

國 立 交 通 大 學

電信工程學系

碩 士 論 文

使用膚色比例前處理之

即時性人臉偵測系統

Real-time Face Detection System

with Skin Ratio Preprocessing

研 究 生: 張榮勝

指導教授: 張文鐘 博士

中 華 民 國 九 十 六 年 八 月

使用膚色比例前處理之

即時性人臉偵測系統

Real-time Face Detection System

with Skin Ratio Preprocessing

研 究 生: 張榮勝 Student: Jung-Sheng Chang

指導教授 : 張文鐘 博士 Advisor: Dr. Wen-Thong Chang

國 立 交 通 大 學

電信工程學系

碩 士 論 文

A Thesis
Submitted to Department of Communication Engineering

College of Electrical and Computer Engineering
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Master
In Communication Engineering

中 華 民 國 九 十 六 年 八 月

 i

使用膚色比例前處理之

即時性人臉偵測系統

研究生:張榮勝 指導教授:張文鐘 博士

國立交通大學電信工程學系碩士班

摘要

在此篇論文中，我們建構出即時性人臉偵測系統，此系統能偵測出-45
度至 45 度的人臉。我們的人臉偵測包含兩部份：第一部份尋找出整張影

像中的膚色區域，以獲得可能為臉的區域。由於偵測區域只在膚色區域

上，故處理時間可節省 20~95%；第二部份為人臉偵訊程序，我們使用積

分影像 (integral image)快速算出矩形特徵 (rectangle feature)，且使用

AdaBoost 演算法選出重要的特徵。我們的系統建構三層 cascade 系統。第

一層為 0 度人臉偵測，第二層為 45 度人臉偵測，最後一層為-45 度人臉偵

測。我們也比較與分析以下性能: (1) 使用與非使用 AdaBoost 的特徵選

取，(2) 兩個不同的系統設計， (3)我們系統使用與非使用膚色前處理的不

同階段。我們系統的偵測率能達到 88.31%。

 在即時性人臉偵側方面，根據不同大小的膚色面積，我們需要

20~400ms 去處理一張 320*240 的影像。因此，我們的系統能廣泛地使用於

不同的應用程式上。

 ii

Real-time Face Detection System
with Skin Ratio Preprocessing

Student: Jung-Sheng Chang Advisor: Dr. Wen-Thong Chang

The Department of Communication Engineering

National Chiao Tung University

Abstract

 In the thesis, we construct real-time face detection system which
can detect -45~45 degree face. Our face detection system consists of two
parts. The first part searches skin color regions over the whole image to
segment potential face regions. Detection regions only focus on skin
regions so it can save 20~95% processing time. The second part is face
detection procedure. We use integral image to compute rectangle features
rapidly and AdaBoost algorithm to select important features. Our system
constructs three-layer cascade structure. First layer is 0-degree face
detection, second layer is 45-degree face detection, and final layer is
-45-degree face detection. We also compare and analyze the performance:
(1) feature selection with and without AdaBoost, (2) two different
systems, and (3) different layers in our system with and without skin ratio
preprocessing. The detection rate of our system can achieves 88.31%.

In real-time face detection, it requires 20~400ms to process a
320*240 image depending on skin area size. Therefore, our system can be
widely used in different application programs.

 iii

Acknowledgements

 I appreciate my advisor Dr. Wen-Thong Chang for helping me

complete this thesis. I would also like to thank my parents, my classmates,

and my friends. They supported and encouraged me a lot during my life

and studies.

 iv

Contents

摘要... i

Abstract... ii
Acknowledgements ... iii
Contents ... iv
List of Figures.. vi
List of Table ... viii

CHAPTER 1 INTRODUCTION..1

1.1 Motivation...1
1.2 Related Works ..2
1.3 Thesis Overview ...2
1.4 Thesis Outline ...4

CHAPTER 2 FEATURE SELECTION AND FACE DETECTION
BY USING ADABOOST ..5

2.1 Training Samples..7
2.2 Features...8

2.2.1 Rectangle feature...8
2.2.2 Integral image..9

2.3 AdaBoost ... 11
2.4 Cascade Classifiers...16
2.5 System Structure in Our Experiment...18

CHAPTER 3 SKIN COLOR REGION DETECTION................. 20

3.1 Skin Segmentation ...21
3.1.1 Thresholds for Skin Segmentation ..22
3.1.2 Binary Image Processing ..25
3.1.3 Experiment Results and Discussions ...27

3.2 Preprocessing of Face Detection ...29

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSIONS
.. 32

4.1 Detection sub-windows ..32

 v

4.1.1 Nearest neighbor interpolation ..32
4.1.2 The threshold of confidence ...33
4.1.3 Classification of potential faces..35

4.2 Experiments on Real-World Photos ...38
4.2.1 Comparison with the Performances with Two Different Feature
Selection Types ...38
4.2.2 Comparison with the Performances using features with and
without confident weight, α, selected by AdaBoost40
4.2.3 Comparison with the Performances of Two Different Systems41
(b)...42
4.2.4 Dynamic analysis of systems without and with preprocessing43
4.2.5 Testing on Real-life Photos ...48

4.3 Experiments on Real-Time System ..50
4.4 Implementation of Real-Time Monitoring System52

CHAPTER 5 CONCLUSIONS AND FUTURE WORK 54

References ... 55

 vi

List of Figures

Fig. 1.1 The flowchart of our real-time face detection system3
Fig. 2.1 The training process flowchart..5
Fig. 2.2 The flowchart of our different-posed face detection6
Fig. 2.3 (a)-(c) The normalized training samples of three different poses (-45

o
, 0

o
,

45
o
) face. (d) The normalized training samples of non-face.....................................7

Fig. 2.4 Some examples with special characteristics. (a) examples with glasses. (b)
examples with moustache. ...8
Fig. 2.5 Seven different type rectangle features used in our experiment. The value
of rectangle feature is the difference between the sums of the pixel gray level
values within the black and white rectangular regions. Two- rectangle features
are shown in (a), (b) and (g). Three-rectangle features are shown in (c)-(f).9
Fig. 2.6 The sum of the pixels in rectangle D can be computed as 4 + 1 - (2 + 3). 10
Fig. 2.7 The value of two-rectangle feature can be computed in six array
references. ... 11
Fig. 2.8 The number of misclassified examples among 1000 training data with
different number of features selected. ..15
Fig. 2.9 The first five features selected with and without using AdaBoost and
their error rate..16
Fig 2.10 Cascade structure ..18
Fig 2.11 The structure of our face detection system..19
Fig. 3.1 The structure of preprocessing of face detection.21
Fig. 3.2 (a) Distribution between Cb and Y values of 10000 skin samples. (b)
Distribution between Cr and Y values of 10000 skin samples.23
Fig. 3.3 The skin region is inside red threshold curves...24
Fig. 3.4 Some examples of converting original images to binary images. (a)(b)
indoor environment, (c)outdoor environment. ..26
Fig. 3.5 Two cases in poor illumination environment. ..27
Fig. 3.6 Two bad results of skin segmentation. ..28
Fig. 3.7 Two examples of bad results of face detection. ..29
Fig. 3.8 Some examples in our experiment and their skin ratio.30
Fig. 3.9 Distribution of skin ratio of 535 correct detected face samples.30
Fig. 3.10 Two examples with preprocessing from Fig. 3.6.31
Fig. 4.1 (a) The original image with 100*100 pixels. (b)(c) The subsampled
images with 50*50 pixels and 24*24 pixels. ...33

 vii

Fig. 4.2 The optimal threshold selected at each layer. ..34
Fig. 4.3 (a) The original images. (b) The detection results without applying our
algorithm. (c) The detection results with applying our algorithm.........................37
Fig. 4.4 Comparison between results by using feature selection without AdaBoost
and with AdaBoost. ..39
Fig. 4.5 The structures of two different systems..42
Fig. 4.6 Comparison the results of different levels in our system.47
Fig. 4.7 Some good test results by applying our system..49
Fig. 4.8 Some bad test results by applying our system. ..49
Fig. 4.9 The members of the structure IplImage...50
Fig. 4.10 Real-time face detection. ..51
Fig. 4.11 Server interface...52
Fig. 4.12 Client interface with face detection. ...53

 viii

List of Table

Table 3.1 For skin segmentation, Cb and Cr values should correspond to
conditions with different Y intervals. ...25
Table 4.1 Comparison to the performances with two different feature selection
types...38
Table 4.2 Comparison to the performances with two different feature sets. Old:
200 features. New: 100 better features. ..39
Table 4.3 Comparison to the performances with and without confident weight. 40
Table 4.4 The performances of two different systems...42
Table 4.5 The performances of two different systems under equal false alarm
condition..43
(a)...43
Table 4.7 The average processing time per image with different skin color region
size. ..48
Table 4.8 Comparison with our real-time face detector and OpenCV real-time
face detector. For only single face test, it requires 20~70ms to detect face when
the face scale is under 55*55 pixels...51

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

 In recent ten years, the face detection issue received more

attention in computer vision field. It has many applications in human

daily life. For example, face detection technique is recently used on

digital cameras [1]. When the face is detected in a scene, the camera

automatically optimizes focus and exposure so your photos come out

great. Besides, it also applies on the safety of the building. If the human

face is detected, the image is transferred to the human face recognition

module. The recognition result shows a person corresponding to the

image is a legal or illegal member.

 There are a lot of approaches which have been proposed in face

detection field. They mainly focused on frontal face detection issue. But

in real-time detection, the human face rotation is unavoidable. In order to

solve this problem, we construct real-time face detection which can detect

-45
o
~45

o
 face. Besides, we add skin color preprocessing to improve

detection speed. In a 320*240 pixel image, it requires 20~400ms to scan

the whole image. Therefore, our system can be widely used in different

application programs.

2

1.2 Related Works

 The direct method of face detection is to detect skin color regions.

Hsu et al. [2] and Kovac et al. [3] perform skin detection in YCbCr color

space. Hsu et al. [2] find face candidates based on skin patches firstly, and

construct eye, mouth, and boundary maps for verifying each face

candidate. They provide high detection rate over a wide variety of facial

variations but detection speed is slow.

In 2001, Viola and Jones [4] introduced robust method which can

process rapidly and achieve high detection rate. They provided a new

image representation called integral image which computes the feature

value quickly. The training algorithm is based on two-class AdaBoost

which selects a small number of critical features from a large feature set

and constructs efficient classifiers. Finally, they used cascade structure

which consists of some classifiers to reject a large number of non-face

images. There have been some related works such as multi-pose face

detection and facial expression recognition [5] [6].

1.3 Thesis Overview

 Our face detection system consists of two main parts. Firstly, we

segment skin regions over the entire image based on YCbCr color space.

Secondly, we use different-size sub-windows to scan the image. The face

detection algorithm is executed according to two conditions. One is

detection sub-windows must locate at skin pixels, and the other one is the

3

sum of skin pixels within the rectangle is larger than threshold. These two

conditions can reduce scan region to improve computational time and

decrease error. The flowchart of our system is shown as Fig. 1.1.

Fig. 1.1 The flowchart of our real-time face detection system

Image caught
from webcam

Skin segmentation

Scan image with
different-size sub-windows

Skin area
>Th ?

At skin
pixel ?

Non-face Face

Face
detection

Y

Y

Y

N

N

N

4

1.4 Thesis Outline

 The organization of this thesis is as follows. Chapter 2 introduces

feature selection with AdaBoost algorithm and cascade classifiers.

Chapter 3 introduces skin segmentation and preprocessing of face

detection. Chapter 4 shows experimental results, implementation of

real-time system, and monitoring system with face detection. At last, the

thesis is concluded in Chapter 5.

5

CHAPTER 2

FEATURE SELECTION AND FACE

DETECTION BY USING ADABOOST

 In this chapter, we will introduce two main parts. The first part of

this thesis is the training process that allows computer system to learn

human face classification. Viola and Jones introduced a method for

constructing a classifier by selecting a small set of critical features using

AdaBoost and combining more complex classifiers in a cascade structure

[4]. More and more face detection techniques use this method because the

feature-based system operates much faster than the pixel-based system.

This method is also used in our experiment to achieve real-time object.

The training process flowchart is shown in Fig. 2.1.

Fig. 2.1 The training process flowchart

The second part of this thesis is test process to detect face with features

selected by AdaBoost. We scan the image with different-sized detection

Rescale
(24*24 pixels)

Create classification
function for every feature

AdaBoost

FERET
database

Strong Classifier

6

sub-windows. When some critical features are matched in a detection

sub-window, the face is detected. Our system can detect face with three

different pose (-45
o
, 0

o
, 45

o
), as shown in Fig. 2.2. Firstly, all sub-window

images enter 0
o
 face detection system, and the rejected images are

regarded as non-0
o
 faces, including 45

o
& -45

o
 faces and non-faces.

Secondly, the rejected images from 0
o
 face detection enter 45

o
 face

detection system, and the rejected images at this layer are regarded as

non-0
o
&45

o
 faces, including -45

o
 faces and non-faces. Finally, the

remaining images enter -45
o
 face detection system, and the rejected

images at this layer are regarded as non-faces.

Fig. 2.2 The flowchart of our different-posed face detection

All sub-window images

0
o

face detection

45
o
 face detection

-45
o
 face detection

0
o
 faces

45
o
 faces

-45
o
 faces

Y

Non- faces

N

N

N

Y

Y

Non-0
o
 &45

o
 faces

Non-0
o
 faces

7

2.1 Training Samples

 The training samples of three different poses (-45
o
, 0

o
, 45

o
) face

come from the FERET image database [7]. The training samples of

non-face are created by our image database. To eliminate the influence of

location, all training samples are normalized to 24*24 pixels. Fig. 2.3 and

Fig. 2.4 show some examples of the normalized training samples.

(a)

(b)

(c)

(d)

Fig. 2.3 (a)-(c) The normalized training samples of three different

poses (-45
o
, 0

o
, 45

o
) face. (d) The normalized training samples of

non-face.

8

 (a) (b)

Fig. 2.4 Some examples with special characteristics. (a) examples
with glasses. (b) examples with moustache.

2.2 Features

2.2.1 Rectangle feature

 Our face detection procedure classifies images based on the value

of rectangle features. Rectangle features are sensitive to the presence of

edges, lines, and other simple image structure. They provide rich image

representation to support effective training. Fig. 2.5 shows seven different

type features used in our experiment. Among a sample with 24*24 pixels,

the width and height of Figs. 2.5(a)(b) have 12 different scales, Figs.

2.5(c)(d)(g) have 8 different scales, and Figs. 2.5(e)(f) have 6 different

scales. Thus, we have 2*12*12*24*24 + 3*8*8*24*24 + 2*6*6*24*24=

165888 + 110592 + 41472 = 317952 possible features among single

training sample.

9

Fig. 2.5 Seven different type rectangle features used in our
experiment. The value of rectangle feature is the difference
between the sums of the pixel gray level values within the black
and white rectangular regions. Two- rectangle features are shown
in (a), (b) and (g). Three-rectangle features are shown in (c)-(f).

2.2.2 Integral image

 Rectangle features can be computed very quickly using an

intermediate representation for the image which we call the integral

image. The integral image at location x, y contains the sum of the pixels

above and to the left of x, y:

' , '
(,) (', ')

x x y y
ii x y i x y

≤ ≤

= ∑ (3-1)

where (,)ii x y is the integral image and (,)i x y is the original image.

(a)

(c)

(b)

(d) (e) (f)

(g)

10

Any rectangular sum can be computed in four array references

using the integral image. As shown in Fig. 2.6, the value of the integral

image at location 1 is the sum of the pixels in rectangle A. The value at

location 2 is A + B, at location 3 is A + C, and location 4 is A + B + C + D.

The sum within D can be computed as 4 + 1 - (2 + 3).

Fig. 2.6 The sum of the pixels in rectangle D can be computed as 4
+ 1 - (2 + 3).

 The two-rectangle features defined above involve adjacent

rectangular sums so they can be computed with six array references. As

shown in Fig. 2.7, the sum of the pixels in rectangle A can be computed

as 4 + 1 - (2 + 3), and the sum of the pixels in rectangle B can be

computed as 6 + 3 - (4 + 5). So the value of this rectangle feature is

difference between the sum of the pixels within A and the sum of the

pixels within B, which equals (4 - 3) - (2 - 1) + (4 - 3) - (6 - 5). In the case

of the three- rectangle features, they can be computed in eight array

references.

11

 As mentioned above, the integral image can be computed from an

image using a few addition and subtraction operations per pixel. Once

computed, any one of these rectangle features can be computed rapidly at

any scale or location.

Fig. 2.7 The value of two-rectangle feature can be computed in six
array references.

2.3 AdaBoost

In each 24*24 pixel image sub-window, there are 317952

rectangle features. Even if we can compute a feature very efficiently,

selecting a small number of features to form an effective classifier is a

difficult task. In order to ensure fast classification, the learning algorithm

must exclude a majority of features, and focus on some important

features.

In our system, we use AdaBoost learning algorithm to select a

12

small set of features and train the classifier [8]. AdaBoost learning

algorithm provides a simple method to boost the classification

performance. A weak classifier can depend on only a single feature.

AdaBoost learning algorithm selects a new weak classifier at each round,

and combines a small number of weak classifiers to form a stronger

classifier.

 Given a training set, we separate it to two classes, positive and

negative. Positive examples consist of face images, and negative

examples consist of non-face images. The weak learning algorithm

selects the single rectangle feature to best separate positive and negative

examples. For each feature, the weak learner finds out the optimal

threshold classification function, which minimizes the number of

misclassified examples. The function is shown as below:

 1 if ()
()

0 otherwise
j j j j

j
p f x p

h x
θ<⎧

= ⎨
⎩

 (3-2)

where j is the number of each feature, hj is a weak classifier, fj is the value

of feature, θj is a threshold, and a polarity pj indicates the direction of the

inequality sign.

13

AdaBoost algorithm is shown as below:

 Given example images (x1 , y1), … , (xn , yn)

where
 1 for positive examples
 0 for negative examples

iy
⎧

= ⎨
⎩

 Initialize weights:

1,

1 for 1
2
1 for 0

2

i

i

i

y
lw

y
m

⎧ =⎪⎪= ⎨
⎪ =
⎪⎩

where l and m are the number of positives and negatives

respectively.

 For t = 1, … ,T :

1. Normalize the weights,

,
,

,
1

 t i
t i n

t j
j

ww
w

=

←
∑

so that wt is a probability distribution.

2. For each feature, j, the error is | () |j i j i i
i
w h x yε = −∑ .

3. Choose the classifier, ht, with the lowest error tε .

4. Update the weights:

,
1,

,

 if example is classified correctly

 if example is classified incorrectly
t i t i

t i
t i i

w x
w

w x
β

+
⎧

= ⎨
⎩

14

where =
1

t
t

t

εβ
ε−

 The final strong classifier is:

1

1

() 1 1
() 2

0 otherwise

T
t t

t
T

t
t

h x
h x

α

α
=

=

⎧
⎪ ≥⎪= ⎨
⎪
⎪⎩

∑
∑

where
1 logt

t
α

β
=

Each round of boosting selects one feature from the 317952

potential features. After T rounds of boosting, we can get T weak

classifiers. At each round, the weights, w, will be updated; the weights of

misclassified examples become larger. For example, there are ten training

samples S1, … , S10 and the weight of each sample is 0.1. After first round

of boosting, selected feature makes S1 and S2 misclassified, and total error

rate is 0.2. The weights of these two samples misclassified become

0.2778, and the weights of remaining eight samples become 0.0556. After

second round of boosting, selected feature makes S1 misclassified again,

and total error rate becomes 0.2778. The weight of S1 becomes 0.5806,

the weight of S2 becomes 0.1613, and the weights of remaining eight

samples become 0.0323. Hence, when a sample is misclassified again and

again, its weight becomes lager. Relatively, the high weight value

increases total error rate and that also influences which feature we should

select. Besides, if a feature misclassifies sample with large weight, total

error rate becomes lager and the possibility of this feature selected is

15

reduced. But if a feature has the capability of correctly classifying sample

with large weight, total error rate becomes smaller and the possibility of

this feature selected is increased relatively. Compared with tradition

feature selection, the tradition method selects all critical features with

error rate order at only one round of boosting. The weight of each sample

is uniform, so selected features are not capable of classifying “hard

classified example” and the possibility of false alarm increases. Fig. 2.8

illustrates the number of misclassified examples among 1000 training

data with different number of features selected. From the figure, more

features selected by AdaBoost can decrease misclassified example. On

the contrary, more features selected without AdaBoost can not separate

positive and negative efficiently. In Chapter 4, we will compare the

performances between two different feature selections. Fig. 2.9 shows the

first five features selected with two different feature selections and their

error rate.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

num. of featured selected

nu
m

. o
f

m
is

cl
as

si
fi

ed
 e

xa
m

pl
es

AdBoost

No AdaBoost

Fig. 2.8 The number of misclassified examples among 1000
training data with different number of features selected.

16

No AdaBoost

Feature

Error rate 0.0709 0.0718 0.0718 0.0736 0.0736

AdaBoost

Feature

Error rate 0.0683 0.0820 0.1133 0.1527 0.1484

Fig. 2.9 The first five features selected with and without using
AdaBoost and their error rate

The confident weight, α, of each selected feature is determined

by the error of each feature. It represents the importance of each selected

feature. The confident weight is higher, the selected feature is more

important, and it can separate positive and negative examples more

efficiently.

2.4 Cascade Classifiers

Cascade classifier is a structure which achieves good detection

performance and reduces computation time. Stages in the cascade

structure are constructed by training classifier using AdaBoost.

 As shown in Fig. 2.10, the initial stage classifier can be

17

constructed from a small number of features to reject a large number of

negative examples. Subsequent stages eliminate additional negative

examples but require additional computation. Only positive examples can

pass through all stages and they take the longest computation time. In

each stage, the number of features and the method of feature selection are

designed by user. For example, the first stage classifier can be constructed

from two-feature strong classifier by adjusting threshold to minimize

false negatives (mistakes positive as negative). The threshold can be

adjusted to false negative rate of 0%, which detects 100% of the faces

with false positive rate (mistakes negative as positive) of 40%. The

subsequent stage classifiers are constructed from strong classifiers which

consist of 5~10 features. They are designed by adjusting threshold to

yield false negative rate under 5% and false positive rate may reduce to

20%. Final several stage classifiers are used more features which are

designed by adjusting threshold to minimize the sum of false negative

rate and false positive rate.

However, cascade structure saves a lot of time because a majority

of sub-images in a picture are negative. It is also the key factor that

system can detect faces in real time.

18

Fig 2.10 Cascade structure

2.5 System Structure in Our Experiment

 In our face detection system, each sub-window image must pass

skin detection procedure to segment potential face regions first (we will

talk in Chapter 3), and then get a qualification for face detection. All

qualified sub-window images can pass our face detection procedure, as

shown in Fig. 2.11. The system can be separated to three layers. Each

layer is composed of two-stage cascade structure. The first stage of each

layer is a weak classifier constructed from only single feature. This

feature is selected by adjusting threshold to pass all positive examples.

That means false negatives rate is 0%. A majority of negative

sub-window images are discarded at first stage classifier, so it can reduce

processing time. The second stage of each layer is a strong classifier

constructed from 200 important features which are selected by adjusting

Y Y

N

Y

N N

All sub-windows

1 2 3 Further Processing

Non-face sub-windows

19

threshold to minimize the sum of false negative rate and false positive

rate, so it can detect faces very accurately. Hence, our system is designed

to take a balance between time-saving and accuracy.

Fig 2.11 The structure of our face detection system

Y Y

N N

N

All sub-windows

1 2

Y
1 2

Y
1 2

N

0
o
 faces

45
o
 faces

-45
o
 faces

Y

Y

Non-faces

N N

Layer 1

0
o
 face detection

Layer 2

45
o
 face detection

Layer 3

-45
o
 face detection

20

CHAPTER 3

SKIN COLOR REGION DETECTION

 In real-time face detection, efficiency is the most important issue.

In order to improve detection speed, we reduce the scan region. The main

part of the image consists of non-skin color pixels. The first step in face

detection algorithm is using potential face regions to reject no-face

regions of the image.

Given a color image, we can detect the skin color regions and

non-skin color regions. The color image is converted to the binary image.

The skin color pixels are converted to “white” pixels and non-skin color

pixels are converted to “black” pixels. The face detection algorithm is

only proceeded at the white pixels. Besides, before face detection

algorithm, we will do an additional procedure to decide if face detection

algorithm need to be executed. The procedure is re-checking skin color

area in the detection sub-window. If the human face is detected with

sub-window, the main part of sub-window consists of skin color pixels.

Hence, we set threshold to reject non-faces that are mistaken for faces.

Fig. 3.1 shows the preprocessing of face detection.

21

Fig. 3.1 The structure of preprocessing of face detection.

3.1 Skin Segmentation

In this thesis, we will choose YCbCr domain [9] as our color

space to segment skin color. There are two reasons why we choose

YCbCr color space. The first reason is that the YCbCr color space is used

broadly in computer vision applications such as JPEG compression,

MPEG and H.263 video compression. We can use it directly without

converting it to another color space. The second reason is that the YCbCr

color space has good performance in skin segmentation. According to the

research [10], the skin pixels of different-raced people have similar

distribution between Cb and Cr values. So we can easily segment skin

color of the different-colored person.

All sub-windows

At skin
pixel ?

Face
detection

Skin area
> Th ?

Non-face sub-windows

N

Y

N

Y

22

 In the RGB domain, each component of the picture (red, green,

and blue) has a different brightness. However, in the YCbCr domain all

information about the brightness is given by the Y component and its

value has range from 16 to 235, which represent from darkness to

lightness. The Cb and Cr components are independent from the

luminosity and its value has range from 16 to 240. The following

conversions are used to segment R, G and B components into Y, Cb and

Cr components:

16 0.257 0.504 0.098
128 0.148 0.291 0.439
128 0.439 0.368 0.071

Y R
Cb G
Cr B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3-1)

3.1.1 Thresholds for Skin Segmentation

 We take 10000 skin samples to get their Y, Cb, Cr components.

Fig. 3.2(a) shows the distribution between Cb and Y values of skin

samples. Fig. 3.2(b) shows the distribution between Cr and Y values of

skin samples. It is unwise to apply maximum and minimum of Cb and Cr

components for the thresholds of skin segmentation. We decide to choose

thresholds of Cb and Cr components with different Y intervals, as shown

in Fig. 3.3. Table 3.1 clearly lists the conditions with different Y intervals.

23

(a)

(b)

Fig. 3.2 (a) Distribution between Cb and Y values of 10000 skin
samples. (b) Distribution between Cr and Y values of 10000 skin
samples.

24

(a)

(b)

Fig. 3.3 The skin region is inside red threshold curves.

25

60 80Y< ≤ 105 115Cb< < 145 0.25* 144Cr Y< < +

80 90Y< ≤ 105 128Cb< < 132 0.25* 144Cr Y< < +

90 100Y< ≤ 85 128Cb< < 132 0.25* 144Cr Y< < +

100 120Y< ≤ (0.5)* 125 128Y Cb− + < < 132 0.25* 144Cr Y< < +

120 140Y< ≤ (0.5)* 125 0.1* 113Y Cb Y− + < < + 139 180Cr< <

140 160Y< ≤ 55 0.1* 113Cb Y< < + 130 185Cr< <

160 180Y< ≤
70 0.1* 113Cb Y< < +

140 145Cb< <

130 185Cr< <

180 190Y< ≤
70 0.1* 113Cb Y< < +

140 145Cb< <

130 (0.75)* 305Cr Y< < − +

190 200Y< ≤
(0.5)* 165 0.1* 113Y Cb Y− + < < +

140 145Cb< <

130 (0.75)* 305Cr Y< < − +

190 232Y< ≤ (0.5)* 165 0.1* 113Y Cb Y− + < < + 130 (0.75)* 305Cr Y< < − +

Table 3.1 For skin segmentation, Cb and Cr values should
correspond to conditions with different Y intervals.

3.1.2 Binary Image Processing

 Based on these conditions in Table 3.1, a binary image is obtained.

The white pixels represent skin pixels and the black pixels represent

non-skin pixels, as shown in Fig. 3.4.

26

(a)

(b)

(c)

Fig. 3.4 Some examples of converting original images to binary
images. (a)(b) indoor environment, (c)outdoor environment.

27

3.1.3 Experiment Results and Discussions

 As shown in Figs. 3.4(a)-(c), we can see the skin color can be

segmented correctly in indoor or outdoor environment. There are some

noises in Fig. 3.4(c), but the parts of faces and hands still can be

segmented. Fig. 3.4 shows two special cases. In Fig. 3.5(a), the man

stands with his back to light. Although his face and his arm are dark, the

skin segmentation performance is good. Fig. 3.5(b) shows in the poor

illumination situation, the result is still acceptable.

(a)

(b)

Fig. 3.5 Two cases in poor illumination environment.

28

 The following two examples in Figs. 3.6(a)-(b) shows bad results

for skin segmentation process. Fig. 3.6(a) shows the result in the dark

indoor environment. In the poor illumination situation, the white shirt of

the man is similar to skin color and so are some parts of background. Fig.

3.6(b) shows the result in complex background. There are too many

skin-color elements in the background to segment human skin color

clearly.

(a)

(b)

Fig. 3.6 Two bad results of skin segmentation.

29

3.2 Preprocessing of Face Detection

Given a color image, the first step is segmenting skin part of the

image. At every skin pixel, the face detection algorithm is performed with

different sub-windows. The result of detection sometimes makes mistake,

it recognizes no-faces as faces, as shown in Fig. 3.7.

(a) (b)

Fig. 3.7 Two examples of bad results of face detection.

 To eliminate these false results, we use a simple method before face

detection. This method is based on the ratio of skin region area to total

area in the sub-window, as shown in Eq. 3-2:

 - = 100%

 -
the area of skin region in the sub windowskin ratio

the total area in the sub window
× (3-2)

 The skin ratio represents the percentage of skin pixels in the

sub-window. It is apparent that non-faces and faces can be distinguished

30

by applying an appropriate threshold value. The non-face samples will be

rejected when the skin ratio is less than the threshold

 The threshold is evaluated from 535 correct detected face samples

in our experiment. We compute the skin ratio of every sample and sort

these data by their scale. Fig. 3.8 shows some examples in our experiment.

Fig 3.9 shows distribution of all correct detected face samples.

samples

Skin ratio 83% 99% 76% 91%

Fig. 3.8 Some examples in our experiment and their skin ratio.

Fig. 3.9 Distribution of skin ratio of 535 correct detected face
samples.

Distribution of skin ratio

31

 From Fig. 3.9, over 95% of the samples can be detected correctly

when skin ratio is greater than 65%, so the threshold 65% is used in our

experiment. Fig. 3.10 shows two examples from Fig. 3.6, the results with

preprocessing are satisfied.

(a) (b)

Fig. 3.10 Two examples with preprocessing from Fig. 3.6.

32

CHAPTER 4

EXPERIMENTAL RESULTS AND

DISCUSSIONS

4.1 Detection sub-windows

4.1.1 Nearest neighbor interpolation

 For face detection, we scan input image with different-size

detection sub-windows. Usually, the faces in the image have different

scales. So we need to normalize all sub-windows to a standard size

(24*24 pixels). The method of resizing the sub-windows is using the

nearest neighbor interpolation [11].

Nearest neighbor interpolation is shown as below:

 Given a sub-windows with width m and height n,

its pixel value of position (x, y) is p(x, y),

where 0 x m≤ < and 0 y n≤ < .

 Create subsampled image with width m’ and height n’.

Its pixel value of position (x, y):

'(,) (floor() , floor())
' '

m np x y p x y
m n

=

33

where 0 'x m m≤ < < , 0 'y n n≤ < < , and floor() is the

function that rounds a float number to an integer.

For nearest neighbor interpolation, the subsampled pixel value is

placed by the nearest pixel value. Fig. 4.1(a) shows the original image in

the sub-windows, and Figs. 4.1(b)-(c) are the images after transformation.

The subsampled image may appear step-like after transformation, but it

causes a little effect in following procedure.

 (a) (b) (c)

Fig. 4.1 (a) The original image with 100*100 pixels. (b)(c) The
subsampled images with 50*50 pixels and 24*24 pixels.

4.1.2 The threshold of confidence

 As mentioned in Section 2.2, the sub-windows are classified as

positive if the final hypothesis exceeds the AdaBoost threshold

(i.e.

1

1

() 1
2

T
t t

t
T

t
t

h xα

α
=

=

≥∑
∑). We define the confidence of a sub-window as:

1

1

()
()

T
t t

t
T

t
t

h x
Conf x

α

α
=

=

= ∑
∑ (4-1)

34

The Conf(x) is an index that decides the output of classifier is acceptable

or not. The high confidence value represents the sub-image satisfies more

features. In test procedure, when Conf(x) is larger than the threshold, Th,

this sub-image is regarded as positive:

() > Conf x Th (4-2)

The threshold, Th, will be adjusted according to different test

image set. In the beginning, the threshold is initialized to 0.5. Then, the

threshold is gradually increased until minimizing the sum of miss rate and

false alarm rate. In real-time system, optimal threshold is selected

according to illumination and background conditions at that time. In our

photo test experiment, optimal threshold of 0
o
 face detection is assigned

to 0.6, and optimal thresholds of ±45
o
 face detection are assigned to 0.67,

as shown in Fig. 4.2. In our real-time system, optimal threshold of 0
o
 face

detection is assigned to 0.56, and optimal thresholds of ± 45
o
 face

detection are assigned to 0.6.

Fig. 4.2 The optimal threshold selected at each layer.

Th
Miss
Rate

False
Alarm
Rate

0.57 10.06% 11.50%
0.59 11.03% 9.89%
0.6 14.69% 6.16%
0.61 20.78% 5.43%

Th
Miss
Rate

False
Alarm
Rate

0.65 12.01% 19.10%
0.67 12.66% 11.80%
0.69 14.61% 9.93%

Layer 1
0

o
 face detection

Layer 2
45

o
 face detection

Layer 3
-45

o
 face detection

Th
Miss
Rate

False
Alarm
Rate

0.65 11.03% 14.91%
0.67 11.69% 12.26%
0.69 12.34% 11.76%

35

4.1.3 Classification of potential faces

In the experiment, we illustrate the detected faces by red square.

As shown in Fig. 4.3(b), there are usually a lot of red squares for single

face. In order to eliminate this phenomenon, we combine adjacent red

squares to one.

The first step is computing the centers (x1, … ,xN) of all potential

face sub-windows, where N is the number of potential face sub-windows.

Secondly, we assign x1 to y1, which is first member of the first class C1

and we will meet two different conditions:

Condition 1 (when the number of class k is 1):

We compute the distances of y1 and x1, … ,xN respectively. Once

distance of y1 and xi is larger than threshold, we assign xi to y2, which is

first member of the second class C2. If distance of y1 and xi is smaller

than threshold, we assign xi to C1.

Condition 2 (when the number of classes k is larger than 1):

We compute the distances of y1, … ,yk and remaining centers

respectively. Once distances of y1, … ,yk and xi are all larger than

threshold, we assign xi to yk+1, which is first member of the k+1th class

Ck+1. If distances of some yj and xi are smaller than threshold, we assign

xi to Cj0 which has the minimal distance of yj0 and xi.

The remaining centers do Condition 2 procedure repeatedly until

all potential face sub-windows are classified. Finally, we select the

member of each class with the highest confidence value. The result is

36

shown in Fig. 4.3(c).

The detailed algorithm is shown as below:

 Defined:

x1, … ,xN : the centers of selected sub-windows

C1, … ,Ck : the set of classes, where k is the number of classes

y1, … ,yk : the set of first member of the classes

 Choose x1 as first member of C1: y1 ← x1, and k = 1.

 For i = 2, …, N :

 For j = 1, …, k :

if || xi – yj || > Th

then yk+1 ← xi

k ← k + 1

else

find j0 such that || xi – yj0 || =
1

min
k

j=
|| xi – yj ||

xi ∈ Cj0

 Select one member with the highest confidence value in Cj,

∀ j = 1, … ,k

37

(a)

(b)

(c)

Fig. 4.3 (a) The original images. (b) The detection results without
applying our algorithm. (c) The detection results with applying our
algorithm.

38

4.2 Experiments on Real-World Photos

 Our experimental environment is based on AMD 3500+ processor.

The 100 test photos with 308 faces are all resized to 320*240 pixels.

4.2.1 Comparison with the Performances with Two Different

Feature Selection Types

Here, we compare two different feature selection types. One is

AdaBoost we already mentioned before, and the other one is feature

selection depending on the order of error rate among all features. Unlike

AdaBoost, the second type selects features at only one round. In order to

prove that AdaBoost is more robust, we test our database and compare

performances of two different types, as shown in Table 4.1. The table

illustrates that the two feature selection methods almost have the same

performances in detection rate. But on the other side, the false alarm rate

without using AdaBoost is too high to tolerable, as shown in Fig. 4.4.

Feature Selection
Method

Detection
Rate Miss Rate False Alarm

Rate

Order 87.99% 12.01% 78.94%

AdaBoost 88.31% 11.69% 12.26%

Table 4.1 Comparison to the performances with two different
feature selection types.

39

No AdaBoost AdaBoost

Fig. 4.4 Comparison between results by using feature selection
without AdaBoost and with AdaBoost.

From Table 4.1, we can see 200 features selected without AdaBoost each

layer introduce high false alarm rate 78.94%. Hence, in order to improve

the performance, we select 100 better features as a new feature set. These

new 100 features come from original 200 features, and we select them by

number of each feature regarded as positive among all false alarm cases.

We use new feature set to test our database, and comparison to the

performance with old is shown as Table 4.2. We find the new method is

useless, and the performance with new feature set is worst than old one.

That is 100 features eliminated may be important at other position in an

image, so the possibility of false alarm becomes higher.

.

Feature set Detection
Rate Miss Rate False Alarm

Rate

Old 87.99% 12.01% 78.94%

New 87.66% 12.34% 83.08%

Table 4.2 Comparison to the performances with two different
feature sets. Old: 200 features. New: 100 better features.

40

4.2.2 Comparison with the Performances using features with

and without confident weight, α, selected by AdaBoost

Here, we compare the performances using features with and

without confident weight, α, selected by AdaBoost. As we mentioned in

section 2.3, confident weight represents the importance of each selected

feature. The confident weight is higher, the selected feature is more

important. Table 4.3 shows the performances with and without confident

weight. From the table, we can see the method with confident weight has

better performance than without confident weight, but the method without

confident weight is still much better than feature selected without

AdaBoost. Therefore, the features selected by AdaBoost are critical and

important for testing real-world photos.

 Detection
Rate Miss Rate False Alarm

Rate

With α 88.31% 11.69% 12.26%

Withoutα 84.09% 15.91% 15.08%

Table 4.3 Comparison to the performances with and without
confident weight.

41

4.2.3 Comparison with the Performances of Two Different

Systems

 Fig. 4.5 shows two different systems. Fig. 4.5(a) is the system we

mentioned before. As shown in Fig. 4.5(b), all sub-windows first do

detection to determine if human face images or not, and then face images

will be separated to three classes (-45
o
, 0

o
, 45

o
). In the grey part of the

figure, training set is composed of three pose (-45
o
+ 0

o
+ 45

o
) faces. Table

4.4 shows the performances of (a) and (b). We can see (a) is better in

detection rate but worse in false alarm rate. Thus, we compare their

performances under equal false alarm condition by adjusting the

thresholds of (b), as shown in Table 4.5. From the table, we can see two

systems both produce 38 false alarm cases and detection rate of (a) is still

better than (b). In our experiment, there are 13.31% positive examples are

rejected at the grey part in the Fig. 4.5(b). Hence, the grey part is a major

reason that miss rate of (b) is higher than (a).

All sub-window images

0
o
 faces 45

o
 faces -45

o
 faces

Y Non-
faces

NN N

Y Y0
o
 face

detection

(a)

 45
o
 face

detection
-45

o
 face

detection

42

(b)

Fig. 4.5 The structures of two different systems.

 Result
System

Detection
Rate Miss Rate False Alarm

Rate

(a) 88.31% 11.69% 12.26%

(b) 82.47% 17.53% 10.25%

Table 4.4 The performances of two different systems.

 0
o
 , 45

o
 , & -45

o

face detection

All sub-window images

0
o
 face

detection

45
o
 face

detection

-45
o
 face

detection

45
o
 faces

0
o
 faces

-45
o
 faces

Non-faces

Y

N

43

 Result
System

Num. of
Detection

Num. of
Miss

Num. of
False Alarm

(a) 272 (88.31%) 36 (11.69%) 38 (12.26%)

(b) 260 (84.41%) 48 (15.58%) 38 (12.75%)

Table 4.5 The performances of two different systems under equal
false alarm condition.

4.2.4 Dynamic analysis of systems without and with

preprocessing

Table 4.6 shows comparison with dynamic analysis of systems

without and with skin ratio preprocessing.

 Result
Level

Detection
Rate Miss Rate False Alarm

Rate
Computation
Time/Image

A1 82.14% 17.86% 57.76% 2156.19ms

A2 82.79% 17.21% 60.59% 2256.94ms

A3 84.09% 15.91% 62.02% 2312.95ms

(a)

Level A1: Cascade 0
o
 face detection.

Level A2: Cascade 0
o
 & +45

o
 face detection.

Level A3: Cascade 0
o
 & ± 45

o
 face detection.

44

 Result
Level

Detection
Rate Miss Rate False Alarm

Rate
Computation
Time/Image

B1 85.06% 14.94% 6.16% 70~1900ms

B2 86.69% 13.31% 8.59% 75~2000ms

B3 88.31% 11.69% 12.26% 80~2000ms

(b)

Level B1: Cascade 0
o
 face detection.

Level B2: Cascade 0
o
 & +45

o
 face detection.

Level B3: Cascade 0
o
 & ± 45

o
 face detection.

Table 4.6 Comparison with dynamic analysis of systems (a)
without skin ratio preprocessing and (b) with skin ratio
preprocessing.

From the table, Level A does not use skin ratio preprocessing. We

can see Level A1 uses 0
o
 face detection, and its detection rate is 82.14%

and miss rate is 17.86%. After adding +45
o
 face detection (Level A2),

detection rate increases to 82.79% and miss rate reduces to 17.21%.

Hence, under 0
o
 face detection (Level A1), there are 17.86% faces can not

be detected. But after adding +45
o
 face detection (Level A2), only

17.21% faces can not be detected. It means 0.65% (17.86% - 17.21%)

faces originally miss at 0
o
 face detection (Level A1) layer, they can be

detected. Finally, after entering -45
o
 face detection (Level A3) layer,

detection rate increases to 84.09% and miss rate reduces to 15.91%.

Hence, under Level A2, there are 17.21% faces can not be detected. But

after adding -45
o
 face detection (Level A3), only 15.91% faces can not be

45

detected. It means 1.3% (17.21% - 15.91%) faces originally miss at Level

A1. After entering -45
o
 face detection (Level A3) layer, they can be

detected.

Besides, ± 45
o
 face detection increases the possibility of false

alarm. The false alarm rate of Level A1 is 57.76%. After adding +45
o
 face

detection (Level A2), the false alarm rate increases to 60.59%. After

adding -45
o
 face detection (Level A3), the false alarm rate increases to

62.02%. It means 2.83% (60.59% - 57.76%) non-faces are originally

rejected at Level A1, and 1.43% (62.02% - 60.59%) at Level A2. But

after adding ± 45
o
 face detection, these 2.83% non-faces are detected and

mistaken as +45
o
 faces at Level A2, and 1.43% are mistaken as -45

o
 faces

at Level A3.

Level B uses skin ratio preprocessing. Under 0
o
 face detection

(Level B1), 14.94% faces can not be detected. After adding +45
o
 face

detection (Level B2), only 13.31% faces can not be detected. It means

1.63% (14.94% - 13.31%) faces originally miss at Level B1. After adding

+45
o
 face detection (Level B2) layer, they can be detected. Finally, after

adding -45
o
 face detection (Level B3), only 12.26% faces can not be

detected. It means 1.05% (13.31% - 12.26%) faces originally miss at

Level B2. After adding -45
o
 face detection (Level B3) layer, they can be

detected. Fig. 4.6(a) shows Level B3 can detect more pose face than

Level B1.

Besides, the false alarm rate of Level B1 is 6.16%. After adding

+45
o
 face detection (Level B2), the false alarm rate increases to 8.59%.

After adding -45
o
 face detection (Level B3), the false alarm rate increases

to 12.26%. It means 2.43% (8.59% - 6.16%) non-faces are originally

46

rejected at Level B1, and 3.67% (12.26% - 8.59%) at Level B2. But after

adding ± 45
o
 face detection, these 2.43% non-faces are detected and

mistaken as +45
o
 faces at Level A2, and 3.67% are mistaken as -45

o
 faces

at Level A3. Fig. 4.6(b) shows the result of Level B1 is better than Level

B2 in false alarm rate.

In terms of skin ratio preprocessing, we compare Level A1 and

Level B1. The detection rate of Level A1 without skin ratio preprocessing

is 82.14%, and the detection rate of Level B1 with skin ratio

preprocessing is 85.06%. So the system with using preprocessing has

better performance. In terms of false alarm rate, the false alarm rate of

Level A1 without skin ratio preprocessing is 57.76% and the false alarm

rate of Level B1 with skin ratio preprocessing is 6.16%. The false alarm

rate without skin ratio preprocessing (Level A1) is 51.6% (57.76% -

6.16%) higher than the false alarm rate with skin ratio preprocessing

(Level B1). This is because a majority of non-face sub-windows are

rejected with preprocessing. As we mentioned in section 3-2, if the real

human face exists in a sub-window, the majority part of this sub-window

must be skin color. Hence, false alarm rate 57.76% reduces to 6.16% with

preprocessing. Besides, scanned regions just focused on skin color

regions, so correct results were not influenced by complex background

and it also can improve detection rate.

Compared with Level A3 and Level B3, the detection rate of

Level A3 without skin ratio preprocessing is 84.09%, and the detection

rate of Level B3 with skin ratio preprocessing is 88.31%. In terms of false

alarm rate, the false alarm rate of Level A3 without skin ratio

preprocessing is 62.02% and the false alarm rate of Level B3 with skin

ratio preprocessing is 12.26%. The false alarm rate without skin ratio

preprocessing (Level A3) is 49.76% (62.02% - 12.26%) higher than the

47

false alarm rate with skin ratio preprocessing (Level B3). Fig. 4.6(c)

shows the system with using preprocessing introduces high false alarm

rate.

Level B1 Level B3

(a)

Level B1 Level B3

(b)

Level A3 Level B3

(c)

Fig. 4.6 Comparison the results of different levels in our system.

48

 In terms of computational time, the case without using preprocess

requires longer time to scan the whole image, and its computation time is

usually constant. From Table 4.6, we can see that the system without

using preprocess requires 2100~2300ms but the system with using

preprocess just requires 80~2000ms. This is because the majority part of

image is non-skin region, and we only need to scan skin color region.

When skin color area is small, the detection speed is very quickly. Table

4.7 shows the average processing time per image with different skin color

region size of single image among our test set.

Skin Color
Area/Image

Level B1
Computation Time

Level B3
Computation Time

0% ~ 10% 131.33ms 149.47ms

10% ~ 20% 211.98ms 224.19ms

20% ~ 30% 427.35ms 487.11ms

30% ~ 40% 697.11ms 768.94ms

40% ~ 50% 984.99ms 1072.31ms

50% ~ 60% 1082.36ms 1124.75ms

60% ~ 70% 1372.24ms 1725.79ms

Table 4.7 The average processing time per image with different
skin color region size.

4.2.5 Testing on Real-life Photos

 After comparing with different levels in our system, we show

some our experimental results. Fig. 4.7 and Fig. 4.8 separately show some

good and bad test results.

49

Fig. 4.7 Some good test results by applying our system.

Fig. 4.8 Some bad test results by applying our system.

50

4.3 Experiments on Real-Time System

 In this section, we implement real-time face detect system. The

input image from a webcam is caught by function provided by OpenCV

[12]. OpenCV (Open Source Computer Vision) is a library of

programming functions mainly aimed at real time computer vision.

Example applications of the OpenCV library are Human-Computer

Interaction, Object Identification, Face Recognition, Gesture Recognition,

Motion Tracking, and Mobile Robotics. OpenCV provides a structure

named IplImage to process bmp raw data. Fig. 4.9 shows the members of

the structure IplImage. Hence, we need to assign the pointer named

imageData to input bmp data caught from webcam, and initialize the

width and height of the image.

Fig. 4.9 The members of the structure IplImage.

51

 After initializing the information of the input image, we proceed

real-time face detection procedure. The detection results of our real-time

system are shown in Fig. 4.10. Our face detector can process a 320*240

pixel image in 20~400ms, depending on skin color area. Compared with

OpenCV face detector, our detection speed is faster in small skin color

area situation, as shown in Table 4.8.

Fig. 4.10 Real-time face detection.

 Detection Rate Detection Time

OpenCV Detector 94.48% 70~85ms

Our Face Detector 88.31% 20~400ms

Table 4.8 Comparison with our real-time face detector and
OpenCV real-time face detector. For only single face test, it
requires 20~70ms to detect face when the face scale is under 55*55
pixels.

52

4.4 Implementation of Real-Time Monitoring System

 Here, we construct the real-time monitoring system with face

detection technique. Fig. 4.11 and Fig. 4.12 show the execution results of

server and client. When the server program is started, it also catches the

image from USB camera connected to server PC. The streaming service

is started by clicking on “Streaming Start” button of sever interface. In

Fig. 4.12, the client program is connecting to the server to receive live

images by entering IP address of the server and pressing “Open” button of

client interface. The right side of client interface is shown that outcome of

face detection by pressing “image processing” button.

Fig. 4.11 Server interface.

53

Fig. 4.12 Client interface with face detection.

54

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

 In this thesis, we proposed a robust face detection method which

have good detection speed and can detect wide face rotation.

Experimental results show our system achieve higher detection rate than

the system without AdaBoost, the system without using multi-pose face

detection, and the system without using skin ratio preprocessing. We also

use features selected with and without AdaBoost to test photos.

Experimental results prove AdaBoost is so robust that false alarm rate can

be reduced efficiently. In term of detection speed, the method with skin

ratio preprocessing is much faster than the method without skin ratio

preprocessing. Depending on different skin color area over the whole

image, it can save 20~95% computational time. Therefore, our system

can be widely used in real-time applications.

 In the future, we plan to integrate face recognition approach into

our system, and try to improve detection rate and speed. It will enhance

standard of human living.

55

References

[1] Face detection technology on digital cameras:
 http://www.letsgodigital.org/en/14826/face-detection-technology/

[2] R.-L. Hsu, M. Abdel-Mottaleb and A.K. Jain, “Face Detection in color

images,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol.24, no.5, pp.696-706, May 2002.

[3] J. Kovac and P. Peer, “Human skin colour clustering for face

detection,” EUROCON 2003. International Conference on Computer

as a Tool, Ljubljana, Slovenia, Sept. 2003.

[4] P. Viola and M. Jones, “Rapid objection using a boosted cascade of

simple feature,” Computer Vision and Pattern Recognition, vol. 1, pp.

8-14, 2001.

[5] P. Viola and M. Jones, “Fast multi-view face detection,” Tech. Rep.

TR2003-96, Mitsubishi Electric Research Laboratories, July 2003.

[6] Y. Wang, H. Ai, B. Wu, and C. Huang, “Real time facial expression

recognition with Adaboost,” ICPR, 2004.

[7] P. J. Phillips, H. J. Moon, S. A. Rizvi, and P. J. Rauss, “The feret

evaluation methodology for face recognition algorithms,” PAMI,

22(10). 1090-1104, Oct. 2000.

[8] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of

on-line learning and an application to boosting,” Computer Learning

Theory: Eurocolt ’95, pages 23-37, Springer-Verlag, 1995.

[9] CCIR, “Encoding parameters of digital television for studios,” CCIR

Recommendation 601-2, Int. Radio Consult. Committee, Geneva,

56

Switzerland, 1990.

[10] D. Chai and A. Bouzerdoum, “A Bayesian Approach to Skin Color

Classification in YCbCr Color Space,” TENCON 2000. Proceedings,

IEEE, Kuala Lumpur Malaysia, Vol. 2, pp. 421-424, Sept. 2000.

[11] Nearest Neighbor Interpolation:

 http://www.dpreview.com/learn/?/key=interpolation

[12] Open Source Computer Vision Library (OpenCV):

http://opencvlibrary.sourceforge.net/

http://www.intel.com/technology/computing/opencv/index.htm

