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中文摘要 

隨著網路應用服務的增加，網路安全的議題也越來越受到廣泛的重視。其中

埠或位址掃描這種異常的行為，是網路入侵的一個重要途徑。早期偵測這些埠或

位址掃描的技術，是建立於惡意行為的主機具有較高掃描率的基礎上。但是這種

方式對於偵測某些慢速的掃描並不適用，而且攻擊者一旦獲知發出警戒的門檻

值，便能輕易的躲過這種偵測。為了解決這個問題，接續假設性測試便成為偵測

這種掃描的另一種替代方案。這種方式可以藉由第一次連線要求的成功率之不

同，來判斷發送者為正常或具有惡意攻擊行為的主機。但是假如無法知道正常與

異常主機不同的連線成功率為何，其誤判的機率便會遠高於理想值。在這篇碩士

論文中，我們比較了幾種以接續假設性測試為架構的技術，並且發現在實際未知

連線成功率的網路中，這些基本的接續假設性測試並不適用。因此，我們提出在

此測試法的基礎架構上，加入了一個簡單的適應性演算法，可以準確的估計出這

些機率值。而從模擬的結果也顯示出，這個適應性的估計演算法對於原本的接續

假設性測試法有極大的改善，因為它使原本對於埠或位址掃描的測試法更加健全

與完備。 
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Abstract 

As more and more network applications and services are provided, the topic of 

network security becomes more and more important.  The behavior anomaly of 

port/address scans is a way to intrude hosts on the Internet.  Early detection 

techniques of port/address scans are based on the observation that malicious hosts 

could send scans with high scanning rates.  But such approaches are not suitable to 

detect scanners with lower scanning rate.  Once the threshold of scanning rate for 

generating alerts is known to the attackers, the detection will be easily evaded.  In 

order to overcome the problems, sequential hypothesis testing is an alternative 

detection technique.  According to the probabilities of success for the first-contact 

connection attempts sent by the hosts, sequential hypothesis testing can detect the 

senders as benign or malicious.  If these probabilities are unknown, the false positive 

and false negative rates could be much larger than the desired values.  In this thesis, 

we compare several techniques based on sequential hypothesis testing and realize 

these techniques inadequate for a real network.  Therefore, we propose a simple 

adaptive algorithm which provides accurate estimation of these probabilities.  

Simulation results show that the proposed adaptive estimation algorithm provides a 

great improvement for sequential hypothesis testing.   
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Chapter 1 Introduction 

 

Chapter 1 

Introduction 

 

 

As the computer and network technologies advance rapidly, more and more 

services and applications are provided on the Internet.  Today, many people can’t 

live without computers and networks.  Therefore the topic of network security 

becomes more and more important. 

As time goes by, modern computer worms and viruses can spread at a speed 

much faster than human intervention.  A computer worm automatically spreads 

from computer to computer by exploiting a software vulnerability that allows an 

arbitrary program to be executed without proper authorization.  In recent years, 

people discovered many kinds of worms, such as the Code Red [11], Nimda [12], 

and Slammer [6], which infected thousands upon thousands of computers on the 

Internet in a short period of time and caused great damage to our society.  It’s 

important to prevent the majority of vulnerable systems from being detected and 

minimize the damage caused by computer worms.  Fast and accurate detection of 

worms when they are spreading is, therefore, helpful to solve the problems. 

Current technologies for computer worm detection can be classified into three 
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categories – protocol analysis, pattern matching, and behavior anomaly.  First, 

protocol analysis is used to inspect if there are misused protocol fields in the header 

of a packet.  The header of a packet sent by a malicious host is usually spoofed or 

altered.  The malicious hosts can be detected according to the misuse of fields.  

Then, pattern matching is used to look for specific patterns in the payload of a 

packet or across packets.  The signatures of worms, e.g. specific unique patterns or 

strings of malicious codes, can be extracted and then utilized for worm detection.  

Although pattern matching is accurate, it is limited to detect worms with identified 

signatures.  If the signatures of new worms are not created promptly, the majority 

of vulnerable systems could be infected. 

Finally, behavior anomaly can be used to detect and prevent port/address scans 

because an infected host is likely to behave differently from a normal host.  For 

example, an infected host could try to infect other vulnerable host on the Internet 

with port or address scanning.  Therefore, we can detect the infected host with the 

observation that it has high new connection attempt rate or high failure rate of new 

connection attempts.  Because the technique based on behavior anomaly can detect 

worms without signatures, it is useful to deal with new computer worms. 

Seeing that most of current intrusion detection systems (IDS) based on the 

technique of pattern matching can’t detect new and unknown malicious attacks or 

scans, network behavior anomaly detection (NBAD) is receiving more and more 

attention.  Recently, more and more IDS adopted the mechanism based on behavior 

anomaly detection.  For example, the Network Security Monitor (NSM) [13] and 

Snort [14] are designed according to simple observation of high scanning rate by an 

infected host. 
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In the paper [1], a technique of sequential hypothesis testing for scan detection 

is proposed, and the algorithm is called Threshold Random Walk.  The technique is 

based on the observation that success rate of a connection attempt sent by a 

malicious host is much lower than the success rate of a connection attempt sent by a 

benign host.  A random walk of each host is moving upward if a connection 

attempt is a failure, or moving downward if a connection attempt is a success.  A 

host is detected as malicious if the position of its random walk is greater than the 

upper threshold or as benign if it is smaller than the lower threshold.  A simplified 

sequential hypothesis testing [3] is suitable for both software and hardware 

implementations.  It modified the step sizes of moving upward and downward to be 

identical.  The reverse sequential hypothesis testing [2] can detect malicious host 

slightly faster than the original algorithm.  The three algorithms will be review in 

Chapter 3. 

The sequential hypothesis testing assumes that the success rates of connection 

attempts sent by benign and malicious hosts are known.  They are used to compute 

the step sizes of moving upward and downward.  But in fact, the success rates of 

connection attempts could be unknown.  Therefore, we develop the sequential 

hypothesis testing with an adaptive procedure which can estimate the success rates 

of connection attempts based on their outcomes.  It can provide estimates close to 

real values and reduce both the false positive and negative rates 

The rest of this thesis is organized as follows.  In Chapter 2, we introduce 

some background about scanning worms, scan detection and suppression, and the 

definition of false positives and false negatives.  In Chapter 3, we review the 

sequential hypothesis testing, the simplified sequential hypothesis testing, and 
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reverse sequential hypothesis testing.  In Chapter 4, we present our proposed 

adaptive algorithm for estimation of success rate of connection attempts.  

Simulation results are provided in Chapter 5.  Finally, we draw conclusion in 

Chapter 6. 
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Chapter 2 

Background 

 

 

2.1  Scanning Worms 

A computer worm is a form of malware that spreads from host to host without 

human intervention.  A scanning worm locates vulnerable hosts by generating a list 

of addresses to probe and then contact them.  Figure 2.1 illustrates that worms can 

self-propagate among the hosts exploiting security or policy flaws in widely-used 

services [10].  An infected host initiates scans and infects the other benign hosts.  

Subsequently, the benign hosts become infected ones and then join the army of 

scanning.  Finally all the hosts on the Internet will be infected. 

This addresses list may be generated sequentially or pseudo-randomly.  Local 

addresses are often preferentially selected because the communication between 

neighboring hosts will likely encounter fewer defenses [5].  Scans may take the form 

of TCP connection requests (SYN packets) or UDP packets.  In the case of the 

connectionless UDP protocol, it is possible for the scanning packet to also contain the 

body of the worm, such as the Slammer worms [6]. 
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Figure 2.1  Spreading and propagation of scanning worms 

 

Scanning worms probe attempts to determine if a service is operating at a target 

IP address and then discover new victims.  They have two basic scanning types – 

horizontal scans, which look for an identical service on a large number of hosts, and 

vertical scans, which examine an individual host to discover all running services. 

There are many kinds of techniques to generate a list of addresses for scanning 

worms, such as linear scanning of an IP address space (Blaster), fully random (Code 

Red), a bias toward local address (Code Red II and Nimda), or even more enhanced 

techniques (Permutation Scanning).  While more and more scanning worms change 

their style of scanning to avoid being detected, all of they still have two common 

properties as follows.  Most of the scanning attempts may result in failure, and the 

infected hosts will send many connection attempts [4].  As long as we look for a class 

of behavior rather than specific worm signatures, most new worms will be detected. 

In the next chapter, we will introduce three kinds of existing on-line algorithms 

to detect the presence of scanning worms by observing network traffic.  These 

algorithms based on the sequential hypothesis testing (SHT) can differentiate between 
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infected hosts and normal hosts according to the success rate of connection attempts. 

 

2.2  Scan Detection and Suppression 

Human reaction time is inadequate for detecting and responding to fast scanning 

worms, such as Slammer, which can infect the majority of vulnerable hosts on the 

entire IP address space in a few minutes [6, 7].  Thus, today’s worm detection 

techniques focus on automated response to worms, such as quarantining infected 

machines, automatic generation and installation of patches, and reducing the rate at 

which worms can send connection attempts [8]. 

But, an automated response will be of little use if it fails to be triggered quickly 

after a host is infected.  Infected hosts with high network bandwidth can send 

thousands of connection attempts per second, each of which has the potential to 

spread the infection.  On the other hand, an automated response that triggers too 

easily will erroneously identify normal hosts as infected.  It will interfere with the 

normal activity of these hosts and cause significant damage. 

Many scan detection mechanisms rely on the observation that only a small part 

of addresses are likely to respond to a connection attempt at any given port.  If a 

connection attempt is sent to an inactive host, it will also be failed.  When a 

connection attempt does reach an active host, it would be rejected possibly because 

not all hosts will be running the targeted services.  Thus, the infected hosts are likely 

to have a low rate of successful connection attempts, whereas benign hosts, which 

only send connection attempts when there is reason to believe that addresses will 
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respond, will have a higher success rate.  So, we can make good use of the properties 

described above to detect scanning worms with malicious connection attempts. 

Worm containment is designed to stop the spread of worms in a local area 

network or an enterprise by detecting infected machines and preventing them from 

contacting other systems.  Current approaches to containment are base on detecting 

the scanning activity, and the key component for today’s containment techniques is 

scan suppression which responds to detected infected hosts by blocking future 

scanning attempts. [4] 

The goal of scan suppression is to prevent scanning attempts coming from 

“outside” inbound to the “inside”.  Here “inside” means the internal network of an 

enterprise or a laboratory, to be protected from the “outside” larger networks.  

Therefore, any scanning worms will be quickly detected and stopped because all of 

the malicious traffic will be seen by the detector.  The illustration is shown as Figure 

2.2. 

 

Figure 2.2  Preventing “inside” from “outside” 
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2.3  False Alarm 

When the scan detection mechanisms determine a host is malicious or benign, it 

is possible to make error decisions, such as regarding as malicious when the host is 

benign or regarding as benign when it is infected actually.  Both of them are called 

false alarm.  We hope that the scan detection mechanism would distinguish between 

malicious and benign hosts as precisely as possible, and the probability of false alarm 

is as less as possible.  So, we can use false alarm rate to judge whether an algorithm 

is suitable for scan detection. 

 

2.3.1 False Positive & False Negative 

The false alarm can be divided into two conditions which are false positive and 

false negative [9].  The former is the error of rejecting something that should have 

been accepted, such as finding an innocent host guilty.  The latter is the error of 

accepting something that should have been rejected, such as finding a guilty host 

innocent.  Table 2.1 and 2.2 will illustrate these conditions as follows. 

Actual Condition 
 

Present Absent 

Positive
Condition Present + Positive Result

= True Positive 
Condition Absent + Positive Result 

= False Positive 
Test 

Result 
Negative

Condition Present + Negative Result

= False Negative 
Condition Absent + Negative Result

= True Negative 

Table 2.1  Definition of false positive and false negative 
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Actual Condition 
 

Scanner Benign 

Scanner
Actual Scanner + Result Scanner 

= Detection 
Actual Benign + Result Scanner 

= False Positive 
Test 

Result 
Benign 

Actual Scanner + Result Benign 

= False Negative 
Actual Benign + Result Benign 

= Normal 

Table 2.2  Example of false positive and false negative 

 

2.3.2 Probabilities 

The false positive rate is the proportion of negative instance that were 

erroneously reported as being positive. The false negative rate is the proportion of 

positive instance that were erroneously reported as being negative. So we can define 

them as follows. 

number of  false positivesfalse positive rate =
number of  negative instances

 

number of  false negativesfalse negative rate =
number of  positive instances

 

For scan detection, we can also define four outcomes as follow. 

FP
number of  scanner but actually benignfalse positive rate = P

number of  total benign
=  

FN
number of  benign but actually scannerfalse negative rate = P

number of  total scanner
=  

1NM FP
number of  benign and actually benignnormal rate = P P

number of  total benign
= = −  

1DT F
number of  scanner and actually scannerdetection rate = P P

number of  total scanner
= = − N  

 10



Chapter 3 Related Works 

 

Chapter 3  

Related Works 

 

 

3.1  First-Contact Connection Requests 

In the previous chapter, we can know that one of the main characteristics of 

infected hosts is that they are more likely to choose hosts that do not exist or do not 

have the requested service activated than benign hosts.  This is because they lack 

precise knowledge of which hosts and ports are currently active.  

Using this observation, there are several kinds of on-line algorithms to detect 

malicious attacks or connection attempts.  The goal of these approaches is to reduce 

the number of observed connection attempts to flag malicious hosts, while bounding 

the probabilities of false positive and false negative. 

An event is generated and monitored when a remote source r makes a 

first-contact connection (FCC) request to a local destination l.  An FCC request is a 

connection request which is addressed to a host the sender has not previous 

communicated.  These events are monitored because malicious scans are mostly 

composed of first-contact connection requests.  
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Only the TCP connections are considered and thus a TCP SYN packet indicates a 

connection request.  The outcome of an FCC request is classified as either a 

“success” or a “failure”.  It is a success if the host l replies a SYN-ACK packet or a 

failure if host l replies a RST packet or does not reply at all.  If the request sent by r 

is a UDP packet, any UDP packet from l received before the timeout will be a success. 

For a given remote (outside) host r, let iX  be a random variable that represents 

the outcome of the FCC request from r to the  distinct local (inside) host lthi i, where 

0   if the FCC request is a success
=

1   if the FCC request is a failure iX ⎧
⎨
⎩

 

Figure 3.1 illustrates 1 2,  ,  , 5X X X  from  to . r 1 2 5,  , , l l l

 

 

Figure 3.1  iX , the outcomes of FCC requests from r to li  
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The outcomes 1X , 2X , …, are observed so that host r can be determined to be 

either malicious or benign.  Undoubtedly, we would like to make this detection as 

quickly and correctly as possible.  The method of sequential hypothesis testing (SHT) 

developed by Wald [1] is suitable for scanning worm detection.  In the following 

sections, several techniques based on SHT will be introduced. 

 

3.2  Sequential Hypothesis Testing 

3.2.1 Model 

In the paper [2], the technique of sequential hypothesis testing is developed.  

The algorithm is called Threshold Random Walk (TRW).  There are two hypotheses: 

, where  is the null hypothesis that the remote host r is benign and  

is the hypothesis that r is malicious. 

0  and H 1H 0H 1H

To simplify the analysis, it is assume that, conditioning on hypothesis jH , the 

random variables 1 | jX H , 2 | jX H , … are independent and identically distributed 

(i.i.d) with probability mass function 

[ ] [ ]
[ ] [ ]

0 0 0

1 1 1 1

P 0 |            P 1| 1

P 0 |            P 1| 1
i i

i i

X H X H

X H X H
0θ θ

θ θ

= = = = −

= = = = −
 

For some 0  and 1θ θ  which satisfy 0 1θ θ> .  It is because a FCC attempts is more 

likely to be a success from a benign host than a malicious host. 
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Given the two hypothesis, there are four possible decisions as follows.  The 

decision is called a detection when the algorithm selects  when  is in fact true.  

On the other hand, it is called a false negative if the algorithm chooses .  

Likewise, when  is in fact true, selecting  constitutes a false positive and 

selecting  when  is called a normal.  These four possible outcomes are 

represented as: 

1H 1H

0H

0H 1H

0H 0H

[ ]
[ ]
[ ]
[ ]

1 1

0 1

1 0

0 0

:               P choose |  is true

:      P choose |  is true 1

:       P choose |  is true

:                 P choose |  is true 1

DT

FN DT

FP

NM FP

Detection H H P

False Negative H H P P

False Positive H H P

Normal H H P P

=

= = −

=

= = −

 

The desired performance of the TRW algorithm can be specified with the 

detection probability DTP  and the false positive probability .  Let FPP α  

represents the upper bound of false positive probability and β  denote the lower 

bound of detection probability.  In other word, we desire 

  and  FP DTP Pα β≤ ≥  

where typical values might be 0.01  and  0.99α β= = . 

As the outcome of iX  is observed, we calculate the likelihood ratio: 

( ) [ ]
[ ]

[ ]
[ ]

1 1

10 1

P | P |
P | P |

n
n i

n
in i

H X
H X=

Λ ≡ =∏
X

X
X

H
H

)n

 

where ( 1 2, , ..., n X X X≡X  is the vector of outcomes observed so far.  

 14



Chapter 3 Related Works 

Note that ( )nΛ X  can be updated incrementally.  Let ( )iXφ  represent the 

likelihood ratio of the  observation.  It holds that thi

( ) ( ) ( ) ( ) ( )1 0
1

,   1
n

n i n n
i

X Xφ φ−
=

Λ = =Λ Λ∏X X =X  

( ) [ ]
[ ]

1

0

1

0

1
11

0

1       if 1 (failure) P |
P | 1          if 0 (success)

ii
i

i i

XX H
X

X H X

θ
θ

θ
θ

φ
−
−

⎧ > =⎪≡ = ⎨
< =⎪⎩

 

The flow diagram is shown in Figure 3.2.  The updated likelihood ratio  

is compared to an upper threshold 

( )nΛ X

1η  and a lower threshold 0η .  If ( ) 1n ηΛ ≥X , 

then the hypothesis  is accepted.  If 0H ( ) 0n ηΛ ≤X , then the hypothesis  is 

accepted.  More observations are needed if 

1H

( )0 1nη η< Λ <X .   

More observations are needed

Update

( ) ( )1 2, , ...,  and n n nX X X≡ ΛX X

Event  nX

( ) 1n ηΛ ≥X

( ) 0n ηΛ ≤X Output
( )0  H benign

Output
( )1  H malicious

Yes

Yes

No

No

 

Figure 3.2  Flow diagram of sequential hypothesis testing 
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Figure 3.3 represents a log scale graph of ( )nΛ X  when each observation iX  

is added to the sequence.  Each success (0) observation decreases , moving it 

closer to the benign conclusion threshold 

( nΛ X )

0η .  Each failure (1) observation increases 

, moving it closer to the infection conclusion threshold ( nΛ X ) 1η . 

 

Figure 3.3  A log scale graph of ( )nΛ X  for SHT 

 

3.2.2 Upper and Lower Thresholds 

To develop the algorithm described in the previous section, the thresholds 

0  and 1η η  can be bounded by simple expressions of  [1]. and FP DTP P

Consider a sample path of observations 1 2, , ..., nX X X .  The upper threshold 

1η  is hit on the observation nX  and hypothesis  is selected.  Thus, 1H

( ) [ ]
[ ]

1 2 1
1

1 2 0

P , , ..., |
P , , ..., |

n DT
n

n FP

X X X H P
X X X H P

ηΛ ≡ = ≥X  

The first probability (  is selected when  is true) is the detection probability 1H 1H
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DTP , and the second (  is selected when  is true) is the false positive 

probability . 

1H 0H

FPP

Similarly, if the lower threshold 0η  is hit and hypothesis  is selected, then 0H

( ) [ ]
[ ]

1 2 1
0

1 2 0

P , , ..., | 1
P , , ..., | 1

n DT
n

n FP

X X X H P
X X X H P

η−
Λ ≡ = ≤

−
X  

Therefore, the upper and lower bounds can be bounded in terms of .  and FP DTP P

1 0
1  and  
1

DT D

FP FP

P P
P P

η η T−
≤ ≥

−
 

In real implementation, one can use the approximations  ,  FP DTP Pα β= =  and set  

1 0
1  and  
1

β βη η
α α

−
= =

−
 

 

3.2.3 Log of Likelihood Ratio 

Moreover, one can use the log-likelihood ratio to simplify computation.  It can 

be formulated as follows. 

( )( )

[ ]
[ ] ( )( ) ( ) ( )

( ) ( )

1 0
1

1 01

1 00

,   0

1 1 0       if 1P |
0                  if 0P |

n

n n i n n
i

ii
i i

ii

S ln Y S Y S

ln ln F XX H
Y ln ln X

ln ln S XX H
θ θ

φ
θ θ

−
=

≡ Λ = = + =

⎛ ⎞ − − − ≡ > =⎧⎪≡ = =⎜ ⎟ ⎨⎜ ⎟ − ≡ < =⎪⎩⎝ ⎠

∑X

 

The log-likelihood ratio  is also compared to an upper threshold nS ( )1ln η  and a 
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lower threshold ( )0ln η .  If ( )1nS ln η≥ , then the hypothesis  is accepted.  If 0H

( )0nS ln η≤ , then the hypothesis  is accepted.  More observations are needed if 1H

( ) ( )0 1nln S lnη η< < . 

 

3.2.4 Number of Observations to Select Hypothesis 

In this section, the average number of FCC attempts sent by a remote host to 

detect it as benign or malicious is calculated.  The smaller the number  of 

observations, the faster a remote host will be identified. 

N

For the analysis of , the log of likelihood ratio should be used.  Because  

is the summation of  random variables  where  is also a random variable, 

the expected value of  equals to the product of expected values of  and . 

N NS

N iY N

NS iY N

[ ] [ ] [ ]1 2     N N NS Y Y Y E S E Y E N= + + + ⇒ = i

1H

 

Therefore, we can derive expressions for the expected values of  and , 

conditioning on hypotheses .  The conditional expected value of  is 

the ratio of the conditional expected values of  and . 

NS iY

0 and H N

NS iY

For , iY

( )
( )
( )
( )

1

0

1

0

1

0

1

0

1
01

0

0

1
11

1

1

  with prob. 1
|

    with prob.     

  with prob. 1
|

    with prob.     

i

i

ln
Y H

ln

ln
Y H

ln

θ
θ

θ
θ

θ
θ

θ
θ

θ

θ

θ

θ

−
−

−
−

⎧ −⎪= ⎨
⎪⎩
⎧ −⎪= ⎨
⎪⎩

  ⇒
[ ] ( ) ( ) ( )
[ ] ( ) ( ) ( )

1 1

0 0

1 1

0 0

1
0 0 01

1
1 1 11

| 1

| 1

i

i

E Y H ln ln

E Y H ln ln

θ θ
θ θ

θ θ
θ θ

θ θ

θ θ

−
−

−
−

= − +

= − +
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For , NS

( )
( )
( )
( )

1
0

0

1
1

0

  with prob.      
|

  with prob. 1

  with prob.      
|

  with prob. 1

N

N

ln
S H

ln

ln
S H

ln

η α
η α

η β
η β

⎧⎪= ⎨ −⎪⎩
⎧⎪= ⎨ −⎪⎩

  ⇒
[ ] ( ) ( ) ( )
[ ] ( ) ( ) ( )

0 1

1 1

| 1

| 1
N

N

E S H ln ln

E S H ln ln
0

0

α η α η

β η β η

= + −

= + −
 

So, the conditional expected values of : N [ ] [ ] [ ]N iE N E S E Y=  

[ ] ( ) ( ) ( )
( ) ( ) ( )

[ ] ( ) ( ) ( )
( ) ( ) ( )

1 1

0 0

1 1

0 0

1 0
0 1

0 01

1 0
1 1

1 11

1
|

1

1
|

1

ln ln
E N H

ln ln

ln ln
E N H

ln ln

θ θ
θ θ

θ θ
θ θ

α η α η
θ θ

β η β η
θ θ

−
−

−
−

+ −
=

− +

+ −
=

− +

 

It represents that the expected values of  varies with the parameters N α , β , 0θ , 

and 1θ .  With 0.01α = , 0.99β = , 0 0.8θ = , and 1 0.2θ = , the expected values of 

 conditioning on hypotheses  are both 5.41. N 0 and H 1H

 

3.3  Simplified Sequential Hypothesis Testing 

The huge complexity of monitoring FCC attempts of all remote hosts makes the 

TRW algorithm infeasible.  In the paper [4], a simplified version of sequential 

hypothesis testing sets both the step sizes of moving upward and downward to one for 

the detection algorithm, and uses one bit to indicate whether or not host r has sent any 

connection to host l and another bit for the opposite direction.  Each connection is 

recorded and indexed by hash the local IP address, remote IP address, and local port 

number for TCP protocol.  A hash function is adopted to index the connections and 

reduce the space requirement. 
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3.3.1 Modifications from SHT 

Using sequential hypothesis testing, each remote host has a likelihood value that 

a series of FCC requests from the given host reflect benign or malicious, based on 

how far the random walk deviates above or below the origin.  The likelihood values 

of remote hosts are updated continuously when a FCC request is determined as a 

success or a failure.  A successful connection request drives a random walk 

downward, whereas a failed connection request drives it upward. 

The step sizes of moving upward and downward are both simplified to one.  

The likelihood value of each remote host is renamed as count representing the score 

of danger.  If a successful FCC request is received, the score is added by 1.  

Oppositely, it is subtracted by 1 if a failure is received. 

 

3.3.2 Hardware Implementation 

To implement TRW, we must track the establishment of FCC requests.  It only 

considers the success or failure of connection attempts to new addresses.  This 

approach inevitably requires a very large amount of state to keep track of which pairs 

of addresses have already tried to connect.  When designing hardware, we often must 

store information in a fixed volume of memory.  Since the information we would like 

to store may exceed this volume, one approach is to use approximate caches for which 

collisions will cause imperfections.   
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The scan detection and suppression algorithm approximates TRW in the 

following ways.  The connections and addresses must be recorded using approximate 

caches.  Figure 3.4 and 3.5 gives the overall data structures of the hardware 

implementation.   

In Figure 3.4, connections are tracked using a fixed-sized table indexing by 

hashing the “inside” IP address, the “outside” IP address, and the inside port number 

for TCP.  Each record consists of a 6-bit age counter and 1-bit field for each direction 

(connections from inside to outside and from outside to inside), recording whether a 

connection has been established in that direction. 

 

Figure 3.4  Connection cache 

 

In Figure 3.5, external (outside) addresses are also tracked by an associative 

approximate cache.  To find an entry, the external IP addresses are encrypted by a 

32-bit block cipher.  The resulting 32-bit number will be separated into an index and 

a tag.  The index is used to find the line of entries.  The “count” tracks the score of 

danger (add 1 when the connection is a failure and subtract 1 when it is successful).  
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Figure 3.5  Address cache 

 

3.3.3 Algorithm 

Whenever the device receives a packet, it looks up the corresponding connection 

in the connection table and the corresponding external address in the address table.  

In Figure 3.6, the status of these two tables and the direction of the connection 

determine the action to take. 

 

Figure 3.6  Algorithm for the simplified SHT 
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At first, consider the middle column of Figure 3.6.  For a connection from a 

non-blocked outside IP address ( )count threshold< , reduce “age” to 0 and forward 

the packet if a corresponding connection has already been established in the packet’s 

direction.  Otherwise, if the packet from the outside has been seen from the inside, 

forward the packet and decrement the address’s count by 1, as the outside address 

with a successful connection is credited.  Otherwise, forward the packet but 

increment the address’s count by 1, as the address has one more outstanding, so-far 

unacknowledged connection request. 

Likewise, for packets from inside addresses (the left column in Figure 3.6), if 

there is a connection establishment from the other direction, the count is reduced by 2 

for compensation.  This is because that the connection has been regarded as a failure 

previously and the count is added by 1. 

Finally, consider the right column in Figure 3.6.  If , the 

device blocks it.  When receiving subsequent packet from that address, the action 

depends on the packet’s type and whether it matches an existing and successfully 

established connection.  If the packet does not match an existing connection, we drop 

it.  If it does, then we will still drop it if it’s a UDP packet or a TCP initial SYN. 

Otherwise, we allow it through.   

count threshold≥

 

3.4  Reverse Sequential Hypothesis Testing 

In the SHT, a host would no longer be observed when it was determined to be 

benign.  In contrast, a scheme that concerned with detecting infection events is 
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proposed in the paper [3].  It is possible that a remote host is infected when its 

likelihood ratio is close to but larger than 0η , as shown in Figure 3.7.  In this case, it 

takes more observations for the SHT algorithm to declare it to be malicious than 

doing so for a host which is infected when its likelihood ratio is equal to 1. 

 

Figure 3.7  A log scale graph tracing the value of ( )nΛ X  for SHT 

 

3.4.1 Model 

The solution to this problem is to run a new sequential hypothesis testing and 

evaluate the likelihood ratio in reverse chronological order when each connection is 

observed, as illustrated in Figure 3.8.  To detect a host infected before  but after 

, the reverse sequential hypothesis testing (RSHT) computes the likelihood ratio 

for the reversed vector of outcomes 

iY

1iY −

( )1,  ..., n nX X≡X  observed so far.  Because 

the most recent observations are process first, the RSHT will terminate before 

reaching the observations that were collected before infection. 

 

Figure 3.8  A log scale graph tracing the value of ( )nΛ X  for RSHT 
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A naïve implementation of repeated reverse sequential hypothesis testing 

requires storing an arbitrarily large sequence of FCC observation.  In fact, there 

exists an iterative function with state variable ( )nΛ X  to optimize the computation. 

( ) ( ) ( )( ) ( )1 01,  ,   1n n nmax Xφ−Λ = Λ Λ ≡X X X  

It can be calculate in sequence when events are observed and maintain the 

likelihood ratio larger than one.  Because ( )nΛ X  is updated in sequence, the 

observations can be discarded immediately after they are used to update ( )nΛ X . 

 

3.4.2 Proof of Optimized Algorithm 

The RSHT has the property that the likelihood value ( )nΛ X  of optimized 

computation exceed 1η  if and only if the RSHT starting backward from observation 

n concludes that the host was infected. 

( ) ( ) [ ]1 1      ,  , ,  ,  m  n n n-1 mX X X 1, nη ηΛ ≥ ⇔ Λ ≥ ∈X  ＃

We first prove the following lemma starting if the RSHT reports an infection, the 

optimized algorithm will also report an infection. 

Lemma 1: 

[ ] ( ) ( )
1

1 1

 1  ,

m  :  ,  , ,   
i

n n-1 m n

For and for mutually independent random variables X

1, n X X X

η

η η

>

∀ ∈ Λ ≥ ⇒ Λ ≥X
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Proof: 

We begin by replacing the  term with its equivalent expression in terms of Λ φ . 

( )1 ,  , , 
n

n n-1 m i
i m

( )X X Xη φ
=

≤ Λ =∏ X  

We can place a lower bound on the value of ( )nΛ X  by exploiting the fact that, in 

any iteration, Λ  can not return a value less than 1. 

( ) ( ) ( ) (1 2 1,  , , 1 ,  , , 
n

n n m m+1 n
i m

X X X X X X X )iφ η
=

Λ = Λ ≥ ×Λ ≥ ≥∏X  

where the last inequality follows the steps taken in Equations. Thus, 

( ) ( )1 1,  , ,   n n-1 m nX X X η ηΛ ≥ ⇒ Λ X ≥  ＃

We must also prove that the optimized algorithm will only report an infection 

when the RSHT would also report an infection in reverse sequence.  Recall that the 

RSHT will only report an infection if Λ  exceeds 1η  before falling below 0η . 

Lemma 2: 

( ) ( ) [ ]
[ ] ( )

0 1

1 1

1

 1  

       

( ) ,   ,  , , 

( ) 

i

i i

n n-1 m

For thresholds and for mutually independent random variables X ,

if for some i = n, but for all i 1, n -1 , then there

a exists m 1, n such that X X X

b exists no 

η η

η η

η

< <

Λ ≥ Λ < ∈

∈ Λ ≥

X X

[ ] ( ) 0 ,   ,  , , n n-1 kk in m, n such that X X X ηΛ ≤

 

Proof (a): 
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Find the largest m, such that ( ) ( ) 1m-2 m-1XφΛ <X . 

It follows that ( ) 1m-1Λ X =  and thus ( ) ( ) ( ) ( )m m-1 mX Xφ φΛ = Λ =X X m . 

Because we chose m such that ( ) ( ) 1   for all j-2 j-1X j mφΛ ≥X > , then 

( ) ( ) ( ,  , , 
n

n i n n-1
i m

)mX X X Xφ
=

Λ = = Λ∏X  

Thus, ( ) ( )1 1  ,  , , n n n-1X X Xmη ηΛ ≥ ⇒ Λ ≥X  ＃

Proof (b): 

To prove that there exists no k in [m, n] such that ( ) 0,  , , n n-1 kX X X ηΛ ≤ , suppose 

that such a k exists.  It follows that ( ) 0 1
n

i
i k

Xφ η
=

≤ <∏ . 

Recall that we chose m to ensure that ( )1

n

i
i m

Xη φ
=

≤∏ . 

Separate the right hand side as follows: 

( ) ( ) ( ) ( )1

k -1 n k -1

i i i
i m i k i m

X X Xη φ φ φ
= = =

≤ ⋅ ≤ ≤ Λ∏ ∏ ∏ Xk -1  

This contradicts the assumption that ( ) [ ]i 1   for all i 1, n -1ηΛ < ∈X . 

So there exists no k. ＃

 

3.4.3 Log of Likelihood Ratio 

Similarly, the log of the likelihood ratio for RSHT can also be used to simplify 

 27



Chapter 3 Related Works 

computation.  The iterative function is equivalent to: 

( )( ) ( ) ( )
( )

1 1

1

1

0,      if 1
0, 

0,                       if 0

n n n
n nn n

n n

max S F S F X
S ln max S Y

max S S X

− −

−

−

⎧ + = + =⎪≡ Λ = + = ⎨
+ =⎪⎩

X  

( )( ) ( ) ( )
( ) ( )

1 0

1 0

1 1 0       if 1
0                  if 0

n
n n

n

ln ln F X
Y ln X

ln ln S X
θ θ

φ
θ θ
− − − ≡ > =⎧⎪≡ = ⎨ − ≡ < =⎪⎩

 

To update the log of the likelihood ratio nS  for each observation, addition and 

subtraction operations are adequate. 
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Chapter 4 

Adaptive Sequential Hypothesis Testing 

 

 

As mentioned in Chapter 3, the TRW algorithm assumes that 0θ  and 1θ  are 

known, which may not be true in a real network.  According to the numerical results 

to be presented in Chapter 5, the false positive and false negative probabilities of the 

TRW algorithm could be much larger than the desired values if the adopted 0θ  and 

1θ  are different from their true values.  To overcome this problem, we propose in 

this chapter the adaptive algorithms to estimate the values of 0θ  and 1θ  based on 

observations of the outcomes of FCC attempts. 

 

4.1  Scheme 1 

Our proposed adaptive sequential hypothesis testing provides estimates of 0θ  

and 1θ  adaptively based on observations of the outcomes of FCC attempts.  The 

fixed values of 0θ  and 1θ  in the TRW algorithm are replaced with the variable 

estimates of 0̂θ  and 1̂θ  adaptively. 
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When a benign host  is detected, the value of ir 0̂θ  is updated using ip , which 

is the success rate of FCC attempts sent by the detected benign host .  Let 

 and 

ir

i iN S F= + i i i ip S F= , where  and  represent, respectively, the numbers 

of successful and failed FCC attempts sent by  when it is detected as benign.  

Likewise, when a malicious host 

iS iF

ir

jr  is detected, the estimate 1̂θ  is updated by jp , 

which is the success rate of FCC attempts sent by the detected malicious host jr .  

The formulas can be shown as follows. 

0 0

1 1

1ˆ ˆ
1 1

1ˆ ˆ
1 1

i

j

m p
m m

n p
n n

θ θ

θ θ

′ = +
+ +

′ = +
+ +

 

where m and n represent the numbers of benign and malicious hosts detected and 

adapted up to now, respectively.  The next estimate 0̂θ ′  is calculated according to 

the current estimates 0̂θ  and the success rate ip  of FCC attempts when a remote 

host  is newly determined as benign, and then the value of m is increased by 1.  

Likewise, the next estimate 

ir

1̂θ ′  can be calculated according to 1̂θ  and jp  once a 

new malicious host jr  is detected, and then n value is increased by 1. 

In the beginning, let  and 1m = 1n = .  If 0m = , the next estimate 0̂θ ′  will 

equal to ip  when the first benign host is discovered.  If 0n = , the estimate 1̂θ′  

will also become jp  when the first malicious host is discovered.  Moreover, when 

the first few benign hosts are found, almost of FCC attempts sent by them are 

successful, i.e. the success rates ip  are nearly equal to 1.  As long as the success 
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rate from the first benign host equals to 1, it will make 0̂ 1θ ′ = .  Similarly, the first 

few detected malicious hosts have almost zero successful FCC attempts, such that the 

success rates jp  are nearly equal to 0.  The estimate 1̂ 0θ ′ =  will happen once the 

success rates from the first malicious host equals to 0.  The situations will cause that 

the step sizes of moving upward and downward become infinite. 

As long as the success rate equals to 1 or it equals to 0, it may let  or 

.  The situation will cause that the step sizes of moving upward and download 

become infinite. 

0̂ 1θ ′ =

1̂ 0θ ′ =

0 0

1 1

0 1ˆ ˆ 1 1
0 1 0 1
0 1ˆ ˆ 0 0

0 1 0 1

θ θ

θ θ

′ = +
+ +

′ = +
+ +

=

=
    ⇒

( )

( )

1

0

1

0

ˆ1    ˆ1
ˆ

  ˆ

F ln upward

S ln downward

θ
θ

θ
θ

′−
= = ∞

′−

′
= = −∞

′

 

Therefore, the adaptive formulas described above can be used to dynamically 

adjust the estimates of success rates conditioning on the benign and malicious 

hypotheses.   

Because the earlier detected benign hosts will almost send successful FCC 

attempts, and the FCC attempts from the earlier detected malicious hosts will almost 

fail, the adaptive estimates may not be close to the real values if the adaptive 

procedure is performed in the beginning.  So, we choose the duration in which the 

adaptive procedure is started.  Let’s define two parameters  and , which 

denote the thresholds of benign (good) and malicious (bad) hosts.  They are used to 

start the adaptive procedure when the number of the detected benign or malicious host 

GT BT
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is more than  or , respectively.  At first, only the original TRW algorithm is 

implemented to examine FCC attempts sent by the remote hosts.  As time goes by, it 

will detect  benign and  malicious hosts.  When , the adaptive 

procedure will be operated to update the new values of 

GT BT

GN BN GN T≥ G

0̂θ ′  and m.  Likewise, it will 

be operated to update the values of 1̂θ′  and n when .  The procedure will be 

stop if 

BN T≥ B

0 0
ˆ ˆθ θ′ − < ε  or 1 1

ˆ ˆθ θ′− < ε .  Figure 4.1 shows the adaptive procedure. 

0 0

0 0

if  a benign host  is detected
        
        if  

1ˆ ˆ                ,   
1 1

ˆ ˆ        if 

                stop the procedure

i

G

G G

i

r
N

N T
m p m

m m
θ θ

θ θ ε

+ +
≥

′ = +
+ +

′ − <

+ +  
1 1

1 1

if  a malicious host  is detected

        
        if  

1ˆ ˆ                ,   
1 1

ˆ ˆ        if 

                stop the procedure

j

B

B B

j

r

N
N T

n p n
n n

θ θ

θ θ ε

+ +
≥

′ = + +
+ +

′− <

+  

Figure 4.1  Adaptive procedure I

 

Suppose we can know the number of remote hosts that send connection attempts 

to local hosts and the ratio of benign to malicious hosts in advance.  Therefore we 

can properly set the thresholds of  and  to start the adaptive procedure.  For 

example, if there are 1000 remote hosts and the good-to-bad ratio is about 4:1, we can 

guess that there are approximately 800 benign hosts and 200 malicious hosts.  The 

adaptive procedure will be started after a percentage of benign or malicious hosts are 

detected. 

GT BT

If  and , 0GT = 0BT = 0̂θ ′  and 1̂θ ′  will be update adaptively since the first 

benign host or malicious one is detected.  If 200GT =  and 50BT = , it presents that 
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the procedure adjusts the two estimates after 25% of benign and malicious hosts are 

detected, respectively.  We can also set the parameters to start the adaptive procedure 

only from 40% to 60% of hosts which is detected as benign or malicious.  It just 

needs to set that the procedure will be activated when  and 

.  We will show these simulation results in Chapter 5. 

320 480GN≤ ≤

80 120BN≤ ≤

 

4.2  Scheme 2 

If we only know how many hosts will send connection attempts rather than the 

good-to-bad ratio, we can calculate the ratio according to the number of hosts detected 

up to now.  Suppose that there are totally N distinct remote hosts, and the TRW 

algorithm totally discovers  benign hosts and  malicious hosts so far.  We 

can know that the good-to-bad ratio is 

GN BN

:G B

G B G

N N
N N N N+ + B

, and then we can 

approximate the expected values of benign and malicious hosts are G

G B

N N
N N

×
+

 

and B

G B

N N
N N

×
+

, respectively. 

Therefore, we can start the adaptive procedure from 40% to 60% of the expected 

numbers being detected.  That is, the procedure will work when 

0.4 0.6G G
G

G B G B

N NN N N
N N N N

× × ≤ ≤ × ×
+ +

 

0.4 0.6B B
B

G B G B

N NN N N
N N N N

× × ≤ ≤ × ×
+ +

 

Figure 4.2 shows the adaptive procedure. The simulate result will also be 
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presented in Chapter 5. 

0 0

0 0

if  a benign host  is detected
        

        if  0.4 0.6

1ˆ ˆ                ,   
1 1

ˆ ˆ        if 

                stop the procedure

i

G

G G
G

G B G B

i

r
N

N NN N N
N N N N

m p m
m m

θ θ

θ θ ε

+ +

× × ≤ ≤ × ×
+ +

′ = + + +
+ +

′ − <

 

1 1

1 1

if  a malicious host  is detected

        

        if  0.4 0.6

1ˆ ˆ                ,   
1 1

ˆ ˆ        if 

                stop the procedure

j

B

B B
B

G B G B

j

r

N
N NN N N

N N N N
n p n

n n
θ θ

θ θ ε

+ +

× × ≤ ≤ × ×
+ +

′ = + + +
+ +

′− <

 

Figure 4.2 Adaptive procedure II 

 

4.3  Implementation 

Based on the hardware implementation introduced in Section 3.3.2, we propose a 

modified version of implementation.  In order to perform SHT, the establishment of 

FCC requests must be tracked.  Generally speaking, if a remote host r sends a 

connection request to a local host l, and then the host l replies an acknowledgement to 

the host r, the connection request is regarded as a success.  Otherwise, it is a failure.  

For example, in Figure 4.3, the 1st and 4th connection requests are successful, but the 
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3rd, 6th, and 7th connection requests may be failed. 

source IP destination IP

No=1 138.230.222.48 140.113.173.14 ← success

No=2 140.113.173.14 138.230.222.48

No=3 146.80.28.246 140.113.135.13 ← failure

No=4 123.26.187.115 140.113.134.229 ← success

No=5 140.113.134.229 123.26.187.115

No=6 128.16.190.43 140.113.159.237 ← failure

No=7 162.241.77.123 140.113.96.240 ← failure  

Figure 4.3  List of connection 

 

Each connection and the likelihood ratio of each remote host must be recorded.  

The IP addresses which send or receive connections can be classified as a remote IP of 

a local IP.  A connection is tracked in a connection table indexing by hashing the 

remote IP address and the local IP address.  Each record consists of a 1-bit field 

marking the connection from local to remote and the other 1-bit field marking the 

connection from remote to local.  The former field set to 1 represents that the local 

host l has contacted with the remote host r, and the latter field set to 1 represents that 

the remote host r has contacted with the local host l.  The 64-bit IP address is hashed 

to a 16-bit index, and the memory size of the connection cache is 128K bits.  It is 

shown in Figure 4.4. 

 

Established
Local → Remote

Established
Local ← Remote

1 bit 1 bit

2 bits

162

Connection Cache: 128K bits

( )
Connection Cache Lookup:
H Local IP, Remote IP Index→

32 bits 32 bits 16 bits

Established
Local → Remote

Established
Local ← Remote

1 bit 1 bit

Established
Local → Remote

Established
Local ← Remote

1 bit 1 bit

2 bits

162

Connection Cache: 128K bits

( )
Connection Cache Lookup:
H Local IP, Remote IP Index→

32 bits 32 bits 16 bits

( )
Connection Cache Lookup:
H Local IP, Remote IP Index→

32 bits 32 bits 16 bits

 

Figure 4.4  Connection Table 
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In Figure 4.5, the likelihood ratio of a remote IP address is also recorded in an 

address table indexing by hashing the remote IP address.  Each entry records 16-bit 

likelihood ratio of the remote IP address.  The 32-bit address is also hashed to a 

16-bits index, and the memory usage of the address cache is 2M bits. 

 

Address Cache: 2M bits

Likelihood ratio Λ

16 bits

( )
Address Cache Lookup:
H Remote IP   Index→

32 bits 16 bits 162

16 bits
Address Cache: 2M bits

Likelihood ratio Λ

16 bits

( )
Address Cache Lookup:
H Remote IP   Index→

32 bits 16 bits 162

16 bits  

Figure 4.5  Address Table 

 

When a connection is monitored by the scan detection machines, the detection 

mechanism looks up the connection in the connection table and the corresponding 

address of remote host in the address table.  Then the modified algorithm based on 

SHT is performed to detect the remote host is benign or malicious.  The algorithm is 

shown in Figure 4.6. 

If a remote address r whose likelihood ratio is lower than the upper thresholds 

and higher than the lower bound sends a FCC request to a local address l, the 

connection request will be considered as a failure temporarily and the likelihood ratio 

of remote host r is updated as FΛ + .  When a connection is sent by a local host l to 

a remote host r, if the host r has communicated with the host l, the connection request 

sent by host r previously must be a success.  Therefore, the likelihood ratio of the 
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remote host r will be compensated such that it is updated as F SΛ− + . 

 

Connection ( )

if  

        if  
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Figure 4.6  The modified algorithm for SHT 
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Chapter 5 

Simulation Results 

 

 

In this chapter, we will first present simulation results for the performances of the 

three detection algorithms introduced in Chapter 3, such as SHT, simplified SHT, and 

RSHT.  The desired false positive rate and false negative rate are both assigned to 

0.01.  As a consequence, we choose 0.01α =  and 0.99β =  in all simulations.  

Simulations are performed for 800 benign hosts and 200 malicious hosts. 

We will compare the differences between known and unknown of the success 

rates 0θ  and 1θ  of connection attempts sent by benign hosts or malicious hosts.  In 

a real network, 0θ  and 1θ  must be unknown but predictable adaptively.  Then, we 

will also present simulation results for the performance of our proposed adaptive 

sequential hypothesis testing and compare with the previous algorithms. 

 

5.1  SHT with known θ0  and 1θ  

In this section, we suppose that both the real values of 0θ  and 1θ  can be 
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known in advance.  In each table shown below, we will orderly demonstrate 4 kinds 

of data, such as false positive rates (FP), false negative rates (FN), the average 

numbers of FCC attempts sent by a benign host before being detected (NG), and the 

average numbers of FCC attempts sent by a malicious host before being detected (NB).  

The horizontal axle represents various values of 0θ , and the vertical axle represents 

various values of 1θ . 

At first, we show Table 5.1 which represents the step sizes of moving upward 

and downward for SHT as the values of 0 and 1θ θ  are changed.  It tells that the 

higher success rate of the benign hypothesis 0θ  leads to the larger step size of 

moving upward, and the lower success rate of the malicious hypothesis 1θ  leads to 

the larger step size of moving downward. 

Table 5.2 shows the results of SHT algorithm for the combinations of 0 1 and θ θ , 

assuming that they are known in advance.  As one can see, the false positive and 

false negative probabilities are close to the desired values 0.01.  The values of NG 

and NB, average numbers of FCC attempts sent by a benign and malicious host before 

detected, are small, especially when 0θ  is larger and 1θ  is smaller. 

Table 5.3 shows the results of the simplified SHT.  The step sizes of moving 

upward and downward for SHT are changed according the value of 0  and 1θ θ , but the 

step sizes for simplified SHT are fixed value.  So, we can regard the simplified SHT 

as a special case of the original SHT.  In the tables, we will find the phenomena that 

the false positive rates increase when 0θ  is small, and the false negative rates 

increase when 1θ  is large.  For the original SHT, the step size of moving upward 

must be increasing when 0θ  is increasing, and the step size of moving downward 

must be increasing when 1θ  is decreasing.  Therefore, when 0θ  is smaller and 1θ  
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is larger, the step sizes for the simplified SHT are both larger than those for the 

original SHT.  It will exceed the thresholds easily and cause more and more false 

positives and false negatives. 

Because of the step sizes of moving upward and downward, the average numbers 

of FCC attempts before detected are also different from those of SHT.  When there 

are larger 0θ  and smaller 1θ , the step sizes of simplified SHT are smaller than those 

of SHT, so the value of NG and NB are larger.  Similarly, the values of observation 

are smaller when 0θ  is smaller and 1θ  is larger. 

Table 5.4 is the result of RSHT.  Because it only detect the malicious hosts and 

monitor the benign hosts continuously until they are infected, we can find that the 

false negative rates are quite low, but it also has much higher false positive rates.  

Because of the reverse detection, it can detect malicious hosts slightly faster then the 

SHT algorithm. 
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Failure 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 0.747 0.865 0.999 1.153 1.335 1.558 1.846 2.251 2.944

0.10 0.693 0.811 0.944 1.099 1.281 1.504 1.792 2.197 2.890

0.15 0.636 0.754 0.887 1.041 1.224 1.447 1.735 2.140 2.833

0.20 0.575 0.693 0.827 0.981 1.163 1.386 1.674 2.079 2.773

0.25 0.511 0.629 0.762 0.916 1.099 1.322 1.609 2.015 2.708

0.30 0.442 0.560 0.693 0.847 1.030 1.253 1.540 1.946 2.639

0.35 0.368 0.486 0.619 0.773 0.956 1.179 1.466 1.872 2.565

0.40 0.288 0.405 0.539 0.693 0.875 1.099 1.386 1.792 2.485

0.45 0.201 0.318 0.452 0.606 0.788 1.012 1.299 1.705 2.398  
Success 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 -2.398 -2.485 -2.565 -2.639 -2.708 -2.773 -2.833 -2.890 -2.944

0.10 -1.705 -1.792 -1.872 -1.946 -2.015 -2.079 -2.140 -2.197 -2.251

0.15 -1.299 -1.386 -1.466 -1.540 -1.609 -1.674 -1.735 -1.792 -1.846

0.20 -1.012 -1.099 -1.179 -1.253 -1.322 -1.386 -1.447 -1.504 -1.558

0.25 -0.788 -0.875 -0.956 -1.030 -1.099 -1.163 -1.224 -1.281 -1.335

0.30 -0.606 -0.693 -0.773 -0.847 -0.916 -0.981 -1.041 -1.099 -1.153

0.35 -0.452 -0.539 -0.619 -0.693 -0.762 -0.827 -0.887 -0.944 -0.999

0.40 -0.318 -0.405 -0.486 -0.560 -0.629 -0.693 -0.754 -0.811 -0.865

0.45 -0.201 -0.288 -0.368 -0.442 -0.511 -0.575 -0.636 -0.693 -0.747  

Table 5.1  The step sizes of failure and success for SHT 
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FP (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 0.64 0.67 0.72 0.96 0.55 0.95 0.47 0.29 0.46

0.10 0.83 0.89 0.96 0.68 0.68 0.46 0.67 0.31 0.43

0.15 0.71 0.86 0.75 0.88 0.71 0.51 0.70 0.61 0.50

0.20 0.91 0.82 0.87 0.84 0.80 0.62 0.78 0.59 0.52

0.25 0.86 0.80 0.81 0.73 0.54 0.70 0.76 0.62 0.55

0.30 0.76 0.86 0.91 0.73 0.76 0.67 0.78 0.64 0.63

0.35 0.55 0.74 0.81 0.89 0.86 0.75 0.73 0.81 0.68

0.40 0.23 0.48 0.75 0.81 0.91 0.82 0.82 0.72 0.72

0.45 0.13 0.19 0.54 0.71 0.78 0.80 0.78 0.71 0.75  
FN (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 1.34 1.43 1.36 1.20 1.29 1.08 1.16 1.08 0.87

0.10 1.14 1.26 1.36 1.29 1.36 1.10 1.12 0.72 0.70

0.15 1.38 1.28 1.15 1.32 1.37 1.13 1.23 0.98 0.83

0.20 1.35 1.38 1.27 1.08 1.10 1.16 0.97 0.83 1.43

0.25 1.31 1.37 1.41 1.24 1.02 1.21 1.04 0.99 0.86

0.30 1.08 1.22 1.34 1.11 1.14 1.32 1.27 1.04 1.31

0.35 0.74 1.07 1.19 1.30 1.07 1.33 1.21 1.36 1.13

0.40 0.38 0.72 1.08 1.40 1.33 1.35 1.11 1.24 0.90

0.45 0.00 0.30 0.69 1.07 1.23 1.30 1.21 1.07 0.85  
N_G 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 5.51 4.74 4.17 3.78 3.39 2.98 2.71 2.48 2.21

0.10 8.38 7.21 5.69 5.24 4.60 4.12 3.70 3.76 3.32

0.15 11.89 9.59 8.09 6.64 5.65 4.95 4.25 3.75 3.48

0.20 16.01 13.04 10.59 8.90 7.54 6.63 5.68 5.00 3.51

0.25 21.30 16.99 13.59 11.51 9.89 7.59 6.43 5.46 4.69

0.30 27.03 22.19 17.80 14.54 12.01 9.10 7.62 6.49 4.90

0.35 33.51 27.98 22.90 18.01 14.83 11.28 9.44 7.08 6.15

0.40 40.95 34.41 28.22 22.90 18.34 14.32 11.24 8.80 7.45

0.45 61.29 41.56 34.43 28.38 22.80 17.79 14.27 10.89 8.70  
N_B 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 8.74 7.44 6.12 4.92 4.72 3.53 3.49 3.33 2.22

0.10 10.85 8.84 7.08 6.54 5.46 5.03 3.76 3.77 2.51

0.15 14.34 11.29 9.43 7.62 6.52 5.69 4.27 3.71 2.73

0.20 17.90 14.32 11.35 9.21 7.65 6.70 5.04 4.16 3.01

0.25 22.68 18.43 14.95 12.08 9.96 7.60 5.72 4.65 3.43

0.30 28.43 22.92 18.14 14.58 11.65 8.94 6.69 5.27 3.81

0.35 34.39 28.23 23.05 17.74 13.79 10.64 8.21 5.71 4.21

0.40 41.34 34.47 28.02 22.44 17.04 13.15 9.76 7.25 4.79

0.45 47.80 40.19 33.22 26.96 21.43 16.23 11.91 8.39 5.58  

Table 5.2  SHT, 0 and 1θ θ  are known 
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FP (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 24.70 11.52 4.56 1.69 0.68 0.34 0.22 0.19 0.16

0.10 24.76 11.50 4.42 1.72 0.69 0.32 0.21 0.17 0.11

0.15 25.00 11.37 4.52 1.77 0.62 0.30 0.19 0.11 0.08

0.20 24.64 11.27 4.38 1.59 0.60 0.29 0.16 0.08 0.07

0.25 24.38 11.33 4.45 1.65 0.54 0.21 0.10 0.06 0.03

0.30 24.66 11.46 4.43 1.57 0.55 0.17 0.06 0.02 0.02

0.35 24.51 11.24 4.57 1.53 0.49 0.11 0.05 0.02 0.01

0.40 24.68 11.21 4.48 1.49 0.47 0.13 0.03 0.02 0.01

0.45 24.52 11.24 4.30 1.49 0.42 0.12 0.03 0.01 0.01  
FN (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 0.01 0.02 0.09 0.09 0.18 0.21 0.38 0.57 0.60

0.10 0.04 0.07 0.10 0.17 0.28 0.38 0.40 0.64 0.77

0.15 0.07 0.12 0.18 0.20 0.35 0.43 0.65 0.78 0.93

0.20 0.18 0.35 0.38 0.34 0.56 0.83 0.79 0.93 1.07

0.25 0.52 0.67 0.83 0.85 1.02 1.13 1.20 1.33 1.39

0.30 1.75 1.76 1.96 1.94 2.21 2.27 2.42 2.46 2.60

0.35 4.46 4.71 4.83 4.95 5.23 5.16 5.51 5.30 5.55

0.40 11.49 12.15 12.16 12.30 11.98 12.12 12.20 12.41 12.03

0.45 24.29 24.74 25.06 25.15 25.17 25.83 25.48 24.49 25.45  
N_G 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 19.12 17.14 14.62 12.02 9.91 8.32 7.16 6.29 5.59

0.10 19.08 17.28 14.59 12.01 9.91 8.32 7.16 6.28 5.59

0.15 19.12 17.16 14.59 12.03 9.89 8.35 7.16 6.28 5.59

0.20 19.06 17.25 14.60 12.05 9.92 8.36 7.17 6.28 5.59

0.25 19.11 17.19 14.63 12.01 9.89 8.34 7.18 6.28 5.59

0.30 19.11 17.11 14.67 12.01 9.93 8.32 7.18 6.27 5.60

0.35 19.00 17.21 14.57 12.01 9.97 8.35 7.17 6.28 5.59

0.40 19.09 17.19 14.62 12.03 9.96 8.35 7.16 6.28 5.59

0.45 19.07 17.15 14.63 12.01 9.94 8.33 7.16 6.27 5.58  
N_B 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 5.64 5.66 5.65 5.70 5.73 5.72 5.70 5.69 5.67

0.10 6.31 6.34 6.38 6.42 6.42 6.36 6.38 6.36 6.35

0.15 7.24 7.20 7.24 7.26 7.34 7.25 7.25 7.22 7.18

0.20 8.48 8.40 8.42 8.47 8.42 8.45 8.48 8.39 8.36

0.25 9.98 10.08 10.09 10.02 9.96 10.01 9.98 9.95 9.93

0.30 12.07 12.17 12.07 12.04 12.13 12.09 12.09 12.07 11.93

0.35 14.54 14.60 14.74 14.64 14.71 14.52 14.73 14.55 14.59

0.40 17.15 17.16 17.06 17.30 17.17 17.20 17.33 17.18 17.16

0.45 19.04 19.16 18.95 18.87 19.06 19.10 19.18 19.14 19.04  

Table 5.3  Simplified SHT, 0 and 1θ θ  are known 
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FP (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 10.40 11.70 15.54 24.48 13.90 27.43 13.34 4.97 11.53

0.10 10.81 13.49 17.22 11.97 14.22 8.20 14.90 4.97 11.39

0.15 7.21 9.74 9.85 12.36 14.19 8.35 14.94 11.40 11.80

0.20 7.44 8.07 10.57 12.45 14.31 8.52 14.90 11.49 11.74

0.25 4.86 5.98 6.42 6.44 6.39 9.25 15.15 11.38 11.78

0.30 3.04 4.66 6.61 6.53 7.21 9.22 14.90 11.38 11.92

0.35 1.66 2.93 4.11 6.73 8.01 9.13 9.07 12.28 12.44

0.40 0.52 1.39 2.84 4.29 6.47 7.15 9.04 8.15 12.80

0.45 0.04 0.48 1.67 3.07 4.47 5.85 6.58 8.16 12.71

FN (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 0.03 0.02 0.02 0.00 0.01 0.00 0.00 0.00 0.00

0.10 0.03 0.01 0.02 0.02 0.01 0.00 0.00 0.00 0.00

0.15 0.18 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00

0.20 0.73 0.20 0.03 0.03 0.01 0.01 0.00 0.00 0.00

0.25 3.83 0.96 0.28 0.06 0.03 0.01 0.00 0.00 0.00

0.30 13.56 3.99 0.98 0.29 0.06 0.02 0.01 0.00 0.00

0.35 37.53 14.96 4.37 1.01 0.14 0.06 0.01 0.00 0.00

0.40 76.13 40.46 13.89 3.94 0.87 0.14 0.03 0.00 0.00

0.45 98.45 75.08 36.38 12.57 3.30 0.59 0.10 0.00 0.01

N_G 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N_B 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 8.56 7.26 5.96 4.69 4.67 3.42 3.42 3.38 2.21

0.10 10.06 8.26 6.71 6.39 5.25 4.99 3.68 3.68 2.40

0.15 13.32 10.54 8.86 7.20 5.99 5.53 4.06 3.69 2.60

0.20 16.19 13.05 10.32 8.32 6.80 6.29 4.61 4.01 2.83

0.25 21.02 16.90 13.71 11.31 9.18 7.05 5.14 4.39 3.11

0.30 27.16 21.39 16.26 13.27 10.63 8.13 5.82 4.85 3.41

0.35 33.67 26.96 21.56 15.86 12.32 9.42 7.55 5.29 3.76

0.40 41.11 33.76 26.86 20.85 15.33 11.81 8.65 6.63 4.20

0.45 50.45 40.28 32.65 25.67 19.70 14.69 10.84 7.52 4.73  

Table 5.4  RSHT, 0 and 1θ θ  are known 
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5.2  SHT with unknown θ0  and 1θ  

In fact, the values of 0  and 1θ θ  must be unknown in advance.  If we use the 

different values from the real ones to detect the hosts, the detection results must be 

affected.  Subsequently, we guess that  and simulate both SHT 

and RSHT with unknown 

0 1
ˆ ˆ0.8 and 0.2θ θ= =

10  and θ θ .  The simplified SHT will be ignored because it 

can’t be affected by various values of 0 1and θ θ . 

Table 5.5 shows the results of the SHT algorithm with unknown 0 1 and θ θ .  

Compared with Table 5.2, the false positive and negative rates are both much higher.  

There are similar results for the RSHT algorithm shown in Table 5.6.  These results 

indicate that the erroneous estimated values of 0 and 1θ θ  will cause the erroneous 

detection.  In the next section, we will implement the original SHT with our 

proposed adaptive estimation algorithm introduced in the previous chapter and then 

compare the simulation results with the SHT without adaptive estimation. 
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FP (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 30.46 16.75 8.03 3.50 1.45 0.65 0.31 0.21 0.17

0.10 30.52 16.55 7.96 3.59 1.45 0.60 0.24 0.19 0.11

0.15 30.36 16.65 7.87 3.48 1.48 0.57 0.25 0.12 0.11

0.20 30.53 16.58 8.05 3.37 1.29 0.54 0.23 0.13 0.07

0.25 30.38 16.45 7.95 3.43 1.38 0.52 0.15 0.09 0.04

0.30 30.38 16.58 8.02 3.44 1.27 0.50 0.17 0.05 0.04

0.35 30.72 16.50 7.89 3.53 1.29 0.43 0.14 0.05 0.03

0.40 30.27 16.43 8.06 3.31 1.31 0.44 0.15 0.03 0.02

0.45 30.38 16.68 7.66 3.38 1.31 0.46 0.12 0.03 0.01  
FN (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 0.04 0.07 0.06 0.12 0.18 0.31 0.33 0.51 0.62

0.10 0.14 0.10 0.12 0.23 0.27 0.37 0.54 0.63 0.73

0.15 0.20 0.30 0.35 0.36 0.45 0.67 0.73 0.80 0.99

0.20 0.54 0.59 0.69 0.80 0.82 0.87 1.09 1.21 1.20

0.25 1.58 1.39 1.52 1.78 1.78 1.94 1.85 2.01 2.17

0.30 3.42 3.64 3.58 3.69 4.05 4.16 4.11 4.23 4.08

0.35 8.27 8.23 7.49 8.12 8.10 8.69 8.65 8.70 8.77

0.40 16.42 16.70 16.63 16.79 17.06 16.81 17.24 17.80 16.89

0.45 30.77 30.32 30.64 30.83 31.19 31.27 31.53 31.35 31.22  
N_G 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 14.27 12.94 11.11 9.32 7.80 6.60 5.72 5.02 4.46

0.10 14.23 12.90 11.11 9.33 7.80 6.61 5.73 5.01 4.47

0.15 14.29 12.92 11.10 9.34 7.83 6.62 5.71 5.02 4.47

0.20 14.34 12.89 11.10 9.34 7.82 6.63 5.72 5.01 4.47

0.25 14.30 12.90 11.07 9.34 7.81 6.65 5.71 5.04 4.47

0.30 14.24 12.90 11.14 9.31 7.83 6.63 5.71 5.02 4.46

0.35 14.25 12.85 11.06 9.34 7.82 6.63 5.71 5.02 4.46

0.40 14.26 12.94 11.10 9.33 7.79 6.64 5.72 5.02 4.46

0.45 14.28 12.99 11.14 9.34 7.82 6.63 5.72 5.01 4.46  
N_B 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 4.49 4.53 4.52 4.54 4.53 4.52 4.55 4.54 4.51

0.10 5.04 5.09 5.09 5.09 5.08 5.08 5.03 5.07 5.04

0.15 5.78 5.76 5.76 5.78 5.80 5.79 5.74 5.76 5.75

0.20 6.69 6.66 6.66 6.70 6.71 6.67 6.66 6.71 6.65

0.25 7.90 7.94 7.83 7.92 7.85 7.85 7.87 7.84 7.82

0.30 9.37 9.29 9.34 9.38 9.38 9.36 9.31 9.27 9.37

0.35 11.11 11.13 11.19 11.13 11.24 11.12 11.11 11.07 11.04

0.40 13.02 12.84 13.05 12.94 12.84 12.98 13.02 12.91 12.91

0.45 14.18 14.31 14.29 14.36 14.33 14.28 14.21 14.19 14.17  

Table 5.5  SHT, 0  and 1θ θ  unknown, guess 0.8 and 0.2 
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FP (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 85.75 71.42 53.41 34.89 18.85 8.52 2.85 0.85 0.35

0.10 85.51 71.46 52.96 34.56 18.89 8.26 2.95 0.83 0.32

0.15 85.50 71.71 53.12 34.35 19.05 8.40 3.03 0.81 0.35

0.20 85.57 71.22 53.02 34.50 18.73 8.42 2.95 0.81 0.31

0.25 85.32 71.38 53.19 34.58 18.92 8.50 2.83 0.82 0.31

0.30 85.56 71.60 53.28 34.41 18.77 8.44 2.85 0.81 0.25

0.35 85.44 71.45 53.47 34.55 18.73 8.34 3.02 0.74 0.25

0.40 85.59 71.42 53.30 34.16 19.04 8.17 2.92 0.75 0.25

0.45 85.41 71.57 53.15 34.61 18.47 8.39 2.89 0.76 0.22  
FN (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.10 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02

0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02

0.20 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.04

0.25 0.01 0.00 0.01 0.00 0.00 0.01 0.03 0.05 0.09

0.30 0.01 0.01 0.02 0.01 0.01 0.04 0.04 0.09 0.19

0.35 0.09 0.10 0.14 0.10 0.11 0.13 0.18 0.25 0.33

0.40 0.51 0.43 0.52 0.51 0.48 0.58 0.66 0.70 0.81

0.45 1.84 2.01 1.99 2.02 2.00 2.23 2.10 2.24 2.59  
N_G 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
N_B 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 4.42 4.45 4.44 4.46 4.47 4.51 4.51 4.56 4.59

0.10 4.88 4.92 4.92 4.94 4.94 4.96 4.97 5.04 5.05

0.15 5.48 5.48 5.48 5.49 5.53 5.57 5.57 5.62 5.67

0.20 6.19 6.16 6.19 6.24 6.26 6.27 6.28 6.37 6.38

0.25 7.12 7.11 7.08 7.19 7.17 7.17 7.20 7.25 7.38

0.30 8.23 8.21 8.26 8.29 8.40 8.43 8.47 8.47 8.45

0.35 9.78 9.84 9.82 9.86 9.94 10.05 9.93 9.98 10.01

0.40 11.86 11.89 11.94 11.93 11.95 12.03 12.08 12.13 11.99

0.45 14.25 14.40 14.40 14.62 14.67 14.55 14.61 14.60 14.52  

Table 5.6  RSHT, 0 and 1θ θ  unknown, guess 0.8 and 0.2 
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5.3  Adaptive Sequential Hypothesis Testing 

In this section, we simulate our proposed adaptive sequential hypothesis testing 

and compare the performance with SHT without adaptive estimation.  At first, we 

update the values of 0̂  and 1̂θ θ  using the formula introduced in Section 4.1 after the 

first benign or malicious host is detected.  In the other word, when  or 

, the values of 

0GN ≥

0BN ≥ 0  and 1θ θ  are updated.  Table 5.8 shows the simulation 

results.  Compare with the Table 5.5 setting 0 10.8 and 0.2θ θ= = , most of the false 

positive and negative rates become a little lower. 

Table 5.9 shows the results of updating estimates after 25% of benign or 

malicious hosts are detected.  It represents that the success rates of the first few 

detected hosts will be different from the expected values.  Without updating the first 

25% of hosts, the false positives and negatives are less than the former. 

Therefore, we further simulate the scheme that update the estimates from 40% to 

60% of remote hosts detected as benign or malicious.  When  or 

, the adaptive procedure is activated.  In Table 5.10, we find that most 

of the false positive and negative rates are reduced to 2~3% 

320 480GN≤ ≤

80 120BN≤ ≤

In fact, we don’t know the exact numbers of benign and malicious hosts.  As 

described in Section 4.2, we can only predict them according to the good-to-bad ratio.  

When the numbers of detected benign and malicious hosts are located between 40% 

and 60% of the expected numbers, the procedure starts.  Table 5.11 shows that the 

scheme can reduce the probabilities and false positive and negative.  Table 5.12 

shows that the values of 0  and 1θ θ  are close to the real values finally.  
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FP (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 26.52 20.99 16.33 12.75 8.54 6.29 4.39 2.92 2.51

0.10 28.60 21.92 17.12 13.41 9.68 6.50 4.69 3.40 2.44

0.15 31.03 23.84 17.98 14.50 10.23 7.24 4.71 3.32 2.35

0.20 32.93 25.94 20.10 15.33 10.62 7.64 5.03 3.20 2.49

0.25 35.18 28.42 21.18 15.79 11.83 8.26 5.38 3.78 2.43

0.30 38.35 28.49 22.61 17.28 12.55 8.82 5.80 3.50 2.33

0.35 39.15 30.87 23.26 18.56 14.13 9.67 6.15 3.83 2.43

0.40 39.20 32.63 25.46 18.67 14.29 9.86 6.56 3.71 2.34

0.45 40.55 33.22 26.99 20.97 14.86 10.54 6.58 4.27 2.41  
FN (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 0.88 0.73 0.78 0.90 1.06 1.06 1.48 1.50 1.74

0.10 1.77 1.85 2.15 1.99 2.06 1.98 2.16 2.63 2.74

0.15 3.50 3.57 3.49 3.38 3.53 3.40 3.69 3.90 4.22

0.20 5.84 5.45 5.79 5.16 5.27 5.14 5.47 5.70 5.73

0.25 8.92 8.33 8.53 7.95 7.52 7.41 7.56 7.72 8.28

0.30 13.14 12.84 11.92 10.70 10.14 10.68 9.80 10.35 10.59

0.35 19.36 17.18 16.50 14.32 13.32 12.77 13.20 13.23 13.54

0.40 26.67 24.56 20.69 20.92 18.11 17.41 16.67 16.92 16.01

0.45 35.23 32.64 29.06 26.19 25.02 22.24 21.76 20.90 20.92  
N_G 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 4.99 4.51 4.03 3.61 3.22 2.91 2.60 2.32 2.07

0.10 5.37 4.78 4.27 3.85 3.44 3.09 2.80 2.47 2.20

0.15 5.73 5.22 4.65 4.17 3.72 3.31 2.94 2.58 2.33

0.20 5.90 5.51 4.99 4.50 3.95 3.50 3.15 2.76 2.43

0.25 6.18 5.80 5.26 4.66 4.16 3.71 3.31 2.87 2.49

0.30 6.26 5.96 5.52 5.02 4.50 3.97 3.49 3.02 2.59

0.35 6.41 6.25 5.70 5.32 4.81 4.22 3.71 3.16 2.69

0.40 6.68 6.26 5.98 5.36 5.02 4.44 3.84 3.31 2.82

0.45 6.72 6.44 6.13 5.67 5.15 4.59 4.01 3.42 2.92  
N_B 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 2.86 2.76 2.65 2.55 2.51 2.38 2.29 2.18 1.84

0.10 3.22 3.10 2.95 2.83 2.73 2.62 2.50 2.30 1.99

0.15 3.58 3.49 3.33 3.13 2.99 2.82 2.68 2.51 2.18

0.20 3.99 3.83 3.66 3.43 3.31 3.14 2.95 2.75 2.29

0.25 4.49 4.24 4.01 3.85 3.56 3.37 3.16 2.88 2.46

0.30 4.92 4.84 4.49 4.25 3.99 3.73 3.43 3.14 2.67

0.35 5.58 5.30 5.10 4.70 4.34 4.04 3.82 3.37 2.85

0.40 6.25 5.80 5.53 5.22 4.92 4.53 4.12 3.70 3.15

0.45 6.72 6.39 6.07 5.62 5.41 4.88 4.55 4.00 3.35  

Table 5.8  Adaptive SHT,  0  &  0  (0%)G BN N≥ ≥
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FP (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 7.43 6.33 5.45 4.52 3.40 3.06 2.44 1.43 1.23

0.10 8.91 6.77 6.26 5.21 4.78 3.89 2.95 1.98 1.35

0.15 10.12 7.59 6.53 5.06 4.19 3.81 2.91 2.21 1.58

0.20 11.71 8.72 7.12 5.24 3.98 3.65 2.62 1.80 1.62

0.25 13.00 10.44 7.62 5.71 4.87 3.86 2.68 1.93 1.19

0.30 15.57 10.86 8.55 6.60 5.65 4.47 3.05 2.19 1.21

0.35 16.74 12.60 9.56 7.15 6.37 5.03 3.39 2.78 1.36

0.40 18.39 13.94 10.59 8.25 6.81 4.91 3.69 2.91 1.61

0.45 20.33 14.80 11.63 9.24 7.18 5.55 3.96 3.18 1.68  
FN (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 1.31 1.33 1.61 1.25 1.24 1.62 1.59 1.43 1.15

0.10 2.15 2.38 2.77 2.34 2.02 1.87 2.29 2.04 1.68

0.15 3.51 4.66 4.48 3.49 2.99 2.93 3.52 2.89 2.81

0.20 6.07 6.28 6.37 4.88 3.90 3.94 4.54 3.58 4.07

0.25 9.22 8.58 8.76 6.98 4.77 4.99 5.56 4.15 4.97

0.30 13.83 12.67 12.40 9.04 6.48 6.83 6.55 5.53 5.70

0.35 21.40 17.45 16.51 11.53 8.22 8.17 8.74 6.23 6.89

0.40 30.69 25.46 21.76 16.31 11.57 10.67 10.05 7.45 7.62

0.45 42.93 37.48 30.27 22.24 16.06 13.52 12.64 8.98 10.28  
N_G 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 5.12 4.25 3.57 3.44 3.18 2.76 2.44 2.26 2.13

0.10 6.18 5.07 4.24 3.94 3.60 3.13 2.66 2.45 2.26

0.15 7.24 5.83 4.89 4.59 4.14 3.56 2.91 2.71 2.37

0.20 8.12 6.82 5.66 5.18 4.77 4.07 3.44 3.26 2.61

0.25 9.38 7.84 6.27 5.72 5.43 4.52 3.87 3.65 2.97

0.30 10.50 8.83 7.13 6.56 6.11 5.08 4.32 3.89 3.25

0.35 11.23 9.88 8.01 7.51 6.96 5.71 4.72 4.33 3.46

0.40 12.30 10.81 9.05 8.26 7.68 6.43 5.26 4.83 3.74

0.45 13.04 11.42 10.28 9.35 8.55 7.13 5.90 5.40 4.03  
N_B 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 4.68 4.17 3.65 3.40 3.26 2.85 2.41 2.25 2.04

0.10 5.50 4.94 4.23 3.86 3.44 3.04 2.64 2.39 2.13

0.15 6.43 5.75 4.94 4.46 4.05 3.46 2.93 2.61 2.24

0.20 7.43 6.76 5.84 5.22 4.79 4.09 3.49 3.09 2.42

0.25 8.90 7.86 6.75 6.06 5.26 4.54 3.96 3.45 2.79

0.30 9.95 9.21 7.90 6.95 5.96 5.13 4.35 3.72 3.04

0.35 11.16 10.40 9.07 8.38 6.84 5.76 4.95 3.98 3.31

0.40 11.84 11.58 10.26 9.47 8.25 6.93 5.65 4.52 3.55

0.45 12.08 11.90 11.45 10.87 9.53 7.87 6.52 5.22 3.91  

Table 5.9  Adaptive SHT,  200  &  50  (25%)G BN N≥ ≥
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FP (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 3.48 3.52 3.77 3.09 2.31 2.17 2.02 1.28 0.84

0.10 3.46 3.13 2.93 2.60 2.68 2.00 2.13 1.57 0.93

0.15 3.48 3.16 3.12 2.60 2.31 1.89 2.08 1.34 0.92

0.20 3.61 3.26 3.00 2.57 2.38 2.03 1.70 1.33 0.87

0.25 3.76 3.59 2.92 2.87 2.42 2.26 1.88 1.57 0.87

0.30 4.22 3.83 3.11 3.03 2.63 2.28 1.75 1.55 0.86

0.35 4.67 4.03 3.57 3.03 2.73 2.49 1.87 1.63 0.89

0.40 4.77 4.03 3.53 3.26 2.94 2.55 2.07 1.71 1.00

0.45 5.31 4.07 3.56 3.37 3.09 2.86 2.16 1.76 1.05  
FN (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 1.62 1.24 1.54 1.22 1.50 1.30 1.34 1.34 1.01

0.10 2.17 1.99 2.22 1.87 2.19 1.76 1.81 2.07 1.54

0.15 2.74 3.18 3.07 2.58 2.39 2.12 2.60 2.12 2.53

0.20 4.23 4.08 4.04 3.32 2.93 2.69 2.39 2.66 3.34

0.25 6.24 5.25 5.16 3.70 2.81 3.28 3.31 3.14 3.67

0.30 9.57 7.24 6.57 4.92 3.48 4.35 3.69 3.52 4.72

0.35 15.86 10.98 9.20 6.21 4.02 4.40 4.55 3.95 4.94

0.40 27.58 18.60 14.16 8.69 5.61 5.24 4.59 4.73 5.28

0.45 50.23 36.53 23.79 13.85 7.53 6.28 5.40 4.92 5.76  
N_G 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 5.31 4.58 3.85 3.64 3.11 2.85 2.60 2.29 2.17

0.10 6.82 5.73 4.79 4.42 3.68 3.38 2.90 2.51 2.32

0.15 8.57 6.95 5.78 5.28 4.68 4.01 3.40 3.15 2.65

0.20 10.41 8.62 7.10 6.19 5.48 4.60 4.14 3.60 2.93

0.25 12.87 10.63 8.40 7.36 6.76 5.28 4.53 4.02 3.27

0.30 15.00 12.68 10.22 8.85 7.96 6.34 5.41 4.61 3.72

0.35 16.31 14.58 11.88 10.63 9.46 7.42 6.22 5.33 4.18

0.40 17.00 15.78 13.35 12.50 11.27 9.00 7.30 6.01 4.69

0.45 18.13 15.72 14.58 14.22 13.37 10.65 8.64 7.09 5.37  
N_B 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 6.13 5.26 4.34 4.05 3.49 3.15 2.75 2.30 2.14

0.10 7.66 6.50 5.45 4.86 3.93 3.61 3.05 2.47 2.25

0.15 9.64 7.87 6.42 5.65 4.85 4.13 3.45 2.95 2.47

0.20 12.07 9.78 8.02 6.75 5.78 4.72 4.09 3.36 2.68

0.25 15.11 12.24 9.85 7.97 6.81 5.34 4.55 3.70 3.00

0.30 18.52 15.07 12.26 9.73 8.04 6.33 5.26 4.21 3.35

0.35 21.19 18.52 14.85 12.17 9.62 7.36 6.15 4.80 3.76

0.40 22.43 21.01 17.95 14.78 11.82 9.07 7.08 5.52 4.22

0.45 21.13 20.95 20.26 18.09 14.48 10.94 8.49 6.58 4.83  

Table 5.10  Adaptive SHT, 320 480  &  80 120  (40~60%)G BN N≤ ≤ ≤ ≤  
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FP (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 2.48 3.04 3.30 2.96 2.03 2.75 2.63 1.26 1.35

0.10 2.65 2.82 2.22 3.06 2.20 2.52 2.81 1.48 1.90

0.15 2.66 2.92 2.66 2.92 2.32 2.06 2.85 1.65 1.68

0.20 2.78 2.79 2.80 2.55 2.79 2.14 3.23 1.69 1.14

0.25 3.02 3.00 3.03 2.79 2.80 2.59 3.45 2.08 1.15

0.30 3.48 3.28 3.06 2.88 2.90 2.32 3.24 2.28 1.22

0.35 3.71 3.48 3.26 3.05 2.66 2.79 2.70 2.36 1.38

0.40 4.04 3.54 3.24 2.81 2.52 2.90 2.93 2.59 1.74

0.45 4.57 3.88 3.36 2.90 2.80 2.98 2.96 2.65 1.91  
FN (%) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 2.79 1.95 1.90 1.92 1.80 1.32 1.20 1.71 1.23

0.10 3.96 3.75 3.33 2.62 3.00 2.33 1.93 1.76 1.62

0.15 4.57 3.87 4.72 3.33 4.34 3.27 2.48 2.69 2.55

0.20 4.72 4.35 4.35 3.29 3.10 3.38 2.41 3.11 3.28

0.25 4.92 4.77 4.35 4.08 3.09 3.80 2.77 2.83 3.60

0.30 5.50 5.24 4.66 4.09 3.57 3.87 3.06 3.23 3.54

0.35 6.88 5.71 5.13 5.02 4.23 3.94 3.56 3.48 3.93

0.40 8.77 6.53 5.95 5.18 4.43 4.51 3.67 3.60 3.87

0.45 26.57 11.39 6.99 5.90 4.96 3.98 3.80 4.12 3.80  
N_G 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 4.20 3.79 3.41 3.10 2.82 2.73 2.48 2.19 2.08

0.10 5.61 4.69 4.12 3.78 3.27 3.04 2.75 2.48 2.29

0.15 7.69 6.46 5.18 4.72 3.79 3.54 3.26 2.78 2.47

0.20 10.64 8.45 7.00 6.25 5.29 4.46 4.19 3.36 2.84

0.25 13.75 11.04 9.05 7.59 6.75 5.27 4.74 4.04 3.20

0.30 17.14 14.30 11.51 9.62 8.16 6.32 5.69 4.60 3.66

0.35 21.17 17.74 14.60 11.47 9.93 7.95 6.58 5.38 4.28

0.40 25.23 21.62 17.92 14.75 12.28 9.64 7.90 6.35 4.99

0.45 24.20 24.77 21.89 18.10 14.77 12.20 9.82 7.55 5.99  
N_B 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 6.46 5.14 4.29 3.74 3.50 2.92 2.33 2.23 2.02

0.10 8.16 6.51 5.75 4.51 4.05 3.40 2.64 2.45 2.03

0.15 10.34 8.16 6.77 5.50 4.71 4.11 2.99 2.71 2.22

0.20 13.16 10.36 8.26 6.90 5.33 4.70 3.36 3.04 2.55

0.25 16.04 13.02 10.09 8.28 6.60 5.26 3.75 3.30 2.78

0.30 19.10 15.91 12.66 10.11 7.98 6.40 4.51 3.71 3.06

0.35 22.81 19.26 15.59 12.49 9.92 7.40 5.61 4.20 3.36

0.40 26.48 22.86 18.82 15.74 12.56 9.01 6.60 4.88 3.66

0.45 25.77 25.77 22.55 18.89 15.07 11.27 8.14 5.75 4.08  

Table 5.11  Adaptive SHT,  :   (40~60%)G BN N
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THETA0 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 0.561 0.593 0.641 0.701 0.754 0.827 0.857 0.912 0.957

0.10 0.536 0.591 0.631 0.692 0.745 0.796 0.874 0.910 0.961

0.15 0.545 0.604 0.629 0.715 0.754 0.809 0.868 0.938 0.958

0.20 0.545 0.608 0.640 0.682 0.748 0.810 0.855 0.917 0.947

0.25 0.545 0.576 0.657 0.697 0.741 0.801 0.872 0.913 0.965

0.30 0.543 0.606 0.645 0.682 0.741 0.811 0.866 0.918 0.963

0.35 0.563 0.590 0.655 0.672 0.742 0.803 0.850 0.925 0.967

0.40 0.573 0.624 0.655 0.698 0.740 0.796 0.842 0.901 0.961

0.45 0.569 0.624 0.644 0.692 0.747 0.798 0.858 0.915 0.957  
THETA1 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 0.045 0.041 0.039 0.049 0.043 0.040 0.040 0.043 0.052

0.10 0.090 0.086 0.081 0.079 0.080 0.082 0.094 0.072 0.106

0.15 0.130 0.136 0.137 0.155 0.138 0.137 0.141 0.148 0.146

0.20 0.202 0.206 0.184 0.205 0.192 0.209 0.203 0.225 0.183

0.25 0.240 0.239 0.242 0.234 0.230 0.254 0.246 0.246 0.255

0.30 0.264 0.285 0.307 0.295 0.274 0.271 0.308 0.293 0.315

0.35 0.323 0.323 0.345 0.336 0.357 0.345 0.360 0.360 0.356

0.40 0.347 0.367 0.380 0.381 0.381 0.418 0.407 0.397 0.391

0.45 0.379 0.399 0.404 0.430 0.417 0.445 0.455 0.434 0.455  

Table 5.12  0  and 1θ θ  of Adaptive SHT,  :   (40~60%)G BN N
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Chapter 6 

Conclusion 

 

 

We have investigated three existing schemes for detecting scanning worms – 

sequential hypothesis testing, simplified sequential hypothesis testing, and reverse 

sequential hypothesis testing.  Compared with the performance of these schemes, we 

think that they may be unsuitable for a real network if some parameters are unknown 

and estimated erroneous. 

We have presented in this paper an adaptive sequential hypothesis testing scheme 

for fast detection of scanning worms.  The adaptive estimation procedure can adjust 

0  and 1θ θ  automatically according to the information collected previously and make 

the sequential hypothesis testing algorithm more robust to variation of 0 1 and θ θ .  

The proposed adaptive detection algorithm provides accurate estimates of 0 1 and θ θ  

and thus achieves false positive and false negative probabilities close to the desired 

values. 
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