W PEEPL ARG P % AL

Real-time Face Detection System

with Skin Ratio Preprocessing

o4 RE%

—_—

Ry ks 4

= X K 4 L+ =2 F A

A

k’ﬂ

ik ks HL

o+

iR b IR 2

T ARG R R K AL

Real-time Face Detection System

with Skin Ratio Preprocessing

R % Student: Jung-Sheng Chang

B

Advisor: Dr. Wen-Thong Chang

A Thesis
Submitted to Department of Communication Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
In Communication Engineering

PoE 3 K/ 4 L+ 2 & N~ 3

%’i’r}*‘ﬁ Ve BT R 2
b= e RN N I

SR ke s 4

—_—

R 2d ~ FLH1mF ALt

iF &

Bt R P AUl T A R Rk B0 gtk Siay FR] 1 -45
X 45 Rk g o AN ink g Maple g 5 IR0 % - IR FE S O AR
HP K RE > NEFTRIEDORE D THEBIREE AF S RE
b FHRJERERFE &84 20~ 95% VSRR A AR AR S 0 AR A
& B2t (integral image) #-:# &) 4& A5 & de(rectangle feature) » ® i@ #
AdaBoost ;i & £ iE VE R e e APk i = B cascade i Ste %
-~ R SORAGHER > oKL ASRAGHR B - K Z-4AD R AR
Bloe NP e T o4 T Mg (1) @ r 2r2bid v AdaBoost eniF A
B (2) BB A ek Skt (3)AN 0 kAL 2R F F w2
o REEC o ANk Sienid Pl & oAt i D) 88.31% o

ATESAGEE R WA R PEd G AT R
20~400ms 2 &I - 3& 320%240 % thoo FIpb 0 Ak Suag B L @ % A%
s P?- mf@q” ﬁi‘\ | S

Real-time Face Detection System
with Skin Ratio Preprocessing

Student: Jung-Sheng Chang Advisor: Dr. Wen-Thong Chang

The Department of Communication Engineering

National Chiao Tung University

Abstract

In the thesis, we construct real-time face detection system which
can detect -45~45 degree face. Our-face-detection system consists of two
parts. The first part searcheS sKin color regions over the whole image to
segment potential face regions. Detection regions only focus on skin
regions so it can save 20~95% processing time. The second part is face
detection procedure. We use integral image to compute rectangle features
rapidly and AdaBoost algorithm to select important features. Our system
constructs three-layer cascade structure. First layer is 0-degree face
detection, second layer is 45-degree face detection, and final layer is
-45-degree face detection. We also compare and analyze the performance:
(1) feature selection with and without AdaBoost, (2) two different
systems, and (3) different layers in our system with and without skin ratio
preprocessing. The detection rate of our system can achieves 88.31%.

In real-time face detection, it requires 20~400ms to process a
320*240 image depending on skin area size. Therefore, our system can be
widely used in different application programs.

Acknowledgements

| appreciate my advisor Dr. Wen-Thong Chang for helping me
complete this thesis. | would also like to thank my parents, my classmates,
and my friends. They supported and encouraged me a lot during my life

and studies.

Contents

P |
AN 0 1S] 1 = (o I
ACKNOWIEAGEMENTS ...eeeiieciie et ii
(OF0] 01 (=] 01 €SP RR v
LAST OF FIQUIES ... vi
Y S0 1 = o] = Viii
CHAPTER 1 INTRODUCTION....cccooiiiiiie e 1
1Y [0 1= LA o] o F TR TOUOTSRPPRRPR 1
1.2 REIALEA WOKKS ...ttt ere e st ebe et re e enre s 2
1.3 THESIS OVEIVIBW ...c.uviivieiiecctie ettt ettt ettt re e ebe e snte e sbe e s teeebeesnre e 2
1.4 ThesiS OULIINEoooveeie et i1ttt 4

CHAPTER 2 FEATURE SELECTION AND FACE DETECTION

BY USING ADAB O OST i et r e 5
2.1 Training SAmMPIEs....... o o i T et 7

2.2 FRATUIES. ..o e it i bttt ne e 8
2.2.1 Rectangle feature............cv e 8

2.2.2 INtegral IMAQGE........c.ciieie et 9

2.3 ATABOOST ..ottt 11

2.4 CasCade ClasSIfIErS. 16

2.5 System Structure in Our EXperiment...........ccccoeviiieiievn e 18
CHAPTER 3 SKIN COLOR REGION DETECTION................. 20
3.1 SKiN SEgMENtatioNccociiiicecie e 21
3.1.1 Thresholds for Skin Segmentationc.cccccveviiieve s 22

3.1.2 Binary Image ProCeSSiNgccccvveiueieeiieeie e sie et esie e sve e 25

3.1.3 Experiment Results and DiSCUSSIONS...........ccccvevvevverieeieseesie e 27

3.2 Preprocessing of Face DeteCtioncccceevveiiiieie e 29

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1.1 Nearest neighbor interpolationccccoocevviiieiciece e, 32

4.1.2 The threshold of confidence ... 33
4.1.3 Classification of potential faces..........cccccevceviiiiieiciicce e, 35
4.2 Experiments on Real-World Photos...........ccccoooviieiiececce e 38
4.2.1 Comparison with the Performances with Two Different Feature
SEIECTION TYPES .veecieeie ettt ae et e rs 38
4.2.2 Comparison with the Performances using features with and
without confident weight, ¢, selected by AdaBoost..............ccccceevveeneee. 40
4.2.3 Comparison with the Performances of Two Different Systems....41
(0] et bbb 42
4.2.4 Dynamic analysis of systems without and with preprocessing43
4.2.5 Testing on Real-life PhOtoScccoceiiiiiiiiic e 48
4.3 Experiments on Real-Time SYStemMccccocvveiiiiciieiecc e 50
4.4 Implementation of Real-Time Monitoring Systemcccccvevevieiieennenn, 52
CHAPTERS5 CONCLUSIONS AND FUTUREWORK 54
e =]] [0 s, SRS 55

List of Figures

Fig. 1.1 The flowchart of our real-time face detection systemcccccceevevveinnnnnns 3
Fig. 2.1 The training process flOWChart............ccoooiiiiii e 5
Fig. 2.2 The flowchart of our different-posed face detectionccccevevvrvennnnne 6
Fig. 2.3 (a)-(c) The normalized training samples of three different poses (-450, 0,

450) face. (d) The normalized training samples of non-face..........cccccceevvvviieiienns 7
Fig. 2.4 Some examples with special characteristics. (a) examples with glasses. (b)
examples With MOUSTACKE. ..o 8

Fig. 2.5 Seven different type rectangle features used in our experiment. The value
of rectangle feature is the difference between the sums of the pixel gray level
values within the black and white rectangular regions. Two- rectangle features
are shown in (a), (b) and (g). Three-rectangle features are shown in (c)-(f)........... 9
Fig. 2.6 The sum of the pixels in rectangle D can be computed as4 + 1 - (2 + 3). 10
Fig. 2.7 The value of two-rectangle feature:ecan be computed in six array

FETEIEICES. ..ot e e o g 438+ttt et e ettt e sbe et be e beeneennee e 11
Fig. 2.8 The number of misclassified examples among 1000 training data with
different number of features selected. ... i 15
Fig. 2.9 The first five features selected'withrand without using AdaBoost and
TNEIT BFTOF FAE. ... it e 16
Fig 2.10 CaSsCade StIUCTUIEoiieiiiie e 18
Fig 2.11 The structure of our face detection SyStem..........cccceveriiieneniieneereee e 19
Fig. 3.1 The structure of preprocessing of face detection.cccccoeevvviinininenn. 21
Fig. 3.2 (a) Distribution between Cb and Y values of 10000 skin samples. (b)
Distribution between Cr and Y values of 10000 skin samples.ccccevvevvrennnn. 23
Fig. 3.3 The skin region is inside red threshold curves............c.ccooceviiieniniciennn. 24
Fig. 3.4 Some examples of converting original images to binary images. (a)(b)
indoor environment, (C)outdoor eNVIFONMENT.cooeiiiiiniiiie e 26
Fig. 3.5 Two cases in poor illumination environment.c.cccoccevveveninneeieseeee, 27
Fig. 3.6 Two bad results of skin segmentation.cccooevenieninninie e, 28
Fig. 3.7 Two examples of bad results of face detection.c.ccooveveninnininninnn. 29
Fig. 3.8 Some examples in our experiment and their skin ratio.ccccceeeee. 30
Fig. 3.9 Distribution of skin ratio of 535 correct detected face samples. 30
Fig. 3.10 Two examples with preprocessing from Fig. 3.6.........cccocvvviiininicnennn. 31
Fig. 4.1 (a) The original image with 100*100 pixels. (b)(c) The subsampled
images with 50*50 pixels and 24*24 PIXelS. ..o 33

Vi

Fig.

4.2 The optimal threshold selected at each layer. ..., 34

Fig. 4.3 (a) The original images. (b) The detection results without applying our

algorithm. (c) The detection results with applying our algorithm............c........... 37
Fig. 4.4 Comparison between results by using feature selection without AdaBoost
AN WIth AJABOOST.coivieiiiie e et 39
Fig. 4.5 The structures of two different Systems..........cccoceveiinii i 42
Fig. 4.6 Comparison the results of different levels in our system............cccccoeeeee. 47
Fig. 4.7 Some good test results by applying our SyStem...........ccccoeveveneeneniinseenne. 49
Fig. 4.8 Some bad test results by applying our System.ccccccevvrveiinneninneene. 49
Fig. 4.9 The members of the structure IplImage.cccooeveiiniiiinneieee e 50
Fig. 4.10 Real-time face deteCtion.ccoouiiieiiiiii i 51
Fig. 4.11 SErVer INTEITACE.ccvv i e e 52
Fig. 4.12 Client interface with face detection.ccocerviieninii e 53

vii

List of Table

Table 3.1 For skin segmentation, Cb and Cr values should correspond to

conditions with different Y intervals. ... 25
Table 4.1 Comparison to the performances with two different feature selection

L8 1 TP O PP TPRP PPN 38
Table 4.2 Comparison to the performances with two different feature sets. Old:
200 features. New: 100 better fEatUres.ccooveiiiiiiie e 39
Table 4.3 Comparison to the performances with and without confident weight. 40
Table 4.4 The performances of two different Systems.........c.ccoocevviiiiieneniesiennns 42
Table 4.5 The performances of two different systems under equal false alarm

[o70] 8o [o] o FO PP OUT USSP UPRPSTRRP 43
G2) ORI 43
Table 4.7 The average processing time per image with different skin color region
SIZE. wvvvrrrernrersrerreeneesennessreesrenseesseeses WA B e e 48

Table 4.8 Comparison with our real-time face detector and OpenCV real-time
face detector. For only single face test, it requires 20~70ms to detect face when
the face scale is under 5555 PIXEIS: i it 51

viii

CHAPTER 1
INTRODUCTION

1.1 Motivation

In recent ten years, the face detection issue received more
attention in computer vision field. It has many applications in human
daily life. For example, face detection technique is recently used on
digital cameras [1]. When the face is detected in a scene, the camera
automatically optimizes focus and exposure so your photos come out
great. Besides, it also applies:on the safety. of the building. If the human
face is detected, the image Is.transferred to the human face recognition
module. The recognition result shows-a person corresponding to the

image is a legal or illegal member.

There are a lot of approaches which have been proposed in face
detection field. They mainly focused on frontal face detection issue. But
in real-time detection, the human face rotation is unavoidable. In order to

solve this problem, we construct real-time face detection which can detect

-45°~45° face. Besides, we add skin color preprocessing to improve

detection speed. In a 320*240 pixel image, it requires 20~400ms to scan
the whole image. Therefore, our system can be widely used in different

application programs.

1.2 Related Works

The direct method of face detection is to detect skin color regions.
Hsu et al. [2] and Kovac et al. [3] perform skin detection in YCbCr color
space. Hsu et al. [2] find face candidates based on skin patches firstly, and
construct eye, mouth, and boundary maps for verifying each face
candidate. They provide high detection rate over a wide variety of facial

variations but detection speed is slow.

In 2001, Viola and Jones [4] introduced robust method which can
process rapidly and achieve high detection rate. They provided a new
Image representation called integral image which computes the feature
value quickly. The training algorithm is based on two-class AdaBoost
which selects a small number.of critical features from a large feature set
and constructs efficient classifiers.-Finally, they used cascade structure
which consists of some classifiers. to.reject a large number of non-face
images. There have been some related works such as multi-pose face

detection and facial expression recognition [5] [6].

1.3 Thesis Overview

Our face detection system consists of two main parts. Firstly, we
segment skin regions over the entire image based on YCbCr color space.
Secondly, we use different-size sub-windows to scan the image. The face
detection algorithm is executed according to two conditions. One is

detection sub-windows must locate at skin pixels, and the other one is the

sum of skin pixels within the rectangle is larger than threshold. These two
conditions can reduce scan region to improve computational time and

decrease error. The flowchart of our system is shown as Fig. 1.1.

Image caught
from webcam

Skin segmentation

}

Scan image with
different-size sub-windows

At skin
pixel ?

Skin area
>Th?

Face
detection

v

Face Non-face

Fig. 1.1 The flowchart of our real-time face detection system

3

1.4 Thesis Outline

The organization of this thesis is as follows. Chapter 2 introduces
feature selection with AdaBoost algorithm and cascade classifiers.
Chapter 3 introduces skin segmentation and preprocessing of face
detection. Chapter 4 shows experimental results, implementation of
real-time system, and monitoring system with face detection. At last, the

thesis is concluded in Chapter 5.

CHAPTER 2
FEATURE SELECTION AND FACE
DETECTION BY USING ADABOOST

In this chapter, we will introduce two main parts. The first part of
this thesis is the training process that allows computer system to learn
human face classification. Viola and Jones introduced a method for
constructing a classifier by selecting a small set of critical features using
AdaBoost and combining more complex classifiers in a cascade structure
[4]. More and more face detection techniques use this method because the
feature-based system operates much-faster than the pixel-based system.
This method is also used in our experiment to achieve real-time object.

The training process flowchart is shown-in Fig. 2.1.

FERET Rescale Create classification
. q .
database (24*24 pixels) function for every feature

Strong Classifier | AdaBoost [«

Fig. 2.1 The training process flowchart

The second part of this thesis is test process to detect face with features

selected by AdaBoost. We scan the image with different-sized detection

sub-windows. When some critical features are matched in a detection

sub-window, the face is detected. Our system can detect face with three

different pose (-450, 00, 450), as shown in Fig. 2.2. Firstly, all sub-window
images enter 0° face detection system, and the rejected images are
regarded as non-0° faces, including 45°& -45 faces and non-faces.

Secondly, the rejected images from 0° face detection enter 45 face
detection system, and the rejected images at this layer are regarded as
non-0°&45° faces, including -45° faces and non-faces. Finally, the

remaining images enter -45° face detection system, and the rejected

images at this layer are regarded as non-faces.

All sub-window images /

Y
0’ face detection —p 0’ faces
0 . Y 0
45" face detection » 45 faces
0 . Y 0
-45" face detection | -45 faces

Non- faces o o
Non-0 &45 faces

Non-O0 faces

Fig. 2.2 The flowchart of our different-posed face detection

2.1 Training Samples

The training samples of three different poses (-450, 0°, 450) face

come from the FERET image database [7]. The training samples of
non-face are created by our image database. To eliminate the influence of
location, all training samples are normalized to 24*24 pixels. Fig. 2.3 and

Fig. 2.4 show some examples of the normalized training samples.

(d)

Fig. 2.3 (a)-(c) The normalized training samples of three different

poses (-450, 0 450) face. (d) The normalized training samples of

non-face.

(b)

Fig. 2.4 Some examples with special characteristics. (a) examples
with glasses. (b) examples with moustache.

2.2 Features

2.2.1 Rectangle feature

Our face detection proc,;edure classifies images based on the value
of rectangle features. Rectanglefeatﬁrés aré "sensitive to the presence of
edges, lines, and other simple irhage' Structuré. They provide rich image
representation to support effective training; Fig. 2.5 shows seven different
type features used in our experiment. Among a sample with 24*24 pixels,
the width and height of Figs. 2.5(a)(b) have 12 different scales, Figs.
2.5(c)(d)(g) have 8 different scales, and Figs. 2.5(e)(f) have 6 different
scales. Thus, we have 2*12*12*24*24 + 3*8*8*24*24 + 2*6*6*24*24=
165888 + 110592 + 41472 = 317952 possible features among single

training sample.

(@) (b) i
(©) (d) © ()

=
©

Fig. 2.5 Seven different type rectangle features used in our
experiment. The value of rectangle feature is the difference
between the sums of the.pixel gray.level values within the black
and white rectangular regions. Two- rectangle features are shown
in (a), (b) and (g). Three-rectangle features:are shown in (c)-(f).

2.2.2 Integral image

Rectangle features can be computed very quickly using an
intermediate representation for the image which we call the integral
image. The integral image at location x, y contains the sum of the pixels

above and to the left of x, y:

ii(ry)= Y i(x,y) (3-1)

x'<x,y'<y

where ii(x,y) isthe integral image and i(x,») is the original image.

Any rectangular sum can be computed in four array references
using the integral image. As shown in Fig. 2.6, the value of the integral
image at location 1 is the sum of the pixels in rectangle A. The value at
location 2 is A + B, at location 3is A+ C, and location4is A+ B + C + D.

The sum within D can be computedas 4 + 1 - (2 + 3).

Fig. 2.6 The sum of the pixels inrectangle D can be computed as 4
+1-(2+3).

The two-rectangle features defined above involve adjacent
rectangular sums so they can be computed with six array references. As
shown in Fig. 2.7, the sum of the pixels in rectangle A can be computed
as 4 +1-(2+ 3), and the sum of the pixels in rectangle B can be
computed as 6 + 3 - (4 + 5). So the value of this rectangle feature is
difference between the sum of the pixels within A and the sum of the
pixels within B, which equals (4-3)-(2-1) + (4-3) - (6 - 5). In the case
of the three- rectangle features, they can be computed in eight array

references.

10

As mentioned above, the integral image can be computed from an
image using a few addition and subtraction operations per pixel. Once
computed, any one of these rectangle features can be computed rapidly at

any scale or location.

7 ey
3 A &7
2 &

Fig. 2.7 The value of two-rectangle feature can be computed in six
array references.

2.3 AdaBoost

In each 24*24 pixel image sub-window, there are 317952
rectangle features. Even if we can compute a feature very efficiently,
selecting a small number of features to form an effective classifier is a
difficult task. In order to ensure fast classification, the learning algorithm
must exclude a majority of features, and focus on some important

features.

In our system, we use AdaBoost learning algorithm to select a

11

small set of features and train the classifier [8]. AdaBoost learning
algorithm provides a simple method to boost the classification
performance. A weak classifier can depend on only a single feature.
AdaBoost learning algorithm selects a new weak classifier at each round,
and combines a small number of weak classifiers to form a stronger

classifier.

Given a training set, we separate it to two classes, positive and
negative. Positive examples consist of face images, and negative
examples consist of non-face images. The weak learning algorithm
selects the single rectangle feature to best separate positive and negative
examples. For each feature, the, weak learner finds out the optimal
threshold classification function,swhich “minimizes the number of

misclassified examples. The function.is shown as below:

1 if p; f i 6
hj(x):{ : i pi fi(x) < p 3:2)

otherwise

where j is the number of each feature, #; is a weak classifier, f; is the value
of feature, 6, is a threshold, and a polarity p; indicates the direction of the

inequality sign.

12

AdaBoost algorithm is shown as below:

® Given example images (x1, y1), .-, (xx, Vu)
)1 for positive examples
where = 0 for negative examples

® [nitialize weights:

1

— foryi =1

21 7
WL i = 1

— foryi=0

2m Y

where [/ and m are thesnumber:of positives and negatives

respectively.

® Forr=1,...,T:

1. Normalize the weights,

Wt i
>
i Wt, j

so that w, is a probability distribution.

Wt i €—

2. For each feature, j, the erroris €/ = Ziwz‘ | By (xi) = yi
3. Choose the classifier, A,, with the lowest error &:.

4. Update the weights:

wr, i B If example x: is classified correctly
We+l,i = . . L.]
Wi, i If example x: is classified incorrectly

13

Et

where B =

1-&

® The final strong classifier is:

1 Z;at ht(x) S 1
h(x) = ' o 2

t=1

0 otherwise

1
where a: = log—

Bi

Each round of boosting selects one feature from the 317952
potential features. After 7' .rounds of ‘boosting, we can get 7' weak
classifiers. At each round, the weights,w, will be updated; the weights of
misclassified examples becometlarger-For example, there are ten training
samples Sy, ..., Sy and the weight.of each sample is 0.1. After first round
of boosting, selected feature makes S; and S, misclassified, and total error
rate is 0.2. The weights of these two samples misclassified become
0.2778, and the weights of remaining eight samples become 0.0556. After
second round of boosting, selected feature makes S; misclassified again,
and total error rate becomes 0.2778. The weight of S; becomes 0.5806,
the weight of S, becomes 0.1613, and the weights of remaining eight
samples become 0.0323. Hence, when a sample is misclassified again and
again, its weight becomes lager. Relatively, the high weight value
increases total error rate and that also influences which feature we should
select. Besides, if a feature misclassifies sample with large weight, total

error rate becomes lager and the possibility of this feature selected is

14

reduced. But if a feature has the capability of correctly classifying sample
with large weight, total error rate becomes smaller and the possibility of
this feature selected is increased relatively. Compared with tradition
feature selection, the tradition method selects all critical features with
error rate order at only one round of boosting. The weight of each sample
is uniform, so selected features are not capable of classifying “hard
classified example” and the possibility of false alarm increases. Fig. 2.8
illustrates the number of misclassified examples among 1000 training
data with different number of features selected. From the figure, more
features selected by AdaBoost can decrease misclassified example. On
the contrary, more features selected without AdaBoost can not separate
positive and negative efficiently. In Chapter 4, we will compare the
performances between two-different feature selections. Fig. 2.9 shows the
first five features selected withutwo-different feature selections and their

error rate.

e 2 A)
o O O
]

—— AdBoost
— - - No AdaBoost

— N
o O

num. of misclassified examples
o
(-]

(-

1 2 3 4 5 6 7 8 9 10

num. of featured selected

Fig. 2.8 The number of misclassified examples among 1000
training data with different number of features selected.

15

No AdaBoost

Errorrate 0.0709 0.0718 0.0718 0.0736 0.0736

AdaBoost

Error rate 0.0683 0.0820 0.1133 0.1527 0.1484

Fig. 2.9 The first five features selected with and without using
AdaBoost and their error rate

The confident welght @, ef each selected feature is determined

by the error of each feature.. It represents the. lmportance of each selected

feature. The confident welght IS hlgher the selected feature is more
important, and it can separate posmve and negative examples more

efficiently.

2.4 Cascade Classifiers

Cascade classifier is a structure which achieves good detection
performance and reduces computation time. Stages in the cascade

structure are constructed by training classifier using AdaBoost.

As shown in Fig. 2.10, the initial stage classifier can be

16

constructed from a small number of features to reject a large number of
negative examples. Subsequent stages eliminate additional negative
examples but require additional computation. Only positive examples can
pass through all stages and they take the longest computation time. In
each stage, the number of features and the method of feature selection are
designed by user. For example, the first stage classifier can be constructed
from two-feature strong classifier by adjusting threshold to minimize
false negatives (mistakes positive as negative). The threshold can be
adjusted to false negative rate of 0%, which detects 100% of the faces
with false positive rate (mistakes negative as positive) of 40%. The
subsequent stage classifiers are constructed from strong classifiers which
consist of 5~10 features. They are designed by adjusting threshold to
yield false negative rate under.'5% and-false positive rate may reduce to
20%. Final several stage classifiers-are, used more features which are
designed by adjusting threshold to_minimize the sum of false negative

rate and false positive rate.

However, cascade structure saves a lot of time because a majority
of sub-images in a picture are negative. It is also the key factor that

system can detect faces in real time.

17

/ All sub-windows /

Further Processing

Non-face sub-windows

Fig 2.10 Cascade structure

2.5 System Structure in Our Experiment

In our face detection system,-each sub-window image must pass
skin detection procedure to segment potential face regions first (we will
talk in Chapter 3), and then get a qualification for face detection. All
qualified sub-window images can pass our face detection procedure, as
shown in Fig. 2.11. The system can be separated to three layers. Each
layer is composed of two-stage cascade structure. The first stage of each
layer is a weak classifier constructed from only single feature. This
feature is selected by adjusting threshold to pass all positive examples.
That means false negatives rate is 0%. A majority of negative
sub-window images are discarded at first stage classifier, so it can reduce
processing time. The second stage of each layer is a strong classifier

constructed from 200 important features which are selected by adjusting

18

threshold to minimize the sum of false negative rate and false positive
rate, so it can detect faces very accurately. Hence, our system is designed

to take a balance between time-saving and accuracy.

/ All sub-windows /

Layer 1
0
0 face detection 0 faces
Layer 2
0
45° face detection 45 faces
Layer 3
0
-45° face detection -45 faces

Non-faces

Fig 2.11 The structure of our face detection system

19

CHAPTER 3
SKIN COLOR REGION DETECTION

In real-time face detection, efficiency is the most important issue.
In order to improve detection speed, we reduce the scan region. The main
part of the image consists of non-skin color pixels. The first step in face
detection algorithm is using potential face regions to reject no-face

regions of the image.

Given a color image, we can detect the skin color regions and
non-skin color regions. The color, image is converted to the binary image.
The skin color pixels are convertedito-“white” pixels and non-skin color
pixels are converted to “black” pixels. The face detection algorithm is
only proceeded at the white-pixels.=Besides, before face detection
algorithm, we will do an additional procedure to decide if face detection
algorithm need to be executed. The procedure is re-checking skin color
area in the detection sub-window. If the human face is detected with
sub-window, the main part of sub-window consists of skin color pixels.
Hence, we set threshold to reject non-faces that are mistaken for faces.

Fig. 3.1 shows the preprocessing of face detection.

20

/ All sub-windows /

At skin
pixel ?

Skin area Face

>Th?

detection

Non-face sub-windows

Fig. 3.1 The structure of preprocessing of face detection.

3.1 Skin Segmentation

In this thesis, we will choose YCbCr domain [9] as our color
space to segment skin color. There are two reasons why we choose
YCDbCr color space. The first reason is that the YCbCr color space is used
broadly in computer vision applications such as JPEG compression,
MPEG and H.263 video compression. We can use it directly without
converting it to another color space. The second reason is that the YCbCr
color space has good performance in skin segmentation. According to the
research [10], the skin pixels of different-raced people have similar
distribution between Cb and Cr values. So we can easily segment skin

color of the different-colored person.

21

In the RGB domain, each component of the picture (red, green,
and blue) has a different brightness. However, in the YCbCr domain all
information about the brightness is given by the Y component and its
value has range from 16 to 235, which represent from darkness to
lightness. The Cb and Cr components are independent from the
luminosity and its value has range from 16 to 240. The following
conversions are used to segment R, G and B components into Y, Cb and

Cr components:

Y 16 0.257 0.504 0.098 || R
Cb|=|128|+|-0.148 -0.291 0439 (|G (3-1)
Cr| |128 0.439 -0.368 -0.071}|.B

3.1.1 Thresholds for Skin Segmentation

We take 10000 skin samples to get their Y, Cb, Cr components.
Fig. 3.2(a) shows the distribution between Cb and Y values of skin
samples. Fig. 3.2(b) shows the distribution between Cr and Y values of
skin samples. It is unwise to apply maximum and minimum of Cb and Cr
components for the thresholds of skin segmentation. We decide to choose
thresholds of Cb and Cr components with different Y intervals, as shown

in Fig. 3.3. Table 3.1 clearly lists the conditions with different Y intervals.

22

240 ! ! ! ! ! !
| NSO SO S . ..g......... — S I %. e
o) ERSSN SO S s .%....... R N R }........_

180 | f 5 . ‘ :‘ | |

o
=1
£ o120 .
=
= : s
: -+
1[1)| S060990080000a60008a0060F 9080093080 AABARRAGAAABEEA0s 4
80 -

0 \ i i i i I i i i i I
o 20 40 60 a0 100 120 140 160 180 200 220 240
¥ value

(a)

240 | T T T ! T
| NSO SO S . ..g......... — S I %. e
160

120

Crvalue

sl 5 : : ; | : |

0 \ i i i i I i i i i I
o 20 40 60 a0 100 120 140 160 180 200 220 240
¥ value

(b)

Fig. 3.2 (a) Distribution between Cb and Y values of 10000 skin
samples. (b) Distribution between Cr and Y values of 10000 skin
samples.

23

Ch value

Cryalue

240

220

200

180

120

100

a0

40

20

240

220

200

180

I i
20 40 B0 80 100 120 140
¥ value

(a)

160

1
180

200

1
220

240

120

100

a0

40

20

I i
20 40 B0 80 100 120 140
¥ value

(b)

Fig. 3.3 The skin region is inside red threshold curves.

24

160

1
180

1
200

1
220

240

60<Y <80 105<Ch <115 145< Cr<0.25*Y +144
80<Y <90 105<Ch <128 132<Cr<0.25*Y +144
90< Y <100 85<Ch<128 132 <Cr<0.25*Y +144
100 <Y <120 (-0.5)*Y +125< Ch <128 132<Cr<0.25*Y +144
120 <Y <140 (-0.5)*Y +125<Ch < 0.1*Y +113 139 < Cr <180
140 <Y <160 55<Cbh<0.1*Y +113 130 < Cr <185
70<Ch<0.1*Y +113
160 <Y <180 130 < Cr <185
140 < Cbh <145
70<Ch<0.1*Y +113
180 <Y <190 130 < Cr < (-0.75)*Y + 305
140 < Ch <145
(-0.5)*Y +165<Ch < 0.1*¥ +113
190 <Y <200 130 < Cr < (-0.75)*Y + 305
140 < Ch <145
190<Y <232 (-0.5)*Y +165<Ch<0.1*Y +113 | 130< Cr <(-0.75)*Y +305

Table 3.1 For skin segmentation, Cb and Cr values should
correspond to conditions with different Y intervals.

3.1.2 Binary Image Processing

Based on these conditions in Table 3.1, a binary image is obtained.

The white pixels represent skin pixels and the black pixels represent

non-skin pixels, as shown in Fig. 3.4.

25

Fig. 3.4 Some examples of converting original images to binary
images. (a)(b) indoor environment, (c)outdoor environment.

26

3.1.3 Experiment Results and Discussions

As shown in Figs. 3.4(a)-(c), we can see the skin color can be
segmented correctly in indoor or outdoor environment. There are some
noises in Fig. 3.4(c), but the parts of faces and hands still can be
segmented. Fig. 3.4 shows two special cases. In Fig. 3.5(a), the man
stands with his back to light. Although his face and his arm are dark, the
skin segmentation performance is good. Fig. 3.5(b) shows in the poor

illumination situation, the result is still acceptable.

(b)

Fig. 3.5 Two cases in poor illumination environment.

27

The following two examples in Figs. 3.6(a)-(b) shows bad results
for skin segmentation process. Fig. 3.6(a) shows the result in the dark
indoor environment. In the poor illumination situation, the white shirt of
the man is similar to skin color and so are some parts of background. Fig.
3.6(b) shows the result in complex background. There are too many
skin-color elements in the background to segment human skin color

clearly.

e
1
L4

(b)

Fig. 3.6 Two bad results of skin segmentation.

28

3.2 Preprocessing of Face Detection

Given a color image, the first step is segmenting skin part of the
image. At every skin pixel, the face detection algorithm is performed with
different sub-windows. The result of detection sometimes makes mistake,

it recognizes no-faces as faces, as shown in Fig. 3.7.

(b)

Fig. 3.7 Two examples of bad results of face detection.

To eliminate these false results, we use a simple method before face
detection. This method is based on the ratio of skin region area to total

area in the sub-window, as shown in Eq. 3-2:

the area of skin region in the sub - window

skin ratio =

x100% (3-2)

the total area in the sub - window

The skin ratio represents the percentage of skin pixels in the

sub-window. It is apparent that non-faces and faces can be distinguished

29

by applying an appropriate threshold value. The non-face samples will be

rejected when the skin ratio is less than the threshold

The threshold is evaluated from 535 correct detected face samples
in our experiment. We compute the skin ratio of every sample and sort
these data by their scale. Fig. 3.8 shows some examples in our experiment.

Fig 3.9 shows distribution of all correct detected face samples.

samples

Skin ratio 83% 99% 76% 91%

Fig. 3.8 Some examplés in our experiment and their skin ratio.

(%)
30

4) 45 5055 60 65 0TS 80 85 S0 65 100 (%)

Distribution of skin ratio

Fig. 3.9 Distribution of skin ratio of 535 correct detected face
samples.

30

From Fig. 3.9, over 95% of the samples can be detected correctly
when skin ratio is greater than 65%, so the threshold 65% is used in our
experiment. Fig. 3.10 shows two examples from Fig. 3.6, the results with

preprocessing are satisfied.

(b)

Fig. 3.10 Two examples with p_reproce'ssing from Fig. 3.6.

31

CHAPTER 4
EXPERIMENTAL RESULTS AND
DISCUSSIONS

4.1 Detection sub-windows

4.1.1 Nearest neighbor interpolation

For face detection, we scan input image with different-size
detection sub-windows. Usually,, the .faces in the image have different
scales. So we need to normalizerall-sub-windows to a standard size
(24*24 pixels). The method of resizing the: sub-windows is using the

nearest neighbor interpolation [11].

Nearest neighbor interpolation is shown as below:

® Given a sub-windows with width m and height #,

its pixel value of position (x, y) is p(x, y),

where 0<x<m and 0<y<n,

® Create subsampled image with width m” and height »’.

Its pixel value of position (x, y):
p'(x,y) = p(floor(2)x , floor(-%)y)
m n

32

where O<x<m'<m , 0<y<n'<n , and floor() is the

function that rounds a float number to an integer.

For nearest neighbor interpolation, the subsampled pixel value is
placed by the nearest pixel value. Fig. 4.1(a) shows the original image in
the sub-windows, and Figs. 4.1(b)-(c) are the images after transformation.
The subsampled image may appear step-like after transformation, but it

causes a little effect in following procedure.

=

(a) (b) (©)

Fig. 4.1 (a) The original“image with 100*100 pixels. (b)(c) The
subsampled images with 50*50 pixels and 24*24 pixels.

4.1.2 The threshold of confidence

As mentioned in Section 2.2, the sub-windows are classified as

positive if the final hypothesis exceeds the AdaBoost threshold

Z;az hz(x) 1

(i.e. T s E). We define the confidence of a sub-window as:
=1
Zilaz hz(x)
Conf'(x) = — (4-1)

t
t=1 @

33

The Conf(x) is an index that decides the output of classifier is acceptable
or not. The high confidence value represents the sub-image satisfies more
features. In test procedure, when Conf{x) is larger than the threshold, 7%,

this sub-image is regarded as positive:
Conf (x) > Th (4-2)

The threshold, 7h, will be adjusted according to different test
image set. In the beginning, the threshold is initialized to 0.5. Then, the
threshold is gradually increased until minimizing the sum of miss rate and
false alarm rate. In real-time system, optimal threshold is selected

according to illumination and background conditions at that time. In our

photo test experiment, optimal threshold of 0° face detection is assigned
to 0.6, and optimal thresholds of +45° face detection are assigned to 0.67,
as shown in Fig. 4.2. In our real=time system, optimal threshold of 0’ face

detection is assigned to 0.56, and optimal thresholds of +45° face

detection are assigned to 0.6.

Layer 1 Layer 2 Layer 3
00 face detection 450 face detection -450 face detection
. False . False . False
Miss Miss Miss
Th Alarm Th Alarm Th Alarm
Rate Rate Rate
Rate Rate Rate
0.57 | 10.06% | 11.50% 0.65 | 12.01% | 19.10% 0.65 | 11.03% | 14.91%
0.59 | 11.03% | 9.89% /,70.67 12.66% | 11.809%0 ®0.67 | 11.69% | 12.26%
0.6 |14.69% | 6.16%" 0.69 | 14.61% | 9.93% 0.69 | 12.34% | 11.76%
0.61|20.78% | 5.43%
Fig. 4.2 The optimal threshold selected at each layer.

34

4.1.3 Classification of potential faces

In the experiment, we illustrate the detected faces by red square.
As shown in Fig. 4.3(b), there are usually a lot of red squares for single
face. In order to eliminate this phenomenon, we combine adjacent red

squares to one.

The first step is computing the centers (Xy, ... ,Xy) of all potential
face sub-windows, where N is the number of potential face sub-windows.
Secondly, we assign x; to y;, which is first member of the first class C;

and we will meet two different conditions:

Condition 1 (when the number.of class kis 1):

We compute the distances of y; and x,, ... ,Xy respectively. Once
distance of y; and x; is larger than.threshold,we assign x; to y,, which is
first member of the second ‘class C,. If distance of y, and x; is smaller

than threshold, we assign x; to C;.

Condition 2 (when the number of classes £ is larger than 1):

We compute the distances of y;, ... ,y; and remaining centers
respectively. Once distances of yi, ... ,y; and x; are all larger than
threshold, we assign X; to Yy«1, Which is first member of the k+1th class

Cy+1. If distances of some y; and x; are smaller than threshold, we assign

Xi to C;, which has the minimal distance of y;, and x;.

The remaining centers do Condition 2 procedure repeatedly until
all potential face sub-windows are classified. Finally, we select the

member of each class with the highest confidence value. The result is

35

shown in Fig. 4.3(c).

The detailed algorithm is shown as below:

® Defined:
X1, ... Xy the centers of selected sub-windows
Cy, ... ,C,: the set of classes, where k is the number of classes

Y1, ... ,Yx . the set of first member of the classes

® Choose x; as first member of C;: y; <= X, and k=1,

® Fori=2,...,N:
Forj=1,..,k:
if | ;- y; | > Th
then vy <X
k<-k+1

else

k
find jo such that || x; —y;, [= MiN || x,—y; ||

X; € Cjo

® Select one member with the highest confidence value in C,,

Vi=1, ..k

36

Fig. 4.3 (a) The original images. (b) The detection results without
applying our algorithm. (c) The detection results with applying our
algorithm.

37

4.2 Experiments on Real-World Photos

Our experimental environment is based on AMD 3500+ processor.
The 100 test photos with 308 faces are all resized to 320*240 pixels.

4.2.1 Comparison with the Performances with Two Different

Feature Selection Types

Here, we compare two different feature selection types. One is
AdaBoost we already mentioned before, and the other one is feature
selection depending on the order of error rate among all features. Unlike
AdaBoost, the second type selects,features at only one round. In order to
prove that AdaBoost is more robust;-we test our database and compare
performances of two different types,-as shown in Table 4.1. The table
illustrates that the two feature ‘selection-methods almost have the same
performances in detection rate. But on the other side, the false alarm rate

without using AdaBoost is too high to tolerable, as shown in Fig. 4.4.

Feature Selection | Detection Miss Rate False Alarm
Method Rate Rate
Order 87.99% 12.01% 78.94%
AdaBoost 88.31% 11.69% 12.26%

Table 4.1 Comparison to the performances with two different
feature selection types.

38

No AdaBoost AdaBoost

Fig. 4.4 Comparison between results by using feature selection
without AdaBoost and with AdaBoost.

From Table 4.1, we can see 200 features selected without AdaBoost each
layer introduce high false alarm rate 78.94%. Hence, in order to improve
the performance, we select 100 hetter features as a new feature set. These
new 100 features come from fdri'girjlglj ,ZQ:Q.f"é:atures, and we select them by
number of each feature regarded aé:.;pééifivé é'gmong all false alarm cases.
We use new feature set to. tes[t,.,':'éueratapaée, and comparison to the
performance with old is shoWh'»as Tabll_ei4".'é. We find the new method is
useless, and the performance with new feature set is worst than old one.
That is 100 features eliminated may be important at other position in an

Image, so the possibility of false alarm becomes higher.

Feature set Detection Miss Rate False Alarm
Rate Rate
Oold 87.99% 12.01% 78.94%
New 87.66% 12.34% 83.08%

Table 4.2 Comparison to the performances with two different
feature sets. Old: 200 features. New: 100 better features.

39

4.2.2 Comparison with the Performances using features with

and without confident weight, « , selected by AdaBoost

Here, we compare the performances using features with and

without confident weight, «, selected by AdaBoost. As we mentioned in

section 2.3, confident weight represents the importance of each selected
feature. The confident weight is higher, the selected feature is more
important. Table 4.3 shows the performances with and without confident
weight. From the table, we can see the method with confident weight has
better performance than without confident weight, but the method without
confident weight is still much better than feature selected without
AdaBoost. Therefore, the features selected by AdaBoost are critical and

important for testing real-world‘photos.

Detection : False Alarm
Rate Miss Rate Rate
With « 88.31% 11.69% 12.26%
Without o 84.09% 15.91% 15.08%

Table 4.3 Comparison to the performances with and without
confident weight.

40

4.2.3 Comparison with the Performances of Two Different

Systems

Fig. 4.5 shows two different systems. Fig. 4.5(a) is the system we
mentioned before. As shown in Fig. 4.5(b), all sub-windows first do

detection to determine if human face images or not, and then face images
will be separated to three classes (—450, 0, 450). In the grey part of the

figure, training set is composed of three pose (-45°+ 0+ 450) faces. Table
4.4 shows the performances of (a) and (b). We can see (a) is better in
detection rate but worse in false alarm rate. Thus, we compare their
performances under equal false alarm condition by adjusting the
thresholds of (b), as shown in Table 4.5. From the table, we can see two
systems both produce 38 false alarm: cases and detection rate of (a) is still
better than (b). In our experiment, there‘are 13.31% positive examples are
rejected at the grey part in the Fig. 4.5(b). Hence, the grey part is a major

reason that miss rate of (b) is higher-than+(a).

All sub-window images

Non-
faces

-450 face
detection

450 face
detection

00 face
detection

0’ faces 45° faces _45° faces

(a)

41

All sub-window images

0,45 & -45
face detection

0
f
=) 0 a(-:e - O0 faces
detection
450 face
=)) — 450 faces
detection
450 face
—p . - -450 faces
detection
» Non-faces
(b)

Fig. 4.5 The structures of two different systems.

Result Detection . False Alarm
Miss Rate
System Rate Rate
@) 88.31% | 11.69% 12.26%
(b) 82.47% 17.53% 10.25%

Table 4.4 The performances of two different systems.

42

Result Num. of Num. of Num. of
System Detection Miss False Alarm
@) 272 (88.31%) | 36 (11.69%) | 38 (12.26%)
(b) 260 (84.41%) | 48 (15.58%) | 38 (12.75%)

Table 4.5 The performances of two different systems under equal
false alarm condition.

4.2.4 Dynamic analysis of systems without and with

preprocessing

Table 4.6 shows comparison with. dynamic analysis of systems

without and with skin ratio preprocessing.

Level Al: Cascade O face detection.
Level A2: Cascade 0° & +45 face detection.
Level A3: Cascade 0° & +45° face detection.

43

Result Detection Ny False Alarm | Computation

Level Rate ISs{Rate Rate Time/Image

Al 82.14% 17.86% 57.76% 2156.19ms

A2 82.79% 17.21% 60.59% 2256.94ms

A3 84.09% 15.91% 62.02% 2312.95ms
(a)

Result Detection Ny False Alarm | Computation

Level Rate ISs{Rate Rate Time/Image

Bl 85.06% 14.94% 6.16% 70~1900ms

B2 86.69% 13.31% 8.59% 75~2000ms

B3 88.31% 11.69% 12.26% 80~2000ms
(b)

Level B1: Cascade 0 face detection.
Level B2: Cascade 0° & +45 face detection.
Level B3: Cascade 0° & +45° face detection.

Table 4.6 Comparison with dynamic analysis of systems (a)
without skin ratio preprocessing‘+and (b) with skin ratio
preprocessing.

From the table, Level Aidoes not use skin ratio preprocessing. We
can see Level Al uses 0° face detection, and its detection rate is 82.14%

and miss rate is 17.86%. After adding +45° face detection (Level A2),

detection rate increases to 82.79% and miss rate reduces to 17.21%.
Hence, under 0° face detection (Level Al), there are 17.86% faces can not

be detected. But after adding +45° face detection (Level A2), only
17.21% faces can not be detected. It means 0.65% (17.86% - 17.21%)

faces originally miss at 0° face detection (Level Al) layer, they can be

detected. Finally, after entering -45° face detection (Level A3) layer,
detection rate increases to 84.09% and miss rate reduces to 15.91%.

Hence, under Level A2, there are 17.21% faces can not be detected. But

after adding -45° face detection (Level A3), only 15.91% faces can not be

44

detected. It means 1.3% (17.21% - 15.91%) faces originally miss at Level

Al. After entering -45° face detection (Level A3) layer, they can be
detected.

Besides, =45 face detection increases the possibility of false

alarm. The false alarm rate of Level Al is 57.76%. After adding +45° face

detection (Level A2), the false alarm rate increases to 60.59%. After

adding -45° face detection (Level A3), the false alarm rate increases to
62.02%. It means 2.83% (60.59% - 57.76%) non-faces are originally
rejected at Level Al, and 1.43% (62.02% - 60.59%) at Level A2. But

after adding + 45 face detection, these 2.83% non-faces are detected and

mistaken as +45 faces at Level A2, and 1.43% are mistaken as _45° faces
at Level A3.

Level B uses skin-ratio preprocessing. Under 0° face detection

(Level B1), 14.94% faces"cantnot-be detected. After adding +45° face
detection (Level B2), only 13,31% faces - can not be detected. It means
1.63% (14.94% - 13.31%) faces originally miss at Level B1. After adding

+45° face detection (Level B2) layer, they can be detected. Finally, after

adding -45° face detection (Level B3), only 12.26% faces can not be
detected. It means 1.05% (13.31% - 12.26%) faces originally miss at

Level B2. After adding -45° face detection (Level B3) layer, they can be
detected. Fig. 4.6(a) shows Level B3 can detect more pose face than
Level B1.

Besides, the false alarm rate of Level B1 is 6.16%. After adding
+45° face detection (Level B2), the false alarm rate increases to 8.59%.

After adding -45° face detection (Level B3), the false alarm rate increases
to 12.26%. It means 2.43% (8.59% - 6.16%) non-faces are originally

45

rejected at Level B1, and 3.67% (12.26% - 8.59%) at Level B2. But after
adding +45 face detection, these 2.43% non-faces are detected and

mistaken as +45 faces at Level A2, and 3.67% are mistaken as -45° faces
at Level A3. Fig. 4.6(b) shows the result of Level B1 is better than Level

B2 in false alarm rate.

In terms of skin ratio preprocessing, we compare Level Al and
Level B1. The detection rate of Level A1 without skin ratio preprocessing
IS 82.14%, and the detection rate of Level Bl with skin ratio
preprocessing is 85.06%. So the system with using preprocessing has
better performance. In terms of false alarm rate, the false alarm rate of
Level Al without skin ratio preprocessing is 57.76% and the false alarm
rate of Level B1 with skin ratio preprocessing is 6.16%. The false alarm
rate without skin ratio preprocessing (Level Al) is 51.6% (57.76% -
6.16%) higher than the false alarm rate with skin ratio preprocessing
(Level B1). This is because a majority of:-non-face sub-windows are
rejected with preprocessing. As.we mentioned in section 3-2, if the real
human face exists in a sub-window, the majority part of this sub-window
must be skin color. Hence, false alarm rate 57.76% reduces to 6.16% with
preprocessing. Besides, scanned regions just focused on skin color
regions, so correct results were not influenced by complex background

and it also can improve detection rate.

Compared with Level A3 and Level B3, the detection rate of
Level A3 without skin ratio preprocessing is 84.09%, and the detection
rate of Level B3 with skin ratio preprocessing is 88.31%. In terms of false
alarm rate, the false alarm rate of Level A3 without skin ratio
preprocessing is 62.02% and the false alarm rate of Level B3 with skin
ratio preprocessing is 12.26%. The false alarm rate without skin ratio
preprocessing (Level A3) is 49.76% (62.02% - 12.26%) higher than the

46

false alarm rate with skin ratio preprocessing (Level B3). Fig. 4.6(c)
shows the system with using preprocessing introduces high false alarm

rate.

Fig. 4.6 Comparison the results of different levels in our system.

47

In terms of computational time, the case without using preprocess
requires longer time to scan the whole image, and its computation time is
usually constant. From Table 4.6, we can see that the system without
using preprocess requires 2100~2300ms but the system with using
preprocess just requires 80~2000ms. This is because the majority part of
Image is non-skin region, and we only need to scan skin color region.
When skin color area is small, the detection speed is very quickly. Table
4.7 shows the average processing time per image with different skin color

region size of single image among our test set.

Skin Color Level B1 Level B3
Area/lmage Computation Time | Computation Time
0% ~ 10% 131.33ms 149.47ms
10% ~ 20% 211.98ms 224.19ms
20% ~ 30% 427.35ms 487.11ms
30% ~ 40% 69/7.11ms 768.94ms
40% ~ 50% 984.99ms 1072.31ms
50% ~ 60% 1082.36ms 1124.75ms
60% ~ 70% 1372.24ms 1725.79ms

Table 4.7 The average processing time per image with different

skin color region size.

4.2.5 Testing on Real-life Photos

After comparing with different levels in our system, we show

some our experimental results. Fig. 4.7 and Fig. 4.8 separately show some

good and bad test results.

48

.\ 20

Fig. 4.7 Some goé-d test resU’itg by aﬁfplying our system.

-

Fig. 4.8 Some bad test results by applying our system.

49

4.3 Experiments on Real-Time System

In this section, we implement real-time face detect system. The
input image from a webcam is caught by function provided by OpenCV
[12]. OpenCV (Open Source Computer Vision) is a library of
programming functions mainly aimed at real time computer vision.
Example applications of the OpenCV library are Human-Computer
Interaction, Object Identification, Face Recognition, Gesture Recognition,
Motion Tracking, and Mobile Robotics. OpenCV provides a structure
named Iplimage to process bmp raw data. Fig. 4.9 shows the members of
the structure Iplimage. Hence, we need to assign the pointer named
imageData to input bmp data caught from webcam, and initialize the

width and height of the image.

typedef struct _IplImage

{
int nSize; /* sizeof({IplImage) =/
int 1ID; F* version (=8)=/
int nChannels; /= Host of OpenCU functions support 1,2.3 or 4 channels =/
int alphaChannel; /= ignored by OpenCU =/
int depth; /= pixel depth in bits: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16S,
IPL_DEPTH_325, IPL_DEPTH_32F and IPL_DEPTH_64F are supported =/
char colorHodel[4]; /= ignored by OpenCU =/
char channelSeq[4]; /= ditto =/
int datalrder; f* B - interleaved color channels, 1 - separate color channels.
cuCreateImage can only create interleaved images =/
int origin; /* @ - top-left origin,
1 - bottom-left origin (Windows bitmaps style) =/
int align; /* flignment of image rows (4% or B).
ODpenCl ignores it and uses widthStep instead =/
int width; /* image width in pixels =/
int height; /* image height in pizels =/
struct _IpIROT »roi;/* image ROI. i1f HULL, the whole image is selected =/
struct _IplImage =maskROI; /= must be HULL =/
void =imageld; Fx ditto =/
struct IplTilelnfo =tilelnfo; /= ditto =/
int imageSize; /* image data size in bytes
(==image->height*image->widthStep
in case of interleaved data)=/
char ximageData; /x pointer to aligned image data =/
int widthStep; /» size of aligned image row in bytes =/
int BorderHMode[4]; /* ignored by OpenCU =/
int BorderConst[4]; /= ditto =/
char ximageDataOrigin; /= pointer to very origin of image data
{not necessarily aligned) -
needed for correct deallocation =/
¥
Iplimage;

Fig. 4.9 The members of the structure Iplimage.

50

After initializing the information of the input image, we proceed
real-time face detection procedure. The detection results of our real-time
system are shown in Fig. 4.10. Our face detector can process a 320*240
pixel image in 20~400ms, depending on skin color area. Compared with
OpenCV face detector, our detection speed is faster in small skin color

area situation, as shown in Table 4.8.

Fig. 4.10 Real-time face detection.

Detection Rate Detection Time
OpenCV Detector 94.48% 70~85ms

Our Face Detector 88.31% 20~400ms

Table 4.8 Comparison with our real-time face detector and
OpenCV real-time face detector. For only single face test, it
requires 20~70ms to detect face when the face scale is under 55*55
pixels.

51

4.4 Implementation of Real-Time Monitoring System

Here, we construct the real-time monitoring system with face
detection technique. Fig. 4.11 and Fig. 4.12 show the execution results of
server and client. When the server program is started, it also catches the
image from USB camera connected to server PC. The streaming service
is started by clicking on “Streaming Start” button of sever interface. In
Fig. 4.12, the client program is connecting to the server to receive live
Images by entering IP address of the server and pressing “Open” button of
client interface. The right side of client interface is shown that outcome of

face detection by pressing “image processing” button.

& MonitorPlanet B|

~Eecond to mpd file
E vnondtor mpd

Start TSE Captore
FEecord mpd started...
Blreaming st

Fig. 4.11 Server interface.

52

£r MRS ERR EENIRSMREIE S - Client Player

Ir‘[sp:.l’I140.113.1S.BBICAM_D.Sgp _Open_|

UserMName: Iguest Password: guest SeekTa |

CAMERA 1| CAMERA 2| CAMERA 3|

CAMERA 4| CAMERA 5| CAMERA El

Decr\,rptsewerIF':IHD_gg_n_gg 100 sec
Pause | Recurdl Record Endl
lﬁ\huﬁer: 0, pos: 62, 1s rate 0.00, t rate 0K Stap |

|Eluf. Size: 0.23, Cur. Pos: 59.37, LossRate 0.00, TX Read 1 framel
[TCPtunnel T Eror Control w Consume Frame Resetaackgrnund|

Fig. 4.12 Client L@aﬂ&s&e_wgth face detection.
S ._;{;%?a

53

CHAPTER 5
CONCLUSIONS AND FUTURE WORK

In this thesis, we proposed a robust face detection method which
have good detection speed and can detect wide face rotation.
Experimental results show our system achieve higher detection rate than
the system without AdaBoost, the system without using multi-pose face
detection, and the system without using skin ratio preprocessing. We also
use features selected with and without AdaBoost to test photos.
Experimental results prove AdaBoost is so robust that false alarm rate can
be reduced efficiently. In term of detection speed, the method with skin
ratio preprocessing is much faster than the- method without skin ratio
preprocessing. Depending -on different-skin: color area over the whole
Image, it can save 20~95% computational time. Therefore, our system

can be widely used in real-time applications.

In the future, we plan to integrate face recognition approach into
our system, and try to improve detection rate and speed. It will enhance

standard of human living.

54

References

[1] Face detection technology on digital cameras:
http://www.letsgodigital.org/en/14826/face-detection-technology/

[2] R.-L. Hsu, M. Abdel-Mottaleb and A.K. Jain, “Face Detection in color
images,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol.24, n0.5, pp.696-706, May 2002.

[3] J. Kovac and P. Peer, “Human skin colour clustering for face
detection,” EUROCON 2003. International Conference on Computer
as a Tool, Ljubljana, Slovenia, Sept. 2003.

[4] P. Viola and M. Jones, “Rapid objection using a boosted cascade of
simple feature,” Computer Vision and Pattern Recognition, vol. 1, pp.
8-14, 2001.

[5] P. Viola and M. Jones, “*Fast.-multi-view face detection,” Tech. Rep.
TR2003-96, Mitsubishi Electric Research Laboratories, July 2003.

[6] Y. Wang, H. Ai, B. Wu, and C. Huang, “Real time facial expression
recognition with Adaboost,” /ICPR, 2004.

[7] P. J. Phillips, H. J. Moon, S. A. Rizvi, and P. J. Rauss, “The feret
evaluation methodology for face recognition algorithms,” PAMI,
22(10). 1090-1104, Oct. 2000.

[8] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Computer Learning
Theory: Eurocolt "95, pages 23-37, Springer-Verlag, 1995.

[9] CCIR, “Encoding parameters of digital television for studios,” CCIR

Recommendation 601-2, Int. Radio Consult. Committee, Geneva,

55

Switzerland, 1990.

[10] D. Chai and A. Bouzerdoum, “A Bayesian Approach to Skin Color
Classification in YCbCr Color Space,” TENCON 2000. Proceedings,
IEEE, Kuala Lumpur Malaysia, VoI. 2, pp. 421-424, Sept. 2000.

[11] Nearest Neighbor Interpolation:
http://www.dpreview.com/learn/?/key=interpolation

[12] Open Source Computer Vision Library (OpenCV):
http://opencvlibrary.sourceforge.net/

http://www.intel.com/technology/computing/opencv/index.htm

56

