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Adaptive Sequential Hypothesis Testing for Fast

Detection of Port/Address Scan

Student: Jian-Cheng Lin Advisor: Prof. Tsern-Huei Lee

Institute of Communication Engineering

National Chiao Tung University

Abstract

As more and more network applications and services are provided, the topic of
network security becomes more and more important. The behavior anomaly of
port/address scans is a way to.intrude hosts‘on the Internet. Early detection
techniques of port/address scans are based on the ebservation that malicious hosts
could send scans with high scanning.rates.——But such approaches are not suitable to
detect scanners with lower scanning rate. .Once the threshold of scanning rate for
generating alerts is known to the attackers, the detection will be easily evaded. In
order to overcome the problems, sequential hypothesis testing is an alternative
detection technique. According to the probabilities of success for the first-contact
connection attempts sent by the hosts, sequential hypothesis testing can detect the
senders as benign or malicious. If these probabilities are unknown, the false positive
and false negative rates could be much larger than the desired values. In this thesis,
we compare several techniques based on sequential hypothesis testing and realize
these techniques inadequate for a real network. Therefore, we propose a simple
adaptive algorithm which provides accurate estimation of these probabilities.
Simulation results show that the proposed adaptive estimation algorithm provides a

great improvement for sequential hypothesis testing.
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Chapter 1 Introduction

Chapter 1

Introduction

As the computer and network technologies advance rapidly, more and more
services and applications are provided on,the Internet. Today, many people can’t
live without computers and networks. = Thereforé. the topic of network security

becomes more and more important.

As time goes by, modern computer. worms- and viruses can spread at a speed
much faster than human intervention. A computer worm automatically spreads
from computer to computer by exploiting a software vulnerability that allows an
arbitrary program to be executed without proper authorization. In recent years,
people discovered many kinds of worms, such as the Code Red [11], Nimda [12],
and Slammer [6], which infected thousands upon thousands of computers on the
Internet in a short period of time and caused great damage to our society. It’s
important to prevent the majority of vulnerable systems from being detected and
minimize the damage caused by computer worms. Fast and accurate detection of

worms when they are spreading is, therefore, helpful to solve the problems.

Current technologies for computer worm detection can be classified into three
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categories — protocol analysis, pattern matching, and behavior anomaly. First,
protocol analysis is used to inspect if there are misused protocol fields in the header
of a packet. The header of a packet sent by a malicious host is usually spoofed or
altered. The malicious hosts can be detected according to the misuse of fields.
Then, pattern matching is used to look for specific patterns in the payload of a
packet or across packets. The signatures of worms, e.g. specific unique patterns or
strings of malicious codes, can be extracted and then utilized for worm detection.
Although pattern matching is accurate, it is limited to detect worms with identified
signatures.  If the signatures of new worms are not created promptly, the majority

of vulnerable systems could be infected.

Finally, behavior anomaly can be used to detect and prevent port/address scans
because an infected host is likely to behave differently from a normal host. For
example, an infected host could try to infect other vulnerable host on the Internet
with port or address scanning. Therefore, we can detect the infected host with the
observation that it has high new connection attempt rate or high failure rate of new
connection attempts. Because the technique based on behavior anomaly can detect

worms without signatures, it is useful to deal with new computer worms.

Seeing that most of current intrusion detection systems (IDS) based on the
technique of pattern matching can’t detect new and unknown malicious attacks or
scans, network behavior anomaly detection (NBAD) is receiving more and more
attention. Recently, more and more IDS adopted the mechanism based on behavior
anomaly detection. For example, the Network Security Monitor (NSM) [13] and
Snort [14] are designed according to simple observation of high scanning rate by an

infected host.
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In the paper [1], a technique of sequential hypothesis testing for scan detection
is proposed, and the algorithm is called Threshold Random Walk. The technique is
based on the observation that success rate of a connection attempt sent by a
malicious host is much lower than the success rate of a connection attempt sent by a
benign host. A random walk of each host is moving upward if a connection
attempt is a failure, or moving downward if a connection attempt is a success. A
host is detected as malicious if the position of its random walk is greater than the
upper threshold or as benign if it is smaller than the lower threshold. A simplified
sequential hypothesis testing [3] is suitable for both software and hardware
implementations. It modified the step sizes of moving upward and downward to be
identical. The reverse sequential hypothesis testing [2] can detect malicious host
slightly faster than the original algerithm. The three algorithms will be review in

Chapter 3.

The sequential hypothesis testing assumes that the success rates of connection
attempts sent by benign and malicious hosts are known. They are used to compute
the step sizes of moving upward and downward. But in fact, the success rates of
connection attempts could be unknown. Therefore, we develop the sequential
hypothesis testing with an adaptive procedure which can estimate the success rates
of connection attempts based on their outcomes. It can provide estimates close to

real values and reduce both the false positive and negative rates

The rest of this thesis is organized as follows. In Chapter 2, we introduce
some background about scanning worms, scan detection and suppression, and the
definition of false positives and false negatives. In Chapter 3, we review the

sequential hypothesis testing, the simplified sequential hypothesis testing, and



Chapter 1 Introduction

reverse sequential hypothesis testing. In Chapter 4, we present our proposed
adaptive algorithm for estimation of success rate of connection attempts.
Simulation results are provided in Chapter 5. Finally, we draw conclusion in

Chapter 6.
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Chapter 2

Background

2.1  Scanning Worms

A computer worm is a form-of malware that spreads from host to host without
human intervention. A scanning ‘worm locates vulnerable hosts by generating a list
of addresses to probe and then contact them.= Figure 2.1 illustrates that worms can
self-propagate among the hosts exploiting: security or policy flaws in widely-used
services [10]. An infected host initiates scans and infects the other benign hosts.
Subsequently, the benign hosts become infected ones and then join the army of

scanning. Finally all the hosts on the Internet will be infected.

This addresses list may be generated sequentially or pseudo-randomly. Local
addresses are often preferentially selected because the communication between
neighboring hosts will likely encounter fewer defenses [5]. Scans may take the form
of TCP connection requests (SYN packets) or UDP packets. In the case of the
connectionless UDP protocol, it is possible for the scanning packet to also contain the

body of the worm, such as the Slammer worms [6].
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#1Pv4 space

Figure 2.1 Spreading and propagation of scanning worms

Scanning worms probe attempts to determine if a service is operating at a target
IP address and then discover new yvictims. - They have two basic scanning types —
horizontal scans, which look for-an identical service on a large number of hosts, and

vertical scans, which examine an individual host to discover all running services.

There are many kinds of techniques to 'generate a list of addresses for scanning
worms, such as linear scanning of an IP address space (Blaster), fully random (Code
Red), a bias toward local address (Code Red Il and Nimda), or even more enhanced
techniques (Permutation Scanning). While more and more scanning worms change
their style of scanning to avoid being detected, all of they still have two common
properties as follows. Most of the scanning attempts may result in failure, and the
infected hosts will send many connection attempts [4]. As long as we look for a class

of behavior rather than specific worm signatures, most new worms will be detected.

In the next chapter, we will introduce three kinds of existing on-line algorithms
to detect the presence of scanning worms by observing network traffic. These

algorithms based on the sequential hypothesis testing (SHT) can differentiate between

6
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infected hosts and normal hosts according to the success rate of connection attempts.

2.2 Scan Detection and Suppression

Human reaction time is inadequate for detecting and responding to fast scanning
worms, such as Slammer, which can infect the majority of vulnerable hosts on the
entire IP address space in a few minutes [6, 7]. Thus, today’s worm detection
techniques focus on automated response to worms, such as quarantining infected
machines, automatic generation and installation of patches, and reducing the rate at

which worms can send connection attempts [8].

But, an automated response will be of little use-if it fails to be triggered quickly
after a host is infected. Infected thosts-with high network bandwidth can send
thousands of connection attempts'per.second, each of which has the potential to
spread the infection. On the other hand, an automated response that triggers too
easily will erroneously identify normal hosts as infected. It will interfere with the

normal activity of these hosts and cause significant damage.

Many scan detection mechanisms rely on the observation that only a small part
of addresses are likely to respond to a connection attempt at any given port. If a
connection attempt is sent to an inactive host, it will also be failed. When a
connection attempt does reach an active host, it would be rejected possibly because
not all hosts will be running the targeted services. Thus, the infected hosts are likely
to have a low rate of successful connection attempts, whereas benign hosts, which

only send connection attempts when there is reason to believe that addresses will
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respond, will have a higher success rate. So, we can make good use of the properties

described above to detect scanning worms with malicious connection attempts.

Worm containment is designed to stop the spread of worms in a local area
network or an enterprise by detecting infected machines and preventing them from
contacting other systems. Current approaches to containment are base on detecting
the scanning activity, and the key component for today’s containment techniques is
scan suppression which responds to detected infected hosts by blocking future

scanning attempts. [4]

The goal of scan suppression is to prevent scanning attempts coming from
“outside” inbound to the “inside”. Here, “inside” means the internal network of an
enterprise or a laboratory, to be protected from. the “outside” larger networks.
Therefore, any scanning worms will be quickly detected and stopped because all of
the malicious traffic will be seen-by the detector. . “Fhe illustration is shown as Figure

2.2.

Outside
%

4;

Inside

Outside  gean detectors

Figure 2.2 Preventing “inside” from “outside”



Chapter 2 Background

2.3  False Alarm

When the scan detection mechanisms determine a host is malicious or benign, it
is possible to make error decisions, such as regarding as malicious when the host is
benign or regarding as benign when it is infected actually. Both of them are called
false alarm. We hope that the scan detection mechanism would distinguish between
malicious and benign hosts as precisely as possible, and the probability of false alarm
is as less as possible. So, we can use false alarm rate to judge whether an algorithm

is suitable for scan detection.

2.3.1 False Positive & False Negative

The false alarm can be dividedinto-two.conditions which are false positive and
false negative [9]. The former is the error.of rejecting something that should have
been accepted, such as finding an innocent host guilty. The latter is the error of
accepting something that should have been rejected, such as finding a guilty host

innocent. Table 2.1 and 2.2 will illustrate these conditions as follows.

Actual Condition

Present Absent
. Condition Present + Positive Result Condition Absent + Positive Result
Positive .. .
= True Positive = False Positive
Test
Result . . . .
. Condition Present + Negative Result | Condition Absent + Negative Result
Negative

= False Negative = True Negative

Table 2.1  Definition of false positive and false negative
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Actual Condition
Scanner Benign

Actual Scanner + Result Scanner Actual Benign + Result Scanner

Scanner . .

= Detection = False Positive
Test
Result Beni Actual Scanner + Result Benign Actual Benign + Result Benign
enign .
= False Negative = Normal

Table 2.2 Example of false positive and false negative

2.3.2  Probabilities

The false positive rate is the proportion of negative instance that were
erroneously reported as being positive. The false negative rate is the proportion of
positive instance that were erroneously reported.as being negative. So we can define
them as follows.

number‘of false positives
number of negative instances

false positive rate =

number of false negatives
number of positive instances

false negative rate =

For scan detection, we can also define four outcomes as follow.

number of scanner but actually benign

false positive rate = : Per

number of total benign
. number of benign but actually scanner

false negative rate = g y =P,

number of total scanner
number of benign an tuall nign
normal rate= umber of benign and ac uzfl y benig =Py =1-P»
number of total benign
. number of scanner and actually scanner
detection rate = y =P, =1-P,

number of total scanner

10
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Chapter 3
Related Works

3.1  First-Contact Connection Requests

In the previous chapter, we can know: that one of the main characteristics of
infected hosts is that they are more likely 1o choose hosts that do not exist or do not
have the requested service activated-than-benign hosts. This is because they lack

precise knowledge of which hosts and portsare currently active.

Using this observation, there are several kinds of on-line algorithms to detect
malicious attacks or connection attempts. The goal of these approaches is to reduce
the number of observed connection attempts to flag malicious hosts, while bounding

the probabilities of false positive and false negative.

An event is generated and monitored when a remote source r makes a
first-contact connection (FCC) request to a local destination I. An FCC request is a
connection request which is addressed to a host the sender has not previous
communicated. These events are monitored because malicious scans are mostly

composed of first-contact connection requests.

11
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Only the TCP connections are considered and thus a TCP SYN packet indicates a
connection request. The outcome of an FCC request is classified as either a
“success” or a “failure”. It is a success if the host | replies a SYN-ACK packet or a
failure if host | replies a RST packet or does not reply at all. If the request sent by r

is a UDP packet, any UDP packet from I received before the timeout will be a success.

For a given remote (outside) host r, let X. be a random variable that represents

the outcome of the FCC request from r to the i" distinct local (inside) host I;, where

_ |0 ifthe FCC request is a success
|1 ifthe FCC request is a failure

Figure 3.1 illustrates X, X,, ---, X, from r to I, L, - I.
outside host r
inside hosts /
dst i, /1§
dSI:JEZ /—'—/
dlst 11, /ﬂ:‘.ﬁ
dst ], 4-—’//--—/
dst i1, “’/
timeatit
sre i, A, =0
~r)
sre il \%‘i T
e
=il
X,=ilvw
e
A J v

Figure 3.1 X, the outcomes of FCC requests from r to [;

12
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The outcomes X,, X,, ..., are observed so that host r can be determined to be
either malicious or benign. Undoubtedly, we would like to make this detection as
quickly and correctly as possible. The method of sequential hypothesis testing (SHT)
developed by Wald [1] is suitable for scanning worm detection. In the following

sections, several techniques based on SHT will be introduced.

3.2  Sequential Hypothesis Testing

3.2.1 Model

In the paper [2], the technique of sequential hypothesis testing is developed.

The algorithm is called Threshold Random Walk (TRW). There are two hypotheses:

H, and H,, where H, is the null hypothesis that the remote host r is benign and H,

Is the hypothesis that r is malicious.

To simplify the analysis, it is assume that, conditioning on hypothesis H;, the

random variables X, |H;, X,|H are independent and identically distributed

jroter

(i.i.d) with probability mass function

P[X,=0[H,]=6, P[X, =1|H,]=1-6,
P[X,=0|H,]=6, P[X, =1|H,]=1-6,

For some 6, and 6, which satisfy 6, >6,. It is because a FCC attempts is more

likely to be a success from a benign host than a malicious host.

13
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Given the two hypothesis, there are four possible decisions as follows. The
decision is called a detection when the algorithm selects H, when H, is in fact true.
On the other hand, it is called a false negative if the algorithm chooses H, .
Likewise, when H, is in fact true, selecting H, constitutes a false positive and

selecting H, when H, is called a normal. These four possible outcomes are

represented as:

Detection : P[choose H, | H, is true] = P,;
False Negative:  P[choose H, | H, is true] = P, =
False Positive:  P[choose H, | H, is true] = P,
Normal : P[choose H, | H, is true] =P, =

The desired performance of the TRW algorithm can be specified with the
detection probability P, and the false "positive probability P, . Let «

represents the upper bound of false positive probability and g denote the lower

bound of detection probability. In other word, we-desire
Pr<a and Py, 2
where typical values might be « =0.01 and £#=0.99.

As the outcome of X, is observed, we calculate the likelihood ratio:

P[Xn | Hl] R P[Xi | Hl]

A(X) p[xnmo]‘gp[xilHll

where X, =(X,, X,, ..., X,) isthe vector of outcomes observed so far.

14
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Note that A(X,) can be updated incrementally. Let ¢(X,) represent the

likelihood ratio of the i"™ observation. It holds that

#(X;)

PIX,|H,] [=2>1 ifX, =1 (failure)
P[XI | Ho] -

#<1 if X, =0 (success)

The flow diagram is shown in Figure 3.2. The updated likelihood ratio A(Xn)
is compared to an upper threshold 7, and a lower threshold 7,. If A(X,)>n,,
then the hypothesis H, is accepted,:lf 1A(X,)<7,, then the hypothesis H, is

accepted. More observations are needed-if-\ 75 < A (X, ) <7,.

Event X,
A

Update
X, =(Xp Xp, o X

n

) and A(X,)

n

Output
H, (malicious)

Output
H, (benign)

( More observations are needed )

Figure 3.2 Flow diagram of sequential hypothesis testing

15
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Figure 3.3 represents a log scale graph of A(X,) when each observation X;

is added to the sequence. Each success (0) observation decreases A(Xn ) moving it
closer to the benign conclusion threshold 7,. Each failure (1) observation increases

A(X, ), moving it closer to the infection conclusion threshold 7,.

Figure 3.3 Alogscale graphof “A(X,) for SHT

3.2.2  Upper and Lower Thresholds

To develop the algorithm described in the previous section, the thresholds

n, and n, can be bounded by simple expressions of P, and P,; [1].

Consider a sample path of observations X,, X,, ..., X,. The upper threshold

n, s hit on the observation X, and hypothesis H, is selected. Thus,

P[ Xy, Xy s X, | Hy ]
P[ Xy, Xy s X,, | Ho ]

A(X,)

IDT
PF 1

P

The first probability (H, is selected when H, is true) is the detection probability

16
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Py, and the second (H, is selected when H; is true) is the false positive

probability P, .

Similarly, if the lower threshold 7, is hit and hypothesis H, is selected, then

CP[X, X o
(%)= P[X,, X

1 29 wee

Therefore, the upper and lower bounds can be bounded in terms of P., and P; .

m Sﬁ and 7, > 1= Por
PFP 1- PFP

In real implementation, one can use.the-approximations P., =« , P,; =4 and set

-3
nlzﬁ PPrr= - =
Q v 4

3.2.3 Log of Likelihood Ratio

Moreover, one can use the log-likelihood ratio to simplify computation. It can

be formulated as follows.

n

Y, E'n[MJ=In(¢(xi)):{|In(l_el)_'”(l“9°)f F>0 ifX;=1

P[X; | H,] n(6,)-In(6,)=S<0 if X; =0

S sln(A(Xn)):Zn:Yi:Sn_1+Yn, S, =0
i=1

The log-likelihood ratio S, is also compared to an upper threshold In(7,) and a

17
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lower threshold In(7,). If S,>In(n,), then the hypothesis H, is accepted. If

S, <In(7,), then the hypothesis H, is accepted. More observations are needed if

In(7,)<S, <In(,).

3.2.4  Number of Observations to Select Hypothesis

In this section, the average number of FCC attempts sent by a remote host to
detect it as benign or malicious is calculated. The smaller the number N of

observations, the faster a remote host will be identified.

For the analysis of N, theslog of likelihood ratio should be used. Because S,
is the summation of N random variables Y. where N is also a random variable,

the expected value of S, equals‘to the product of expected values of Y, and N .

Sy =Y, +Y,+-+Y, = E[S,]=E[Y,]E[N]

Therefore, we can derive expressions for the expected values of S, and Y,
conditioning on hypotheses H, and H,. The conditional expected value of N is

the ratio of the conditional expected values of S, and ;.

For Y,
|n(;;gz) with prob. 1- 6,
Yo = In(4)  with prob. 6, E[Y,1Hy]= (16 )In(5=) + 6in(5)
o1y, | (k) with prob.1- ARSI
I H = In(%) with prob. 6,
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For S,

S |H, = In(7,) with prob. «
N0 In(n,) with prob. 1-« E[Sy |Ho]=aln(n,)+(1-a)In(n,)

S |H - In(7,) with prob. 2 - E[Sy | H.]=BIn(m,)+(1-8)In(m,)
v = In(1,) with prob. 1- 3

So, the conditional expected values of N: E[N]=E[S,]/E[Y,

]: aln(n1)+(l a)In(n,)
)In()+ ()
ﬂln(m) (1-8)In(m,)

)In(5)+6in(2)

E[N|H,

E[N|H]

It represents that the expected values.of "N varies with the parameters o, S, 6,,
and 6,. With a=0.01, =0.99, 6,=0.8 and ¢ =0.2, the expected values of

N conditioning on hypotheses: H, and.H; are both-5.41.

3.3  Simplified Sequential Hypothesis Testing

The huge complexity of monitoring FCC attempts of all remote hosts makes the
TRW algorithm infeasible. In the paper [4], a simplified version of sequential
hypothesis testing sets both the step sizes of moving upward and downward to one for
the detection algorithm, and uses one bit to indicate whether or not host r has sent any
connection to host | and another bit for the opposite direction. Each connection is
recorded and indexed by hash the local IP address, remote IP address, and local port
number for TCP protocol. A hash function is adopted to index the connections and

reduce the space requirement.
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3.3.1 Modifications from SHT

Using sequential hypothesis testing, each remote host has a likelihood value that
a series of FCC requests from the given host reflect benign or malicious, based on
how far the random walk deviates above or below the origin. The likelihood values
of remote hosts are updated continuously when a FCC request is determined as a
success or a failure. A successful connection request drives a random walk

downward, whereas a failed connection request drives it upward.

The step sizes of moving upward and downward are both simplified to one.
The likelihood value of each remote host is renamed as count representing the score
of danger. If a successful FCC.request is received, the score is added by 1.

Oppositely, it is subtracted by 1:if a failure.is-received.

3.3.2 Hardware Implementation

To implement TRW, we must track the establishment of FCC requests. It only
considers the success or failure of connection attempts to new addresses. This
approach inevitably requires a very large amount of state to keep track of which pairs
of addresses have already tried to connect. When designing hardware, we often must
store information in a fixed volume of memory. Since the information we would like
to store may exceed this volume, one approach is to use approximate caches for which

collisions will cause imperfections.
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The scan detection and suppression algorithm approximates TRW in the
following ways. The connections and addresses must be recorded using approximate
caches. Figure 3.4 and 3.5 gives the overall data structures of the hardware

implementation.

In Figure 3.4, connections are tracked using a fixed-sized table indexing by
hashing the “inside” IP address, the “outside” IP address, and the inside port number
for TCP. Each record consists of a 6-bit age counter and 1-bit field for each direction
(connections from inside to outside and from outside to inside), recording whether a
connection has been established in that direction.

Packet:
lProto | Src].PlDestIPlSrcPoﬂ IDestPon |Pa}-‘load

Extract from Packet:
InsideIP. OutsidelP, InsidePort

Connection Cache Lookup (Direct Mapped):
H(InsideIP, OutsidelP, (proto = TCP) ? InsidePort : 0)

- Established | Established | Age
InToOut OutToln
Ibit Ibit 6bits

Figure 3.4 Connection cache

In Figure 3.5, external (outside) addresses are also tracked by an associative
approximate cache. To find an entry, the external IP addresses are encrypted by a
32-bit block cipher. The resulting 32-bit number will be separated into an index and
atag. The index is used to find the line of entries. The “count” tracks the score of

danger (add 1 when the connection is a failure and subtract 1 when it is successful).
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Address Cache Lookup:
E(OutsidelP) -=> I.ntllexffilg

N

Cache Line:
|Tag1 | Countl |Tag2 | Count2 | |4

16b 16b

Figure 3.5 Address cache

3.3.3 Algorithm

Whenever the device receives a packetyit looks up the corresponding connection
in the connection table and thé corresponding exterfial address in the address table.

In Figure 3.6, the status of these two tables and- the direction of the connection

determine the action to take.

Condition:

SreIP = InsidelP

I(!EstablishedInToOut)
if{EstablishedOutToln)
# Was previously
# recorded as a miss
# but 1s now a hit
Count <- Count - 2
EstablishedInToOut <= True
Age=-0

Forward packet

Condition:

Condition:
SrelP = OutsidelP & SrelP = OutsideIP &
Count < Threshhold Count == Threshhold

If{'EstablishedOutToln)
if{ EstablishedInToOut)
# Record as a hit
Count <- Count - 1
EstablishedOutToln <- True
else tfthygiene drop)
Drop packet
else
# A possible miss
Count <- Count + 1
EstablishedOutToln <- True

# Address is being blocked
if{EstablishedInToOut)
if(1sSYN | 1sUDP)
# No matter what, drop
Drop packet
else (! EstablishedOutToln ){
# Record as a hit
Count <= Count - 1
EstablishedOutToln <- True
# Internally requested or old
# connection, so allow

if{ !DroppedPacket) Age <0
Age <0 Forward packet
Forward packet clse
Drop packet

Figure 3.6  Algorithm for the simplified SHT

22




Chapter 3 Related Works

At first, consider the middle column of Figure 3.6. For a connection from a
non-blocked outside IP address (count < threshold), reduce “age” to 0 and forward
the packet if a corresponding connection has already been established in the packet’s
direction. Otherwise, if the packet from the outside has been seen from the inside,
forward the packet and decrement the address’s count by 1, as the outside address
with a successful connection is credited. Otherwise, forward the packet but
increment the address’s count by 1, as the address has one more outstanding, so-far

unacknowledged connection request.

Likewise, for packets from inside addresses (the left column in Figure 3.6), if
there is a connection establishment from the other direction, the count is reduced by 2
for compensation.  This is because,that the‘connection has been regarded as a failure

previously and the count is added by/1.

Finally, consider the right-columnin-Figure 3.6. If count >threshold, the
device blocks it. When receiving subsequent packet from that address, the action
depends on the packet’s type and whether it matches an existing and successfully
established connection. If the packet does not match an existing connection, we drop
it. If it does, then we will still drop it if it’s a UDP packet or a TCP initial SYN.

Otherwise, we allow it through.

3.4 Reverse Sequential Hypothesis Testing

In the SHT, a host would no longer be observed when it was determined to be

benign. In contrast, a scheme that concerned with detecting infection events is
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proposed in the paper [3]. It is possible that a remote host is infected when its

likelihood ratio is close to but larger than 7,, as shown in Figure 3.7. In this case, it
takes more observations for the SHT algorithm to declare it to be malicious than

doing so for a host which is infected when its likelihood ratio is equal to 1.

infection

0

s e .

‘i’i— 2 ‘i’x’—l ‘1’1' ‘T.L’H 1 ‘1—i+ 2 ‘i’i +3 ‘T.L’x'+4 ‘1’i+ 5 ‘;Y ‘1’i+7

i+

Figure 3.7 Alog scale graph tracing the value of A(X,) for SHT

3.41 Model

The solution to this problem is to.run a new sequential hypothesis testing and
evaluate the likelihood ratio in réverse chronological order when each connection is
observed, as illustrated in Figure 3.8. To detect a host infected before Y; but after

Y. ,, the reverse sequential hypothesis testing (RSHT) computes the likelihood ratio

for the reversed vector of outcomes X =(X,, .., X;) observed so far. Because

n?
the most recent observations are process first, the RSHT will terminate before

reaching the observations that were collected before infection.

mfection
01

‘11'—2‘11'—1‘11' ‘1 1'+1‘T£1'+2JL ‘1 :'+4Jl i+5

i+3

Figure 3.8 Alog scale graph tracing the value of K(Xn) for RSHT
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A naive implementation of repeated reverse sequential hypothesis testing

requires storing an arbitrarily large sequence of FCC observation. In fact, there

n

exists an iterative function with state variable K(X ) to optimize the computation.

It can be calculate in sequence when events are observed and maintain the

likelihood ratio larger than one. Because K(Xn) is updated in sequence, the

observations can be discarded immediately after they are used to update K(Xn ) :

3.4.2  Proof of Optimized Algorithm

The RSHT has the property: that the likelihood value K(Xn) of optimized

computation exceed 7, if and only if the RSHT starting backward from observation

n concludes that the host was infected.

AX)zn e A(X,, Xy o Xp)2m, me[L,n] -

We first prove the following lemma starting if the RSHT reports an infection, the

optimized algorithm will also report an infection.
Lemma 1:

For n,>1and for mutually independent random variables X,
vme[l, n]: A(X, Xop o X ) 2m = A(X,)2n,
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Proof:

We begin by replacing the A term with its equivalent expression in terms of ¢.
771 S‘/\(Xn’ Xn—l’ T Xm):H¢(X|)

We can place a lower bound on the value of K(Xn) by exploiting the fact that, in

any iteration, A can not return a value less than 1.

We must also prove that the ‘eptimized-algorithm will only report an infection
when the RSHT would also report an infection in reverse sequence. Recall that the

RSHT will only report an infection if A exceeds 7, before falling below 7,.

Lemma 2:
For thresholds 7, <1<, and for mutually independent random variables X,
if A(X,)>n, for somei=n, but A(X;)<n, forallie[1,n-1], thenthere

(a) existsme[1,n], suchthat A(X,, X, =+, X)) =m,
(b) existsnok in [m,n], suchthat A(X,, X, ., -, X, )<,

Proof (a):
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Find the largest m, such that A(X,,)@(X,.,)<1.

It follows that A(X,,,)=1 andthus A(X,)=A(Xu1)d(X,)=08(X,,).

Because we chose m such that A (X, )#(X;,)=1 forallj>m, then

AX)=TTe(X) = AXq Xy - %)
Thus, A(X,)27m = A(X,, Xog = X )27

Proof (b):

To prove that there exists no k in [m, n]such that A(X,, X, ., ---, X, ) <7,, suppose
that such a k exists. It follows that [ JJ&(X, )<, <1.

i=k
Recall that we chose m to ensure that zzp=< H¢( Xi)-

i=m

Separate the right hand side as follows:

n=[T800) TToX)=[To(X) <A (X, )

This contradicts the assumption that A(X;) <, forallie[1,n-1].

So there exists no k. =

3.4.3 Log of Likelihood Ratio

Similarly, the log of the likelihood ratio for RSHT can also be used to simplify
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computation. The iterative function is equivalent to:

max(0, Sna+F)=Spai+F ifX, =1

S, = In(A(Xn)) = max(O, Sna+Y, )=

max(O, §H+S) if X, =0
B [In(1-6)-In(1-6,)=F >0 ifX, =1
Y“:'n(¢(x”))_{m(el)—m(eo)zs<o if X, =0

To update the log of the likelihood ratio S. for each observation, addition and

subtraction operations are adequate.
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Chapter 4

Adaptive Sequential Hypothesis Testing

As mentioned in Chapter 3, the TRW algorithm assumes that ¢, and 6, are

known, which may not be true in a real network. According to the numerical results
to be presented in Chapter 5, the false positive.and.false negative probabilities of the

TRW algorithm could be much:larger than-the desired values if the adopted 6, and
6, are different from their truevalues: .Fo overcome this problem, we propose in

this chapter the adaptive algorithms to estimate the values of 6, and 6, based on

observations of the outcomes of FCC attempts.

4.1 Schemel

Our proposed adaptive sequential hypothesis testing provides estimates of 6,
and ¢, adaptively based on observations of the outcomes of FCC attempts. The

fixed values of g, and ¢, in the TRW algorithm are replaced with the variable

estimates of éo and él adaptively.
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When a benign host r is detected, the value of éo is updated using p,, which

is the success rate of FCC attempts sent by the detected benign host r. Let
N,=S,+F and p,=S;/F,where S, and F, represent, respectively, the numbers

of successful and failed FCC attempts sent by r, when it is detected as benign.

Likewise, when a malicious host r; is detected, the estimate él is updated by p;,
which is the success rate of FCC attempts sent by the detected malicious host ;.

The formulas can be shown as follows.

~ m - 1
g - 0 .
° m+1? m+1p'
~ n -» 1
6 = 6, +——p.
Yonadd n+1pJ

where m and n represent the numbers of benign ‘and malicious hosts detected and

adapted up to now, respectively. .. The nextestimate é(; is calculated according to

~

the current estimates ¢, and the success rate p, of FCC attempts when a remote

host r, is newly determined as benign, and then the value of m is increased by 1.

Likewise, the next estimate él' can be calculated according to él and p; once a

new malicious host r; is detected, and then n value is increased by 1.

In the beginning, let m=1 and n=1. If m=0, the next estimate é(; will
equal to p, when the first benign host is discovered. If n=0, the estimate HAl'

will also become p; when the first malicious host is discovered. Moreover, when

the first few benign hosts are found, almost of FCC attempts sent by them are
successful, i.e. the success rates p, are nearly equal to 1. As long as the success
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rate from the first benign host equals to 1, it will make é(; =1. Similarly, the first
few detected malicious hosts have almost zero successful FCC attempts, such that the

success rates p; are nearly equal to 0. The estimate él’ =0 will happen once the

success rates from the first malicious host equals to 0. The situations will cause that

the step sizes of moving upward and downward become infinite.

As long as the success rate equals to 1 or it equals to 0, it may let é(; =1 or

él’ =0. The situation will cause that the step sizes of moving upward and download

become infinite.

9 :Lé +L1=1 F =In1_€1, =oo (upward)
°0+17° 0+1 = | 16,

- 0 - 1 i
91:_0+161+_O+10:0 S=|nilrz—oo (downward )

0

Therefore, the adaptive formulas described above can be used to dynamically
adjust the estimates of success rates conditioning on the benign and malicious

hypotheses.

Because the earlier detected benign hosts will almost send successful FCC
attempts, and the FCC attempts from the earlier detected malicious hosts will almost
fail, the adaptive estimates may not be close to the real values if the adaptive
procedure is performed in the beginning. So, we choose the duration in which the
adaptive procedure is started. Let’s define two parameters T, and T,, which
denote the thresholds of benign (good) and malicious (bad) hosts. They are used to

start the adaptive procedure when the number of the detected benign or malicious host
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is more than T, or T, respectively. At first, only the original TRW algorithm is

implemented to examine FCC attempts sent by the remote hosts. As time goes by, it

will detect N, benign and N, malicious hosts. When N >T,, the adaptive

procedure will be operated to update the new values of éo' and m. Likewise, it will
be operated to update the values of él' and nwhen N, >T,. The procedure will be

stop if ‘é(; —670‘ <g or ‘él'—él‘ <¢&. Figure 4.1 shows the adaptive procedure.

if abenign host r; is detected if a malicious host r; is detected
Ng ++ Ng ++
if Ng =T, if Ng>T,
6, = U 0, + L P, M++ é{ziéﬁip., n++
m+1° m+1 n+l ~ n+1"’
if |6/ -6, <& if |0/—6|<e
stop the procedure stop the procedure

Figure 4.1 "~ Adaptive procedure |

Suppose we can know the number of remote hosts that send connection attempts
to local hosts and the ratio of benign to malicious hosts in advance. Therefore we
can properly set the thresholds of T, and T, to start the adaptive procedure. For
example, if there are 1000 remote hosts and the good-to-bad ratio is about 4:1, we can
guess that there are approximately 800 benign hosts and 200 malicious hosts. The
adaptive procedure will be started after a percentage of benign or malicious hosts are

detected.

If T,=0 and T, =0, éo’ and él' will be update adaptively since the first

benign host or malicious one is detected. If T, =200 and T, =50, it presents that
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the procedure adjusts the two estimates after 25% of benign and malicious hosts are
detected, respectively. We can also set the parameters to start the adaptive procedure
only from 40% to 60% of hosts which is detected as benign or malicious. It just
needs to set that the procedure will be activated when 320<N; <480 and

80 <N, <120. We will show these simulation results in Chapter 5.

4.2 Scheme 2

If we only know how many hosts will send connection attempts rather than the
good-to-bad ratio, we can calculate the ratio according to the number of hosts detected

up to now. Suppose that thereare totallyN. distinct remote hosts, and the TRW

algorithm totally discovers N, benign hosts'and N, malicious hosts so far. We

can know that the good-to-bad ratio is AE AR

: , and then we can
Ng+Ng; Ng+Ng

. ! . N
approximate the expected values of benign and malicious hosts are ﬁx N
G+ B

and $x N , respectively.
Ng + Ng
Therefore, we can start the adaptive procedure from 40% to 60% of the expected

numbers being detected. That is, the procedure will work when

LxNxOAS Ne ngNxo.G

Ng + Ng Ng + Ng

$xN x0.4< N, ngNxO.G

Ng +Ng Ng + Ng

Figure 4.2 shows the adaptive procedure. The simulate result will also be
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presented in Chapter 5.

if abenign host r; is detected
Ng ++
: Ng
If ———xNx04<N; <
N +Ng
T4, +

9 =
® m+1?

m+1
if |0, -6,

stop the procedure

<&

G

N

— 6  xNx0.6
N

B

p;, Mm++

if a malicious host I, is detected

stop the: procedure

N; ++
if LXNXOAS NBS¢XNXO.6
NG+NB NG B
- D™ 1
O = == 0, HE==p,, W4+
L e Tl
if |0/ —6,|< ¢

Figure 4.2

4.3  Implementation

Based on the hardware implementation introduced in Section 3.3.2, we propose a

modified version of implementation.

FCC requests must be tracked. Generally speaking, if a remote host r sends a
connection request to a local host I, and then the host | replies an acknowledgement to
the host r, the connection request is regarded as a success.

For example, in Figure 4.3, the 1% and 4™ connection requests are successful, but the
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3" 6™ and 7™ connection requests may be failed.

source IP destination IP
No=1 138.230.222.48 140.113.173.14 < success
No=2 140.113.173.14 138.230.222.48
No=3 146.80.28.246 140.113.135.13 < failure
No=4 123.26.187.115 140.113.134.229 < success
No=5 140.113.134.229 123.26.187.115
No=6 128.16.190.43 140.113.159.237 < failure
No=7 162.241.77.123 140.113.96.240 < failure

Figure 4.3 List of connection

Each connection and the likelihood ratio of each remote host must be recorded.
The IP addresses which send or receive connections can be classified as a remote IP of
a local IP. A connection is tracked in a'connection table indexing by hashing the
remote IP address and the local IP:address..Each record consists of a 1-bit field
marking the connection from local to-remote and the other 1-bit field marking the
connection from remote to local. The former field set to 1 represents that the local
host | has contacted with the remote host r, and the latter field set to 1 represents that
the remote host r has contacted with the local host I.  The 64-bit IP address is hashed
to a 16-bit index, and the memory size of the connection cache is 128K bits. It is

shown in Figure 4.4.

Connection Cache Lookup:

Established Established
H (Local IP, Remote IP) — Index > [ > | Local — Remote | Local < Remote

32 bits 32 bits 16 bits 016 1 bit 1 bit

. Connection Cache: 128K bits
2 bits

Figure 4.4 Connection Table
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In Figure 4.5, the likelihood ratio of a remote IP address is also recorded in an
address table indexing by hashing the remote IP address. Each entry records 16-bit
likelihood ratio of the remote IP address. The 32-bit address is also hashed to a

16-bits index, and the memory usage of the address cache is 2M bits.

Address Cache Lookup:
H (Remote IP)— Index ~— [BEI| —* | Likelihood ratio A

32 bits 16 bits 21 16 bits

Address Cache: 2M bits
16 bits

Figure 4.5 Address. Table

When a connection is monitored-by the-scan detection machines, the detection
mechanism looks up the connection in the connection table and the corresponding
address of remote host in the address table. Then the modified algorithm based on
SHT is performed to detect the remote host is benign or malicious. The algorithm is

shown in Figure 4.6.

If a remote address r whose likelihood ratio is lower than the upper thresholds
and higher than the lower bound sends a FCC request to a local address I, the
connection request will be considered as a failure temporarily and the likelihood ratio
of remote host r is updated as A+ F . When a connection is sent by a local host | to
a remote host r, if the host r has communicated with the host I, the connection request

sent by host r previously must be a success. Therefore, the likelihood ratio of the
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remote host r will be compensated such that it is updatedas A—F +S.

| Connection (local < remote)|

ﬁ1;ﬁ<A<£
l-a o
if 5=0& «=0
A=A+F

«settol

Connection (local » remote)|
if >=0& «=1

A=A-F+S
—settol

if Azﬁ

(04
malicious conclusion

(adaptive-procedure)

if A<1F
l-«o
benign conclusion

(adaptive procedure)

Figure 4.6 The modified algorithm for SHT
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Chapter 5

Simulation Results

In this chapter, we will first present simulation results for the performances of the
three detection algorithms introduced in.Chapter 3, such as SHT, simplified SHT, and
RSHT. The desired false positive rate iand false negative rate are both assigned to

0.01. As a consequence, we:choose =0.01 and £ =0.99 in all simulations.

Simulations are performed for 800 benign-hosts and 200 malicious hosts.

We will compare the differences between known and unknown of the success

rates ¢, and ¢ of connection attempts sent by benign hosts or malicious hosts. In
a real network, 6, and €, must be unknown but predictable adaptively. Then, we

will also present simulation results for the performance of our proposed adaptive

sequential hypothesis testing and compare with the previous algorithms.

5.1 SHT with known 6, and &,

In this section, we suppose that both the real values of 6, and 6, can be
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known in advance. In each table shown below, we will orderly demonstrate 4 kinds
of data, such as false positive rates (FP), false negative rates (FN), the average
numbers of FCC attempts sent by a benign host before being detected (Ng), and the
average numbers of FCC attempts sent by a malicious host before being detected (Ng).
The horizontal axle represents various values of §,, and the vertical axle represents

various values of 6, .

At first, we show Table 5.1 which represents the step sizes of moving upward
and downward for SHT as the values of &, and 6, are changed. It tells that the
higher success rate of the benign hypothesis 6, leads to the larger step size of

moving upward, and the lower success rate of the malicious hypothesis &, leads to

the larger step size of moving downward.

Table 5.2 shows the results of SHT algerithm for the combinations of 6, and &,,
assuming that they are known in advance:~'As_one can see, the false positive and
false negative probabilities are close ‘to the 'desired values 0.01. The values of Ng

and Ng, average numbers of FCC attempts sent by a benign and malicious host before

detected, are small, especially when 6, is larger and &, is smaller.

Table 5.3 shows the results of the simplified SHT. The step sizes of moving
upward and downward for SHT are changed according the value of &, and &, but the
step sizes for simplified SHT are fixed value. So, we can regard the simplified SHT
as a special case of the original SHT. In the tables, we will find the phenomena that

the false positive rates increase when ¢, is small, and the false negative rates
increase when 6, is large. For the original SHT, the step size of moving upward
must be increasing when 6, is increasing, and the step size of moving downward
must be increasing when ¢, is decreasing. Therefore, when 6, is smaller and 6,
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is larger, the step sizes for the simplified SHT are both larger than those for the
original SHT. It will exceed the thresholds easily and cause more and more false

positives and false negatives.

Because of the step sizes of moving upward and downward, the average numbers
of FCC attempts before detected are also different from those of SHT. When there

are larger ¢, and smaller &, the step sizes of simplified SHT are smaller than those

of SHT, so the value of Ng and Ng are larger. Similarly, the values of observation

are smaller when 6, issmallerand &, is larger.

Table 5.4 is the result of RSHT. Because it only detect the malicious hosts and
monitor the benign hosts continuously until they are infected, we can find that the
false negative rates are quite low, but,it7alse:has much higher false positive rates.
Because of the reverse detection, it can detect malicious hosts slightly faster then the

SHT algorithm.
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Failure ] 0.55 060 0.65 070 0.75 080 0.85 090  0.95

005 | 0.747 0865 0.999 1.153 1.335 1.558 1.846 2251 2944
0.10 | 0.693 0811 0.944 1.099 1.281 1.504 1.792 2.197 2.890
0.15 | 0636 0.754 0.887 1.041 1.224 1.447 1.735 2.140 2.833
020 | 0575 0.693 0.827 0981 1.163 1386 1.674 2.079 2773
025 | 0511 0629 0.762 0916 1.099 1322 1.609 2.015 2.708
0.30 | 0442 0560 0.693 0.847 1.030 1.253 1.540 1.946 2.639
0.35 | 0368 0480 0.619 0.773 0956 1.179 1466 1.872 2.565
040 | 0.288 0405 0.539 0.693 0.875 1.099 1386 1.792 2485
045 1 0201 0318 0452 0.606 0.788 1.012 1.299 1.705 2.398

Success] 055  0.60 065 070 075 0.80 0.85 090 0.95

005 |-2398 -2.485 -2.565 -2.639 -2.708 -2.773 -2.833 -2.890 -2.944
0.10 |-1.705 -1.792 -1.872 -1.946 -2.015 -2.079 -2.140 -2.197 -2.251
0.15 |-1299 -1.386 -1.466 -1.540 -1.609 -1.674 -1.735 -1.792 -1.846
020 |-1.012 -1.099 -1.179 -1.253 -1.322 -1.386 -1.447 -1.504 -1.558
025 |-0.788 -0.875 -0.956 -1.030 -1.099 -1.163 -1.224 -1.281 -1.335
0.30 |-0.606 -0.693 -0.773 -0.847 -0916 -0.981 -1.041 -1.099 -1.153
0.35 |-0452 -0.539 -0.619 -0.693 -0.762 -0.827 -0.887 -0.944 -0.999
040 |-0.318 -0.405 -0.486 -0.560 -0.629 -0.693 -0.754 -0.811 -0.865
045 1-0.201 -0.288 -0.368 -0.442 -0.511 -0.575 -0.636 -0.693 -0.747

Table 5.1 The step.sizes of failure and success for SHT
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FP (%)) 0.55 0.60 0.65 070 0.75 0.80 0.85 0.90 0.95

0.05 0.64 067 072 09 055 095 047 029 046
0.10 | 083 0.89 096 068 068 046 0.67 031 043
0.15 071 086 075 088 0.71 051 070 0.61 0.50
020 | 091 082 087 084 080 062 078 059 052
0.25 0.86 080 081 073 054 070 0.76 0.62 0.55
030 | 076 086 091 073 076 0.67 078 0.64 0.63
0.35 055 074 081 08 08 075 0.73 081 0.68
040 | 023 048 0.75 081 091 082 082 072 0.72
0.45 0.13 019 054 071 0.8 0.80 0.78 0.71 0.75

FN (%)} 0.55 0.60 0.65 0.70 _0.75 0.80 0.85 0.90 0.5

0.05 1.34 143 136 120 129 108 1.16 1.08 0.87
0.10 .14 126 136 129 136 1.10 1.12 0.72 0.70
0.15 138 128 1.15 132 137 1.13 123 098 0.83
0.20 135 138 1.27 1.08 1.10 116 097 083 143
0.25 1.31  1.37 141 124 102 121 1.04 099 0.86
0.30 1.08 122 134 111 114 132 127 1.04 131
0.35 074 107 119 130 107 133 121 136 1.13
0.40 038 072 1.08 .+140°121.33 135 111 1.24 090
0.45 0.00 030 069 107123, 130 121 1.07 0.85

NG 105 060 065 070 075 080 0.85 090 0.95

0.05 551 474 417378 339 2298 271 248 221
0.10 838 721 569 WS24-400, 5412 3770 376 332
0.15 | 11.89 959 8.09. 6.64 5065 495 425 375 348
020 |16.01 13.04 10.59 "*89071 754 6.63 568 500 3.51
025 |21.30 1699 13.59 11.51 9.89 759 643 546 4.69
0.30 |27.03 2219 17.80 14.54 12.01 9.10 7.62 649 490
0.35 | 3351 2798 2290 18.01 14.83 11.28 9.44 7.08 6.15
040 4095 3441 2822 2290 1834 1432 11.24 880 745
045 161.29 41.56 3443 2838 22.80 17.79 14.27 10.89 8.70

NB J055 060 065 070 0.75 0.80 0.85 090 0.95

0.05 874 744 612 492 472 353 349 333 222
0.10 1085 884 7.08 654 546 503 376 377 251
0.15 | 1434 1129 943 7.62 652 569 427 371 273
020 |17.90 1432 1135 921 7.65 670 504 4.16 3.01
025 |22.68 1843 1495 12.08 996 7.60 572 4.65 343
0.30 | 2843 2292 18.14 14.58 11.65 894 6.69 527 3.8l
0.35 | 3439 2823 2305 17.74 13779 10.64 821 571 4.21
040 | 41.34 3447 2802 2244 17.04 13.15 976 725 4.79
045 147.80 40.19 3322 2696 2143 1623 1191 839 5.58

Table 5.2 SHT, ¢, and ¢, are known
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FP (%)) 0.55 0.60 0.65 0.70 0.75 0.80 _0.85 0.90 0.95

005 | 2470 11.52 456 1.69 068 034 022 019 0.16
0.10 | 24776 1150 442 172 069 032 021 0.17 0.1
0.15 |2500 11.37 452 177 062 030 019 0.11 0.08
020 |24.64 1127 438 159 060 029 0.16 0.08 0.07
025 | 2438 11.33 445 1,65 054 021 0.10 0.06 0.03
030 |24.66 1146 443 157 055 017 006 0.02 0.02
035 | 2451 1124 457 153 049 011 005 002 0.01
040 |24.68 11.21 448 149 047 013 003 0.02 0.01
045 12452 1124 430 149 042 0.2 0.03 001 0.0

FN (%)} 0.55 0.60 0.65 0.70 _0.75 0.80 _0.85 0.90 0.95

0.05 0.01 0.02 009 009 018 021 038 057 0.60
0.10 | 0.04 0.07 0.0 017 028 038 040 0.64 0.77
0.15 0.07 012 018 020 035 043 065 078 093
020 | 018 035 038 034 056 08 079 093 1.07
0.25 052 067 083 08 102 113 120 133 139
0.30 175 176 196 194 221 227 242 246 2.60
0.35 446 471 483 495 523 516 551 530 555
040 | 11.49 12.15 12.16 1230074498 12.12 1220 1241 12.03
045 12429 2474 25.06 25.15,.25.17:.25.83 2548 2449 2545

NG 105 060 065 1070 075 080 0.85 090 0.95

005 | 19.12 17.14 1462 12.02- 991 832 7.16 629 559
0.10 | 19.08 17.28 1459 H2.0L7=991 (832 7.16 628 559
0.15 |19.12 17.16 14.59..12.03 9.89+ 835 7.16 628 559
020 |19.06 17.25 14.60 12.05:71992 836 7.17 628 559
025 |19.11 17.19 14.63 1201 989 834 7.18 628 559
030 |19.11 17.11 14.67 1201 993 832 7.18 627 5.60
035 |19.00 17.21 14.57 1201 997 835 7.17 628 559
040 |19.09 17.19 14.62 1203 996 835 7.6 628 559
045 119.07 17.15 14.63 12.01 994 833 7.16 627 5.8

NB 05 060 065 070 075 080 085 090 0.95

0.05 564 566 565 570 573 572 570 569 5.67
0.10 631 634 638 642 0642 636 638 636 06.35
0.15 724720 724 726 734 725 725 722 .18
0.20 8.48 840 842 847 842 845 848 839 836
0.25 9.98 10.08 10.09 10.02 996 10.01 998 995 9.93
0.30 | 12.07 12.17 1207 1204 12.13 12.09 12.09 12.07 11.93
035 | 1454 14.60 14.74 14.64 14771 1452 14773 14.55 14.59
040 | 17.15 17.16 17.06 17.30 17.17 1720 17.33 17.18 17.16
045 ]119.04 19.16 1895 18.87 19.06 19.10 19.18 19.14 19.04

Table 5.3  Simplified SHT, 6, and &, are known
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FP (%)) 0.55 0.60 0.65 0.70 0.75 0.80 _0.85 0.90 0.95

0.05 | 10.40 11.70 15.54 24.48 1390 2743 1334 497 11.53
0.10 | 10.81 13.49 1722 1197 1422 820 1490 497 11.39
0.15 721 974 985 1236 1419 835 1494 1140 11.80
0.20 744 8.07 1057 1245 1431 852 1490 1149 11.74
0.25 486 598 642 644 0639 925 1515 11.38 11.78
0.30 3.04 466 661 653 721 922 1490 11.38 11.92
0.35 .66 293 411 673 801 9.13 9.07 1228 12.44
0.40 0.52 139 284 429 o647 715 9.04 815 12.80
0.45 0.04 048 1.67 307 447 585 658 8.16 12.71

FN (%)} 0.55 0.60 0.65 0.70 _0.75 0.80 _0.85 0.90 0.95

0.05 0.03 0.02 002 000 001 0.00 000 000 0.00
0.10 | 003 0.01 002 002 001 0.00 0.00 000 0.00
0.15 0.18 003 002 0.0 0.00 0.00 000 000 0.00
020 | 073 020 003 003 001 0.0l 0.00 000 0.00
0.25 383 096 028 0.06 003 001 0.00 0.00 0.00
030 | 1356 399 098 029 006 002 001 0.00 0.00
035 |3753 1496 437 101 014 006 001 0.00 0.00
040 |76.13 4046 13.89 39471087 0.14 003 0.00 0.00
045 19845 75.08 36.38 12.57...330- 059 0.10 0.00 0.01

NG 105 060 065 1070 075 080 0.85 090 0.95

0.05 0.00 0.00 0:000.00-0.00 ~0.00 0.00 0.00 0.00
0.10 | 0.00 0.00 000 =0.007-=0:00/0.00 0.00 0.00 0.00
0.15 0.00 0.00 0.00.0.00 0.00+ 0.00 0.00 0.00 0.00
020 | 0.00 0.00 0.00 “0.007:000 0.00 0.00 0.00 0.00
0.25 0.00 0.00 000 0.00 0.00 0.00 000 0.00 0.00
0.30 | 0.00 0.00 0.00 000 000 0.00 0.00 000 0.00
0.35 0.00 0.00 000 0.00 0.00 0.00 000 000 0.00
040 | 0.00 0.00 0.00 000 000 0.00 0.00 000 0.00
0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NB 05 060 065 070 075 080 085 090 0.95

0.05 856 726 596 4.69 467 342 342 338 221
0.10 11006 826 671 639 525 499 368 3.68 240
0.15 | 1332 1054 88 720 599 553 406 3.69 2.60
020 |16.19 13.05 1032 832 680 629 461 401 2383
025 |21.02 1690 13771 11.31 9.8 7.05 514 439 311
0.30 |27.16 21.39 1626 1327 10.63 813 582 485 341
0.35 |33.67 2696 21.56 1586 1232 942 755 529 3.76
040 |41.11 3376 26.86 20.85 1533 11.81 865 6.63 4.20
045 15045 40.28 32.65 25.67 19.70 14.69 10.84 7.52 4.73

Table 5.4 RSHT, 6, and 6, are known
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5.2  SHT with unknown 6, and 6,

In fact, the values of 6, and 6, must be unknown in advance. If we use the

different values from the real ones to detect the hosts, the detection results must be
affected. Subsequently, we guess that éo =0.8 and él =0.2 and simulate both SHT

and RSHT with unknown 6, and 6,. The simplified SHT will be ignored because it

can’t be affected by various values of g, and 4, .

Table 5.5 shows the results of the SHT algorithm with unknown 6, and 6.
Compared with Table 5.2, the false positive and negative rates are both much higher.
There are similar results for the RSHT algorithm shown in Table 5.6. These results
indicate that the erroneous estimated values of ¢, and &, will cause the erroneous
detection. In the next section, we will implement the original SHT with our
proposed adaptive estimation algorithm-introduced in the previous chapter and then

compare the simulation results withthe. SHT without adaptive estimation.
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FP (%)) 0.55 0.60 0.65 0.70 0.75 0.80 _0.85 0.90 0.95

0.05 |3046 1675 803 350 145 065 031 021 0.17
0.10 3052 1655 796 359 145 060 024 0.19 0.11
0.15 ]3036 16.65 7.87 348 148 057 025 012 0.11
020 3053 1658 805 337 129 054 023 0.13 0.07
025 3038 1645 795 343 138 052 0.15 0.09 0.04
0.30 |30.38 16.58 802 344 127 050 0.17 0.05 0.04
035 13072 1650 7.89 353 129 043 0.14 0.05 0.03
040 |30.27 1643 806 331 131 044 0.15 0.03 0.02
045 13038 16.68 7.66 338 131 046 0.12 0.03 0.0

FN (%)} 0.55 0.60 0.65 0.70 _0.75 0.80 _0.85 0.90 0.95

0.05 0.04 0.07 006 012 0.18 031 033 051 0.62
0.10 | 014 0.10 0.12 023 027 037 054 063 0.73
0.15 020 030 035 036 045 067 073 080 0.99
020 | 054 059 069 080 082 087 109 121 1.20
0.25 1.8 139 152 178 178 194 1.85 201 217
0.30 342 364 358 3.69 405 416 411 423 408
0.35 827 823 749 812 810 869 865 870 877
040 | 1642 16.70 16.63 l16J9717.06 1681 1724 17.80 16.89
045 130.77 30.32 30.64 30.83,.3L.19-31.27 31.53 3135 31.22

NG 105 060 065 1070 075 080 0.85 090 0.95

0.05 | 1427 1294 1L11 932 780 6.60 572 502 4.46
0.10 | 1423 1290 1171 59337480 -6.61 573 501 447
0.15 | 1429 1292 11.10..934 783+ 6.62 571 502 447
020 | 1434 12.89 11.10 "93471782 663 572 501 447
025 | 1430 1290 11.07 934 781 665 571 504 447
030 | 1424 1290 11.14 931 783 6.63 571 502 446
035 | 1425 1285 11.06 934 782 663 571 502 446
040 | 1426 1294 11.10 933 779 6.64 572 502 446
045 11428 1299 11.14 934 782 6.63 572 501 4.46

NB 05 060 065 070 075 080 085 090 0.95

0.05 449 453 452 454 453 452 455 454 451
0.10 504 509 509 509 508 508 503 507 504
0.15 578 576 576 578 580 579 574 576 575
0.20 60.69 6.66 6.66 670 671 0667 666 671 6.65
0.25 790 794 783 792 785 7.85 787 184 .82
0.30 937 929 934 938 938 936 931 927 937
035 | 1L.11 11.13 11.19 11.13 11.24 11.12 11.11 11.07 11.04
040 |13.02 12.84 13.05 1294 12.84 1298 13.02 1291 12091
045 ]14.18 1431 1429 1436 1433 1428 1421 14.19 14.17

Table 5.5 SHT, 4, and 6, unknown, guess 0.8 and 0.2

46



Chapter 5 Simulation Results

FP (%)) 0.55 0.60 0.65 0.70 0.75 0.80 _0.85 0.90 0.95

005 | 8575 7142 5341 3489 1885 852 285 0.85 0.35
0.10 | 8551 71.46 5296 3456 18.89 826 295 0.83 0.32
0.15 | 8550 71.71 53.12 3435 19.05 840 3.03 0.81 0.35
020 | 8557 71.22 53.02 3450 1873 842 295 0.81 031
025 8532 71.38 53.19 3458 1892 850 2.83 0.82 0.3l
0.30 | 8556 71.60 53.28 3441 1877 844 285 0.81 0.25
035 | 8544 7145 5347 3455 1873 834 302 0.74 0.25
040 | 8559 7142 5330 34.16 19.04 817 292 0.75 0.25
045 18541 71.57 53.15 34.61 1847 839 289 0.76 _0.22

FN (%)} 0.55 0.60 0.65 0.70 _0.75 0.80 _0.85 0.90 0.95

0.05 0.00 0.00 0.00 000 000 0.00 0.00 000 001
0.10 | 0.00 0.00 0.00 000 000 0.0l 0.00 000 002
0.15 0.00 0.00 000 0.00 0.00 0.00 000 001 0.02
020 | 0.00 0.00 0.00 000 000 0.0l 002 001 0.04
0.25 0.01 0.00 0.01 000 000 001 0.03 005 009
030 | 001 0.01 002 001 001 004 004 009 0.19
0.35 0.09 0.10 014 010 o011 013 0.18 025 033
040 | 051 043 052 051770048 058 0066 0.70 0.81
0.45 1.84 201 199 2.02._.200: 223 210 224 259

NG 105 060 065 1070 075 080 0.85 090 0.95

0.05 0.00 0.00 0:000.00-0.00 ~0.00 0.00 0.00 0.00
0.10 | 0.00 0.00 000 =0.007-=0:00/0.00 0.00 0.00 0.00
0.15 0.00 0.00 0.00.0.00 0.00+ 0.00 0.00 0.00 0.00
020 | 0.00 0.00 0.00 “0.007:000 0.00 0.00 0.00 0.00
0.25 0.00 0.00 000 0.00 0.00 0.00 000 0.00 0.00
0.30 | 0.00 0.00 0.00 000 000 0.00 0.00 000 0.00
0.35 0.00 0.00 000 0.00 0.00 0.00 000 000 0.00
040 | 0.00 0.00 0.00 000 000 0.00 0.00 000 0.00
0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NB 05 060 065 070 075 080 085 090 0.95

0.05 442 445 444 446 447 451 451 456 459
0.10 | 488 492 492 494 494 496 497 504 5.05
0.15 548 548 548 549 553 557 557 562 5.07
0.20 6.19 6.16 619 624 0620 627 628 637 638
0.25 712 711 7.08 719 7.7 7.7 7200 725 71.38
0.30 823 821 826 829 840 843 847 847 845
0.35 9.78  9.84 982 986 994 1005 993 998 10.01
040 | 11.86 11.89 11.94 11.93 11.95 12.03 12.08 12.13 11.99
045 1425 1440 1440 14.62 14.67 14.55 14.61 14.60 14.52

Table 5.6 RSHT, 4, and 6, unknown, guess 0.8 and 0.2
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5.3  Adaptive Sequential Hypothesis Testing

In this section, we simulate our proposed adaptive sequential hypothesis testing

and compare the performance with SHT without adaptive estimation. At first, we
update the values of éo and él using the formula introduced in Section 4.1 after the

first benign or malicious host is detected. In the other word, when N; >0 or
Ng; >0, the values of 6, and 6, are updated. Table 5.8 shows the simulation
results. Compare with the Table 5.5 setting 6, =0.8 and & =0.2, most of the false

positive and negative rates become a little lower.

Table 5.9 shows the results of updating estimates after 25% of benign or
malicious hosts are detected. It.represents that.the success rates of the first few
detected hosts will be different from'the expected.values. Without updating the first

25% of hosts, the false positives-and negatives-are less than the former.

Therefore, we further simulate the scheme that update the estimates from 40% to
60% of remote hosts detected as benign or malicious. When 320< N; <480 or

80 < N, <120, the adaptive procedure is activated. In Table 5.10, we find that most

of the false positive and negative rates are reduced to 2~3%

In fact, we don’t know the exact numbers of benign and malicious hosts. As
described in Section 4.2, we can only predict them according to the good-to-bad ratio.
When the numbers of detected benign and malicious hosts are located between 40%
and 60% of the expected numbers, the procedure starts. Table 5.11 shows that the

scheme can reduce the probabilities and false positive and negative. Table 5.12

shows that the values of 6, and 4, are close to the real values finally.
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FP (%)) 0.55 0.60 0.65 0.70 0.75 0.80 _0.85 0.90 0.95

0.05 |26.52 2099 1633 12775 854 629 439 292 251
0.10 | 28.60 21.92 17.12 1341 9.68 650 4.69 340 244
0.15 |31.03 23.84 1798 14.50 1023 724 471 332 235
020 3293 2594 20.10 1533 10.62 7.64 503 320 249
025 |35.18 2842 21.18 1579 11.83 826 538 3.78 243
0.30 | 3835 2849 22,61 17.28 1255 882 580 350 2.33
0.35 |39.15 30.87 2326 1856 14.13 9.67 615 383 243
040 3920 32.63 2546 18.67 1429 986 656 371 234
045 140.55 3322 2699 20.97 14.86 10.54 6.8 4.27 241

FN (%)} 0.55 0.60 0.65 0.70 _0.75 0.80 _0.85 0.90 0.95

0.05 088 0.73 078 090 1.06 106 148 150 1.74
0.10 L7717 185 215 199 206 198 216 2.63 274
0.15 350 357 349 338 353 340 369 390 422
0.20 584 545 579 516 527 514 547 570 573
0.25 892 833 853 795 752 741 756 772 8.28
0.30 | 13.14 12.84 1192 10.70 10.14 10.68 9.80 10.35 10.59
035 | 1936 17.18 1650 14.32 1332 12777 1320 1323 13.54
040 |26.67 2456 20.69 20920748:11 1741 16.67 1692 16.01
045 13523 32.64 29.06 26.19..25.02:.22.24 21.76 _20.90 20.92

NG 105 060 065 1070 075 080 0.85 090 0.95

0.05 499 451 4037361 322 291 260 232 207
0.10 537 478 427 B385yr344 2309 280 247 220
0.15 573 522 465417 372+ 331 294 258 233
0.20 590 551 499 "450;70395 350 315 276 243
0.25 6.18 580 526 466 416 371 331 287 249
0.30 626 596 552 502 450 397 349 3.02 259
0.35 641 625 570 532 481 422 371 316 2.69
0.40 60.68 626 598 536 502 444 384 331 282
0.45 6.72 644 613 5.67 5.15 459 401 342 292

NB 05 060 065 070 075 080 085 090 0.95

0.05 286 276 2.65 255 251 238 229 218 1.84
0.10 322 310 295 283 273 262 250 230 1.99
0.15 358 349 333 313 299 282 268 251 218
0.20 399 383 366 343 331 314 295 275 229
0.25 449 424 401 385 356 337 316 288 246
030 | 492 484 449 425 399 373 343 314 267
0.35 558 530 510 470 434 404 382 337 285
0.40 625 580 553 522 492 453 412 370 315
0.45 6.72 639 6.07 5.62 541 483 455 4.00 3.35

Table 5.8 Adaptive SHT, N; >0 & N; >0 (0%)
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FP (%)} 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 743 633 545 452 340 306 244 143 1.23
0.10 891 677 626 521 478 389 295 198 1.35
0.15 1012 759 653 506 419 381 291 221 1.58
020 | 1171 872 7.2 524 398 365 262 180 1.62
025 |13.00 1044 7.62 571 487 386 268 193 1.19
0.30 | 1557 10.86 855 6.60 5.65 447 305 219 1.21
035 | 16774 1260 956 7.15 637 503 339 278 1.36
040 | 1839 1394 10.59 825 6.81 491 3.69 291 1.6l
045 12033 1480 11.63 924 7.18 555 396 3.18 1.68

FN (%)} 0.55 0.60 0.65 0.70 _0.75 0.80 _0.85 0.90 0.95

0.05 .31 1.33 161 125 124 162 159 143 115
0.10 215 238 277 234 202 1.87 229 204 1.68
0.15 351 466 448 349 299 293 352 289 281
0.20 6.07 628 637 488 390 394 454 358 4.07
0.25 922 858 876 698 477 499 556 415 497
0.30 | 13.83 12.67 1240 9.04 648 683 655 553 570
0.35 |21.40 1745 1651 11.53 822 817 874 623 6.89
040 |30.69 2546 21.76 16831 71157 10.67 1005 745 7.62
045 14293 3748 30.27 22.24..16.06% 13.52 12.64 8.98 10.28

NG 1055 060 065 070 075 1080 085 0.90 0.95

0.05 512 425 357344 318 22776 244 226 213
0.10 6.18  5.07 424 “394-=3:00,3.13  2.66 245 2.26
0.15 724 583 489 459 414+ 356 291 271 237
0.20 8.12  6.82 5.66 "S5I8 TIATT 407 344 326 2.6l
0.25 938 7.84 627 572 543 452 387 3.65 297
0.30 | 1050 883 7.13 656 611 508 432 389 325
035 | 11.23 988 801 751 696 571 472 433 346
040 1230 10.81 9.05 826 7.68 643 520 483 374
045 113.04 1142 1028 935 855 7.3 590 540 4.03

NB 055 060 065 070 0.75 080 0.85 0.90 0.95

0.05 4.68 4.17 3.65 340 326 285 241 225 204
0.10 550 494 423 386 344 304 2.64 239 213
0.15 643 575 494 446 405 346 293 261 224
020 | 743 676 584 522 479 409 349 3.09 242
0.25 890 786 675 6.06 526 454 396 345 2.9
0.30 995 921 790 695 596 513 435 372 3.04
0.35 | 11.16 1040 9.07 838 6.84 576 495 398 331
040 | 11.84 11.58 1026 947 825 693 565 452 355
045 11208 1190 1145 10.87 9.53 787 6.52 5.22 391

Table 5.9 Adaptive SHT, Ng>200 & N, >50 (25%)
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FP (%)] 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
0.05 348 352 377 309 231 217 202 128 0.84
0.10 346 3.13 293 260 268 2.00 213 1.57 093
0.15 348 316 312 260 231 1.89 2.08 134 092
0.20 361 320 300 257 238 203 170 1.33 0.87
0.25 3776 359 292 287 242 226 188 1.57 087
030 | 422 383 311 303 263 228 1.75 155 0.86
0.35 4.67 403 357 3.03 273 249 187 1.63 0.89
040 | 477 403 353 326 294 255 207 171 1.00
0.45 531 407 356 337 3.09 286 216 1.76 1.05

FN (%)] 0.55 060 065 0.70 0.75 0.80 0.85 0.90 0.95
0.05 .62 124 154 122 150 130 1.34 134 101
0.10 217 199 222 187 219 1776 181 207 154
0.15 274 318 307 258 239 212 260 212 253
020 | 423 408 404 332 293 269 239 266 3.34
0.25 624 525 516 370 281 328 331 3.14 3.67
0.30 957 724 657 492 348 435 3.69 352 472
035 | 1586 1098 920 621 4.02 440 455 395 494
040 2758 18.60 14.16,42816952,3.61 524 459 4.73 5.28
045 15023 36.53 2399 13.85. .7.53 628 540 4.92 5.6

NG 1055 0060 065 050 .0.75 -0.80 0.85 0.90 0.95
0.05 531 458 2385+ 3.64° 3115285 260 229 217
0.10 6.82 573 AJ9N4A23.68 5 338 290 2.51 232
0.15 857 695 598 . 528 468 4.01 340 3.15 2.65
020 | 1041 8.62 7.007706.197°°5.48 4.60 4.14 3.60 2.93
025 | 1287 1063 840 736 676 528 4.53 4.02 3.27
0.30 | 15.00 12.68 10.22 885 796 634 541 4.61 3.2
035 | 1631 1458 11.88 10.63 946 742 622 533 418
040 |17.00 1578 13.35 1250 11.27 9.00 7.30 6.01 4.69
045 11813 15.72 14.58 14.22 1337 10.65 8.64 7.09 5.37

N B 055 060 065 070 075 0.80 0.85 0.90 0.95
0.05 6.13 526 434 405 349 315 275 230 2.14
0.10 766 650 545 486 393 361 3.05 247 225
0.15 9.64 7.87 642 565 485 413 345 295 247
020 | 1207 978 802 675 578 472 409 336 2.68
025 | 1511 1224 985 797 681 534 455 370 3.00
0.30 | 1852 1507 1226 9.73 804 633 526 421 3.35
035 |21.19 1852 1485 12.17 9.62 736 6.15 4.80 3.76
040 2243 2101 1795 1478 11.82 9.07 7.08 5.52 4.22
045 ]21.13 20.95 20.26 18.09 14.48 1094 849 6.58 4.83

Table 5.10 Adaptive SHT, 320<N; <480 & 80< N, <120 (40~60%)
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FP (%)] 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 248 304 330 296 203 275 2.63 126 135
0.10 265 282 222 306 220 252 281 148 1.90
0.15 266 292 266 292 232 206 285 1.65 1.68
0.20 278 279 280 255 279 214 323 1.69 1.14
0.25 302 300 303 279 280 259 345 208 1.15
0.30 348 328 306 288 290 232 324 228 1.22
0.35 371 348 326 305 266 279 270 236 138
040 | 404 354 324 281 252 290 293 259 174
0.45 457 388 336 290 280 298 296 2.65 191

FN (%)] 0.55 060 065 0.70 0.75 0.80 0.85 0.90 0.95

0.05 279 195 190 192 180 132 120 1.71 1.23
0.10 396 3775 333 262 3.00 233 193 176 1.62
0.15 4.57 387 472 333 434 327 248 2.69 2.55
020 | 472 435 435 329 310 338 241 3.11 328
0.25 492 477 435 408 3.09 380 2.77 2.83 3.60
0.30 550 524 466 4.09 357 387 3.06 323 3.54
0.35 6.88 571 513 502 423 394 356 348 393
0.40 877 653 595.4151187:,4.43 451 3.67 3.60 3.87
045 12657 1139 699 590 .496 398 3.80 4.12 3.80

NG 1055 0060 065 050 .0.75 -0.80 0.85 0.90 0.95

0.05 420 3779 2341 3007 2825 273 248 2.19 2.08
0.10 561 4.69 AL2N 3/8er3.27 - 3.04 275 248 2.29
0.15 769 646 SA8. . 472 349 354 326 278 247
020 |10.64 845 7.007706:257°°5.29 446 419 336 2.84
025 | 1375 11.04 905 7.59 675 527 474 4.04 3.20
030 |17.14 1430 11.51 9.62 816 632 569 4.60 3.66
035 | 21.17 17774 1460 1147 993 795 658 538 4.28
040 2523 21.62 1792 1475 1228 9.64 790 6.35 4.99
045 12420 2477 21.89 18.10 14.77 12.20 9.82 7.55 5.99

N B 055 060 065 070 075 0.80 0.85 0.90 0.95

0.05 646 514 429 374 350 292 233 223 202
0.10 816 651 575 451 405 340 264 245 2.03
0.15 1034 816 677 550 471 411 299 271 222
020 |13.16 1036 826 690 533 470 336 3.04 2.55
025 |16.04 13.02 1009 828 6.60 526 375 330 2.78
0.30 | 19.10 1591 1266 10.11 798 640 451 3.71 3.06
035 2281 1926 1559 1249 992 740 5.61 420 3.36
040 2648 2286 18.82 15.74 1256 9.01 6.60 4.88 3.66
045 2577 25.77 22.55 18.89 15.07 11.27 8.14 5.5 4.08

Table 5.11 Adaptive SHT, N;:N; (40~60%)
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THETAO0] 0.55 0.60 0.65 0.70 0.75 0.80 0.85 090 0.95

005 10561 0593 0.641 0.701 0.754 0.827 0.857 0912 0.957
0.10 10.536 0.591 0.631 0.692 0.745 0.796 0.874 0910 0.961
0.15 10.545 0.604 0.629 0.715 0.754 0.809 0.868 0.938 0.958
020 10.545 0.608 0.640 0.682 0.748 0.810 0.855 0.917 0.947
025 10.545 0.576 0.657 0.697 0.741 0.801 0.872 0913 0.965
0.30 ]0.543 0.606 0.645 0.682 0.741 0.811 0.866 0918 0.963
0.35 10.563 0.590 0.655 0.672 0.742 0.803 0.850 0.925 0.967
040 10.573 0.624 0.655 0.698 0.740 0.796 0.842 0.901 0.961
045 10.569 0.624 0.644 0.692 0.747 0.798 0.858 0.915 0.957

THETAL] 0.55 0.60 0.65 0.70 0.75 0.80 0.85 090 0.95

0.05 10.045 0.041 0.039 0.049 0.043 0.040 0.040 0.043 0.052
0.10 10.090 0.086 0.081 0.079 0.080 0.082 0.094 0.072 0.106
0.15 10.130 0.136 0.137 0.155 0.138 0.137 0.141 0.148 0.146
020 10.202 0.206 0.184 0.205 0.192 0.209 0.203 0.225 0.183
025 10.240 0.239 0.242 0.234 0.230 0.254 0.246 0.246 0.255
0.30 10.264 0.285 0307 0.295 0.274 0.271 0.308 0.293 0.315
0.35 10.323 0323 0345 0336 0.357 0.345 0.360 0.360 0.356
040 10.347 0367 0.380 .0:381700.381 0.418 0.407 0.397 0.391
045 10.379 0.399 0.404 0.430..0417, 0.445 0.455 0.434 0.455

Table 5.12 ¢, and 6, :of Adaptive SHT, Ng: N, (40~60%)
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Chapter 6

Conclusion

We have investigated three existing schemes for detecting scanning worms —
sequential hypothesis testing, simplified. sequential hypothesis testing, and reverse
sequential hypothesis testing. Comparediwith.the performance of these schemes, we
think that they may be unsuitable for a real network if some parameters are unknown

and estimated erroneous.

We have presented in this paper an adaptive sequential hypothesis testing scheme
for fast detection of scanning worms. The adaptive estimation procedure can adjust
6, and ¢, automatically according to the information collected previously and make
the sequential hypothesis testing algorithm more robust to variation of 6, and ,.
The proposed adaptive detection algorithm provides accurate estimates of 6, and &,
and thus achieves false positive and false negative probabilities close to the desired

values.
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