenarios.

Fig. 1.4 shows the discharging curve of the 700 mAh AA NiCad battery [13]. Similar

discharging curves can be observed for different types of batteries [13]. With the constant

loading, the power discharging curve is shown in Fig. 1.5. Under this power discharging

curve, a low power design will stop at T1 since the remaining power is under its operational

power. However, a power adaptive design can adapt to the real battery power status by

adjusting its power consumption to extend its lifetime to T2 with ∆T lifetime improvement.

The lifetime improvement show the motivations for the power adaptive ME designs.

Fig. 1.6 shows how an power adaptive design works on a battery operated multime-

dia system. This system is built on TO DaVinci platform. For power adaptive applica-

tions, this system builds an power management mechanism to control the power consump-

tion of LCD, DSP/CPU, and I/O peripherals by detecting the battery status. As shown in

Fig. 1.7, the power management mechanism uses 3 step-down converters to adjust the volt-

age of DSP/CPU, memory and I/O peripherals for 32 levels of power consumptions (i.e.

0.8V 1.6V, step=0.025V). The power control signal is via I2S communication protocol. The

Chapter 1: Introduction 7

Figure 1.4: Battery discharging curve [13].

power adaptive ME can dynamically adjust its power consumption according to the control

signal.

1.2 Power Constrained Motion Estimation Designs

The power constrained motion estimation design has two major applications: (1)low

power design, and (2)power adaptive design. Low power design is to minimize the power

consumption for ME with acceptable quality loss. On the other hand, the power adaptive

design is to achieve a good power and video quality tradeoff to provide best quality under

the same power consumption or minimal power consumption under fixed video quality. In

this thesis, we will discuss the design challenges and our solutions.

8 Chapter 1: Introduction

Figure 1.5: Lifetime improvement by power adaptive designs.

1.2.1 Low Power Motion Estimation

Motion estimation (ME) is the most computationally expensive module in multimedia

compression standards such as MPEG-1/2/4 and H.26x. For portable video applications,

low power and efficient bus access are two major design goals [42]. The huge power

consumption from ME needs to be reduced to extend battery life. The ME is also a data

intensive module. It moves huge data for pattern matching to find the best predicted block

with minimal distortion for motion compensation. The amount of data movement increases

proportionally to the square of search range, and becomes the performance bottleneck for

System-on-Chip (SoC) designs due to the limited available bus bandwidth. Hence, an

efficient data movement scheme via bus is another key design issue for portable video

applications.

Chapter 1: Introduction 9

Figure 1.6: Block diagram of portable multimedia player based on TI DaVinci platform
[14].

Figure 1.7: Power management IC for DaVinci technology based portable electronics [15].

10 Chapter 1: Introduction

To investigate low power ME designs, most of them are developed based on fast search

algorithms [34, 35, 36, 37, 38] or low cost full search architectures [39, 40]. These fast al-

gorithms include three-step search (TSS) [38], gradient descent search (GDS) [36], global

elimination search [37], binary search [34, 35], etc. For low power or low cost full search

architectures, one-dimensional (1-D) systolic array is the most widely used architecture

[33]. Among these designs, binary search [34, 35] has both advantages of low computa-

tional complexity and low bus bandwidth requirement. The reason is it reduces the pixel

precision from eight bits to one bit for block matching. Such a search strategy can also be

viewed as a kind of feature matching with binary images. Therefore, in this paper, we de-

velop our low power and bandwidth efficient ME design based on a binary pyramid search

algorithm called All Binary Motion Estimation (ABME) [41].

Although ABME [41] is a low complexity and bandwidth efficient algorithm, it is not

well optimized for VLSI implementation. We face the hardware design challenges in (1)

image pre-processing to form the binary image (2) low power and bus bandwidth efficient

architecture for binary pyramid search (3) support of bi-directional (or called B-frame) and

8x8 block searches. We solve these design issues in the proposed hardware architecture.

Firstly, we propose a new pre-processing flow for binary image generation at the mac-

roblock (MB) level instead of the original frame level. The binary image generation and

binary motion search are integrated as an MB level pipelining to simplify redundant bus

access. Secondly, we re-examine the data flow in the three levels of binary pyramid search

structure, and modify the algorithm to remove the data dependency and inefficient opera-

tions for the second level of search. Finally, we address the design issues in B-frame search

scheme and optimize the hardware architecture to enhance the processing throughput.

Chapter 1: Introduction 11

The contributions of this work include:

• Modified ABME algorithm (referred to as BBME) for efficient VLSI implementa-

tion. The BBME algorithm is developed based on a low complexity ABME algo-

rithm [41]. We modify the ABME in the binary image generation and search method

for efficient VLSI implementation. The power consumption for video encoding with

CIF 30 fps and search range of [-16, +15] only needs less than 1 mW.

• MB level pipelining architecture for efficient bus access. We propose a new pre-

processing flow for binary image generation at MB level as opposed to frame level.

The new processing flow integrates both binary image generation and binary motion

search using MB level pipelining to avoid repeated bus access. The bus bandwidth

saving can achieve up to 67.1%.

• Bi-direction binary search architecture. We design our hardware to be able to handle

B-frame search in parallel. It reuses the same current search data to save on-chip

memory access and power. Thanks to the simple binary image matching, the gate

counts have increased twice but not as much as the conventional 8-bit designs.

1.2.2 Power Adaptive Motion Estimation

The power adaptive designs have become an important feature especially for portable

video applications [59]. Unlike the low power designs that aim for minimized power con-

sumption, the power adaptive design targets on the efficient allocation of power resources

with equal video quality and longer battery life. In multimedia compression systems such

as MPEG-1/2/4 and H.26x, the motion estimation (ME) that dominates the power con-

12 Chapter 1: Introduction

sumption of the video encoder plays a key role in the power adaptive design. We will

present a power adaptive ME design to improve power allocation and power efficiency.

In the power adaptive or complexity adaptive ME algorithms and designs [56, 57, 58,

47, 48, 49, 50, 45], we can roughly categorize them into two types according to their imple-

mentation methods. The first type is to achieve power adaptation by integration of multiple

search strategies. This type adopts 2 to 3 search strategies such as three-step search, dia-

mond search or full search to deliver different levels of search complexity. For example,

the authors in [47] proposed a three-mode complexity adaptive method by using three-step

search and enhanced four-step search for low power applications, and full search for high

quality applications. Although this type of method can provide large scale of complexity

differences, the coding quality for low power modes usually has significant quality loss.

The second type is to achieve power adaptation by simplified matching criterion. The

simplified criterion include bit-depths truncation, pixel decimation, etc. By keeping differ-

ent bit-depths or decimated pixel resolutions for block matching, the design can achieve

different levels of computational complexity and power consumption. For example, the au-

thors in [57, 58, 49] adopt the least-significant-bit truncation method to design their power

adaptive ME. Pixel bit-depth of 1 or 2 is served for low power mode, and bit-depth of 8

is served for high quality mode. This type can provide the significant power reduction by

dynamically adjusting the bit-depths, but it still suffers from significant quality loss in low

power mode.

For both of the above 2 methods, they have the same problems of significant quality

loss in low power modes. The bit-depth truncation method also has the issues in limited

pixel bit-depths and bit-plane dependency. Limited pixel bit-depths cause the difficulty for

Chapter 1: Introduction 13

fine-granularity of power adaptation. Bit-plane dependency causes the inefficiency for data

access and processing. To address these issues, a new power adaptive ME algorithm and

hardware architecture called Power Adaptive-Iterative Binary Search (PA-IBS) is proposed

with four key features:

To address such issues, a new power adaptive ME design called Power Adaptive-

Iterative Binary Search (PA-IBS) is proposed with two features:

• Frequency decomposed bit-planes design: PA-IBS algorithm adopts the frequency

decomposition method for bit-planes design. The new bit-plane design method gen-

erates directional and gradient image features in binary format, and can provide better

rate-distortion performance as compared to using pixel bit-planes.

• Finer granularity of power adaptation: The number of frequency decomposed bit-

planes is not limited to pixel bit-depths. This allows finer granularity of power adap-

tation for smooth power and video quality adjustment.

• Independent bit-plane processing: The frequency decomposed bit-planes can be in-

dividually stored in the memories and independently processed. Therefore, we can

avoid unnecessary memory access and data processing to those unrelated bit-planes.

• Frequency scaling based hardware architecture: The independent bit-plane process-

ing provides the advantage to design the hardware for processing single bit-plane

instead of all bit-planes. To full use this hardware design for single bit-plane process-

ing, the frequency scaling technique scales the working frequency with the number

of bit-planes to be processed. Such hardware architecture reduces the overheads to

design the hardware for the worst case of all bit-planes, and enhances the hardware

14 Chapter 1: Introduction

utilization and power adaptation performance.

1.3 Organization and Contribution

In chapter 2, we review the principle of motion estimation and the block matching

criteria. Toward ME hardware design, we present the design metrics for evaluation of dif-

ferent ME works. The memory hierarchy architecture is also analyzed. Then, we survey

low power and power adaptive ME designs, and categorize them into three major groups

according to their implementation methods. The frequently cited ME works are also eval-

uated according to the design metrics, and used as the reference works for our low power

and power adaptive binary motion search algorithm and architecture designs.

In chapter 3, a new Low Power ME algorithm and architecture design called Bi-

directional Binary Motion Estimation (BMBE) is proposed to achieve low power and bus

bandwidth efficiency. Low power and high bus bandwidth efficiency are the two key issues

for portable video applications. To address such issues, we first study an efficient algorithm

called all binary motion estimation (ABME), and analyze its architecture issues in opera-

tional flow and bus access. Then, we propose an hardware architecture called BBME with

four new features (1) macroblock level pre-processing (2) efficient binary pyramid search

structure (3) parallel processing of 8x8 and 16x16 block searches (4) parallel processing

of bi-directional search. Such architecture leads to a superior performance in bus access,

throughput and power.

In chapter 4, a new Power Adaptive Iterative Binary Search (PA-IBS) design for mo-

tion estimation is proposed to improve the power adaptation performance. In the prior

power adaptive ME designs that use the hardware masking approach, there exist design

Chapter 1: Introduction 15

overheads such as redundant bus access, unnecessary on-chip memory access, and poor

hardware utilization that lead to poor power adaptation performance. Our proposed power

adaptive solution addresses these issues with a new ME algorithm called Iterative Binary

Search (IBS) and the associated hardware architecture called PA-IBS. The IBS integrates

a new frequency decomposed bit-plane design method to improve the rate-distortion curve

and provide the flexibility for finer granularity of power adaptation. The IBS also exe-

cutes the multiple bit-plane searches in an either individual or accumulated manner, thus

redundant bus and on-chip memory access are eliminated. A Content Adaptive Mechanism

(CAM) is used to dynamically select the number of iterations on a macroblock basis. The

PA-IBS uses the frequency scaling technique to provide a link between the number of itera-

tions and the power consumption level. Therefore, it reduces hardware idling and enhances

hardware utilization.

In chapter 5, the concluding remarks and future works are addressed.

Chapter 2

Review of Power Constrained Motion

Estimation Designs

2.1 Block Motion Estimation

2.1.1 Block Matching Criterion

Motion estimation is to remove the temporal redundancy between neighboring frames

for efficient video coding. For practical applications, a whole frame is partitioned into

small blocks for motion compensated prediction. This block based method needs less data

for one point of block matching, and thus is widely used in video compression standards

such as MPEG-1/2/4 and H.26x.

Fig. 2.1 shows the block motion estimation flow to find the best matched block from

previous frame. The current frame IC is firstly partitioned into several L × L blocks. The

motion estimation is done by checking all the candidate blocks in the search window of the

16

Chapter 2: Review of Power Constrained Motion Estimation Designs 17

reference frame IR, and the best matched block is found with minimal matching distortion.

The distance from the current block to the best matched block is the Motion Vector (MV).

The commonly used distortion metrics are Sum of Absolute Difference (SAD) or Sum of

Square Difference (SSD). The SAD which is denoted as

SAD =
L−1∑

y=0

L−1∑

x=0

|IC(x, y)− IR(x + x0, y + y0)| (2.1)

is to calculate the difference in absolute values for each pixel data between current block

IC(x, y) and candidate blocks IR(x + x0, y + y0) in the search window. The SSD which is

denoted as

SSD =
L−1∑

y=0

L−1∑

x=0

(IC(x, y)− IR(x + x0, y + y0))
2 (2.2)

is to calculate the difference in squared values for each pixel data. The SSD can provide

better prediction results but with higher computational complexity. The SAD which can

also provide good prediction results with minor computational complexity is widely used

in video coding.

2.1.2 Design Metrics Evaluation

For evaluation of ME designs, there are several important design metrics under consid-

eration. For ME algorithm development, the design metrics for evaluation are: (1) number

of operations, (2) quality of the algorithm in terms of PSNR, (3) memory access bandwidth

[33]. However, to evaluate an ME hardware architecture, there are 6 major design metrics

for consideration as follows [33].

• Quality (Q): The quality metric is to evaluate the motion search performance be-

tween full search (FS) and fast ME (FME) algorithm. The FME algorithms reduce

18 Chapter 2: Review of Power Constrained Motion Estimation Designs

Figure 2.1: Block motion estimation.

Chapter 2: Review of Power Constrained Motion Estimation Designs 19

the computation complexity by search candidates reduction or matching criterion

simplification, etc. However, it suffers quality loss due to the complexity reduction

for poor search performance. The quality loss is usually measured by Peak Signal

Noise Ratio (PSNR) denoted as

PSNR = 10 · log10

2552

Nh∑
m=1

Nv∑
n=1

(
IC (m,n)− ÎC (m, n)

)
/ (Nh ·Nv)

 (2.3)

where IC is the current frame, ÎC(m,n) is the reconstructed image of current frame,

Nh and Nv are the frame width and height. Thus, to have a fair comparison of

different ME algorithms or hardware architectures, the quality metric (Q) is defined

as the PSNR difference between FS and FME denoted as

Quality Metric (Q) = PSNRFME − PSNRFS (dB). (2.4)

To apply this metric for fair design evaluations in later sections, the PSNR is mea-

sured under search range of [-16, +15].

• Throughput (T): The throughput metric is to measure the processing speed of the

hardware architecture to see if it can meet the real-time requirement. To quantify the

processing speed, the throughput metric is defined as the required number of cycles

for one macroblock (MB) of block matching denoted as

Throughput Metric (T) = NCMB (cycles) (2.5)

, where NCMB represents the required cycles for one MB of block matching. Al-

though the throughput is application dependent, and there is no need to over-design

the hardware, the throughput metric is still an important parameter to measure the

20 Chapter 2: Review of Power Constrained Motion Estimation Designs

hardware design performance. The more cycles the design takes to meet the real-

time requirement, the slower the processing speed. If the processing speed is too

slow, the applications are limited to those devices target on processing low resolution

of video sequences. To apply this metric for fair design evaluations in later sections,

the throughput is measured in the number of clock cycles under search range of [-16,

+15].

• Silicon area (A): The chip size is determined by the hardware silicon area and the

VLSI technology. That means the chip size is not available until the chip is really

designed. However, we can have a more efficient way to estimate the silicon area

on the architectural level by measuring the equivalent gate counts for ME designs.

The gate counts includes the number of logic gates for memories and design logics

denoted as

Area Metric (A) = AMemory + ALogic. (2.6)

, where AMemory is the silicon area for memory including Synchronous Random Ac-

cess Memory (SARM) and/or register files, and ALogic is the silicon area for all the

ME hardware logics except memories. In this thesis, we will use gate counts as the

silicon area for the evaluation of the ME designs.

• Hardware Utilization (U): Hardware utilization or hardware efficiency [33] is to

evaluate the hardware utilization ratio in percentage by calculating the active cycles

and idle cycles in designs. This metric can also be used to evaluate the design over-

heads. The higher the utilization ratio, the lower the overheads in the ME hardware

designs. That means a design is a highly efficient design if its hardware utilization

ratio is high.

Chapter 2: Review of Power Constrained Motion Estimation Designs 21

Utilization Metric (U) =
NCMB(Active)

NCMB(Active) + NCMB(Idle)
=

NCMB(Active)

NCMB

(%).

(2.7)

• I/O Bandwidth (B): The I/O bandwidth is to evaluate the amount of data transmis-

sion between off-chip memories and ME processing core. Since most of the ME

designs put frame buffers in off-chip memories, the access to the off-chip memories

is unavoidable. Thus, the I/O bandwidth will directly affect the design throughput

and hardware utilization ratio. If the bandwidth requirement is high, the ME design

will take longer cycles in waiting data before the motion search begins. This will

lead to poor throughput and poor hardware utilization since there are many hardware

idle cycles existed. In this thesis, the metric for I/O bandwidth evaluation is defined

as the number of read cycles and write cycles from off-chip memories denoted as

Bandwidth Metric (BI/O) = NCread + NCwrite (bytes) (2.8)

, where NCread and NCwrite are read and write cycles respectively. The unit is the

number of bytes required for the bus access under the search range of [-16, +15].

• Power consumption (P): Power consumption is the most critical issue in ME de-

signs, and power constrained designs have wider applications in mobile or portable

devices. To evaluate ME designs, the power consumption metric is defined as the

total power consumption for memory and hardware logics and is denoted as

Power Consumption Metric (P) = PMemory + PLogic (mW). (2.9)

, where PMemory is the power consumption for memory, and PLogic is the power con-

sumption for the ME hardware logics. In this thesis, the ME designs is evaluated

22 Chapter 2: Review of Power Constrained Motion Estimation Designs

using this power consumption metric with the unit of milli-watt (mW). To provide a

fair comparison basis, we use the normalized power consumption [26] by mapping

the original power consumption to the equivalent power consumption for 0.18 µm

denoted as

NormalizedPower Consumption Metric (Pnom) = P × 0.182

Process2
× 1.82

Voltage2
.

(2.10)

2.1.3 Motion Estimation Hardware Design

Under the consideration of the design metrics in Section 2.1.2, we are able implement

the block ME algorithm in Section 2.1.1 as an effective low power or power adaptive ME

hardware designs. Fig. 2.2 shows the functional blocks of a generic video encoder hardware

architecture with the ME module. The encoder architecture contains a RISC CPU to con-

trol the data and command flow, External Memory Interface (EMI) to access current and

reference frames which are put in external memories, dedicated co-processors including

ME module for processing acceleration.

Fig. 2.3 has detail views to the architecture of the ME module. This ME architecture

contains several local memories to store current and reference search window data, a ME

core for motion search, a control unit for data and search flow control, and the decision unit

to determine the final motion vectors. Firstly, The current and reference data for motion

search are received via memory interface (MEM IF) and then stored in local memories

(LM CUR and LM REF). After the data are ready in local memories, the controller sends

commands to get data from local memories, and sends commands to ME core starts the

motion search. The block matching results are sent to decision engine for final motion

Chapter 2: Review of Power Constrained Motion Estimation Designs 23

Figure 2.2: Video encoder hardware architecture with ME module.

vector determination.

2.1.4 Memory Hierarchy

In the ME hardware design, memory hierarchy is equally important as designing the

motion estimation core. The motion estimation core determines the overall design through-

put (T). However, the memory hierarchy architecture is related to the I/O bandwidth (BI/O),

local memory sizes (AMemory), memory access power (PMemory), and hardware utilization

24 Chapter 2: Review of Power Constrained Motion Estimation Designs

Figure 2.3: Motion estimation hardware architecture.

Chapter 2: Review of Power Constrained Motion Estimation Designs 25

(U).

The memory hierarchy in ME hardware design is related to the data reuse of the search

window [42, 16, 17]. The data reuse approaches can be roughly categorized into 4 levels

(Level A to D) according to the reuse percentage from low to high [16]. In the 4 levels, the

most commonly used approaches are Level C and Level D. They are depicted as below.

• Level C: The Level C approach is to buffer the search window data in the same MB

row as the current MB. As shown in Fig. 2.4(a), suppose current block size is L

and the search range is [-SR, +(SR-1)], the data reuse ratio is Ra = L×(L+(SR·2))
L×L

=

1 + (SR·2)
L

. The required memory buffer size is S = (L + (SR · 2))2.

• Level D: The Level D approach is to buffer the whole MB row data in the same

MB row as the current MB. As shown in Fig. 2.4(b), suppose the image width is

Nh, the data reuse ratio is Ra =
(

L×L
L×L

)
= 1. The required memory buffer size is

S = (L + SR)×Nh.

Table 2.1 summarizes the required memory size and data reuse ratio under different search

range and frame resolution for Level C and Level D schemes. Level D has better data reuse

ratio, but requires larger memory buffers as compared to Level C. Level C is more com-

monly used in the application with larger frame sizes such as High-Definition Television

(HDTV) to avoid huge memory requirements with median data reuse ratio.

In the following sections, we will survey the prior low power ME works in Section 2.2

and power adaptive ME works in Section 2.3. Then, these works are evaluated according

to the design metrics depicted in Section 2.1.2.

26 Chapter 2: Review of Power Constrained Motion Estimation Designs

(a)

(b)

Figure 2.4: Search window data reuse. (a)Level C (b)Level D.

Chapter 2: Review of Power Constrained Motion Estimation Designs 27

Table 2.1: Required memory size and data reuse ratio for data reuse schemes of Level C
and Level D.

Resolution SR Level C Level D
Memory
(bytes)

Ra Memory
(bytes)

Ra

CIF 16 2304 3 11264 1
352×288 32 6400 5 16896 1

64 20736 9 28160 1
D1 16 2304 3 23040 1
720×480 32 6400 5 34560 1

64 20736 9 57600 1
HDTV 720P 16 2304 3 40960 1
1280×720 32 6400 5 61440 1

64 20736 9 102400 1

2.2 Low Power Motion Estimation Designs

The low power ME designs from 1995 to 2007 are surveyed and categorized into 3

groups according to their design approaches. The first group is to achieve low power by

fast ME algorithms [19, 36, 37, 38, 42, 20, 21, 26]. This group of designs apply fast

ME algorithms such as three-step search (TSS), hierarchical search, etc. which reduce

the search candidates for computational power reduction. The second group is to achieve

low power by simplified block matching criterion [34, 35, 49, 52]. The commonly used

block matching criterion is SAD (eqn. 2.1) or SSD (eqn. 2.2). Although they can provide

good R-D performance, it takes lots of computational power. For power reduction, the

approaches such as using Most Significant Bits (MSB) only for block matching, or pel-

subsampling which takes partial pixel data in that block for block matching, etc. are able to

reduce computational power of the block matching operations for power saving. The third

group of designs is to archive low power by efficient hardware architectures [18, 39, 40,

22, 23, 24, 25, 26, 17, 27, 29]. For example, the one-dimensional (1-D) systolic array for

28 Chapter 2: Review of Power Constrained Motion Estimation Designs

Table 2.2: Evaluation of low power designs using design metrics.

Groups Q T A U B P
Reduced candidates X O - - - O
Simplified Matching Criteria X O - - - O
Efficient Architectures - O - - - O
O: improved
X: degraded
-: case dependent

full search or an efficient memory hierarchy architecture can effectively reduce the power

consumption. Table 2.2 shows the influences to the design metrics in Section 2.1.2 by using

these three design approaches for low power hardware designs.

In the following, we will introduce the frequently cited low power design works, and

summarize their design metrics evaluation in Table 2.3 and Table 2.4. These works are also

used as the reference to the proposed BBME design in later chapters.

2.2.1 Low Power by Fast ME Algorithms

Miyama et al. [36] proposed a sub-mW motion estimation processor core by developing

a Gradient Descent Search (GDS) algorithm with the optimized hardware architecture for

mobile applications. The GDS algorithm is to reduce the required computational complex-

ity and hardware operational cycles for ME. The Single Instruction Multiple Data (SIMD)

data path is to reduce the required clock frequency by maximizing the parallel processing

ability. The three-port SRAM acts as the data cache to reduce the power consumption.

These features make this hardware core to be able to run QCIF 15fps at 0.85 MHz with 0.4

mW power consumption. The hexagon plot is shown in Fig. 2.5(a).

Chao et al. [30] proposed a hybrid motion estimation hardware architecture to support

Chapter 2: Review of Power Constrained Motion Estimation Designs 29

Successive Elimination Algorithm (SEA) and Diamond Dearch (DS). The irregular flow

between the two fast algorithms are solved to achieve different applications for high quality

and low power. This design has 3 modes including: (1) SEA without early cut, (2) SEA with

early cut (at cycle 4208 to meet CIF 30fps at 50MHz), (3) DS without early cut. Running

on the third mode, the power consumption is 223.6 mW for CIF 30 fps with 50MHz clock

frequency. The hexagon plot is shown in Fig. 2.5(b).

Chen et al. [26] proposed a an optimal low power IME engine with a parallel hardware

architecture supporting fast algorithms and efficient data reuse (DR) called content adaptive

parallel-VBS 4SS. This design has 3 modes to achieve different video quality and power

consumption. These 3 modes are: (1)high quality mode, (2)low power mode, and (3) ultra

low power mode. The first mode is with 2 reference frame and multiple iterations to achieve

high quality. The second mode is with 1 reference frame and multiple iterations to achieve

minor quality loss and low power consumption. The third mode is with one reference

and single iteration to achieve ultra low power consumption. Running on the third mode,

the power consumption is 2.13 mW for CIF 30 fps with 13.5 MHz clock frequency. The

hexagon plot is shown in Fig. 2.6(a).

2.2.2 Low Power by Simplified Block Matching Criteria

Huang et al. [37] proposed a new block matching algorithm called Global Elimination

Algorithm (GEA) and its optimized architecture to achieve the low power design. The GEA

is developed from Successive Elimination Algorithm (SEA), but saves more SAD compu-

tations by calculating sub-sampled pixel data for early terminations. The early termination

can save more unnecessary power consumption for SAD computations. This hardware de-

30 Chapter 2: Review of Power Constrained Motion Estimation Designs

sign can achieve more than CIF 30 fps at 25 MHz with 189 mW power consumption. The

hexagon plot is shown in Fig. 2.6(b).

Wang et al. [35] proposed a low power ME design by implementing All Binary Motion

Estimation (ABME) algorithm and proposing an optimized hardware architecture for the

binary bitplane of block matching. The images for search are firstly formatted as binary

bitplane, and the block matching criterion is modified to use the binary data for pattern

matching. The pattern matching using binary data can greatly reduce the computational

complexity, thus the power consumption is saved. The power consumption for CIF 30fps

is 2.2mW. The hexagon plot is shown in Fig. 2.7(a).

2.2.3 Low Power by Efficient Hardware Architecture

Shen et al. [39] proposed a low-power full-search block matching (FSBM) motion-

estimation design for H.263+. To minimize power consumption, techniques such as gated-

clock and dual-supply voltages are used. This design runs CIF 36fps at 60 MHz, and the

power consumption is 423.8 mW. The hexagon plot is shown in Fig. 2.7(b).

Chen et al. [66] proposed an parallel-SAD tree with a shared reference buffer for H.264

integer motion estimation (IME). To solve the huge memory bandwidth required by H.264

IME, an efficient memory architecture is proposed to save 99.9% off-chip memory band-

width and 99.22% on-chip memory bandwidth. This design can run 720P 30fps solution at

108 MHz with 330.2k gate count and 208k bits on-chip memory.

Yap et al. [40] proposed a new 1-D VLSI architecture for H.264 IME. The SAD com-

putation is performed by reusing the results of smaller sub-block computations to save the

computations and power. They are combined with a shuffling mechanism within each pro-

Chapter 2: Review of Power Constrained Motion Estimation Designs 31

cessing element to process up to 41 MV sub-blocks in the same number of clock cycles.

The design supports CIF 191fps processing rate with 294 MHz, and the power consumption

is 0.008 mW/MB/fps. The hexagon plot is shown in Fig. 2.8(a).

Ou et al. [67] proposed a new 2-D VLSI architecture for H.264 IME. Using the 2-D

systolic array architecture, this design is able to complete a MB search in 256 cycles with

100% PE utilization. The power consumption is 20.48mW. The hexagon plot is shown in

Fig. 2.8(b).

2.3 Power Adaptive Motion Estimation Designs

The power adaptive or complexity adaptive works [44, 45, 46, 47, 48, 56, 49, 50, 57,

51, 52, 58, 30, 26] from 1995 to 2007 are surveyed, and categorized into three groups

according to their implementation methods.

2.3.1 Power Adaptive by Fast Algorithms

The first group is to achieve different computational complexity or power consumption

by switching between different fast ME algorithms [44, 45, 46, 47, 48, 30, 26]. Different

fast ME algorithms contain different candidate locations for search so as to deliver different

complexity level. The commonly used fast ME algorithms include full search (FS), three-

step search (TSS), sub-sampling search (SUB), diamond search, etc. For search range of

[-16, +15], FS needs to check 1024 candidates, but TSS only checks 25 candidates with

around 40 times accelerations.

For hardware design, this kind of method has implementation difficulties in switching

32 Chapter 2: Review of Power Constrained Motion Estimation Designs

Table 2.3: Evaluation of design metrics for low power designs (Group 1 and 2).

Designs Design Metrics
Miyama [36] Q (dB) -0.10

T (cycles/MB) 5681

A (logic,memory)2 250/40
U (%) n.a.3

B (bytes/MB) 10244

P (mW, µm) 2.5/0.13
Pnom (mW) 15.535

Chao [30] Q (dB) -0.00/-0.01/-0.72 (mode 1-3)
T (cycles/MB) 5886/2879/437 (mode 1-3) 6

A (logic,memory) 69/36
U (%) n.a.
B (bytes/MB) 1024
P (mW,µm) 223.6/0.35
Pnom (mW) 17.60

Chen [26] Q (dB) -0.00/-0.07/-0.55 (mode 1-3)
T (cycles/MB) 1136 (mode 3)7

A (logic,memory) 131.2/64
U (%) n.a.
B (bytes/MB) 1024 (mode 1), 256 (mode 2,3)
P (mW,µm) 16.72,4.83,2.13/0.18 (mode 1-3)
Pnom (mW) 4.08 8

Huang [37] Q (dB) -0.08
T (cycles/MB) 17849

A (logic,memory) 89.39/24.08
U (%) n.a.
B (bytes/MB) 1024
P (mW,µm) 160/0.35
Pnom (mW) 12.59

Wang [35] Q (dB) -0.19
T (cycles/MB) 283
A (logic,memory) 68.5/9.80
U (%) n.a.
B (bytes/MB) 108610

P (mW,µm) 2.2/0.18
Pnom (mW) 2.20

1CIF 30fps@6.75MHz.
2kilo gates/kilo bits
3Not available.
4Memroy hierarchy architecture :Level C (=16× 16 + 16× 48).
5Voltage=1.0V.
6The average case.
7CIF 30fps@13.5MHz.
8Voltage=1.3V.
9CIF 30fps@21.2MHz.

1032× 30 + (16× 48 + 8× 24 + 4× 12)/8 = 960 + 126 = 1086

Chapter 2: Review of Power Constrained Motion Estimation Designs 33

Table 2.4: Evaluation of design metrics for low power designs (Group 3).

Designs Design Metrics
Shen [39] Q (dB) -0.00

T (cycles/MB) 42091

A (logic,memory) 66.8/n.a.
U (%) 100
B (bytes/MB) n.a.
P (mW,µm) 353/0.60
Pnom (mW) 4.12

Chen [66] Q (dB) n.a.
T (cycles/MB) 1000
A (logic,memory) 330.2/208
U (%) 100
B (bytes/MB) 1024
P (mW,µm) n.a./0.18
Pnom (mW) n.a.

Yap [40] Q (dB) -0.00
T (cycles/MB) 4096
A (logic,memory) 61/n.a.
U (%) 100
B (bytes/MB) n.a.
P (mW,µm) 95.04/0.13
Pnom (mW) 409.97

Ou [67] Q (dB) -0.00
T (cycles/MB) 1024
A (logic,memory) 597/n.a.
U (%) 100
B (bytes/MB) n.a.
P (mW,µm) 20.48/0.18
Pnom (mW) 20.48

1CIF 36fps@60MHz.

34 Chapter 2: Review of Power Constrained Motion Estimation Designs

(a)

(b)

Figure 2.5: Hexagonal plot of 6 design metrics for different ME hardware architectures
evaluation. (a) Miyama’s work [36] (b) Chao’s work [30].

Chapter 2: Review of Power Constrained Motion Estimation Designs 35

(a)

(b)

Figure 2.6: Hexagonal plot of 6 design metrics for different ME hardware architectures
evaluation. (a) Chen’s work [26] (b) Huang’s work [37].

36 Chapter 2: Review of Power Constrained Motion Estimation Designs

(a)

(b)

Figure 2.7: Hexagonal plot of 6 design metrics for different ME hardware architectures
evaluation. (a) Wang’s work [35] (b) Shen’s work [39].

Chapter 2: Review of Power Constrained Motion Estimation Designs 37

(c)

(d)

Figure 2.8: Hexagonal plot of 6 design metrics for different ME hardware architectures
evaluation. (a) Yap’s work [40] (b) Ou’s work [67].

38 Chapter 2: Review of Power Constrained Motion Estimation Designs

between different fast ME algorithms which may cause serious design penalties in hardware

pipelining and memory access. To solve this problem, the solution is to use ME algorithms

with similar search strategies such as TSS and 4SS. For example, a configurable archi-

tecture in [48] is proposed to allow flexible switching between Predictive Motion Vector

Filed Adaptive Search Technique (PMVFAST) [53] and Enhanced Predictive Zonal Search

(EPZS) [54].

2.3.2 Power Adaptive by Pixel Number for Block Matching

The second group is to achieve power adaptation by using different pixel number for

block matching [56, 49, 50]. In conventional block matching formula such as SAD (eqn. 2.1)

or SSD (eqn. 2.1), it needs 256 subtraction and 255 addition operations to complete a

16× 16 SAD calculation. However. this type of method is to dynamically adjust the num-

ber of pixels for SAD calculations. For example, a commonly used algorithm is n : 1

sub-sampling search, which only uses 1/n pixels for the SAD calculations. With n : 1

sub-sampling search, n−1
n

subtraction and addition operations can be saved for power con-

sumption reduction.

To achieve a better switching, Pre-analyze the video content can provide good infor-

mation about the motion activities for current MB search. For low motion activities, only

a few pixels for block matching can provide similar R-D performance as the full search.

However, for complex motion activities, we need more data pixels to provide more detail

block information for better R-D performance. One example is [56], the authors explore

several feature/edge extraction methods as the masking criterion to decide the parameter

for n : 1 sub-sampling search for power adaptation.

Chapter 2: Review of Power Constrained Motion Estimation Designs 39

2.3.3 Power Adaptive by Pixel Bit Precision

The third group is to achieve power adaptation by using different pixel bit precision for

block matching [57, 51, 52, 58]. The conventional block matching criterion is to use 8 bits

for SAD calculations. However, similar to group 2, we can use fewer bits for low motion

activities and more bits for complex motion activities to achieve similar R-D performance

as FS.

A commonly used method is least significant bit (LSB) truncation which keeps the

MSBs only for SAD calculation. Such a method doesn’t benefit too much in software

implementation for general purpose processors, but gains more in dedicated hardware de-

signs. The hardware architecture can provide more efficient processing to the dedicated

binary format SAD calculations. One example is [57], the authors use three control lines

to mask the LSBs to have different bit precision for SAD calculations. However, according

to the prior works, using single bit of MSBs for SAD calculation usually leads to poor R-

D performance [57, 52, 58]. To improve this problem, the image preprocessing skills are

used to find the image features, and reconstruct it as the new MSB-LSB structure for SAD

calculation with reduced pixel bit precision. One example is [51], a complexity adaptive

algorithm is proposed by extracting the image features as the new MSB-LSB structure and

use the results of the video content analysis to decide the bit precisions for SAD calcu-

lation. Such a method can improve the serious PSNR loss in conventional LSB trucation

methods.

40 Chapter 2: Review of Power Constrained Motion Estimation Designs

Table 2.5: Summary of three groups of complexity adaptive ME works.

Type Features Pro and Con
Fast Algorithms • Switch search ranges or fast

algorithms
• Pro: More flexible for
power adaptation.
• Con: different hardware in-
tegration.

Reduced Pixel Number • Switch pixel number for
block matching.

• Pro: Simple hardware im-
plementation.
• Con: Hardware masking
causes idling.

Reduced Bit Precision • Switch bit precision for
block matching

• Pro: Simple hardware im-
plementation.
• Con: Hardware masking
causes idling.

2.3.4 Summary of Power Adaptive Design Schemes

Table 2.5 summarizes the pros and cons for the aforementioned three groups of com-

plexity adaptive or power adaptive methods. From this table, the first group is more flexible

for power adaptation but is difficult in hardware integration of different algorithms. The

second and third groups are simpler in hardware implementation, but the adopted hardware

masking approach usually causes serious hardware idling problem and the overhead for

power adaptation.

Chapter 3

Bi-directional Binary Motion Estimation

(BBME)

3.1 Introduction

Motion estimation (ME) is the most computationally expensive module in multimedia

compression standards such as MPEG-1/2/4 and H.26x. For portable video applications,

low power and efficient bus access are two major design goals [42]. The huge power

consumption from ME needs to be reduced to extend battery life. The ME is also a data

intensive module. It moves huge data for block matching to find the best predicted block

with minimal distortion for motion compensation. The amount of data movement increases

proportionally to the square of search range, and becomes the performance bottleneck for

System-on-Chip (SoC) designs due to the limited available bus bandwidth. Hence, an

efficient data movement scheme via bus is another key design issue for portable video

applications.

41

42 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

To investigate low power ME designs, most of them are developed based on fast search

algorithms [34, 35, 36, 37, 38] or low cost full search architectures [39, 40]. These fast al-

gorithms include three-step search (TSS) [38], gradient descent search (GDS) [36], global

elimination search [37], binary search [34, 35], etc. For low power or low cost full search

architectures, one-dimensional (1-D) systolic array is the most widely used architecture

[33]. Among these designs, binary search [34, 35] has both advantages of low computa-

tional complexity and low bus bandwidth requirement. The reason is it reduces the pixel

precision from eight bits to be one bit for block matching. Such a search strategy can

also be viewed as a kind of feature matching with binary images. Therefore, in this paper,

we develop our low power and bandwidth efficient ME design based on a binary pyramid

search algorithm called All Binary Motion Estimation (ABME) [41].

Although ABME [41] is a low complexity and bandwidth efficient algorithm, it is not

well optimized for VLSI implementation. We face the hardware design challenges in (1)

image pre-processing to form the binary image (2) low power and bus bandwidth efficient

architecture for binary pyramid search (3) support of bi-directional (or called B-frame) and

8x8 block searches. We solve these design issues in the proposed hardware architecture.

Firstly, we propose a new pre-processing flow for binary image generation at the mac-

roblock (MB) level instead of the original frame level. The binary image generation and

binary motion search are integrated as an MB level pipelining to simplify redundant bus

access. Secondly, we re-examine the data flow in the three levels of binary pyramid search

structure, and modify the algorithm to remove the data dependency and inefficient opera-

tions for the second level of search. Finally, we address the design issues in B-frame search

scheme and optimize the hardware architecture to enhance the processing throughput.

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 43

The contributions of this work include:

• Modified ABME algorithm called bi-directional binary motion estimation (BBME)

for efficient VLSI implementation. The BBME algorithm is developed based on a

low complexity ABME algorithm [41]. We modify the ABME in the binary image

generation and search method for efficient VLSI implementation. The power con-

sumption for video encoding with CIF 30 fps and search range of [-16, +15] only

needs less than 1 mW.

• MB level pipelining architecture for efficient bus access. We propose a new pre-

processing flow for binary image generation at MB level as opposed to frame level.

The new processing flow integrates both binary image generation and binary motion

search using MB level pipelining to avoid redundant bus access. The bus bandwidth

saving can achieve up to 67.1%.

• Parallel B-frame search architecture. We design our hardware to be able to handle

B-frame search in parallel. It reuses the same current search data to save on-chip

memory access and power. Thanks to the simple binary image matching, the gate

counts have increased twice but not as much as the conventional 8-bit designs.

The remainder of this paper is organized as follows. Section 3.2 depicts the design

issues in ABME algorithms. According to the design issues described in Section 3.2, a

modified algorithm is developed to address these issues in Section 3.3 and the hardware

architecture based on the modified algorithm is proposed in Section 3.4. In Section 3.5,

experiments show the improved performance in power consumption and bus bandwidth

loading. Section 3.6 gives the summary of this chapter.

44 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

3.2 Problem Statement

3.2.1 Review of ABME Algorithm

Fig. 3.2 shows the functional block diagram of a generic video encoder system with

ABME algorithm [41]. The current video frame is processed as binary image in the pre-

processing module, and is stored back into binary frame buffer as reference picture for

next video frame. The binary ME module accesses the current and reference data from

pre-processing module and binary frame buffer respectively to start the binary search. At

the end of search, it outputs the final motion vectors for entropy encoding in VLC and for

motion compensation in MC. Basically, the ABME algorithm is composed of two major

components: (1) frame level of pre-processing (2) three levels of binary pyramid search.

They are described as below.

A. Frame Level of Pre-processing

The frame level of pre-processing is used to generate binary images for the current

block in frame level. Fig. 3.3 shows the generation flow of the binary images for block

matching in the pre-processing module. The original image IM×N is binarized as ÎM×N

(referred to as LV3). Then, the original image IM×N is down-sampled by 2 to be IM
2
×N

2

that is a quarter size of the original image. The second level of binary image is generated

after applying binarization (BIN) to IM
2
×N

2
to be ÎM

2
×N

2
(referred to as LV2). Following

the same down-sampling and binarization process, a one-sixteenth resolution of the binary

image ÎM
4
×N

4
(referred to as LV1) is generated.

The binarization process contains two operational steps: (1) filtering, and (2) compara-

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 45

tor. The filtering operation is to calculate a low-pass or high-pass filtered data for compara-

tor to produce the binary pattern. The filter adopted in [41] is a 3×3 two dimensional filter

HA as shown in

HA =
1

4
·

0 1 0

1 0 1

0 1 0

. (3.1)

The filtered data IF
M×N(x, y) by HA is denoted as

IF
M×N(x, y) = HA(IM×N(x, y)) =

(∑

i=1,−1

∑

j=1,−1

(IM×N(x + i, y + j)) + 1
)

>> 2 (3.2)

, where 1 is for rounding control. The comparator operation then compares the filtered data

and original data to construct the three levels of binary pyramid data as shown in

ÎM×N(x, y) =
{ 1 if IM×N (x, y) ≥ IF

M×N (x, y)

0 otherwise
. (3.3)

B. Three Levels of Binary Pyramid Search

The ABME algorithm adopts a three-level of binary pyramid search structure in which

LV1 is the top level of search, LV2 is the middle level of search, and LV3 is the bottom

level of search. Similar to the conventional 8-bit pyramid search structure, the search starts

from LV1 to LV3 sequentially.

Fig. 3.4(a) shows the three-level binary pyramid search for ABME. The LV1 search is

a small range of binary full search with search range of [-SR/4, +SR/4-1], and the final

motion vectors are called MVLV1. The LV2 search contains multiple candidates search.

As shown in Fig. 3.1, the LV2 search checks 6 candidates from motion predictors for

top MB (MVtop), left MB (MVleft), top right MB (MVtopright), previous co-located MB

(MVco−located), the final MV from LV1 (MVLV1) and zero MV at (0,0) (MVzero). If the 6

46 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

candidates are all zero MVs, then a ±2 cross pattern of search is started from (0,0). If not,

a ±1 cross pattern of search is started from the one of the 6 MV predictors with minimal

block matching distortion. The final motion vector for LV2 search is called MVLV2. The

LV3 search starts a ±2 full search from the center of MVLV2, and the final motion vectors

with minimal distortion is MVLV3.

For the block matching criterion, due to the data for search are all in binary format,

the matching criterion can be simplified. In the formula of sum absolute difference (SAD)

as shown in eqn. (3.4), the subtraction and addition operations are all 8-bit operations.

However, if the data for search is binary format, the results for the subtraction operations

between current and reference search window data are equal to the results using exclusive

OR (XOR) operations, but XOR operation is simpler. Hence, the SAD matching criterion

can be simplified to sum of difference (SOD) as in eqn. (3.5) with the same results.

SAD =
L−1∑

y=0

L−1∑

x=0

|IC(x, y)− IR(x + x0, y + y0)| (3.4)

SOD =
L−1∑

y=0

L−1∑

x=0

|ÎC(x, y)⊕ ÎR(x + x0, y + y0)
∣∣∣ (3.5)

, where the symbol ÎC is the current binary frame, the symbol ÎR is the reference binary

frame, the symbol⊕ denotes the XOR operation, L is 16 for LV3, 8 for LV2 and 4 for LV1.

3.2.2 Design Issues of ABME Algorithm

Although ABME [41] is a low complexity and bandwidth efficient algorithm, it is not

well optimized for hardware implementation. We need to adapt it to address the following

issues: (1) pre-processing for binary image generation before the search (2) sequential LV2

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 47

Figure 3.1: Motion predictors for LV2 search.

48 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

binary pyramid search that makes it difficult to achieve low power and efficient on-chip

memory access (3) support of B-frame and 8x8 block searches.

A. Pre-processing for Binary Images Generation

The ABME has a pyramid based search structure that requires a pre-processing unit

(PPU) to generate three different resolutions of binary images for search. For most pyra-

mid based designs, the pre-processing module is implemented outside the ME unit (MEU)

because of the loner cycles to each pipeline stage. The longer cycles for each pipeline stage

will cause longer latency to system pipelining and other hardware modules.

As shown in Table 3.1, we analyzed 3 design schemes for the PPU module. Scheme

1 is the conventional 8-bit pyramid search, and such a design scheme puts PPU out of

MEU to avoid longer latency and redundant bus transmission. However, ABME is a binary

format of pyramid search which has different influences to the cycles in one pipeline stage

(NCsystem). Scheme 2 analyzes the bus transmission and pipeline cycles for 1-bit pyramid

search with separated PPU and MEU. The required bus transmission is reduced to 36.6%1,

but no influences to the pipeline cycles. In Scheme 3, if we apply MB pipelining scheme to

MEU/PPU, the bus transmission is further reduced to 32.1%2 with increased pipeline cycles

from NCMEU to NCMEU + NCPPU. However, the required cycles NCMEU−1bit for 1-bit

pyramid search is far less than the running cycles for 8-bit pyramid search NCMEU−8bit

(i.e. NCMEU−1bit ¿ NCMEU−8bit), this provides the design space to integrate PPU with

MEU to have reduced bus bandwidth with minor or no influences to the system pipelining.

1(256+42+42)/(256+336+336)×100%=36.6%.
2(256+42+0)/(256+336+336)×100%=32.1%.

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 49

Table 3.1: Evaluation of the pre-processing unit design schemes for pyramid based search.
Scheme Bit Precision Pipeline Bus Bandwidth (Bytes) Pipeline Cycles

(NCsystem)
1 8-bit MEU/PPU: Frame E-MEM→PPU 2561 NCMEU

MEU/MEU: MB PPU→E-MEM 3362

PPU→MEU 336
2 1-bit MEU/PPU: Frame E-MEM→PPU 256 NCMEU

MEU/MEU: MB PPU→E-MEM 423

PPU→MEU 42
3 1-bit MEU/PPU: MB E-MEM→PPU 256 NCMEU +

NCPPU

MEU/MEU: MB PPU→E-MEM 42
PPU→MEU 0

116×16.
216×16+8×8+4×4.
3(16×16+8×8+4×4)/8.

B. Sequential LV2 Binary Pyramid Search Structure

To examine the three levels of binary pyramid search structure, the ABME algorithm

is composed of a sequential fine tuning process in level 2 (LV2) and two levels (LV1 and

LV3) of small range full search. The two levels of full search have regular data flow that

is easy for VLSI implementation. However, the sequential fine tuning process as shown

in Fig. 3.6(a) contains redundant data access between the selected candidate for ±1 cross

pattern search and the 6 candidates for fine tuning search. The selected candidate for ±1

search accesses the same search data from the memory as one of the 6 candidates in the

tuning process. With optimized hardware architecture, we can remove the redundant cy-

cles and power in accessing the repeated memory in LV2 search without sacrificing R-D

performance.

50 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

C. Support of B-frame and 8x8 Block Search

The B-frame search and 8x8 block search are commonly adopted in latest compres-

sion standards such as MPEG-4 [31] or H.263+ [32] to enhance coding efficiency. In our

reference MPEG-4 software, the ±2 of 8x8 block search is applied after 16x16 search is

completed at integer pixel resolution. It means that such 8x8 block search can extend the

search range to [-18, +17] with the search range of [-16, +15] for 16x16 search. Such a

simple step increases the bus access by 17%3. In hardware point of view, the sequential

processing of block 8× 8 and 16× 16 also has longer processing cycles, but often accesses

the same data from memory for video sequences with slow or no motion which is redun-

dant. Hence, an optimized hardware flow to avoid the redundant memory access and longer

processing cycles is needed.

For the B-frame search, search with two reference frames doubles the execution cycles

and bus access to cause the system pipelining difficult. Hence, an optimized hardware ar-

chitecture to parallel processing of B-frame search without cause system pipelining difficult

is needed.

3.3 BBME Algorithm

The BBME algorithm addresses the three design issues as described in Section 3.2.2.

Fig. 3.4(b) shows the processing procedure of BBME algorithm. The first modification is

to replace the original frame pre-processing with macroblock level pre-processing. The

second modification is to simplify the LV2 search flow of ABME. The third modification

3 (18·2+16)2

(16·2+16)2 = 117%

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 51

Figure 3.2: Functional block diagram of a generic video encoder by adopting ABME
algorithm.

Figure 3.3: The processing flow of pre-processing module in ABME algorithm.

52 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

Figure 3.4: The processing procedure for ABME and BBME flow. (a) ABME flow [41] (b)
BBME flow.

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 53

Table 3.2: Comparison of different K values for macroblock based pre-processing unit.

Block Size (K ×K) 16× 16 18× 18 20× 20 30× 30
Required Data (bits) 256 324 400 900
PSNR Loss (dB) -0.50 -0.14 -0.10 -0.00

is to support parallel processing of 8x8 and 16x16 LV3 block search.

3.3.1 Macroblock Pre-processing Unit (MBPPU)

The MBPPU removes the repeated bus access. As opposed to frame level implementa-

tion of the pre-processing module, the MBPPU is integrated with the binary search module

to generate MB level binary search block for current frame. The three levels of binary

search blocks are then stored back to external memory as reference picture for the next

frame. To integrate the pre-processing module with the MB level pipelining, a straightfor-

ward approach is to implement at macroblock level as shown in Fig. 3.5(a). Such a method

needs to transmit 30×304 image data to generate the 4×4 LV1 binary block. An alternative

approach is to replace the 30×30 image data with smaller K × K image data and pads

the missing image pixels. The value of K has no effect on the search range because such

a simplification is applied for the current search block. Fig. 3.5(b) shows an example for

K = 18. We pad the boundary pixels to fill the missing pixels at LV2 and LV1 to generate

three levels of binary search blocks. We experiment with various K values, and Table 3.2

shows the PSNR results. From this Table, K = 18 is selected as it has a PSNR loss around

0.1dB on the average that is a tolerable penalty in quality.

4(((LLV 3 + 2)× 2 + 2)× 2 + 2) = (((4 + 2)× 2 + 2)× 2 + 2) = 30

54 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

3.3.2 Efficient LV2 Search

The modified LV2 search is to remove the redundant on-chip memory access in the

LV2 flow of the original ABME algorithm. Fig. 3.6 shows the LV2 processing flow. In

Fig. 3.6(a), the original LV2 flow is a software efficient flow that checks each candidate

sequentially and then performs ±1 search. Repeated on-chip memory access happens for

the first candidate if the first candidate is selected for ±1 search finally. The modified LV2

flow is efficient for hardware as shown in Fig. 3.6(b). It reduces the number of checked

candidates to avoid longer processing cycles. It also changes the processing order as the

labeled numbers in Fig. 3.6(b) to improve parallelism and avoid repeated on-chip memory

access for the selected candidate.

3.3.3 Parallel Processing of 8× 8 and 16× 16 Block Searches

In our MPEG-4 software [31], ±2 of 8x8 block search is performed after 16x16 search

is completed at integer pixel resolution. To support 8x8 block search, the memory band-

width will be increased by 17% while it is beneficial for area with complex motion. To

balance the tradeoff between quality and bus bandwidth, a modified search method is used.

To minimize bus access, we restrict the 8x8 block search to start at the same search center

as the 16x16 LV3 search so that the search range is still within [-16, +15]. It enhances

parallelism, and only suffers PSNR loss of 0.1dB for the worst case.

Table 3.3 analyzes the original and modified methods for 8 × 8 and 16 × 16 block

search in LV3. One 16× 16 block search requires 256 subtractions and 256 absolute value

operation to calculate the absolute differences, 255 additions to sum up the differences, 1

comparator to decide if this is best block with minimal distortion. Similar to 16× 16 block

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 55

Table 3.3: Evaluation of the ABME and BBME flow for block 8×8 and 16×16 searches in
LV3.

Method Processing Arithmetic Operations
16× 16 search 8× 8 search Total Percentage

ABME Sequential 7681 192 2 384003 100%
BBME Parallel 44 192 193005 50.3%

1=256 sub + 256 abs + 255 add + 1 cmp.
2=64 sub + 64 abs + 63 add + 1 cmp.
3=25(points)× 768 + 4(8x8blocks)× 25(points)× 192
43 add + 1 cmp.
5=25(points)× 4 + 4(8× 8blocks)× 25(points)× 192

search, the 8 × 8 block search requires 64 subtractions and 64 absolute value operation to

calculate the absolute differences, 63 additions to sum up the differences, 1 comparator to

decide if this is best block with minimal distortion. The total operational counts for the

original method is 38400 as shown in Table 3.3.

For the proposed new method, we parallel processing the 8 × 8 and 16 × 16 block

searches. Since both the searches starts from the same locations, the operational results

for block matching is reusable. Thus, 16 × 16 block search just need 3 additions to sum

up the results for four 8 × 8 blocks, and 1 comparator to decide if this is the best block

with minimal distortion. The total operational count is 19300 with 49.7% saving. The new

method is also optimized for hardware operations since it can allow parallel processing

of 8 × 8 and 16 × 16 block searches. Therefore, the new method is better for hardware

operations than the old one.

56 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

Figure 3.5: The pre-processing flow in macroblock pre-processing unit. (a) K=30 (b)
K=18. (The shadow area is padding pixels)

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 57

(a)

(b)

Figure 3.6: The LV2 processing flow. (a) original LV2 flow in ABME (b) new LV2 flow in
BBME. The number represents the processing order.

58 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

3.4 Hardware Architecture

3.4.1 System Architecture

Fig. 3.7 shows the system architecture of the proposed design that implements the

BBME algorithm with the parallel hardware support for B-frame search as described in

Section III. For B-frame search, two sets of hardware are used to enable forward and

backward search in parallel. The 8-bit data of current search block is passed to the pre-

processing module (MBPPU) to generate three levels of binary search blocks. The three

levels of binary data are stored in the on-chip memories C1-C3. The binary data of forward

and backward reference frames are stored in two on-chip memories, S01-S03 and S11-S13,

respectively. The memory blocks of C1, S01 and S11 are for LV1. The memory blocks of

C2, S02 and S12 are for LV2. The memory blocks of C3, S03 and S13 are for LV3.

For each level of block search, the address generator (AG) controls the access of C0-

C3, S01-S03, S11-S13 to provide the necessary current and target block data to the shared

SOD processing units for block matching (SOD1 for forward and SOD2 for backward).

The shared processing units firstly decide which level of binary data to be used for calcu-

lation according to the control signal from controller (CTRL). Then, it computes the SOD

between selected current and reference search blocks. The matching results are sent to the

comparator for final motion vector selection considering motion vector cost input from the

motion vector generator module (VG).

For the forward only P-frame search, the parallel architecture leaves half the hardware

idle. Such an issue is addressed with a parallel P-frame search scheme. In the parallel

P-frame search mode, the forward search data from S01-S03 are mirrored to S11-S13. The

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 59

original forward search path through SOD1 module handles search for the odd positions

while the backward search path through SOD2 module handles search for the even posi-

tions. The AG/CTRL/VG/Comparator modules will send appropriate addresses and signals

for each path. Thus, both paths are busy with half execution cycles.

Compared to the conventional serial architecture which processes forward and back-

ward search sequentially, this parallel architecture enjoys five major advantages including:

• Less on-chip memory access: Parallel architecture reuses the current block search

data, removes redundant on-chip memory access, and thus saves power. This is

particularly important for pyramid search structure since the current block data are

changed for each level of search.

• Higher overall hardware utilization: In addition to full hardware utilization for ME,

all the other modules in the pipeline enjoy higher utilization. Typically ME module

takes the longest execution cycles as compared to other modules such as transform or

motion compensation (MC), so it can become the design critical path in the overall

system. The execution cycles are doubled for B-frame search which leads to more

idle cycles for the other modules such as entropy coding or transform. Thus, parallel

architecture can not only halve the ME execution cycles but also reduce the idling of

other modules. Compared to serial architecture, our parallel architecture decreases

execution cycles for both P-frame search and B-frame search. As shown in Table 3.8,

the P-frame and B-frame searches take 177 cycles and 148 cycles, respectively.

• Lower working frequency: Lower working frequency is a key factor leading to a low

power design. Similar to the previous item, the B-frame ME search is typically the

slowest module. In that case, it is the dominant factor to decide the system frequency.

60 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

The parallel B-frame architecture as opposed to serial architecture improves the worst

case scenario leading to the lowest system frequency. Combing with the voltage

scaling technique, parallel architecture can achieve further power reduction.

• Less penalty in hardware cost: It is less expensive to use parallel architecture for

the binary search. If the system were to use full pixel (8-bit) for matching, parallel

architecture suffers more increase of hardware. Although the increase in percentage

is the same, the binary search algorithm has smaller increase.

• Flexibility for joint optimization of B-frame search: Joint optimization of B-frame

search is a widely used encoding technique that jointly considers cost and distortion

based on the forward and backward search results to provide better motion vectors.

For a serial architecture, it needs to finish the forward and backward searches first.

Then, the joint optimization can start. Parallel architecture can save cycles and the

memory for storing first pass results.

Table 3.4 lists a brief summary to compare serial architecture and our parallel architec-

ture. Although the on-chip memory is doubled, the necessary local memory size for the

1-bit parallel architecture is still only one quarter of the 8-bit sequential design. The peak

memory bandwidth of the proposed parallel 1-bit architecture is (B1 +2×B2) in which B1

represents the current frame on-chip memory bandwidth and (2×B2) as the bandwidth for

two parallel forward and backward reference frames. The execution cycles are algorithms

dependent, but the ME with 8-bit data type may need more cycles to complete one location

of search. The reason is that binary search can complete one search location matching in

one cycle with its simple XOR operation. On the contrary, it is difficult for most ME de-

signs with 8-bit data type to achieve single cycle execution except when two-dimensional

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 61

Table 3.4: Comparison for serial and parallel architecture.

Architecture Serial Parallel
8-bit 1-bit 8-bit 1-bit

Memory size (8 · AM) AM 2 · (8 · AM) 2 · AM

Peak memory bandwidth 8 · (B1 +B2) (B1 + B2) 8 · (B1 + 2 ·
B2)

(B1 +2 ·B2)

Running cycles ≥ 2 ·NC 2 ·NC ≥ NC NC
Hardware cost 8 · AL AL 8 · (2 · AL) 2 · AL

systolic array is used. The binary search is more suitable for parallel architecture due to its

simplicity.

3.4.2 Macroblock Pre-processing Unit (MBPPU)

The three levels of binary pyramid data for search are generated by MBPPU. The bina-

rization processing elements (PE) are the key modules to convert the 8-bit image data into

binary format. Inside the binarization PE, it contains a 3× 3 filtering operation and a com-

parator. To support the 3 × 3 filter design as shown in eq. (3.1), three rows of line buffers

are needed to output a line of binary data. Fig. 3.8 shows the architecture of MBPPU. For

each level of pre-processing, there are three rows of data buffers, several binarization (BIN)

PEs, and the row rotators. The three rows of data buffers are used to store three rows of

8-bits data before entering binarization process. The filter operation is to implement filter

HA. The number of BINs is designed according to the processing data rate at each level,

and the processing rate depends on the width of each row buffer (18 for LV3, 10 for LV2

and 6 for LV1). So, the number of PEs for LV3 to LV1 is 9, 5, and 2. The row rotator

outputs correct data for binarization.

62 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

3.4.3 Three Levels of Binary Search

The three levels of binary searches are done by three steps of operations: (1) CTRL

informs AG about the current level index for search (2) AG sends addresses to local mem-

ories (3) local memories output data to SOD1 and SOD2 for search. Fig. 3.9 shows the

operational flow of processing units of SOD1 and SOD2. The processing unit is basically

a 256-bit XOR operation followed by a 256-bit adder tree. To be able to support three

search block sizes for LV1 to LV3, the 256 bits XOR operations are partitioned into 16

blocks of 16-bit XOR operations to provide 16 4x4 SOD results S4×4
i {i = 0 ∼ 15}. Then,

the sixteen 4x4 SODs can be accumulated as four 8x8 SODs S8×8
i {i = 0 ∼ 3} or one

16x16 SOD S16×16
0 . To make sure the input data and the output motion vectors are moved

correctly, the CTRL sends a control signal to inform the processing unit about which level

is being processed.

For LV2, we need to process 5 search points in parallel. However, the processing unit

can only handle four 8x8 SOD operations in parallel. Thus, the search point opposite to the

motion vector direction is abandoned.

3.5 Experimental Results and Analysis

3.5.1 Rate-Distortion (R-D) Performance Evaluation

Table 3.5-Table 3.7 shows the PSNR with bit rate of 256, 512 and 1024 kbps for full

search (FS), ABME [35] and BBME. Fig. 3.10 and Fig. 3.11 plot the R-D curves for Fore-

man and Mobile sequences. There are totally five commonly used MPEG test sequences

tested with GOP structures of IPPPP (M=1) and IPBPB (M=2). The search range is [-16,

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 63

Figure 3.7: System architecture for the BBME design.

64 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

Figure 3.8: Architecture of macroblock based pre-processing unit.

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 65

Figure 3.9: Shared processing unit for three levels of binary pyramid searches.

66 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

Table 3.5: R-D performance for full search (FS), ABME algorithm (ABME)[35] and the
BBME algorithm at the bitrate of 256 kilo bps (N=300).

Sequence Method IPP 30fps (M=1) IBPBP 30fps (M=2)
PSNR Y (dB) ∆PSNR PSNR Y (dB) ∆PSNR

Foreman FS 30.84 30.49
ABME 30.31 -0.53 30.17 -0.32
BBME 30.23 -0.61 29.99 -0.50

Akiyo FS 41.61 41.85
ABME 41.50 -0.11 41.90 +0.05
BBME 41.59 -0.02 41.83 -0.02

Flower FS 23.86 23.88
ABME 23.70 -0.16 23.72 -0.16
BBME 23.69 -0.17 23.72 -0.16

Mobile FS 23.38 24.26
ABME 23.37 -0.01 24.19 -0.10
BBME 23.38 -0.00 23.74 -0.52

Tempete FS 26.04 27.00
ABME 25.95 -0.09 26.60 -0.40
BBME 25.98 -0.06 26.47 -0.53

+15]. From these 3 Tables, the PSNR loss for the modified ABME algorithm is up to

0.45dB for IPPPP and 0.75dB for IPBPB compared to full search. Compared with ABME,

up to 0.14 dB PSNR loss is observed for IPBPB.

For subjective quality evaluation, Fig. 3.12 to Fig. 3.14 shows the encoded pictures of

Foreman 32nd, 99th, and 148th frames. The left side of Fig. 3.14 used full search and its

PSNR is 34.99dB. The right side used BBME and its PSNR is 34.63dB. The two pictures

have minor visual difference in detailed area. The other 2 Figures have similar results.

3.5.2 Hardware Design Performance

Table 3.8 summarizes the execution cycles and gate counts for P-frame and B-frame

block search. For each MB, totals of 148 and 177 cycles are used for P-frame and B-frame

search respectively. It is found that more than 60% (107 cycles) of overall execution cycles

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 67

Table 3.6: R-D performance for full search (FS), ABME algorithm [35] and the BBME
algorithm at the bitrate of 512 kilo bps (N=300).

Sequence Method IPPP 30fps (M=1) IBPBP 30fps (M=2)
PSNR Y (dB) ∆PSNR PSNR Y (dB) ∆PSNR

Foreman FS 34.18 34.62
ABME 33.82 -0.36 34.01 -0.61
BBME 33.79 -0.39 33.87 -0.75

Akiyo FS 43.33 43.47
ABME 43.31 -0.02 43.39 -0.08
BBME 43.33 -0.00 43.52 +0.05

Flower FS 26.11 26.56
ABME 25.75 -0.36 26.29 -0.27
BBME 25.66 -0.45 26.30 -0.26

Mobile FS 26.18 27.69
ABME 26.10 -0.08 27.59 -0.10
BBME 26.07 -0.11 27.33 -0.36

Tempete FS 28.78 29.89
ABME 28.78 -0.00 29.67 -0.22
BBME 28.79 +0.01 29.55 -0.34

Table 3.7: R-D performance for full search (FS), ABME algorithm [35] and the BBME
algorithm at the bitrate of 1024 kilo bps (N=300).

Sequence Method IPPP 30fps (M=1) IBPBP 30fps (M=2)
PSNR Y (dB) ∆PSNR PSNR Y (dB) ∆PSNR

Foreman FS 36.89 37.37
ABME 36.66 -0.23 36.84 -0.53
BBME 36.67 -0.22 36.75 -0.62

Akiyo FS 44.43 44.95
ABME 44.41 -0.02 44.91 -0.08
BBME 44.44 +0.01 44.94 +0.05

Flower FS 29.30 29.71
ABME 29.05 -0.25 29.57 -0.14
BBME 29.01 -0.29 29.60 -0.11

Mobile FS 29.25 30.65
ABME 29.16 -0.09 30.60 -0.05
BBME 29.14 -0.11 30.38 -0.27

Tempete FS 31.55 32.55
ABME 31.60 +0.05 32.38 -0.17
BBME 31.60 +0.05 32.34 -0.21

68 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

(a)

(b)

Figure 3.10: R-D curves for full search (FS), ABME [?], and BBME designs with Foreman
sequence. (a) IPPP (M=1) (b) IBPBP (M=2).

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 69

(a)

(b)

Figure 3.11: R-D curves for full search (FS), ABME [?], and BBME designs with Mobile
sequence. (a) IPPP (M=1) (b) IBPBP (M=2).

70 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

Figure 3.12: Visual quality comparison for full search and BBME with Foreman 32th

frame. (Left: 34.73dB for full search, Right: 34.39dB for BBME.)

Figure 3.13: Visual quality comparison for full search and BBME with Foreman 99th

frame. (Left: 34.74dB for full search, Right: 34.36dB for BBME.)

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 71

Figure 3.14: Visual quality comparison for full search and BBME with Foreman 148th

frame. (Left: 34.99dB for full search, Right: 34.63dB for BBME.)

(148 or 177 cycles) are in MBPPU. With limited bus bandwidth, the data movement takes

longer than ME search. To avoid over-design of MBPPU, we slow down the processing

throughput in MBPPU. With a 32-bit bus, the data movement takes 136 cycles for P-frame

search and 171 cycles for B-frame search. As shown in Table 3.9, it takes 90 cycles to move

current block data of (18× 18× 8) bits for the MBPPU. It takes 32 cycles to move single

reference search window data. It takes 11 cycles to move binary pyramid data that will be

used as reference frame after MBPPU. It takes 3 cycles to move five motion vectors (MV)

including one MV for 16x16 search and four MVs for 8x8 search. For the B-frame search,

the cycles are doubled to be 6 for two sets of forward and backward MVs. To enable the

pipelining of data movement and motion search as shown in Fig. 3.19, the proposed work

is designed to meet the pipeline timing.

The hardware gate count is 62.6 kilo gates and the on-chip memory size is 8.64 kilo

bits using TSMC 0.18µm CMOS technology. For CIF 30fps with GOP of IPPPP, the work-

ing frequency is 1.67MHz and the power consumption is 763 µW measured by Synopsys

72 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

Table 3.8: Gate count and execution cycles for each module of our design.

Cycle Count for
P-Search

Cycle Count for
B-Search

Gate Count (kilo)

MBPPU 107 107 14.2
LV1 4 6 7.2
LV2 6 8 17.6
LV3 27 54 22.5
Total 148 177 62.6

PrimePower. The power consumption for CIF 30fps with GOP of IPBPB is 896 µW with a

working frequency of 1.94MHz. The functionality of this IP core design has been verified

on FPGA.

To compare with the state-of-the-art designs, the proposed design shows obvious ad-

vantage in power consumption. Table 3.10 summaries the design information for [35, 36,

37, 39, 43, 67, 26, 40]. The normalized power consumption is also listed to provide a fair

comparison.

Table 3.11 and Table 3.12 shows the design metrics evaluation for the designs in Ta-

ble 3.10 [35, 36, 37, 39, 67, 26, 40]. The design metrics starts the analysis from 6 dimen-

sions including quality (Q), throughput (T), silicon area (A), I/O bandwidth (B), hardware

utilization (U), and power consumption (P). Fig. 3.15 to Fig. 3.18 plots the hexagon plots

for these designs. From the Figures, we can find the proposed bi-directional binary motion

estimation (BBME) has lowest power consumption and lowest bus bandwidth as compared

to other low power designs.

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 73

(a)

(b)

Figure 3.15: Hexagonal plot of 6 design metrics for different ME hardware architectures
evaluation. (a) Miyama’s work [36] (b) Chao’s work [30].

74 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

(a)

(b)

Figure 3.16: Hexagonal plot of 6 design metrics for different ME hardware architectures
evaluation. (a) Chen’s work [26] (b) Huang’s work [37].

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 75

(a)

(b)

Figure 3.17: Hexagonal plot of 6 design metrics for the propose BBME design.

76 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

(a)

(b)

Figure 3.18: Hexagonal plot of 6 design metrics for different ME hardware architectures
evaluation. (a) Yap’s work [40] (b) Ou’s work [67].

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 77

Table 3.9: Summary of cycles of data movement for P-frame and B-frame searches.

P-Search B-Search
Current Block 90 90
Reference Blcok 32 64
Binarized Data 11 11
Motion Vectors 3 6
Total 136 171

3.5.3 Bus Bandwidth Analysis

The bus bandwidth has been the bottleneck for modern SoC design, especially for data

intensive designs such as video. The conventional 8-bit ME designs need whole search

window to complete the motion search such as [36, 37, 39]. They proposed solutions to

reduce gate counts or on-chip memory bandwidth, but not the bus bandwidth. In our case,

the required data for movement are as follows and are also summarized in Table 3.13.

• Input current block data: 16× 16× 8 bits.

• Input reference block data: for search range of [−SR, +(SR− 1)].

– (16+2×SR)×(16+2×SR)×8 bits if search window reuse is not considered.

– 16× (16 + 2× SR)× 8 bits if search window reuse is considered [42].

– 16× (16 + 2× (SR + 2))× 8 bits if one reuses search window and applies 8x8

block search with ±2 range. If B-frame search is supported, it is doubled.

• Output motion vectors: 80 bits for 5 pairs of motion vectors if 16 bits are assumed

for a pair of motion vectors

The total needed data movement for one block search is 8784 bits for P-search and 14336

for B-search under SR is 16.

78 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

Table 3.10: Performance comparison with state-of-the-art designs.

Design Shen [39] Huang [37] Miyama
[36]

ABME
[35]

BBME

Standard H.263+ MPEG-4 MPEG-4 MPEG-4 MPEG-4
Architecture 1-D sys-

tolic
Global
elimination

Gradient
search

Binary
search

Parallel bi-
nary search

Cycle/MB 4096 5187 n.a.1 283 148
On-chip mem-
ory (kilo bits)

n.a. 24.08 40 9.80 8.64

PSNR loss
(dB)

0.00 0.08 0.10 0.19 0.23

Search range [-16,
+15.5]

[-16, +15] [-16,
+15.5]

[-16, +15] [-16, +15]

Process (µm) 0.60 0.35 0.13 0.18 0.18
Gate Count
(kilo gates)

67 33.3 250 68.5 62.6

Power (mW)2 353 149 2.5 2.2 0.76
Normalized
power (mW)

4.12 12.6 15.5 2.2 0.76

Design Song [43] Ou [67] Chen [26] Yap [40]
Standard MPEG-2 H.264/AVC H.264/AVC H.264/AVC
Architecture Multi-

resolution
search

2-D systolic Four step
search

1-D systolic

Cycles/MB 210 1024 1136 4096
On-chip mem-
ory (kbits)

20 n.a. 64 n.a.

PSNR loss
(dB)

n.a. 0.00 0.55 0.00

Search range [-192.0,
+191.5]

[-8, +7] [-16, +15] [-16, +15]

Process (um) n.a. 0.18 0.18 0.13
Gate count
(kilo gates)

140 597 131.2 597

Power (mW) n.a. 20.48 2.13/1.3V 95.04
Normalized
power (mW)

n.a. 20.48 4.08 409.97

1not available
2For CIF 30 fps, GOP=IPPP..,

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 79

Table 3.11: Design metrics evaluation for the state-of-the-art low power designs.

Designs Design Metrics
Shen [39] Q (dB) -0.00

T (cycles/MB) 42095

A (logic,memory) 66.8/n.a.
U (%) 100
B (bytes/MB) n.a.
P (mW,µm) 353/0.60
Pnom (mW) 4.12

Huang [37] Q (dB) -0.08
T (cycles/MB) 17846

A (logic,memory) 89.39/24.08
U (%) n.a.
B (bytes/MB) 1024
P (mW,µm) 160/0.35
Pnom (mW) 12.59

Miyama [36] Q (dB) -0.10
T (cycles/MB) 5687

A (logic,memory)8 250/40
U (%) n.a.9

B (bytes/MB) 102410

P (mW, µm) 2.5/0.13
Pnom (mW) 15.5311

Wang [35] Q (dB) -0.19
(ABME) T (cycles/MB) 283

A (logic,memory) 68.5/9.80
U (%) n.a.
B (bytes/MB) 108612

P (mW,µm) 2.2/0.18
Pnom (mW) 2.20

BBME Q (dB) -0.23
T (cycles/MB) 148
A (logic,memory) 62.6/8.64
U (%) 80.5
B (bytes/MB) 48613

P (mW,µm) 0.763/0.18
Pnom (mW) 0.763

80 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

Table 3.12: Design metrics evaluation for the state-of-the-art low power designs.

Designs Design Metrics
Yap [40] Q (dB) -0.00

T (cycles/MB) 4096
A (logic,memory) 61/n.a.
U (%) 100
B (bytes/MB) n.a.
P (mW,µm) 95.04/0.13
Pnom (mW) 409.97

Ou [67] Q (dB) -0.00
T (cycles/MB) 1024
A (logic,memory) 597/n.a.
U (%) 100
B (bytes/MB) n.a.
P (mW,µm) 20.48/0.18
Pnom (mW) 20.48

Chen [26] Q (dB) -0.00/-0.07/-0.55 (mode 1-3)
T (cycles/MB) 1136 (mode 3)14

A (logic,memory) 131.2/64
U (%) n.a.
B (bytes/MB) 1024 (mode 1), 256 (mode 2,3)
P (mW,µm) 16.72,4.83,2.13/0.18 (mode 1-3)
Pnom (mW) 4.08 15

14CIF 30fps@13.5MHz.
15Voltage=1.3V.

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 81

Considering our proposed design, the required data for movement are summarized in

Table 3.13. The input current block data are (18×18×8) bits for BBME and (30×30×8)

for ABME. The input reference block data with a reuse scheme are 16× (16+2×SR)×1

bits for LV3, 8 × (8 + 2 × SR
2

) × 1 bits for LV2, and 4 × (4 + 2 × SR
4

) × 1 bits for LV1.

If B-frame search is supported, the total bits are doubled. For outputting binarized data as

reference picture for the next frame, there are 4 × 4 bits for LV1, 8 × 8 bits for LV2, and

16× 16 bits for LV3. The output motion vectors (MV) are 80 bits for the 5 motion vectors

if 16 bits are used for a pair of motion vectors. For the B-frame search, the MV bits are

doubled due to the forward and backward directions.

In our design, the required data movement for one MB search is 4,016 bits that is

45.7% of the bandwidth for the conventional 8-bit ME designs for the P-frame search. For

the B-frame search, the data movement is 5,104 bits that is 32.9% of the bandwidth for

conventional 8-bit ME designs. Table 3.13 summarizes the bandwidth analysis results. It

shows that the bus bandwidth savings for the proposed design are 54.3% and 67.1% for

P-frame and B-frame searches, respectively

3.5.4 Comparison of ABME and BBME

Table 3.14 summaries the feature difference between ABME [35] and BBME. ABME

implements serial search architecture, but BBME uses parallel search architecture. BBME

has five new important features including (1) MB based pre-processing (2) support of B-

frame parallel search (3) parallel processing of 8x8 and 16x16 LV3 block search (4) shared

processing units for each level to reduce the implementation cost (5) efficient LV2 search

to reduce the processing latency. Experiments show BBME has significant performance

82 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

Figure 3.19: Pipeline timing of data movement and motion search.

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 83

Table 3.13: Bus bandwidth analysis for conventional 8-bit ME scheme and the proposed
design (Search range = [-16, +15]).

Scheme In/Out Data Conventional
8-bit

AMBE[35] BBME

P-frame Current Block 2048 7200 2592
Reference Block 6656 1032 1008
Binarized Data 0 336 336
Motion Vectors 80 80 80
Total Bandwidth1 8784 8648 4016
Percentage2 100% 98.5% 45.7%

B-frame Current Block 2048 7200 2592
Reference Block 13312 2064 2016
Binarized Data 0 336 336
Motion Vectors 160 160 160
Total Bandwidth 15520 9760 5104
Percentage 100% 62.9% 32.9%

1Required data in bits for one macroblock search = (current block + reference block + binarized data +
motion vectors)

2Bandwidth of this work / Bandwidth of conventional 8-bit

improvement over ABME. The bandwidth savings are 52.8% and the power consumption

is reduced by 1.44 mW. However, the BBME suffers from 0.1dB loss in quality.

The low power advantage is attributed to the following:

• The low complexity using binary SOD in ABME.

• Hardware efficient binary pyramid search structure, especially the hardware oriented

modification for the LV2 search.

• Parallel processing of 8x8 and 16x16 LV3 block searches to minimize additional

search cycles for 8x8 block search.

• Hardware support of B-frame parallel processing to reuse the current search block

data and remove repeated on-chip memory access.

84 Chapter 3: Bi-directional Binary Motion Estimation (BBME)

Table 3.14: Comparison of prior ABME design [35] and the proposed BBME design.

Feature ABME[35] BBME
Data structure Binary pyramid Binary pyramid
Pre-Processing Frame Level Macroblock Level
P-frame search Spatially sequential Spatially parallel for even and

odd locations
B-frame Search Temporally sequential for

forward and backward
directions

Temporally parallel for for-
ward and backward directions

16×16 and 8×8 search Temporally sequential Temporally paralle
Hardware for each
pyramid level

Seperated SOD and control
unit for each level

Shared SOD and compara-
tor unit with seperated control
unit for each level

LV2 search - Sequential search for six
candidates

- Parallel search for adap-
tively select four candidates

- Redundant on-chip memory
access for selected candidate

- No redundant on-chip mem-
ory access

PSNR loss (dB) 0.02-0.36 0.00-0.45
Power consumption
(mW)

2.21 0.768

Bus bandwidth saving 1.5 % 54.3%
Gate count (kilo) 68.5 62.6

On the other hand, the high bandwidth efficiency is achieved by the following:

• Binary search structure to use binary data instead of 8-bit data for search.

• MB level pre-processing unit to reduce the amount of bus access for generation of

the three levels of binary pyramid structure.

• Parallel processing of 8x8 and 16x16 LV3 block searches to save additional 17% bus

bandwidth for search range of [-16, +15].

Chapter 3: Bi-directional Binary Motion Estimation (BBME) 85

3.6 Summary

In this paper, we have proposed new motion estimation hardware architecture to achieve

low power and high bandwidth efficiency. The proposed design is developed from a very

low complexity motion estimation algorithm called all binary motion estimation [11]. It

integrates several important features including (1) MB based pre-processing (2) support of

B-frame parallel search (3) parallel processing of 8x8 and 16x16 LV3 block searches (4)

shared processing units to reduce the hardware cost (5) efficient LV2 search to reduce the

latency. We also analyze how low power and high bandwidth efficiency can be achieved

with the proposed design. Experiments show that the power consumption can reach as low

as 763µW for IPPPP CIF 30fps and 896µW for IPBPB CIF 30fps. The bus bandwidth

saving can achieve up to 54.3% for P-frame only forward search and 67.1% for B-frame

search.

Chapter 4

Power Adaptive Iterative Binary Search

(PA-IBS)

4.1 Introduction

1The power adaptive designs have become an important feature especially for portable

video applications [59]. Unlike the low power designs that aim for minimized power con-

sumption, the power adaptive design targets on the efficient allocation of power resources

with equal video quality and longer battery life. In multimedia compression systems such

as MPEG-1/2/4 and H.26x, the motion estimation (ME) that dominates the power con-

sumption of the video encoder plays a key role in the power adaptive design. We will

present a power adaptive ME design to improve power allocation and power efficiency.

In the power adaptive or complexity adaptive ME algorithms and designs [56, 57, 58,

47, 48, 49, 50, 45], we can roughly categorize them into two types according to their imple-

1The authors would like to thank National Chip Implementation Center(CIC) for chip fabrication.(Chip
No: T18-95E-04A)

86

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 87

mentation methods. The first type is to achieve power adaptation by integration of multiple

search strategies. This type adopts 2 to 3 search strategies such as three-step search, dia-

mond search or full search to deliver different levels of search complexity. For example,

the authors in [47] proposed a three-mode complexity adaptive method by using three-step

search and enhanced four-step search for low power applications, and full search for high

quality applications. Although this type of method can provide large scale of complexity

differences, the coding quality for low power modes usually has significant quality loss.

The second type is to achieve power adaptation by simplified matching criterion. The

simplified criterion include bit-depths truncation, pixel decimation, etc. By keeping differ-

ent bit-depths or decimated pixel resolutions for block matching, the design can achieve

different levels of computational complexity and power consumption. For example, the au-

thors in [57, 58, 49] adopt the least-significant-bit truncation method to design their power

adaptive ME. Pixel bit-depth of 1 or 2 is served for low power mode, and bit-depth of 8

is served for high quality mode. This type can provide the significant power reduction by

dynamically adjusting the bit-depths, but it still suffers from significant quality loss in low

power mode.

Table 4.1 summaries for the two types of complexity adaptive algorithms or power

adaptive designs. Both of the methods have the significant quality loss in low power modes.

The bit-depth truncation method also has the issues in limited pixel bit-depths and bit-plane

dependency. Limited pixel bit-depths cause the difficulty for fine-granularity of power

adaptation. Bit-plane dependency causes the inefficiency for data access and processing. To

address these issues, a new power adaptive ME algorithm and hardware architecture called

Power Adaptive-Iterative Binary Search (PA-IBS) is proposed with four key features:

88 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

Table 4.1: A summary of power adaptive motion estimation designs.

Methods Type I Type II
Multiple search strategies Simplified matching criteria

Examples PMVFAST-EPZS (2 modes)
[48]

Pixel sub-sampling [56]

FS-3SS-E4SS (3 modes) [47] Bit-depth truncation [57, 58, 49]
MV refinements [45]

Pro and Con Pro: Pro:
(1) Large scale of complexity re-
duction

(1) Simple for VLSI implemen-
tation

Con: Con:
(1) Limited modes (1) Limited pixel bit-depths
(2) Inflexibility for VLSI imple-
mentation

(2) Significant quality loss

(3) Significant quality loss (3) Bit-plane dependency

• Frequency decomposed bit-planes design: PA-IBS algorithm adopts the frequency

decomposition method for bit-planes design. The new bit-plane design method gen-

erates directional and gradient image features in binary format, and can provide better

rate-distortion performance as compared to using pixel bit-planes.

• Finer granularity of power adaptation: The number of frequency decomposed bit-

planes is not limited to pixel bit-depths. This allows finer granularity of power adap-

tation for smooth power and video quality adjustment.

• Independent bit-plane processing: The frequency decomposed bit-planes can be in-

dividually stored in the memories and independently processed. Therefore, we can

avoid unnecessary memory access and data processing to those unrelated bit-planes.

• Frequency scaling based hardware architecture: The independent bit-plane process-

ing provides the advantage to design the hardware for processing single bit-plane

instead of all bit-planes. To full use this hardware design for single bit-plane process-

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 89

ing, the frequency scaling technique scales the working frequency with the number

of bit-planes to be processed. Such hardware architecture reduces the overheads to

design the hardware for the worst case of all bit-planes, and enhances the hardware

utilization and power adaptation performance.

The remainder of this chapter is organized as follows. Section 2 describes our metric

to measure the power adaptation performance. Section 3 describes the proposed power

adaptive ME algorithm. The VLSI design issues for the proposed algorithm are addressed

in Section 4. In Section 5, we show the hardware architecture, and its experimental results

are demonstrated in Section 6. Section 7 gives the concluding remarks.

4.2 Power Adaptation Performance

An effective power adaptive ME design should deliver high power adaptation perfor-

mance with lower or equal peak power consumption so as to achieve less energy consump-

tion and higher power efficiency. Fig. 4.1 shows the power adaptation curves to measure

the power adaptation performance for prior arts [56, 57, 58]. Each curve contains multiple

points to represent the complexity-power relationship at different power modes.

In this paper, the power adaptation performance is defined as the ratio of Power Adap-

tation Ratio (PAR) to Complexity Adaptation Ratio (CAR). The PAR represents the power

increasing percentage and the CAR represents the complexity increasing percentage. The

reference point for PAR and CAR measurement is (0, 0). A higher PARCAR ratio indicates

a poor power adaptation performance due to the overhead for extra power consumption.

Moreover, the CAR is defined as the ratio of adapted operation counts to the total operation

90 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

counts. The CAR specifies complexity adaptation level in percentage and it is measured

in data operation counts or instruction counts. For example, a 4:1 sub-sampling motion

search has the CAR of 14. To provide a fair comparison basis for various hardware designs

with different peak power consumption, we use the PAR as opposed to the actual power

consumption. The PAR is defined as the ratio of adapted power consumption to peak power

consumption for a specified CAR. A lower PAR indicates lower power increasing percent-

age and better power adaptation performance. In Fig. 4.1, the prior arts [56, 57, 58] show

the higher PARCAR which means more overheads in their designs. The reasons to cause

higher PARCAR can be summarized as follows:

• Redundant bus access from the external memory that retrieves unnecessary pixels for

all CARs.

• Redundant search window data access from the on-chip memory due to inefficient

data access strategy. A sizable portion of the retrieved data is unused for execution

in the low CAR cases.

• Serious hardware idling problems for the hardware masking based approach.

To address these issues, we propose a new power adaptive ME algorithm and hardware

architecture called Power Adaptive Iterative Binary Search (PA-IBS). The algorithm adopts

a new bit-plane design solution by frequency decomposition to extract multiple image fea-

tures for pattern matching. Each bit-plane can be stored and processed individually so as

the redundant bus access and data computation to unused bit-planes can be saved. The

algorithm also provides the hardware design the large flexibility to adopt different work-

ing frequency to the iterations used for search. Different working frequency can keep our

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 91

Figure 4.1: Power adaptation curves for prior arts [56, 57, 58].

hardware design 100% busy.

4.3 Power Adaptive Iterative Binary Search (PA-IBS) Al-

gorithm

The PA-IBS contains the IBS algorithm to achieve power adaptive ME and the CAM

to select the target iterations for IBS on an MB basis. Fig. 4.2 shows the functional block

diagram of a generic video encoder system with the PA-IBS. The PA-IBS contains three

major modules: (1) Binary Image Preprocessor (BIP) (2) Iterative Binary Search (IBS) (3)

Content Adaptive Mechanism (CAM). The current video frame is sent to the BIP module to

generate binary images stored in the frame buffer as the reference frame of the next current

92 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

frame. The IBS module processes total f iterations of binary bit-plane searches, where f

represents the target iterations decided by CAM.

4.3.1 BInary Image Preprocessor (BIP)

The BIP is used to generate the frequency-decomposed binary bit-planes for search.

The preprocessing operation in [41] provides us a good reference to generate single bit-

plane by extracting the image feature in binary format, but this method is only limited to

single bit-plane design. The BIP improve the bit-planes design by considering the direc-

tional and gradient image features. We adopt totally Φ filters to generate Φ binary bit-

planes, in which each binary bit-plane represents one kind of directional or gradient image

feature to provide more precise of pattern matching for motion search. In our design, Φ

is not limited to pixel bit-depths, but the number of filters to apply for finer granularity of

power adaptation.

The preprocessing operation is similar to [41], but the filters design is different. We

design Φ FIR filters to generate Φ binary bit-planes. The k-th binary bit-plane Îk (x, y)

Îk (x, y) =

1 if FIRk(I(x, y)) ≥ 0

0 otherwise
(4.1)

is generated by applying k-th FIR filter (FIRk). The adopted filters shown in Table 4.2 are

two-dimensional (2-D) 2nd or 3rd order of FIR filters due to the complexity issue.

4.3.2 Iterative Binary Search (IBS)

The IBS contains multiple iterations of binary searches, and each of the iterations is a

full search on binary bit-planes. The authors in [60, 61, 62, 63] provide a good reference

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 93

for binary bit-plane of full search, but their method is limited to single bit-plane. Our

algorithm can execute multiple iterations of binary bit-plane searches, and then link the

number of iterations to different power consumption levels.

Fig. 4.3 shows the processing procedure for the IBS algorithm. The BIP module gener-

ates Φ binary images by frequency-decomposed filters. Then, the weighted prediction (wk)

is applied to adjust the weightings between the Φ binary images to achieve better motion

search results. The number of iterations (φ) to be executed in IBS is decided by content

adaptive pre-analysis mechanism (CAM) on the macroblock (MB) basis. The φ iterations

of block matching results in Sum of Difference (SOD) are accumulated as the final search

results for the decision of motion vectors. In our experiments in later section, Φ is set as

eight to provide a similar comparison basis for the 8-bit full search.

The block matching criterion for multiple iterations of binary search is SOD accumu-

lation

SOD(φ) =
φ∑

k=1

SODk =
φ∑

k=1

(15∑

x=0

15∑

y=0

(
ÎC
k (x, y)⊕ ÎR

k (x + x0, y + y0)
)
· wk

)
. (4.2)

The SOD accumulation is a function of which means we accumulate iterations of binary bit-

plane matching results. For each of binary bit-plane search, we compare the current block

ÎC
k (x, y) and the reference block ÎR

k (x + x0, y + y0) at the k-th binary bit-plane by XOR

operation. The SOD operations can provide equal results as Sum of Absolute Difference

(SAD) when image data is in binary format, but XOR operation is much simpler than

subtraction and absolute operations.

94 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

Figure 4.2: Functional block diagram of a generic video encoder with power adaptive-
iterative binary search (PA-IBS).

Figure 4.3: Processing procedure of the power adaptive-iterative binary search (PA-IBS)
algorithm.

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 95

Table 4.2: Filters used to generate binary images.

k-th binary image Filter Types 2-D Filter Coefficients
1 3×3 Laplacian operators [1 1 1; 1 -8 1; 1 1 1]
2 3×3 Sobel operators along 0

degree
[1 0 -1; 2 0 -2; 1 0 -1]

3 3×3 Sobel operators along 90
degree

[1 2 1; 0 0 0; -1 -2 -1]

4 3×3 Sobel operators along
135 degree

[1 1 -2; 1 -2 1; -2 1 1]

5 3×3 Sobel operators along 45
degree

[-2 1 1; 1 -2 1; 1 1 -2]

6 3×3 Laplacian operators (di-
agonal)

[0 0 0; 1 -3 1; 0 1 0]

7 3rd order of high pass filter
(horizontal)

[0 0 0 0; 0 0 0 0; -1 3 -3 1; 0 0 0
0]

8 3rd order of high pass filter
(vertical)

[0 0 -1 0; 0 0 3 0; 0 0 -3 0; 0 0 1
0]

4.3.3 Content Adaptive Mechanism (CAM)

The CAM dynamically adjusts the target iterations (φ) according to video contents so

as to achieve a better power allocation and power adaptation performance. For example,

a complicated video scene needs more power to provide an accurate search for significant

quality improvement. On the other hand, a coarse search with less power is sufficient for a

simple scene such as slow motion to achieve similar performance. To select φ, we need to

find a relationship between the activities in video content and φ. To provide more accurate

prediction for the activities in video content, this decision criterion is implemented on an

MB basis.

Our MB based decision criterion measures the deviation of motion vectors from the

neighboring MBs denoted as ϕ and such criterion is used to map from ϕ to φ. The parame-

ter ϕ is defined in eq. (4.3) where it measures the average difference between the horizontal

96 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

and vertical motion predictors from the top, top right and left MBs.

ϕ =
∑

i∈x,y

(∣∣∣MV top
i −MV top right

i

∣∣∣ +
∣∣∣MV top

i −MV top left
i

∣∣∣
)
/2 (4.3)

Then the φ is determined by eq. (4.4), where Tk are decision thresholds and T0 = 0, T9 =

maximal allowable motion vectors in the design.

φ = k, if Tk ≤ ϕ < Tk+1 where 1 ≤ k ≤ 8 (4.4)

These decision thresholds Tk are defined by the users according to the search range and

maximal number of iterations Φ.

4.4 Hardware Design Issues

For VLSI implementation of PA-IBS, there are two major design issues: power adap-

tation and SOD accumulation for the target number of iterations. The first issue of power

adaptation is addressed by exploring hardware techniques so that the number of iterations

corresponds to the power consumption level. The second issue of SOD accumulation for

the target number of iterations is addressed by exploring hardware solutions to reduce the

sizable memory required by the SOD accumulation.

4.4.1 Power Adaptation

To provide a link between the number of iterations and the power consumption level,

there are two possible solutions, clock gating and frequency scaling [64].

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 97

• Clock gating: Clock gating is a commonly used technique to halt hardware operations

and to save power consumption. The hardware with clock gating should be able to

turn off the clock to stop power consumption before it is awaked.

• Frequency scaling: Frequency scaling is the other widely used technique coupled

with the voltage scaling technique to achieve power adaptation. The system changes

the operating frequency to complete operations of different complexity within the

same time period. Thus, different power level is achieved.

If PA-IBS is implemented with the clock gating technique, a constant frequency clock

is designed to meet the requirement of φ binary searches and the clock is turned off

when φ binary searches are done. However, the hardware is idling for the remaining

7/8 of total operation cycles if only one iteration is executed. On the other hand,

if PA-IBS is implemented with the frequency scaling technique, we can adjust the

working frequency according to the target iterations (φ) as shown in eq. (4.5).

fwork =
φ

Φ
· finput =

φ

8
· finput (4.5)

The frequency scaling technique has fewer hardware idling cycles and higher hardware

utilization. Thus, the frequency scaling technique is selected in our design.

4.4.2 SOD Accumulation

To implement SOD accumulation for the target iterations as shown in eq. (4.2), the

hardware requires sizable on-chip memories to buffer the SOD from each search. For

H.264/AVC [55], the ME that supports up to 7 search block sizes needs at least 16 4x4

98 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

SODs buffered for further SOD computation of larger block sizes. Suppose the 16 4x4

SODs for one search location takes M bits, the whole search window for search range of

±16 needs a sizable buffer with (32 × 32 × M) bits. The size increases with the search

range.

To reduce the on-chip memory size, a region based search strategy is proposed to parti-

tion the original wider search window into several smaller search regions. The buffer size is

limited to the region size rather than the whole search window size. The final motion results

are selected region by region. Thus, each region search can reuse the same hardware.

The first design issue for the region search architecture is to select the region size. The

region size affects the buffer size and the search locations for parallel processing. Table 4.3

summarizes the required hardware and memory access bandwidth for four region sizes. If

region size of 16x16 is selected, for each search location at most 4 regions are needed and

the on-chip memory access bandwidth is 256×4 bits. To allow maximal memory access

efficiency, we need to design 256 SOD processing elements (PE) in order to complete the

16×16 region search in parallel. If region size of 8×8 is selected, 9 regions and 64 SOD

PEs are needed. If the smaller region size is picked, the hardware design cost and memory

access bandwidth is reduced. However, the overall processing cycles are increased and

vice versa. The 8×8 region size is selected to meet the requirement of CIF 30 fps or higher

frame rates. It achieves the processing throughput with the smallest hardware design area.

To support the 8×8 region search, the whole search window is partitioned into several

8×8 regions. Fig. 4.4 exemplifies how the search window with search range of ±16 is

partitioned into 36 8×8 blocks. For each 8×8 region search, we need to check totally 64

search locations for an MB that covers nine 8×8 blocks. So, 9 memory banks and the 64-bit

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 99

Figure 4.4: Partitioned 8×8 regions for z-th binary search window under search range of
±16.

data depth are designed. In Fig. 4.4, we label each partitioned 8×8 region with region index

xyz. The index xyz represents the region belonging to the binary image for z-th iteration of

search, and is stored in the (y+4×z)-th word of the x-th memory bank. The region search

is processed region by region in a raster scanning order. Table 4.4 summarizes the region

indexes in Fig. 4.4 and their associated memory banks. There are 9 banks of 4×8×2×64

two-port register files for LM REF where the factor 4 is for the index y, the factor 8 is for

the index z and the factor of 2 is for the ping-pong buffers. There are 4 banks of 8×2×64

two-port register files for LM CUR where the factor 8 is for the index z and the factor of 2

is for the double ping-pong buffer. The total memory size is 40 kilo bits.

4.4.3 Binary Image Preprocessor

Preprocessor is designed with ME module in BBME due to the significant bus band-

width savings, but will be put outside ME module in PA-IBS. The reasons are: (1) PA-IBS

100 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

Table 4.3: Analysis of hardware requirement for four region sizes.

Region size Number of re-
gions for one
point search

Memory access
for one point
search

Number of SOD
PE

16× 16 4 256× 4 = 1024 256
8× 8 9 64× 9 = 576 64
8× 4 15 32× 15 = 480 32
4× 4 25 16× 25 = 400 16

Table 4.4: Memory index for the partitioned regions in search range of ±16 (z = iteration
index from 0 to 7). Each word is 64 bits.

Bank index No of words The stored region index (z=0-7)
0 4× 8 00z, 01z, 02z, 03z
1 4× 8 10z, 11z, 12z, 13z
2 4× 8 20z, 21z, 22z, 23z
3 4× 8 30z, 31z, 32z, 33z
4 4× 8 40z, 41z, 42z, 43z
5 4× 8 50z, 51z, 52z, 53z
6 4× 8 60z, 61z, 62z, 63z
7 4× 8 70z, 71z, 72z, 73z
8 4× 8 80z, 81z, 82z, 83z

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 101

Table 4.5: Evaluation of the pre-processing unit design schemes for PA-IBS.

Scheme Iterations Pipeline Bus Bandwidth
(Bytes/MB)

Pipeline Cycles
(NCsystem)

1 φ=8 MEU/BIP: Frame E-MEM→BIP 2561 NCMEU

MEU/MEU: MB BIP→E-MEM 256
BIP→MEU 256

2 φ=8 MEU/BIP: MB E-MEM→BIP 256 NCMEU+NCBIP

MEU/MEU: MB BIP→E-MEM 256
BIP→MEU 0

3 φ=1 MEU/BIP: Frame E-MEM→BIP 256 NCMEU

MEU/MEU: MB BIP→E-MEM 256
BIP→MEU 322

4 φ=1 MEU/BIP: MB E-MEM→BIP 256 NCMEU+NCBIP

MEU/MEU: MB BIP→E-MEM 256
BIP→MEU 0

1((16×16)/8)×(φ=8)
2((16×16)/8)×(φ=1)

has longer worst processing cycles to cause longer pipelining stages, (2) the bus bandwidth

saving is not significant in low CAR (or small φ) case.

In Table 4.5, we analyze 4 design schemes for the BIP module. Scheme 1 is PA-IBS

with φ = 8, and such a design scheme puts BIP out of MEU to avoid longer latency and

redundant bus transmission. Scheme 2 is with separated BIP and MEU for φ = 8. The

required bus transmission for Scheme 2 is reduced to 66.7%2, but the pipeline cycles is

longer. Scheme 3 and 4 have similar analysis as Scheme 1 and 2 for φ = 1. The bus saving

from Scheme 3 to Scheme 4 is 5.9%3 which is very small.

From the worst case scenario, the pipeline cycles is more critical than bus bandwidth

saving. Hence, unlike low power ABME design in Chapter 3, the PA-IBS implements

frame level BIP instead of MB BIP.

2(256+256)/(256+256+256)×100%=66.7%.
3(256+256)/(256+256+32)×100%=94.1%.

102 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

4.5 PA-IBS Hardware Architecture

The PA-IBS architecture is a hardware-efficient power adaptive design based on both

the IBS algorithm in Section 4.3 and the design approaches in Section 4.4. The design con-

tains a low complexity binary matching architecture to reduce the peak power consumption,

and the frequency scaling technique for power adaptation to prevent hardware idling.

4.5.1 System Architecture

The system architecture of PA-IBS as shown in Fig. 4.5 contains several on-chip memo-

ries for current and reference search data, a 8×1 line search engine to realize region search,

pipelined buffers to store the accumulated SODs, and several control units for data and

search flow control. The current and reference image data for ME are stored in two sets

of local buffers, LM CUR and LM REF, respectively. The LM CUR contains four banks

(C0-C3) to store the current block data where each bank is a 16×64 two-port register file.

The LM REF contains nine banks (S0-S8) to store the reference data where each bank is a

64×64 two-port register file. The current and reference block data are received via memory

interface (MEM IF). For each access of search data according to the current 8×8 region

search, the LM CUR outputs 16×16 bits and LM REF outputs 24×24 bits into two reg-

isters arrays, REG CUR and REG REF. The region search is realized by implementing 8

lines of 8×1 line searches. The 8×1 line search engine designed for low complexity binary

matching gets 256 bits from REG CUR and 16×24 bits from REG REF for the parallel

8×1 binary search each cycle. For IBS with multiple iterations, the hardware accumulates

SODs from each iteration and stores it in the pipelined buffers (PB0-PB7). The line search

engine needs totally eight cycles to complete one 8×8 region search for each iteration, and

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 103

(8× φ) cycles for φ iterations. The pipelined buffers are designed to store the accumulated

SODs. There are totally eight lines of 8×1 line search results needed for buffering in one

8×8 region search, so eight pipelined buffers are used.

Once the search engine completes one region search, the search locations are output

from the vector generator (VG) to the decision engine for the final motion vectors selection

using the information from both search locations and its associated SOD. The controller

(CTRL) is the control center of the whole motion estimation design. It makes sure the de-

cision engine meets the input timing of the SOD results from the pipelined buffers, controls

the address generator (AG) to output the address for memory access, clears the accumulated

SODs in the pipelined buffers at the beginning of each region search, sends the parameter

of the target iterations (φ) to clock generator (CG) for appropriate working frequency, and

controls the timing to enable the decision engine.

4.5.2 8×1 Line Search

The 8×1 line search engine realizes the 8×8 region search line by line. To avoid a huge

amount of data access and hardware requirement for parallel processing, the 8×8 region

search is divided into 8 lines of 8×1 line searches and is processed line by line for smooth

data access. Using this architecture, we only need to design for the smallest search unit of

one 8×1 line search. Parallel processing of 8 search locations takes only one cycle since

the pattern matching criterion uses simple XOR operations for binary images. It takes eight

cycles to complete one 8x8 region search.

The line search engine is designed to process in parallel the eight search locations for

the 8×1 line search. As shown in Fig. 4.6, the search engine inputs 16×16 bits from reg-

104 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

ister array REG CUR and 16×24 bits from REG REF for each 8×1 searches. For each

location in the 8×1 line search, the block matching criterion is 256-bit SOD operation us-

ing the same 16×16 bits from REG CUR and different 16×16 bits from the 16×24 bits

as the search window of the 8×1 line search. Each 256-bit SOD operation is further parti-

tioned into 16 4×4 SOD computations since the smallest search block size in H.264/AVC

is 4×4. Then, the accumulated 16 4×4 SODs are stored in the pipelined buffers before out-

putting to the decision engine. The SOD results for 4×8 to 16×16 block size are computed

by summing the 16 4×4 accumulated SODs in the decision engine to select final motion

vectors.

4.5.3 Pipelined Buffers

The pipelined buffers are designed to store accumulated SODs for multiple iterations

of IBS. We design eight sets of 1024-bit pipelined buffers to store the accumulated SODs

from each 8×1 line search. For multiple iterations of searches, the pipelined buffers store 8

lines of SODs from each 8×1 line search to accumulate the SODs from each search. After

all the iterations of searches are done, the pipelined buffers output the final SOD sums to

the decision engine. Fig. 4.7 shows the data output timing from the 8×1 line search engine

to the pipelined buffers for φ iterations of binary searches. If φ equals to one, the final SOD

is generated from cycle 9 to cycle 16. If there are multiple iterations, the SODs for row 0

are accumulated with row 0 of next iteration at cycle 9. The final SODs for the eight lines

of searches are generated at cycle (8 · φ + 1) to cycle (8 · φ + 8).

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 105

Figure 4.5: Block diagram of PA-IBS architecture.

106 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

Figure 4.6: Architecture of line based search engine.

Figure 4.7: Output data timing from line based search engine to the pipelined buffers for φ
iterations of binary searches.

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 107

4.6 Experimental Results and Analysis

4.6.1 Evaluation of Algorithmic Performance

The performance evaluation for PA-IBS without CAM demonstrates better PSNR per-

formance as compared to prior power adaptive algorithms. The PA-IBS with CAM ex-

periment demonstrates the further complexity reduction in software or power reduction in

hardware for similar video quality and coding bit rate.

A. R-D Performance for PA-IBS without CAM

Table 4.6 summaries the rate-distortion (R-D) performance for IBS, Least Significant

Bit (LSB) truncation [57, 58], and sub-sampling (SUB) algorithm [56] which are imple-

mented on H.264/AVC reference software JM8.6. Six common MPEG test sequences in-

cluding Foreman, Akiyo, Mobile, Flower, Tempete, and Football, are used for this test with

the GOP structure of one I-frame and 149 P-frames. One frame skipping is applied in this

test and the results are compared to the JM software with full search. From this Table,

PSNR loss for IBS with φ = 1 (or CAR=1/8) ranges from 0.15 to 0.45 dB. For φ = 2 (or

CAR=2/8), the PSNR loss ranges from 0.10 to 0.30 dB. When φ > 2 is applied, at most

0.2 dB PSNR loss is observed.

To compare with LSB truncation and sub-sampling methods, the IBS at CAR equal to

1/8 has 0.20-0.45dB PSNR gain over LSB truncation, and has up to 0.15 dB PSNR gain

over the SUB method. At CAR equal to 2/8, IBS is 0.1-0.2dB better than LSB truncation,

and has similar performance as the SUB method. At CAR greater than 2/8, the difference

between these algorithms becomes minor.

108 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

B. R-D Performance for PA-IBS with CAM

The CAM adapts the target iterations to activities in video contents for better power

allocation. Table 4.6 shows the experimental results for PA-IBS with CAM. The first issue

of the CAM is to decide the Tk values defined in Section 4.3.3. From Table 4.6, we can find

the PSNR loss for φ greater than 4 is minor. So, only φ ≤ 4 are adopted in this test. With

search range of ±16, we let T1 = 0 , T2 = 4 , T3 = 8, T4 = 16, T5 ∼ T9 = 16. Table 4.7

lists the number of iterations for one MB search, bit rate and average PSNR for the six

sequences. For Foreman sequence, the CAM method uses 1.57 iterations on the average

for one MB search and shows 21.5% complexity reduction over the PA-IBS without CAM

for similar encoding bit rate and PSNR performance. For the Akiyo sequence, the reduction

ratio is more significant because it has very slow motion or no motion in the most area. So

similar search results can be achieved using fewer iterations with CAM and a total of 49%

in complexity reduction is observed. For the other sequences such as Mobile&Calendar,

Flower&Garden, Tempete, and Football, there are 36.5%, 25%, 37%, and 18% complexity

reduction on the average, respectively.

The CAM can dynamically adjust the target number of iterations φ on an MB basis

according to the spatial or temporal video characteristics. Fig. 4.8 shows the temporal

distribution of the target iterations (φ) for Foreman and Flower&Garden sequences. In

Fig. 4.8(a), we use larger φ in the scene change area from frame 180 to 220 to gain the

significant coding bits saving (up to 20 kilo bits) as shown in Fig. 4.9(b) with minor PSNR

performance loss (less than 0.1dB) as shown in Fig. 4.9(a). In Fig. 4.8(b), most area in

Flower&Garden sequence has uniform global motion and their motion activities in the

neighboring MBs are similar. Thus, smaller φ is used to achieve similar PSNR quality

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 109

(a)

(b)

Figure 4.8: Temporal distribution of the target number of iterations (φ) for the PA-IBS
algorithm. (a) Foreman with 300 fames (b) Flower&Garden with 250 frames.

with the significant complexity reduction. However, after frame 180 the motion activities

become larger and non-uniform, so larger φ is used to achieve better search results.

4.6.2 Evaluation of Hardware Performance

A. Chip Specification

Table 4.8 lists the chip specification for the PA-IBS hardware design and the chip layout

is shown in Fig. 4.10. This design is synthesized with Artisan TSMC 0.18µm cell library

110 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

(a)

(b)

Figure 4.9: Temporal distribution of PSNR and coding bits for the PA-IBS algorithm with
and without the CAM on Foreman sequence.

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 111

Table 4.6: R-D performance for three power adaptive algorithms as compared to full search
(LSB = LSB truncation, SUB = sub-sampling, IBS = iterative binary search).

Complexity Adapta-
tion Ratio (CAR)

1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

Foreman LSB -0.80 -0.50 -0.35 -0.25 -0.15 -0.10 -0.05 0.00
SUB -0.40 -0.25 -0.15 -0.15 -0.15 -0.10 -0.05 0.00
IBS -0.45 -0.30 -0.20 -0.20 -0.15 -0.10 -0.10 -0.05

Akiyo LSB -0.35 -0.20 -0.05 -0.05 -0.05 -0.05 -0.05 0.00
SUB -0.15 -0.10 -0.05 -0.05 -0.05 -0.05 -0.05 0.00
IBS -0.15 -0.10 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05

Mobile LSB -0.50 -0.20 -0.10 -0.05 -0.05 -0.05 -0.05 0.00
SUB -0.30 -0.10 -0.05 -0.05 -0.05 -0.05 -0.05 0.00
IBS -0.25 -0.10 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05

Flower LSB -0.90 -0.30 -0.10 -0.05 -0.05 -0.05 -0.05 0.00
SUB -0.60 -0.30 -0.10 -0.05 -0.05 -0.05 -0.05 0.00
IBS -0.40 -0.20 -0.10 -0.05 -0.05 -0.05 -0.05 -0.05

Tempete LSB -0.40 -0.20 -0.10 -0.05 -0.05 -0.05 -0.05 0.00
SUB -0.30 -0.20 -0.10 -0.05 -0.05 -0.05 -0.05 0.00
IBS -0.25 -0.15 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05

Football LSB -0.50 -0.30 -0.10 -0.05 -0.05 -0.05 -0.05 0.00
SUB -0.20 -0.10 -0.05 -0.05 -0.05 -0.05 -0.05 0.00
IBS -0.30 -0.20 -0.10 -0.05 -0.05 -0.05 -0.05 -0.05

112 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

Table 4.7: Complexity reduction for PA-IBS algorithm with CAM as compared to PA-IBS
without CAM.

Method PA-IBS with-
out CAM

PA-IBS with
CAM

Complexity
Reduction

Foreman Average No. of iterations 2 1.57 21.5%
Bit rate (kbps) 419 418 -
PSNR (dB) 37.46 37.42 -

Akiyo Average No. of iterations 2 1.02 49.0%
Bit rate (kbps) 76 77 -
PSNR (dB) 40.76 40.76 -

Mobile Average No. of iterations 2 1.27 36.5%
Bit rate (kbps) 1237 1243 -
PSNR (dB) 35.40 35.38 -

Flower Average No. of iterations 2 1.50 25.0%
Bit rate (kbps) 1237 1248 -
PSNR (dB) 36.25 36.20 -

Tempete Average No. of iterations 2 1.26 37.0%
Bit rate (kbps) 961 970 -
PSNR (dB) 36.24 36.19 -

Football Average No. of iterations 2 1.50 25.0%
Bit rate (kbps) 1094 1017 -
PSNR (dB) 37.48 37.47 -

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 113

and Synopsys Design Compiler. The hardware cost is 217 kilo gates. Total 40 kilo bits

on-chip memories are used to store current and reference search patterns. Total 2,101 input

frequency cycles are needed for search range of ±16 . The required frequency to run CIF

30 fps is 24.95 MHz. The power consumption measured by Angilent SOC93000 is 27.50,

23.04, 19.04, 16.29, 14.31, 11.45, 7.22 and 4.21 mW for φ = 8 to φ = 1, respectively.

B. Evaluation on Bus Bandwidth

Bus bandwidth is typically the bottleneck in modern VLSI design, especially for video

applications. In the proposed design, the required data for bus access is proportional to the

target iterations for IBS. For single iteration of binary search with range of ±16, it needs

16×16 bits data for the current search block and 48×48 bits data for the search window. If

φ iterations of searches are applied, the bus access bandwidth will be ((162 +482)×φ) bits

for each MB search. In the prior power adaptive designs such as LSB truncation [57, 58]

or SUB methods [56], it is necessary to retrieve all data for the search due to the data

access strategy required by the algorithm. Our proposed method only needs φ/8 and saves

8 − φ/8 of bus access. Fig. 4.11 shows the relationship between required bus bandwidth

for different CAR cases. To make comparison among different architectures, the following

assumptions are made when we claim the CAR is h/8 for our references. For the IBS the

target number of iterations is h. For the LSB truncation method, only the h MSB bits are

kept. For the SUB algorithm, the 8 : h sub-sampling is assumed. The maximal saving ratio

of data transmission can achieve up to 87.5% when φ = 1 or CAR=1/8.

114 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

C. Evaluation on Power Adaptation Performance

The power adaptation curve is shown in Fig. 4.12. As compared to the prior power adap-

tive designs, the PA-IBS has the best power adaptation performance defined as PAR/CAR.

For CAR = 1/8, the PA-IBS can improve the power adaptation performance from 1.68 to

1.17 with around 50% overhead reduction as compared to the approaches in [57, 58]. For

CAR = 2/8, the proposed design can improve the power adaptation overhead by 19%-125%

as compared to the works in [56, 57, 58]. For CAR = 4/8, the improvements range from

8% to 50%. The improvement is more significant for small CAR, but is similar for large

CAR. We summarize the comparison results with the prior power adaptive designs in terms

of PSNR loss, bus access bandwidth, and power adaptation performance in Table 4.9.

D. Evaluation on Peak Power Consumption

Table 4.10 summarizes the design information for the prior H.264/AVC ME designs

[65, 66, 40, 67]. The work in [65] implements a fast algorithm of three levels of multi-

resolution search. The works in [66, 40, 67] are developed based on full search but with

different search architecture, including parallel tree architecture, one-dimensional systolic

array, and two-dimensional systolic array architectures. In Table 4.10, our proposed work

can deliver minimal peak power consumption as compared to other designs.

For the comparison of power adaptive hardware designs, the one with minimal peak

power consumption and better power adaptation performance delivers highest power effi-

ciency. The PA-IBS has the minimal peak power consumption as shown in Table 4.10. The

PA-IBS with better power adaptation performance as shown in Fig. 4.12 can also achieve

better power efficiency as compared to other power adaptive designs.

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 115

Figure 4.10: Chip photo.

Table 4.11 shows the design metrics evaluation for the H.264/AVC designs in Ta-

ble 4.10. The hexagon plots are shown in Fig. 4.13 and Fig. 4.14. From this Table and

these plots, we can find PA-IBS and Chen’s work are the best two designs in this compari-

son from overall evaluations. However, PA-IBS is better in terms of quality (Q), bandwidth

(B), throughput (T), a little worse in silicon area (A), and power (P), ties in utilization (U).

E. Evaluation on Power-Distortion Performance

Power-Distortion performance is another key parameter to evaluate the power adap-

tive designs. A effective power adaptive design is able to deliver best quality under the

same power consumption or minimal power consumption under the same quality. This also

means a effective power adaptive design should have the best Power-Distortion (P-D) curve

116 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

Figure 4.11: Comparison of bus bandwidth for the PA-IBS and conventional power adap-
tive designs with the hardware masking approach.

Table 4.8: Chip design specification of PA-IBS.

Process TSMC 0.18µm 1P6M
Package CQFP 128
Area 2766 × 2766 µm2

Logic gate count 217 kilo gates
Chip frequency CIF 30fps: 24.95 MHz for ±16
Memory 9 banks of 64x64 two-port register files

4 banks of 16x64 two-port register files
Total 40 kilo bits

Power consumption 4.21 mW for 1 iteration (CIF 30fps)
27.50 mW for 8 iterations (CIF 30fps)

Max throughput 38.6 fps running at 32MHz

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 117

Figure 4.12: Comparison of the power adaptation performance for the PA-IBS and prior
power adaptive designs.

Table 4.9: Comparison of the power adaptive designs.

Design Cheng[56] He [57] Takagi [58] This work
PSNR loss (dB) 0.05-0.60 0.05-0.90 0.05-0.90 0.05-0.45
Power adaptive tech-
nique

Hardware
masking

Hardware
masking

Hardware
masking

Frequency
scaling

Power adaptation per-
formance (PAR/CAR)

1.00-2.42 1.00-1.86 1.00-1.68 1.00-1.17

Is hardware busy for all
CARs?

No No No Yes

Bus transmission band-
width scalable

No No No Yes

118 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

Table 4.10: Comparison of H.264/AVC ME hardware designs.

Architecture multi-
resolution
search [65]

Parallel
trees full
search [66]

1-D systolic
full search
[40]

2-D systolic
full search
[67]

PA-IBS

Cycles/MB1 180 1024 4096 1024 1024
On-chip
SRAM
(kilo-bits)

N/A 208 N/A N/A 104

Gate count
(kilo)

N/A 330.2 61 597 217

Power
(mW)2

N/A N/A 95.04 20.483 22.54

Process
(µm)

N/A 0.18 0.13 0.18 0.18

Search
range

±64H ×
±32V

±64H ×
±32V

±16H ×
±16V

±8H×±8V ±16H ×
±16V

Search pre-
cision

Integer-pel Integer-pel Integer-pel Integer-pel Integer-pel

1Cycles for search range of ±16H×±16V
2Power for CIF 30fps
3Power for search range of ±8H×±8V

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 119

Table 4.11: Evaluation of design metrics for low power designs (Group 3).

Designs Design Metrics
PA-IBS Q (dB) -0.30 (CAR = 1/8)

T (cycles/MB) 128 (CAR = 1/8)
A (logic,memory) 217/104
U (%) 100
B (bytes/MB) 128 (CAR = 1/8)
P (mW,µm) 4.21 (CAR = 1/8)
Pnom (mW) 4.21

Yap [40] Q (dB) -0.00
T (cycles/MB) 4096
A (logic,memory) 61/n.a.
U (%) 100
B (bytes/MB) n.a.
P (mW,µm) 95.04/0.13
Pnom (mW) 409.97

Ou [67] Q (dB) -0.00
T (cycles/MB) 1024
A (logic,memory) 597/n.a.
U (%) 100
B (bytes/MB) n.a.
P (mW,µm) 20.48/0.18
Pnom (mW) 20.48

Chen [26] Q (dB) -0.00/-0.07/-0.55 (mode 1-3)
T (cycles/MB) 1136 (mode 3)4

A (logic,memory) 131.2/64
U (%) n.a.
B (bytes/MB) 1024 (mode 1), 256 (mode 2,3)
P (mW,µm) 16.72,4.83,2.13/0.18 (mode 1-3)
Pnom (mW) 4.08 5

4CIF 30fps@13.5MHz.
5Voltage=1.3V.

120 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

(c)

(d)

Figure 4.13: Hexagonal plot of 6 design metrics for different ME hardware architectures
evaluation. (a) Yap’s work [40] (b) Ou’s work [67].

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 121

(c)

(d)

Figure 4.14: Hexagonal plot of 6 design metrics for different ME hardware architectures
evaluation. (a) PA-IBS (CAR=1/8) (b) Chen’s work [26].

122 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

behavior as compared to the other power adaptive designs.

Table 4.6.2 summarizes the power in mW and distortion in PSNR loss for our PA-IBS,

Chao et al.’s work [30], and Chen et al.’s work [26]. Chao et al.’s work is for MPEG-4.

In his design, there are three power adaptive modes: (1) Successive Elimination Algorithm

(SEA) which is one kind of fast full search, (2) SEA with early cut (at cycle 4208 to meet

CIF 30fps at 50MHz), (3) The third one is DS. The third mode is for lowest power consump-

tion, while the first mode is for highest quality. The chip operates at the three modes and

switches according to the content adaptive detection. Chen et al.’s work is a H.264/AVC

IME design with three operating modes: (1)high quality mode, (2)low power mode, and

(3) ultra low power mode. The first mode is a full search with 2 reference frames, while

the third mode is four-step search(4SS) with single reference frame. Running on the third

mode, the power consumption is 2.13 mW for CIF 30 fps with 13.5 MHz clock frequency.

For the power adaptive designs such as [56, 57, 58] we have mentioned in Section 4.6.2-B,

they are not included in this Table due to the lack of exact power consumption data in mW

or its manufacture process.

Fig. 4.15 shows the P-D performance for PA-IBS, Chao et al.’s work [30], and Chen et

al.’s work [26]. PA-IBS has the best P-D performance at lower power stages, while Chen

et al.’s work has best P-D performance at higher power stages. Chao et al.’s work is the

worst in this comparison.

4.7 Summary

In this chapter, we proposed a new power adaptive ME IP core design called Power

Adaptive Iterative Binary Search (PA-IBS) to improve power efficiency and longer battery

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 123

Figure 4.15: Power-Distortion curves for power adaptive designs.

124 Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS)

Table 4.12: Power-Distortion performance for power adaptive designs.

Designs Power1 Distortion
Power Stage Power (mW) PSNR Loss (dB)

PA-IBS 1 4.21 0.3
2 7.33 0.18
3 11.45 0.09
4 14.31 0.08
5 16.29 0.07
6 19.04 0.06
7 23.04 0.06
8 27.50 0.05

Chao [30] 1 17.6 0.74
2 115.83 0.02
3 236.85 0.00

Chen [26] 1 4.08 0.55
2 9.26 0.07
3 16.72 0.00

1Normalized Power = Power(original)×(0.18
Process)

2 × (1.8
Voltage)

2

life. We first analyzed the design overheads in the prior power adaptive ME designs with

the hardware masking approach. Then, the proposed power adaptive solution reduces those

design overheads with a new ME algorithm called Iterative Binary Search (IBS) and hard-

ware architecture called Power Adaptive IBS (PA-IBS). The IBS integrates a new frequency

decomposed bit-plane design method to improve the rate-distortion curve and provide the

flexibility for finer granularity of power adaptation. The IBS also executes the multiple

bit-plane searches in an either individual or accumulated manner, thus redundant bus and

on-chip memory access are eliminated. The PA-IBS hardware implements the frequency

scaling technique to adapt the number of iterations for different power consumption levels.

It reduces hardware idling and enhances hardware utilization.

Experiments show the PA-IBS can deliver lower peak power consumption, better power

Chapter 4: Power Adaptive Iterative Binary Search (PA-IBS) 125

adaptation performance and lower bus bandwidth requirement. As for the peak power con-

sumption, the PA-IBS can deliver as low as 27.50 mW power consumption for CIF 30 fps

and it has lower peak power consumption as compared to other H.264/AVC ME designs.

As for the power adaptation performance, the PA-IBS has the best power adaptation perfor-

mance from 1.00 to 1.17 as compared to the prior power adaptive designs in [56, 57, 58].

The PA-IBS can also improve the hardware idling problem and save up to 87.5% in bus

bandwidth requirements.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we have presented two algorithm and architecture designs of motion

estimation for different power constrained video coding applications, and showed the better

low power and power adaptive characteristics as compared to prior works.

The first power constrained application is for mobile terminals which have the demands

of the low power consumption features. Hence, we proposed a new motion estimation

hardware architecture to achieve low power and high bandwidth efficiency. The proposed

design is developed from a very low complexity motion estimation algorithm called all

binary motion estimation [11]. It integrates several important features including (1) MB

based pre-processing (2) support of B-frame parallel search (3) parallel processing of 8x8

and 16x16 LV3 block searches (4) shared processing units to reduce the hardware cost

(5) efficient LV2 search to reduce the latency. We also analyze how low power and high

bandwidth efficiency can be achieved with the proposed design. Experiments show that

126

Chapter 5: Conclusions and Future Work 127

the power consumption can reach as low as 763µW for IPPPP CIF 30fps and 896µW for

IPBPB CIF 30fps. The bus bandwidth saving can achieve up to 54.3% for P-frame only

forward search and 67.1% for B-frame search.

The second power constrained application is for portable devices which have the de-

mands of different video quality and power consumptions under different battery status.

Hence, we proposed a new power adaptive ME IP core design called Power Adaptive It-

erative Binary Search (PA-IBS) to improve power efficiency and longer battery life. We

first analyzed the design overheads in the prior power adaptive ME designs with the hard-

ware masking approach. Then, the proposed power adaptive solution reduces those design

overheads with a new ME algorithm called Iterative Binary Search (IBS) and hardware ar-

chitecture called Power Adaptive IBS (PA-IBS). The IBS adopts eight iterations of binary

searches and can save unnecessary bus access and on-chip memory access. The PA-IBS

hardware implements the frequency scaling technique to adapt the number of iterations for

different power consumption levels. It reduces hardware idling and enhances the hardware

utilization.

The experiments show the PA-IBS can deliver lower peak power consumption, bet-

ter power adaptation performance and lower bus bandwidth requirement. As for the peak

power consumption, the PA-IBS can deliver as low as 22.5 mW power consumption for CIF

30 fps and it has lower peak power consumption as compared to other H.264 ME designs.

As for the power adaptation performance, the PA-IBS has the best power adaptation perfor-

mance from 1.00 to 1.17 as compared to the prior power adaptive designs in [56, 57, 58].

The PA-IBS can also improve the hardware idling problem and save up to 87.5% in bus

bandwidth requirements.

128 Chapter 5: Conclusions and Future Work

5.2 Future Work

The future work is to extend the proposed low power and power adaptive ME designs

to Scalable Video Coding (SVC) standard [68]. The SVC standard is developed based on

H.264/AVC standard[55], but has 2 major features of temporal and spatial scalability for

video streaming applications.

The temporal scalability is to allow scalability in temporal domain to change the frame

rates, and this feature is constructed based on Motion Compensated Temporal Filtering

(MCTF) and Hierarchical B-Pictures approaches. To extend our work to support temporal

scalability, the proposed binary motion search architecture can benefit from this scalability

feature due to the data for block matching are in binary format. Hence, both the complexity

and bus bandwidth are able to be reduced. However, the video quality may be an issue due

to the long distance search using binary format may lead to imprecise prediction and poor

motion compensated performance.

The spatial scalability is to allow scalability in spatial domain to support different video

resolutions in single bitstream. The challenge is to improve the prediction performance

from low to high or high to low resolutions with another exhaustive search for power sav-

ings. To extend our work to support spatial scalability, the proposed binary motion search

architecture can benefit from this scalability feature due to the data for block matching are

in binary format. Hence, both the complexity and bus bandwidth are able to be reduced.

However, similar problems in the video quality may be an issue due to the downsampling

process cause the aliasing for binary image to find less imprecise prediction as compared

to the conventional 8-bit search.

Therefore, our next step is to study the relationship for motion vectors from temporal

Chapter 5: Conclusions and Future Work 129

and spatial scalability, and propos the new algorithm and architecture to support both the

features.

Bibliography

[1] N. Chaddha, and T. H. Y. Meng, “A low-power video decoder with power, memory,
bandwidth and quality scalability,” in IEEE workshop on VLSI signal processing, pp.
451-460, Oct. 1995.

[2] J. Jung, and A. Bourge, “Power-scalable video encoder for mobile devices based on
collocated motion estimation,” Proceedings of SPIE, 2004.

[3] L. Lu, and V. Sheinin, “Rate and decoding power constrained video coding scheme
for mobile multimedia players,” in Proc. IEEE ICIP, pp. 2861-2864, Oct. 2004.

[4] Y. Liang, Z. He, and I. Ahmad, “Analysis and design of power constrained video en-
coder,” in Proc. IEEE 6th CAS Symp. on Emerging Technologies: Mobile and Wireless
Comm., pp. 57-60, May 2004.

[5] C.-J. Lian, S.-Y. Chien, P.-C. Tseng, L.-G. Chen, “Power aware multimedia: concepts
and design perspectives,” IEEE Circuits and Systems Magazine, pp. 26-34, April-June
2007.

[6] M. Mizuno, et al., “A 1.5-W Single-Chip MPEG-2 MP@ML Video Encoder with
Low Power Motion Estimation and Clocking,” IEEE J. Solid State Circuits, vol. 32,
pp. 1807-1816, Nov. 1997.

[7] S. Kumaki, et al., “A 99-mm2 0.7-W Single-Chip MPEG-2 422P@ML Video, Au-
dio, and System Encoder With a 64-Mb Embedded DRAM for Portable 422P@HL
Encoder System,” IEEE J. Solid State Circuits, vol. 37, pp. 450-454, March 2002.

[8] Y.-W. Huang, et al., “A 1.3 TOPS H.264/AVC single chip encoder for HDTV appli-
cations,” Proc. ISSCC, pp. 128-129, 2005.

[9] Fujitsu. http://www.fujitsu.com/downloads/PR/2007/20070521-01a.pdf

[10] Zoran Coach 10. http://www.zoran.com/IMG/pdf/COACH 10.pdf

[11] Sanyo. http://www.sanyo.co.jp/koho/hypertext4-eng/0708/0830-1e.html

[12] TI. http://focus.ti.com/docs/toolsw/folders/print/tmdh264e.html

130

Bibliography 131

[13] http://shdesigns.org/batts/battcyc.html

[14] TI DaVinci. http://focus.ti.com/docs/solution/folders/print/267.html

[15] Power management of TI DaVinci. http://focus.ti.com/docs/pr/pressrelease.jhtml?prelId=sc06194

[16] J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the data reuse and memory bandwidth
analysis for full search block matching VLSI architecture,” IEEE Trans. Circuits and
Systems for Video Technique, vol. 12, pp. 61-72, Jan. 2002.

[17] E. Brockmeyer, et al, “Low power memory storage and transfer organization for the
MPEG-4 full pel motion estimation on a multimedia processor,” IEEE Trans. on Mul-
timedia, vol. 1, pp. 202-216, June 1999.

[18] M. Takahashi, et al., “A 60-MHz 240-mW MPEG-4 Videophone LSI with 16-Mb
Embedded DRAM,” IEEE J. Solid State Circuits, vol. 35, pp. 1713-1721, Nov. 2000.

[19] M. Mizuno, et al., “A 1.5-W Single-Chip MPEG-2 MP@ML Video Encoder with
Low Power Motion Estimation and Clocking,” IEEE J. Solid State Circuits, vol. 32,
pp. 1807-1816, Nov. 1997.

[20] F. Mombers, et al., “Image: A low cost, low power video processor for high quality
motion estimation in MPEG-2 encoding,” IEEE J. Solid State Circuits, vol. 44, pp.
774-783, August 1998.

[21] W. Badawy, and M. A. Bayoumi, “A low power VLSI architecture for mesh-based
video motion tracking,” IEEE Trans. Circuits and Systems II-Analog and Digital Sig-
nal Processing, vol. 49, pp. 488-504, July 2002.

[22] Y. Hamamato, et al., “A low-power single-chip MPEG2 (Half-D1) video codec LSI
for portable consumer product applications,” IEEE Trans. Consumer Electronics, vol.
45, pp. 496-500, August 1999.

[23] V. L. Do, and K. Y. Yun, “A low-power VLSI architecture for full-search block-
matching motion estimation,” IEEE Trans. Circuits and Systems for Video Technol-
ogy, vol. 8, pp. 393-398, August 1998.

[24] Y. Yatabe, et al., “An MPEG2/4 dual codec with sharing motion estimation,” IEEE
Trans. Consumer Electronics, vol. 51, pp. 660-664, May 2005.

[25] S. Saponara, and L. Fanucci, “Data-adaptive motion estimation algorithm and VLSI
architecture design for low-power video systems,” IEE Proc. Comput. Digit. Tech.,
vol. 151, Jan. 2004.

[26] T.-C. Chen, et al., “Fast algorithm and architecture design of low-power integer mo-
tion estimation for H.264/AVC” IEEE Trans. Circuits and Systems for Video Technol-
ogy, vol. 17, pp. 568-577, May 2007.

132 Bibliography

[27] S. Kawahito, et al., “Low-power motion vector estimation using iterative search
block-matching methods and a high-speed non-destructive CMOS image sensor,”
IEEE Trans. Circuits and Systems for Video Technology, vol. 12, pp. 1084-1092, Dec.
2002.

[28] M. Jiang et al., “Low-power systolic array processor architecture for FSBM video
motion estimation,” IEE Electronics Letters, vol. 42, Sep. 2006.

[29] R. Gao, D. Xu, and J. P. Bentley, “Reconfigurable hardware implementation of an im-
proved parallel architecture for MPEG-4 motion estimation in mobile applications,”
IEEE Trans. Consumer Electronics, vol. 49, pp. 1383-1390, May 2003.

[30] W.-M. Chao, et al., “A novel hybrid motion estimator supporting diamond search and
fast full search,” in Proc. IEEE ISCAS, May 2002.

[31] “ISO/IEC 14496-5:2001 Final Committee Draft, “MPEG01/N4025.

[32] “Video coding for low bit rate communication, “ITU-T Rec. H.263, 1998.

[33] P. Kuhn, “Complexity analysis and VLSI architectures for MPEG-4 motion estima-
tion,” Boston, MA, Kluwer, 1999.

[34] M. M. Mizuki, U. Y. Desai, I. Masaki, and A. Chandrakasan, “A binary block match-
ing architecture with reduced power consumption and silicon area requirement,” in
Proc. IEEE ICASSP, pp. 3248-3251, May 1996.

[35] S.-H. Wang, et al., “Platform based design of all binary motion estimation with bus
interleaved architecture,” in Proc. IEEE Int. Symposium on VLSI-DAT, pp. 241-244,
April 2005.

[36] M. Miyama, et al., “A sub-mW MPEG-4 motion estimation processor core for mobile
video application,” IEEE J. Solid State Circuits, vol. 39, pp. 1562-1570, Dec. 2004.

[37] Y.-W. Huang, S.-Y Chien, B.-Y. Hsieh, and L.-G. Chen, “Global elimination algo-
rithm and architecture design for fast block matching motion estimation,” IEEE Trans.
Circuits and Systems for Video Technology, vol. 14, pp. 898-907, June 2004.

[38] H.-M. Jong, L.-G. Chen, T.-D. Chiueh, “Parallel architectures for 3-step hierarchi-
cal search block-matching algorithm,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 4, pp. 407-416. Aug. 1994.

[39] J. -F. Shen, T.-C. Wang and L.-G. Chen, “A novel low power full search block match-
ing motion estimation design for H.263+,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 11, pp. 890-897, July 2001.

Bibliography 133

[40] S. Y. Yap and J. V. McCanny, “A VLSI architecture for variable block size video
motion estimation,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 51, no.
7, pp. 384-349, July 2004.

[41] J.-H. Luo, C.-N. Wang, and T. Chiang, “A novel all-binary motion estimation
(ABME) with optimized hardware architectures,” IEEE Trans. Circuits and Systems
for Video Technology, vol.12, no. 8, pp. 700-712, Aug. 2002.

[42] C. D. Vleeschouwer, T. Nilsson, K. Denolf, and J. Bormans, “Algorithmic and archi-
tectural co-design of a motion-estimation engine for low power video devices,” IEEE
Trans. Circuits and Systems for Video Technology, vol.12, no. 12, pp. 1093-1105, Dec.
2002.

[43] B.-C. Song, and K.-W. Chun, ”Multi-resolution block matching algorithm and its
VLSI architecture for fast motion estimation in an MPEG-2 video encoder,” IEEE
Trans. Circuits and Systems for Video Technology, vol. 14, pp 1119-1137, Sep. 2004.

[44] W. Burleson, P. Jain, and S. Venkatraman, “Dynamically parameterized algorithms
and architectures to exploit signal variations for improved performance and reduced
power,” IEEE International Conf. on Acoustics, Speech, and Signal Processing, pp.
901-904, 2001.

[45] S. Mietens, P. H. N. de With, and C. Hentschel, “Computational-complexity adaptive
motion estimation for mobile MPEG encoding,” IEEE Trans. Consumer Electronics,
vol. 50, pp. 281-291, Feb. 2004.

[46] S. -Y. Huang, C.-Y. Cho, and J.-S. Wang, “Adaptive fast block matching algorithm
by switching patterns for sequences with wide range motion content,” IEEE Trans.
on Circuits and Systems for Video Technology, vol. 15, no. 11, pp. 1373-1384, Nov.
2005.

[47] S. -S. Lin, P. C. Tseng, C. P. Lin, and L. G. Chen, “Multi-mode content-adaptive
motion estimation algorithm for power-adaptive video coding systems,” Proc. IEEE
Workshop on Signal Processing Systems, pp. 239-244, 2004.

[48] T. Li, S. Li and C. Shen, “A novel configurable motion estimation architecture for high
efficiency MPEG-4/H.264 encoding,” Proc. IEEE ASP-DAC, pp. 1364-1367, 2005.

[49] Y. Wang, Y. Wang, and H. Kuroda, “A globally adaptive pixel decimation algorithm
for block motion estimation,” IEEE Trans. Circuits and Systems for Video Technology,
vol. 10, no. 6, pp 1006-1011, Sep. 2000.

[50] V. G. Moshnyaga, “A new computational adaptive formulation of block matching
motion estimation,” IEEE Trans. Circuits and Systems for Video Technology, vol. 11,
no. 1, pp 118-124, Jan. 2001.

134 Bibliography

[51] S.-H. Wang, C. N. Wang, and T. Chiang, “A complexity adaptive variable-bit-depth
motion estimation,” Proc. IEEE International Conf. on Consumer Electronics, pp.
233-234, 2005.

[52] A. Takagi, K. Nishikawa, and H. Kiya, “Low-bit motion estimation with edge en-
hanced images for low power MPEG encoder,” Proc. IEEE International Symposium
on Circuits and Systems, pp. 505-508, 2001.

[53] A. M. Tourapis, O. C. Ou, M. L. Liou, C. W. Bay, and H. K Kowloon, “Predictive mo-
tion vector field adaptive search technique (PMVFAST) - enhancing block matching
motion estimation,” Proc. International Conf. on Visual Communication and Image
Processing, pp. 883-892, 2001.

[54] A. M. Tourapis, “Enhanced predictive zonal search for single and multiple frame
motion estimation,” Proc. International Conf. on Visual Communication and Image
Processing, pp. 1069-1079, 2002.

[55] “Draft of version 4 of ISO/IEC 14496-10,” ISO/IEC JTC1/SC29/WG11,
MPEG05/N7081, April 2005.

[56] H.-W. Cheng and L.-R. Dung, “A content based methodology for power adaptive
motion estimation architecture,” IEEE Trans. Circuits and Systems II-Express Briefs,
vol. 52, pp. 631-635, Oct. 2005.

[57] Z.-L. He, C.-Y. Tsui, K.-K. Chan, and M.-L. Liou, “Low-power VLSI design for
motion estimation using adaptive pixel truncation,” IEEE Trans. Circuits and Systems
for Video Technology, vol. 10, pp 669-678, Aug. 2000.

[58] A. Takagi, S. Muramatsu, and H. Kiya, “Motion estimation with power adaptation
and its VHDL model,” Proc. IEEE ICIP, pp. 118-121, 2000.

[59] M. Pedram and J.M. Rabaey, “Power aware design methodologies,” Kluwer Aca-
demic Publishers, 2002.

[60] B. Natarajan, V. Bhaskaran, and K. Konstantinides, “Low-complexity block-based
motion estimation via one-Bit transforms,” IEEE Trans. Circuits and Systems for
Video Technology, vol. 7, no. 4, pp 702-706, Aug. 1997.

[61] P. H. W. Hong and O. C. Au, “Modified one-bit transform for motion estimation,”
IEEE Trans. Circuits and Systems for Video Technology, vol. 9, pp.1020-1024, Oct.
1999.

[62] X. Lee and Y.-Q. Zhang, “A fast hierarchical motion-compensation scheme for video
coding using block feature matching,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 6, pp. 627-635, Dec. 1996.

Bibliography 135

[63] X. Song, T. Chiang, X. Lee, and Y.-Q. Zhang, “New fast binary pyramid motion
estimation for MPEG2 and HDTV encoding,” IEEE Trans. Circuits and Systems for
Video Technology, vol. 10, pp. 1015-1028, Oct. 2000.

[64] G. Magklis et al., ”Dynamic frequency and voltage scaling for a multi-clock-domain
microprocessor,” IEEE Micro, vol. 23, pp. 62-68, Nov. 2003.

[65] J. H. Lee, and N. S. Lee, “Variable block size motion estimation algorithm and its
hardware architecture for H.264/AVC,” Proc. IEEE International Symposium on Cir-
cuits and Systems, pp. 741-744, 2004.

[66] C. Y. Chen, et al., “Analysis and architecture design of variable block size motion
estimation for H.264/AVC,” IEEE Trans. Circuits and Systems I - Regular papers,
vol. 53, pp. 578-593, March 2006.

[67] C.-M. Ou, C.-F. Lee, and W.-J. Hwang, “An efficient VLSI architecture for H.264
variable block size motion estimation,” IEEE Trans. Consumer Electronics, vol. 51,
pp. 1291-1299, Nov. 2005.

[68] J.-R. Ohm, “Advances in scalable video coding,” Proceedings of the IEEE, vol. 93,
no. 1, pp. 42-56, Jan. 2006.

[69] M. Bhardwaj, R. Min, and A. Chandrakasan, “Power-aware systems,” Proc. IEEE
34th asilomar conference on signals, systems and computers, pp. 1695-1701, Oct.
2000.

[70] L. Mazzoni, “Power-aware design for embedded systems,” IEE electronics systems
and software, pp. 12-17, Oct. 2003.

[71] Z. He, et al., “Power-rate-distortion analysis for wireless video communication under
energy constraints,” IEEE Trans. Circuits and Systems for Video Technology, vol. 15,
no. 5, pp 645-658, May 2005.

Shih-Hao Wang

Contact
Information

Engineering Building IV - 529R Voice: 03-5712121-54228
Institute of Electronics Fax: 03-5731791
National Chiao Tung University E-mail: shwang.ee90g@nctu.edu.tw
Hsinchu, Taiwan 30010 R.O.C. WWW: cwww.ee.nctu.edu.tw/~vdo90843

Research
Interests

Video Compression, Video Signal Processing, VLSI Design on Multimedia

Education National Chiao Tung University, Hsinchu, Taiwan ROC

Ph.D., Institute of Electronics, September 2007

• Dissertation: “Algorithm and Architecture Design of Motion Estimation for Power Con-
strained Video Coding Systems”

• Advisor: Tihao Chiang

M.S., Electrical and Control Engineering, June 2001

• Thesis: “Wavelet Tree Based Watermarking for Copyright Protection”
• Advisor: Yuan-Pei Lin

National Tsing Hua University, Hsinchu, Taiwan ROC

B.S., Power Mechanical Engineering, June, 1999

• Ranked 2nd in class

Tainan First Senior High School, Tainan, Taiwan ROC

Ranked 1st in class & 5th in that grade

Honors and
Awards

Nomination in Marquis Who’s Who in Asia, 2007.

Outstanding Ph.D. student scholarship, 2004. (awarded by EE, NCTU)

Academic achievement award and scholarship, 1996.

Academic
Experience

National Chiao Tung University, Hsinchu, Taiwan ROC

Ph.D. candidate Sep. 2002 - Sep. 2007
Algorithm and architecture design of motion estimation

• Low power bi-directional binary motion estimation architecture.
• Power aware motion estimation design using configurable iterative binary searches.

Video transcoding

• A FGS multi-layers to single layer transcoder.
• A unified MPEG-4 FGS to MPEG-1/2/4 single layer transcoder.

H.264 decoder system

• A FPGA prototyping solution (ARM based platform).
• A novel software-hardware co-design architecture (QCIF 10fps real-time decoding).

MPEG-4 codec system

• TI DSP based video codec solution.
• A codec system with on-line (not real-time) MPEG-4 encoder/decoder system from video cap-

turing to TV display.

Digital watermarking

• A robust and blind digital watermarking technique based on wavelet characteristics for secure
information embedding.

• Journal publication in IEEE Trans. on Image Processing.

Teaching Assistant Sep. 1999 - Sep. 2003
Introduction to Digital Signal Processing (1999 Fall)
Digital Signal Processing (2000 Fall)
Digital Compression (2001 Spring)
Multimedia Communication (2003 Spring)

Professional
Experience

Ambarella Taiwan Ltd., Hsinchu, Taiwan.

Member of Technical Staff June, 2004 - Present
H.264 algorithm development & Firmware programming.

Part-time Engineer Oct., 2003 - June, 2004
H.264 algorithm development.

Computer Skills • IC CAD Tools: Verilog, Design Compiler, SOC Encounter, Prime POwer, etc.
• FPGA CAD Tools: Xilinx ISE, Quartus, Synplify, etc.
• Languages: C/C++, Matlab, etc.

著作目錄

 期刊論文

1. S.-H. Wang, W.-H. Peng, Y.-W. He, G.-Y. Lin, C.-Y. Lin, S.-C. Chang, C.-N.
Wang, and T. Chiang, “A software-hardware co-implementation of MPEG-4
advanced video coding decoder with block level pipelining,” Journal of VLSI
Signal Processing Systems, vol. 41, no. 1, pp. 93-110, Jan. 2005.

2. S.-H. Wang, W.-L. Chen, and Tihao Chiang, “An efficient FGS to MPEG-1/2/4
single layer transcoder with R-D optimized multi-layer streaming technique for
video quality improvement,” Journal of the Chinese Institute of Engineers, vol. 30,
no.6, pp. 1059-1070, 2007.

3. S.-C. Chang, W.-H. Peng, S.-H. Wang, and T. Chiang, “A Platform based
Bus-interleaved Architecture for Deblocking Filter in H.264/MPEG-4 AVC,”
IEEE Trans. Consumer Electronics, vol. 51, no. 1, pp. 249-255, Feb. 2005.

4. S.-H. Wang, and Y.-P. Lin, “Wavelet tree quantization for copyright protection
watermarking,” IEEE Trans. Image Processing, vol. 13, no. 2, pp. 154-165, Feb.
2004.

 審查中期刊論文

1. S.-H. Wang, and T. Chiang, “A power adaptive motion estimation IP core design
using iterative binary search,” IEEE Trans. Circuit and System for Video
Technology, 2006.

2. S.-H. Wang, S. -H. Tai, and T. Chiang, “A low power and bandwidth efficient
motion estimation IP core design using binary search,” IEEE Trans. Circuit and
System for Video Technology, 2006.

 國際會議論文

1. S.-H. Wang, W.-H. Peng, Y. He, G.-Y. Lin, C.-Y. Lin, S.-C. Chang, C.-N. Wang,
and T. Chiang, “A Platform Based MPEG-4 Advanced Video Coding Decoder
with Block Level Pipelining,” Proc. IEEE ICICS-PCM, Singapore, Nov. 2003.

2. S.-H. Wang, W.-L. Tao, W.-H. Peng, C.-N. Wang, and T. Chiang, “Platform
based design of all binary motion estimation (ABME) with bus interleaved
architecture,” Proc. IEEE International Symposium on VLSI Technology, System
and Applications, Hsinchu, April 2005.

3. S.-H. Wang, C.-N. Wang, and T. Chiang, “A complexity aware variable-bit-depth
motion estimation,” Proc. IEEE International Conference on Consumer
Electronics, Las Vegas, Jan. 2005.

4. S.-C. Chang, W.-H. Peng, S.-H. Wang, and T. Chiang, “A platform-based
de-blocking filter design with bus interleaved architecture for H.264,” Proc. IEEE
International Conference on Consumer Electronics, Las Vegas, Jan. 2005.

5. S.-H. Wang, and Y.-P. Lin, “Blind watermarking using wavelet tree quantization,”
Proc. IEEE International Conference on Multimedia and Expo, Lausanne, August,
2002.

 MPEG 視訊標準會議文件

1. S.-H. Wang, C.-N. Wang, Yi-Shin Tung, T. Chiang, and H. Sun, “ISO/IEC
JTC1/SC 29/WG 11 M9951: AHG report on editorial convergence of MPEG-4
reference software,” Oct. 2003.

2. S.-H. Wang, C.-N. Wang, Y.-S. Tung, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC
29/WG 11 M9632: AHG report on editorial convergence of MPEG-4 reference
software,” July 2003.

3. S.-H. Wang, C.-N. Wang, Y.-S. Tung, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC
29/WG 11 M9355: AHG report on editorial convergence of MPEG-4 reference
software,” March 2003.

4. S.-H. Wang, C.-N. Wang, G.-Y. Lin, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC
29/WG 11 M9073: AHG report on editorial convergence of MPEG-4 reference
software,” Dec. 2002.

5. S.-H. Wang, C.-N. Wang, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC 29/WG 11
M8886: Proposed text of proposed draft technical reports of ISO/IEC PDTR
14496-7 for optimized simple profile reference software, ” Oct. 2002.

6. S.-H. Wang, C.-N. Wang, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC 29/WG 11
M8884: AHG report on editorial convergence of MPEG-4 reference software,” Oct.
2002.

7. S.-H. Wang, C.-N. Wang, Tihao Chiang, and H.F. Sun, “ISO/IEC JTC1/SC 29/WG
11 M8603: AHG report on editorial convergence of MPEG-4 reference software,”
July 2002.

8. S.-H. Wang, Y.-C. Lin, C.-N. Wang, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC
29/WG 11 M8408: AHG report on editorial convergence of MPEG-4 reference
software,” May 2002.

9. S.-H. Wang, C.-N. Wang, T. Chiang, and H. Sun, “ISO/IEC JTC1/SC 29/WG 11
M8041: AHG report on editorial convergence of MPEG-4 reference software,”
March 2002.

 專利

1. M.-Y. Huang, T.-L. Su, S.-H. Wang, C.-N. Wang and T. Chiang, “MPEG-4
streaming system with adaptive error concealment,” 美國專利，專利號

20060104366.

 審查中專利

1. S.-H. Wang, L. Kohn, and T. Chiang, “Mode decision using approximate 1/2 pel
interpolation,” 美國專利. (Filed on Nov. 23, 2005).

2. S.-C. Chang, W.-H. Peng, S.-H. Wang, and T. Chiang, “A Platform Based
Bus-interleaved Architecture for Deblocking Filter in H.264/MPEG-4 AVC,” 美
國專利. (Filed on March 24, 2005)

	P1_單面_開始.pdf
	01_單面_封面_書頁名.pdf
	Algorithm and Architecture Design of Motion Estimation for Power Constrained Video Coding System

	02_單面_推薦函.pdf
	指導教授推薦函_v01.pdf
	推薦函_末頁024.pdf

	03_單面_中文審定書.pdf
	04_單面_英文審定書.pdf
	05_單面_授權書.pdf
	授權書021.pdf
	授權書022.pdf
	授權書023.pdf

	06_單面_中文摘要.pdf
	07_單面_英文摘要.pdf
	08_單面_致謝.pdf

	P2_雙面_論文.pdf
	P3_雙面_結尾.pdf
	10_雙面_簡歷.pdf
	11_雙面_著作目錄.pdf

