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國立交通大學電信工程學系碩士班 

 

 

摘要 

在此篇論文中，我們建構出即時性人臉偵測系統，此系統能偵測出-45
度至 45 度的人臉。我們的人臉偵測包含兩部份：第一部份尋找出整張影

像中的膚色區域，以獲得可能為臉的區域。由於偵測區域只在膚色區域

上，故處理時間可節省 20~95%；第二部份為人臉偵訊程序，我們使用積

分影像 (integral image)快速算出矩形特徵 (rectangle feature)，且使用

AdaBoost 演算法選出重要的特徵。我們的系統建構三層 cascade 系統。第

一層為 0 度人臉偵測，第二層為 45 度人臉偵測，最後一層為-45 度人臉偵

測。我們也比較與分析以下性能: (1) 使用與非使用 AdaBoost 的特徵選

取，(2) 兩個不同的系統設計， (3)我們系統使用與非使用膚色前處理的不

同階段。我們系統的偵測率能達到 88.31%。 

  在即時性人臉偵側方面，根據不同大小的膚色面積，我們需要

20~400ms 去處理一張 320*240 的影像。因此，我們的系統能廣泛地使用於

不同的應用程式上。 
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Abstract 

      In the thesis, we construct real-time face detection system which 
can detect -45~45 degree face. Our face detection system consists of two 
parts. The first part searches skin color regions over the whole image to 
segment potential face regions. Detection regions only focus on skin 
regions so it can save 20~95% processing time. The second part is face 
detection procedure. We use integral image to compute rectangle features 
rapidly and AdaBoost algorithm to select important features. Our system 
constructs three-layer cascade structure. First layer is 0-degree face 
detection, second layer is 45-degree face detection, and final layer is 
-45-degree face detection. We also compare and analyze the performance: 
(1) feature selection with and without AdaBoost, (2) two different 
systems, and (3) different layers in our system with and without skin ratio 
preprocessing. The detection rate of our system can achieves 88.31%.  

In real-time face detection, it requires 20~400ms to process a 
320*240 image depending on skin area size. Therefore, our system can be 
widely used in different application programs. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

      In recent ten years, the face detection issue received more 

attention in computer vision field. It has many applications in human 

daily life. For example, face detection technique is recently used on 

digital cameras [1]. When the face is detected in a scene, the camera 

automatically optimizes focus and exposure so your photos come out 

great. Besides, it also applies on the safety of the building. If the human 

face is detected, the image is transferred to the human face recognition 

module. The recognition result shows a person corresponding to the 

image is a legal or illegal member. 

      There are a lot of approaches which have been proposed in face 

detection field. They mainly focused on frontal face detection issue. But 

in real-time detection, the human face rotation is unavoidable. In order to 

solve this problem, we construct real-time face detection which can detect 

-45
o
~45

o
 face. Besides, we add skin color preprocessing to improve 

detection speed. In a 320*240 pixel image, it requires 20~400ms to scan 

the whole image. Therefore, our system can be widely used in different 

application programs. 
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1.2 Related Works 

      The direct method of face detection is to detect skin color regions. 

Hsu et al. [2] and Kovac et al. [3] perform skin detection in YCbCr color 

space. Hsu et al. [2] find face candidates based on skin patches firstly, and 

construct eye, mouth, and boundary maps for verifying each face 

candidate. They provide high detection rate over a wide variety of facial 

variations but detection speed is slow.  

In 2001, Viola and Jones [4] introduced robust method which can 

process rapidly and achieve high detection rate. They provided a new 

image representation called integral image which computes the feature 

value quickly. The training algorithm is based on two-class AdaBoost 

which selects a small number of critical features from a large feature set 

and constructs efficient classifiers. Finally, they used cascade structure 

which consists of some classifiers to reject a large number of non-face 

images. There have been some related works such as multi-pose face 

detection and facial expression recognition [5] [6]. 

 

1.3 Thesis Overview 

      Our face detection system consists of two main parts. Firstly, we 

segment skin regions over the entire image based on YCbCr color space. 

Secondly, we use different-size sub-windows to scan the image. The face 

detection algorithm is executed according to two conditions. One is 

detection sub-windows must locate at skin pixels, and the other one is the 
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sum of skin pixels within the rectangle is larger than threshold. These two 

conditions can reduce scan region to improve computational time and 

decrease error. The flowchart of our system is shown as Fig. 1.1. 

 

 

Fig. 1.1 The flowchart of our real-time face detection system 
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1.4 Thesis Outline 

      The organization of this thesis is as follows. Chapter 2 introduces 

feature selection with AdaBoost algorithm and cascade classifiers. 

Chapter 3 introduces skin segmentation and preprocessing of face 

detection. Chapter 4 shows experimental results, implementation of 

real-time system, and monitoring system with face detection. At last, the 

thesis is concluded in Chapter 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

5

CHAPTER 2 

FEATURE SELECTION AND FACE 

DETECTION BY USING ADABOOST  

      In this chapter, we will introduce two main parts. The first part of 

this thesis is the training process that allows computer system to learn 

human face classification. Viola and Jones introduced a method for 

constructing a classifier by selecting a small set of critical features using 

AdaBoost and combining more complex classifiers in a cascade structure 

[4]. More and more face detection techniques use this method because the 

feature-based system operates much faster than the pixel-based system. 

This method is also used in our experiment to achieve real-time object. 

The training process flowchart is shown in Fig. 2.1.  

 

 

Fig. 2.1 The training process flowchart 
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sub-windows. When some critical features are matched in a detection 

sub-window, the face is detected. Our system can detect face with three 

different pose (-45
o
, 0

o
, 45

o
), as shown in Fig. 2.2. Firstly, all sub-window 

images enter 0
o
 face detection system, and the rejected images are 

regarded as non-0
o
 faces, including 45

o
& -45

o
 faces and non-faces. 

Secondly, the rejected images from 0
o
 face detection enter 45

o
 face 

detection system, and the rejected images at this layer are regarded as 

non-0
o
&45

o
 faces, including -45

o
 faces and non-faces. Finally, the 

remaining images enter -45
o
 face detection system, and the rejected 

images at this layer are regarded as non-faces. 

 

 

Fig. 2.2 The flowchart of our different-posed face detection 
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2.1 Training Samples 

      The training samples of three different poses (-45
o
, 0

o
, 45

o
) face 

come from the FERET image database [7]. The training samples of 

non-face are created by our image database. To eliminate the influence of 

location, all training samples are normalized to 24*24 pixels. Fig. 2.3 and 

Fig. 2.4 show some examples of the normalized training samples. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2.3 (a)-(c) The normalized training samples of three different 

poses (-45
o
, 0

o
, 45

o
) face. (d) The normalized training samples of 

non-face. 
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                (a)                       (b) 

Fig. 2.4 Some examples with special characteristics. (a) examples 
with glasses. (b) examples with moustache. 

 

 

2.2 Features 

2.2.1 Rectangle feature 

     Our face detection procedure classifies images based on the value 

of rectangle features. Rectangle features are sensitive to the presence of 

edges, lines, and other simple image structure. They provide rich image 

representation to support effective training. Fig. 2.5 shows seven different 

type features used in our experiment. Among a sample with 24*24 pixels, 

the width and height of Figs. 2.5(a)(b) have 12 different scales, Figs. 

2.5(c)(d)(g) have 8 different scales, and Figs. 2.5(e)(f) have 6 different 

scales. Thus, we have 2*12*12*24*24 + 3*8*8*24*24 + 2*6*6*24*24= 

165888 + 110592 + 41472 = 317952 possible features among single 

training sample. 
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Fig. 2.5 Seven different type rectangle features used in our 
experiment. The value of rectangle feature is the difference 
between the sums of the pixel gray level values within the black 
and white rectangular regions. Two- rectangle features are shown 
in (a), (b) and (g). Three-rectangle features are shown in (c)-(f). 
 

2.2.2 Integral image 

      Rectangle features can be computed very quickly using an 

intermediate representation for the image which we call the integral 

image. The integral image at location x, y contains the sum of the pixels 

above and to the left of x, y: 

 

' , '
( , ) ( ', ')

x x y y
ii x y i x y

≤ ≤

= ∑                  (3-1)  

 

where ( , )ii x y  is the integral image and ( , )i x y  is the original image. 

(a) 

(c) 

(b) 

(d) (e) (f) 

(g) 
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Any rectangular sum can be computed in four array references 

using the integral image. As shown in Fig. 2.6, the value of the integral 

image at location 1 is the sum of the pixels in rectangle A. The value at 

location 2 is A + B, at location 3 is A + C, and location 4 is A + B + C + D. 

The sum within D can be computed as 4 + 1 - (2 + 3). 

 

 
Fig. 2.6 The sum of the pixels in rectangle D can be computed as 4 
+ 1 - (2 + 3). 
 

      The two-rectangle features defined above involve adjacent 

rectangular sums so they can be computed with six array references. As 

shown in Fig. 2.7, the sum of the pixels in rectangle A can be computed 

as 4 + 1 - (2 + 3), and the sum of the pixels in rectangle B can be 

computed as 6 + 3 - (4 + 5). So the value of this rectangle feature is 

difference between the sum of the pixels within A and the sum of the 

pixels within B, which equals (4 - 3) - (2 - 1) + (4 - 3) - (6 - 5). In the case 

of the three- rectangle features, they can be computed in eight array 

references. 
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      As mentioned above, the integral image can be computed from an 

image using a few addition and subtraction operations per pixel. Once 

computed, any one of these rectangle features can be computed rapidly at 

any scale or location. 

 

 

Fig. 2.7 The value of two-rectangle feature can be computed in six 
array references. 
 

 

2.3 AdaBoost  

In each 24*24 pixel image sub-window, there are 317952 

rectangle features. Even if we can compute a feature very efficiently, 

selecting a small number of features to form an effective classifier is a 

difficult task. In order to ensure fast classification, the learning algorithm 

must exclude a majority of features, and focus on some important 

features.  

In our system, we use AdaBoost learning algorithm to select a 
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small set of features and train the classifier [8]. AdaBoost learning 

algorithm provides a simple method to boost the classification 

performance. A weak classifier can depend on only a single feature. 

AdaBoost learning algorithm selects a new weak classifier at each round, 

and combines a small number of weak classifiers to form a stronger 

classifier.  

      Given a training set, we separate it to two classes, positive and 

negative. Positive examples consist of face images, and negative 

examples consist of non-face images. The weak learning algorithm 

selects the single rectangle feature to best separate positive and negative 

examples. For each feature, the weak learner finds out the optimal 

threshold classification function, which minimizes the number of 

misclassified examples. The function is shown as below: 

 

  
 

  1           if  ( )
( )

0                    otherwise
j j j j

j
p f x p

h x
θ<⎧

= ⎨
⎩

       (3-2)  

 

where j is the number of each feature, hj is a weak classifier, fj is the value 

of feature, θj is a threshold, and a polarity pj indicates the direction of the 

inequality sign.  

 

 

 

 



 
 

13

AdaBoost algorithm is shown as below: 

 

 Given example images (x1 , y1), … , (xn , yn) 

where 
 1          for positive examples
  0          for negative examples

iy
⎧

= ⎨
⎩

 

 Initialize weights: 

1,

1            for 1
2
1           for 0

2

i

i

i

y
lw

y
m

⎧ =⎪⎪= ⎨
⎪ =
⎪⎩

   

where l and m are the number of positives and negatives 

respectively.  

 For t = 1, … ,T : 

1.  Normalize the weights, 

,
,  

,
1

 t i
t i n

t j
j

ww
w

=

←
∑  

so that wt is a probability distribution. 

2. For each feature, j, the error is    | ( ) |j i j i i
i
w h x yε = −∑ . 

3. Choose the classifier, ht, with the lowest error tε . 

 

4. Update the weights: 

,
1,

,                        

          if example  is classified correctly
  

   if example  is classified incorrectly
t i t i

t i
t i i

w x
w

w x
β

+
⎧

= ⎨
⎩
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where  = 
1

t
t

t

εβ
ε−  

 The final strong classifier is: 

 
1

1

  

( ) 1  1                 
( )  2

0                            otherwise

T
t t

t
T

t
t

h x
h x

α

α
=

=

⎧
⎪ ≥⎪= ⎨
⎪
⎪⎩

∑
∑  

where 
1  logt

t
α

β
=  

 

Each round of boosting selects one feature from the 317952 

potential features. After T rounds of boosting, we can get T weak 

classifiers. At each round, the weights, w, will be updated; the weights of 

misclassified examples become larger. For example, there are ten training 

samples S1, … , S10 and the weight of each sample is 0.1. After first round 

of boosting, selected feature makes S1 and S2 misclassified, and total error 

rate is 0.2. The weights of these two samples misclassified become 

0.2778, and the weights of remaining eight samples become 0.0556. After 

second round of boosting, selected feature makes S1 misclassified again, 

and total error rate becomes 0.2778. The weight of S1 becomes 0.5806, 

the weight of S2 becomes 0.1613, and the weights of remaining eight 

samples become 0.0323. Hence, when a sample is misclassified again and 

again, its weight becomes lager. Relatively, the high weight value 

increases total error rate and that also influences which feature we should 

select. Besides, if a feature misclassifies sample with large weight, total 

error rate becomes lager and the possibility of this feature selected is 
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reduced. But if a feature has the capability of correctly classifying sample 

with large weight, total error rate becomes smaller and the possibility of 

this feature selected is increased relatively. Compared with tradition 

feature selection, the tradition method selects all critical features with 

error rate order at only one round of boosting. The weight of each sample 

is uniform, so selected features are not capable of classifying “hard 

classified example” and the possibility of false alarm increases. Fig. 2.8 

illustrates the number of misclassified examples among 1000 training 

data with different number of features selected. From the figure, more 

features selected by AdaBoost can decrease misclassified example. On 

the contrary, more features selected without AdaBoost can not separate 

positive and negative efficiently. In Chapter 4, we will compare the 

performances between two different feature selections. Fig. 2.9 shows the 

first five features selected with two different feature selections and their 

error rate.    
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Fig. 2.8 The number of misclassified examples among 1000 
training data with different number of features selected.  
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No AdaBoost 

Feature 
     

Error rate 0.0709 0.0718 0.0718 0.0736 0.0736 

AdaBoost 

Feature 
     

Error rate 0.0683 0.0820 0.1133 0.1527 0.1484 

Fig. 2.9 The first five features selected with and without using 
AdaBoost and their error rate 

 

The confident weight, α, of each selected feature is determined 

by the error of each feature. It represents the importance of each selected 

feature. The confident weight is higher, the selected feature is more 

important, and it can separate positive and negative examples more 

efficiently.   

 

 

2.4 Cascade Classifiers 

Cascade classifier is a structure which achieves good detection 

performance and reduces computation time. Stages in the cascade 

structure are constructed by training classifier using AdaBoost. 

      As shown in Fig. 2.10, the initial stage classifier can be 
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constructed from a small number of features to reject a large number of 

negative examples. Subsequent stages eliminate additional negative 

examples but require additional computation. Only positive examples can 

pass through all stages and they take the longest computation time. In 

each stage, the number of features and the method of feature selection are 

designed by user. For example, the first stage classifier can be constructed 

from two-feature strong classifier by adjusting threshold to minimize 

false negatives (mistakes positive as negative). The threshold can be 

adjusted to false negative rate of 0%, which detects 100% of the faces 

with false positive rate (mistakes negative as positive) of 40%. The 

subsequent stage classifiers are constructed from strong classifiers which 

consist of 5~10 features. They are designed by adjusting threshold to 

yield false negative rate under 5% and false positive rate may reduce to 

20%. Final several stage classifiers are used more features which are 

designed by adjusting threshold to minimize the sum of false negative 

rate and false positive rate.  

However, cascade structure saves a lot of time because a majority 

of sub-images in a picture are negative. It is also the key factor that 

system can detect faces in real time.   
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Fig 2.10 Cascade structure 

 

2.5 System Structure in Our Experiment 

      In our face detection system, each sub-window image must pass 

skin detection procedure to segment potential face regions first (we will 

talk in Chapter 3), and then get a qualification for face detection. All 

qualified sub-window images can pass our face detection procedure, as 

shown in Fig. 2.11. The system can be separated to three layers. Each 

layer is composed of two-stage cascade structure. The first stage of each 

layer is a weak classifier constructed from only single feature. This 

feature is selected by adjusting threshold to pass all positive examples. 

That means false negatives rate is 0%. A majority of negative 

sub-window images are discarded at first stage classifier, so it can reduce 

processing time. The second stage of each layer is a strong classifier 

constructed from 200 important features which are selected by adjusting 

Y Y

N 

Y

N N

All sub-windows 

1 2 3 Further Processing 

Non-face sub-windows 
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threshold to minimize the sum of false negative rate and false positive 

rate, so it can detect faces very accurately. Hence, our system is designed 

to take a balance between time-saving and accuracy.      

 

 

Fig 2.11 The structure of our face detection system 
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CHAPTER 3 

SKIN COLOR REGION DETECTION 

      In real-time face detection, efficiency is the most important issue. 

In order to improve detection speed, we reduce the scan region. The main 

part of the image consists of non-skin color pixels. The first step in face 

detection algorithm is using potential face regions to reject no-face 

regions of the image.  

Given a color image, we can detect the skin color regions and 

non-skin color regions. The color image is converted to the binary image. 

The skin color pixels are converted to “white” pixels and non-skin color 

pixels are converted to “black” pixels. The face detection algorithm is 

only proceeded at the white pixels. Besides, before face detection 

algorithm, we will do an additional procedure to decide if face detection 

algorithm need to be executed. The procedure is re-checking skin color 

area in the detection sub-window. If the human face is detected with 

sub-window, the main part of sub-window consists of skin color pixels. 

Hence, we set threshold to reject non-faces that are mistaken for faces. 

Fig. 3.1 shows the preprocessing of face detection. 
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Fig. 3.1 The structure of preprocessing of face detection. 

 

 

3.1 Skin Segmentation 

In this thesis, we will choose YCbCr domain [9] as our color 

space to segment skin color. There are two reasons why we choose 

YCbCr color space. The first reason is that the YCbCr color space is used 

broadly in computer vision applications such as JPEG compression, 

MPEG and H.263 video compression. We can use it directly without 

converting it to another color space. The second reason is that the YCbCr 

color space has good performance in skin segmentation. According to the 

research [10], the skin pixels of different-raced people have similar 

distribution between Cb and Cr values. So we can easily segment skin 

color of the different-colored person. 

All sub-windows 
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      In the RGB domain, each component of the picture (red, green, 

and blue) has a different brightness. However, in the YCbCr domain all 

information about the brightness is given by the Y component and its 

value has range from 16 to 235, which represent from darkness to 

lightness. The Cb and Cr components are independent from the 

luminosity and its value has range from 16 to 240. The following 

conversions are used to segment R, G and B components into Y, Cb and 

Cr components: 

 

16 0.257 0.504 0.098
128 0.148 0.291 0.439
128 0.439 0.368 0.071

Y R
Cb G
Cr B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                 (3-1) 

 

 

3.1.1 Thresholds for Skin Segmentation 

      We take 10000 skin samples to get their Y, Cb, Cr components. 

Fig. 3.2(a) shows the distribution between Cb and Y values of skin 

samples. Fig. 3.2(b) shows the distribution between Cr and Y values of 

skin samples. It is unwise to apply maximum and minimum of Cb and Cr 

components for the thresholds of skin segmentation. We decide to choose 

thresholds of Cb and Cr components with different Y intervals, as shown 

in Fig. 3.3. Table 3.1 clearly lists the conditions with different Y intervals. 
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(a) 

 
(b) 

Fig. 3.2 (a) Distribution between Cb and Y values of 10000 skin 
samples. (b) Distribution between Cr and Y values of 10000 skin 
samples. 
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(a) 

 
(b) 

Fig. 3.3 The skin region is inside red threshold curves. 
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60 80Y< ≤  105 115Cb< <  145 0.25* 144Cr Y< < +  

80 90Y< ≤  105 128Cb< <  132 0.25* 144Cr Y< < +  

90 100Y< ≤  85 128Cb< <  132 0.25* 144Cr Y< < +  

100 120Y< ≤  ( 0.5)* 125 128Y Cb− + < <  132 0.25* 144Cr Y< < +  

120 140Y< ≤  ( 0.5)* 125 0.1* 113Y Cb Y− + < < + 139 180Cr< <  

140 160Y< ≤  55 0.1* 113Cb Y< < +  130 185Cr< <  

160 180Y< ≤  
70 0.1* 113Cb Y< < +  

140 145Cb< <  

130 185Cr< <  

180 190Y< ≤  
70 0.1* 113Cb Y< < +  

140 145Cb< <  

130 ( 0.75)* 305Cr Y< < − +

190 200Y< ≤  
( 0.5)* 165 0.1* 113Y Cb Y− + < < +  

140 145Cb< <  

130 ( 0.75)* 305Cr Y< < − +

190 232Y< ≤  ( 0.5)* 165 0.1* 113Y Cb Y− + < < + 130 ( 0.75)* 305Cr Y< < − +

Table 3.1 For skin segmentation, Cb and Cr values should 
correspond to conditions with different Y intervals. 

 

3.1.2 Binary Image Processing 

      Based on these conditions in Table 3.1, a binary image is obtained. 

The white pixels represent skin pixels and the black pixels represent 

non-skin pixels, as shown in Fig. 3.4.  
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(a) 

 

 

(b) 

 

 

(c) 

Fig. 3.4 Some examples of converting original images to binary 
images. (a)(b) indoor environment, (c)outdoor environment. 
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3.1.3 Experiment Results and Discussions 

      As shown in Figs. 3.4(a)-(c), we can see the skin color can be 

segmented correctly in indoor or outdoor environment. There are some 

noises in Fig. 3.4(c), but the parts of faces and hands still can be 

segmented. Fig. 3.4 shows two special cases. In Fig. 3.5(a), the man 

stands with his back to light. Although his face and his arm are dark, the 

skin segmentation performance is good. Fig. 3.5(b) shows in the poor 

illumination situation, the result is still acceptable. 

 

 

(a) 

 
(b) 

Fig. 3.5 Two cases in poor illumination environment. 
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      The following two examples in Figs. 3.6(a)-(b) shows bad results 

for skin segmentation process. Fig. 3.6(a) shows the result in the dark 

indoor environment. In the poor illumination situation, the white shirt of 

the man is similar to skin color and so are some parts of background. Fig. 

3.6(b) shows the result in complex background. There are too many 

skin-color elements in the background to segment human skin color 

clearly. 

 

 
(a) 

 
(b) 

Fig. 3.6 Two bad results of skin segmentation. 
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3.2 Preprocessing of Face Detection 

Given a color image, the first step is segmenting skin part of the 

image. At every skin pixel, the face detection algorithm is performed with 

different sub-windows. The result of detection sometimes makes mistake, 

it recognizes no-faces as faces, as shown in Fig. 3.7. 

 

      
(a)                         (b) 

Fig. 3.7 Two examples of bad results of face detection. 
 

   To eliminate these false results, we use a simple method before face 

detection. This method is based on the ratio of skin region area to total 

area in the sub-window, as shown in Eq. 3-2:  

 
       -  = 100%

     -
the area of skin region in the sub windowskin ratio

the total area in the sub window
×    (3-2) 

 

      The skin ratio represents the percentage of skin pixels in the 

sub-window. It is apparent that non-faces and faces can be distinguished 
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by applying an appropriate threshold value. The non-face samples will be 

rejected when the skin ratio is less than the threshold 

      The threshold is evaluated from 535 correct detected face samples 

in our experiment. We compute the skin ratio of every sample and sort 

these data by their scale. Fig. 3.8 shows some examples in our experiment. 

Fig 3.9 shows distribution of all correct detected face samples. 

 

samples 

Skin ratio 83% 99% 76% 91% 

Fig. 3.8 Some examples in our experiment and their skin ratio. 
 

 

Fig. 3.9 Distribution of skin ratio of 535 correct detected face 
samples. 

Distribution of skin ratio
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      From Fig. 3.9, over 95% of the samples can be detected correctly 

when skin ratio is greater than 65%, so the threshold 65% is used in our 

experiment. Fig. 3.10 shows two examples from Fig. 3.6, the results with 

preprocessing are satisfied.  

 

      
(a)                         (b) 

Fig. 3.10 Two examples with preprocessing from Fig. 3.6. 
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CHAPTER 4 

EXPERIMENTAL RESULTS AND 

DISCUSSIONS 

4.1 Detection sub-windows 

4.1.1 Nearest neighbor interpolation 

      For face detection, we scan input image with different-size 

detection sub-windows. Usually, the faces in the image have different 

scales. So we need to normalize all sub-windows to a standard size 

(24*24 pixels). The method of resizing the sub-windows is using the 

nearest neighbor interpolation [11]. 

 

Nearest neighbor interpolation is shown as below:   

   

 Given a sub-windows with width m and height n,  

its pixel value of position (x, y) is p(x, y), 

where 0 x m≤ <  and 0 y n≤ < . 

 Create subsampled image with width m’ and height n’. 

Its pixel value of position (x, y): 

'( , ) ( floor( )  ,  floor( )  )
' '

m np x y p x y
m n

=  
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where 0 'x m m≤ < < , 0 'y n n≤ < < , and floor() is the 

function that rounds a float number to an integer.  

     

For nearest neighbor interpolation, the subsampled pixel value is 

placed by the nearest pixel value. Fig. 4.1(a) shows the original image in 

the sub-windows, and Figs. 4.1(b)-(c) are the images after transformation. 

The subsampled image may appear step-like after transformation, but it 

causes a little effect in following procedure. 

 

         
           (a)             (b)            (c) 

Fig. 4.1 (a) The original image with 100*100 pixels. (b)(c) The 
subsampled images with 50*50 pixels and 24*24 pixels. 

 

4.1.2 The threshold of confidence 

      As mentioned in Section 2.2, the sub-windows are classified as 

positive if the final hypothesis exceeds the AdaBoost threshold 

(i.e.
 

1

1
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∑ ). We define the confidence of a sub-window as: 
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The Conf(x) is an index that decides the output of classifier is acceptable 

or not. The high confidence value represents the sub-image satisfies more 

features. In test procedure, when Conf(x) is larger than the threshold, Th, 

this sub-image is regarded as positive: 

( ) > Conf x Th                       (4-2) 

The threshold, Th, will be adjusted according to different test 

image set. In the beginning, the threshold is initialized to 0.5. Then, the 

threshold is gradually increased until minimizing the sum of miss rate and 

false alarm rate. In real-time system, optimal threshold is selected 

according to illumination and background conditions at that time. In our 

photo test experiment, optimal threshold of 0
o
 face detection is assigned 

to 0.6, and optimal thresholds of ±45
o
 face detection are assigned to 0.67, 

as shown in Fig. 4.2. In our real-time system, optimal threshold of 0
o
 face 

detection is assigned to 0.56, and optimal thresholds of ± 45
o
 face 

detection are assigned to 0.6.  

 

Fig. 4.2 The optimal threshold selected at each layer. 

Th 
Miss 
Rate 

False 
Alarm 
Rate 

0.57 10.06% 11.50% 
0.59 11.03% 9.89% 
0.6 14.69% 6.16% 
0.61 20.78% 5.43% 

Th 
Miss 
Rate 

False 
Alarm 
Rate 

0.65 12.01% 19.10%
0.67 12.66% 11.80%
0.69 14.61% 9.93%

Layer 1 
0

o
 face detection 

Layer 2 
45

o
 face detection 

Layer 3 
-45

o
 face detection 

Th 
Miss 
Rate 

False 
Alarm 
Rate 

0.65 11.03% 14.91%
0.67 11.69% 12.26%
0.69 12.34% 11.76%
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4.1.3 Classification of potential faces  

In the experiment, we illustrate the detected faces by red square. 

As shown in Fig. 4.3(b), there are usually a lot of red squares for single 

face. In order to eliminate this phenomenon, we combine adjacent red 

squares to one.  

The first step is computing the centers (x1, … ,xN) of all potential 

face sub-windows, where N is the number of potential face sub-windows. 

Secondly, we assign x1 to y1, which is first member of the first class C1 

and we will meet two different conditions:  

Condition 1 (when the number of class k is 1): 

We compute the distances of y1 and x1, … ,xN respectively. Once 

distance of y1 and xi is larger than threshold, we assign xi to y2, which is 

first member of the second class C2. If distance of y1 and xi is smaller 

than threshold, we assign xi to C1.  

Condition 2 (when the number of classes k is larger than 1): 

We compute the distances of y1, … ,yk and remaining centers 

respectively. Once distances of y1, … ,yk and xi are all larger than 

threshold, we assign xi to yk+1, which is first member of the k+1th class 

Ck+1. If distances of some yj and xi are smaller than threshold, we assign 

xi to Cj0 which has the minimal distance of yj0 and xi.  

The remaining centers do Condition 2 procedure repeatedly until 

all potential face sub-windows are classified. Finally, we select the 

member of each class with the highest confidence value. The result is 
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shown in Fig. 4.3(c).  

 

The detailed algorithm is shown as below: 

 

 Defined: 

x1, … ,xN : the centers of selected sub-windows 

C1, … ,Ck : the set of classes, where k is the number of classes 

y1, … ,yk : the set of first member of the classes 

 Choose x1 as first member of C1:  y1 ← x1, and  k = 1. 

 For i = 2, …, N : 

       For j = 1, …, k : 

if || xi – yj || > Th 

then   yk+1 ← xi 

k ← k + 1 

else 

find j0 such that || xi – yj0 || = 
1

min
k

j=
|| xi – yj || 

xi ∈  Cj0 

 Select one member with the highest confidence value in Cj,  

∀ j = 1, … ,k 
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(a) 

 
(b) 

 
(c) 

Fig. 4.3 (a) The original images. (b) The detection results without 
applying our algorithm. (c) The detection results with applying our 
algorithm. 
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4.2 Experiments on Real-World Photos 

      Our experimental environment is based on AMD 3500+ processor. 

The 100 test photos with 308 faces are all resized to 320*240 pixels. 

 

4.2.1 Comparison with the Performances with Two Different 

Feature Selection Types 

Here, we compare two different feature selection types. One is 

AdaBoost we already mentioned before, and the other one is feature 

selection depending on the order of error rate among all features. Unlike 

AdaBoost, the second type selects features at only one round. In order to 

prove that AdaBoost is more robust, we test our database and compare 

performances of two different types, as shown in Table 4.1. The table 

illustrates that the two feature selection methods almost have the same 

performances in detection rate. But on the other side, the false alarm rate 

without using AdaBoost is too high to tolerable, as shown in Fig. 4.4. 

 

Feature Selection 
Method 

Detection 
Rate Miss Rate False Alarm 

Rate 

Order 87.99% 12.01% 78.94% 

AdaBoost 88.31% 11.69% 12.26% 

Table 4.1 Comparison to the performances with two different 
feature selection types. 
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No AdaBoost             AdaBoost 

 

Fig. 4.4 Comparison between results by using feature selection 
without AdaBoost and with AdaBoost. 

 

 

From Table 4.1, we can see 200 features selected without AdaBoost each 

layer introduce high false alarm rate 78.94%. Hence, in order to improve 

the performance, we select 100 better features as a new feature set. These 

new 100 features come from original 200 features, and we select them by 

number of each feature regarded as positive among all false alarm cases. 

We use new feature set to test our database, and comparison to the 

performance with old is shown as Table 4.2. We find the new method is 

useless, and the performance with new feature set is worst than old one. 

That is 100 features eliminated may be important at other position in an 

image, so the possibility of false alarm becomes higher. 

.      

Feature set  Detection 
Rate Miss Rate False Alarm 

Rate 

Old 87.99% 12.01% 78.94% 

New 87.66% 12.34% 83.08% 

Table 4.2 Comparison to the performances with two different 
feature sets. Old: 200 features. New: 100 better features. 
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4.2.2 Comparison with the Performances using features with 

and without confident weight, α, selected by AdaBoost 

Here, we compare the performances using features with and 

without confident weight, α, selected by AdaBoost. As we mentioned in 

section 2.3, confident weight represents the importance of each selected 

feature. The confident weight is higher, the selected feature is more 

important. Table 4.3 shows the performances with and without confident 

weight. From the table, we can see the method with confident weight has 

better performance than without confident weight, but the method without 

confident weight is still much better than feature selected without 

AdaBoost. Therefore, the features selected by AdaBoost are critical and 

important for testing real-world photos.  

 

 

 Detection 
Rate Miss Rate False Alarm 

Rate 

With α 88.31% 11.69% 12.26% 

Withoutα 84.09% 15.91% 15.08% 

Table 4.3 Comparison to the performances with and without 
confident weight. 
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4.2.3 Comparison with the Performances of Two Different 

Systems 

      Fig. 4.5 shows two different systems. Fig. 4.5(a) is the system we 

mentioned before. As shown in Fig. 4.5(b), all sub-windows first do 

detection to determine if human face images or not, and then face images 

will be separated to three classes (-45
o
, 0

o
, 45

o
). In the grey part of the 

figure, training set is composed of three pose (-45
o
+ 0

o
+ 45

o
) faces. Table 

4.4 shows the performances of (a) and (b). We can see (a) is better in 

detection rate but worse in false alarm rate. Thus, we compare their 

performances under equal false alarm condition by adjusting the 

thresholds of (b), as shown in Table 4.5. From the table, we can see two 

systems both produce 38 false alarm cases and detection rate of (a) is still 

better than (b). In our experiment, there are 13.31% positive examples are 

rejected at the grey part in the Fig. 4.5(b). Hence, the grey part is a major 

reason that miss rate of (b) is higher than (a). 

 

 

All sub-window images
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(b) 

Fig. 4.5 The structures of two different systems. 
 

 

 

 

 

    Result
System 

Detection 
Rate Miss Rate False Alarm 

Rate 

(a) 88.31% 11.69% 12.26% 

(b) 82.47% 17.53% 10.25% 

Table 4.4 The performances of two different systems. 
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   Result
System 

Num. of 
Detection  

Num. of   
Miss 

Num. of 
False Alarm 

(a) 272 (88.31%) 36 (11.69%) 38 (12.26%) 

(b) 260 (84.41%) 48 (15.58%) 38 (12.75%) 

Table 4.5 The performances of two different systems under equal 
false alarm condition. 
 

 

4.2.4 Dynamic analysis of systems without and with 

preprocessing 

Table 4.6 shows comparison with dynamic analysis of systems 

without and with skin ratio preprocessing. 

 

    Result
Level 

Detection 
Rate Miss Rate False Alarm 

Rate 
Computation 
Time/Image

A1 82.14% 17.86% 57.76% 2156.19ms 

A2 82.79% 17.21% 60.59% 2256.94ms 

A3 84.09% 15.91% 62.02% 2312.95ms 

(a) 

 

Level A1: Cascade 0
o
 face detection.  

Level A2: Cascade 0
o
 & +45

o
 face detection.  

Level A3: Cascade 0
o
 & ± 45

o
 face detection. 
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    Result
Level 

Detection 
Rate Miss Rate False Alarm 

Rate 
Computation 
Time/Image

B1 85.06% 14.94% 6.16% 70~1900ms 

B2 86.69% 13.31% 8.59% 75~2000ms 

B3 88.31% 11.69% 12.26% 80~2000ms 

(b) 

 

Level B1: Cascade 0
o
 face detection.  

Level B2: Cascade 0
o
 & +45

o
 face detection.  

Level B3: Cascade 0
o
 & ± 45

o
 face detection. 

 

Table 4.6 Comparison with dynamic analysis of systems (a) 
without skin ratio preprocessing and (b) with skin ratio 
preprocessing. 

 

 

From the table, Level A does not use skin ratio preprocessing. We 

can see Level A1 uses 0
o
 face detection, and its detection rate is 82.14% 

and miss rate is 17.86%. After adding +45
o
 face detection (Level A2), 

detection rate increases to 82.79% and miss rate reduces to 17.21%. 

Hence, under 0
o
 face detection (Level A1), there are 17.86% faces can not 

be detected. But after adding +45
o
 face detection (Level A2), only 

17.21% faces can not be detected. It means 0.65% (17.86% - 17.21%) 

faces originally miss at 0
o
 face detection (Level A1) layer, they can be 

detected. Finally, after entering -45
o
 face detection (Level A3) layer, 

detection rate increases to 84.09% and miss rate reduces to 15.91%. 

Hence, under Level A2, there are 17.21% faces can not be detected. But 

after adding -45
o
 face detection (Level A3), only 15.91% faces can not be 
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detected. It means 1.3% (17.21% - 15.91%) faces originally miss at Level 

A1. After entering -45
o
 face detection (Level A3) layer, they can be 

detected. 

Besides, ± 45
o
 face detection increases the possibility of false 

alarm. The false alarm rate of Level A1 is 57.76%. After adding +45
o
 face 

detection (Level A2), the false alarm rate increases to 60.59%. After 

adding -45
o
 face detection (Level A3), the false alarm rate increases to 

62.02%. It means 2.83% (60.59% - 57.76%) non-faces are originally 

rejected at Level A1, and 1.43% (62.02% - 60.59%) at Level A2. But 

after adding ± 45
o
 face detection, these 2.83% non-faces are detected and 

mistaken as +45
o
 faces at Level A2, and 1.43% are mistaken as -45

o
 faces 

at Level A3.  

Level B uses skin ratio preprocessing. Under 0
o
 face detection 

(Level B1), 14.94% faces can not be detected. After adding +45
o
 face 

detection (Level B2), only 13.31% faces can not be detected. It means 

1.63% (14.94% - 13.31%) faces originally miss at Level B1. After adding 

+45
o
 face detection (Level B2) layer, they can be detected. Finally, after 

adding -45
o
 face detection (Level B3), only 12.26% faces can not be 

detected. It means 1.05% (13.31% - 12.26%) faces originally miss at 

Level B2. After adding -45
o
 face detection (Level B3) layer, they can be 

detected. Fig. 4.6(a) shows Level B3 can detect more pose face than 

Level B1.  

Besides, the false alarm rate of Level B1 is 6.16%. After adding 

+45
o
 face detection (Level B2), the false alarm rate increases to 8.59%. 

After adding -45
o
 face detection (Level B3), the false alarm rate increases 

to 12.26%. It means 2.43% (8.59% - 6.16%) non-faces are originally 
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rejected at Level B1, and 3.67% (12.26% - 8.59%) at Level B2. But after 

adding ± 45
o
 face detection, these 2.43% non-faces are detected and 

mistaken as +45
o
 faces at Level A2, and 3.67% are mistaken as -45

o
 faces 

at Level A3. Fig. 4.6(b) shows the result of Level B1 is better than Level 

B2 in false alarm rate. 

In terms of skin ratio preprocessing, we compare Level A1 and 

Level B1. The detection rate of Level A1 without skin ratio preprocessing 

is 82.14%, and the detection rate of Level B1 with skin ratio 

preprocessing is 85.06%. So the system with using preprocessing has 

better performance. In terms of false alarm rate, the false alarm rate of 

Level A1 without skin ratio preprocessing is 57.76% and the false alarm 

rate of Level B1 with skin ratio preprocessing is 6.16%. The false alarm 

rate without skin ratio preprocessing (Level A1) is 51.6% (57.76% - 

6.16%) higher than the false alarm rate with skin ratio preprocessing 

(Level B1). This is because a majority of non-face sub-windows are 

rejected with preprocessing. As we mentioned in section 3-2, if the real 

human face exists in a sub-window, the majority part of this sub-window 

must be skin color. Hence, false alarm rate 57.76% reduces to 6.16% with 

preprocessing. Besides, scanned regions just focused on skin color 

regions, so correct results were not influenced by complex background 

and it also can improve detection rate.  

Compared with Level A3 and Level B3, the detection rate of 

Level A3 without skin ratio preprocessing is 84.09%, and the detection 

rate of Level B3 with skin ratio preprocessing is 88.31%. In terms of false 

alarm rate, the false alarm rate of Level A3 without skin ratio 

preprocessing is 62.02% and the false alarm rate of Level B3 with skin 

ratio preprocessing is 12.26%. The false alarm rate without skin ratio 

preprocessing (Level A3) is 49.76% (62.02% - 12.26%) higher than the 
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false alarm rate with skin ratio preprocessing (Level B3). Fig. 4.6(c) 

shows the system with using preprocessing introduces high false alarm 

rate. 

 

Level B1                 Level B3 

 
(a) 

 

Level B1                 Level B3 

  
(b) 

 

Level A3                 Level B3 

 
(c) 

Fig. 4.6 Comparison the results of different levels in our system. 



 
 

48

      In terms of computational time, the case without using preprocess 

requires longer time to scan the whole image, and its computation time is 

usually constant. From Table 4.6, we can see that the system without 

using preprocess requires 2100~2300ms but the system with using 

preprocess just requires 80~2000ms. This is because the majority part of 

image is non-skin region, and we only need to scan skin color region. 

When skin color area is small, the detection speed is very quickly. Table 

4.7 shows the average processing time per image with different skin color 

region size of single image among our test set. 

 

Skin Color 
Area/Image 

Level B1 
Computation Time

Level B3 
Computation Time 

0% ~ 10% 131.33ms 149.47ms 

10% ~ 20% 211.98ms 224.19ms 

20% ~ 30% 427.35ms 487.11ms 

30% ~ 40% 697.11ms 768.94ms 

40% ~ 50% 984.99ms 1072.31ms 

50% ~ 60% 1082.36ms 1124.75ms 

60% ~ 70% 1372.24ms 1725.79ms 

Table 4.7 The average processing time per image with different 
skin color region size. 

 

4.2.5 Testing on Real-life Photos  

      After comparing with different levels in our system, we show 

some our experimental results. Fig. 4.7 and Fig. 4.8 separately show some 

good and bad test results. 
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Fig. 4.7 Some good test results by applying our system. 
 

 

 

 

Fig. 4.8 Some bad test results by applying our system. 
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4.3 Experiments on Real-Time System 

      In this section, we implement real-time face detect system. The 

input image from a webcam is caught by function provided by OpenCV 

[12]. OpenCV (Open Source Computer Vision) is a library of 

programming functions mainly aimed at real time computer vision. 

Example applications of the OpenCV library are Human-Computer 

Interaction, Object Identification, Face Recognition, Gesture Recognition, 

Motion Tracking, and Mobile Robotics. OpenCV provides a structure 

named IplImage to process bmp raw data. Fig. 4.9 shows the members of 

the structure IplImage. Hence, we need to assign the pointer named 

imageData to input bmp data caught from webcam, and initialize the 

width and height of the image.  

 

 

Fig. 4.9 The members of the structure IplImage. 
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      After initializing the information of the input image, we proceed 

real-time face detection procedure. The detection results of our real-time 

system are shown in Fig. 4.10. Our face detector can process a 320*240 

pixel image in 20~400ms, depending on skin color area. Compared with 

OpenCV face detector, our detection speed is faster in small skin color 

area situation, as shown in Table 4.8.  

 

   

   

   

Fig. 4.10 Real-time face detection. 
 

 Detection Rate Detection Time 

OpenCV Detector 94.48% 70~85ms 

Our Face Detector 88.31% 20~400ms 

Table 4.8 Comparison with our real-time face detector and 
OpenCV real-time face detector. For only single face test, it 
requires 20~70ms to detect face when the face scale is under 55*55 
pixels. 
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4.4 Implementation of Real-Time Monitoring System 

    Here, we construct the real-time monitoring system with face 

detection technique. Fig. 4.11 and Fig. 4.12 show the execution results of 

server and client. When the server program is started, it also catches the 

image from USB camera connected to server PC. The streaming service 

is started by clicking on “Streaming Start” button of sever interface. In 

Fig. 4.12, the client program is connecting to the server to receive live 

images by entering IP address of the server and pressing “Open” button of 

client interface. The right side of client interface is shown that outcome of 

face detection by pressing “image processing” button. 

 

 

 

Fig. 4.11 Server interface. 
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Fig. 4.12 Client interface with face detection. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

      In this thesis, we proposed a robust face detection method which 

have good detection speed and can detect wide face rotation. 

Experimental results show our system achieve higher detection rate than 

the system without AdaBoost, the system without using multi-pose face 

detection, and the system without using skin ratio preprocessing. We also 

use features selected with and without AdaBoost to test photos. 

Experimental results prove AdaBoost is so robust that false alarm rate can 

be reduced efficiently. In term of detection speed, the method with skin 

ratio preprocessing is much faster than the method without skin ratio 

preprocessing. Depending on different skin color area over the whole 

image, it can save 20~95% computational time. Therefore, our system 

can be widely used in real-time applications. 

      In the future, we plan to integrate face recognition approach into 

our system, and try to improve detection rate and speed. It will enhance 

standard of human living.  
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